WorldWideScience

Sample records for radiation based fourier

  1. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction.

    Science.gov (United States)

    Fahimian, Benjamin P; Zhao, Yunzhe; Huang, Zhifeng; Fung, Russell; Mao, Yu; Zhu, Chun; Khatonabadi, Maryam; DeMarco, John J; Osher, Stanley J; McNitt-Gray, Michael F; Miao, Jianwei

    2013-03-01

    A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest scanner flux setting of 39 m

  2. Radiation dose reduction in medical x-ray CT via Fourier-based iterative reconstruction

    International Nuclear Information System (INIS)

    Fahimian, Benjamin P.; Zhao Yunzhe; Huang Zhifeng; Fung, Russell; Zhu Chun; Miao Jianwei; Mao Yu; Khatonabadi, Maryam; DeMarco, John J.; McNitt-Gray, Michael F.; Osher, Stanley J.

    2013-01-01

    Purpose: A Fourier-based iterative reconstruction technique, termed Equally Sloped Tomography (EST), is developed in conjunction with advanced mathematical regularization to investigate radiation dose reduction in x-ray CT. The method is experimentally implemented on fan-beam CT and evaluated as a function of imaging dose on a series of image quality phantoms and anonymous pediatric patient data sets. Numerical simulation experiments are also performed to explore the extension of EST to helical cone-beam geometry. Methods: EST is a Fourier based iterative algorithm, which iterates back and forth between real and Fourier space utilizing the algebraically exact pseudopolar fast Fourier transform (PPFFT). In each iteration, physical constraints and mathematical regularization are applied in real space, while the measured data are enforced in Fourier space. The algorithm is automatically terminated when a proposed termination criterion is met. Experimentally, fan-beam projections were acquired by the Siemens z-flying focal spot technology, and subsequently interleaved and rebinned to a pseudopolar grid. Image quality phantoms were scanned at systematically varied mAs settings, reconstructed by EST and conventional reconstruction methods such as filtered back projection (FBP), and quantified using metrics including resolution, signal-to-noise ratios (SNRs), and contrast-to-noise ratios (CNRs). Pediatric data sets were reconstructed at their original acquisition settings and additionally simulated to lower dose settings for comparison and evaluation of the potential for radiation dose reduction. Numerical experiments were conducted to quantify EST and other iterative methods in terms of image quality and computation time. The extension of EST to helical cone-beam CT was implemented by using the advanced single-slice rebinning (ASSR) method. Results: Based on the phantom and pediatric patient fan-beam CT data, it is demonstrated that EST reconstructions with the lowest

  3. Mechanistic insights into nanotoxicity determined by synchrotron radiation-based Fourier-transform infrared imaging and multivariate analysis.

    Science.gov (United States)

    Riding, Matthew J; Trevisan, Júlio; Hirschmugl, Carol J; Jones, Kevin C; Semple, Kirk T; Martin, Francis L

    2012-12-01

    Our ability to identify the mechanisms by which carbon-based nanomaterials (CBNs) exert toxicity in cells is constrained by the lack of standardized methodologies to assay endpoint effects. Herein we describe a method of mechanistically identifying the effects of various CBN types in both prokaryotic and eukaryotic cells using multi-beam synchrotron radiation-based Fourier-transform infrared imaging (SR-FTIRI) at diffraction-limited resolution. This technique overcomes many of the inherent difficulties of assaying nanotoxicity and demonstrates exceptional sensitivity in identifying the effects of CBNs in cells at environmentally-relevant concentrations. We identify key mechanisms of nanotoxicity as the alteration of Amide and lipid biomolecules, but propose more specific bioactivity of CBNs occurs as a result of specific interactions between CBN structural conformation and cellular characteristics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Synchrotron radiation-based Fourier-transform infrared spectromicroscopy for characterization of the protein/peptide distribution in single microspheres

    Directory of Open Access Journals (Sweden)

    Manli Wang

    2015-05-01

    Full Text Available The present study establishes a visualization method for the measurement of the distribution and localization of protein/peptide constituents within a single poly-lactide-co-glycolide (PLGA microsphere using synchrotron radiation–based Fourier-transform infrared spectromicroscopy (SR-FTIR. The representative infrared wavenumbers specific for protein/peptide (Exenatide and excipient (PLGA were identified and chemical maps at the single microsphere level were generated by measuring and plotting the intensity of these specific bands. For quantitative analysis of the distribution within microspheres, Matlab software was used to transform the map file into a 3D matrix and the matrix values specific for the drug and excipient were extracted. Comparison of the normalized SR-FTIR maps of PLGA and Exenatide indicated that PLGA was uniformly distributed, while Exenatide was relatively non-uniformly distributed in the microspheres. In conclusion, SR-FTIR is a rapid, nondestructive and sensitive detection technology to provide the distribution of chemical constituents and functional groups in microparticles and microspheres.

  5. Preliminary studies of the effects of psychological stress on circulating lymphocytes analyzed by synchrotron radiation based-Fourier transform infrared microspectroscopy

    Science.gov (United States)

    Vargas-Caraveo, Alejandra; Castillo-Michel, Hiram; Mejia-Carmona, Gloria Erika; Pérez-Ishiwara, David Guillermo; Cotte, Marine; Martínez-Martínez, Alejandro

    2014-07-01

    Psychological stress is a condition that not only generates behavioral disorders but also disrupts homeostasis and immune activity that can exacerbate or lead to inflammatory diseases. The aim of this work was to study biochemical changes in circulating immune cells from rats under psychological stress by using vibrational spectroscopy. A stress model was used, where exposure to a stressor was repeated for 5 days. Subsequently, circulating lymphocytes were examined for their biomolecular vibrational fingerprints with synchrotron radiation based-Fourier transform infrared microspectroscopy. The results showed an increased absorption at the ester lipid region (1720-1755 cm-1) in lymphocytes from stressed rats, suggesting lipid peroxidation. Statistical significant changes in wavenumber peak position and absorbance in the nucleic acid region were also observed (915-950 cm-1 Z-DNA, 1090-1150 cm-1 symmetric stretching of Psbnd Osbnd C, 1200-1260 cm-1 asymmetric PO2 and 1570-1510 cm-1 methylated nucleotides) which suggest a reduction of transcriptional activity in lymphocytes from stressed rat. These results unravel part of the mechanisms by which psychological stress may affect the immune system leading to systemic consequences.

  6. Identification of copper-based green pigments in Jaume Huguet's Gothic altarpieces by Fourier transform infrared microspectroscopy and synchrotron radiation X-ray diffraction.

    Science.gov (United States)

    Salvadó, N; Pradell, T; Pantos, E; Papiz, M Z; Molera, J; Seco, M; Vendrell-Saz, M

    2002-07-01

    The scientific investigation of ancient paintings gives a unique insight into ancient painting techniques and their evolution through time and geographic location. This study deals with the identification of the green pigments used by one of the most important Catalan masters in Gothic times, Jaume Huguet. Other pigments and materials have also been characterized by means of conventional techniques such as optical microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. Synchrotron radiation X-ray diffraction has been used to produce maps of phases at a spatial resolution of 100 microm across chromatic layers.

  7. Fourier expansions and multivariable Bessel functions concerning radiation programmes

    International Nuclear Information System (INIS)

    Dattoli, G.; Richetta, M.; Torre, A.; Chiccoli, C.; Lorenzutta, S.; Maino, G.

    1996-01-01

    The link between generalized Bessel functions and other special functions is investigated using the Fourier series and the generalized Jacobi-Anger expansion. A new class of multivariable Hermite polynomials is then introduced and their relevance to physical problems discussed. As an example of the power of the method, applied to radiation physics, we analyse the role played by multi-variable Bessel functions in the description of radiation emitted by a charge constrained to a nonlinear oscillation. (author)

  8. Combined Helmholtz Integral Equation - Fourier series formulation of acoustical radiation and scattering problems

    CSIR Research Space (South Africa)

    Fedotov, I

    2006-07-01

    Full Text Available The Combined Helmholtz Integral Equation – Fourier series Formulation (CHIEFF) is based on representation of a velocity potential in terms of Fourier series and finding the Fourier coefficients of this expansion. The solution could be substantially...

  9. Fourier transform based scalable image quality measure.

    Science.gov (United States)

    Narwaria, Manish; Lin, Weisi; McLoughlin, Ian; Emmanuel, Sabu; Chia, Liang-Tien

    2012-08-01

    We present a new image quality assessment (IQA) algorithm based on the phase and magnitude of the 2D (twodimensional) Discrete Fourier Transform (DFT). The basic idea is to compare the phase and magnitude of the reference and distorted images to compute the quality score. However, it is well known that the Human Visual Systems (HVSs) sensitivity to different frequency components is not the same. We accommodate this fact via a simple yet effective strategy of nonuniform binning of the frequency components. This process also leads to reduced space representation of the image thereby enabling the reduced-reference (RR) prospects of the proposed scheme. We employ linear regression to integrate the effects of the changes in phase and magnitude. In this way, the required weights are determined via proper training and hence more convincing and effective. Lastly, using the fact that phase usually conveys more information than magnitude, we use only the phase for RR quality assessment. This provides the crucial advantage of further reduction in the required amount of reference image information. The proposed method is therefore further scalable for RR scenarios. We report extensive experimental results using a total of 9 publicly available databases: 7 image (with a total of 3832 distorted images with diverse distortions) and 2 video databases (totally 228 distorted videos). These show that the proposed method is overall better than several of the existing fullreference (FR) algorithms and two RR algorithms. Additionally, there is a graceful degradation in prediction performance as the amount of reference image information is reduced thereby confirming its scalability prospects. To enable comparisons and future study, a Matlab implementation of the proposed algorithm is available at http://www.ntu.edu.sg/home/wslin/reduced_phase.rar.

  10. Preservation of information in Fourier theory based deconvolved nuclear spectra

    International Nuclear Information System (INIS)

    Madan, V.K.; Gopalakrishnan, K.R.; Sharma, R.C.; Rattan, S.S.

    1995-01-01

    Nuclear spectroscopy is extremely useful to the internal radiation dosimetry for the estimation of body burden due to gamma emitters. Analysis of nuclear spectra is concerned with the extraction of qualitative and quantitative information embedded in the spectra. A spectral deconvolution method based on Fourier theory is probably the simplest method of deconvolving nuclear spectra. It is proved mathematically that the deconvolution method preserves the qualitative information. It is shown by using simulated spectra and an observed gamma ray spectrum that the method preserves the quantitative information. This may provide a novel approach of information extraction from a deconvolved spectrum. The paper discusses the methodology, mathematical analysis, and the results obtained by deconvolving spectra. (author). 6 refs., 2 tabs

  11. Fourier transform Raman spectroscopy of polyacrylamide gels for radiation dosimetry

    International Nuclear Information System (INIS)

    Baldock, C.; Murry, P.; Pope, J.; Rintoul, L.; George, G.

    1998-01-01

    Polyacrylamide (PAG) gels are used in magnetic resonance imaging radiation dosimetry. The PAG dosimeter is based on the radiation-induced co-polymerisation and cross-linking of acrylic monomers infused in a gel matrix. PAG was manufactured with a composition of 5% gelatine, 3% acrylamide and 3% N,N'methylene-bis-acrylamide by mass, with distilled water as the remaining constituent [Baldock, 1998]. FT-Raman spectroscopy studies were undertaken to investigate cross-linking changes during the co-polymerisation of PAG in the spectral range of 200 - 3500 cm -1 . Vibrational bands of 1285 cm -1 and 1256 cm -1 were assigned to the acrylamide and bis-acrylamide single CH 2 δ CH2 binding modes. These bands were found to decrease in amplitude with increasing absorbed radiation dose, as a result of co-polymerisation. Principal Component Regression was performed on FT-Raman spectra of PAG samples irradiated to 50 Gy and two components were found to be sufficient to account for 98.7% of variance in the data. Cross validation was used to establish the absorbed radiation dose of an unknown PAG sample from the FT-Raman spectra. The calculated correlation coefficient between measured and predictive samples was 0.997 with a standard error of estimate of 0.976 and a standard error of prediction of 1.140. These results demonstrate the potential of FT-Raman spectroscopy for ionising radiation dosimetry using polyacrylamide gels

  12. Innovative design method of automobile profile based on Fourier descriptor

    Science.gov (United States)

    Gao, Shuyong; Fu, Chaoxing; Xia, Fan; Shen, Wei

    2017-10-01

    Aiming at the innovation of the contours of automobile side, this paper presents an innovative design method of vehicle side profile based on Fourier descriptor. The design flow of this design method is: pre-processing, coordinate extraction, standardization, discrete Fourier transform, simplified Fourier descriptor, exchange descriptor innovation, inverse Fourier transform to get the outline of innovative design. Innovative concepts of the innovative methods of gene exchange among species and the innovative methods of gene exchange among different species are presented, and the contours of the innovative design are obtained separately. A three-dimensional model of a car is obtained by referring to the profile curve which is obtained by exchanging xenogeneic genes. The feasibility of the method proposed in this paper is verified by various aspects.

  13. Fourier diffraction theorem for diffusion-based thermal tomography

    International Nuclear Information System (INIS)

    Baddour, Natalie

    2006-01-01

    There has been much recent interest in thermal imaging as a method of non-destructive testing and for non-invasive medical imaging. The basic idea of applying heat or cold to an area and observing the resulting temperature change with an infrared camera has led to the development of rapid and relatively inexpensive inspection systems. However, the main drawback to date has been that such an approach provides mainly qualitative results. In order to advance the quantitative results that are possible via thermal imaging, there is interest in applying techniques and algorithms from conventional tomography. Many tomography algorithms are based on the Fourier diffraction theorem, which is inapplicable to thermal imaging without suitable modification to account for the attenuative nature of thermal waves. In this paper, the Fourier diffraction theorem for thermal tomography is derived and discussed. The intent is for this thermal-diffusion based Fourier diffraction theorem to form the basis of tomographic reconstruction algorithms for quantitative thermal imaging

  14. Novel Fourier-based iterative reconstruction for sparse fan projection using alternating direction total variation minimization

    International Nuclear Information System (INIS)

    Jin Zhao; Zhang Han-Ming; Yan Bin; Li Lei; Wang Lin-Yuan; Cai Ai-Long

    2016-01-01

    Sparse-view x-ray computed tomography (CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in reconstruction speed and memory usage. A novel Fourier-based iterative reconstruction technique that utilizes non-uniform fast Fourier transform (NUFFT) is presented in this work along with advanced total variation (TV) regularization for a fan sparse-view CT. The proposition of a selective matrix contributes to improve reconstruction quality. The new method employs the NUFFT and its adjoin to iterate back and forth between the Fourier and image space. The performance of the proposed algorithm is demonstrated through a series of digital simulations and experimental phantom studies. Results of the proposed algorithm are compared with those of existing TV-regularized techniques based on compressed sensing method, as well as basic algebraic reconstruction technique. Compared with the existing TV-regularized techniques, the proposed Fourier-based technique significantly improves convergence rate and reduces memory allocation, respectively. (paper)

  15. Direct fourier method reconstruction based on unequally spaced fast fourier transform

    International Nuclear Information System (INIS)

    Wu Xiaofeng; Zhao Ming; Liu Li

    2003-01-01

    First, We give an Unequally Spaced Fast Fourier Transform (USFFT) method, which is more exact and theoretically more comprehensible than its former counterpart. Then, with an interesting interpolation scheme, we discusse how to apply USFFT to Direct Fourier Method (DFM) reconstruction of parallel projection data. At last, an emulation experiment result is given. (authors)

  16. Fourier Transform Infrared Radiation Spectroscopy Applied for Wood Rot Decay and Mould Fungi Growth Detection

    OpenAIRE

    Jelle, Bjørn Petter; Hovde, Per Jostein

    2012-01-01

    Material characterization may be carried out by the attenuated total reflectance (ATR) Fourier transform infrared (FTIR) radiation spectroscopical technique, which represents a powerful experimental tool. The ATR technique may be applied on both solid state materials, liquids, and gases with none or only minor sample preparations, also including materials which are nontransparent to IR radiation. This facilitation is made possible by pressing the sample directly onto various crystals, for exa...

  17. Matrix-Vector Based Fast Fourier Transformations on SDR Architectures

    Directory of Open Access Journals (Sweden)

    Y. He

    2008-05-01

    Full Text Available Today Discrete Fourier Transforms (DFTs are applied in various radio standards based on OFDM (Orthogonal Frequency Division Multiplex. It is important to gain a fast computational speed for the DFT, which is usually achieved by using specialized Fast Fourier Transform (FFT engines. However, in face of the Software Defined Radio (SDR development, more general (parallel processor architectures are often desirable, which are not tailored to FFT computations. Therefore, alternative approaches are required to reduce the complexity of the DFT. Starting from a matrix-vector based description of the FFT idea, we will present different factorizations of the DFT matrix, which allow a reduction of the complexity that lies between the original DFT and the minimum FFT complexity. The computational complexities of these factorizations and their suitability for implementation on different processor architectures are investigated.

  18. Multi-band Image Registration Method Based on Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    庹红娅; 刘允才

    2004-01-01

    This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features,they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.

  19. Live face detection based on the analysis of Fourier spectra

    Science.gov (United States)

    Li, Jiangwei; Wang, Yunhong; Tan, Tieniu; Jain, Anil K.

    2004-08-01

    Biometrics is a rapidly developing technology that is to identify a person based on his or her physiological or behavioral characteristics. To ensure the correction of authentication, the biometric system must be able to detect and reject the use of a copy of a biometric instead of the live biometric. This function is usually termed "liveness detection". This paper describes a new method for live face detection. Using structure and movement information of live face, an effective live face detection algorithm is presented. Compared to existing approaches, which concentrate on the measurement of 3D depth information, this method is based on the analysis of Fourier spectra of a single face image or face image sequences. Experimental results show that the proposed method has an encouraging performance.

  20. Fourier-Based Transmit Beampattern Design Using MIMO Radar

    KAUST Repository

    Lipor, John; Ahmed, Sajid; Alouini, Mohamed-Slim

    2014-01-01

    a constant-envelope or drawing from a finite alphabet. In this paper, a closed-form method to design for a uniform linear array is proposed that utilizes the discrete Fourier transform (DFT) coefficients and Toeplitz matrices. The resulting

  1. Fourier-Based Fast Multipole Method for the Helmholtz Equation

    KAUST Repository

    Cecka, Cris

    2013-01-01

    The fast multipole method (FMM) has had great success in reducing the computational complexity of solving the boundary integral form of the Helmholtz equation. We present a formulation of the Helmholtz FMM that uses Fourier basis functions rather than spherical harmonics. By modifying the transfer function in the precomputation stage of the FMM, time-critical stages of the algorithm are accelerated by causing the interpolation operators to become straightforward applications of fast Fourier transforms, retaining the diagonality of the transfer function, and providing a simplified error analysis. Using Fourier analysis, constructive algorithms are derived to a priori determine an integration quadrature for a given error tolerance. Sharp error bounds are derived and verified numerically. Various optimizations are considered to reduce the number of quadrature points and reduce the cost of computing the transfer function. © 2013 Society for Industrial and Applied Mathematics.

  2. Spectrums Transform Operators in Bases of Fourier and Walsh Functions

    Directory of Open Access Journals (Sweden)

    V. V. Syuzev

    2017-01-01

    Full Text Available The problems of synthesis of the efficient algorithms for digital processing of discrete signals require transforming the signal spectra from one basis system into other. The rational solution to this problem is to construct the Fourier kernel, which is a spectrum of some basis functions, according to the system of functions of the other basis. However, Fourier kernel properties are not equally studied and described for all basis systems of practical importance. The article sets a task and presents an original way to solve the problem of mutual transformation of trigonometric Fourier spectrum into Walsh spectrum of different basis systems.The relevance of this theoretical and applied problem is stipulated, on the one hand, by the prevalence of trigonometric Fourier basis for harmonic representation of digital signals, and, on the other hand, by the fact that Walsh basis systems allow us to have efficient algorithms to simulate signals. The problem solution is achieved through building the Fourier kernel of a special structure that allows us to establish independent groups of Fourier and Walsh spectrum coefficients for further reducing the computational complexity of the transform algorithms.The article analyzes the properties of the system of trigonometric Fourier functions and shows its completeness. Considers the Walsh function basis systems in three versions, namely those of Hadamard, Paley, and Hartmut giving different ordering and analytical descriptions of the functions that make up the basis. Proves a completeness of these systems.Sequentially, for each of the three Walsh systems the analytical curves for the Fourier kernel components are obtained, and Fourier kernel themselves are built with binary rational number of samples of basis functions. The kernels are presented in matrix form and, as an example, recorded for a particular value of the discrete interval of N, equal to 8. The analysis spectral coefficients of the Fourier kernel

  3. Fourier-Based Diffraction Analysis of Live Caenorhabditis elegans.

    Science.gov (United States)

    Magnes, Jenny; Hastings, Harold M; Raley-Susman, Kathleen M; Alivisatos, Clara; Warner, Adam; Hulsey-Vincent, Miranda

    2017-09-13

    This manuscript describes how to classify nematodes using temporal far-field diffraction signatures. A single C. elegans is suspended in a water column inside an optical cuvette. A 632 nm continuous wave HeNe laser is directed through the cuvette using front surface mirrors. A significant distance of at least 20-30 cm traveled after the light passes through the cuvette ensures a useful far-field (Fraunhofer) diffraction pattern. The diffraction pattern changes in real time as the nematode swims within the laser beam. The photodiode is placed off-center in the diffraction pattern. The voltage signal from the photodiode is observed in real time and recorded using a digital oscilloscope. This process is repeated for 139 wild type and 108 "roller" C. elegans. Wild type worms exhibit a rapid oscillation pattern in solution. The "roller" worms have a mutation in a key component of the cuticle that interferes with smooth locomotion. Time intervals that are not free of saturation and inactivity are discarded. It is practical to divide each average by its maximum to compare relative intensities. The signal for each worm is Fourier transformed so that the frequency pattern for each worm emerges. The signal for each type of worm is averaged. The averaged Fourier spectra for the wild type and the "roller" C. elegans are distinctly different and reveal that the dynamic worm shapes of the two different worm strains can be distinguished using Fourier analysis. The Fourier spectra of each worm strain match an approximate model using two different binary worm shapes that correspond to locomotory moments. The envelope of the averaged frequency distribution for actual and modeled worms confirms the model matches the data. This method can serve as a baseline for Fourier analysis for many microscopic species, as every microorganism will have its unique Fourier spectrum.

  4. Closed form fourier-based transmit beamforming for MIMO radar

    KAUST Repository

    Lipor, John J.; Ahmed, Sajid; Alouini, Mohamed-Slim

    2014-01-01

    -pattern, current research uses iterative algorithms, first to synthesize the waveform covariance matrix, R, then to design the actual waveforms to realize R. In contrast to this, we present a closed form method to design R that exploits discrete Fourier transform

  5. Fourier-based magnetic induction tomography for mapping resistivity

    International Nuclear Information System (INIS)

    Puwal, Steffan; Roth, Bradley J.

    2011-01-01

    Magnetic induction tomography is used as an experimental tool for mapping the passive electromagnetic properties of conductors, with the potential for imaging biological tissues. Our numerical approach to solving the inverse problem is to obtain a Fourier expansion of the resistivity and the stream functions of the magnetic fields and eddy current density. Thus, we are able to solve the inverse problem of determining the resistivity from the applied and measured magnetic fields for a two-dimensional conducting plane. When we add noise to the measured magnetic field, we find the fidelity of the measured to the true resistivity is quite robust for increasing levels of noise and increasing distances of the applied and measured field coils from the conducting plane, when properly filtered. We conclude that Fourier methods provide a reliable alternative for solving the inverse problem.

  6. Periodic transonic flow simulation using fourier-based algorithm

    International Nuclear Information System (INIS)

    Mohaghegh, Mohammad Reza; Malekjafarian, Majid

    2014-01-01

    The present research simulates time-periodic unsteady transonic flow around pitching airfoils via the solution of unsteady Euler and Navier-Stokes equations, using time spectral method (TSM) and compares it with the traditional methods like BDF and explicit structured adaptive grid method. The TSM uses a Fourier representation in time and hence solves for the periodic state directly without resolving transients (which consume most of the resources in a time-accurate scheme). Mathematical tools used here are discrete Fourier transformations. The TSM has been validated with 2D external aerodynamics test cases. These test cases are NACA 64A010 (CT6) and NACA 0012 (CT1 and CT5) pitching airfoils. Because of turbulent nature of flow, Baldwin-Lomax turbulence model has been used in viscous flow analysis with large oscillation amplitude (CT5 type). The results presented by the TSM are compared with experimental data and the two other methods. By enforcing periodicity and using Fourier representation in time that has a spectral accuracy, tremendous reduction of computational cost has been obtained compared to the conventional time-accurate methods. Results verify the small number of time intervals per pitching cycle (just four time intervals) required to capture the flow physics with small oscillation amplitude (CT6) and large oscillation amplitude (CT5) as compared to the other two methods.

  7. Missing texture reconstruction method based on error reduction algorithm using Fourier transform magnitude estimation scheme.

    Science.gov (United States)

    Ogawa, Takahiro; Haseyama, Miki

    2013-03-01

    A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.

  8. Fourier Transform Infrared Radiation Spectroscopy Applied for Wood Rot Decay and Mould Fungi Growth Detection

    Directory of Open Access Journals (Sweden)

    Bjørn Petter Jelle

    2012-01-01

    Full Text Available Material characterization may be carried out by the attenuated total reflectance (ATR Fourier transform infrared (FTIR radiation spectroscopical technique, which represents a powerful experimental tool. The ATR technique may be applied on both solid state materials, liquids, and gases with none or only minor sample preparations, also including materials which are nontransparent to IR radiation. This facilitation is made possible by pressing the sample directly onto various crystals, for example, diamond, with high refractive indices, in a special reflectance setup. Thus ATR saves time and enables the study of materials in a pristine condition, that is, the comprehensive sample preparation by pressing thin KBr pellets in traditional FTIR transmittance spectroscopy is hence avoided. Materials and their ageing processes, both ageing by natural and accelerated climate exposure, decomposition and formation of chemical bonds and products, may be studied in an ATR-FTIR analysis. In this work, the ATR-FTIR technique is utilized to detect wood rot decay and mould fungi growth on various building material substrates. An experimental challenge and aim is to be able to detect the wood rot decay and mould fungi growth at early stages when it is barely visible to the naked eye. Another goal is to be able to distinguish between various species of fungi and wood rot.

  9. [Continuum based fast Fourier transform processing of infrared spectrum].

    Science.gov (United States)

    Liu, Qing-Jie; Lin, Qi-Zhong; Wang, Qin-Jun; Li, Hui; Li, Shuai

    2009-12-01

    To recognize ground objects with infrared spectrum, high frequency noise removing is one of the most important phases in spectrum feature analysis and extraction. A new method for infrared spectrum preprocessing was given combining spectrum continuum processing and Fast Fourier Transform (CFFT). Continuum was firstly removed from the noise polluted infrared spectrum to standardize hyper-spectra. Then the spectrum was transformed into frequency domain (FD) with fast Fourier transform (FFT), separating noise information from target information After noise eliminating from useful information with a low-pass filter, the filtered FD spectrum was transformed into time domain (TD) with fast Fourier inverse transform. Finally the continuum was recovered to the spectrum, and the filtered infrared spectrum was achieved. Experiment was performed for chlorite spectrum in USGS polluted with two kinds of simulated white noise to validate the filtering ability of CFFT by contrast with cubic function of five point (CFFP) in time domain and traditional FFT in frequency domain. A circle of CFFP has limited filtering effect, so it should work much with more circles and consume more time to achieve better filtering result. As for conventional FFT, Gibbs phenomenon has great effect on preprocessing result at edge bands because of special character of rock or mineral spectra, while works well at middle bands. Mean squared error of CFFT is 0. 000 012 336 with cut-off frequency of 150, while that of FFT and CFFP is 0. 000 061 074 with cut-off frequency of 150 and 0.000 022 963 with 150 working circles respectively. Besides the filtering result of CFFT can be improved by adjusting the filter cut-off frequency, and has little effect on working time. The CFFT method overcomes the Gibbs problem of FFT in spectrum filtering, and can be more convenient, dependable, and effective than traditional TD filter methods.

  10. A Fourier-based textural feature extraction procedure

    Science.gov (United States)

    Stromberg, W. D.; Farr, T. G.

    1986-01-01

    A procedure is presented to discriminate and characterize regions of uniform image texture. The procedure utilizes textural features consisting of pixel-by-pixel estimates of the relative emphases of annular regions of the Fourier transform. The utility and derivation of the features are described through presentation of a theoretical justification of the concept followed by a heuristic extension to a real environment. Two examples are provided that validate the technique on synthetic images and demonstrate its applicability to the discrimination of geologic texture in a radar image of a tropical vegetated area.

  11. Fourier-based automatic alignment for improved Visual Cryptography schemes.

    Science.gov (United States)

    Machizaud, Jacques; Chavel, Pierre; Fournel, Thierry

    2011-11-07

    In Visual Cryptography, several images, called "shadow images", that separately contain no information, are overlapped to reveal a shared secret message. We develop a method to digitally register one printed shadow image acquired by a camera with a purely digital shadow image, stored in memory. Using Fourier techniques derived from Fourier Optics concepts, the idea is to enhance and exploit the quasi periodicity of the shadow images, composed by a random distribution of black and white patterns on a periodic sampling grid. The advantage is to speed up the security control or the access time to the message, in particular in the cases of a small pixel size or of large numbers of pixels. Furthermore, the interest of visual cryptography can be increased by embedding the initial message in two shadow images that do not have identical mathematical supports, making manual registration impractical. Experimental results demonstrate the successful operation of the method, including the possibility to directly project the result onto the printed shadow image.

  12. Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-01-02

    Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.

  13. Optical polarimeter based on Fourier analysis and electronic control

    International Nuclear Information System (INIS)

    Vilardy, J; Salas, V.; Torres, C.

    2016-01-01

    In this paper, we show the design and implementation of an optical polarimeter using electronic control and the Fourier analysis. The polarimeter prototype will be used as a main tool for the students of the Universidad Popular del Cesar that belong to the following university programs: Electronics engineering (optoelectronics area), Math and Physics degree and the Master in Physics Sciences, in order to learning the theory and experimental aspects of the state of optical polarization via the Stokes vector measurement. Using the electronic polarimeter proposed in this paper, the students will be able to observe (in an optical bench) and understand the different interactions of the states of optical polarization when the optical waves pass through to the polarizers and retarder waves plates. The electronic polarimeter has a software that captures the optical intensity measurement and evaluates the Stokes vector. (Author)

  14. Closed form fourier-based transmit beamforming for MIMO radar

    KAUST Repository

    Lipor, John J.

    2014-05-01

    In multiple-input multiple-output (MIMO) radar setting, it is often desirable to design correlated waveforms such that power is transmitted only to a given set of locations, a process known as beampattern design. To design desired beam-pattern, current research uses iterative algorithms, first to synthesize the waveform covariance matrix, R, then to design the actual waveforms to realize R. In contrast to this, we present a closed form method to design R that exploits discrete Fourier transform and Toeplitz matrix. The resulting covariance matrix fulfills the practical constraints and performance is similar to that of iterative methods. Next, we present a radar architecture for the desired beampattern that does not require the synthesis of covariance matrix nor the design of correlated waveforms. © 2014 IEEE.

  15. Fourier-Based Transmit Beampattern Design Using MIMO Radar

    KAUST Repository

    Lipor, John

    2014-05-01

    In multiple-input multiple-output (MIMO) radar settings, it is often desirable to transmit power only to a given location or set of locations defined by a beampattern. Transmit waveform design is a topic that has received much attention recently, involving synthesis of both the signal covariance matrix,, as well as the actual waveforms. Current methods involve a two-step process of designing via iterative solutions and then using to generate waveforms that fulfill practical constraints such as having a constant-envelope or drawing from a finite alphabet. In this paper, a closed-form method to design for a uniform linear array is proposed that utilizes the discrete Fourier transform (DFT) coefficients and Toeplitz matrices. The resulting covariance matrix fulfills the practical constraints such as positive semidefiniteness and the uniformelemental power constraint and provides performance similar to that of iterative methods, which require a much greater computation time. Next, a transmit architecture is presented that exploits the orthogonality of frequencies at discrete DFT values to transmit a sum of orthogonal signals from each antenna. The resulting waveforms provide a lower mean-square error than current methods at a much lower computational cost, and a simulated detection scenario demonstrates the performance advantages achieved.

  16. Fourier-based approach to interpolation in single-slice helical computed tomography

    International Nuclear Information System (INIS)

    La Riviere, Patrick J.; Pan Xiaochuan

    2001-01-01

    It has recently been shown that longitudinal aliasing can be a significant and detrimental presence in reconstructed single-slice helical computed tomography (CT) volumes. This aliasing arises because the directly measured data in helical CT are generally undersampled by a factor of at least 2 in the longitudinal direction and because the exploitation of the redundancy of fanbeam data acquired over 360 degree sign to generate additional longitudinal samples does not automatically eliminate the aliasing. In this paper we demonstrate that for pitches near 1 or lower, the redundant fanbeam data, when used properly, can provide sufficient information to satisfy a generalized sampling theorem and thus to eliminate aliasing. We develop and evaluate a Fourier-based algorithm, called 180FT, that accomplishes this. As background we present a second Fourier-based approach, called 360FT, that makes use only of the directly measured data. Both Fourier-based approaches exploit the fast Fourier transform and the Fourier shift theorem to generate from the helical projection data a set of fanbeam sinograms corresponding to equispaced transverse slices. Slice-by-slice reconstruction is then performed by use of two-dimensional fanbeam algorithms. The proposed approaches are compared to their counterparts based on the use of linear interpolation - the 360LI and 180LI approaches. The aliasing suppression property of the 180FT approach is a clear advantage of the approach and represents a step toward the desirable goal of achieving uniform longitudinal resolution properties in reconstructed helical CT volumes

  17. Generalized formulation of an encryption system based on a joint transform correlator and fractional Fourier transform

    International Nuclear Information System (INIS)

    Vilardy, Juan M; Millán, María S; Pérez-Cabré, Elisabet; Torres, Yezid

    2014-01-01

    We propose a generalization of the encryption system based on double random phase encoding (DRPE) and a joint transform correlator (JTC), from the Fourier domain to the fractional Fourier domain (FrFD) by using the fractional Fourier operators, such as the fractional Fourier transform (FrFT), fractional traslation, fractional convolution and fractional correlation. Image encryption systems based on a JTC architecture in the FrFD usually produce low quality decrypted images. In this work, we present two approaches to improve the quality of the decrypted images, which are based on nonlinear processing applied to the encrypted function (that contains the joint fractional power spectrum, JFPS) and the nonzero-order JTC in the FrFD. When the two approaches are combined, the quality of the decrypted image is higher. In addition to the advantages introduced by the implementation of the DRPE using a JTC, we demonstrate that the proposed encryption system in the FrFD preserves the shift-invariance property of the JTC-based encryption system in the Fourier domain, with respect to the lateral displacement of both the key random mask in the decryption process and the retrieval of the primary image. The feasibility of this encryption system is verified and analyzed by computer simulations. (paper)

  18. OTDM-WDM Conversion Based on Time-Domain Optical Fourier Transformation with Spectral Compression

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Galili, Michael

    2011-01-01

    We propose a scheme enabling direct serial-to-parallel conversion of OTDM data tributaries onto a WDM grid, based on optical Fourier transformation with spectral compression. Demonstrations on 320 Gbit/s and 640 Gbit/s OTDM data are shown.......We propose a scheme enabling direct serial-to-parallel conversion of OTDM data tributaries onto a WDM grid, based on optical Fourier transformation with spectral compression. Demonstrations on 320 Gbit/s and 640 Gbit/s OTDM data are shown....

  19. Deficiencies of the cryptography based on multiple-parameter fractional Fourier transform.

    Science.gov (United States)

    Ran, Qiwen; Zhang, Haiying; Zhang, Jin; Tan, Liying; Ma, Jing

    2009-06-01

    Methods of image encryption based on fractional Fourier transform have an incipient flaw in security. We show that the schemes have the deficiency that one group of encryption keys has many groups of keys to decrypt the encrypted image correctly for several reasons. In some schemes, many factors result in the deficiencies, such as the encryption scheme based on multiple-parameter fractional Fourier transform [Opt. Lett.33, 581 (2008)]. A modified method is proposed to avoid all the deficiencies. Security and reliability are greatly improved without increasing the complexity of the encryption process. (c) 2009 Optical Society of America.

  20. Novel approach to the Helmholtz integral equation solution by Fourier series expansion for acoustic radiation and scattering problems

    CSIR Research Space (South Africa)

    Shatalov, MY

    2006-01-01

    Full Text Available -scale structure to guarantee the numerical accuracy of solution. In the present paper the authors propose to use a novel method of solution of the Helmholtz integral equation, which is based on expansion of the integrands in double Fourier series. The main...

  1. The fractional Fourier transform as a simulation tool for lens-based X-ray microscopy

    DEFF Research Database (Denmark)

    Pedersen, Anders Filsøe; Simons, Hugh; Detlefs, Carsten

    2018-01-01

    The fractional Fourier transform (FrFT) is introduced as a tool for numerical simulations of X-ray wavefront propagation. By removing the strict sampling requirements encountered in typical Fourier optics, simulations using the FrFT can be carried out with much decreased detail, allowing...... the attenuation from the entire CRL using one or two effective apertures without loss of accuracy, greatly accelerating simulations involving CRLs. To demonstrate the applicability and accuracy of the FrFT, the imaging resolution of a CRL-based imaging system is estimated, and the FrFT approach is shown...

  2. Wave scattering theory a series approach based on the Fourier transformation

    CERN Document Server

    Eom, Hyo J

    2001-01-01

    The book provides a unified technique of Fourier transform to solve the wave scattering, diffraction, penetration, and radiation problems where the technique of separation of variables is applicable. The book discusses wave scattering from waveguide discontinuities, various apertures, and coupling structures, often encountered in electromagnetic, electrostatic, magnetostatic, and acoustic problems. A system of simultaneous equations for the modal coefficients is formulated and the rapidly-convergent series solutions amenable to numerical computation are presented. The series solutions find practical applications in the design of microwave/acoustic transmission lines, waveguide filters, antennas, and electromagnetic interference/compatibilty-related problems.

  3. Modeling and forecasting monthly movement of annual average solar insolation based on the least-squares Fourier-model

    International Nuclear Information System (INIS)

    Yang, Zong-Chang

    2014-01-01

    Highlights: • Introduce a finite Fourier-series model for evaluating monthly movement of annual average solar insolation. • Present a forecast method for predicting its movement based on the extended Fourier-series model in the least-squares. • Shown its movement is well described by a low numbers of harmonics with approximately 6-term Fourier series. • Predict its movement most fitting with less than 6-term Fourier series. - Abstract: Solar insolation is one of the most important measurement parameters in many fields. Modeling and forecasting monthly movement of annual average solar insolation is of increasingly importance in areas of engineering, science and economics. In this study, Fourier-analysis employing finite Fourier-series is proposed for evaluating monthly movement of annual average solar insolation and extended in the least-squares for forecasting. The conventional Fourier analysis, which is the most common analysis method in the frequency domain, cannot be directly applied for prediction. Incorporated with the least-square method, the introduced Fourier-series model is extended to predict its movement. The extended Fourier-series forecasting model obtains its optimums Fourier coefficients in the least-square sense based on its previous monthly movements. The proposed method is applied to experiments and yields satisfying results in the different cities (states). It is indicated that monthly movement of annual average solar insolation is well described by a low numbers of harmonics with approximately 6-term Fourier series. The extended Fourier forecasting model predicts the monthly movement of annual average solar insolation most fitting with less than 6-term Fourier series

  4. Study of the gamma radiation effect on lincomycin by two techniques thermal analysis and fourier transform infrared (FTIR)

    International Nuclear Information System (INIS)

    Al-Zier, A.; Al-Kassiri, H.; Al Aji, Z.

    1999-02-01

    Sample of Lincomycin were irradiated by means of gamma radiation ( 60 Co) at dose rate ca. (408 kGy/h) in the range (3, 5, 15, 20)kGy in presence of air. Samples were investigated using two techniques: Thermal analysis (Differential Scanning Calorimetry (DSC) and Thermogravimetry (TG)) and Fourier Transform Infrared (FTIR). DSC purity study, which depends on Vant Hof equation, showed that the purity of Lincomycin reduced by means of gamma radiation. The purity of theses samples decreased by increasing the dose, and the purity of lincomycin was still above (99%) at dose (10 kGy). To follow up this effects, (FTIR) spectrums of these sample were recorded before and after irradiation. The two peaks at (1500 - 1750 Cm -1 ) which belong to amide group, and the peak at (1050 - 1100 Cm -1 ) which belongs to the S-C groups have reduced. (author)

  5. Study of the gamma radiation effect on the lincomycin by two techniques thermal analysis and fourier transform infrared (FTIR)

    International Nuclear Information System (INIS)

    Al-Zier, A.; Al-Kassiri, H.

    1999-01-01

    Sample of Lincomycin were irradiated by means of gamma radiation ( 60 Co) at dose rate ca. (408 kGy/h) in the range (3, 5, 15, 20)kGy in presence of air. Samples were investigated using two techniques: Thermal analysis (Differential Scanning Calorimetry (DSC) and Thermogravimetry (TG)) and Fourier Transform Infrared (FTIR). DSC purity study, which depends on Vant Hof equation, showed that the purity of Lincomycin reduced by means of gamma radiation. The purity of theses samples decreased by increasing the dose, and the purity of lincomycin was still above (99%) at dose (10 kGy). To follow up this effects, (FTIR) spectrums of these sample were recorded before and after irradiation. The two peaks at (1500 - 1750 Cm -1 ) which belong to amide group, and the peak at (1050 - 1100 Cm -1 ) which belongs to the S-C groups have reduced. (author)

  6. All-optical signal processing of OTDM and OFDM signals based on time-domain optical fourier transformation

    DEFF Research Database (Denmark)

    Galili, Michael; Guan, Pengyu; Lillieholm, Mads

    2017-01-01

    In the talk, we will review recent work on optical signal processing based on time lenses. Various applications of optical Fourier transformation for optical communications will be discussed.......In the talk, we will review recent work on optical signal processing based on time lenses. Various applications of optical Fourier transformation for optical communications will be discussed....

  7. THE IMAGE REGISTRATION OF FOURIER-MELLIN BASED ON THE COMBINATION OF PROJECTION AND GRADIENT PREPROCESSING

    Directory of Open Access Journals (Sweden)

    D. Gao

    2017-09-01

    Full Text Available Image registration is one of the most important applications in the field of image processing. The method of Fourier Merlin transform, which has the advantages of high precision and good robustness to change in light and shade, partial blocking, noise influence and so on, is widely used. However, not only this method can’t obtain the unique mutual power pulse function for non-parallel image pairs, even part of image pairs also can’t get the mutual power function pulse. In this paper, an image registration method based on Fourier-Mellin transformation in the view of projection-gradient preprocessing is proposed. According to the projection conformational equation, the method calculates the matrix of image projection transformation to correct the tilt image; then, gradient preprocessing and Fourier-Mellin transformation are performed on the corrected image to obtain the registration parameters. Eventually, the experiment results show that the method makes the image registration of Fourier-Mellin transformation not only applicable to the registration of the parallel image pairs, but also to the registration of non-parallel image pairs. What’s more, the better registration effect can be obtained

  8. Statistical analysis of polarization-inhomogeneous Fourier spectra of laser radiation scattered by human skin in the tasks of differentiation of benign and malignant formations

    Science.gov (United States)

    Ushenko, Alexander G.; Dubolazov, Alexander V.; Ushenko, Vladimir A.; Novakovskaya, Olga Y.

    2016-07-01

    The optical model of formation of polarization structure of laser radiation scattered by polycrystalline networks of human skin in Fourier plane was elaborated. The results of investigation of the values of statistical (statistical moments of the 1st to 4th order) parameters of polarization-inhomogeneous images of skin surface in Fourier plane were presented. The diagnostic criteria of pathological process in human skin and its severity degree differentiation were determined.

  9. Using analytic derivatives to assess the impact of phase function Fourier decomposition technique on the accuracy of a radiative transfer model

    International Nuclear Information System (INIS)

    Sanghavi, Suniti; Natraj, Vijay

    2013-01-01

    Fourier decomposition of the phase function is essential to decouple the azimuthal component of the radiative transfer equation for multiple scattering calculations. This decomposition can be carried out by means of a direct numerical method based on the definition of the Fourier transform (numFT), or by an expansion of the phase function in terms of spherical Legendre polynomials (sphFT). numFT requires interpolation of the phase function between discrete angles, leading to spurious errors in the final computations. This error is difficult to quantify by means of intensity-only computations, since it is hard to determine the absolute accuracy of any given approach. We show that a linearization (analytic computation of derivatives) of the intensity with respect to parameters governing the phase function can be compared against results using the finite difference method, thereby providing a self-consistency test for characterizing and quantifying the error. We have applied this approach to two linearized versions of the Matrix Operator Method, which are identical in all respects except that one uses numFT while the other uses sphFT. In both cases, we compute the derivatives of the intensity with respect to aerosol parameters governing scattering in the simulated atmosphere. Comparison of the derivatives against their finite difference estimates shows a reduction of error by several orders of magnitude when Legendre polynomials are employed. We have also examined the effect of the angular resolution of the phase function on the error due to the numFT technique. A general reduction of error is seen with increasing angular resolution, indicating that interpolation is indeed the major error source. Also, we have pointed out a related source of error in numFT computations that occurs when Fourier decomposition is carried out on the composite phase function of a layer consisting of more than one scatterer. We conclude that an expansion of the phase function in terms of

  10. Techniques for Handling and Removal of Spectral Channels in Fourier Transform Synchrotron-Based Spectra

    International Nuclear Information System (INIS)

    Ibrahim, Amr; Predoi-Cross, Adriana; Teillet, Philippe M.

    2010-01-01

    Channel spectra are a big problem for those attempting to use synchrotron-based Fourier transform spectra for spectral lineshape studies. Due to the layout of the optical system at the CLS far-infrared beamline, the synchrotron beam undergoes unavoidable multiple reflections on the steering mirrors, beam splitter, several sets of windows, and filters. We present a method for eliminating channel spectra and compare the results of our technique with other methods available in the literature.

  11. Fourier-based linear systems description of free-breathing pulmonary magnetic resonance imaging

    Science.gov (United States)

    Capaldi, D. P. I.; Svenningsen, S.; Cunningham, I. A.; Parraga, G.

    2015-03-01

    Fourier-decomposition of free-breathing pulmonary magnetic resonance imaging (FDMRI) was recently piloted as a way to provide rapid quantitative pulmonary maps of ventilation and perfusion without the use of exogenous contrast agents. This method exploits fast pulmonary MRI acquisition of free-breathing proton (1H) pulmonary images and non-rigid registration to compensate for changes in position and shape of the thorax associated with breathing. In this way, ventilation imaging using conventional MRI systems can be undertaken but there has been no systematic evaluation of fundamental image quality measurements based on linear systems theory. We investigated the performance of free-breathing pulmonary ventilation imaging using a Fourier-based linear system description of each operation required to generate FDMRI ventilation maps. Twelve subjects with chronic obstructive pulmonary disease (COPD) or bronchiectasis underwent pulmonary function tests and MRI. Non-rigid registration was used to co-register the temporal series of pulmonary images. Pulmonary voxel intensities were aligned along a time axis and discrete Fourier transforms were performed on the periodic signal intensity pattern to generate frequency spectra. We determined the signal-to-noise ratio (SNR) of the FDMRI ventilation maps using a conventional approach (SNRC) and using the Fourier-based description (SNRF). Mean SNR was 4.7 ± 1.3 for subjects with bronchiectasis and 3.4 ± 1.8, for COPD subjects (p>.05). SNRF was significantly different than SNRC (p<.01). SNRF was approximately 50% of SNRC suggesting that the linear system model well-estimates the current approach.

  12. Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU

    Science.gov (United States)

    Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang

    2017-10-01

    Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.

  13. Fourier-Mellin moment-based intertwining map for image encryption

    Science.gov (United States)

    Kaur, Manjit; Kumar, Vijay

    2018-03-01

    In this paper, a robust image encryption technique that utilizes Fourier-Mellin moments and intertwining logistic map is proposed. Fourier-Mellin moment-based intertwining logistic map has been designed to overcome the issue of low sensitivity of an input image. Multi-objective Non-Dominated Sorting Genetic Algorithm (NSGA-II) based on Reinforcement Learning (MNSGA-RL) has been used to optimize the required parameters of intertwining logistic map. Fourier-Mellin moments are used to make the secret keys more secure. Thereafter, permutation and diffusion operations are carried out on input image using secret keys. The performance of proposed image encryption technique has been evaluated on five well-known benchmark images and also compared with seven well-known existing encryption techniques. The experimental results reveal that the proposed technique outperforms others in terms of entropy, correlation analysis, a unified average changing intensity and the number of changing pixel rate. The simulation results reveal that the proposed technique provides high level of security and robustness against various types of attacks.

  14. Holographic memory system based on projection recording of computer-generated 1D Fourier holograms.

    Science.gov (United States)

    Betin, A Yu; Bobrinev, V I; Donchenko, S S; Odinokov, S B; Evtikhiev, N N; Starikov, R S; Starikov, S N; Zlokazov, E Yu

    2014-10-01

    Utilization of computer generation of holographic structures significantly simplifies the optical scheme that is used to record the microholograms in a holographic memory record system. Also digital holographic synthesis allows to account the nonlinear errors of the record system to improve the microholograms quality. The multiplexed record of holograms is a widespread technique to increase the data record density. In this article we represent the holographic memory system based on digital synthesis of amplitude one-dimensional (1D) Fourier transform holograms and the multiplexed record of these holograms onto the holographic carrier using optical projection scheme. 1D Fourier transform holograms are very sensitive to orientation of the anamorphic optical element (cylindrical lens) that is required for encoded data object reconstruction. The multiplex record of several holograms with different orientation in an optical projection scheme allowed reconstruction of the data object from each hologram by rotating the cylindrical lens on the corresponding angle. Also, we discuss two optical schemes for the recorded holograms readout: a full-page readout system and line-by-line readout system. We consider the benefits of both systems and present the results of experimental modeling of 1D Fourier holograms nonmultiplex and multiplex record and reconstruction.

  15. Fourier Magnitude-Based Privacy-Preserving Clustering on Time-Series Data

    Science.gov (United States)

    Kim, Hea-Suk; Moon, Yang-Sae

    Privacy-preserving clustering (PPC in short) is important in publishing sensitive time-series data. Previous PPC solutions, however, have a problem of not preserving distance orders or incurring privacy breach. To solve this problem, we propose a new PPC approach that exploits Fourier magnitudes of time-series. Our magnitude-based method does not cause privacy breach even though its techniques or related parameters are publicly revealed. Using magnitudes only, however, incurs the distance order problem, and we thus present magnitude selection strategies to preserve as many Euclidean distance orders as possible. Through extensive experiments, we showcase the superiority of our magnitude-based approach.

  16. Study on the algorithm of computational ghost imaging based on discrete fourier transform measurement matrix

    Science.gov (United States)

    Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua

    2016-07-01

    On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.

  17. Characterization of ionizing radiation effects on bone using Fourier Transform Infrared Spectroscopy and multivariate analysis of spectra

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Pedro Arthur Augusto de; Dias, Derly Augusto; Zezell, Denise Maria, E-mail: zezell@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    Ionizing radiation has been used as an important treatment and diagnostic method for several diseases. Optical techniques provides an efficient clinical diagnostic to support an accurate evaluation of the interaction of radiation with molecules. Fourier-transform infrared spectroscopy coupled with attenuated total reflectance (ATR-FTIR) is a label-free and nondestructive optical technique that can recognize functional groups in biological samples. In this work, 30 fragments of bone were collected from bovine femur diaphysis. Samples were cut and polished until 1 cm x 1 cm x 1 mm, which were then stored properly in the refrigerated environment. Samples irradiation was performed with a Cobalt-60 Gammacell Irradiator source at doses of 0.1 kGy, 1 kGy, whereas the fragments exposed to dose of 15 kGy was irradiated in a multipurpose irradiator of Cobalt-60. Spectral data was submitted to principal component analysis followed by linear discriminant analysis. Multivariate analysis was performed with Principal component analysis(PCA) followed by Linear Discriminant Analysis(LDA) using MATLAB R2015a software (The Mathworks Inc., Natick, MA, USA). We demonstrated the feasibility of using ATR-FTIR spectroscopy associated with PCA-LDA multivariate technique to evaluate the molecular changes in bone matrix caused by different doses: 0.1 kGy, 1 kGy and 15 kGy. These alterations between the groups are mainly reported in phosphate region. Our results open up new possibilities for protein monitoring relating to dose responses. (author)

  18. Characterization of ionizing radiation effects on bone using Fourier Transform Infrared Spectroscopy and multivariate analysis of spectra

    International Nuclear Information System (INIS)

    Castro, Pedro Arthur Augusto de; Dias, Derly Augusto; Zezell, Denise Maria

    2017-01-01

    Ionizing radiation has been used as an important treatment and diagnostic method for several diseases. Optical techniques provides an efficient clinical diagnostic to support an accurate evaluation of the interaction of radiation with molecules. Fourier-transform infrared spectroscopy coupled with attenuated total reflectance (ATR-FTIR) is a label-free and nondestructive optical technique that can recognize functional groups in biological samples. In this work, 30 fragments of bone were collected from bovine femur diaphysis. Samples were cut and polished until 1 cm x 1 cm x 1 mm, which were then stored properly in the refrigerated environment. Samples irradiation was performed with a Cobalt-60 Gammacell Irradiator source at doses of 0.1 kGy, 1 kGy, whereas the fragments exposed to dose of 15 kGy was irradiated in a multipurpose irradiator of Cobalt-60. Spectral data was submitted to principal component analysis followed by linear discriminant analysis. Multivariate analysis was performed with Principal component analysis(PCA) followed by Linear Discriminant Analysis(LDA) using MATLAB R2015a software (The Mathworks Inc., Natick, MA, USA). We demonstrated the feasibility of using ATR-FTIR spectroscopy associated with PCA-LDA multivariate technique to evaluate the molecular changes in bone matrix caused by different doses: 0.1 kGy, 1 kGy and 15 kGy. These alterations between the groups are mainly reported in phosphate region. Our results open up new possibilities for protein monitoring relating to dose responses. (author)

  19. Time lens based optical fourier transformation for advanced processing of spectrally-efficient OFDM and N-WDM signals

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Morioka, Toshio

    2016-01-01

    We review recent progress in the use of time lens based optical Fourier transformation for advanced optical signal processing, with focus on all-optical generation, detection and format conversion of spectrally-efficient OFDM and N-WDM signals.......We review recent progress in the use of time lens based optical Fourier transformation for advanced optical signal processing, with focus on all-optical generation, detection and format conversion of spectrally-efficient OFDM and N-WDM signals....

  20. Recent progress in synchrotron-based frequency-domain Fourier-transform THz-EPR.

    Science.gov (United States)

    Nehrkorn, Joscha; Holldack, Karsten; Bittl, Robert; Schnegg, Alexander

    2017-07-01

    We describe frequency-domain Fourier-transform THz-EPR as a method to assign spin-coupling parameters of high-spin (S>1/2) systems with very large zero-field splittings. The instrumental foundations of synchrotron-based FD-FT THz-EPR are presented, alongside with a discussion of frequency-domain EPR simulation routines. The capabilities of this approach is demonstrated for selected mono- and multinuclear HS systems. Finally, we discuss remaining challenges and give an outlook on the future prospects of the technique. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A symplectic Poisson solver based on Fast Fourier Transformation. The first trial

    International Nuclear Information System (INIS)

    Vorobiev, L.G.; Hirata, Kohji.

    1995-11-01

    A symplectic Poisson solver calculates numerically a potential and fields due to a 2D distribution of particles in a way that the symplecticity and smoothness are assured automatically. Such a code, based on Fast Fourier Transformation combined with Bicubic Interpolation, is developed for the use in multi-turn particle simulation in circular accelerators. Beside that, it may have a number of applications, where computations of space charge forces should obey a symplecticity criterion. Detailed computational schemes of all algorithms will be outlined to facilitate practical programming. (author)

  2. Response of multiferroic composites inferred from a fast-Fourier-transform-based numerical scheme

    International Nuclear Information System (INIS)

    Brenner, Renald; Bravo-Castillero, Julián

    2010-01-01

    The effective response and the local fields within periodic magneto-electric multiferroic composites are investigated by means of a numerical scheme based on fast Fourier transforms. This computational framework relies on the iterative resolution of coupled series expansions for the magnetic, electric and strain fields. By using an augmented Lagrangian formulation, a simple and robust procedure which makes use of the uncoupled Green operators for the elastic, electrostatics and magnetostatics problems is proposed. Its accuracy is assessed in the cases of laminated and fibrous two-phase composites for which analytical solutions exist

  3. Fourier transform NMR

    International Nuclear Information System (INIS)

    Hallenga, K.

    1991-01-01

    This paper discusses the concept of Fourier transformation one of the many precious legacies of the French mathematician Jean Baptiste Joseph Fourier, essential for understanding the link between continuous-wave (CW) and Fourier transform (FT) NMR. Although in modern FT NMR the methods used to obtain a frequency spectrum from the time-domain signal may vary greatly, from the efficient Cooley-Tukey algorithm to very elaborate iterative least-square methods based other maximum entropy method or on linear prediction, the principles for Fourier transformation are unchanged and give invaluable insight into the interconnection of many pairs of physical entities called Fourier pairs

  4. Filtros digitais por transformadas de Fourier aplicados em eletroquímica Digital filters based on Fourier transforms for application in electrochemistry

    Directory of Open Access Journals (Sweden)

    Ricardo Nantes Liang

    2013-01-01

    Full Text Available The electrochemical properties of micro and nano-electrodes are widely investigated due to their low faradaic and capacitive currents, leading to a new generation of smart and implantable devices. However, the current signals obtained in low-dimensional devices are strongly influenced by noise sources. In this paper, we show the evaluation of filters based on Fast Fourier Transform (FFT and their implementation in a graphical user interface (GUI in MATLAB®. As a case study, we evaluated an electrochemical reaction process of charge transfer via outer-sphere. Results showed successful removal of most of the noise in signals, thus proving a promising tool for low-scale measurement.

  5. Radial artery pulse waveform analysis based on curve fitting using discrete Fourier series.

    Science.gov (United States)

    Jiang, Zhixing; Zhang, David; Lu, Guangming

    2018-04-19

    Radial artery pulse diagnosis has been playing an important role in traditional Chinese medicine (TCM). For its non-invasion and convenience, the pulse diagnosis has great significance in diseases analysis of modern medicine. The practitioners sense the pulse waveforms in patients' wrist to make diagnoses based on their non-objective personal experience. With the researches of pulse acquisition platforms and computerized analysis methods, the objective study on pulse diagnosis can help the TCM to keep up with the development of modern medicine. In this paper, we propose a new method to extract feature from pulse waveform based on discrete Fourier series (DFS). It regards the waveform as one kind of signal that consists of a series of sub-components represented by sine and cosine (SC) signals with different frequencies and amplitudes. After the pulse signals are collected and preprocessed, we fit the average waveform for each sample using discrete Fourier series by least squares. The feature vector is comprised by the coefficients of discrete Fourier series function. Compared with the fitting method using Gaussian mixture function, the fitting errors of proposed method are smaller, which indicate that our method can represent the original signal better. The classification performance of proposed feature is superior to the other features extracted from waveform, liking auto-regression model and Gaussian mixture model. The coefficients of optimized DFS function, who is used to fit the arterial pressure waveforms, can obtain better performance in modeling the waveforms and holds more potential information for distinguishing different psychological states. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Estimation of Interchannel Time Difference in Frequency Subbands Based on Nonuniform Discrete Fourier Transform

    Directory of Open Access Journals (Sweden)

    Qiu Bo

    2008-01-01

    Full Text Available Binaural cue coding (BCC is an efficient technique for spatial audio rendering by using the side information such as interchannel level difference (ICLD, interchannel time difference (ICTD, and interchannel correlation (ICC. Of the side information, the ICTD plays an important role to the auditory spatial image. However, inaccurate estimation of the ICTD may lead to the audio quality degradation. In this paper, we develop a novel ICTD estimation algorithm based on the nonuniform discrete Fourier transform (NDFT and integrate it with the BCC approach to improve the decoded auditory image. Furthermore, a new subjective assessment method is proposed for the evaluation of auditory image widths of decoded signals. The test results demonstrate that the NDFT-based scheme can achieve much wider and more externalized auditory image than the existing BCC scheme based on the discrete Fourier transform (DFT. It is found that the present technique, regardless of the image width, does not deteriorate the sound quality at the decoder compared to the traditional scheme without ICTD estimation.

  7. Adaptive synchrosqueezing based on a quilted short-time Fourier transform

    Science.gov (United States)

    Berrian, Alexander; Saito, Naoki

    2017-08-01

    In recent years, the synchrosqueezing transform (SST) has gained popularity as a method for the analysis of signals that can be broken down into multiple components determined by instantaneous amplitudes and phases. One such version of SST, based on the short-time Fourier transform (STFT), enables the sharpening of instantaneous frequency (IF) information derived from the STFT, as well as the separation of amplitude-phase components corresponding to distinct IF curves. However, this SST is limited by the time-frequency resolution of the underlying window function, and may not resolve signals exhibiting diverse time-frequency behaviors with sufficient accuracy. In this work, we develop a framework for an SST based on a "quilted" short-time Fourier transform (SST-QSTFT), which allows adaptation to signal behavior in separate time-frequency regions through the use of multiple windows. This motivates us to introduce a discrete reassignment frequency formula based on a finite difference of the phase spectrum, ensuring computational accuracy for a wider variety of windows. We develop a theoretical framework for the SST-QSTFT in both the continuous and the discrete settings, and describe an algorithm for the automatic selection of optimal windows depending on the region of interest. Using synthetic data, we demonstrate the superior numerical performance of SST-QSTFT relative to other SST methods in a noisy context. Finally, we apply SST-QSTFT to audio recordings of animal calls to demonstrate the potential of our method for the analysis of real bioacoustic signals.

  8. Research on FBG-based longitudinal-acousto-optic modulator with Fourier mode coupling method.

    Science.gov (United States)

    Li, Zhuoxuan; Pei, Li; Liu, Chao; Ning, Tigang; Yu, Shaowei

    2012-10-20

    Fourier mode coupling model was first applied to achieve the spectra property of a fiber Bragg grating (FBG)-based longitudinal-acousto-optic modulator. Compared with traditional analysis algorithms, such as the transfer matrix method, the Fourier mode coupling model could improve the computing efficiency up to 100 times with a guarantee of accuracy. In this paper, based on the theoretical analysis of this model, the spectra characteristics of the modulator in different frequencies and acoustically induced strains were numerically simulated. In the experiment, a uniform FBG was modulated by acoustic wave (AW) at 12 different frequencies. In particular, the modulator responses at 563 and 885.5 KHz with three different lead zirconate titanate (PZT) loads applied were plotted for illustration, and the linear fitting of experimental data demonstrated a good match with the simulation result. The acoustic excitation of the longitudinal wave is obtained using a conic silica horn attached to the surface of a shear-mode PZT plate paralleled to the fiber axis. This way of generating longitudinal AW with a transversal PZT may shed light on the optimal structural design for the FBG-based longitudinal-acousto-optic modulator.

  9. Wavelength modulation spectroscopy--digital detection of gas absorption harmonics based on Fourier analysis.

    Science.gov (United States)

    Mei, Liang; Svanberg, Sune

    2015-03-20

    This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.

  10. An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm

    Science.gov (United States)

    Zhang, B.; Sang, Jun; Alam, Mohammad S.

    2013-03-01

    An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm was proposed. Firstly, the original secret image was encrypted into two phase-only masks M1 and M2 via cascaded iterative Fourier transform (CIFT) algorithm. Then, the public-key encryption algorithm RSA was adopted to encrypt M2 into M2' . Finally, a host image was enlarged by extending one pixel into 2×2 pixels and each element in M1 and M2' was multiplied with a superimposition coefficient and added to or subtracted from two different elements in the 2×2 pixels of the enlarged host image. To recover the secret image from the stego-image, the two masks were extracted from the stego-image without the original host image. By applying public-key encryption algorithm, the key distribution was facilitated, and also compared with the image hiding method based on optical interference, the proposed method may reach higher robustness by employing the characteristics of the CIFT algorithm. Computer simulations show that this method has good robustness against image processing.

  11. Distributed ISAR Subimage Fusion of Nonuniform Rotating Target Based on Matching Fourier Transform.

    Science.gov (United States)

    Li, Yuanyuan; Fu, Yaowen; Zhang, Wenpeng

    2018-06-04

    In real applications, the image quality of the conventional monostatic Inverse Synthetic Aperture Radar (ISAR) for the maneuvering target is subject to the strong fluctuation of Radar Cross Section (RCS), as the target aspect varies enormously. Meanwhile, the maneuvering target introduces nonuniform rotation after translation motion compensation which degrades the imaging performance of the conventional Fourier Transform (FT)-based method in the cross-range dimension. In this paper, a method which combines the distributed ISAR technique and the Matching Fourier Transform (MFT) is proposed to overcome these problems. Firstly, according to the characteristics of the distributed ISAR, the multiple channel echoes of the nonuniform rotation target from different observation angles can be acquired. Then, by applying the MFT to the echo of each channel, the defocused problem of nonuniform rotation target which is inevitable by using the FT-based imaging method can be avoided. Finally, after preprocessing, scaling and rotation of all subimages, the noncoherent fusion image containing all the RCS information in all channels can be obtained. The accumulation coefficients of all subimages are calculated adaptively according to the their image qualities. Simulation and experimental data are used to validate the effectiveness of the proposed approach, and fusion image with improved recognizability can be obtained. Therefore, by using the distributed ISAR technique and MFT, subimages of high-maneuvering target from different observation angles can be obtained. Meanwhile, by employing the adaptive subimage fusion method, the RCS fluctuation can be alleviated and more recognizable final image can be obtained.

  12. Miniature, Low-Power, Waveguide Based Infrared Fourier Transform Spectrometer for Spacecraft Remote Sensing

    Science.gov (United States)

    Hewagama, TIlak; Aslam, Shahid; Talabac, Stephen; Allen, John E., Jr.; Annen, John N.; Jennings, Donald E.

    2011-01-01

    Fourier transform spectrometers have a venerable heritage as flight instruments. However, obtaining an accurate spectrum exacts a penalty in instrument mass and power requirements. Recent advances in a broad class of non-scanning Fourier transform spectrometer (FTS) devices, generally called spatial heterodyne spectrometers, offer distinct advantages as flight optimized systems. We are developing a miniaturized system that employs photonics lightwave circuit principles and functions as an FTS operating in the 7-14 micrometer spectral region. The inteferogram is constructed from an ensemble of Mach-Zehnder interferometers with path length differences calibrated to mimic scan mirror sample positions of a classic Michelson type FTS. One potential long-term application of this technology in low cost planetary missions is the concept of a self-contained sensor system. We are developing a systems architecture concept for wide area in situ and remote monitoring of characteristic properties that are of scientific interest. The system will be based on wavelength- and resolution-independent spectroscopic sensors for studying atmospheric and surface chemistry, physics, and mineralogy. The self-contained sensor network is based on our concept of an Addressable Photonics Cube (APC) which has real-time flexibility and broad science applications. It is envisaged that a spatially distributed autonomous sensor web concept that integrates multiple APCs will be reactive and dynamically driven. The network is designed to respond in an event- or model-driven manner or reconfigured as needed.

  13. Principles of Fourier analysis

    CERN Document Server

    Howell, Kenneth B

    2001-01-01

    Fourier analysis is one of the most useful and widely employed sets of tools for the engineer, the scientist, and the applied mathematician. As such, students and practitioners in these disciplines need a practical and mathematically solid introduction to its principles. They need straightforward verifications of its results and formulas, and they need clear indications of the limitations of those results and formulas.Principles of Fourier Analysis furnishes all this and more. It provides a comprehensive overview of the mathematical theory of Fourier analysis, including the development of Fourier series, "classical" Fourier transforms, generalized Fourier transforms and analysis, and the discrete theory. Much of the author''s development is strikingly different from typical presentations. His approach to defining the classical Fourier transform results in a much cleaner, more coherent theory that leads naturally to a starting point for the generalized theory. He also introduces a new generalized theory based ...

  14. Fourier Domain Sensing

    Science.gov (United States)

    Feldkhun, Daniel (Inventor); Wagner, Kelvin H. (Inventor)

    2013-01-01

    Methods and systems are disclosed of sensing an object. A first radiation is spatially modulated to generate a structured second radiation. The object is illuminated with the structured second radiation such that the object produces a third radiation in response. Apart from any spatially dependent delay, a time variation of the third radiation is spatially independent. With a single-element detector, a portion of the third radiation is detected from locations on the object simultaneously. At least one characteristic of a sinusoidal spatial Fourier-transform component of the object is estimated from a time-varying signal from the detected portion of the third radiation.

  15. Estimation of fringe orientation for optical fringe patterns with poor quality based on Fourier transform.

    Science.gov (United States)

    Tang, Chen; Wang, Zhifang; Wang, Linlin; Wu, Jian; Gao, Tao; Yan, Si

    2010-02-01

    Fringe orientation represents an important property of fringes. The estimation of orientation from a poor quality fringe image is still a challenging problem faced in this area. This paper introduces a new approach for estimating optical fringe orientation with a poor quality image. This approach is based on the power spectrum analysis of the Fourier transform. We evaluate the performance of this algorithm via application to a variety of test cases and comparison with the widely used gradient-based method and accumulate-differences method. The experimental results show that our method is capable of calculating fringe orientation robustly even when the quality of fringe images is considerably low because of high or low density, high noise, and low contrast. Under the same conditions, our accuracy is even better than that obtained with the gradient-based and accumulate-differences methods, especially for fringe images with poor quality.

  16. Fourier series

    CERN Document Server

    Tolstov, Georgi P

    1962-01-01

    Richard A. Silverman's series of translations of outstanding Russian textbooks and monographs is well-known to people in the fields of mathematics, physics, and engineering. The present book is another excellent text from this series, a valuable addition to the English-language literature on Fourier series.This edition is organized into nine well-defined chapters: Trigonometric Fourier Series, Orthogonal Systems, Convergence of Trigonometric Fourier Series, Trigonometric Series with Decreasing Coefficients, Operations on Fourier Series, Summation of Trigonometric Fourier Series, Double Fourie

  17. Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method

    Science.gov (United States)

    Fang, Gang; Ba, Jing; Liu, Xin-xin; Zhu, Kun; Liu, Guo-Chang

    2017-06-01

    Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.

  18. An Image Matching Method Based on Fourier and LOG-Polar Transform

    Directory of Open Access Journals (Sweden)

    Zhijia Zhang

    2014-04-01

    Full Text Available This Traditional template matching methods are not appropriate for the situation of large angle rotation between two images in the online detection for industrial production. Aiming at this problem, Fourier transform algorithm was introduced to correct image rotation angle based on its rotatary invariance in time-frequency domain, orienting image under test in the same direction with reference image, and then match these images using matching algorithm based on log-polar transform. Compared with the current matching algorithms, experimental results show that the proposed algorithm can not only match two images with rotation of arbitrary angle, but also possess a high matching accuracy and applicability. In addition, the validity and reliability of algorithm was verified by simulated matching experiment targeting circular images.

  19. Emotion recognition based on multiple order features using fractional Fourier transform

    Science.gov (United States)

    Ren, Bo; Liu, Deyin; Qi, Lin

    2017-07-01

    In order to deal with the insufficiency of recently algorithms based on Two Dimensions Fractional Fourier Transform (2D-FrFT), this paper proposes a multiple order features based method for emotion recognition. Most existing methods utilize the feature of single order or a couple of orders of 2D-FrFT. However, different orders of 2D-FrFT have different contributions on the feature extraction of emotion recognition. Combination of these features can enhance the performance of an emotion recognition system. The proposed approach obtains numerous features that extracted in different orders of 2D-FrFT in the directions of x-axis and y-axis, and uses the statistical magnitudes as the final feature vectors for recognition. The Support Vector Machine (SVM) is utilized for the classification and RML Emotion database and Cohn-Kanade (CK) database are used for the experiment. The experimental results demonstrate the effectiveness of the proposed method.

  20. Blind third-order dispersion estimation based on fractional Fourier transformation for coherent optical communication

    Science.gov (United States)

    Yang, Lin; Guo, Peng; Yang, Aiying; Qiao, Yaojun

    2018-02-01

    In this paper, we propose a blind third-order dispersion estimation method based on fractional Fourier transformation (FrFT) in optical fiber communication system. By measuring the chromatic dispersion (CD) at different wavelengths, this method can estimation dispersion slope and further calculate the third-order dispersion. The simulation results demonstrate that the estimation error is less than 2 % in 28GBaud dual polarization quadrature phase-shift keying (DP-QPSK) and 28GBaud dual polarization 16 quadrature amplitude modulation (DP-16QAM) system. Through simulations, the proposed third-order dispersion estimation method is shown to be robust against nonlinear and amplified spontaneous emission (ASE) noise. In addition, to reduce the computational complexity, searching step with coarse and fine granularity is chosen to search optimal order of FrFT. The third-order dispersion estimation method based on FrFT can be used to monitor the third-order dispersion in optical fiber system.

  1. Adaptive Fourier decomposition based R-peak detection for noisy ECG Signals.

    Science.gov (United States)

    Ze Wang; Chi Man Wong; Feng Wan

    2017-07-01

    An adaptive Fourier decomposition (AFD) based R-peak detection method is proposed for noisy ECG signals. Although lots of QRS detection methods have been proposed in literature, most detection methods require high signal quality. The proposed method extracts the R waves from the energy domain using the AFD and determines the R-peak locations based on the key decomposition parameters, achieving the denoising and the R-peak detection at the same time. Validated by clinical ECG signals in the MIT-BIH Arrhythmia Database, the proposed method shows better performance than the Pan-Tompkin (PT) algorithm in both situations of a native PT and the PT with a denoising process.

  2. Scintillation counter based radiation dosimeter

    International Nuclear Information System (INIS)

    Shin, Jeong Hyun

    2009-02-01

    The average human exposure per year is about 240mrem which is come from Radon and human body and terrestrial and cosmic radiation and man-made source. Specially radiation exposure through air from environmental radiation sources is 80mrem/yr(= 0.01mR/hr) which come from Terrestrial and cosmic radiation. Radiation dose is defined as energy deposit/mass. There are two major methods to detect radiation. First method is the energy integration using Air equivalent material like GM counter wall material. Second method is the spectrum to dose conversion method using NaI(Tl), HPGe. These two methods are using generally to detect radiation. But these methods are expensive. So we need new radiation detection method. The research purpose is the development of economical environmental radiation dosimeter. This system consists of Plastic/Inorganic scintillator and Si photo-diode based detector and counting based circuitry. So count rate(cps) can be convert to air exposure rate(R/hr). There are three major advantages in this system. First advantages is no high voltage power supply like GM counter. Second advantage is simple electronics. Simple electronics system can be achieved by Air-equivalent scintillation detector with Al filter for the same detection efficiency vs E curve. From former two advantages, we can know the most important advantages of the this system. Third advantage is economical system. The price of typical GM counter is about $1000. But the price of our system is below $100 because of plastic scintillator and simple electronics. The role of scintillation material is emitting scintillation which is the flash of light produced in certain materials when they absorb ionizing radiation. Plastic scintillator is organic scintillator which is kind of hydrocarbons. The special point are cheap price, large size production(∼ton), moderate light output, fast light emission(ns). And the role of Al filter is equalizing counting efficiency of air and scintillator for

  3. A Fourier-based compressed sensing technique for accelerated CT image reconstruction using first-order methods

    International Nuclear Information System (INIS)

    Choi, Kihwan; Li, Ruijiang; Nam, Haewon; Xing, Lei

    2014-01-01

    As a solution to iterative CT image reconstruction, first-order methods are prominent for the large-scale capability and the fast convergence rate O(1/k 2 ). In practice, the CT system matrix with a large condition number may lead to slow convergence speed despite the theoretically promising upper bound. The aim of this study is to develop a Fourier-based scaling technique to enhance the convergence speed of first-order methods applied to CT image reconstruction. Instead of working in the projection domain, we transform the projection data and construct a data fidelity model in Fourier space. Inspired by the filtered backprojection formalism, the data are appropriately weighted in Fourier space. We formulate an optimization problem based on weighted least-squares in the Fourier space and total-variation (TV) regularization in image space for parallel-beam, fan-beam and cone-beam CT geometry. To achieve the maximum computational speed, the optimization problem is solved using a fast iterative shrinkage-thresholding algorithm with backtracking line search and GPU implementation of projection/backprojection. The performance of the proposed algorithm is demonstrated through a series of digital simulation and experimental phantom studies. The results are compared with the existing TV regularized techniques based on statistics-based weighted least-squares as well as basic algebraic reconstruction technique. The proposed Fourier-based compressed sensing (CS) method significantly improves both the image quality and the convergence rate compared to the existing CS techniques. (paper)

  4. A Fourier-based compressed sensing technique for accelerated CT image reconstruction using first-order methods.

    Science.gov (United States)

    Choi, Kihwan; Li, Ruijiang; Nam, Haewon; Xing, Lei

    2014-06-21

    As a solution to iterative CT image reconstruction, first-order methods are prominent for the large-scale capability and the fast convergence rate [Formula: see text]. In practice, the CT system matrix with a large condition number may lead to slow convergence speed despite the theoretically promising upper bound. The aim of this study is to develop a Fourier-based scaling technique to enhance the convergence speed of first-order methods applied to CT image reconstruction. Instead of working in the projection domain, we transform the projection data and construct a data fidelity model in Fourier space. Inspired by the filtered backprojection formalism, the data are appropriately weighted in Fourier space. We formulate an optimization problem based on weighted least-squares in the Fourier space and total-variation (TV) regularization in image space for parallel-beam, fan-beam and cone-beam CT geometry. To achieve the maximum computational speed, the optimization problem is solved using a fast iterative shrinkage-thresholding algorithm with backtracking line search and GPU implementation of projection/backprojection. The performance of the proposed algorithm is demonstrated through a series of digital simulation and experimental phantom studies. The results are compared with the existing TV regularized techniques based on statistics-based weighted least-squares as well as basic algebraic reconstruction technique. The proposed Fourier-based compressed sensing (CS) method significantly improves both the image quality and the convergence rate compared to the existing CS techniques.

  5. Quantum Color Image Encryption Algorithm Based on A Hyper-Chaotic System and Quantum Fourier Transform

    Science.gov (United States)

    Tan, Ru-Chao; Lei, Tong; Zhao, Qing-Min; Gong, Li-Hua; Zhou, Zhi-Hong

    2016-12-01

    To improve the slow processing speed of the classical image encryption algorithms and enhance the security of the private color images, a new quantum color image encryption algorithm based on a hyper-chaotic system is proposed, in which the sequences generated by the Chen's hyper-chaotic system are scrambled and diffused with three components of the original color image. Sequentially, the quantum Fourier transform is exploited to fulfill the encryption. Numerical simulations show that the presented quantum color image encryption algorithm possesses large key space to resist illegal attacks, sensitive dependence on initial keys, uniform distribution of gray values for the encrypted image and weak correlation between two adjacent pixels in the cipher-image.

  6. A novel ECG data compression method based on adaptive Fourier decomposition

    Science.gov (United States)

    Tan, Chunyu; Zhang, Liming

    2017-12-01

    This paper presents a novel electrocardiogram (ECG) compression method based on adaptive Fourier decomposition (AFD). AFD is a newly developed signal decomposition approach, which can decompose a signal with fast convergence, and hence reconstruct ECG signals with high fidelity. Unlike most of the high performance algorithms, our method does not make use of any preprocessing operation before compression. Huffman coding is employed for further compression. Validated with 48 ECG recordings of MIT-BIH arrhythmia database, the proposed method achieves the compression ratio (CR) of 35.53 and the percentage root mean square difference (PRD) of 1.47% on average with N = 8 decomposition times and a robust PRD-CR relationship. The results demonstrate that the proposed method has a good performance compared with the state-of-the-art ECG compressors.

  7. Secure multi-party quantum summation based on quantum Fourier transform

    Science.gov (United States)

    Yang, Hui-Yi; Ye, Tian-Yu

    2018-06-01

    In this paper, we propose a novel secure multi-party quantum summation protocol based on quantum Fourier transform, where the traveling particles are transmitted in a tree-type mode. The party who prepares the initial quantum states is assumed to be semi-honest, which means that she may misbehave on her own but will not conspire with anyone. The proposed protocol can resist both the outside attacks and the participant attacks. Especially, one party cannot obtain other parties' private integer strings; and it is secure for the colluding attack performed by at most n - 2 parties, where n is the number of parties. In addition, the proposed protocol calculates the addition of modulo d and implements the calculation of addition in a secret-by-secret way rather than a bit-by-bit way.

  8. Beyond Fourier

    Science.gov (United States)

    Hoch, Jeffrey C.

    2017-10-01

    Non-Fourier methods of spectrum analysis are gaining traction in NMR spectroscopy, driven by their utility for processing nonuniformly sampled data. These methods afford new opportunities for optimizing experiment time, resolution, and sensitivity of multidimensional NMR experiments, but they also pose significant challenges not encountered with the discrete Fourier transform. A brief history of non-Fourier methods in NMR serves to place different approaches in context. Non-Fourier methods reflect broader trends in the growing importance of computation in NMR, and offer insights for future software development.

  9. Beyond Fourier.

    Science.gov (United States)

    Hoch, Jeffrey C

    2017-10-01

    Non-Fourier methods of spectrum analysis are gaining traction in NMR spectroscopy, driven by their utility for processing nonuniformly sampled data. These methods afford new opportunities for optimizing experiment time, resolution, and sensitivity of multidimensional NMR experiments, but they also pose significant challenges not encountered with the discrete Fourier transform. A brief history of non-Fourier methods in NMR serves to place different approaches in context. Non-Fourier methods reflect broader trends in the growing importance of computation in NMR, and offer insights for future software development. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. High-resolution wave-theory-based ultrasound reflection imaging using the split-step fourier and globally optimized fourier finite-difference methods

    Science.gov (United States)

    Huang, Lianjie

    2013-10-29

    Methods for enhancing ultrasonic reflection imaging are taught utilizing a split-step Fourier propagator in which the reconstruction is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wave number domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wave number domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the tissue being imaged (e.g., breast tissue). Results from various data input to the method indicate significant improvements are provided in both image quality and resolution.

  11. A class of Fourier integrals based on the electric potential of an elongated dipole.

    Science.gov (United States)

    Skianis, Georgios Aim

    2014-01-01

    In the present paper the closed expressions of a class of non tabulated Fourier integrals are derived. These integrals are associated with a group of functions at space domain, which represent the electric potential of a distribution of elongated dipoles which are perpendicular to a flat surface. It is shown that the Fourier integrals are produced by the Fourier transform of the Green's function of the potential of the dipole distribution, times a definite integral in which the distribution of the polarization is involved. Therefore the form of this distribution controls the expression of the Fourier integral. Introducing various dipole distributions, the respective Fourier integrals are derived. These integrals may be useful in the quantitative interpretation of electric potential anomalies produced by elongated dipole distributions, at spatial frequency domain.

  12. New predictor of aortic enlargement in uncomplicated type B aortic dissection based on elliptic Fourier analysis.

    Science.gov (United States)

    Sato, Hiroshi; Ito, Toshiro; Kuroda, Yosuke; Uchiyama, Hiroki; Watanabe, Toshitaka; Yasuda, Naomi; Nakazawa, Junji; Harada, Ryo; Kawaharada, Nobuyoshi

    2017-12-01

    This study aimed to re-examine the conventional predictive factors for dissected aortic enlargement, such as the aortic and false lumen diameter and to consider whether the morphological elements of the dissected aorta could be predictors by quantifying the 'shape' of the true lumen based on elliptic Fourier analysis. A total of 80 patients with uncomplicated type B aortic dissection were included. The patients were divided into 'Enlargement group' and 'No Change group.' Between the 2 groups, the mean systolic blood pressure during follow-up, aortic and false lumen maximum diameters, and analysed morphological data were compared using each statistical method. The maximum aortic and false lumen diameters were significantly larger in the Enlargement group than in the No Change group (39.3 vs 35.9 mm; P = 0.0058) (23.5 vs 18.2 mm; P = 0.000095). The principal component 1, which is the data calculated by elliptic Fourier analysis, was significantly lower in the Enlargement group than in the No Change group (0.020 vs - 0.072; P = 0.000049). The mean systolic blood pressure ≥130 mmHg, aortic diameter, false lumen diameter and principal component 1 were included in the Cox proportional hazard model as covariates to determine the significant predictive variable. Principal component 1 demonstrated the only significance with aortic enlargement on multivariate analysis (odds ratio = 0.32; P = 0.048). The analysed and calculated morphological data of the shape of the true lumen can be more effective predictive factors of aortic enlargement of type B dissection than the conventional factors. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  13. Fourier-based quantification of renal glomeruli size using Hough transform and shape descriptors.

    Science.gov (United States)

    Najafian, Sohrab; Beigzadeh, Borhan; Riahi, Mohammad; Khadir Chamazkoti, Fatemeh; Pouramir, Mahdi

    2017-11-01

    Analysis of glomeruli geometry is important in histopathological evaluation of renal microscopic images. Due to the shape and size disparity of even glomeruli of same kidney, automatic detection of these renal objects is not an easy task. Although manual measurements are time consuming and at times are not very accurate, it is commonly used in medical centers. In this paper, a new method based on Fourier transform following usage of some shape descriptors is proposed to detect these objects and their geometrical parameters. Reaching the goal, a database of 400 regions are selected randomly. 200 regions of which are part of glomeruli and the other 200 regions are not belong to renal corpuscles. ROC curve is used to decide which descriptor could classify two groups better. f_measure, which is a combination of both tpr (true positive rate) and fpr (false positive rate), is also proposed to select optimal threshold for descriptors. Combination of three parameters (solidity, eccentricity, and also mean squared error of fitted ellipse) provided better result in terms of f_measure to distinguish desired regions. Then, Fourier transform of outer edges is calculated to form a complete curve out of separated region(s). The generality of proposed model is verified by use of cross validation method, which resulted tpr of 94%, and fpr of 5%. Calculation of glomerulus' and Bowman's space with use of the algorithm are also compared with a non-automatic measurement done by a renal pathologist, and errors of 5.9%, 5.4%, and 6.26% are resulted in calculation of Capsule area, Bowman space, and glomeruli area, respectively. Having tested different glomeruli with various shapes, the experimental consequences show robustness and reliability of our method. Therefore, it could be used to illustrate renal diseases and glomerular disorders by measuring the morphological changes accurately and expeditiously. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A Novel Fractional Fourier Transform-Based ASK-OFDM System for Underwater Acoustic Communications

    Directory of Open Access Journals (Sweden)

    Rami Ashri

    2017-12-01

    Full Text Available A key research area in wireless transmission is underwater communications. It has a vital role in applications such as underwater sensor networks (UWSNs and disaster detection. The underwater channel is very unique as compared to other alternatives of transmission channels. It is characterized by path loss, multipath fading, Doppler spread and ambient noise. Thus, the bit error rate (BER is increased to a large extent when compared to its counterpart of cellular communications. Acoustic signals are the current best solution for underwater communications. The use of electromagnetic or optical waves obviously entails a much higher data rate. However, they suffer from high attenuation, absorption or scattering. This paper proposes a novel fractional fast Fourier transform (FrFT—orthogonal frequency division multiplexing (FrFT-OFDM system for underwater acoustic (UWA communication—which employs the amplitude shift keying (ASK modulation technique (FrFT-ASK-OFDM. Specifically, ASK achieves a better bandwidth efficiency as compared to other commonly used modulation techniques, such as quadrature amplitude modulation (QAM and phase shift keying (PSK. In particular, the system proposed in this article can achieve a very promising BER performance, and can reach higher data rates when compared to other systems proposed in the literature. The BER performance of the proposed system is evaluated numerically, and is compared to the corresponding M-ary QAM system in the UWA channel for the same channel conditions. Moreover, the performance of the proposed system is compared to the conventional fast Fourier transform (FFT-OFDM (FFT-OFDM system in the absence and presence of the effect of carrier frequency offset (CFO. Numerical results show that the proposed system outperforms the conventional FFT-based systems for UWA channels, even in channels dominated by CFO. Moreover, the spectral efficiency and data rate of the proposed system are approximately double

  15. Experimental demonstration of an OFDM receiver based on a silicon-nanophot onic discrete Fourier transform filter

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Nolle, Markus; Meuer, C.

    2014-01-01

    We experimentally demonstrate the demultiplexing of 8×13.4 Gbaud OFDM-QPSK subcarriers using a silicon nanophotonic-based discrete Fourier transform (DFT) filter. All eight subcarriers showed less than 1.5 dB OSNR penalty compared to the theoretical limit.......We experimentally demonstrate the demultiplexing of 8×13.4 Gbaud OFDM-QPSK subcarriers using a silicon nanophotonic-based discrete Fourier transform (DFT) filter. All eight subcarriers showed less than 1.5 dB OSNR penalty compared to the theoretical limit....

  16. Analysis by Fourier Transform Infrared (FTIR) of the gamma radiation effect on epoxy resin, used as solidification agent of radioactive wastes

    International Nuclear Information System (INIS)

    Liu, C.H.; Riella, H.G.; Guedes, S.M.L.

    1995-01-01

    The effects of gamma radiation on Epoxy resin, used as solidification agent of radioactive wastes, were studied by Fourier Transform Infrared (FTIR). The spectra showed no significant modifications on Epoxy resin functional groups (irradiated with dose from 0 to 1 MGy). Up to 1 MGy Epoxy resin did not oxidize, confirming the Epoxy good radiation strength. The presence of aromatic chain and amine group, mainly tertiary amine, give good radiolytic stability to the Epoxy, increasing the interest to use this material in nuclear facilities. (author). 3 refs, 2 figs

  17. Cryo-EM image alignment based on nonuniform fast Fourier transform.

    Science.gov (United States)

    Yang, Zhengfan; Penczek, Pawel A

    2008-08-01

    In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform fast Fourier transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis.

  18. Cryo-EM image alignment based on nonuniform fast Fourier transform

    International Nuclear Information System (INIS)

    Yang Zhengfan; Penczek, Pawel A.

    2008-01-01

    In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform fast Fourier transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis

  19. Numerical model of the influence function of deformable mirrors based on Bessel Fourier orthogonal functions

    International Nuclear Information System (INIS)

    Li Shun; Zhang Sijiong

    2014-01-01

    A numerical model is presented to simulate the influence function of deformable mirror actuators. The numerical model is formed by Bessel Fourier orthogonal functions, which are constituted of Bessel orthogonal functions and a Fourier basis. A detailed comparison is presented between the new Bessel Fourier model, the Zernike model, the Gaussian influence function and the modified Gaussian influence function. Numerical experiments indicate that the new numerical model is easy to use and more accurate compared with other numerical models. The new numerical model can be used for describing deformable mirror performances and numerical simulations of adaptive optics systems. (research papers)

  20. Discrete Fourier Transform-Based Multivariate Image Analysis: Application to Modeling of Aromatase Inhibitory Activity.

    Science.gov (United States)

    Barigye, Stephen J; Freitas, Matheus P; Ausina, Priscila; Zancan, Patricia; Sola-Penna, Mauro; Castillo-Garit, Juan A

    2018-02-12

    We recently generalized the formerly alignment-dependent multivariate image analysis applied to quantitative structure-activity relationships (MIA-QSAR) method through the application of the discrete Fourier transform (DFT), allowing for its application to noncongruent and structurally diverse chemical compound data sets. Here we report the first practical application of this method in the screening of molecular entities of therapeutic interest, with human aromatase inhibitory activity as the case study. We developed an ensemble classification model based on the two-dimensional (2D) DFT MIA-QSAR descriptors, with which we screened the NCI Diversity Set V (1593 compounds) and obtained 34 chemical compounds with possible aromatase inhibitory activity. These compounds were docked into the aromatase active site, and the 10 most promising compounds were selected for in vitro experimental validation. Of these compounds, 7419 (nonsteroidal) and 89 201 (steroidal) demonstrated satisfactory antiproliferative and aromatase inhibitory activities. The obtained results suggest that the 2D-DFT MIA-QSAR method may be useful in ligand-based virtual screening of new molecular entities of therapeutic utility.

  1. A Fourier Transform Spectrometer Based on an Electrothermal MEMS Mirror with Improved Linear Scan Range

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2016-09-01

    Full Text Available A Fourier transform spectrometer (FTS that incorporates a closed-loop controlled, electrothermally actuated microelectromechanical systems (MEMS micromirror is proposed and experimentally verified. The scan range and the tilting angle of the mirror plate are the two critical parameters for MEMS-based FTS. In this work, the MEMS mirror with a footprint of 4.3 mm × 3.1 mm is based on a modified lateral-shift-free (LSF bimorph actuator design with large piston and reduced tilting. Combined with a position-sensitive device (PSD for tilt angle sensing, the feedback controlled MEMS mirror generates a 430 µm stable linear piston scan with the mirror plate tilting angle less than ±0.002°. The usable piston scan range is increased to 78% of the MEMS mirror’s full scan capability, and a spectral resolution of 0.55 nm at 531.9 nm wavelength, has been achieved. It is a significant improvement compared to the prior work.

  2. Reference Beam Pattern Design for Frequency Invariant Beamforming Based on Fast Fourier Transform

    Directory of Open Access Journals (Sweden)

    Wang Zhang

    2016-09-01

    Full Text Available In the field of fast Fourier transform (FFT-based frequency invariant beamforming (FIB, there is still an unsolved problem. That is the selection of the reference beam to make the designed wideband pattern frequency invariant (FI over a given frequency range. This problem is studied in this paper. The research shows that for a given array, the selection of the reference beam pattern is determined by the number of sensors and the ratio of the highest frequency to the lowest frequency of the signal (RHL. The length of the weight vector corresponding to a given reference beam pattern depends on the reference frequency. In addition, the upper bound of the weight length to ensure the FI property over the whole frequency band of interest is also given. When the constraints are added to the reference beam, it does not affect the FI property of the designed wideband beam as long as the symmetry of the reference beam is ensured. Based on this conclusion, a scheme for reference beam design is proposed.

  3. Efficient Fourier-based algorithms for time-periodic unsteady problems

    Science.gov (United States)

    Gopinath, Arathi Kamath

    2007-12-01

    This dissertation work proposes two algorithms for the simulation of time-periodic unsteady problems via the solution of Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations. These algorithms use a Fourier representation in time and hence solve for the periodic state directly without resolving transients (which consume most of the resources in a time-accurate scheme). In contrast to conventional Fourier-based techniques which solve the governing equations in frequency space, the new algorithms perform all the calculations in the time domain, and hence require minimal modifications to an existing solver. The complete space-time solution is obtained by iterating in a fifth pseudo-time dimension. Various time-periodic problems such as helicopter rotors, wind turbines, turbomachinery and flapping-wings can be simulated using the Time Spectral method. The algorithm is first validated using pitching airfoil/wing test cases. The method is further extended to turbomachinery problems, and computational results verified by comparison with a time-accurate calculation. The technique can be very memory intensive for large problems, since the solution is computed (and hence stored) simultaneously at all time levels. Often, the blade counts of a turbomachine are rescaled such that a periodic fraction of the annulus can be solved. This approximation enables the solution to be obtained at a fraction of the cost of a full-scale time-accurate solution. For a viscous computation over a three-dimensional single-stage rescaled compressor, an order of magnitude savings is achieved. The second algorithm, the reduced-order Harmonic Balance method is applicable only to turbomachinery flows, and offers even larger computational savings than the Time Spectral method. It simulates the true geometry of the turbomachine using only one blade passage per blade row as the computational domain. In each blade row of the turbomachine, only the dominant frequencies are resolved, namely

  4. Application of the fractional Fourier transform to the design of LCOS based optical interconnects and fiber switches.

    Science.gov (United States)

    Robertson, Brian; Zhang, Zichen; Yang, Haining; Redmond, Maura M; Collings, Neil; Liu, Jinsong; Lin, Ruisheng; Jeziorska-Chapman, Anna M; Moore, John R; Crossland, William A; Chu, D P

    2012-04-20

    It is shown that reflective liquid crystal on silicon (LCOS) spatial light modulator (SLM) based interconnects or fiber switches that use defocus to reduce crosstalk can be evaluated and optimized using a fractional Fourier transform if certain optical symmetry conditions are met. Theoretically the maximum allowable linear hologram phase error compared to a Fourier switch is increased by a factor of six before the target crosstalk for telecom applications of -40 dB is exceeded. A Gerchberg-Saxton algorithm incorporating a fractional Fourier transform modified for use with a reflective LCOS SLM is used to optimize multi-casting holograms in a prototype telecom switch. Experiments are in close agreement to predicted performance.

  5. Fourier-based reconstruction via alternating direction total variation minimization in linear scan CT

    International Nuclear Information System (INIS)

    Cai, Ailong; Wang, Linyuan; Yan, Bin; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Li, Jianxin

    2015-01-01

    In this study, we consider a novel form of computed tomography (CT), that is, linear scan CT (LCT), which applies a straight line trajectory. Furthermore, an iterative algorithm is proposed for pseudo-polar Fourier reconstruction through total variation minimization (PPF-TVM). Considering that the sampled Fourier data are distributed in pseudo-polar coordinates, the reconstruction model minimizes the TV of the image subject to the constraint that the estimated 2D Fourier data for the image are consistent with the 1D Fourier transform of the projection data. PPF-TVM employs the alternating direction method (ADM) to develop a robust and efficient iteration scheme, which ensures stable convergence provided that appropriate parameter values are given. In the ADM scheme, PPF-TVM applies the pseudo-polar fast Fourier transform and its adjoint to iterate back and forth between the image and frequency domains. Thus, there is no interpolation in the Fourier domain, which makes the algorithm both fast and accurate. PPF-TVM is particularly useful for limited angle reconstruction in LCT and it appears to be robust against artifacts. The PPF-TVM algorithm was tested with the FORBILD head phantom and real data in comparisons with state-of-the-art algorithms. Simulation studies and real data verification suggest that PPF-TVM can reconstruct higher accuracy images with lower time consumption

  6. Analytical research using synchrotron radiation based techniques

    International Nuclear Information System (INIS)

    Jha, Shambhu Nath

    2015-01-01

    There are many Synchrotron Radiation (SR) based techniques such as X-ray Absorption Spectroscopy (XAS), X-ray Fluorescence Analysis (XRF), SR-Fourier-transform Infrared (SRFTIR), Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. which are increasingly being employed worldwide in analytical research. With advent of modern synchrotron sources these analytical techniques have been further revitalized and paved ways for new techniques such as microprobe XRF and XAS, FTIR microscopy, Hard X-ray Photoelectron Spectroscopy (HAXPS) etc. The talk will cover mainly two techniques illustrating its capability in analytical research namely XRF and XAS. XRF spectroscopy: XRF spectroscopy is an analytical technique which involves the detection of emitted characteristic X-rays following excitation of the elements within the sample. While electron, particle (protons or alpha particles), or X-ray beams can be employed as the exciting source for this analysis, the use of X-ray beams from a synchrotron source has been instrumental in the advancement of the technique in the area of microprobe XRF imaging and trace level compositional characterisation of any sample. Synchrotron radiation induced X-ray emission spectroscopy, has become competitive with the earlier microprobe and nanoprobe techniques following the advancements in manipulating and detecting these X-rays. There are two important features that contribute to the superb elemental sensitivities of microprobe SR induced XRF: (i) the absence of the continuum (Bremsstrahlung) background radiation that is a feature of spectra obtained from charged particle beams, and (ii) the increased X-ray flux on the sample associated with the use of tunable third generation synchrotron facilities. Detection sensitivities have been reported in the ppb range, with values of 10 -17 g - 10 -14 g (depending on the particular element and matrix). Keeping in mind its demand, a microprobe XRF beamline has been setup by RRCAT at Indus-2 synchrotron

  7. Conversion of a DWDM signal to a single Nyquist channel based on a complete optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2014-01-01

    We propose a DWDM-to-Nyquist channel conversion scheme based on complete Optical Fourier Transformation and optical Nyquist filtering. We demonstrate conversion from 50-GHz-grid 16×10 Gbit/s DPSK DWDM to a 160-Gbit/s Nyquist channel (0.9 symbol/s/Hz spectral efficiency) with 1.4 dB power penalty....

  8. Efficient Pricing of European-Style Asian Options under Exponential Lévy Processes Based on Fourier Cosine Expansions

    NARCIS (Netherlands)

    Zhang, B.; Oosterlee, C.W.

    2013-01-01

    We propose an efficient pricing method for arithmetic and geometric Asian options under exponential Lévy processes based on Fourier cosine expansions and Clenshaw–Curtis quadrature. The pricing method is developed for both European style and American-style Asian options and for discretely and

  9. Application of Fourier transform infrared spectroscopy with chemometrics on postmortem interval estimation based on pericardial fluids.

    Science.gov (United States)

    Zhang, Ji; Li, Bing; Wang, Qi; Wei, Xin; Feng, Weibo; Chen, Yijiu; Huang, Ping; Wang, Zhenyuan

    2017-12-21

    Postmortem interval (PMI) evaluation remains a challenge in the forensic community due to the lack of efficient methods. Studies have focused on chemical analysis of biofluids for PMI estimation; however, no reports using spectroscopic methods in pericardial fluid (PF) are available. In this study, Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance (ATR) accessory was applied to collect comprehensive biochemical information from rabbit PF at different PMIs. The PMI-dependent spectral signature was determined by two-dimensional (2D) correlation analysis. The partial least square (PLS) and nu-support vector machine (nu-SVM) models were then established based on the acquired spectral dataset. Spectral variables associated with amide I, amide II, COO - , C-H bending, and C-O or C-OH vibrations arising from proteins, polypeptides, amino acids and carbohydrates, respectively, were susceptible to PMI in 2D correlation analysis. Moreover, the nu-SVM model appeared to achieve a more satisfactory prediction than the PLS model in calibration; the reliability of both models was determined in an external validation set. The study shows the possibility of application of ATR-FTIR methods in postmortem interval estimation using PF samples.

  10. Motor Fault Diagnosis Based on Short-time Fourier Transform and Convolutional Neural Network

    Science.gov (United States)

    Wang, Li-Hua; Zhao, Xiao-Ping; Wu, Jia-Xin; Xie, Yang-Yang; Zhang, Yong-Hong

    2017-11-01

    With the rapid development of mechanical equipment, the mechanical health monitoring field has entered the era of big data. However, the method of manual feature extraction has the disadvantages of low efficiency and poor accuracy, when handling big data. In this study, the research object was the asynchronous motor in the drivetrain diagnostics simulator system. The vibration signals of different fault motors were collected. The raw signal was pretreated using short time Fourier transform (STFT) to obtain the corresponding time-frequency map. Then, the feature of the time-frequency map was adaptively extracted by using a convolutional neural network (CNN). The effects of the pretreatment method, and the hyper parameters of network diagnostic accuracy, were investigated experimentally. The experimental results showed that the influence of the preprocessing method is small, and that the batch-size is the main factor affecting accuracy and training efficiency. By investigating feature visualization, it was shown that, in the case of big data, the extracted CNN features can represent complex mapping relationships between signal and health status, and can also overcome the prior knowledge and engineering experience requirement for feature extraction, which is used by traditional diagnosis methods. This paper proposes a new method, based on STFT and CNN, which can complete motor fault diagnosis tasks more intelligently and accurately.

  11. Polynomial Phase Estimation Based on Adaptive Short-Time Fourier Transform.

    Science.gov (United States)

    Jing, Fulong; Zhang, Chunjie; Si, Weijian; Wang, Yu; Jiao, Shuhong

    2018-02-13

    Polynomial phase signals (PPSs) have numerous applications in many fields including radar, sonar, geophysics, and radio communication systems. Therefore, estimation of PPS coefficients is very important. In this paper, a novel approach for PPS parameters estimation based on adaptive short-time Fourier transform (ASTFT), called the PPS-ASTFT estimator, is proposed. Using the PPS-ASTFT estimator, both one-dimensional and multi-dimensional searches and error propagation problems, which widely exist in PPSs field, are avoided. In the proposed algorithm, the instantaneous frequency (IF) is estimated by S-transform (ST), which can preserve information on signal phase and provide a variable resolution similar to the wavelet transform (WT). The width of the ASTFT analysis window is equal to the local stationary length, which is measured by the instantaneous frequency gradient (IFG). The IFG is calculated by the principal component analysis (PCA), which is robust to the noise. Moreover, to improve estimation accuracy, a refinement strategy is presented to estimate signal parameters. Since the PPS-ASTFT avoids parameter search, the proposed algorithm can be computed in a reasonable amount of time. The estimation performance, computational cost, and implementation of the PPS-ASTFT are also analyzed. The conducted numerical simulations support our theoretical results and demonstrate an excellent statistical performance of the proposed algorithm.

  12. Fourier transform infrared spectroscopy microscopic imaging classification based on spatial-spectral features

    Science.gov (United States)

    Liu, Lian; Yang, Xiukun; Zhong, Mingliang; Liu, Yao; Jing, Xiaojun; Yang, Qin

    2018-04-01

    The discrete fractional Brownian incremental random (DFBIR) field is used to describe the irregular, random, and highly complex shapes of natural objects such as coastlines and biological tissues, for which traditional Euclidean geometry cannot be used. In this paper, an anisotropic variable window (AVW) directional operator based on the DFBIR field model is proposed for extracting spatial characteristics of Fourier transform infrared spectroscopy (FTIR) microscopic imaging. Probabilistic principal component analysis first extracts spectral features, and then the spatial features of the proposed AVW directional operator are combined with the former to construct a spatial-spectral structure, which increases feature-related information and helps a support vector machine classifier to obtain more efficient distribution-related information. Compared to Haralick’s grey-level co-occurrence matrix, Gabor filters, and local binary patterns (e.g. uniform LBPs, rotation-invariant LBPs, uniform rotation-invariant LBPs), experiments on three FTIR spectroscopy microscopic imaging datasets show that the proposed AVW directional operator is more advantageous in terms of classification accuracy, particularly for low-dimensional spaces of spatial characteristics.

  13. Multiple Sclerosis Identification Based on Fractional Fourier Entropy and a Modified Jaya Algorithm

    Directory of Open Access Journals (Sweden)

    Shui-Hua Wang

    2018-04-01

    Full Text Available Aim: Currently, identifying multiple sclerosis (MS by human experts may come across the problem of “normal-appearing white matter”, which causes a low sensitivity. Methods: In this study, we presented a computer vision based approached to identify MS in an automatic way. This proposed method first extracted the fractional Fourier entropy map from a specified brain image. Afterwards, it sent the features to a multilayer perceptron trained by a proposed improved parameter-free Jaya algorithm. We used cost-sensitivity learning to handle the imbalanced data problem. Results: The 10 × 10-fold cross validation showed our method yielded a sensitivity of 97.40 ± 0.60%, a specificity of 97.39 ± 0.65%, and an accuracy of 97.39 ± 0.59%. Conclusions: We validated by experiments that the proposed improved Jaya performs better than plain Jaya algorithm and other latest bioinspired algorithms in terms of classification performance and training speed. In addition, our method is superior to four state-of-the-art MS identification approaches.

  14. Application of fast fourier transform method to evaluate the accuracy of sbloca data base

    International Nuclear Information System (INIS)

    D'Auria, F.; Galassi, G.M.; Leonardi, M.; Galetti, M.R.

    1997-01-01

    The purpose of this paper is to perform the quantitative accuracy evaluation of a small break LOCA data base and then evaluate the accuracy of RELAP5/MOD2 code i.e. of the ensemble constituted by the code itself, the user, the nodalization and the selected code options, in predicting this kind of transient. In order to achieve this objective, qualitative accuracy evaluation results from several tests performed in 4 facilities (LOBI, SPES, BETHSY and LSTF) are used. The quantitative evaluation is achieved adopting a method developed at University of Pisa, which has capabilities in quantifying the errors in code predictions with respect to the measured experimental signal, using the Fast Fourier Transform; this allows an integral representation of code discrepancies in the frequency domain. The RELAP5/MOD2 code has been extensively used at the University of Pisa and the nodalizations of the 4 facilities have been qualified through the application to several experiments performed in the same facilities. (author)

  15. Performance of a MEMS-based AO-OCT system using Fourier Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J; Zawadzki, R; Jones, S; Olivier, S; Werner, J S

    2009-01-21

    Adaptive optics (AO) and optical coherence tomography (OCT) are powerful imaging modalities that, when combined, can provide high-resolution (3.5 {micro}m isotropic), 3-D images of the retina. The AO-OCT system at UC Davis has demonstrated the utility of this technology for microscopic, volumetric, in vivo retinal imaging. The current system uses an AOptix bimorph deformable mirror (DM) for low-order, high-stroke correction and a 140-actuator Boston Micromachines DM for high-order correction. Developments to improve performance or functionality of the instrument are on-going. Based on previous work in system characterization we have focused on improved AO control. We present preliminary results and remaining challenges for a newly implemented Fourier transform reconstructor (FTR). The previously reported error budget analysis is also reviewed and updated, with consideration of how to improve both the amount of residual error and the robustness of the system. Careful characterization of the AO system will lead to improved performance and inform the design of future systems.

  16. Study of Fourier transform spectrometer based on Michelson interferometer wave-meter

    Science.gov (United States)

    Peng, Yuexiang; Wang, Liqiang; Lin, Li

    2008-03-01

    A wave-meter based on Michelson interferometer consists of a reference and a measurement channel. The voice-coiled motor using PID means can realize to move in stable motion. The wavelength of a measurement laser can be obtained by counting interference fringes of reference and measurement laser. Reference laser with frequency stabilization creates a cosine interferogram signal whose frequency is proportional to velocity of the moving motor. The interferogram of the reference laser is converted to pulse signal, and it is subdivided into 16 times. In order to get optical spectrum, the analog signal of measurement channel should be collected. The Analog-to-Digital Converter (ADC) for measurement channel is triggered by the 16-times pulse signal of reference laser. So the sampling rate is constant only depending on frequency of reference laser and irrelative to the motor velocity. This means the sampling rate of measurement channel signals is on a uniform time-scale. The optical spectrum of measurement channel can be processed with Fast Fourier Transform (FFT) method by DSP and displayed on LCD.

  17. Image encryption based on fractal-structured phase mask in fractional Fourier transform domain

    Science.gov (United States)

    Zhao, Meng-Dan; Gao, Xu-Zhen; Pan, Yue; Zhang, Guan-Lin; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2018-04-01

    We present an optical encryption approach based on the combination of fractal Fresnel lens (FFL) and fractional Fourier transform (FrFT). Our encryption approach is in fact a four-fold encryption scheme, including the random phase encoding produced by the Gerchberg–Saxton algorithm, a FFL, and two FrFTs. A FFL is composed of a Sierpinski carpet fractal plate and a Fresnel zone plate. In our encryption approach, the security is enhanced due to the more expandable key spaces and the use of FFL overcomes the alignment problem of the optical axis in optical system. Only using the perfectly matched parameters of the FFL and the FrFT, the plaintext can be recovered well. We present an image encryption algorithm that from the ciphertext we can get two original images by the FrFT with two different phase distribution keys, obtained by performing 100 iterations between the two plaintext and ciphertext, respectively. We test the sensitivity of our approach to various parameters such as the wavelength of light, the focal length of FFL, and the fractional orders of FrFT. Our approach can resist various attacks.

  18. USB-based radiation monitor

    International Nuclear Information System (INIS)

    Drndarevic, V.; Jevtic, N.; Djuric, R.

    2006-01-01

    The Universal Serial Bus has become a dominant interface for the connection of standard peripheral devices to a personal computer. This paper analyzes the possibilities of USB bus applications in the field of measurement and environmental monitoring. As a result, a gamma radiation monitor consisting of an USB-based universal peripheral device and a gamma probe with a GM counter, has been designed. For the interfacing monitor with the powerful and easy to use LabVIEW software package, an instrument driver as a set of virtual instruments has been developed. The proposed monitor is a flexible instrument which can be used for laboratory measurements, as an environmental radiation monitor or for training purposes. Connected to the laptop computer, the monitor becomes a portable instrument suitable for field measurements. Basic measurements and functionality properties of the radiation monitor are presented here

  19. An evaluation of IASI-NH3 with ground-based Fourier transform infrared spectroscopy measurements

    Directory of Open Access Journals (Sweden)

    E. Dammers

    2016-08-01

    Full Text Available Global distributions of atmospheric ammonia (NH3 measured with satellite instruments such as the Infrared Atmospheric Sounding Interferometer (IASI contain valuable information on NH3 concentrations and variability in regions not yet covered by ground-based instruments. Due to their large spatial coverage and (bi-daily overpasses, the satellite observations have the potential to increase our knowledge of the distribution of NH3 emissions and associated seasonal cycles. However the observations remain poorly validated, with only a handful of available studies often using only surface measurements without any vertical information. In this study, we present the first validation of the IASI-NH3 product using ground-based Fourier transform infrared spectroscopy (FTIR observations. Using a recently developed consistent retrieval strategy, NH3 concentration profiles have been retrieved using observations from nine Network for the Detection of Atmospheric Composition Change (NDACC stations around the world between 2008 and 2015. We demonstrate the importance of strict spatio-temporal collocation criteria for the comparison. Large differences in the regression results are observed for changing intervals of spatial criteria, mostly due to terrain characteristics and the short lifetime of NH3 in the atmosphere. The seasonal variations of both datasets are consistent for most sites. Correlations are found to be high at sites in areas with considerable NH3 levels, whereas correlations are lower at sites with low atmospheric NH3 levels close to the detection limit of the IASI instrument. A combination of the observations from all sites (Nobs = 547 give a mean relative difference of −32.4 ± (56.3 %, a correlation r of 0.8 with a slope of 0.73. These results give an improved estimate of the IASI-NH3 product performance compared to the previous upper-bound estimates (−50 to +100 %.

  20. Spectral resolution enhancement of Fourier-transform spectrometer based on orthogonal shear interference using Wollaston prism

    Science.gov (United States)

    Cong, Lin-xiao; Huang, Min; Cai, Qi-sheng

    2017-10-01

    In this paper, a multi-line interferogram stitching method based on orthogonal shear using the Wollaston prism(WP) was proposed with a 2D projection interferogram recorded through the rotation of CCD, making the spectral resolution of Fourier-Transform spectrometer(FTS) of a limited spatial size increase by at least three times. The fringes on multi-lines were linked with the pixels of equal optical path difference (OPD). Ideally, the error of sampled phase within one pixel was less than half the wavelength, ensuring consecutive values in the over-sampled dimension while aliasing in another. In the simulation, with the calibration of 1.064μm, spectral lines at 1.31μm and 1.56μm of equal intensity were tested and observed. The result showed a bias of 0.13% at 1.31μm and 1.15% at 1.56μm in amplitude, and the FWHM at 1.31μm reduced from 25nm to 8nm after the sample points increased from 320 to 960. In the comparison of reflectance spectrum of carnauba wax within near infrared(NIR) band, the absorption peak at 1.2μm was more obvious and zoom of the band 1.38 1.43μm closer to the reference, although some fluctuation was in the short-wavelength region arousing the spectral crosstalk. In conclusion, with orthogonal shear based on the rotation of the CCD relative to the axis of WP, the spectral resolution of static FTS was enhanced by the projection of fringes to the grid coordinates and stitching the interferograms into a larger OPD, which showed the advantages of cost and miniaturization in the space-constrained NIR applications.

  1. Optical movie encryption based on a discrete multiple-parameter fractional Fourier transform

    International Nuclear Information System (INIS)

    Zhong, Zhi; Zhang, Yujie; Shan, Mingguang; Wang, Ying; Zhang, Yabin; Xie, Hong

    2014-01-01

    A movie encryption scheme is proposed using a discrete multiple-parameter fractional Fourier transform and theta modulation. After being modulated by sinusoidal amplitude grating, each frame of the movie is transformed by a filtering procedure and then multiplexed into a complex signal. The complex signal is multiplied by a pixel scrambling operation and random phase mask, and then encrypted by a discrete multiple-parameter fractional Fourier transform. The movie can be retrieved by using the correct keys, such as a random phase mask, a pixel scrambling operation, the parameters in a discrete multiple-parameter fractional Fourier transform and a time sequence. Numerical simulations have been performed to demonstrate the validity and the security of the proposed method. (paper)

  2. Monitoring breast cancer treatment using a Fourier transform infrared spectroscopy-based computational model.

    Science.gov (United States)

    Depciuch, J; Kaznowska, E; Golowski, S; Koziorowska, A; Zawlik, I; Cholewa, M; Szmuc, K; Cebulski, J

    2017-09-05

    Breast cancer affects one in four women, therefore, the search for new diagnostic technologies and therapeutic approaches is of critical importance. This involves the development of diagnostic tools to facilitate the detection of cancer cells, which is useful for assessing the efficacy of cancer therapies. One of the major challenges for chemotherapy is the lack of tools to monitor efficacy during the course of treatment. Vibrational spectroscopy appears to be a promising tool for such a purpose, as it yields Fourier transformation infrared (FTIR) spectra which can be used to provide information on the chemical composition of the tissue. Previous research by our group has demonstrated significant differences between the infrared spectra of healthy, cancerous and post-chemotherapy breast tissue. Furthermore, the results obtained for three extreme patient cases revealed that the infrared spectra of post-chemotherapy breast tissue closely resembles that of healthy breast tissue when chemotherapy is effective (i.e., a good therapeutic response is achieved), or that of cancerous breast tissue when chemotherapy is ineffective. In the current study, we compared the infrared spectra of healthy, cancerous and post-chemotherapy breast tissue. Characteristic parameters were designated for the obtained spectra, spreading the function of absorbance using the Kramers-Kronig transformation and the best fit procedure to obtain Lorentz functions, which represent components of the bands. The Lorentz function parameters were used to develop a physics-based computational model to verify the efficacy of a given chemotherapy protocol in a given case. The results obtained using this model reflected the actual patient data retrieved from medical records (health improvement or no improvement). Therefore, we propose this model as a useful tool for monitoring the efficacy of chemotherapy in patients with breast cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Radiometric modeling and calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) ground based measurement experiment

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-12-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data

  4. Validation of MOPITT carbon monoxide using ground-based Fourier transform infrared spectrometer data from NDACC

    Science.gov (United States)

    Buchholz, Rebecca R.; Deeter, Merritt N.; Worden, Helen M.; Gille, John; Edwards, David P.; Hannigan, James W.; Jones, Nicholas B.; Paton-Walsh, Clare; Griffith, David W. T.; Smale, Dan; Robinson, John; Strong, Kimberly; Conway, Stephanie; Sussmann, Ralf; Hase, Frank; Blumenstock, Thomas; Mahieu, Emmanuel; Langerock, Bavo

    2017-06-01

    The Measurements of Pollution in the Troposphere (MOPITT) satellite instrument provides the longest continuous dataset of carbon monoxide (CO) from space. We perform the first validation of MOPITT version 6 retrievals using total column CO measurements from ground-based remote-sensing Fourier transform infrared spectrometers (FTSs). Validation uses data recorded at 14 stations, that span a wide range of latitudes (80° N to 78° S), in the Network for the Detection of Atmospheric Composition Change (NDACC). MOPITT measurements are spatially co-located with each station, and different vertical sensitivities between instruments are accounted for by using MOPITT averaging kernels (AKs). All three MOPITT retrieval types are analyzed: thermal infrared (TIR-only), joint thermal and near infrared (TIR-NIR), and near infrared (NIR-only). Generally, MOPITT measurements overestimate CO relative to FTS measurements, but the bias is typically less than 10 %. Mean bias is 2.4 % for TIR-only, 5.1 % for TIR-NIR, and 6.5 % for NIR-only. The TIR-NIR and NIR-only products consistently produce a larger bias and lower correlation than the TIR-only. Validation performance of MOPITT for TIR-only and TIR-NIR retrievals over land or water scenes is equivalent. The four MOPITT detector element pixels are validated separately to account for their different uncertainty characteristics. Pixel 1 produces the highest standard deviation and lowest correlation for all three MOPITT products. However, for TIR-only and TIR-NIR, the error-weighted average that includes all four pixels often provides the best correlation, indicating compensating pixel biases and well-captured error characteristics. We find that MOPITT bias does not depend on latitude but rather is influenced by the proximity to rapidly changing atmospheric CO. MOPITT bias drift has been bound geographically to within ±0.5 % yr-1 or lower at almost all locations.

  5. A non-hydrostatic flat-bottom ocean model entirely based on Fourier expansion

    Science.gov (United States)

    Wirth, A.

    2005-01-01

    We show how to implement free-slip and no-slip boundary conditions in a three dimensional Boussinesq flat-bottom ocean model based on Fourier expansion. Our method is inspired by the immersed or virtual boundary technique in which the effect of boundaries on the flow field is modeled by a virtual force field. Our method, however, explicitly depletes the velocity on the boundary induced by the pressure, while at the same time respecting the incompressibility of the flow field. Spurious spatial oscillations remain at a negligible level in the simulated flow field when using our technique and no filtering of the flow field is necessary. We furthermore show that by using the method presented here the residual velocities at the boundaries are easily reduced to a negligible value. This stands in contradistinction to previous calculations using the immersed or virtual boundary technique. The efficiency is demonstrated by simulating a Rayleigh impulsive flow, for which the time evolution of the simulated flow is compared to an analytic solution, and a three dimensional Boussinesq simulation of ocean convection. The second instance is taken form a well studied oceanographic context: A free slip boundary condition is applied on the upper surface, the modeled sea surface, and a no-slip boundary condition to the lower boundary, the modeled ocean floor. Convergence properties of the method are investigated by solving a two dimensional stationary problem at different spatial resolutions. The work presented here is restricted to a flat ocean floor. Extensions of our method to ocean models with a realistic topography are discussed.

  6. Fourier Transform Mass Spectrometry

    Science.gov (United States)

    Scigelova, Michaela; Hornshaw, Martin; Giannakopulos, Anastassios; Makarov, Alexander

    2011-01-01

    This article provides an introduction to Fourier transform-based mass spectrometry. The key performance characteristics of Fourier transform-based mass spectrometry, mass accuracy and resolution, are presented in the view of how they impact the interpretation of measurements in proteomic applications. The theory and principles of operation of two types of mass analyzer, Fourier transform ion cyclotron resonance and Orbitrap, are described. Major benefits as well as limitations of Fourier transform-based mass spectrometry technology are discussed in the context of practical sample analysis, and illustrated with examples included as figures in this text and in the accompanying slide set. Comparisons highlighting the performance differences between the two mass analyzers are made where deemed useful in assisting the user with choosing the most appropriate technology for an application. Recent developments of these high-performing mass spectrometers are mentioned to provide a future outlook. PMID:21742802

  7. Time Lens based Optical Fourier Transformation for All-Optical Signal Processing of Spectrally-Efficient Data

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Lillieholm, Mads

    2017-01-01

    We review recent progress in the use of time lens based optical Fourier transformation for advanced all-optical signal processing. A novel time lens based complete optical Fourier transformation (OFT) technique is introduced. This complete OFT is based on two quadratic phase-modulation stages using...... four-wave mixing (FWM), separated by a dispersive medium, which enables time-to-frequency and frequency-to-time conversions simultaneously, thus performing an exchange between the temporal and spectral profiles of the input signal. Using the proposed complete OFT, several advanced all-optical signal......, such as orthogonal frequency division multiplexing (OFDM), Nyquist wavelength-division multiplexing (Nyquist-WDM) and Nyquist optical time division multiplexing (Nyquist-OTDM) signals....

  8. Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang

    2010-01-01

    While swept source optical coherence tomography (OCT) in the 1050 nm range is promising for retinal imaging, there are certain challenges. Conventional semiconductor gain media have limited output power, and the performance of high-speed Fourier domain mode-locked (FDML) lasers suffers from...

  9. Study on sampling of continuous linear system based on generalized Fourier transform

    Science.gov (United States)

    Li, Huiguang

    2003-09-01

    In the research of signal and system, the signal's spectrum and the system's frequency characteristic can be discussed through Fourier Transform (FT) and Laplace Transform (LT). However, some singular signals such as impulse function and signum signal don't satisfy Riemann integration and Lebesgue integration. They are called generalized functions in Maths. This paper will introduce a new definition -- Generalized Fourier Transform (GFT) and will discuss generalized function, Fourier Transform and Laplace Transform under a unified frame. When the continuous linear system is sampled, this paper will propose a new method to judge whether the spectrum will overlap after generalized Fourier transform (GFT). Causal and non-causal systems are studied, and sampling method to maintain system's dynamic performance is presented. The results can be used on ordinary sampling and non-Nyquist sampling. The results also have practical meaning on research of "discretization of continuous linear system" and "non-Nyquist sampling of signal and system." Particularly, condition for ensuring controllability and observability of MIMO continuous systems in references 13 and 14 is just an applicable example of this paper.

  10. The DSP-based RTOF-correlator for high resolution Fourier diffractometers

    Energy Technology Data Exchange (ETDEWEB)

    Butenko, V A; Drozdov, V A; Kirilov, A S [Frank Lab. of Neutron Physics of the Academy of Sciences of Slovakia, Bratislava (Slovakia)

    1996-12-31

    To improve efficiency of the time-of-flight analysis, the correlation and the Fourier methods are used with a preliminary neutron flux modulation. In this case the elastically scattered neutron spectrum is calculated as a function of the cross-correlation of the detector signal and the neutron flux modulation. 10 refs.; 5 figs.

  11. Preconditioners based on windowed Fourier frames applied to elliptic partial differential equations

    NARCIS (Netherlands)

    Bhowmik, S.K.; Stolk, C.C.

    2011-01-01

    We investigate the application of windowed Fourier frames to the numerical solution of partial differential equations, focussing on elliptic equations. The action of a partial differential operator (PDO) on a windowed plane wave is close to a multiplication, where the multiplication factor is given

  12. Shock-wave structure based on the Navier-Stokes-Fourier equations

    Science.gov (United States)

    Uribe, F. J.; Velasco, R. M.

    2018-04-01

    We use the Navier-Stokes-Fourier constitutive equations to study plane shock waves in dilute gases. It is shown that the experimental information on the normalized density profiles can be fit by using the so-called soft sphere model, in which the viscosity and thermal conductivity are proportional to a power of the temperature.

  13. Dual-polarization nonlinear Fourier transform-based optical communication system

    DEFF Research Database (Denmark)

    Gaiarin, Simone; Perego, A. M.; da Silva, Edson Porto

    2018-01-01

    communication could potentially overcome these limitations. It relies on a mathematical technique called “nonlinear Fourier transform (NFT)” to exploit the “hidden” linearity of the nonlinear Schrödinger equation as the master model for signal propagation in an optical fiber. We present here the theoretical...

  14. A new method to cluster genomes based on cumulative Fourier power spectrum.

    Science.gov (United States)

    Dong, Rui; Zhu, Ziyue; Yin, Changchuan; He, Rong L; Yau, Stephen S-T

    2018-06-20

    Analyzing phylogenetic relationships using mathematical methods has always been of importance in bioinformatics. Quantitative research may interpret the raw biological data in a precise way. Multiple Sequence Alignment (MSA) is used frequently to analyze biological evolutions, but is very time-consuming. When the scale of data is large, alignment methods cannot finish calculation in reasonable time. Therefore, we present a new method using moments of cumulative Fourier power spectrum in clustering the DNA sequences. Each sequence is translated into a vector in Euclidean space. Distances between the vectors can reflect the relationships between sequences. The mapping between the spectra and moment vector is one-to-one, which means that no information is lost in the power spectra during the calculation. We cluster and classify several datasets including Influenza A, primates, and human rhinovirus (HRV) datasets to build up the phylogenetic trees. Results show that the new proposed cumulative Fourier power spectrum is much faster and more accurately than MSA and another alignment-free method known as k-mer. The research provides us new insights in the study of phylogeny, evolution, and efficient DNA comparison algorithms for large genomes. The computer programs of the cumulative Fourier power spectrum are available at GitHub (https://github.com/YaulabTsinghua/cumulative-Fourier-power-spectrum). Copyright © 2018. Published by Elsevier B.V.

  15. 1.28 Tbaud Nyquist Signal Transmission using Time-Domain Optical Fourier Transformation based Receiver

    DEFF Research Database (Denmark)

    Hu, Hao; Kong, Deming; Palushani, Evarist

    2013-01-01

    We demonstrate transmission of a 1.28-Tbaud Nyquist-OTDM signal over a record distance of 100 km with detection by time-domain optical Fourier transformation followed by FEC decoding, resulting in error-free performance for all tributaries....

  16. Fourier Series

    Indian Academy of Sciences (India)

    polynomials are dense in the class of continuous functions! The body of literature dealing with Fourier series has reached epic proportions over the last two centuries. We have only given the readers an outline of the topic in this article. For the full length episode we refer the reader to the monumental treatise of. A Zygmund.

  17. Fourier Series

    Indian Academy of Sciences (India)

    The theory of Fourier series deals with periodic functions. By a periodic ..... including Dirichlet, Riemann and Cantor occupied themselves with the problem of ... to converge only on a set which is negligible in a certain sense (Le. of measure ...

  18. Fractional Fourier domain optical image hiding using phase retrieval algorithm based on iterative nonlinear double random phase encoding.

    Science.gov (United States)

    Wang, Xiaogang; Chen, Wen; Chen, Xudong

    2014-09-22

    We present a novel image hiding method based on phase retrieval algorithm under the framework of nonlinear double random phase encoding in fractional Fourier domain. Two phase-only masks (POMs) are efficiently determined by using the phase retrieval algorithm, in which two cascaded phase-truncated fractional Fourier transforms (FrFTs) are involved. No undesired information disclosure, post-processing of the POMs or digital inverse computation appears in our proposed method. In order to achieve the reduction in key transmission, a modified image hiding method based on the modified phase retrieval algorithm and logistic map is further proposed in this paper, in which the fractional orders and the parameters with respect to the logistic map are regarded as encryption keys. Numerical results have demonstrated the feasibility and effectiveness of the proposed algorithms.

  19. MEMS-based handheld fourier domain Doppler optical coherence tomography for intraoperative microvascular anastomosis imaging.

    Directory of Open Access Journals (Sweden)

    Yong Huang

    Full Text Available To demonstrate the feasibility of a miniature handheld optical coherence tomography (OCT imager for real time intraoperative vascular patency evaluation in the setting of super-microsurgical vessel anastomosis.A novel handheld imager Fourier domain Doppler optical coherence tomography based on a 1.3-µm central wavelength swept source for extravascular imaging was developed. The imager was minimized through the adoption of a 2.4-mm diameter microelectromechanical systems (MEMS scanning mirror, additionally a 12.7-mm diameter lens system was designed and combined with the MEMS mirror to achieve a small form factor that optimize functionality as a handheld extravascular OCT imager. To evaluate in-vivo applicability, super-microsurgical vessel anastomosis was performed in a mouse femoral vessel cut and repair model employing conventional interrupted suture technique as well as a novel non-suture cuff technique. Vascular anastomosis patency after clinically successful repair was evaluated using the novel handheld OCT imager.With an adjustable lateral image field of view up to 1.5 mm by 1.5 mm, high-resolution simultaneous structural and flow imaging of the blood vessels were successfully acquired for BALB/C mouse after orthotopic hind limb transplantation using a non-suture cuff technique and BALB/C mouse after femoral artery anastomosis using a suture technique. We experimentally quantify the axial and lateral resolution of the OCT to be 12.6 µm in air and 17.5 µm respectively. The OCT has a sensitivity of 84 dB and sensitivity roll-off of 5.7 dB/mm over an imaging range of 5 mm. Imaging with a frame rate of 36 Hz for an image size of 1000(lateral×512(axial pixels using a 50,000 A-lines per second swept source was achieved. Quantitative vessel lumen patency, lumen narrowing and thrombosis analysis were performed based on acquired structure and Doppler images.A miniature handheld OCT imager that can be used for intraoperative evaluation of

  20. Automated acid and base number determination of mineral-based lubricants by fourier transform infrared spectroscopy: commercial laboratory evaluation.

    Science.gov (United States)

    Winterfield, Craig; van de Voort, F R

    2014-12-01

    The Fluid Life Corporation assessed and implemented Fourier transform infrared spectroscopy (FTIR)-based methods using American Society for Testing and Materials (ASTM)-like stoichiometric reactions for determination of acid and base number for in-service mineral-based oils. The basic protocols, quality control procedures, calibration, validation, and performance of these new quantitative methods are assessed. ASTM correspondence is attained using a mixed-mode calibration, using primary reference standards to anchor the calibration, supplemented by representative sample lubricants analyzed by ASTM procedures. A partial least squares calibration is devised by combining primary acid/base reference standards and representative samples, focusing on the main spectral stoichiometric response with chemometrics assisting in accounting for matrix variability. FTIR(AN/BN) methodology is precise, accurate, and free of most interference that affects ASTM D664 and D4739 results. Extensive side-by-side operational runs produced normally distributed differences with mean differences close to zero and standard deviations of 0.18 and 0.26 mg KOH/g, respectively. Statistically, the FTIR methods are a direct match to the ASTM methods, with superior performance in terms of analytical throughput, preparation time, and solvent use. FTIR(AN/BN) analysis is a viable, significant advance for in-service lubricant analysis, providing an economic means of trending samples instead of tedious and expensive conventional ASTM(AN/BN) procedures. © 2014 Society for Laboratory Automation and Screening.

  1. Solution of the Doppler broadening function based on the fourier cosine transform

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Alessandro da C [COPPE/UFRJ - Programa de Engenharia Nuclear, Universidade Federal do Rio de Janeiro, P.O. Box 68509, 21941-914 Rio de Janeiro, RJ (Brazil)], E-mail: agoncalves@con.ufrj.br; Martinez, Aquilino S.; Silva, Fernando C. da [COPPE/UFRJ - Programa de Engenharia Nuclear, Universidade Federal do Rio de Janeiro, P.O. Box 68509, 21941-914 Rio de Janeiro, RJ (Brazil)

    2008-10-15

    This paper provides a new integral representation for the Doppler broadening function {psi}({xi}, x), which is interpreted as being a Fourier cosine transform. This integral form allows the obtaining of an analytical solution in a simple and accurate functional manner as regards the elementary functions. The solution obtained through the new integral representation can be widely used in several applications such as the calculation of self-shielding factors and measurement corrections for the microscopic cross section through the activation technique.

  2. Solution of the Doppler broadening function based on the fourier cosine transform

    International Nuclear Information System (INIS)

    Goncalves, Alessandro da C; Martinez, Aquilino S.; Silva, Fernando C. da

    2008-01-01

    This paper provides a new integral representation for the Doppler broadening function ψ(ξ, x), which is interpreted as being a Fourier cosine transform. This integral form allows the obtaining of an analytical solution in a simple and accurate functional manner as regards the elementary functions. The solution obtained through the new integral representation can be widely used in several applications such as the calculation of self-shielding factors and measurement corrections for the microscopic cross section through the activation technique

  3. The influence of incident beam's angle offset of Fourier transform infrared spectrometer on the spectrum measurement explored with synchrotron radiation

    International Nuclear Information System (INIS)

    Chen Wenhao; Chen Min; Xiao Tiqiao

    2011-01-01

    Effects of the incident angle offset on FT-IR spectra are investigated in this paper. The simulated FT-IR spectra are obtained by Fourier inverse transform. The results show that this frequency shift varies with the angle offset of the incident beam in FT-IR. As an example,the factors that affect the angle of incident IR light at SSRF are analyzed. According to performance specifications of the IR beamline, requirements of the optical component installation precision and position drift of the light source are given. (authors)

  4. A proposal of Fourier-Bessel expansion with optimized ensembles of bases to analyse two dimensional image

    Science.gov (United States)

    Yamasaki, K.; Fujisawa, A.; Nagashima, Y.

    2017-09-01

    It is a critical issue to find the best set of fitting function bases in mode structural analysis of two dimensional images like plasma emission profiles. The paper proposes a method to optimize a set of the bases in the case of Fourier-Bessel function series, using their orthonormal property, for more efficient and precise analysis. The method is applied on a tomography image of plasma emission obtained with the Maximum-likelihood expectation maximization method in a linear cylindrical device. The result demonstrates the excellency of the method that realizes the smaller residual error and minimum Akaike information criterion using smaller number of fitting function bases.

  5. The geometric phase analysis method based on the local high resolution discrete Fourier transform for deformation measurement

    International Nuclear Information System (INIS)

    Dai, Xianglu; Xie, Huimin; Wang, Huaixi; Li, Chuanwei; Wu, Lifu; Liu, Zhanwei

    2014-01-01

    The geometric phase analysis (GPA) method based on the local high resolution discrete Fourier transform (LHR-DFT) for deformation measurement, defined as LHR-DFT GPA, is proposed to improve the measurement accuracy. In the general GPA method, the fundamental frequency of the image plays a crucial role. However, the fast Fourier transform, which is generally employed in the general GPA method, could make it difficult to locate the fundamental frequency accurately when the fundamental frequency is not located at an integer pixel position in the Fourier spectrum. This study focuses on this issue and presents a LHR-DFT algorithm that can locate the fundamental frequency with sub-pixel precision in a specific frequency region for the GPA method. An error analysis is offered and simulation is conducted to verify the effectiveness of the proposed method; both results show that the LHR-DFT algorithm can accurately locate the fundamental frequency and improve the measurement accuracy of the GPA method. Furthermore, typical tensile and bending tests are carried out and the experimental results verify the effectiveness of the proposed method. (paper)

  6. Multi-layer thickness determination using differential-based enhanced Fourier transforms of X-ray reflectivity data

    Energy Technology Data Exchange (ETDEWEB)

    Poust, Benjamin [Department of Materials Science and Engineering, University of California, Los Angeles, CA (United States); Northrop Grumman Space Technology, Redondo Beach, CA (United States); Sandhu, Rajinder [Northrop Grumman Space Technology, Redondo Beach, CA (United States); Goorsky, Mark [Department of Materials Science and Engineering, University of California, Los Angeles, CA (United States)

    2009-08-15

    Layer thickness determination of single and multi-layer structures is achieved using a new method for generating Fourier transforms (FTs) of X-ray reflectivity data. This enhanced Fourier analysis is compared to other techniques in the determination of AlN layer thickness deposited on sapphire. In addition to demonstrably improved results, the results also agree with thicknesses determined using simulations and TEM measurements. The effectiveness of the technique is further demonstrated using the more complicated metamorphic epitaxial multi-layer AlSb/InAs structures deposited on GaAs. The approach reported here is based upon differentiating the specular intensity with respect to the vertical reciprocal space coordinate Q{sub Z}. In general, differentiation is far more effective at removing the sloping background present in reflectivity scans than logarithmic compression alone, average subtraction alone, or other methods. When combined with any of the other enhancement techniques, however, differentiation yields distinguishable discrete Fourier transform (DFT) power spectrum peaks for even the weakest and most truncated of sloping oscillations that are present in many reflectivity scans from multi-layer structures. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  7. Simulation of path delay multiplexing-based Fourier transform spectrometer for fiber Bragg grating interrogation.

    Science.gov (United States)

    Chelliah, Pandian; Sahoo, Trilochan; Singh, Sheela; Sujatha, Annie

    2015-10-20

    A Fourier transform spectrometer (FTS) used for interrogating a fiber Bragg grating (FBG) consists of a scanning-type interferometer. The FTS has a broad wavelength range of operation and good multiplexing capability. However, it has poor wavelength resolution and interrogation speed. We propose a modification to the FTS using path delay multiplexing to improve the same. Using this method, spatial resolution and interrogation time can be improved by n times by using n path delays. In this paper, simulation results for n=2, 5 are shown.

  8. Image security based on iterative random phase encoding in expanded fractional Fourier transform domains

    Science.gov (United States)

    Liu, Zhengjun; Chen, Hang; Blondel, Walter; Shen, Zhenmin; Liu, Shutian

    2018-06-01

    A novel image encryption method is proposed by using the expanded fractional Fourier transform, which is implemented with a pair of lenses. Here the centers of two lenses are separated at the cross section of axis in optical system. The encryption system is addressed with Fresnel diffraction and phase modulation for the calculation of information transmission. The iterative process with the transform unit is utilized for hiding secret image. The structure parameters of a battery of lenses can be used for additional keys. The performance of encryption method is analyzed theoretically and digitally. The results show that the security of this algorithm is enhanced markedly by the added keys.

  9. Quantification of wall motion and phase of contraction in tomographic gated blood pool studies using length-based Fourier analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Kenichi; Bunko, Hisashi; Taki, Junichi; Nambu, Ichiro; Shiire, Yasushi; Tonami, Norihisa; Hisada, Kinichi; Tada, Akira; Kojima, Kazuhkio

    1985-03-01

    Length-based Fourier analysis, a new method for quantification of wall motion and timing of contraction, was applied to tomographic gated blood pool study. Two parameters, percent-length shortening (%LS) and length-based phase were calculated based on the time-length curves from a center to ventricular edges, and compared with the count-based method. In mathematical models for tomographic gated blood pool images, the severity of asynergy was easily determined by length-based method, and the accuracy of the parameters was good. As to the setting of the center, fixed center provided more reliable parameters than the method using movable center, i.e., when a center of gravity was determined in each frame. By length-based Fourier analysis, quantification of wall motion was easily performed, and the initial inward movement caused by the accessory conduction pathway was assessed in patients with Wolff-Parkinson-White syndrome. Length-based approach was considered to be reasonable and effective because the movements of the ventricular edges are essential in tomographic gated blood pool images.

  10. Quantification of wall motion and phase of contraction in tomographic gated blood pool studies using length-based Fourier analysis

    International Nuclear Information System (INIS)

    Nakajima, Kenichi; Bunko, Hisashi; Taki, Junichi; Nambu, Ichiro; Shiire, Yasushi; Tonami, Norihisa; Hisada, Kinichi; Tada, Akira; Kojima, Kazuhiko.

    1985-01-01

    Length-based Fourier analysis, a new method for quantification of wall motion and timing of contraction, was applied to tomographic gated blood pool study. Two parameters, percent-length shortening (%LS) and length-based phase were calculated based on the time-length curves from a center to ventricular edges, and compared with the count-based method. In mathematical models for tomographic gated blood pool images, the severity of asynergy was easily determined by length-based method, and the accuracy of the parameters was good. As to the setting of the center, fixed center provided more reliable parameters than the method using movable center, i.e., when a center of gravity was determined in each frame. By length-based Fourier analysis, quantification of wall motion was easily performed, and the initial inward movement caused by the accessory conduction pathway was assessed in patients with Wolff-Parkinson-White syndrome. Length-based approach was considered to be reasonable and effective because the movements of the ventricular edges are essential in tomographic gated blood pool images. (author)

  11. App. 1. Fourier series and Fourier transform

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Definitions, formulas and practical properties in quantum mechanics are presented: Fourier series (development of periodic function, Bessel-Parseval equality); Fourier transform (Parseval-Plancherel formula, Fourier transform in three-dimensional space) [fr

  12. Fourier-based integration of quasi-periodic gait accelerations for drift-free displacement estimation using inertial sensors.

    Science.gov (United States)

    Sabatini, Angelo Maria; Ligorio, Gabriele; Mannini, Andrea

    2015-11-23

    In biomechanical studies Optical Motion Capture Systems (OMCS) are considered the gold standard for determining the orientation and the position (pose) of an object in a global reference frame. However, the use of OMCS can be difficult, which has prompted research on alternative sensing technologies, such as body-worn inertial sensors. We developed a drift-free method to estimate the three-dimensional (3D) displacement of a body part during cyclical motions using body-worn inertial sensors. We performed the Fourier analysis of the stride-by-stride estimates of the linear acceleration, which were obtained by transposing the specific forces measured by the tri-axial accelerometer into the global frame using a quaternion-based orientation estimation algorithm and detecting when each stride began using a gait-segmentation algorithm. The time integration was performed analytically using the Fourier series coefficients; the inverse Fourier series was then taken for reconstructing the displacement over each single stride. The displacement traces were concatenated and spline-interpolated to obtain the entire trace. The method was applied to estimate the motion of the lower trunk of healthy subjects that walked on a treadmill and it was validated using OMCS reference 3D displacement data; different approaches were tested for transposing the measured specific force into the global frame, segmenting the gait and performing time integration (numerically and analytically). The width of the limits of agreements were computed between each tested method and the OMCS reference method for each anatomical direction: Medio-Lateral (ML), VerTical (VT) and Antero-Posterior (AP); using the proposed method, it was observed that the vertical component of displacement (VT) was within ±4 mm (±1.96 standard deviation) of OMCS data and each component of horizontal displacement (ML and AP) was within ±9 mm of OMCS data. Fourier harmonic analysis was applied to model stride-by-stride linear

  13. Incubator embedded cell culture imaging system (EmSight) based on Fourier ptychographic microscopy.

    Science.gov (United States)

    Kim, Jinho; Henley, Beverley M; Kim, Charlene H; Lester, Henry A; Yang, Changhuei

    2016-08-01

    Multi-day tracking of cells in culture systems can provide valuable information in bioscience experiments. We report the development of a cell culture imaging system, named EmSight, which incorporates multiple compact Fourier ptychographic microscopes with a standard multiwell imaging plate. The system is housed in an incubator and presently incorporates six microscopes. By using the same low magnification objective lenses as the objective and the tube lens, the EmSight is configured as a 1:1 imaging system that, providing large field-of-view (FOV) imaging onto a low-cost CMOS imaging sensor. The EmSight improves the image resolution by capturing a series of images of the sample at varying illumination angles; the instrument reconstructs a higher-resolution image by using the iterative Fourier ptychographic algorithm. In addition to providing high-resolution brightfield and phase imaging, the EmSight is also capable of fluorescence imaging at the native resolution of the objectives. We characterized the system using a phase Siemens star target, and show four-fold improved coherent resolution (synthetic NA of 0.42) and a depth of field of 0.2 mm. To conduct live, long-term dopaminergic neuron imaging, we cultured ventral midbrain from mice driving eGFP from the tyrosine hydroxylase promoter. The EmSight system tracks movements of dopaminergic neurons over a 21 day period.

  14. Free vibration characteristics analysis of rectangular plate with rectangular opening based on Fourier series method

    Directory of Open Access Journals (Sweden)

    WANG Minhao

    2017-08-01

    Full Text Available Plate structures with openings are common in many engineering structures. The study of the vibration characteristics of such structures is directly related to the vibration reduction, noise reduction and stability analysis of an overall structure. This paper conducts research into the free vibration characteristics of a thin elastic plate with a rectangular opening parallel to the plate in an arbitrary position. We use the improved Fourier series to represent the displacement tolerance function of the rectangular plate with an opening. We can divide the plate into an eight zone plate to simplify the calculation. We then use linear springs, which are uniformly distributed along the boundary, to simulate the classical boundary conditions and the boundary conditions of the boundaries between the regions. According to the energy functional and variational method, we can obtain the overall energy functional. We can also obtain the generalized eigenvalue matrix equation by studying the extremum of the unknown improved Fourier series expansion coefficients. We can then obtain the natural frequencies and corresponding vibration modes of the rectangular plate with an opening by solving the equation. We then compare the calculated results with the finite element method to verify the accuracy and effectiveness of the method proposed in this paper. Finally, we research the influence of the boundary condition, opening size and opening position on the vibration characteristics of a plate with an opening. This provides a theoretical reference for practical engineering application.

  15. An illustration of harmonic regression based on the results of the fast Fourier transformation

    Directory of Open Access Journals (Sweden)

    Bertfai Imre

    2002-01-01

    Full Text Available The well-known methodology of the Fourier analysis is put against the background in the 2nd half of the century parallel to the development of the time-domain approach in the analysis of mainly economical time series. However, from the author's point of view, the former possesses some hidden analytical advantages which deserve to be re-introduced to the toolbox of analysts. This paper, through several case studies, reports research results for computer algorithm providing a harmonic model for time series. The starting point of the particular method is a harmonic analysis (Fourier-analysis or Lomb-periodogram. The results are optimized in a multifold manner resulting in a model which is easy to handle and able to forecast the underlying data. The results provided are particularly free from limitations characteristic for that methods. Furthermore, the calculated results are easy to interpret and use for further decisions. Nevertheless, the author intends to enhance the procedure in several ways. The method shown seems to be very effective and useful in modeling time series consisting of periodic terms. An additional advantage is the easy interpretation of the obtained parameters.

  16. Citizen-based environmental radiation monitoring network

    International Nuclear Information System (INIS)

    Alemayehu, B.; Mckinzie, M.; Cochran, T.; Sythe, D.; Randrup, R.; Lafargue, E.

    2017-01-01

    This paper discusses a Citizen Radiation Monitoring project designed and implemented by the Natural Resources Defense Council . The goal of the project was to implement a radiation monitoring system that provides radiation data accessible to the public. The monitoring system consisted of usage of a radiation detector integrated with near real-time data collection and visualization. The monitoring systems were installed at five different locations and background radiation measurements were taken. The developed monitoring system demonstrated that citizen-based monitoring system could provide accessible radiation data to the general public and relevant to the area where they live. (author)

  17. Monitoring ultraviolet (UV) radiation inactivation of Cronobacter sakazakii in dry infant formula using Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Liu, Qian; Lu, Xiaonan; Swanson, Barry G; Rasco, Barbara A; Kang, Dong-Hyun

    2012-01-01

    Cronobacter sakazakii is an opportunistic pathogen associated with dry infant formula presenting a high risk to low birth weight neonates. The inactivation of C. sakazakii in dry infant formula by ultraviolet (UV) radiation alone and combined with hot water treatment at temperatures of 55, 60, and 65 °C were applied in this study. UV radiation with doses in a range from 12.1 ± 0.30 kJ/m² to 72.8 ± 1.83 kJ/m² at room temperature demonstrated significant inactivation of C. sakazakii in dry infant formula (P radiation combining 60 °C hot water treatment increased inactivation of C. sakazakii cells significantly (P radiation on C. sakazakii inactivation kinetics (D value) were not observed in infant formula reconstituted in 55 and 65 °C water (P > 0.05). The inactivation mechanism was investigated using vibrational spectroscopy. Infrared spectroscopy detected significant stretching mode changes of macromolecules on the basis of spectral features, such as DNA, proteins, and lipids. Minor changes on cell membrane composition of C. sakazakii under UV radiation could be accurately and correctly monitored by infrared spectroscopy coupled with 2nd derivative transformation and principal component analysis. © 2011 Institute of Food Technologists®

  18. Data characteristic analysis of air conditioning load based on fast Fourier transform

    Science.gov (United States)

    Li, Min; Zhang, Yanchi; Xie, Da

    2018-04-01

    With the development of economy and the improvement of people's living standards, air conditioning equipment is more and more popular. The influence of air conditioning load for power grid is becoming more and more serious. In this context it is necessary to study the characteristics of air conditioning load. This paper analyzes the data of air conditioning power consumption in an office building. The data is used for Fast Fourier Transform by data analysis software. Then a series of maps are drawn for the transformed data. The characteristics of each map were analyzed separately. The hidden rules of these data are mined from the angle of frequency domain. And these rules are hard to find in the time domain.

  19. A new expression for doppler broadening function based on Fourier Cosine Transform

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Alessandro da C.; Martinez, Aquilino S.; Silva, Fernando C. da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear]. E-mails: agoncalves@con.ufrj.br; aquilino@lmp.ufrj.br; fernando@con.ufrj.br

    2007-07-01

    The main objective of this paper consists of the derivation of an analytical solution for the Doppler broadening function {psi} ({xi}, x). The analytical solution is derived from a new integral expression for the {psi} ({xi}, x) function, which can be interpreted as a Fourier cosine transform. The expression obtained for {psi} ({xi}, x) in terms of elementary functions, proved quite simple and accurate, leading to a similar solution obtained through the differential equation for the {psi} ({xi}, x) function, using the methods of Frobenius and of parameter variation. The Doppler broadening function is widely used in applications related to the treatment of nuclear resonances, calculations of multigroup parameters and resonance self-shielding factors, and to correct microscopic cross section measurements through the activation technique. (author)

  20. A new expression for doppler broadening function based on Fourier Cosine Transform

    International Nuclear Information System (INIS)

    Goncalves, Alessandro da C.; Martinez, Aquilino S.; Silva, Fernando C. da

    2007-01-01

    The main objective of this paper consists of the derivation of an analytical solution for the Doppler broadening function Ψ (ξ, x). The analytical solution is derived from a new integral expression for the Ψ (ξ, x) function, which can be interpreted as a Fourier cosine transform. The expression obtained for Ψ (ξ, x) in terms of elementary functions, proved quite simple and accurate, leading to a similar solution obtained through the differential equation for the Ψ (ξ, x) function, using the methods of Frobenius and of parameter variation. The Doppler broadening function is widely used in applications related to the treatment of nuclear resonances, calculations of multigroup parameters and resonance self-shielding factors, and to correct microscopic cross section measurements through the activation technique. (author)

  1. Depth resolved hyperspectral imaging spectrometer based on structured light illumination and Fourier transform interferometry

    Science.gov (United States)

    Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T.; So, Peter T.C.

    2014-01-01

    A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively. PMID:25360367

  2. Discrete Fourier transformation processor based on complex radix (−1 + j number system

    Directory of Open Access Journals (Sweden)

    Anidaphi Shadap

    2017-02-01

    Full Text Available Complex radix (−1 + j allows the arithmetic operations of complex numbers to be done without treating the divide and conquer rules, which offers the significant speed improvement of complex numbers computation circuitry. Design and hardware implementation of complex radix (−1 + j converter has been introduced in this paper. Extensive simulation results have been incorporated and an application of this converter towards the implementation of discrete Fourier transformation (DFT processor has been presented. The functionality of the DFT processor have been verified in Xilinx ISE design suite version 14.7 and performance parameters like propagation delay and dynamic switching power consumption have been calculated by Virtuoso platform in Cadence. The proposed DFT processor has been implemented through conversion, multiplication and addition. The performance parameter matrix in terms of delay and power consumption offered a significant improvement over other traditional implementation of DFT processor.

  3. Fourier-Hermite communications; where Fourier meets Hermite

    NARCIS (Netherlands)

    Korevaar, C.W.; Kokkeler, Andre B.J.; de Boer, Pieter-Tjerk; Smit, Gerardus Johannes Maria

    A new signal set, based on the Fourier and Hermite signal bases, is introduced. It combines properties of the Fourier basis signals with the perfect time-frequency localization of the Hermite functions. The signal set is characterized by both a high spectral efficiency and good time-frequency

  4. Fourier optics treatment of classical relativistic electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2006-08-15

    In this paper we couple Synchrotron Radiation (SR) theory with a branch of physical optics, namely laser beam optics. We show that the theory of laser beams is successful in characterizing radiation fields associated with any SR source. Both radiation beam generated by an ultra-relativistic electron in a magnetic device and laser beam are solutions of the wave equation based on paraxial approximation. It follows that they are similar in all aspects. In the space-frequency domain SR beams appear as laser beams whose transverse extents are large compared with the wavelength. In practical solutions (e.g. undulator, bending magnet sources), radiation beams exhibit a virtual ''waist'' where the wavefront is often plane. Remarkably, the field distribution of a SR beam across the waist turns out to be strictly related with the inverse Fourier transform of the far-field angle distribution. Then, we take advantage of standard Fourier Optics techniques and apply the Fresnel propagation formula to characterize the SR beam. Altogether, we show that it is possible to reconstruct the near-field distribution of the SR beam outside the magnetic setup from the knowledge of the far-field pattern. The general theory of SR in the near-zone developed in this paper is illustrated for the special cases of undulator radiation, edge radiation and transition undulator radiation. Using known analytical formulas for the far-field pattern and its inverse Fourier transform we find analytical expressions for near-field distributions in terms of far-field distributions. Finally, we compare these expressions with incorrect or incomplete literature. (orig.)

  5. Quadrature formulas for Fourier coefficients

    KAUST Repository

    Bojanov, Borislav

    2009-09-01

    We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives. © 2009 Elsevier B.V. All rights reserved.

  6. Vision-based online vibration estimation of the in-vessel inspection flexible robot with short-time Fourier transformation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Xu, Lifei; He, Tao [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-10-15

    Highlights: • Vision-based online vibration estimation method for a flexible arm is proposed. • The vibration signal is obtained by image processing in unknown environments. • Vibration parameters are estimated by short-time Fourier transformation. - Abstract: The vibration should be suppressed if it happens during the motion of a flexible robot or under the influence of external disturbance caused by its structural features and material properties, because the vibration may affect the positioning accuracy and image quality. In Tokamak environment, we need to get the real-time vibration information on vibration suppression of robotic arm, however, some sensors are not allowed in the extreme Tokamak environment. This paper proposed a vision-based method for online vibration estimation of a flexible manipulator, which is achieved by utilizing the environment image information from the end-effector camera to estimate its vibration. Short-time Fourier Transformation with adaptive window length method is used to estimate vibration parameters of non-stationary vibration signals. Experiments with one-link flexible manipulator equipped with camera are carried out to validate the feasibility of this method in this paper.

  7. ENHANCING NETWORK SECURITY USING 'LEARNING-FROM-SIGNALS' AND FRACTIONAL FOURIER TRANSFORM BASED RF-DNA FINGERPRINTS

    Energy Technology Data Exchange (ETDEWEB)

    Buckner, Mark A [ORNL; Bobrek, Miljko [ORNL; Farquhar, Ethan [ORNL; Harmer, Paul K [Air Force Institute of Technology; Temple, Michael A [Air Force Institute of Technology

    2011-01-01

    Wireless Access Points (WAP) remain one of the top 10 network security threats. This research is part of an effort to develop a physical (PHY) layer aware Radio Frequency (RF) air monitoring system with multi-factor authentication to provide a first-line of defense for network security--stopping attackers before they can gain access to critical infrastructure networks through vulnerable WAPs. This paper presents early results on the identification of OFDM-based 802.11a WiFi devices using RF Distinct Native Attribute (RF-DNA) fingerprints produced by the Fractional Fourier Transform (FRFT). These fingerprints are input to a "Learning from Signals" (LFS) classifier which uses hybrid Differential Evolution/Conjugate Gradient (DECG) optimization to determine the optimal features for a low-rank model to be used for future predictions. Results are presented for devices under the most challenging conditions of intra-manufacturer classification, i.e., same-manufacturer, same-model, differing only in serial number. The results of Fractional Fourier Domain (FRFD) RF-DNA fingerprints demonstrate significant improvement over results based on Time Domain (TD), Spectral Domain (SD) and even Wavelet Domain (WD) fingerprints.

  8. Favorable noise uniformity properties of Fourier-based interpolation and reconstruction approaches in single-slice helical computed tomography

    International Nuclear Information System (INIS)

    La Riviere, Patrick J.; Pan Xiaochuan

    2002-01-01

    Volumes reconstructed by standard methods from single-slice helical computed tomography (CT) data have been shown to have noise levels that are highly nonuniform relative to those in conventional CT. These noise nonuniformities can affect low-contrast object detectability and have also been identified as the cause of the zebra artifacts that plague maximum intensity projection (MIP) images of such volumes. While these spatially variant noise levels have their root in the peculiarities of the helical scan geometry, there is also a strong dependence on the interpolation and reconstruction algorithms employed. In this paper, we seek to develop image reconstruction strategies that eliminate or reduce, at its source, the nonuniformity of noise levels in helical CT relative to that in conventional CT. We pursue two approaches, independently and in concert. We argue, and verify, that Fourier-based longitudinal interpolation approaches lead to more uniform noise ratios than do the standard 360LI and 180LI approaches. We also demonstrate that a Fourier-based fan-to-parallel rebinning algorithm, used as an alternative to fanbeam filtered backprojection for slice reconstruction, also leads to more uniform noise ratios, even when making use of the 180LI and 360LI interpolation approaches

  9. Vision-based online vibration estimation of the in-vessel inspection flexible robot with short-time Fourier transformation

    International Nuclear Information System (INIS)

    Wang, Hesheng; Chen, Weidong; Xu, Lifei; He, Tao

    2015-01-01

    Highlights: • Vision-based online vibration estimation method for a flexible arm is proposed. • The vibration signal is obtained by image processing in unknown environments. • Vibration parameters are estimated by short-time Fourier transformation. - Abstract: The vibration should be suppressed if it happens during the motion of a flexible robot or under the influence of external disturbance caused by its structural features and material properties, because the vibration may affect the positioning accuracy and image quality. In Tokamak environment, we need to get the real-time vibration information on vibration suppression of robotic arm, however, some sensors are not allowed in the extreme Tokamak environment. This paper proposed a vision-based method for online vibration estimation of a flexible manipulator, which is achieved by utilizing the environment image information from the end-effector camera to estimate its vibration. Short-time Fourier Transformation with adaptive window length method is used to estimate vibration parameters of non-stationary vibration signals. Experiments with one-link flexible manipulator equipped with camera are carried out to validate the feasibility of this method in this paper.

  10. Efficient algorithm for baseline wander and powerline noise removal from ECG signals based on discrete Fourier series.

    Science.gov (United States)

    Bahaz, Mohamed; Benzid, Redha

    2018-03-01

    Electrocardiogram (ECG) signals are often contaminated with artefacts and noises which can lead to incorrect diagnosis when they are visually inspected by cardiologists. In this paper, the well-known discrete Fourier series (DFS) is re-explored and an efficient DFS-based method is proposed to reduce contribution of both baseline wander (BW) and powerline interference (PLI) noises in ECG records. In the first step, the determination of the exact number of low frequency harmonics contributing in BW is achieved. Next, the baseline drift is estimated by the sum of all associated Fourier sinusoids components. Then, the baseline shift is discarded efficiently by a subtraction of its approximated version from the original biased ECG signal. Concerning the PLI, the subtraction of the contributing harmonics calculated in the same manner reduces efficiently such type of noise. In addition of visual quality results, the proposed algorithm shows superior performance in terms of higher signal-to-noise ratio and smaller mean square error when faced to the DCT-based algorithm.

  11. Radiation detectors based by polymer materials

    International Nuclear Information System (INIS)

    Cherestes, Margareta; Cherestes, Codrut; Constantinescu, Livia

    2004-01-01

    Scintillation counters make use of the property of certain chemical compounds to emit short light pulses after excitation produced by the passage of charged particles or photons of high energy. These flashes of light are detected by a photomultiplier tube that converts the photons into a voltage pulse. The light emitted from the detector also can be collected, focussed and dispersed by a CCD detector. The study of the evolution of the light emission and of the radiation damage under irradiation is a primary topic in the development of radiation hard polymer based scintillator. Polymer scintillator thin films are used in monitoring radiation beam intensities and simultaneous counting of different radiations. Radiation detectors have characteristics which depend on: the type of radiation, the energy of radiation, and the material of the detector. Three types of polymer thin films were studied: a polyvinyltoluene based scintillator, fluorinated polyimide and PMMA. (authors)

  12. A Fourier-series-based kernel-independent fast multipole method

    International Nuclear Information System (INIS)

    Zhang Bo; Huang Jingfang; Pitsianis, Nikos P.; Sun Xiaobai

    2011-01-01

    We present in this paper a new kernel-independent fast multipole method (FMM), named as FKI-FMM, for pairwise particle interactions with translation-invariant kernel functions. FKI-FMM creates, using numerical techniques, sufficiently accurate and compressive representations of a given kernel function over multi-scale interaction regions in the form of a truncated Fourier series. It provides also economic operators for the multipole-to-multipole, multipole-to-local, and local-to-local translations that are typical and essential in the FMM algorithms. The multipole-to-local translation operator, in particular, is readily diagonal and does not dominate in arithmetic operations. FKI-FMM provides an alternative and competitive option, among other kernel-independent FMM algorithms, for an efficient application of the FMM, especially for applications where the kernel function consists of multi-physics and multi-scale components as those arising in recent studies of biological systems. We present the complexity analysis and demonstrate with experimental results the FKI-FMM performance in accuracy and efficiency.

  13. Adaptive ISAR Imaging of Maneuvering Targets Based on a Modified Fourier Transform.

    Science.gov (United States)

    Wang, Binbin; Xu, Shiyou; Wu, Wenzhen; Hu, Pengjiang; Chen, Zengping

    2018-04-27

    Focusing on the inverse synthetic aperture radar (ISAR) imaging of maneuvering targets, this paper presents a new imaging method which works well when the target's maneuvering is not too severe. After translational motion compensation, we describe the equivalent rotation of maneuvering targets by two variables-the relative chirp rate of the linear frequency modulated (LFM) signal and the Doppler focus shift. The first variable indicates the target's motion status, and the second one represents the possible residual error of the translational motion compensation. With them, a modified Fourier transform matrix is constructed and then used for cross-range compression. Consequently, the imaging of maneuvering is converted into a two-dimensional parameter optimization problem in which a stable and clear ISAR image is guaranteed. A gradient descent optimization scheme is employed to obtain the accurate relative chirp rate and Doppler focus shift. Moreover, we designed an efficient and robust initialization process for the gradient descent method, thus, the well-focused ISAR images of maneuvering targets can be achieved adaptively. Human intervention is not needed, and it is quite convenient for practical ISAR imaging systems. Compared to precedent imaging methods, the new method achieves better imaging quality under reasonable computational cost. Simulation results are provided to validate the effectiveness and advantages of the proposed method.

  14. Portable Gas Analyzer Based on Fourier Transform Infrared Spectrometer for Patrolling and Examining Gas Exhaust

    Directory of Open Access Journals (Sweden)

    Yuntao Liang

    2015-01-01

    Full Text Available Aimed at monitoring emission of organic gases such as CH4, C2H6, C3H8, iso-C4H10, n-C4H10, C2H4, C3H6, C2H2, CO, and CO2, from coal mines, petroleum refineries, and other plants, a Fourier Transform Infrared (FT-IR spectrometer was used to develop a portable gas analyzer for patrolling and examining gas exhaust. Firstly, structure of the instrument was introduced. Then, a spectral analysis approach was presented. Finally, instrument was tested with standard gases and with actual gases emitted from a petroleum refinery. For the latter test, a gas chromatograph (GC was used as a reference instrument. The test results showed that the detection limit of every component of analyte was less than 10 × 10−6. The maximum test error of every analyte was less than 15 × 10−6 when its practical concentration was no more than 500 × 10−6. A final comparison showed that the result curves of analytes obtained with FT-IR spectrometer almost overlapped with those obtained with GC, and their resulting noise was less than 6.4% when the practical gas concentration was above 100 × 10−6. As a result, our instrument was suitable to be used as a portable instrument for monitoring exhaust gases.

  15. Optimal defocus selection based on normed Fourier transform for digital fringe pattern profilometry.

    Science.gov (United States)

    Kamagara, Abel; Wang, Xiangzhao; Li, Sikun

    2017-10-01

    Owing to gamma-effect robustness and high-speed imaging capabilities, projector defocusing of binary-coded fringe patterns is by far the most widely used and effective technique in generating sinusoidal fringe patterns for three-dimensional optical topography measurement with digital fringe projection techniques. However, this technique is not trouble-free. It is borne with uncertainty and challenges mainly because it remains somewhat difficult to quantify and ascertain the level of defocus required for desired fidelity in sinuousness of the projected fringe pattern. Too much or too little defocusing will affect the sinuosity accuracy of fringe patterns and consequently jeopardize the quality of the measurement results. In this paper, by combining intrinsic phase spectral sensitivities and normed Fourier transform, a method to quantify the amount of defocus and subsequently select the optimal degree of sinuosity for generating digital sinusoidal fringe patterns with projector defocusing for fringe pattern optical three-dimensional profilometry is proposed. Numerical simulations plus experiments give evidence of the feasibility and validity of the proposed method in enabling an improved digital binary defocusing technique for optical phase-shift profilometry using the digital fringe projection technique.

  16. Estimation of pathological tremor from recorded signals based on adaptive sliding fast Fourier transform

    Directory of Open Access Journals (Sweden)

    Shengxin Wang

    2016-06-01

    Full Text Available Pathological tremor is an approximately rhythmic movement and considerably affects patients’ daily living activities. Biomechanical loading and functional electrical stimulation are proposed as potential alternatives for canceling the pathological tremor. However, the performance of suppression methods is associated with the separation of tremor from the recorded signals. In this literature, an algorithm incorporating a fast Fourier transform augmented with a sliding convolution window, an interpolation procedure, and a damping module of the frequency is presented to isolate tremulous components from the measured signals and estimate the instantaneous tremor frequency. Meanwhile, a mechanism platform is designed to provide the simulation tremor signals with different degrees of voluntary movements. The performance of the proposed algorithm and existing procedures is compared with simulated signals and experimental signals collected from patients. The results demonstrate that the proposed solution could detect the unknown dominant frequency and distinguish the tremor components with higher accuracy. Therefore, this algorithm is useful for actively compensating tremor by functional electrical stimulation without affecting the voluntary movement.

  17. Fast Fourier transform-based solution of 2D and 3D magnetization problems in type-II superconductivity

    Science.gov (United States)

    Prigozhin, Leonid; Sokolovsky, Vladimir

    2018-05-01

    We consider the fast Fourier transform (FFT) based numerical method for thin film magnetization problems (Vestgården and Johansen 2012 Supercond. Sci. Technol. 25 104001), compare it with the finite element methods, and evaluate its accuracy. Proposed modifications of this method implementation ensure stable convergence of iterations and enhance its efficiency. A new method, also based on the FFT, is developed for 3D bulk magnetization problems. This method is based on a magnetic field formulation, different from the popular h-formulation of eddy current problems typically employed with the edge finite elements. The method is simple, easy to implement, and can be used with a general current–voltage relation; its efficiency is illustrated by numerical simulations.

  18. A hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks.

    Science.gov (United States)

    Choi, Yong-Kyu; Hosoya, Kenta; Lee, Chung Ghiu; Hanawa, Masanori; Park, Chang-Soo

    2011-03-28

    We propose and experimentally demonstrate a hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks. Dynamic function is implemented by mechanically tuning the Fourier encoder/decoder for optical code division multiple access (OCDMA) encoding/decoding. Wavelength division multiplexing (WDM) is utilized for node assignment and 4-chip Fourier code recovers the matched signal from the codes. For an optical source well adapted to WDM channels and its short optical pulse generation, reflective semiconductor optical amplifiers (RSOAs) are used with a fiber Bragg grating (FBG) and gain-switched. To demonstrate we experimentally investigated a two-node hybrid WDM/OCDMA ring with a 4-chip Fourier encoder/decoder fabricated by cascading four FBGs with the bit error rate (BER) of <10(-9) for the node span of 10.64 km at 1.25 Gb/s.

  19. Proposed Application of Fast Fourier Transform in Near Infra Red Based Non Invasive Blood Glucose Monitoring System

    Science.gov (United States)

    Jenie, R. P.; Iskandar, J.; Kurniawan, A.; Rustami, E.; Syafutra, H.; Nurdin, N. M.; Handoyo, T.; Prabowo, J.; Febryarto, R.; Rahayu, M. S. K.; Damayanthi, E.; Rimbawan; Sukandar, D.; Suryana, Y.; Irzaman; Alatas, H.

    2017-03-01

    Worldwide emergence of glycaemic status related health disorders, such as diabetes and metabolic syndrome, is growing in alarming rate. The objective was to propose new methods for non invasive blood glucose level measurement system, based on implementation of Fast Fourier Transform methods. This was an initial-lab-scale-research. Data on non invasive blood glucose measurement are referred from Scopus, Medline, and Google Scholar, from 2011 until 2016, and was used as design references, combined with in house verification. System was developed in modular fashion, based on aforementioned compiled references. Several preliminary tests to understand relationship between LED and photo-diode responses have been done. Several references were used as non invasive blood glucose measurement tools design basis. Solution is developed in modular fashion. we have proven different sensor responses to water and glucose. Human test for non invasive blood glucose level measurement system is needed.

  20. On fractional Fourier transform moments

    NARCIS (Netherlands)

    Alieva, T.; Bastiaans, M.J.

    2000-01-01

    Based on the relation between the ambiguity function represented in a quasi-polar coordinate system and the fractional power spectra, the fractional Fourier transform moments are introduced. Important equalities for the global second-order fractional Fourier transform moments are derived and their

  1. Rapid space trajectory generation using a Fourier series shape-based approach

    Science.gov (United States)

    Taheri, Ehsan

    With the insatiable curiosity of human beings to explore the universe and our solar system, it is essential to benefit from larger propulsion capabilities to execute efficient transfers and carry more scientific equipments. In the field of space trajectory optimization the fundamental advances in using low-thrust propulsion and exploiting the multi-body dynamics has played pivotal role in designing efficient space mission trajectories. The former provides larger cumulative momentum change in comparison with the conventional chemical propulsion whereas the latter results in almost ballistic trajectories with negligible amount of propellant. However, the problem of space trajectory design translates into an optimal control problem which is, in general, time-consuming and very difficult to solve. Therefore, the goal of the thesis is to address the above problem by developing a methodology to simplify and facilitate the process of finding initial low-thrust trajectories in both two-body and multi-body environments. This initial solution will not only provide mission designers with a better understanding of the problem and solution but also serves as a good initial guess for high-fidelity optimal control solvers and increases their convergence rate. Almost all of the high-fidelity solvers enjoy the existence of an initial guess that already satisfies the equations of motion and some of the most important constraints. Despite the nonlinear nature of the problem, it is sought to find a robust technique for a wide range of typical low-thrust transfers with reduced computational intensity. Another important aspect of our developed methodology is the representation of low-thrust trajectories by Fourier series with which the number of design variables reduces significantly. Emphasis is given on simplifying the equations of motion to the possible extent and avoid approximating the controls. These facts contribute to speeding up the solution finding procedure. Several example

  2. Slow Light Based On-Chip High Resolution Fourier Transform Spectrometer For Geostationary Imaging of Atmospheric Greenhouse Gases, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fourier transform spectroscopy (FTS) in infrared wavelength range is an effective measure for global greenhouse gas monitoring. However, conventional FTS instruments...

  3. All-Optical Ultra-High-Speed OFDM to Nyquist-WDM Conversion Based on Complete Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2016-01-01

    We propose a novel all-optical ultra-high-speed orthogonal frequency-division multiplexing (OFDM) to Nyquist wavelength-division multiplexing (Nyquist-WDM) conversion scheme, achieved by exchanging the temporal and spectral profiles using a complete optical Fourier transformation (OFT). This scheme...... enables high-speed OFDM to Nyquist-WDM conversion without complex optical/electrical/optical conversion. The all-optical OFDM transmitter is based on the generation of OFDM symbols with a low duty cycle by rectangular temporal gating, which in combination with optical time-division multiplexing yields...... a higher symbol-rate OFDM signal. In the receiver, the converted Nyquist-WDM super-channel is WDM demultiplexed into individual Nyquist-WDM channels using a rectangular optical bandpass filter, followed by optical sampling at the intersymbol-interference free point. In the experimental demonstration...

  4. Quantitative evaluation of changes in eyeball shape in emmetropization and myopic changes based on elliptic fourier descriptors.

    Science.gov (United States)

    Ishii, Kotaro; Iwata, Hiroyoshi; Oshika, Tetsuro

    2011-11-04

    To evaluate changes in eyeball shape in emmetropization and myopic changes using magnetic resonance imaging (MRI) and elliptic Fourier descriptors (EFDs). The subjects were 105 patients (age range, 1 month-19 years) who underwent head MRI. The refractive error was determined in 30 patients, and eyeball shape was expressed numerically by principal components analysis of standardized EFDs. In the first principal component (PC1; the oblate-to-prolate change), the proportion of variance/total variance in the development of the eyeball shape was 76%. In all subjects, PC1 showed a significant correlation with age (Pearson r = -0.314; P = 0.001), axial length (AL, r = -0.378; P eyeball shape from oblate to prolate was clarified by quantitative analysis based on EFDs. The results showed clear differences between age groups with regard to changes in the shape of the eyeball, the correlation between these changes, and refractive status changes.

  5. Digital double random amplitude image encryption method based on the symmetry property of the parametric discrete Fourier transform

    Science.gov (United States)

    Bekkouche, Toufik; Bouguezel, Saad

    2018-03-01

    We propose a real-to-real image encryption method. It is a double random amplitude encryption method based on the parametric discrete Fourier transform coupled with chaotic maps to perform the scrambling. The main idea behind this method is the introduction of a complex-to-real conversion by exploiting the inherent symmetry property of the transform in the case of real-valued sequences. This conversion allows the encrypted image to be real-valued instead of being a complex-valued image as in all existing double random phase encryption methods. The advantage is to store or transmit only one image instead of two images (real and imaginary parts). Computer simulation results and comparisons with the existing double random amplitude encryption methods are provided for peak signal-to-noise ratio, correlation coefficient, histogram analysis, and key sensitivity.

  6. Algorithm for three dimension reconstruction of magnetic resonance tomographs and X-ray images based on Fast Fourier Transform

    International Nuclear Information System (INIS)

    Bueno, Josiane M.; Traina, Agma Juci M.; Cruvinel, Paulo E.

    1995-01-01

    This work presents an algorithm for three-dimensional digital image reconstruction. Such algorithms based on the combination of both a Fast Fourier Transform method with Hamming Window and the use of a tri-linear interpolation function. The algorithm allows not only the generation of three-dimensional spatial spin distribution maps for Magnetic Resonance Tomography data but also X and Y-rays linear attenuation coefficient maps for CT scanners. Results demonstrates the usefulness of the algorithm in three-dimensional image reconstruction by doing first two-dimensional reconstruction and rather after interpolation. The algorithm was developed in C++ language, and there are two available versions: one under the DOS environment, and the other under the UNIX/Sun environment. (author)

  7. [Research of dual-photoelastic-modulator-based beat frequency modulation and Fourier-Bessel transform imaging spectrometer].

    Science.gov (United States)

    Wang, Zhi-Bin; Zhang, Rui; Wang, Yao-Li; Huang, Yan-Fei; Chen, You-Hua; Wang, Li-Fu; Yang, Qiang

    2014-02-01

    As the existing photoelastic-modulator(PEM) modulating frequency in the tens of kHz to hundreds of kHz between, leading to frequency of modulated interference signal is higher, so ordinary array detector cannot effectively caprure interference signal..A new beat frequency modulation method based on dual-photoelastic-modulator (Dual-PEM) and Fourier-Bessel transform is proposed as an key component of dual-photoelastic-modulator-based imaging spectrometer (Dual-PEM-IS) combined with charge coupled device (CCD). The dual-PEM are operated as an electro-optic circular retardance modulator, Operating the PEMs at slightly different resonant frequencies w1 and w2 respectively, generates a differential signal at a much lower heterodyne frequency that modulates the incident light. This method not only retains the advantages of the existing PEM, but also the frequency of modulated photocurrent decreased by 2-3 orders of magnitude (10-500 Hz) and can be detected by common array detector, and the incident light spectra can be obtained by Fourier-Bessel transform of low frequency component in the modulated signal. The method makes the PEM has the dual capability of imaging and spectral measurement. The basic principle is introduced, the basic equations is derived, and the feasibility is verified through the corresponding numerical simulation and experiment. This method has' potential applications in imaging spectrometer technology, and analysis of the effect of deviation of the optical path difference. This work provides the necessary theoretical basis for remote sensing of new Dual-PEM-IS and for engineering implementation of spectra inversion.

  8. All-optical signal processing of OTDM and OFDM signals based on time-domain Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Clausen, Anders; Guan, Pengyu; Mulvad, Hans Christian Hansen

    2014-01-01

    All-optical time-domain Optical Fourier Transformation utilised for signal processing of ultra-high-speed OTDM signals and OFDM signals will be presented.......All-optical time-domain Optical Fourier Transformation utilised for signal processing of ultra-high-speed OTDM signals and OFDM signals will be presented....

  9. Advanced Optical Signal Processing using Time Lens based Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Lillieholm, Mads

    2016-01-01

    An overview of recent progress on time lens based advanced optical signal processing is presented, with a special focus on all-optical ultrafast 640 Gbit/s all-channel serial-to-parallel conversion, and scalable WDM regeneration....

  10. Radiative damping in plasma-based accelerators

    Directory of Open Access Journals (Sweden)

    I. Yu. Kostyukov

    2012-11-01

    Full Text Available The electrons accelerated in a plasma-based accelerator undergo betatron oscillations and emit synchrotron radiation. The energy loss to synchrotron radiation may seriously affect electron acceleration. The electron dynamics under combined influence of the constant accelerating force and the classical radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation reaction. If initially the accelerating force was stronger than the radiation reaction force, then the electron acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain instant of time and then accelerated without limits. It is shown that regardless of the initial conditions the infinite-time asymptotic behavior of an electron is governed by a self-similar solution providing that the radiative damping becomes exactly equal to 2/3 of the accelerating force. The relative energy spread induced by the radiative damping decreases with time in the infinite-time limit. The multistage schemes operating in the asymptotic acceleration regime when electron dynamics is determined by the radiation reaction are discussed.

  11. Solar radiation estimation based on the insolation

    International Nuclear Information System (INIS)

    Assis, F.N. de; Steinmetz, S.; Martins, S.R.; Mendez, M.E.G.

    1998-01-01

    A series of daily global solar radiation data measured by an Eppley pyranometer was used to test PEREIRA and VILLA NOVA’s (1997) model to estimate the potential of radiation based on the instantaneous values measured at solar noon. The model also allows to estimate the parameters of PRESCOTT’s equation (1940) assuming a = 0,29 cosj. The results demonstrated the model’s validity for the studied conditions. Simultaneously, the hypothesis of generalizing the use of the radiation estimative formulas based on insolation, and using K = Ko (0,29 cosj + 0,50 n/N), was analysed and confirmed [pt

  12. Status of radiation-based measurement technology

    International Nuclear Information System (INIS)

    Moon, B. S.; Lee, J. W.; Chung, C. E.; Hong, S. B.; Kim, J. T.; Park, W. M.; Kim, J. Y.

    1999-03-01

    This report describes the status of measurement equipment using radiation source and new technologies in this field. This report includes the development status in Korea together with a brief description of the technology development and application status in ten countries including France, America, and Japan. Also this report describes technical factors related to radiation-based measurement and trends of new technologies. Measurement principles are also described for the equipment that is widely used among radiation-based measurement, such as level measurement, density measurement, basis weight measurement, moisture measurement, and thickness measurement. (author). 7 refs., 2 tabs., 21 figs

  13. Amorphous silicon based radiation detectors

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Drewery, J.; Jing, T.; Kaplan, S.N.; Qureshi, S.; Wildermuth, D.; Fujieda, I.; Street, R.A.

    1991-07-01

    We describe the characteristics of thin(1 μm) and thick (>30μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and γ rays. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs

  14. CONTINUOUS FORMALDEHYDE MEASUREMENT SYSTEM BASED ON MODIFIED FOURIER TRANSFORM INFRARED SPECTROSCOPY

    Science.gov (United States)

    EPA is developing advanced open-path and cell-based optical techniques for time-resolved measurement of priority hazardous air pollutants such as formaldehyde (HCHO). Due to its high National Air Toxics Assessment risk factor, there is increasing interest in continuous measuremen...

  15. Simultaneous all-channel OTDM demultiplexing based on complete optical Fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Lillieholm, Mads; Røge, Kasper Meldgaard

    2016-01-01

    We demonstrate simultaneous OTDM demultiplexing of all 16-channels for 160-Gbit/s DPSK and 320-Gbit/s DQPSK signals based on complete OFT. Furthermore, numerical simulations show promising results for extending the proposed technique to spectrally efficient Nyquist-OTDM....

  16. Fourier-transform infrared spectroscopy as a novel approach to providing effect-based endpoints in duckweed toxicity testing.

    Science.gov (United States)

    Hu, Li-Xin; Ying, Guang-Guo; Chen, Xiao-Wen; Huang, Guo-Yong; Liu, You-Sheng; Jiang, Yu-Xia; Pan, Chang-Gui; Tian, Fei; Martin, Francis L

    2017-02-01

    Traditional duckweed toxicity tests only measure plant growth inhibition as an endpoint, with limited effects-based data. The present study aimed to investigate whether Fourier-transform infrared (FTIR) spectroscopy could enhance the duckweed (Lemna minor L.) toxicity test. Four chemicals (Cu, Cd, atrazine, and acetochlor) and 4 metal-containing industrial wastewater samples were tested. After exposure of duckweed to the chemicals, standard toxicity endpoints (frond number and chlorophyll content) were determined; the fronds were also interrogated using FTIR spectroscopy under optimized test conditions. Biochemical alterations associated with each treatment were assessed and further analyzed by multivariate analysis. The results showed that comparable x% of effective concentration (ECx) values could be achieved based on FTIR spectroscopy in comparison with those based on traditional toxicity endpoints. Biochemical alterations associated with different doses of toxicant were mainly attributed to lipid, protein, nucleic acid, and carbohydrate structural changes, which helped to explain toxic mechanisms. With the help of multivariate analysis, separation of clusters related to different exposure doses could be achieved. The present study is the first to show successful application of FTIR spectroscopy in standard duckweed toxicity tests with biochemical alterations as new endpoints. Environ Toxicol Chem 2017;36:346-353. © 2016 SETAC. © 2016 SETAC.

  17. Application of the windowed-Fourier-transform-based fringe analysis technique for investigating temperature and concentration fields in fluids.

    Science.gov (United States)

    Mohanan, Sharika; Srivastava, Atul

    2014-04-10

    The present work is concerned with the development and application of a novel fringe analysis technique based on the principles of the windowed-Fourier-transform (WFT) for the determination of temperature and concentration fields from interferometric images for a range of heat and mass transfer applications. Based on the extent of the noise level associated with the experimental data, the technique has been coupled with two different phase unwrapping methods: the Itoh algorithm and the quality guided phase unwrapping technique for phase extraction. In order to generate the experimental data, a range of experiments have been carried out which include cooling of a vertical flat plate in free convection conditions, combustion of mono-propellant flames, and growth of organic as well as inorganic crystals from their aqueous solutions. The flat plate and combustion experiments are modeled as heat transfer applications wherein the interest is to determine the whole-field temperature distribution. Aqueous-solution-based crystal growth experiments are performed to simulate the mass transfer phenomena and the interest is to determine the two-dimensional solute concentration field around the growing crystal. A Mach-Zehnder interferometer has been employed to record the path-integrated quantity of interest (temperature and/or concentration) in the form of interferometric images in the experiments. The potential of the WFT method has also been demonstrated on numerically simulated phase data for varying noise levels, and the accuracy in phase extraction have been quantified in terms of the root mean square errors. Three levels of noise, i.e., 0%, 10%, and 20% have been considered. Results of the present study show that the WFT technique allows an accurate extraction of phase values that can subsequently be converted into two-dimensional temperature and/or concentration distribution fields. Moreover, since WFT is a local processing technique, speckle patterns and the inherent

  18. Organic and inorganic correlations for Northwest Africa 852 by synchrotron-based Fourier transform infrared microspectroscopy

    Science.gov (United States)

    Yesiltas, Mehmet; Peale, Robert E.; Unger, Miriam; Sedlmair, Julia; Hirschmugl, Carol J.

    2015-10-01

    Relationships between organic molecules and inorganic minerals are investigated in a single 34 μm diameter grain of the CR2 chondrite Northwest Africa 852 (NWA) 852 with submicron spatial resolution using synchrotron-based imaging micro-FTIR spectroscopy. Correlations based on absorption strength for the various constituents are determined using statistical correlation analysis. The silicate band is found to be correlated with the hydration band, and the latter is highly correlated with stretching modes of aliphatic hydrocarbons. Spatial distribution maps show that water+organic combination, silicate, OH, and C-H distributions overlap, suggesting a possible catalytic role of phyllosilicates in the formation of organics. In contrast, the carbonate band is anticorrelated with water+organic combination, however uncorrelated with any other spectral feature. The average ratio of asymmetric CH2 and CH3 band strengths (CH2/CH3 = 2.53) for NWA 852 is similar to the average ratio of interplanetary dust particles (~2.40) and Wild 2 cometary dust particles (2.50), but it significantly exceeds that of interstellar medium objects (~1.00) and several aqueously altered carbonaceous chondrites (~1.40). This suggests organics of similar length/branching, and perhaps similar formation regions, for NWA 852, Wild 2 dust particles, and interplanetary dust particles. The heterogeneous spatial distribution of ratio values indicates the presence of a mixture of aliphatic organic material with different length/branching, and thus a wide range of parent body processes, which occurred before the considered grain was formed.

  19. Arduino based radiation survey meter

    International Nuclear Information System (INIS)

    Rahman, Nur Aira Abd; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee; Muzakkir, Amir

    2016-01-01

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr −1 ). Conversion factor (CF) value for conversion of CPM to μSvhr −1 determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr

  20. Arduino based radiation survey meter

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Nur Aira Abd, E-mail: nur-aira@nm.gov.my; Lombigit, Lojius; Abdullah, Nor Arymaswati; Azman, Azraf; Dolah, Taufik; Jaafar, Zainudin; Mohamad, Glam Hadzir Patai; Ramli, Abd Aziz Mhd; Zain, Rasif Mohd; Said, Fazila; Khalid, Mohd Ashhar; Taat, Muhamad Zahidee [Malaysian Nuclear Agency, 43000, Bangi, Selangor (Malaysia); Muzakkir, Amir [Sinaran Utama Teknologi Sdn Bhd, 43650, Bandar Baru Bangi, Selangor (Malaysia)

    2016-01-22

    This paper presents the design of new digital radiation survey meter with LND7121 Geiger Muller tube detector and Atmega328P microcontroller. Development of the survey meter prototype is carried out on Arduino Uno platform. 16-bit Timer1 on the microcontroller is utilized as external pulse counter to produce count per second or CPS measurement. Conversion from CPS to dose rate technique is also performed by Arduino to display results in micro Sievert per hour (μSvhr{sup −1}). Conversion factor (CF) value for conversion of CPM to μSvhr{sup −1} determined from manufacturer data sheet is compared with CF obtained from calibration procedure. The survey meter measurement results are found to be linear for dose rates below 3500 µSv/hr.

  1. Fourier-muunnoksesta

    OpenAIRE

    NIEMELÄ, EERO

    2008-01-01

    Tutkielman aiheena on Fourier-muunnoksen esittely. Tarkoituksena on erityisesti johdatella lukija Fourier-sarjan ja -muunnoksen käsitteisiin. Fourier-muunnosten teoria kuuluu yleisempään Fourier-analyysin aihepiiriin. Fourier-analyysin keskiössä on tulos, jonka mukaan tietyt ehdot täyttävää funktiota voidaan approksimoida mielivaltaisen tarkasti niin sanotun Fourier-sarjan avulla. Osoitamme, että 2\\pi-jaksollisen funktion Lebesgue-neliöintegroituvuus takaa suppenevan Fourier-sarjakehitelm...

  2. Analysis of wave motion in one-dimensional structures through fast-Fourier-transform-based wavelet finite element method

    Science.gov (United States)

    Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping

    2017-07-01

    This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.

  3. Study on time-varying velocity measurement with self-mixing laser diode based on Discrete Chirp-Fourier Transform

    International Nuclear Information System (INIS)

    Zhang Zhaoyun; Gao Yang; Zhao Xinghai; Zhao Xiang

    2011-01-01

    Laser's optical output power and frequency are modulated when the optical beam is back-scattered into the active cavity of the laser. By signal processing, the Doppler frequency can be acquired, and the target's velocity can be calculated. Based on these properties, an interferometry velocity sensor can be designed. When target move in time-varying velocity mode, it is difficult to extract the target's velocity. Time-varying velocity measurement by self-mixing laser diode is explored. A mathematics model was proposed for the time-varying velocity (invariable acceleration) measurement by self-mixing laser diode. Based on this model, a Discrete Chirp-Fourier Transform (DCFT) method was applied, DCFT is analogous to DFT. We show that when the signal length N is prime, the magnitudes of all the side lobes are 1, whereas the magnitudes of the main lobe is √N, And the coordinates of the main lobe shows the target's velocity and acceleration information. The simulation results prove the validity of the algorithm even in the situation of low SNR when N is prime.

  4. Recent applications and current trends in Cultural Heritage Science using synchrotron-based Fourier transform infrared micro-spectroscopy

    Science.gov (United States)

    Cotte, Marine; Dumas, Paul; Taniguchi, Yoko; Checroun, Emilie; Walter, Philippe; Susini, Jean

    2009-09-01

    Synchrotron-based Fourier transform infrared micro-spectroscopy (SR-FTIR) is one of the emerging techniques increasingly employed for Cultural Heritage analytical science. Such a technique combines the assets of FTIR spectroscopy (namely, the identification of molecular groups in various environments: organic/inorganic, crystallized/amorphous, solid/liquid/gas), with the extra potential of chemical imaging (localization of components + easier data treatment thanks to geographical correlations) and the properties of the synchrotron source (namely, high brightness, offering high data quality even with reduced dwell time and reduced spot size). This technique can be applied to nearly all kind of materials found in museum objects, going from hard materials, like metals, to soft materials, like paper, and passing through hybrid materials such as paintings and bones. The purpose is usually the identification of complex compositions in tiny, heterogeneous samples. Recent applications are reviewed in this article, together with the fundamental aspects of the infrared synchrotron source which are leading to such improvements in analytical capabilities. A recent example from the ancient Buddhist paintings from Bamiyan is detailed. Emphasis is made on the true potential offered at such large scale facilities in combining SR-FTIR microscopy with other synchrotron-based micro-imaging techniques. To cite this article: M. Cotte et al., C. R. Physique 10 (2009).

  5. Automated processing of shoeprint images based on the Fourier transform for use in forensic science.

    Science.gov (United States)

    de Chazal, Philip; Flynn, John; Reilly, Richard B

    2005-03-01

    The development of a system for automatically sorting a database of shoeprint images based on the outsole pattern in response to a reference shoeprint image is presented. The database images are sorted so that those from the same pattern group as the reference shoeprint are likely to be at the start of the list. A database of 476 complete shoeprint images belonging to 140 pattern groups was established with each group containing two or more examples. A panel of human observers performed the grouping of the images into pattern categories. Tests of the system using the database showed that the first-ranked database image belongs to the same pattern category as the reference image 65 percent of the time and that a correct match appears within the first 5 percent of the sorted images 87 percent of the time. The system has translational and rotational invariance so that the spatial positioning of the reference shoeprint images does not have to correspond with the spatial positioning of the shoeprint images of the database. The performance of the system for matching partial-prints was also determined.

  6. Efficient pricing of Asian options under Lévy processes based on Fourier cosine expansions Part I : European-style products

    NARCIS (Netherlands)

    Zhang, B.; Oosterlee, C.W.

    2011-01-01

    We propose an efficient pricing method for arithmetic, and geometric, Asian options under Levy processes, based on Fourier cosine expansions and Clenshaw–Curtis quadrature. The pricing method is developed for both European–style and American–style Asian options, and for discretely and continuously

  7. Fourier transform and particle swarm optimization based modified LQR algorithm for mitigation of vibrations using magnetorheological dampers

    Science.gov (United States)

    Kumar, Gaurav; Kumar, Ashok

    2017-11-01

    Structural control has gained significant attention in recent times. The standalone issue of power requirement during an earthquake has already been solved up to a large extent by designing semi-active control systems using conventional linear quadratic control theory, and many other intelligent control algorithms such as fuzzy controllers, artificial neural networks, etc. In conventional linear-quadratic regulator (LQR) theory, it is customary to note that the values of the design parameters are decided at the time of designing the controller and cannot be subsequently altered. During an earthquake event, the response of the structure may increase or decrease, depending the quasi-resonance occurring between the structure and the earthquake. In this case, it is essential to modify the value of the design parameters of the conventional LQR controller to obtain optimum control force to mitigate the vibrations due to the earthquake. A few studies have been done to sort out this issue but in all these studies it was necessary to maintain a database of the earthquake. To solve this problem and to find the optimized design parameters of the LQR controller in real time, a fast Fourier transform and particle swarm optimization based modified linear quadratic regulator method is presented here. This method comprises four different algorithms: particle swarm optimization (PSO), the fast Fourier transform (FFT), clipped control algorithm and the LQR. The FFT helps to obtain the dominant frequency for every time window. PSO finds the optimum gain matrix through the real-time update of the weighting matrix R, thereby, dispensing with the experimentation. The clipped control law is employed to match the magnetorheological (MR) damper force with the desired force given by the controller. The modified Bouc-Wen phenomenological model is taken to recognize the nonlinearities in the MR damper. The assessment of the advised method is done by simulation of a three-story structure

  8. Radiation monitoring system based on EPICS

    International Nuclear Information System (INIS)

    Wang Weizhen; Li Jianmin; Wang Xiaobing; Hua Zhengdong; Xu Xunjiang

    2008-01-01

    Shanghai Synchrotron Radiation Facility (SSRF for short) is a third-generation light source building in China, including a 150 MeV injector, 3.5 GeV booster, 3.5 GeV storage ring and an amount of beam line stations. During operation, a mass of Synchrotron Radiation will be produced by electrons in the booster and the storage ring. Bremsstrahlung and neutrons will also be produced as a result of the interaction between the electrons, especially the beam loss, and the wall of the vacuum beam pipe. SSRF Radiation Monitoring System is established for monitoring the radiation dosage of working area and environment while SSRF operating. The system consists of detectors, intelligent data-collecting modules, monitoring computer, and managing computer. The software system is developed based on EPICS (Experimental Physics and Industrial Control System), implementing the collecting and monitoring the data output from intelligent modules, analyzing the data, and so on. (authors)

  9. X radiation sources based on accelerators

    International Nuclear Information System (INIS)

    Couprie, M.E.; Filhol, J.M.

    2008-01-01

    Light sources based on accelerators aim at producing very high brilliance coherent radiation, tunable from the infrared to X-ray range, with picosecond or femtosecond light pulses. The first synchrotron light sources were built around storage rings in which a large number of relativistic electrons produce 'synchrotron radiation' when their trajectory is subjected to a magnetic field, either in bending magnets or in specific insertion devices (undulators), made of an alternating series of magnets, allowing the number of curvatures to be increased and the radiation to be reinforced. These 'synchrotron radiation' storage rings are now used worldwide (there are more than thirty), and they simultaneously distribute their radiation to several tens of users around the storage ring. The most effective installations in term of brilliance are the so-called third generation synchrotron radiation light sources. The radiation produced presents pulse durations of the order of a few tens of ps, at a high rate (of the order of MHz); it is tunable over a large range, depending on the magnetic field and the electron beam energy and its polarisation is adjustable (in the V-UV-soft-X range). Generally, a very precise spectral selection is made by the users with a monochromator. The single pass linear accelerators can produce very short electron bunches (around 100 fs). The beam of very high electronic density is sent into successive undulator modules, reinforcing the radiation's longitudinal coherence, produced according to a Free Electron Laser (FEL) scheme by the interaction between the electron bunch and a light wave. The very high peak brilliance justifies their designation as fourth generation sources. The number of users is smaller because an electron pulse produces a radiation burst towards only one beamline. Energy Recovery Linacs (ERL) let the beam pass several times in the accelerator structures either to recover the energy or to accelerate the electrons during several turns

  10. Bases for establishing radiation exposure limits

    International Nuclear Information System (INIS)

    Pochin, E.E.

    1977-01-01

    It is an essential requirement of good radiation protection that all unnecessary exposure of people should be avoided and that any necessary exposure, whether of workers or of members of the general public, should be minimised. It is, however, an additional requirement that such necessary exposures should not exceed certain stated limits. These principles are based on the possibility that even the smallest exposures may involve some risk of harm, that any risk of harm should be justifiable by the circumstances necessitating it, and that risk should always be limited to an appropriately low level. The bases for establishing exposure limits must therefore involve an assessment of the risk involved in any form of radiation exposure, and an opinion as to the degree of safety that should be ensured in circumstances which necessitate any occupational or public exposure to radiation. There is increasing quantitative evidence on the frequency on which harm, and particularly the induction of malignancies, may be caused in people exposed to radiation at high doses; and somewhat clearer bases than previously for inferring the possible frequencies at low doses. It is therefore easier to assess the degree of safety ensured by restricting radiation exposure to particular levels. The degree of safety which should be regarded as appropriate in different circumstances remains a matter for review, but suggestions are made as to levels which would be advocated by informed opinion, and the exposure limits which would correspond to these. It is clear also that a comparable degree of safety should be ensured whether the radiation exposure involves the whole body more of less uniformly, or individual tissues or organs selectively. Increasing epidemiological evidence is available on the relative sensitivity to radiation induction of malignancies in a number of organs, and to the apparently much lower sensitivity of other organs; and experimental evidence in animals allows a comparable

  11. Fourier phase in Fourier-domain optical coherence tomography

    Science.gov (United States)

    Uttam, Shikhar; Liu, Yang

    2015-01-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided. PMID:26831383

  12. Fourier phase in Fourier-domain optical coherence tomography.

    Science.gov (United States)

    Uttam, Shikhar; Liu, Yang

    2015-12-01

    Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided.

  13. Fourier transforms in spectroscopy

    CERN Document Server

    Kauppinen, Jyrki

    2000-01-01

    This modern approach to the subject is clearly and logically structured, and gives readers an understanding of the essence of Fourier transforms and their applications. All important aspects are included with respect to their use with optical spectroscopic data. Based on popular lectures, the authors provide the mathematical fundamentals and numerical applications which are essential in practical use. The main part of the book is dedicated to applications of FT in signal processing and spectroscopy, with IR and NIR, NMR and mass spectrometry dealt with both from a theoretical and practical poi

  14. Bases for establishing radiation exposure limits

    International Nuclear Information System (INIS)

    Pochin, E.E.

    1977-01-01

    It is an essential requirement of good radiation protection that all unnecessary exposure of people should be avoided and that any necessary exposure, whether of workers or of members of the general public, should be minimized. It is, however, an additional requirement that such necessary exposures should not exceed certain stated limits. These principles are based on the possibility that even the smallest exposures may involve some risk of harm, that any risk of harm should be justifiable by the circumstances necessitating it, and that risk should always be limited to an appropriately low level. The bases for establishing exposure limits must therefore involve an assessment of the risk involved in any form of radiation exposure, and an opinion as to the degree of safety that should be ensured in circumstances which necessitate any occupational or public exposure to radiation. There is increasing quantitative evidence on the frequency on which harm, and particularly the induction of malignancies, may be caused in people exposed to radiation at high doses; and somewhat clearer bases than previously for inferring the possible frequencies at low doses. It is therefore easier to assess the degree of safety ensured by restricting radiation exposure to particular levels. It is clear also that a comparable degree of safety should be ensured whether the radiation exposure involves the whole body more of less uniformly, or individual tissues or organs selectively. The ''weighting'' factors appropriate to irradiation of particular tissues from internal emitters can thus be defined in terms of their likely individual contributions to the harm of whole-body irradiation. In this way the limits for different modes of exposure by external or internal radiation can be related so as to ensure that protection should be equally effective for different distributions of absorbed dose in the body. In particular, the over-simplified concept of a single critical organ determining the

  15. Construction of data base for radiation safety assessment of low dose ionizing radiation

    International Nuclear Information System (INIS)

    Saigusa, Shin

    2001-01-01

    Data base with an electronic text on the safety assessment of low dose ionizing radiation have been constructed. The contents and the data base system were designed to provide useful information to Japanese citizens, radiation specialists, and decision makers for a scientific and reasonable understanding of radiation health effects, radiation risk assessment, and radiation protection. The data base consists of the following four essential parts, namely, ORIGINAL DESCRIPTION, DETAILED INFORMATION, TOPIC INFORMATION, and RELATED INFORMATION. The first two parts of the data base are further classified into following subbranches: Radiobiological effects, radiation risk assessment, and radiation exposure and protection. (author)

  16. Integration of the Self-Healing eDNA Architecture in a Liquid Crystal Waveguide-based Fourier Transform Spectrometer

    DEFF Research Database (Denmark)

    Boesen, Michael Reibel; Keymeulen, D.; Madsen, Jan

    2011-01-01

    In this work we describe the first real world case study for the self-healing eDNA (electronic DNA) architecture by implementing the control and data processing of a Fourier Transform Spectrometer (FTS) on an eDNA prototype. For this purpose the eDNA prototype has been ported from a Xilinx Virtex 5...

  17. Deconvolution, differentiation and Fourier transformation algorithms for noise-containing data based on splines and global approximation

    NARCIS (Netherlands)

    Wormeester, Herbert; Sasse, A.G.B.M.; van Silfhout, Arend

    1988-01-01

    One of the main problems in the analysis of measured spectra is how to reduce the influence of noise in data processing. We show a deconvolution, a differentiation and a Fourier Transform algorithm that can be run on a small computer (64 K RAM) and suffer less from noise than commonly used routines.

  18. Computer-based and web-based radiation safety training

    Energy Technology Data Exchange (ETDEWEB)

    Owen, C., LLNL

    1998-03-01

    The traditional approach to delivering radiation safety training has been to provide a stand-up lecture of the topic, with the possible aid of video, and to repeat the same material periodically. New approaches to meeting training requirements are needed to address the advent of flexible work hours and telecommuting, and to better accommodate individuals learning at their own pace. Computer- based and web-based radiation safety training can provide this alternative. Computer-based and web- based training is an interactive form of learning that the student controls, resulting in enhanced and focused learning at a time most often chosen by the student.

  19. The Use of Continuous Wavelet Transform Based on the Fast Fourier Transform in the Analysis of Multi-channel Electrogastrography Recordings.

    Science.gov (United States)

    Komorowski, Dariusz; Pietraszek, Stanislaw

    2016-01-01

    This paper presents the analysis of multi-channel electrogastrographic (EGG) signals using the continuous wavelet transform based on the fast Fourier transform (CWTFT). The EGG analysis was based on the determination of the several signal parameters such as dominant frequency (DF), dominant power (DP) and index of normogastria (NI). The use of continuous wavelet transform (CWT) allows for better visible localization of the frequency components in the analyzed signals, than commonly used short-time Fourier transform (STFT). Such an analysis is possible by means of a variable width window, which corresponds to the scale time of observation (analysis). Wavelet analysis allows using long time windows when we need more precise low-frequency information, and shorter when we need high frequency information. Since the classic CWT transform requires considerable computing power and time, especially while applying it to the analysis of long signals, the authors used the CWT analysis based on the fast Fourier transform (FFT). The CWT was obtained using properties of the circular convolution to improve the speed of calculation. This method allows to obtain results for relatively long records of EGG in a fairly short time, much faster than using the classical methods based on running spectrum analysis (RSA). In this study authors indicate the possibility of a parametric analysis of EGG signals using continuous wavelet transform which is the completely new solution. The results obtained with the described method are shown in the example of an analysis of four-channel EGG recordings, performed for a non-caloric meal.

  20. Radiation of Base Stations of Mobile Phone

    International Nuclear Information System (INIS)

    Lipnjak, G.

    2003-01-01

    In recent years there has been a rapid expansion of new, technological sources of non-ionizing electromagnetic radiation from mobile phones, microwave ovens, various antennas, transmitters, new ultrasound devices. The category of non-ionizing radiation includes electromagnetic radiation at frequencies below 3 000 000 GHz or at ultrasound frequencies below 500 MHz which in interaction with substances do not generate ions. In view of this trend concerns have been raised about the impact of these new (radiation) sources on human health. An increasing amount of scientific research points to the fact that NIR causes various adverse effects to human health: eyes injuries, irritability, insomnia, temporary changes in the metabolism, hazardous heat stress and even carcinoma. The manufacturers and users of radio wave equipment pay great attention to the influence of the electromagnetic fields on human health. This issue has been taken into serious consideration, which is confirmed by a number of studies carried out either by mobile phone manufacturers or by many independent organizations. The limits of electromagnetic radiation exposure are defined in numerous standards and international rule books, and if these limits are complied with, then, according to present knowledge, there is no risk. Considering the concerns of the employees of Ericsson Nikola Tesla the levels of radiation from various types of base stations on company premises were examined. It was found out that there is no hazard to the health of employees. Still, further research is required and it is initiated both by the users and manufacturers of the mobile telephony equipment. (author)

  1. Time-Frequency Analysis of Non-Stationary Biological Signals with Sparse Linear Regression Based Fourier Linear Combiner

    Directory of Open Access Journals (Sweden)

    Yubo Wang

    2017-06-01

    Full Text Available It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC. In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976 ratio and outperforms existing methods such as short-time Fourier transfrom (STFT, continuous Wavelet transform (CWT and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.

  2. Time-Frequency Analysis of Non-Stationary Biological Signals with Sparse Linear Regression Based Fourier Linear Combiner.

    Science.gov (United States)

    Wang, Yubo; Veluvolu, Kalyana C

    2017-06-14

    It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC). In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976) ratio and outperforms existing methods such as short-time Fourier transfrom (STFT), continuous Wavelet transform (CWT) and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.

  3. Optical image-hiding method with false information disclosure based on the interference principle and partial-phase-truncation in the fractional Fourier domain

    International Nuclear Information System (INIS)

    Dai, Chaoqing; Wang, Xiaogang; Zhou, Guoquan; Chen, Junlang

    2014-01-01

    An image-hiding method based on the optical interference principle and partial-phase-truncation in the fractional Fourier domain is proposed. The primary image is converted into three phase-only masks (POMs) using an analytical algorithm involved partial-phase-truncation and a fast random pixel exchange process. A procedure of a fake silhouette for a decryption key is suggested to reinforce the encryption and give a hint of the position of the key. The fractional orders of FrFT effectively enhance the security of the system. In the decryption process, the POM with false information and the other two POMs are, respectively, placed in the input and fractional Fourier planes to recover the primary image. There are no unintended information disclosures and iterative computations involved in the proposed method. Simulation results are presented to verify the validity of the proposed approach. (letters)

  4. Handbook of Fourier analysis & its applications

    CERN Document Server

    Marks, Robert J

    2009-01-01

    Fourier analysis has many scientific applications - in physics, number theory, combinatorics, signal processing, probability theory, statistics, option pricing, cryptography, acoustics, oceanography, optics and diffraction, geometry, and other areas. In signal processing and related fields, Fourier analysis is typically thought of as decomposing a signal into its component frequencies and their amplitudes. This practical, applications-based professional handbook comprehensively covers the theory and applications of Fourier Analysis, spanning topics from engineering mathematics, signal process

  5. A microprocessor based mobile radiation survey system

    International Nuclear Information System (INIS)

    Gilbert, R.W.; McCormack, W.D.

    1984-01-01

    A microprocessor-based system has been designed and constructed to enhance the performance of routine radiation surveys on roads within the Hanford site. This device continually monitors system performance and output from four sodium iodide detectors mounted on the rear bumper of a 4-wheel drive truck. The gamma radiation count rate in counts-per-second is monitored, and a running average computed, with the results compared to predefined limits. If an abnormal instantaneous or average count rate is detected, an alarm is sounded with responsible data displayed on a liquid crystal panel in the cab of the vehicle. The system also has the capability to evaluate detector output using multiple time constants and to perform more complex tests and comparison of the data. Data can be archived for later analysis on conventional chart recorders or stored in digital form on magnetic tape or other digital storage media

  6. Microprocessor based mobile radiation survey system

    International Nuclear Information System (INIS)

    Gilbert, R.W.; McCormack, W.D.

    1983-12-01

    A microprocessor-based system has been designed and constructed to enhance the performance of routine radiation surveys on roads within the Hanford site. This device continually monitors system performance and output from four sodium iodide detectors mounted on the rear bumper of a 4-wheel drive truck. The gamma radiation count rate in counts-per-second is monitored, and a running average computed, with the results compared to predefined limits. If an abnormal instantaneous or average count rate is detected, an alarm is sounded with responsible data displayed on a liquid crystal panel in the cab of the vehicle. The system also has the capability to evaluate detector output using multiple time constants and to perform more complex tests and comparison of the data. Data can be archived for later analysis on conventional chart recorders or stored in digital form on magnetic tape or other digital storage media. 4 figures

  7. Fractional finite Fourier transform.

    Science.gov (United States)

    Khare, Kedar; George, Nicholas

    2004-07-01

    We show that a fractional version of the finite Fourier transform may be defined by using prolate spheroidal wave functions of order zero. The transform is linear and additive in its index and asymptotically goes over to Namias's definition of the fractional Fourier transform. As a special case of this definition, it is shown that the finite Fourier transform may be inverted by using information over a finite range of frequencies in Fourier space, the inversion being sensitive to noise. Numerical illustrations for both forward (fractional) and inverse finite transforms are provided.

  8. Radiation hardened COTS-based 32-bit microprocessor

    International Nuclear Information System (INIS)

    Haddad, N.; Brown, R.; Cronauer, T.; Phan, H.

    1999-01-01

    A high performance radiation hardened 32-bit RISC microprocessor based upon a commercial single chip CPU has been developed. This paper presents the features of radiation hardened microprocessor, the methods used to radiation harden this device, the results of radiation testing, and shows that the RAD6000 is well-suited for the vast majority of space applications. (authors)

  9. An Exact Method to Determine the Photonic Resonances of Quasicrystals Based on Discrete Fourier Harmonics of Higher-Dimensional Atomic Surfaces

    Directory of Open Access Journals (Sweden)

    Farhad A. Namin

    2016-08-01

    Full Text Available A rigorous method for obtaining the diffraction patterns of quasicrystals is presented. Diffraction patterns are an essential analytical tool in the study of quasicrystals, since they can be used to determine their photonic resonances. Previous methods for approximating the diffraction patterns of quasicrystals have relied on evaluating the Fourier transform of finite-sized super-lattices. Our approach, on the other hand, is exact in the sense that it is based on a technique that embeds quasicrystals into higher dimensional periodic hyper-lattices, thereby completely capturing the properties of the infinite structure. The periodicity of the unit cell in the higher dimensional space can be exploited to obtain the Fourier series expansion in closed-form of the corresponding atomic surfaces. The utility of the method is demonstrated by applying it to one-dimensional Fibonacci and two-dimensional Penrose quasicrystals. The results are verified by comparing them to those obtained by using the conventional super-lattice method. It is shown that the conventional super-cell approach can lead to inaccurate results due to the continuous nature of the Fourier transform, since quasicrystals have a discrete spectrum, whereas the approach introduced in this paper generates discrete Fourier harmonics. Furthermore, the conventional approach requires very large super-cells and high-resolution sampling of the reciprocal space in order to produce accurate results leading to a very large computational burden, whereas the proposed method generates accurate results with a relatively small number of terms. Finally, we propose how this approach can be generalized from the vertex model, which assumes identical particles at all vertices, to a more realistic case where the quasicrystal is composed of different atoms.

  10. Radiation monitoring system based on Internet

    International Nuclear Information System (INIS)

    Drndarevic, V.R.; Popovic, A.T; Bolic, M.D.; Pavlovic, R.S.

    2001-01-01

    This paper presents concept and realization of the modern distributed radiation monitoring system. The system uses existing conventional computer network and it is based on the standard Internet technology. One personal computer (PC) serves as host and system server, while a number of client computers, link to the server computer via standard local area network (LAN), are used as distributed measurement nodes. The interconnection between the server and clients are based on Transmission Control Protocol/Internet Protocol (TCP/IP). System software is based on server-client model. Based on this concept distributed system for gamma ray monitoring in the region of the Institute of Nuclear Sciences Vinca has been implemented. (author)

  11. Quasi-static analysis of flexible pavements based on predicted frequencies using Fast Fourier Transform and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Ali Reza Ghanizadeh

    2018-01-01

    Full Text Available New trend in design of flexible pavements is mechanistic-empirical approach. The first step for applying this method is analyzing the pavement structure for several times and computation of critical stresses and strains, which needs a fast analysis method with good accuracy. This paper aims to introduce a new rapid pavement analysis approach, which can consider the history of loading and rate effect. To this end, 1200 flexible pavement sections were analyzed, and equivalent frequencies (EF were calculated using Fast Fourier Transform (FFT method at various depths of asphalt layer. A nonlinear regression equation has been presented for determining EF at different depths of asphalt layer. For more accurate predicting of EF at low frequencies, a feed-forward Artificial Neural Network (ANN was employed, which allows accurate prediction of EF. The frequencies obtained by the proposed regression equation and ANN were compared with frequencies observed in Virginia Smart Road project, and it was found that there is a good agreement between observed and predicted frequencies. Comparison of quasi-static analysis of flexible pavements by frequencies obtained using FFT method and full dynamic analysis by 3D-Move program approves that the critical responses of pavement computed by proposed quasi-static analysis approach are comparable to critical responses computed using full dynamic analysis. Keywords: Equivalent frequency, Fast Fourier Transform (FFT, Pavement quasi-static analysis, Dynamic modulus, Artificial Neural Network (ANN

  12. Radiation hardened equipment and material data base

    International Nuclear Information System (INIS)

    Sumita, Kenji; Yamaoka, Hitoshi; Kakuta, Tsunemi; Shono, Yoshihiko; Nakamura, Tetsuo; Nakase, Yoshiaki; Furuta, Junichiro.

    1988-01-01

    In order to collect and put in order the results regarding radiation-withstanding equipment and materials, the Osaka Nuclear Science Association organized the committee composed of the experts in various fields in fiscal year 1986 for the purpose of building up the data base, and began the activity. From the trend of the research and development and the usefulness for the future, the fields of collecting data were decided as organic materials, optical fibers, semiconductor elements and compound semiconductors. By fiscal year 1987, the building-up of the prototype data base was aimed at, and system configuration, the making of the formats on the items and attributes of collected data, the action test of the system and so on were carried out. Under the background of the upgrading of LWRs, the development of FBRs and nuclear fusion reactors, the construction of a reprocessing plant and a low level waste storage facility, and the progress of various advanced technologies, the research on the equipment and materials having excellent radiation resistance and the development for heightening the performance have been carried out in many places separately, accordingly the activity for building up the prototype data base was begun, and about 600 cases were collected. (Kako, I.)

  13. Fourier Series Optimization Opportunity

    Science.gov (United States)

    Winkel, Brian

    2008-01-01

    This note discusses the introduction of Fourier series as an immediate application of optimization of a function of more than one variable. Specifically, it is shown how the study of Fourier series can be motivated to enrich a multivariable calculus class. This is done through discovery learning and use of technology wherein students build the…

  14. Jean Baptiste Joseph Fourier

    Science.gov (United States)

    Sterken, C.

    2003-03-01

    This paper gives a short account of some key elements in the life of Jean Baptiste Joseph Fourier (1768-1830), specifically his relation to Napoleon Bonaparte. The mathematical approach to Fourier series and the original scepticism by French mathematicians are briefly illustrated.

  15. Generalized Fourier transforms classes

    DEFF Research Database (Denmark)

    Berntsen, Svend; Møller, Steen

    2002-01-01

    The Fourier class of integral transforms with kernels $B(\\omega r)$ has by definition inverse transforms with kernel $B(-\\omega r)$. The space of such transforms is explicitly constructed. A slightly more general class of generalized Fourier transforms are introduced. From the general theory...

  16. Effect of Gamma Radiation on Amino Acid Based Vesicle Carrying Radiosensitizer

    International Nuclear Information System (INIS)

    Nur Ratasha Alia Mohd Rosli; Faizal Mohamed; Muhammad Amir Syafiq Mohd Sah; Irman Abdul Rahman

    2014-01-01

    Vesicles has been developed and studied to be used as a medium to transport radiosensitizer in treating cancer cells by increasing its sensitivity effectively towards the radiation given during radiotherapy. This study was conducted to investigate the effect of gamma radiation on amino acid-based vesicle carrying radiosensitizer. Amino acid based vesicles carrying radiosensitizer were synthesized using sonication method with sodium N-lauroylsarcosinate hydrate and decanol being the primary surfactant, while hydrogen peroxide and sodium hyaluronate as the encapsulated radiosensitizer. The synthesized vesicle was then irradiated at radiation doses equivalent to those given during radiotherapy. Irradiated vesicle carrying radiosensitizer were then characterized using Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and Polarized Light Microscope. Results obtained shows that there were no significant changes in morphology and molecular conformation of the synthesized vesicle after irradiation. Even at higher radiation dose of 100 Gray and 200 Gray, the results remained unchanged. This indicates that the synthesized vesicle carrying radiosensitizer is morphologically and spectroscopically stable even at high radiation doses. (author)

  17. Clinical oncology based upon radiation biology

    International Nuclear Information System (INIS)

    Hirata, Hideki

    2016-01-01

    This paper discussed the biological effects of radiation as physical energy, especially those of X-ray as electromagnetic radiation, by associating the position of clinical oncology with classical radiation cell biology as well as recent molecular biology. First, it described the physical and biological effects of radiation, cell death due to radiation and recovery, radiation effects at tissue level, and location information and dosage information in the radiotherapy of cancer. It also described the territories unresolved through radiation biology, such as low-dose high-sensitivity, bystander effects, etc. (A.O.)

  18. Biologically based multistage modeling of radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of

  19. Electromagnetic Radiation Exposure from Cellular Base Station: A ...

    African Journals Online (AJOL)

    Electromagnetic Radiation Exposure from Cellular Base Station: A Concern for Public ... as well as safety guidelines relating to exposure of non-ionizing radiation. Global System for Mobile Communication (GSM) operators claimed that their ...

  20. High-order modulation on a single discrete eigenvalue for optical communications based on nonlinear Fourier transform.

    Science.gov (United States)

    Gui, Tao; Lu, Chao; Lau, Alan Pak Tao; Wai, P K A

    2017-08-21

    In this paper, we experimentally investigate high-order modulation over a single discrete eigenvalue under the nonlinear Fourier transform (NFT) framework and exploit all degrees of freedom for encoding information. For a fixed eigenvalue, we compare different 4 bit/symbol modulation formats on the spectral amplitude and show that a 2-ring 16-APSK constellation achieves optimal performance. We then study joint spectral phase, spectral magnitude and eigenvalue modulation and found that while modulation on the real part of the eigenvalue induces pulse timing drift and leads to neighboring pulse interactions and nonlinear inter-symbol interference (ISI), it is more bandwidth efficient than modulation on the imaginary part of the eigenvalue in practical settings. We propose a spectral amplitude scaling method to mitigate such nonlinear ISI and demonstrate a record 4 GBaud 16-APSK on the spectral amplitude plus 2-bit eigenvalue modulation (total 6 bit/symbol at 24 Gb/s) transmission over 1000 km.

  1. Least-squares calibration method based on a universal phase and height mapping formula in Fourier transform profilometry

    International Nuclear Information System (INIS)

    Wen, Yongfu; Cheng, Haobo; Gao, Ya; Zhang, Huijing; Feng, Yunpeng; Pan, Baozhu

    2011-01-01

    In Fourier transform profilometry (FTP), we perform a strict theoretical analysis of the phase–height mapping relationship and give a universal calculation formula in which the constraints on the experimental setup are removed. In that case, the projector and camera can be located arbitrarily to get better information on fringes, which makes the system easy to manipulate and improves the speed of measurement. As the relationship between the phase and height distribution depends on system parameters (such as the relative position of the projector and camera) which are difficult to obtain, we propose a least-squares calibration approach for FTP, which can avoid measuring the system parameters directly. Both the simulation and experimental results prove that the 3D shape of the tested objects can be reconstructed exactly by using the calculation formula and calibration method, and that the system has better universality

  2. Quantification of Multiple Components of Complex Aluminum-Based Adjuvant Mixtures by Using Fourier Transform Infrared Spectroscopy and Partial Least Squares Modeling.

    Science.gov (United States)

    Dowling, Quinton M; Kramer, Ryan M

    2017-01-01

    Fourier transform infrared (FTIR) spectroscopy is widely used in the pharmaceutical industry for process monitoring, compositional quantification, and characterization of critical quality attributes in complex mixtures. Advantages over other spectroscopic measurements include ease of sample preparation, quantification of multiple components from a single measurement, and the ability to quantify optically opaque samples. This method describes the use of a multivariate model for quantifying a TLR4 agonist (GLA) adsorbed onto aluminum oxyhydroxide (Alhydrogel ® ) using FTIR spectroscopy that may be adapted to quantify other complex aluminum based adjuvant mixtures.

  3. A no-key-exchange secure image sharing scheme based on Shamir's three-pass cryptography protocol and the multiple-parameter fractional Fourier transform.

    Science.gov (United States)

    Lang, Jun

    2012-01-30

    In this paper, we propose a novel secure image sharing scheme based on Shamir's three-pass protocol and the multiple-parameter fractional Fourier transform (MPFRFT), which can safely exchange information with no advance distribution of either secret keys or public keys between users. The image is encrypted directly by the MPFRFT spectrum without the use of phase keys, and information can be shared by transmitting the encrypted image (or message) three times between users. Numerical simulation results are given to verify the performance of the proposed algorithm.

  4. Characterization of radiation-induced products of thymidine 3'-monophosphate and thymidylyl (3'→5') thymidine by high-performance liquid chromatography and laser-desorption fourier-transform mass spectrometry

    International Nuclear Information System (INIS)

    Yoshida, H.; Hettich, R.L.

    1994-01-01

    High-performance liquid chromatography (HPLC) and laser-desorption Fourier-transform mass spectrometry (LD FTMS) have been applied for direct measurements of radiation-induced products of nucleic acid constituents containing thymidine. Laser desorption FTMS could be used for the direct detection (neither hydrolyzed nor derivatized) of X-ray-induced decomposition products of aqueous thymidine monophosphate. After these initial experiments, a variety of hydrogenated and hydroxylated thymine standards were acquired and examined by FTMS to assist in the identification of unknown radiation-induced decomposition products of thymine-containing nucleotides and dinucleotides. To extend these studies to dinucleotides, the radiation-induced products generated by the gamma radiolysis of thymidylyl (3'→5') thymidine (TpT) were isolated by reverse-phase HPLC and identified by LD FTMS. Thymine and thymidine 3'-monophosphate were observed as the major products in this case. Several of the minor products of the HPLC profile were pooled in a single fraction and characterized simultaneously by LD FTMS. The resulting mass spectra indicated the presence of hydroxy-5,6-dihydothymidine monophosphate, 5,6-dihydrothymidine monophosphate and thymidine monophosphate, thymine glycol, hydroxy-5,6-dihydrothymine, 5-hydroxy-methyl-uracil and 5,6-dihydrothymine. The combination of HPLC purification and LD FTMS structural characterization provides a useful tool for the direct measurement of radiation-induced products of nucleotides and dinucleotides. 28 refs., 6 figs., 2 tabs

  5. Fourier analysis an introduction

    CERN Document Server

    Stein, Elias M

    2003-01-01

    This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions.The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as th

  6. The fractional Fourier transform and applications

    Science.gov (United States)

    Bailey, David H.; Swarztrauber, Paul N.

    1991-01-01

    This paper describes the 'fractional Fourier transform', which admits computation by an algorithm that has complexity proportional to the fast Fourier transform algorithm. Whereas the discrete Fourier transform (DFT) is based on integral roots of unity e exp -2(pi)i/n, the fractional Fourier transform is based on fractional roots of unity e exp -2(pi)i(alpha), where alpha is arbitrary. The fractional Fourier transform and the corresponding fast algorithm are useful for such applications as computing DFTs of sequences with prime lengths, computing DFTs of sparse sequences, analyzing sequences with noninteger periodicities, performing high-resolution trigonometric interpolation, detecting lines in noisy images, and detecting signals with linearly drifting frequencies. In many cases, the resulting algorithms are faster by arbitrarily large factors than conventional techniques.

  7. Cellular telephone-based radiation detection instrument

    Science.gov (United States)

    Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA

    2011-06-14

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  8. Integration of LCoS-SLM and LabVIEW based software to simulate fundamental optics, wave optics, and Fourier optics

    Science.gov (United States)

    Lyu, Bo-Han; Wang, Chen; Tsai, Chun-Wei

    2017-08-01

    Jasper Display Corp. (JDC) offer high reflectivity, high resolution Liquid Crystal on Silicon - Spatial Light Modulator (LCoS-SLM) which include an associated controller ASIC and LabVIEW based modulation software. Based on this LCoS-SLM, also called Education Kit (EDK), we provide a training platform which includes a series of optical theory and experiments to university students. This EDK not only provides a LabVIEW based operation software to produce Computer Generated Holograms (CGH) to generate some basic diffraction image or holographic image, but also provides simulation software to verity the experiment results simultaneously. However, we believe that a robust LCoSSLM, operation software, simulation software, training system, and training course can help students to study the fundamental optics, wave optics, and Fourier optics more easily. Based on these fundamental knowledges, they could develop their unique skills and create their new innovations on the optoelectronic application in the future.

  9. A Short Biography of Joseph Fourier and Historical Development of Fourier Series and Fourier Transforms

    Science.gov (United States)

    Debnath, Lokenath

    2012-01-01

    This article deals with a brief biographical sketch of Joseph Fourier, his first celebrated work on analytical theory of heat, his first great discovery of Fourier series and Fourier transforms. Included is a historical development of Fourier series and Fourier transforms with their properties, importance and applications. Special emphasis is made…

  10. Digital Fourier analysis fundamentals

    CERN Document Server

    Kido, Ken'iti

    2015-01-01

    This textbook is a thorough, accessible introduction to digital Fourier analysis for undergraduate students in the sciences. Beginning with the principles of sine/cosine decomposition, the reader walks through the principles of discrete Fourier analysis before reaching the cornerstone of signal processing: the Fast Fourier Transform. Saturated with clear, coherent illustrations, "Digital Fourier Analysis - Fundamentals" includes practice problems and thorough Appendices for the advanced reader. As a special feature, the book includes interactive applets (available online) that mirror the illustrations.  These user-friendly applets animate concepts interactively, allowing the user to experiment with the underlying mathematics. For example, a real sine signal can be treated as a sum of clockwise and counter-clockwise rotating vectors. The applet illustration included with the book animates the rotating vectors and the resulting sine signal. By changing parameters such as amplitude and frequency, the reader ca...

  11. Generalized Fourier transforms classes

    DEFF Research Database (Denmark)

    Berntsen, Svend; Møller, Steen

    2002-01-01

    The Fourier class of integral transforms with kernels $B(\\omega r)$ has by definition inverse transforms with kernel $B(-\\omega r)$. The space of such transforms is explicitly constructed. A slightly more general class of generalized Fourier transforms are introduced. From the general theory foll...... follows that integral transform with kernels which are products of a Bessel and a Hankel function or which is of a certain general hypergeometric type have inverse transforms of the same structure....

  12. Generalized fiber Fourier optics.

    Science.gov (United States)

    Cincotti, Gabriella

    2011-06-15

    A twofold generalization of the optical schemes that perform the discrete Fourier transform (DFT) is given: new passive planar architectures are presented where the 2 × 2 3 dB couplers are replaced by M × M hybrids, reducing the number of required connections and phase shifters. Furthermore, the planar implementation of the discrete fractional Fourier transform (DFrFT) is also described, with a waveguide grating router (WGR) configuration and a properly modified slab coupler.

  13. Radiation damage studies on polystyrene-based scintillators

    International Nuclear Information System (INIS)

    Britvich, G.I.; Peresypkin, A.I.; Rykalin, V.I.

    1991-01-01

    The radiation resistance of polystyrene-based scintillators containing various scintillation dopes is reported. All samples were irradiated to 137 Cs gamma rays in air at room temperature. The examination of radiation resistance of about thirty fluorescence compounds has been made. The most radiation-hard fluores are X25, X31, 3HF and M3HF. 1 fig.; 6 tabs

  14. Visualization of hair follicles using high-speed optical coherence tomography based on a Fourier domain mode locking laser

    Science.gov (United States)

    Tsai, M.-T.; Chang, F.-Y.

    2012-04-01

    In this study, a swept-source optical coherence tomography (SS-OCT) system with a Fourier domain mode locking (FDML) laser is proposed for a dermatology study. The homemade FDML laser is one kind of frequency-sweeping light source, which can provide output power of >20 mW and an output spectrum of 65 nm in bandwidth centered at 1300 nm, enabling imaging with an axial resolution of 12 μm in the OCT system. To eliminate the forward scans from the laser output and insert the delayed backward scans, a Mach-Zehnder configuration is implemented. Compared with conventional frequency-sweeping light sources, the FDML laser can achieve much higher scan rates, as high as ˜240 kHz, which can provide a three-dimensional imaging rate of 4 volumes/s. Furthermore, the proposed high-speed SS-OCT system can provide three-dimensional (3D) images with reduced motion artifacts. Finally, a high-speed SS-OCT system is used to visualize hair follicles, demonstrating the potential of this technology as a tool for noninvasive diagnosis of alopecia.

  15. Classification Technique for Ultrasonic Weld Inspection Signals using a Neural Network based on 2-dimensional fourier Transform and Principle Component Analysis

    International Nuclear Information System (INIS)

    Kim, Jae Joon

    2004-01-01

    Neural network-based signal classification systems are increasingly used in the analysis of large volumes of data obtained in NDE applications. Ultrasonic inspection methods on the other hand are commonly used in the nondestructive evaluation of welds to detect flaws. An important characteristic of ultrasonic inspection is the ability to identify the type of discontinuity that gives rise to a peculiar signal. Standard techniques rely on differences in individual A-scans to classify the signals. This paper proposes an ultrasonic signal classification technique based on the information tying in the neighboring signals. The approach is based on a 2-dimensional Fourier transform and the principal component analysis to generate a reduced dimensional feature vector for classification. Results of applying the technique to data obtained from the inspection of actual steel welds are presented

  16. Computing exact Fourier series coefficients of IC rectilinear polygons from low-resolution fast Fourier coefficients

    Science.gov (United States)

    Scheibler, Robin; Hurley, Paul

    2012-03-01

    We present a novel, accurate and fast algorithm to obtain Fourier series coefficients from an IC layer whose description consists of rectilinear polygons on a plane, and how to implement it using off-the-shelf hardware components. Based on properties of Fourier calculus, we derive a relationship between the Discrete Fourier Transforms of the sampled mask transmission function and its continuous Fourier series coefficients. The relationship leads to a straightforward algorithm for computing the continuous Fourier series coefficients where one samples the mask transmission function, compute its discrete Fourier transform and applies a frequency-dependent multiplicative factor. The algorithm is guaranteed to yield the exact continuous Fourier series coefficients for any sampling representing the mask function exactly. Computationally, this leads to significant saving by allowing to choose the maximal such pixel size and reducing the fast Fourier transform size by as much, without compromising accuracy. In addition, the continuous Fourier series is free from aliasing and follows closely the physical model of Fourier optics. We show that in some cases this can make a significant difference, especially in modern very low pitch technology nodes.

  17. Fourier transformation for engineering and natural science

    International Nuclear Information System (INIS)

    Klingen, B.

    2001-01-01

    The following topics are covered: functions, Dirac delta function, Fourier operators, Fourier integrals, Fourier transformation and periodic functions, discrete Fourier transformations and discrete filters, applications. (WL)

  18. Modification of the fast fourier transform-based method by signal mirroring for accuracy quantification of thermal-hydraulic system code

    International Nuclear Information System (INIS)

    Ha, Tae Wook; Jeong, Jae Jun; Choi, Ki Yong

    2017-01-01

    A thermal–hydraulic system code is an essential tool for the design and safety analysis of a nuclear power plant, and its accuracy quantification is very important for the code assessment and applications. The fast Fourier transform-based method (FFTBM) by signal mirroring (FFTBM-SM) has been used to quantify the accuracy of a system code by using a comparison of the experimental data and the calculated results. The method is an improved version of the FFTBM, and it is known that the FFTBM-SM judges the code accuracy in a more consistent and unbiased way. However, in some applications, unrealistic results have been obtained. In this study, it was found that accuracy quantification by FFTBM-SM is dependent on the frequency spectrum of the fast Fourier transform of experimental and error signals. The primary objective of this study is to reduce the frequency dependency of FFTBM-SM evaluation. For this, it was proposed to reduce the cut off frequency, which was introduced to cut off spurious contributions, in FFTBM-SM. A method to determine an appropriate cut off frequency was also proposed. The FFTBM-SM with the modified cut off frequency showed a significant improvement of the accuracy quantification

  19. Modification of the fast fourier transform-based method by signal mirroring for accuracy quantification of thermal-hydraulic system code

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Tae Wook; Jeong, Jae Jun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Choi, Ki Yong [Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of)

    2017-08-15

    A thermal–hydraulic system code is an essential tool for the design and safety analysis of a nuclear power plant, and its accuracy quantification is very important for the code assessment and applications. The fast Fourier transform-based method (FFTBM) by signal mirroring (FFTBM-SM) has been used to quantify the accuracy of a system code by using a comparison of the experimental data and the calculated results. The method is an improved version of the FFTBM, and it is known that the FFTBM-SM judges the code accuracy in a more consistent and unbiased way. However, in some applications, unrealistic results have been obtained. In this study, it was found that accuracy quantification by FFTBM-SM is dependent on the frequency spectrum of the fast Fourier transform of experimental and error signals. The primary objective of this study is to reduce the frequency dependency of FFTBM-SM evaluation. For this, it was proposed to reduce the cut off frequency, which was introduced to cut off spurious contributions, in FFTBM-SM. A method to determine an appropriate cut off frequency was also proposed. The FFTBM-SM with the modified cut off frequency showed a significant improvement of the accuracy quantification.

  20. Study of lattice strain evolution during biaxial deformation of stainless steel using a finite element and fast Fourier transform based multi-scale approach

    International Nuclear Information System (INIS)

    Upadhyay, M.V.; Van Petegem, S.; Panzner, T.; Lebensohn, R.A.; Van Swygenhoven, H.

    2016-01-01

    A multi-scale elastic-plastic finite element and fast Fourier transform based approach is proposed to study lattice strain evolution during uniaxial and biaxial loading of stainless steel cruciform shaped samples. At the macroscale, finite element simulations capture the complex coupling between applied forces in the arms and gauge stresses induced by the cruciform geometry. The predicted gauge stresses are used as macroscopic boundary conditions to drive a mesoscale elasto-viscoplastic fast Fourier transform model, from which lattice strains are calculated for particular grain families. The calculated lattice strain evolution matches well with experimental values from in-situ neutron diffraction measurements and demonstrates that the spread in lattice strain evolution between different grain families decreases with increasing biaxial stress ratio. During equibiaxial loading, the model reveals that the lattice strain evolution in all grain families, and not just the 311 grain family, is representative of the polycrystalline response. A detailed quantitative analysis of the 200 and 220 grain family reveals that the contribution of elastic and plastic anisotropy to the lattice strain evolution significantly depends on the applied stress ratio.

  1. Fourier-transform-infrared-spectroscopy based spectral-biomarker selection towards optimum diagnostic differentiation of oral leukoplakia and cancer.

    Science.gov (United States)

    Banerjee, Satarupa; Pal, Mousumi; Chakrabarty, Jitamanyu; Petibois, Cyril; Paul, Ranjan Rashmi; Giri, Amita; Chatterjee, Jyotirmoy

    2015-10-01

    In search of specific label-free biomarkers for differentiation of two oral lesions, namely oral leukoplakia (OLK) and oral squamous-cell carcinoma (OSCC), Fourier-transform infrared (FTIR) spectroscopy was performed on paraffin-embedded tissue sections from 47 human subjects (eight normal (NOM), 16 OLK, and 23 OSCC). Difference between mean spectra (DBMS), Mann-Whitney's U test, and forward feature selection (FFS) techniques were used for optimising spectral-marker selection. Classification of diseases was performed with linear and quadratic support vector machine (SVM) at 10-fold cross-validation, using different combinations of spectral features. It was observed that six features obtained through FFS enabled differentiation of NOM and OSCC tissue (1782, 1713, 1665, 1545, 1409, and 1161 cm(-1)) and were most significant, able to classify OLK and OSCC with 81.3 % sensitivity, 95.7 % specificity, and 89.7 % overall accuracy. The 43 spectral markers extracted through Mann-Whitney's U Test were the least significant when quadratic SVM was used. Considering the high sensitivity and specificity of the FFS technique, extracting only six spectral biomarkers was thus most useful for diagnosis of OLK and OSCC, and to overcome inter and intra-observer variability experienced in diagnostic best-practice histopathological procedure. By considering the biochemical assignment of these six spectral signatures, this work also revealed altered glycogen and keratin content in histological sections which could able to discriminate OLK and OSCC. The method was validated through spectral selection by the DBMS technique. Thus this method has potential for diagnostic cost minimisation for oral lesions by label-free biomarker identification.

  2. Modeling Microalgal Biosediment Formation Based on Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Monitoring.

    Science.gov (United States)

    Ogburn, Zachary L; Vogt, Frank

    2018-03-01

    With increasing amounts of anthropogenic pollutants being released into ecosystems, it becomes ever more important to understand their fate and interactions with living organisms. Microalgae play an important ecological role as they are ubiquitous in marine environments and sequester inorganic pollutants which they transform into organic biomass. Of particular interest in this study is their role as a sink for atmospheric CO 2 , a greenhouse gas, and nitrate, one cause of harmful algal blooms. Novel chemometric hard-modeling methodologies have been developed for interpreting phytoplankton's chemical and physiological adaptations to changes in their growing environment. These methodologies will facilitate investigations of environmental impacts of anthropogenic pollutants on chemical and physiological properties of marine microalgae (here: Nannochloropsis oculata). It has been demonstrated that attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can gain insights into both and this study only focuses on the latter. From time-series of spectra, the rate of microalgal biomass settling on top of a horizontal ATR element is derived which reflects several of phytoplankton's physiological parameters such as growth rate, cell concentrations, cell size, and buoyancy. In order to assess environmental impacts on such parameters, microalgae cultures were grown under 25 different chemical scenarios covering 200-600 ppm atmospheric CO 2 and 0.35-0.75 mM dissolved NO 3 - . After recording time-series of ATR FT-IR spectra, a multivariate curve resolution-alternating least squares (MCR-ALS) algorithm extracted spectroscopic and time profiles from each data set. From the time profiles, it was found that in the considered concentration ranges only NO 3 - has an impact on the cells' physiological properties. In particular, the cultures' growth rate has been influenced by the ambient chemical conditions. Thus, the presented spectroscopic

  3. A Generalized Spatial Correlation Model for 3D MIMO Channels based on the Fourier Coefficients of Power Spectrums

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-05-07

    Previous studies have confirmed the adverse impact of fading correlation on the mutual information (MI) of two-dimensional (2D) multiple-input multiple-output (MIMO) systems. More recently, the trend is to enhance the system performance by exploiting the channel’s degrees of freedom in the elevation, which necessitates the derivation and characterization of three-dimensional (3D) channels in the presence of spatial correlation. In this paper, an exact closed-form expression for the Spatial Correlation Function (SCF) is derived for 3D MIMO channels. This novel SCF is developed for a uniform linear array of antennas with nonisotropic antenna patterns. The proposed method resorts to the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials. The resulting expression depends on the underlying arbitrary angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty of the proposed method lies in the SCF being valid for any 3D propagation environment. The developed SCF determines the covariance matrices at the transmitter and the receiver that form the Kronecker channel model. In order to quantify the effects of correlation on the system performance, the information-theoretic deterministic equivalents of the MI for the Kronecker model are utilized in both mono-user and multi-user cases. Numerical results validate the proposed analytical expressions and elucidate the dependence of the system performance on azimuth and elevation angular spreads and antenna patterns. Some useful insights into the behaviour of MI as a function of downtilt angles are provided. The derived model will help evaluate the performance of correlated 3D MIMO channels in the future.

  4. On the Scaled Fractional Fourier Transformation Operator

    International Nuclear Information System (INIS)

    Hong-Yi, Fan; Li-Yun, Hu

    2008-01-01

    Based on our previous study [Chin. Phys. Lett. 24 (2007) 2238] in which the Fresnel operator corresponding to classical Fresnel transform was introduced, we derive the fractional Fourier transformation operator, and the optical operator method is then enriched

  5. The derivative-free Fourier shell identity for photoacoustics.

    Science.gov (United States)

    Baddour, Natalie

    2016-01-01

    In X-ray tomography, the Fourier slice theorem provides a relationship between the Fourier components of the object being imaged and the measured projection data. The Fourier slice theorem is the basis for X-ray Fourier-based tomographic inversion techniques. A similar relationship, referred to as the 'Fourier shell identity' has been previously derived for photoacoustic applications. However, this identity relates the pressure wavefield data function and its normal derivative measured on an arbitrary enclosing aperture to the three-dimensional Fourier transform of the enclosed object evaluated on a sphere. Since the normal derivative of pressure is not normally measured, the applicability of the formulation is limited in this form. In this paper, alternative derivations of the Fourier shell identity in 1D, 2D polar and 3D spherical polar coordinates are presented. The presented formulations do not require the normal derivative of pressure, thereby lending the formulas directly adaptable for Fourier based absorber reconstructions.

  6. On Fourier re-expansions

    OpenAIRE

    Liflyand, E.

    2012-01-01

    We study an extension to Fourier transforms of the old problem on absolute convergence of the re-expansion in the sine (cosine) Fourier series of an absolutely convergent cosine (sine) Fourier series. The results are obtained by revealing certain relations between the Fourier transforms and their Hilbert transforms.

  7. Biological Bases for Radiation Adaptive Responses in the Lung

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Bobby R. [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Lin, Yong [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Wilder, Julie [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States); Belinsky, Steven [Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (United States)

    2015-03-01

    Our main research objective was to determine the biological bases for low-dose, radiation-induced adaptive responses in the lung, and use the knowledge gained to produce an improved risk model for radiation-induced lung cancer that accounts for activated natural protection, genetic influences, and the role of epigenetic regulation (epiregulation). Currently, low-dose radiation risk assessment is based on the linear-no-threshold hypothesis, which now is known to be unsupported by a large volume of data.

  8. Fully-automated identification of fish species based on otolith contour: using short-time Fourier transform and discriminant analysis (STFT-DA).

    Science.gov (United States)

    Salimi, Nima; Loh, Kar Hoe; Kaur Dhillon, Sarinder; Chong, Ving Ching

    2016-01-01

    Background. Fish species may be identified based on their unique otolith shape or contour. Several pattern recognition methods have been proposed to classify fish species through morphological features of the otolith contours. However, there has been no fully-automated species identification model with the accuracy higher than 80%. The purpose of the current study is to develop a fully-automated model, based on the otolith contours, to identify the fish species with the high classification accuracy. Methods. Images of the right sagittal otoliths of 14 fish species from three families namely Sciaenidae, Ariidae, and Engraulidae were used to develop the proposed identification model. Short-time Fourier transform (STFT) was used, for the first time in the area of otolith shape analysis, to extract important features of the otolith contours. Discriminant Analysis (DA), as a classification technique, was used to train and test the model based on the extracted features. Results. Performance of the model was demonstrated using species from three families separately, as well as all species combined. Overall classification accuracy of the model was greater than 90% for all cases. In addition, effects of STFT variables on the performance of the identification model were explored in this study. Conclusions. Short-time Fourier transform could determine important features of the otolith outlines. The fully-automated model proposed in this study (STFT-DA) could predict species of an unknown specimen with acceptable identification accuracy. The model codes can be accessed at http://mybiodiversityontologies.um.edu.my/Otolith/ and https://peerj.com/preprints/1517/. The current model has flexibility to be used for more species and families in future studies.

  9. Compact Microwave Fourier Spectrum Analyzer

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  10. A Note on Fourier and the Greenhouse Effect

    OpenAIRE

    Postma, Joseph E.

    2015-01-01

    Joseph Fourier's discovery of the greenhouse effect is discussed and is compared to the modern conception of the greenhouse effect. It is confirmed that what Fourier discovered is analogous to the modern concept of the greenhouse effect. However, the modern concept of the greenhouse effect is found to be based on a paradoxical analogy to Fourier's greenhouse work and so either Fourier's greenhouse work, the modern conception of the greenhouse effect, or the modern definition of heat is incorr...

  11. Hyperbolic Cross Truncations for Stochastic Fourier Cosine Series

    Science.gov (United States)

    Zhang, Zhihua

    2014-01-01

    Based on our decomposition of stochastic processes and our asymptotic representations of Fourier cosine coefficients, we deduce an asymptotic formula of approximation errors of hyperbolic cross truncations for bivariate stochastic Fourier cosine series. Moreover we propose a kind of Fourier cosine expansions with polynomials factors such that the corresponding Fourier cosine coefficients decay very fast. Although our research is in the setting of stochastic processes, our results are also new for deterministic functions. PMID:25147842

  12. Radiobiology: radiotherapy and radiation protection, fundamental bases

    International Nuclear Information System (INIS)

    Tubiana, M.

    2008-01-01

    The radiobiology constitutes one of the most successful tools of the research in biology. It has for twenty years, as all the biology, strangely progressed with the increase of the knowledge in molecular biology and the new techniques of the genome exploration. It allows to dissect the living matter, to analyze the repair mechanisms of the damage in the molecular, cellular and tissular scale, to understand the transformation of a normal cell in cancer cell as well as the system of defence, multiple and powerful, against the carcinogenesis to mammals, notably to man. The radiobiology is the base on which the radiotherapy was built and perfected, now this one contributes largely to the cure of half of the cancers. With the increase of the number of the long-term cures, the indication of the second cancers provoked by the ionizing radiations and the cytotoxic largely increased: to reduce their frequency is an imperative, the radiobiology has to help to make it. (N.C.)

  13. Fourier plane imaging microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, Daniel, E-mail: daniel.dominguez@ttu.edu; Peralta, Luis Grave de [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Alharbi, Nouf; Alhusain, Mdhaoui [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Bernussi, Ayrton A. [Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-09-14

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

  14. New approach to radiation monitoring: citizen based radiation measurement

    International Nuclear Information System (INIS)

    Kuca, P.; Helebrant, J.

    2016-01-01

    Both the Fukushima Dai-chi NPP accident in Japan in 2011 and the Chernobyl NPP accident in USSR in 1986 similarly to the first one have shown a necessity to find a way how to improve confidence of the public to official authorities. It is important especially in such a case of severe accidents with significant consequences in large inhabited areas around the damaged NPP. A lack of public confidence to officials was caused mostly by rather poor communication between official authorities and the public, as well by restricted access to the information for the public. It may have extremely negative impacts on the public understanding of actual situation and its possible risks, on public acceptance of necessary protective measures and participation of the public in remediation of the affected areas. One of possible ways to improve the situation can be implementation of citizen radiation monitoring on voluntary basis. Making sure, the official results are compatible with public self-measured ones, the public probably has more confidence in them. In the Czech Republic the implementation of such an approach is tested in the framework of security research founded by the Czech Ministry of the Interior - the research project RAMESIS solved by SURO. (authors)

  15. Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and Orbitrap Based High Resolution Mass Spectrometry in Metabolomics and Lipidomics

    Science.gov (United States)

    Ghaste, Manoj; Mistrik, Robert; Shulaev, Vladimir

    2016-01-01

    Metabolomics, along with other “omics” approaches, is rapidly becoming one of the major approaches aimed at understanding the organization and dynamics of metabolic networks. Mass spectrometry is often a technique of choice for metabolomics studies due to its high sensitivity, reproducibility and wide dynamic range. High resolution mass spectrometry (HRMS) is a widely practiced technique in analytical and bioanalytical sciences. It offers exceptionally high resolution and the highest degree of structural confirmation. Many metabolomics studies have been conducted using HRMS over the past decade. In this review, we will explore the latest developments in Fourier transform mass spectrometry (FTMS) and Orbitrap based metabolomics technology, its advantages and drawbacks for using in metabolomics and lipidomics studies, and development of novel approaches for processing HRMS data. PMID:27231903

  16. SU(2 and SU(1,1 Approaches to Phase Operators and Temporally Stable Phase States: Applications to Mutually Unbiased Bases and Discrete Fourier Transforms

    Directory of Open Access Journals (Sweden)

    Maurice R. Kibler

    2010-07-01

    Full Text Available We propose a group-theoretical approach to the generalized oscillator algebra Aκ recently investigated in J. Phys. A: Math. Theor. 2010, 43, 115303. The case κ ≥ 0 corresponds to the noncompact group SU(1,1 (as for the harmonic oscillator and the Pöschl-Teller systems while the case κ < 0 is described by the compact group SU(2 (as for the Morse system. We construct the phase operators and the corresponding temporally stable phase eigenstates for Aκ in this group-theoretical context. The SU(2 case is exploited for deriving families of mutually unbiased bases used in quantum information. Along this vein, we examine some characteristics of a quadratic discrete Fourier transform in connection with generalized quadratic Gauss sums and generalized Hadamard matrices.

  17. Detector for the FSD Fourier-diffractometer based on ZnS(Ag)/6LiF scintillation screen and wavelength shifting fibers readout

    International Nuclear Information System (INIS)

    Kuz'min, E.S.; Balagurov, A.M.; Bokuchava, G.D.; Zhuk, V.V.; Kudryashev, V.A.; Bulkin, A.P.; Trunov, V.A.

    2001-01-01

    At the IBR-2 pulsed reactor (FLNP, JINR, Dubna), a specialized time-of-flight instrument Fourier-Stress-Diffractometer (FSD) intended for the measurement of internal stresses in bulk samples by using high-resolution neutron diffraction is under construction. One of the main components of the diffractometer is a new-type detector with combined electronic - geometrical focusing uniting a large solid angle and a small geometry contribution to the instrumental resolution. The first two modules of the detector, based on scintillation screen ZnS(Ag)/ 6 LiF with wavelength shifting fibers readout have been developed and tested. The design of the detector and associated electronics are described. The method of time focusing surface approximation, using the screen flexibility is proposed. Characteristics of the tested modules in comparison with a detector of the previous generation are presented and advantages of the new detector design for high-resolution diffractometry are discussed

  18. Level of Radiofrequency (RF) Radiations from GSM Base Stations ...

    African Journals Online (AJOL)

    Levels of radiofrequency radiations around two global systems for mobile communication (GSM) base stations located in the vicinity of a residential quarter and workplace complex were measured. The effects of the radiofrequency radiations on albino mice placed in exposure cages and located around the base stations ...

  19. electromagnetic radiation exposure from cellular base station

    African Journals Online (AJOL)

    eobe

    2DEPARTMENT OF ELECTRICAL/ELECTRONIC ENGINEERING, FEDERAL ... equipment comply with international standards and thus the radiated field propagated from their installation ... adverse health effects such as blood brain barrier,.

  20. A local-area-network based radiation oncology microcomputer system

    International Nuclear Information System (INIS)

    Chu, W.K.; Taylor, T.K.; Kumar, P.P.; Imray, T.J.

    1985-01-01

    The application of computerized technology in the medical specialty of radiation oncology has gained wide acceptance in the past decade. Recognizing that most radiation oncology department personnel are familiar with computer operations and terminology, it appears reasonable to attempt to expand the computer's applications to other departmental activities, such as scheduling, record keeping, billing, treatment regimen and status, etc. Instead of sharing the processing capability available on the existent treatment minicomputer, the radiation oncology computer system is based upon a microcomputer local area network (LAN). The system was conceptualized in 1984 and completed in March 1985. This article outlines the LAN-based radiation oncology computer system

  1. Fourier analysis of conductive heat transfer for glazed roofing materials

    Energy Technology Data Exchange (ETDEWEB)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah [Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Zakaria, Nor Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  2. Fourier Transform Mass Spectrometry.

    Science.gov (United States)

    Gross, Michael L.; Rempel, Don L.

    1984-01-01

    Discusses the nature of Fourier transform mass spectrometry and its unique combination of high mass resolution, high upper mass limit, and multichannel advantage. Examines its operation, capabilities and limitations, applications (ion storage, ion manipulation, ion chemistry), and future applications and developments. (JN)

  3. Optimization of a space based radiator

    International Nuclear Information System (INIS)

    Sam, Kien Fan Cesar Hung; Deng Zhongmin

    2011-01-01

    Nowadays there is an increased demand in satellite weight reduction for the reduction of costs. Thermal control system designers have to face the challenge of reducing both the weight of the system and required heater power while maintaining the components temperature within their design ranges. The main purpose of this paper is to present an optimization of a heat pipe radiator applied to a practical engineering design application. For this study, a communications satellite payload panel was considered. Four radiator areas were defined instead of a centralized one in order to improve the heat rejection into space; the radiator's dimensions were determined considering worst hot scenario, solar fluxes, heat dissipation and the component's design temperature upper limit. Dimensions, thermal properties of the structural panel, optical properties and degradation/contamination on thermal control coatings were also considered. A thermal model was constructed for thermal analysis and two heat pipe network designs were evaluated and compared. The model that allowed better radiator efficiency was selected for parametric thermal analysis and optimization. This pursues finding the minimum size of the heat pipe network while keeping complying with thermal control requirements without increasing power consumption. - Highlights: →Heat pipe radiator optimization applied to a practical engineering design application. →The heat pipe radiator of a communications satellite panel is optimized. →A thermal model was built for parametric thermal analysis and optimization. →Optimal heat pipe network size is determined for the optimal weight solution. →The thermal compliance was verified by transient thermal analysis.

  4. Application of the Polynomial-Based Least Squares and Total Least Squares Models for the Attenuated Total Reflection Fourier Transform Infrared Spectra of Binary Mixtures of Hydroxyl Compounds.

    Science.gov (United States)

    Shan, Peng; Peng, Silong; Zhao, Yuhui; Tang, Liang

    2016-03-01

    An analysis of binary mixtures of hydroxyl compound by Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR FT-IR) and classical least squares (CLS) yield large model error due to the presence of unmodeled components such as H-bonded components. To accommodate these spectral variations, polynomial-based least squares (LSP) and polynomial-based total least squares (TLSP) are proposed to capture the nonlinear absorbance-concentration relationship. LSP is based on assuming that only absorbance noise exists; while TLSP takes both absorbance noise and concentration noise into consideration. In addition, based on different solving strategy, two optimization algorithms (limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm and Levenberg-Marquardt (LM) algorithm) are combined with TLSP and then two different TLSP versions (termed as TLSP-LBFGS and TLSP-LM) are formed. The optimum order of each nonlinear model is determined by cross-validation. Comparison and analyses of the four models are made from two aspects: absorbance prediction and concentration prediction. The results for water-ethanol solution and ethanol-ethyl lactate solution show that LSP, TLSP-LBFGS, and TLSP-LM can, for both absorbance prediction and concentration prediction, obtain smaller root mean square error of prediction than CLS. Additionally, they can also greatly enhance the accuracy of estimated pure component spectra. However, from the view of concentration prediction, the Wilcoxon signed rank test shows that there is no statistically significant difference between each nonlinear model and CLS. © The Author(s) 2016.

  5. Radiational and energetic characteristics of diatomic molecules (data base)

    International Nuclear Information System (INIS)

    Kuznetsova, L.A.; Pazyuk, E.A.; Stolyarov, A.V.

    1993-01-01

    Data base on radiational and energetic characteristics of diatomic molecules was created. The base consists of two parts: reference system and recommended data system. The reference system contains the information about studies of radiational and energetic parameters of more than 1500 electronic states and 1700 electron transfers for ∼ 350 diatomic molecules and their ions. The base bibliography includes ∼ 3000 publications. 11 refs., 1 figs

  6. Approximating the Analytic Fourier Transform with the Discrete Fourier Transform

    OpenAIRE

    Axelrod, Jeremy

    2015-01-01

    The Fourier transform is approximated over a finite domain using a Riemann sum. This Riemann sum is then expressed in terms of the discrete Fourier transform, which allows the sum to be computed with a fast Fourier transform algorithm more rapidly than via a direct matrix multiplication. Advantages and limitations of using this method to approximate the Fourier transform are discussed, and prototypical MATLAB codes implementing the method are presented.

  7. Real-time all-optical OFDM transmission system based on time-domain optical fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Kong, Deming; Røge, Kasper Meldgaard

    2014-01-01

    We propose a novel simple all-optical OFDM transmission system based on time-domain OFT using time-lenses. A real-time 160 Gbit/s DPSK OFDM transmission with 16 decorrelated data subcarriers is successfully demonstrated over 100 km....

  8. Ultra-high-speed all-channel serial-to-parallel conversion based on complete optical fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Morioka, Toshio

    2016-01-01

    We propose a serial-to-parallel conversion scheme based on complete OFT, allowing simultaneous conversion of all channels. We demonstrate all 32-channel simultaneous OTDM to WDM conversion of 320-Gbit/s DPSK and of 640-Gbit/s DQPSK signal, respectively....

  9. Modelling of a holographic interferometry based calorimeter for radiation dosimetry

    Science.gov (United States)

    Beigzadeh, A. M.; Vaziri, M. R. Rashidian; Ziaie, F.

    2017-08-01

    In this research work, a model for predicting the behaviour of holographic interferometry based calorimeters for radiation dosimetry is introduced. Using this technique for radiation dosimetry via measuring the variations of refractive index due to energy deposition of radiation has several considerable advantages such as extreme sensitivity and ability of working without normally used temperature sensors that disturb the radiation field. We have shown that the results of our model are in good agreement with the experiments performed by other researchers under the same conditions. This model also reveals that these types of calorimeters have the additional and considerable merits of transforming the dose distribution to a set of discernible interference fringes.

  10. Radiation detector system having heat pipe based cooling

    Science.gov (United States)

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  11. RADIATION PERFORMANCE OF GAN AND INAS/GAAS QUANTUM DOT BASED DEVICES SUBJECTED TO NEUTRON RADIATION

    Directory of Open Access Journals (Sweden)

    Dhiyauddin Ahmad Fauzi

    2017-05-01

    Full Text Available In addition to their useful optoelectronics functions, gallium nitride (GaN and quantum dots (QDs based structures are also known for their radiation hardness properties. With demands on such semiconductor material structures, it is important to investigate the differences in reliability and radiation hardness properties of these two devices. For this purpose, three sets of GaN light-emitting diode (LED and InAs/GaAs dot-in-a well (DWELL samples were irradiated with thermal neutron of fluence ranging from 3×1013 to 6×1014 neutron/cm2 in PUSPATI TRIGA research reactor. The radiation performances for each device were evaluated based on the current-voltage (I-V and capacitance-voltage (C-V electrical characterisation method. Results suggested that the GaN based sample is less susceptible to electrical changes due to the thermal neutron radiation effects compared to the QD based sample.

  12. Stem cell-based therapies for acute radiation syndrome

    International Nuclear Information System (INIS)

    Guha, Chandan

    2014-01-01

    Exposure to high doses of ionizing radiation in the event of accidental or intentional incident such as nuclear/radiological terrorism can lead to debilitating injuries to multiple organs resulting in death within days depending on the amount of radiation dose and the quality of radiation. Unfortunately, there is not a single FDA-licensed drug approved against acute radiation injury. The RadStem Center for Medical Countermeasures against Radiation (RadStem CMGR) program at Einstein is developing stem cell-based therapies to treat acute radiation syndrome (ARS). We have demonstrated that intravenous transplantation of bone marrow-derived and adipose-derived stromal cells, consisting of a mixture of mesenchymal, endothelial and myeloid progenitors can mitigate mice exposed to whole body irradiation of 12 Gy or whole abdominal irradiation of up to 20 Gy. We identified a variety of growth and differentiation factors that individually is unable to improve survival of animals exposed to lethal irradiation, but when administered sequentially mitigates radiation injury and improves survival. We termed this phenomenon as synthetic survival and describe a new paradigm whereby the 'synthetic survival' of irradiated tissues can be promoted by systemic administration of growth factors to amplify residual stem cell clonogens post-radiation exposure, followed by a differentiation factor that favors tissue stem cell differentiation. Synthetic survival can be applied to mitigate lethal radiation injury in multiple organs following radiation-induced hematopoeitic, gastrointestinal and pulmonary syndromes. (author)

  13. Tropospheric and total ozone columns over Paris (France measured using medium-resolution ground-based solar-absorption Fourier-transform infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    C. Viatte

    2011-10-01

    Full Text Available Ground-based Fourier-transform infrared (FTIR solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscopy", installed in Créteil (France. The capacity of the technique to separate stratospheric and tropospheric ozone is demonstrated. Daily mean tropospheric ozone columns derived from the Infrared Atmospheric Sounding Interferometer (IASI and from OASIS measurements are compared for summer 2009 and a good agreement of −5.6 (±16.1 % is observed. Also, a qualitative comparison between in-situ surface ozone measurements and OASIS data reveals OASIS's capacity to monitor seasonal tropospheric ozone variations, as well as ozone pollution episodes in summer 2009 around Paris. Two extreme pollution events are identified (on the 1 July and 6 August 2009 for which ozone partial columns from OASIS and predictions from a regional air-quality model (CHIMERE are compared following strict criteria of temporal and spatial coincidence. An average bias of 0.2%, a mean square error deviation of 7.6%, and a correlation coefficient of 0.91 is found between CHIMERE and OASIS, demonstrating the potential of a mid-resolution FTIR instrument in ground-based solar absorption geometry for tropospheric ozone monitoring.

  14. Spectral ’Fingerprinting’ of Phytoplankton Populations by Two-Dimensional Fluorescence and Fourier-Transform-Based Pattern Recognition.

    Science.gov (United States)

    1985-07-08

    Chlorella vulgaris and Aaphidinium carterae ) were synthetically added to each other in varying proportions from 0% C. vulgaris fluorescence to 100...C. vulgaris fluorescence in 10% increments. The proportions were calculated based on the maximum fluorescence intensity. The series of mixtures was...then correlated against the original 9 standard library in which the C. vulgaris and A. Carterae REs were represented. Table IV presents the results of

  15. Research of the fast data processing method for the Infrared fourier transform imaging spectrometer based on CUDA architecture

    Science.gov (United States)

    Yu, Chunchao; Du, Debiao; Xia, Fei; Huang, Xiaobo; Zheng, Weijian; Yan, Min; Lei, Zhenggang

    2017-10-01

    The windowing static spectrometer has the advantage of high spectral resolution and high flux. Then combined the spectrometer reconstruction processing algorithms with the new computer technology CUDA, for the large spectral data and the suitable of being processed in parallel lines. Researched the parallel algorithms and programming including the cube data access, restructuring , filtering, mirroring and FFT. The results show that, compared with the traditional spectral reconstruction algorithms, CUDA-based spectral reconstruction has been greatly speeds up the spectral reconstruction.

  16. Classical Fourier analysis

    CERN Document Server

    Grafakos, Loukas

    2014-01-01

    The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood–Paley theory. The primary readership is intended to be graduate students in mathematics with the prerequisite including satisfactory completion of courses in real and complex variables. The coverage of topics and exposition style are designed to leave no gaps in understanding and stimulate further study. This third edition includes new Sections 3.5, 4.4, 4.5 as well as a new chapter on “Weighted Inequalities,” which has been moved from GTM 250, 2nd Edition. Appendices I and B.9 are also new to this edition.  Countless corrections and improvements have been made to the material from the second edition. Additions and improvements include: more examples and applications, new and more relevant hints for the existing exercises, new exercises, and...

  17. Fourier techniques and applications

    CERN Document Server

    1985-01-01

    The first systematic methods of Fourier analysis date from the early eighteenth century with the work of Joseph Fourier on the problem of the flow of heat. (A brief history is contained in the first paper.) Given the initial tempera­ ture at all points of a region, the problem was to determine the changes in the temperature distribution over time. Understanding and predicting these changes was important in such areas as the handling of metals and the determination of geological and atmospheric temperatures. Briefly, Fourier noticed that the solution of the heat diffusion problem was simple if the initial temperature dis­ tribution was sinusoidal. He then asserted that any distri­ bution can be decomposed into a sum of sinusoids, these being the harmonics of the original function. This meant that the general solution could now be obtained by summing the solu­ tions of the component sinusoidal problems. This remarkable ability of the series of sinusoids to describe all "reasonable" functions, the sine qua n...

  18. Improved Fourier-transform profilometry

    International Nuclear Information System (INIS)

    Mao Xianfu; Chen Wenjing; Su Xianyu

    2007-01-01

    An improved optical geometry of the projected-fringe profilometry technique, in which the exit pupil of the projecting lens and the entrance pupil of the imaging lens are neither at the same height above the reference plane nor coplanar, is discussed and used in Fourier-transform profilometry. Furthermore, an improved fringe-pattern description and phase-height mapping formula based on the improved geometrical generalization is deduced. Employing the new optical geometry, it is easier for us to obtain the full-field fringe by moving either the projector or the imaging device. Therefore the new method offers a flexible way to obtain reliable height distribution of a measured object

  19. Discriminating electromagnetic radiation based on angle of incidence

    Science.gov (United States)

    Hamam, Rafif E.; Bermel, Peter; Celanovic, Ivan; Soljacic, Marin; Yeng, Adrian Y. X.; Ghebrebrhan, Michael; Joannopoulos, John D.

    2015-06-16

    The present invention provides systems, articles, and methods for discriminating electromagnetic radiation based upon the angle of incidence of the electromagnetic radiation. In some cases, the materials and systems described herein can be capable of inhibiting reflection of electromagnetic radiation (e.g., the materials and systems can be capable of transmitting and/or absorbing electromagnetic radiation) within a given range of angles of incidence at a first incident surface, while substantially reflecting electromagnetic radiation outside the range of angles of incidence at a second incident surface (which can be the same as or different from the first incident surface). A photonic material comprising a plurality of periodically occurring separate domains can be used, in some cases, to selectively transmit and/or selectively absorb one portion of incoming electromagnetic radiation while reflecting another portion of incoming electromagnetic radiation, based upon the angle of incidence. In some embodiments, one domain of the photonic material can include an isotropic dielectric function, while another domain of the photonic material can include an anisotropic dielectric function. In some instances, one domain of the photonic material can include an isotropic magnetic permeability, while another domain of the photonic material can include an anisotropic magnetic permeability. In some embodiments, non-photonic materials (e.g., materials with relatively large scale features) can be used to selectively absorb incoming electromagnetic radiation based on angle of incidence.

  20. Development of lightweight radiators for lunar based power systems

    International Nuclear Information System (INIS)

    Juhasz, A.J.; Bloomfield, H.S.

    1994-05-01

    This report discusses application of a new lightweight carbon-carbon (C-C) space radiator technology developed under the NASA Civil-Space Technology Initiative (CSTI) High Capacity Power Program to a 20 kWe lunar based power system. This system comprises a nuclear (SP-100 derivative) heat source, a Closed Brayton Cycle (CBC) power conversion unit with heat rejection by means of a plane radiator. The new radiator concept is based on a C-C composite heat pipe with integrally woven fins and a thin walled metallic liner for containment of the working fluid. Using measured areal specific mass values (1.5 kg/m2) for flat plate radiators, comparative CBC power system mass and performance calculations show significant advantages if conventional heat pipes for space radiators are replaced by the new C-C heat pipe technology

  1. Radiation protection optimization using a knowledge based methodology

    International Nuclear Information System (INIS)

    Reyes-Jimenez, J.; Tsoukalas, L.H.

    1991-01-01

    This paper presents a knowledge based methodology for radiological planning and radiation protection optimization. The cost-benefit methodology described on International Commission of Radiation Protection Report No. 37 is employed within a knowledge based framework for the purpose of optimizing radiation protection and plan maintenance activities while optimizing radiation protection. 1, 2 The methodology is demonstrated through an application to a heating ventilation and air conditioning (HVAC) system. HVAC is used to reduce radioactivity concentration levels in selected contaminated multi-compartment models at nuclear power plants when higher than normal radiation levels are detected. The overall objective is to reduce personnel exposure resulting from airborne radioactivity, when routine or maintenance access is required in contaminated areas. 2 figs, 15 refs

  2. Fourier transforms principles and applications

    CERN Document Server

    Hansen, Eric W

    2014-01-01

    Fourier Transforms: Principles and Applications explains transform methods and their applications to electrical systems from circuits, antennas, and signal processors-ably guiding readers from vector space concepts through the Discrete Fourier Transform (DFT), Fourier series, and Fourier transform to other related transform methods.  Featuring chapter end summaries of key results, over two hundred examples and four hundred homework problems, and a Solutions Manual this book is perfect for graduate students in signal processing and communications as well as practicing engineers.

  3. Multichannel Dynamic Fourier-Transform IR Spectrometer

    Science.gov (United States)

    Balashov, A. A.; Vaguine, V. A.; Golyak, Il. S.; Morozov, A. N.; Khorokhorin, A. I.

    2017-09-01

    A design of a multichannel continuous scan Fourier-transform IR spectrometer for simultaneous recording and analysis of the spectral characteristics of several objects is proposed. For implementing the design, a multi-probe fiber is used, constructed from several optical fibers connected into a single optical connector and attached at the output of the interferometer. The Fourier-transform spectrometer is used as a signal modulator. Each fiber is individually mated with an investigated sample and a dedicated radiation detector. For the developed system, the radiation intensity of the spectrometer is calculated from the condition of the minimum spectral resolution and parameters of the optical fibers. Using the proposed design, emission spectra of a gas-discharge neon lamp have been recorded using a single fiber 1 mm in diameter with a numerical aperture NA = 0.22.

  4. Photon acceleration-based radiation sources

    International Nuclear Information System (INIS)

    Hoffman, J. R.; Muggli, P.; Katsouleas, T.; Mori, W. B.; Joshi, C.

    1999-01-01

    The acceleration and deceleration of photons in a plasma provides the means for a series of new radiation sources. Previous work on a DC to AC Radiation Converter (DARC source) has shown variable acceleration of photons having zero frequency (i.e., an electrostatic field) to between 6 and 100 GHz (1-3). These sources all had poor guiding characteristics resulting in poor power coupling from the source to the load. Continuing research has identified a novel way to integrate the DARC source into a waveguide. The so called ''pin structure'' uses stainless steel pins inserted through the narrow side of an X band waveguide to form the electrostatic field pattern (k≠0, ω=0). The pins are spaced such that the absorption band resulting from this additional periodic structure is outside of the X band range (8-12 GHz), in which the normal waveguide characteristics are left unchanged. The power of this X band source is predicted theoretically to scale quadratically with the pin bias voltage as -800 W/(kV) 2 and have a pulse width of -1 ns. Cold tests and experimental results are presented. Applications for a high power, short pulse radiation source extends to the areas of landmine detection, improved radar resolution, and experimental investigations of molecular systems

  5. Application of the Fast Fourier Transform Based Method to assist in the qualification process for the PSB-VVER1000 RELAP5 nodalisation

    International Nuclear Information System (INIS)

    Muellner, N.; Seidelberger, E.; Del Nevo, A.; D'Auria, F.

    2005-01-01

    One dimensional Thermal-Hydraulic-System (TH-SYS) codes like RELAP5 provide a degree of freedom that is significantly greater than desired. An undisciplined code user with some experience usually can achieve any pre-set results by tuning the nodalization. To take some freedom away from the user and achieve code user independent results several strategies were adopted. The approach of the UNIPI is to develop a multi purpose nodalization which must pass a rigorous nodalization qualification process. A qualified nodalization is also the basis to apply the Uncertainty Methodology based on Accuracy Extrapolation (UMAE) or to develop the accuracy database and to apply the Code with capability of Internal Assessment of Uncertainty (CIAU). An important part of the nodalization qualification is to verify the results of the nodalization approach against experimental data. In this context the Fast Fourier Transform Based Method (FFTBM) provides an independent tool to assess the quantitative accuracy of the analysis. This paper will present a series of RELAP5 calculations, each assessed by the FFTBM, which analyze an experiment at the PSB-VVER1000 facility This experiment is a 0.7% Small Break (SB) Loss Of Coolant Accident (LOCA) in the Cold Leg (CL) near the Reactor Pressure Vessel (RPV). The FFTBM was used to establish a range in which parameters like power, break area or total heat losses can vary, while the nodalization is still qualified from a quantitative point of view. (author)

  6. Aqueous contaminant detection via UiO-66 thin film optical fiber sensor platform with fast Fourier transform based spectrum analysis

    Science.gov (United States)

    Nazari, Marziyeh; Rubio-Martinez, Marta; Babarao, Ravichandar; Ayad Younis, Adel; Collins, Stephen F.; Hill, Matthew R.; Duke, Mikel C.

    2018-01-01

    Routine water quality monitoring is required in drinking and waste water management. A particular interest is to measure concentrations of a range of diverse contaminants on-site or remotely in real time. Here we present metal organic framework (MOF) integrated optical fiber sensor that allows for rapid optical measurement based on fast Fourier transform (FFT) spectrum analysis. The end-face of these glass optical fibers was modified with UiO-66(Zr) MOF thin film by in situ hydrothermal synthesis for the detection of the model contaminants, Rhodamine-B and 4-Aminopyridine, in water. The sensing mechanism is based on the change in the optical path length of the thin film induced by the adsorption of chemical molecules by UiO-66. Using FFT analysis, various modes of interaction (physical and chemical) became apparent, showing both irreversible changes upon contact with the contaminant, as well as reversible changes according to actual concentration. This was indicated by the second harmonic elevation to a certain level translating to high sensitivity detection.

  7. On the Fourier integral theorem

    NARCIS (Netherlands)

    Koekoek, J.

    1987-01-01

    Introduction. In traditional proofs of convergence of Fourier series and of the Fourier integraI theorem basic tools are the theory of Dirichlet integraIs and the Riemann-Lebesgue lemma. Recently CHERNOFF [I) and REoIlEFFER (2) gave new proofs of convergenceof Fourier series which make no use of the

  8. Development of multi copter based autonomous unmanned aerial radiation monitoring system for the remote impact assessment of radiation emergencies

    International Nuclear Information System (INIS)

    Jose, Jis Romal; Gupta, Ashutosh; Bahadur, Shuchita; Chaudhury, Probal; Pradeepkumar, K.S.

    2016-01-01

    During any radiation emergency, the level and extent of radioactive contamination need to be monitored for the timely and effective implementation of countermeasures to reduce the radiation exposure to public. In such a scenario, radiation surveillance can be carried out using either ground based mobile monitoring techniques or aerial radiation monitoring. Aerial radiation monitoring is quick and capable of scanning the areas which are not easily accessible by the ground based mobile monitoring. Compact unmanned aerial vehicle based radiation surveillance system is ideal in above mentioned radiation emergency scenarios as it can be rapidly deployed in the affected area and radiation exposure to the monitoring personal can be totally avoided. This paper describes development of multi copter based autonomous unmanned aerial radiation monitoring system for the remote impact assessment of radiation emergencies

  9. Synchrotron- and focal plane array-based Fourier-transform infrared spectroscopy differentiates the basalis and functionalis epithelial endometrial regions and identifies putative stem cell regions of human endometrial glands.

    Science.gov (United States)

    Theophilou, Georgios; Morais, Camilo L M; Halliwell, Diane E; Lima, Kássio M G; Drury, Josephine; Martin-Hirsch, Pierre L; Stringfellow, Helen F; Hapangama, Dharani K; Martin, Francis L

    2018-05-09

    The cyclical process of regeneration of the endometrium suggests that it may contain a cell population that can provide daughter cells with high proliferative potential. These cell lineages are clinically significant as they may represent clonogenic cells that may also be involved in tumourigenesis as well as endometriotic lesion development. To determine whether the putative stem cell location within human uterine tissue can be derived using vibrational spectroscopy techniques, normal endometrial tissue was interrogated by two spectroscopic techniques. Paraffin-embedded uterine tissues containing endometrial glands were sectioned to 10-μm-thick parallel tissue sections and were floated onto BaF 2 slides for synchrotron radiation-based Fourier-transform infrared (SR-FTIR) microspectroscopy and globar focal plane array-based FTIR spectroscopy. Different spectral characteristics were identified depending on the location of the glands examined. The resulting infrared spectra were subjected to multivariate analysis to determine associated biophysical differences along the length of longitudinal and crosscut gland sections. Comparison of the epithelial cellular layer of transverse gland sections revealed alterations indicating the presence of putative transient-amplifying-like cells in the basalis and mitotic cells in the functionalis. SR-FTIR microspectroscopy of the base of the endometrial glands identified the location where putative stem cells may reside at the same time pointing towards ν s PO 2 - in DNA and RNA, nucleic acids and amide I and II vibrations as major discriminating factors. This study supports the view that vibration spectroscopy technologies are a powerful adjunct to our understanding of the stem cell biology of endometrial tissue. Graphical abstract ᅟ.

  10. MgB2-Based Bolometer Array for Far Infra-Red Thermal Imaging and Fourier Transform Spectroscopy Applications

    Science.gov (United States)

    Lakew, B.; Aslam, S.; Brasunas, J.

    2012-01-01

    The mid-superconducting critical temperature (T(sub c) approximately 39 K) of the simple binary, intermetallic MgB, [1] makes it a very good candidate for the development of the next generation of electrooptical devices (e.g. [2]). In particular, recent advances in thin film deposition teclmiques to attain higb quality polycrystalline thin film MgB, deposited on SiN-Si substrates, with T(sub c) approximately 38K [3] coupled with the low voltage noise performance of the film [4] makes it higbly desirable for the development of moderately cooled bolometer arrays for integration into future space-bourne far infra-red (FIR) spectrometers and thermal mappers for studying the outer planets, their icy moons and other moons of interest in the 17-250 micrometer spectral wavelength range. Presently, commercially available pyroelectric detectors operating at 300 K have specific detectivity, D(*), around 7 x 10(exp 8) to 2 x 10(exp 9) centimeters square root of Hz/W. However, a MgB2 thin film based bolometer using a low-stress (less than 140 MPa) SiN membrane isolated from the substrate by a small thermal conductive link, operating at 38 K, promises to have two orders of magnitude higher specific detectivity [5][6].

  11. Computer Based Radiation Protection- A New Cd-Rom

    International Nuclear Information System (INIS)

    Geringer, T.; Bammer, M.; Ablber, M.

    2004-01-01

    Within the next few years, there'll be a lot of new challenges required from radiation protection. According to EU regulation[1] and the new austrian radiation protection law [2] regular additional training are requested. Patients protection in diagnostic and therapeutic usage of ionising radiation gains also more and more importance.[3] Not really surprisingly, the general population is definitely highly aware of the risks coming with the usage of radionuclides and x-rays in medicine. Furthermore, the nuclear power plant in Temelin, near the austrian border initiated a lively discussion about risks, necessity and use of ionising radiation in medicine and industry. It turned out to be a really hard job handling these topics in public. A brilliant didactics based on independent information and viewpoints was required. ARC Seibersdorf Research GmbH, represented by the department of medical technical applications and the radiation protection academy, developed an interactive CD-ROM covering several applications: Basics on radiation protection for medical and technical personnel ; preparation for a radiation protection training. Repetition of the main topics for graduates of a radiation protection training. Basics on radiation protection and emergency management for medical staff as well as for the general public. (Author)

  12. Investigation of graphene-based nanoscale radiation sensitive materials

    Science.gov (United States)

    Robinson, Joshua A.; Wetherington, Maxwell; Hughes, Zachary; LaBella, Michael, III; Bresnehan, Michael

    2012-06-01

    Current state-of-the-art nanotechnology offers multiple benefits for radiation sensing applications. These include the ability to incorporate nano-sized radiation indicators into widely used materials such as paint, corrosion-resistant coatings, and ceramics to create nano-composite materials that can be widely used in everyday life. Additionally, nanotechnology may lead to the development of ultra-low power, flexible detection systems that can be embedded in clothing or other systems. Graphene, a single layer of graphite, exhibits exceptional electronic and structural properties, and is being investigated for high-frequency devices and sensors. Previous work indicates that graphene-oxide (GO) - a derivative of graphene - exhibits luminescent properties that can be tailored based on chemistry; however, exploration of graphene-oxide's ability to provide a sufficient change in luminescent properties when exposed to gamma or neutron radiation has not been carried out. We investigate the mechanisms of radiation-induced chemical modifications and radiation damage induced shifts in luminescence in graphene-oxide materials to provide a fundamental foundation for further development of radiation sensitive detection architectures. Additionally, we investigate the integration of hexagonal boron nitride (hBN) with graphene-based devices to evaluate radiation induced conductivity in nanoscale devices. Importantly, we demonstrate the sensitivity of graphene transport properties to the presence of alpha particles, and discuss the successful integration of hBN with large area graphene electrodes as a means to provide the foundation for large-area nanoscale radiation sensors.

  13. Radiation

    International Nuclear Information System (INIS)

    Davidson, J.H.

    1986-01-01

    The basic facts about radiation are explained, along with some simple and natural ways of combating its ill-effects, based on ancient healing wisdom as well as the latest biochemical and technological research. Details are also given of the diet that saved thousands of lives in Nagasaki after the Atomic bomb attack. Special comment is made on the use of radiation for food processing. (U.K.)

  14. Identification of Diethyl 2,5-Dioxahexane Dicarboxylate and Polyethylene Carbonate as Decomposition Products of Ethylene Carbonate Based Electrolytes by Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Shi, Feifei; Zhao, Hui; Liu, Gao; Ross, Philip N.; Somorjai, Gabor A.; Komvopoulos, Kyriakos

    2014-01-01

    The formation of passive films on electrodes due to electrolyte decomposition significantly affects the reversibility of Li-ion batteries (LIBs); however, understanding of the electrolyte decomposition process is still lacking. The decomposition products of ethylene carbonate (EC)-based electrolytes on Sn and Ni electrodes are investigated in this study by Fourier transform infrared (FTIR) spectroscopy. The reference compounds, diethyl 2,5-dioxahexane dicarboxylate (DEDOHC) and polyethylene carbonate (poly-EC), were synthesized, and their chemical structures were characterized by FTIR spectroscopy and nuclear magnetic resonance (NMR). Assignment of the vibration frequencies of these compounds was assisted by quantum chemical (Hartree-Fock) calculations. The effect of Li-ion solvation on the FTIR spectra was studied by introducing the synthesized reference compounds into the electrolyte. EC decomposition products formed on Sn and Ni electrodes were identified as DEDOHC and poly-EC by matching the features of surface species formed on the electrodes with reference spectra. The results of this study demonstrate the importance of accounting for the solvation effect in FTIR analysis of the decomposition products forming on LIB electrodes. © 2014 American Chemical Society.

  15. Molecular toxicity of triclosan and carbamazepine to green algae Chlorococcum sp.: A single cell view using synchrotron-based Fourier transform infrared spectromicroscopy.

    Science.gov (United States)

    Xin, Xiaying; Huang, Guohe; Liu, Xia; An, Chunjiang; Yao, Yao; Weger, Harold; Zhang, Peng; Chen, Xiujuan

    2017-07-01

    Although pharmaceuticals and personal care products have been used and introduced into the environment in large quantities, little information on potential ecological risks is currently available considering their effects on living organisms. We verified the feasibility of using synchrotron-based Fourier Transform Infrared (SR-FTIR) spectromicroscopy to explore in vivo toxic effects on single living Chlorococcum sp. cells. The study provided important information to achieve a better understanding of the toxic mechanism of triclosan and carbamazepine on living algae Chlorococcum sp.. Triclosan and carbamazepine had distinctive toxic effects on unicellular living algae. Most strikingly, triclosan had more dramatic toxic effects on biochemical components than carbamazepine. Triclosan can affect algae primarily by inhibiting fatty acid synthesis and causing protein aggregation. The toxicity response was irreversible at higher concentration (100.000 μM), but attenuated at lower concentration (0.391 μM) as time extended. Carbamazepine can produce hydrophobic interactions to affect the phospholipid bilayer and work on specific proteins to disfunction the cell membrane. Carbamazepine-exposed cells developed a resistance while extending exposure time. This is the first demonstration from an ecological standpoint that SR-FTIR can provide an innovative approach to reveal the toxicity of emerging pollutants in aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Identification of Diethyl 2,5-Dioxahexane Dicarboxylate and Polyethylene Carbonate as Decomposition Products of Ethylene Carbonate Based Electrolytes by Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Shi, Feifei

    2014-07-10

    The formation of passive films on electrodes due to electrolyte decomposition significantly affects the reversibility of Li-ion batteries (LIBs); however, understanding of the electrolyte decomposition process is still lacking. The decomposition products of ethylene carbonate (EC)-based electrolytes on Sn and Ni electrodes are investigated in this study by Fourier transform infrared (FTIR) spectroscopy. The reference compounds, diethyl 2,5-dioxahexane dicarboxylate (DEDOHC) and polyethylene carbonate (poly-EC), were synthesized, and their chemical structures were characterized by FTIR spectroscopy and nuclear magnetic resonance (NMR). Assignment of the vibration frequencies of these compounds was assisted by quantum chemical (Hartree-Fock) calculations. The effect of Li-ion solvation on the FTIR spectra was studied by introducing the synthesized reference compounds into the electrolyte. EC decomposition products formed on Sn and Ni electrodes were identified as DEDOHC and poly-EC by matching the features of surface species formed on the electrodes with reference spectra. The results of this study demonstrate the importance of accounting for the solvation effect in FTIR analysis of the decomposition products forming on LIB electrodes. © 2014 American Chemical Society.

  17. New Temperature-based Models for Predicting Global Solar Radiation

    International Nuclear Information System (INIS)

    Hassan, Gasser E.; Youssef, M. Elsayed; Mohamed, Zahraa E.; Ali, Mohamed A.; Hanafy, Ahmed A.

    2016-01-01

    Highlights: • New temperature-based models for estimating solar radiation are investigated. • The models are validated against 20-years measured data of global solar radiation. • The new temperature-based model shows the best performance for coastal sites. • The new temperature-based model is more accurate than the sunshine-based models. • The new model is highly applicable with weather temperature forecast techniques. - Abstract: This study presents new ambient-temperature-based models for estimating global solar radiation as alternatives to the widely used sunshine-based models owing to the unavailability of sunshine data at all locations around the world. Seventeen new temperature-based models are established, validated and compared with other three models proposed in the literature (the Annandale, Allen and Goodin models) to estimate the monthly average daily global solar radiation on a horizontal surface. These models are developed using a 20-year measured dataset of global solar radiation for the case study location (Lat. 30°51′N and long. 29°34′E), and then, the general formulae of the newly suggested models are examined for ten different locations around Egypt. Moreover, the local formulae for the models are established and validated for two coastal locations where the general formulae give inaccurate predictions. Mostly common statistical errors are utilized to evaluate the performance of these models and identify the most accurate model. The obtained results show that the local formula for the most accurate new model provides good predictions for global solar radiation at different locations, especially at coastal sites. Moreover, the local and general formulas of the most accurate temperature-based model also perform better than the two most accurate sunshine-based models from the literature. The quick and accurate estimations of the global solar radiation using this approach can be employed in the design and evaluation of performance for

  18. Development of radiation-curable resin based on natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Mohd, Dahlan; Harun, Abdul Ghani [Nuclear Energy Unit, Bangi, Selangor (Malaysia)

    1994-12-31

    A new radiation curable resin based on natural rubber has been developed. The resin was based on the reaction between low molecular weight epoxidised natural rubber and acrylic acid. When formulated with reactive monomers and photoinitiator, it solidified upon irradiation with UV light. The resin may find applications in coating for cellulosic-based substrates and pressure-sensitive adhesive.

  19. Development of radiation-curable resin based on natural rubber

    International Nuclear Information System (INIS)

    Dahlan Mohd; Abdul Ghani Harun

    1993-01-01

    A new radiation curable resin based on natural rubber has been developed. The resin was based on the reaction between low molecular weight epoxidised natural rubber and acrylic acid. When formulated with reactive monomers and photoinitiator, it solidified upon irradiation with UV light. The resin may find applications in coating for cellulosic-based substrates and pressure-sensitive adhesive

  20. The scientific bases of radiation protection

    International Nuclear Information System (INIS)

    Cosset, J.M.; Boissiere, A.; Eschenbrenner, A.

    2003-01-01

    Six articles constitute this chapter about radiation protection. Double strand breaks induced by K events on DNA, effects of dose rate on double strand breaks make the object of two first articles. The study of speciation can give information in the field of internal dosimetry, it is the subject of the third article. The fourth article relates the work about the distribution profiles of iodine 127 and iodine 129 among thyroid of young rats born of mother deprived in steady iodine but contaminated by iodine 129 in a period varying from 489 hours (new born) to 21 days (adolescents) after the birth. The fifth article studies the interest of the expansion in vivo of haematopoietic cells for the treatment of radioinduced aplastic anemia. The last text is devoted to the genotoxic effects of radio frequencies. (N.C.)

  1. Fast Fourier transform telescope

    International Nuclear Information System (INIS)

    Tegmark, Max; Zaldarriaga, Matias

    2009-01-01

    We propose an all-digital telescope for 21 cm tomography, which combines key advantages of both single dishes and interferometers. The electric field is digitized by antennas on a rectangular grid, after which a series of fast Fourier transforms recovers simultaneous multifrequency images of up to half the sky. Thanks to Moore's law, the bandwidth up to which this is feasible has now reached about 1 GHz, and will likely continue doubling every couple of years. The main advantages over a single dish telescope are cost and orders of magnitude larger field-of-view, translating into dramatically better sensitivity for large-area surveys. The key advantages over traditional interferometers are cost (the correlator computational cost for an N-element array scales as Nlog 2 N rather than N 2 ) and a compact synthesized beam. We argue that 21 cm tomography could be an ideal first application of a very large fast Fourier transform telescope, which would provide both massive sensitivity improvements per dollar and mitigate the off-beam point source foreground problem with its clean beam. Another potentially interesting application is cosmic microwave background polarization.

  2. Fourier Spectroscopy: A Bayesian Way

    Directory of Open Access Journals (Sweden)

    Stefan Schmuck

    2017-01-01

    Full Text Available The concepts of standard analysis techniques applied in the field of Fourier spectroscopy treat fundamental aspects insufficiently. For example, the spectra to be inferred are influenced by the noise contribution to the interferometric data, by nonprobed spatial domains which are linked to Fourier coefficients above a certain order, by the spectral limits which are in general not given by the Nyquist assumptions, and by additional parameters of the problem at hand like the zero-path difference. To consider these fundamentals, a probabilistic approach based on Bayes’ theorem is introduced which exploits multivariate normal distributions. For the example application, we model the spectra by the Gaussian process of a Brownian bridge stated by a prior covariance. The spectra themselves are represented by a number of parameters which map linearly to the data domain. The posterior for these linear parameters is analytically obtained, and the marginalisation over these parameters is trivial. This allows the straightforward investigation of the posterior for the involved nonlinear parameters, like the zero-path difference location and the spectral limits, and hyperparameters, like the scaling of the Gaussian process. With respect to the linear problem, this can be interpreted as an implementation of Ockham’s razor principle.

  3. Radiation induced defect flux behaviors at zirconium based component

    International Nuclear Information System (INIS)

    Choi, Sang Il; Kim, Ji Hyun; Kwon, Jun Hyun; Lee, Gyeong Geun

    2013-01-01

    In commercial reactor core, structure materials are located in high temperature and high pressure environment. Therefore, main concern of structure materials is corrosion and mechanical properties change than radiation effects on materials. However, radiation effects on materials become more important phenomena because research reactor condition is different from commercial reactor. The temperature is lower than 100 .deg. C and radiation dose is much higher than that of commercial reactor. Among the radiation effect on zirconium based metal, radiation induced growth (RIG), known as volume conservative distortion, is one of the most important phenomena. Recently, theoretical RIG modeling based on radiation damage theory (RDT) and balance equation are developed. However, these growth modeling have limited framework of single crystal and high temperature. To model theoretical RIG in research reactor, qualitative mechanism must be set up. Therefore, this paper intent is establishing defect flux mechanism of zirconium base metal in research reactor for RIG modeling. After than theoretical RIG work will be expanded to research reactor condition

  4. Using computer-based training to facilitate radiation protection review

    International Nuclear Information System (INIS)

    Abercrombie, J.S.; Copenhaver, E.D.

    1989-01-01

    In a national laboratory setting, it is necessary to provide radiation protection overview and training to diverse parts of the laboratory population. This includes employees at research reactors, accelerators, waste facilities, radiochemical isotope processing, and analytical laboratories, among others. In addition, our own radiation protection and monitoring staffs must be trained. To assist in the implementation of this full range of training, ORNL has purchased prepackaged computer-based training in health physics and technical mathematics with training modules that can be selected from many topics. By selection of specific modules, appropriate radiation protection review packages can be determined to meet many individual program needs. Because our radiation protection personnel must have some previous radiation protection experience or the equivalent of an associate's degree in radiation protection for entry level, the computer-based training will serve primarily as review of major principles. Others may need very specific prior training to make the computer-based training effective in their work situations. 4 refs

  5. Internet-based communications in radiation oncology

    International Nuclear Information System (INIS)

    Goldwein, Joel W.

    1996-01-01

    Currently, it is estimated that 40 million Americans have access to the Internet. The emergence of widely available software, inexpensive hardware and affordable connectivity have all led to an explosive growth in its use. Medicine in general and radiation oncology specifically are deriving great benefits from this technology. The use of this technology will result in a paradigm shift that is likely to change the way we all communicate. An understanding of the technology is therefore mandatory. The objectives of the course are to provide a practical introduction to the use of Internet technologies as they relate to our profession. The following topics will be reviewed. 1. A brief history of the Internet 2. Getting connected to the Internet 3. Internet venues - The Web, ftp, USENETS ... 4. Basic software tools - email, browsers ... 5. Specific Internet resources 6. Advanced Internet utilization 7. Business and the Internet 8. Intranet utilization 9. Philosophical and medicolegal issues 10. Predictions of the future Upon completion, the attendee will be familiar with the Internet, how it works, and how it can be used to fulfill the research, educational, and clinical care missions of our profession

  6. Radiative budget and cloud radiative effect over the Atlantic from ship-based observations

    Directory of Open Access Journals (Sweden)

    J. Kalisch

    2012-10-01

    Full Text Available The aim of this study is to determine cloud-type resolved cloud radiative budgets and cloud radiative effects from surface measurements of broadband radiative fluxes over the Atlantic Ocean. Furthermore, based on simultaneous observations of the state of the cloudy atmosphere, a radiative closure study has been performed by means of the ECHAM5 single column model in order to identify the model's ability to realistically reproduce the effects of clouds on the climate system.

    An extensive database of radiative and atmospheric measurements has been established along five meridional cruises of the German research icebreaker Polarstern. Besides pyranometer and pyrgeometer for downward broadband solar and thermal radiative fluxes, a sky imager and a microwave radiometer have been utilized to determine cloud fraction and cloud type on the one hand and temperature and humidity profiles as well as liquid water path for warm non-precipitating clouds on the other hand.

    Averaged over all cruise tracks, we obtain a total net (solar + thermal radiative flux of 144 W m−2 that is dominated by the solar component. In general, the solar contribution is large for cirrus clouds and small for stratus clouds. No significant meridional dependencies were found for the surface radiation budgets and cloud effects. The strongest surface longwave cloud effects were shown in the presence of low level clouds. Clouds with a high optical density induce strong negative solar radiative effects under high solar altitudes. The mean surface net cloud radiative effect is −33 W m−2.

    For the purpose of quickly estimating the mean surface longwave, shortwave and net cloud effects in moderate, subtropical and tropical climate regimes, a new parameterisation was created, considering the total cloud amount and the solar zenith angle.

    The ECHAM5 single column model provides a surface net cloud effect that is more

  7. Fourier Transform Spectrometer System

    Science.gov (United States)

    Campbell, Joel F. (Inventor)

    2014-01-01

    A Fourier transform spectrometer (FTS) data acquisition system includes an FTS spectrometer that receives a spectral signal and a laser signal. The system further includes a wideband detector, which is in communication with the FTS spectrometer and receives the spectral signal and laser signal from the FTS spectrometer. The wideband detector produces a composite signal comprising the laser signal and the spectral signal. The system further comprises a converter in communication with the wideband detector to receive and digitize the composite signal. The system further includes a signal processing unit that receives the composite signal from the converter. The signal processing unit further filters the laser signal and the spectral signal from the composite signal and demodulates the laser signal, to produce velocity corrected spectral data.

  8. Solar Radiation Received by Slopes Using COMS Imagery, a Physically Based Radiation Model, and GLOBE

    Directory of Open Access Journals (Sweden)

    Jong-Min Yeom

    2016-01-01

    Full Text Available This study mapped the solar radiation received by slopes for all of Korea, including areas that are not measured by ground station measurements, through using satellites and topographical data. When estimating insolation with satellite, we used a physical model to measure the amount of hourly based solar surface insolation. Furthermore, we also considered the effects of topography using the Global Land One-Kilometer Base Elevation (GLOBE digital elevation model (DEM for the actual amount of incident solar radiation according to solar geometry. The surface insolation mapping, by integrating a physical model with the Communication, Ocean, and Meteorological Satellite (COMS Meteorological Imager (MI image, was performed through a comparative analysis with ground-based observation data (pyranometer. Original and topographically corrected solar radiation maps were created and their characteristics analyzed. Both the original and the topographically corrected solar energy resource maps captured the temporal variations in atmospheric conditions, such as the movement of seasonal rain fronts during summer. In contrast, although the original solar radiation map had a low insolation value over mountain areas with a high rate of cloudiness, the topographically corrected solar radiation map provided a better description of the actual surface geometric characteristics.

  9. Rainbow Fourier Transform

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Mishchenko, Michael I.

    2012-01-01

    We present a novel technique for remote sensing of cloud droplet size distributions. Polarized reflectances in the scattering angle range between 135deg and 165deg exhibit a sharply defined rainbow structure, the shape of which is determined mostly by single scattering properties of cloud particles, and therefore, can be modeled using the Mie theory. Fitting the observed rainbow with such a model (computed for a parameterized family of particle size distributions) has been used for cloud droplet size retrievals. We discovered that the relationship between the rainbow structures and the corresponding particle size distributions is deeper than it had been commonly understood. In fact, the Mie theory-derived polarized reflectance as a function of reduced scattering angle (in the rainbow angular range) and the (monodisperse) particle radius appears to be a proxy to a kernel of an integral transform (similar to the sine Fourier transform on the positive semi-axis). This approach, called the rainbow Fourier transform (RFT), allows us to accurately retrieve the shape of the droplet size distribution by the application of the corresponding inverse transform to the observed polarized rainbow. While the basis functions of the proxy-transform are not exactly orthogonal in the finite angular range, this procedure needs to be complemented by a simple regression technique, which removes the retrieval artifacts. This non-parametric approach does not require any a priori knowledge of the droplet size distribution functional shape and is computationally fast (no look-up tables, no fitting, computations are the same as for the forward modeling).

  10. Fourier and Wavelet Based Characterisation of the Ionospheric Response to the Solar Eclipse of August, the 11th, 1999, Measured Through 1-minute Vertical Ionospheric Sounding

    Science.gov (United States)

    Sauli, P.; Abry, P.; Boska, J.

    2004-05-01

    The aim of the present work is to study the ionospheric response induced by the solar eclipse of August, the 11th, 1999. We provide Fourier and wavelet based characterisations of the propagation of the acoustic-gravity waves induced by the solar eclipse. The analysed data consist of profiles of electron concentration. They are derived from 1-minute vertical incidence ionospheric sounding measurements, performed at the Pruhonice observatory (Czech republic, 49.9N, 14.5E). The chosen 1-minute high sampling rate aims at enabling us to specifically see modes below acoustic cut-off period. The August period was characterized by Solar Flux F10.7 = 128, steady solar wind, quiet magnetospheric conditions, a low geomagnetic activity (Dst index varies from -10 nT to -20 nT, Σ Kp index reached value of 12+). The eclipse was notably exceptional in uniform solar disk. These conditions and fact that the culmination of the solar eclipse over central Europe occurred at local noon are such that the observed ionospheric response is mainly that of the solar eclipse. We provide a full characterization of the propagation of the waves in terms of times of occurrence, group and phase velocities, propagation direction, characteristic period and lifetime of the particular wave structure. However, ionospheric vertical sounding technique enables us to deal with vertical components of each characteristic. Parameters are estimated combining Fourier and wavelet analysis. Our conclusions confirm earlier theoretical and experimental findings, reported in [Altadill et al., 2001; Farges et al., 2001; Muller-Wodarg et al.,1998] regarding the generation and propagation of gravity waves and provide complementary characterisation using wavelet approaches. We also report a new evidence for the generation and propagation of acoustic waves induced by the solar eclipse through the ionospheric F region. Up to our knowledge, this is the first time that acoustic waves can be demonstrated based on ionospheric

  11. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, Safiye [Center of Excellence in Electrochemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Faridbod, Farnoush, E-mail: faridbodf@khayam.ut.ac.ir [Center of Excellence in Electrochemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular and Cellular Research Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Norouzi, Parviz [Center of Excellence in Electrochemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular and Cellular Research Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Dezfuli, Amin Shiralizadeh [Center of Excellence in Electrochemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Ajloo, Davood [School of Chemistry, Damghan University, Damghan (Iran, Islamic Republic of); Mohammadipanah, Fatemeh [Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran (Iran, Islamic Republic of); Ganjali, Mohammad Reza [Center of Excellence in Electrochemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular and Cellular Research Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2015-10-01

    A new strategy was introduced for ssDNA immobilization on a modified glassy carbon electrode. The electrode surface was modified using polyaniline and chemically reduced graphene oxide decorated cerium oxide nanoparticles (CeO{sub 2}NPs-RGO). A single-stranded DNA (ssDNA) probe was immobilized on the modified electrode surface. Fast Fourier transform square wave voltammetry (FFT-SWV) was applied as detection technique and [Ru(bpy){sub 3}]{sup 2+/3+} redox signal was used as electrochemical marker. The hybridization of ssDNA with its complementary target caused a dramatic decrease in [Ru(bpy){sub 3}]{sup 2+/3+} FFT-SW signal. The proposed electrochemical biosensor was able to detect Aeromonas hydrophila DNA oligonucleotide sequence encoding aerolysin protein. Under optimal conditions, the biosensor showed excellent selectivity toward complementary sequence in comparison with noncomplementary and two-base mismatch sequences. The dynamic linear range of this electrochemical DNA biosensor for detecting 20-mer oligonucleotide sequence of A. hydrophila was from 1 × 10{sup −15} to 1 × 10{sup −8} mol L{sup −1}. The proposed biosensor was successfully applied for the detection of DNA extracted from A. hydrophila in fish pond water up to 0.01 μg mL{sup −1} with RSD of 5%. Besides, molecular docking was applied to consider the [Ru(bpy){sub 3}]{sup 2+/3+} interaction with ssDNA before and after hybridization. - Highlights: • New DNA biosensor is designed for sub-femtomolar detection of Aeromonas hydrophila DNA sequence. • Reduced graphene oxide decorated Ceria nanoparticles was used as a new immobilization platform. • Biosensor was successfully used to detect A. hydrophila DNA sequence in fish pond water.

  12. Detection of Aeromonas hydrophila DNA oligonucleotide sequence using a biosensor design based on Ceria nanoparticles decorated reduced graphene oxide and Fast Fourier transform square wave voltammetry

    International Nuclear Information System (INIS)

    Jafari, Safiye; Faridbod, Farnoush; Norouzi, Parviz; Dezfuli, Amin Shiralizadeh; Ajloo, Davood; Mohammadipanah, Fatemeh; Ganjali, Mohammad Reza

    2015-01-01

    A new strategy was introduced for ssDNA immobilization on a modified glassy carbon electrode. The electrode surface was modified using polyaniline and chemically reduced graphene oxide decorated cerium oxide nanoparticles (CeO_2NPs-RGO). A single-stranded DNA (ssDNA) probe was immobilized on the modified electrode surface. Fast Fourier transform square wave voltammetry (FFT-SWV) was applied as detection technique and [Ru(bpy)_3]"2"+"/"3"+ redox signal was used as electrochemical marker. The hybridization of ssDNA with its complementary target caused a dramatic decrease in [Ru(bpy)_3]"2"+"/"3"+ FFT-SW signal. The proposed electrochemical biosensor was able to detect Aeromonas hydrophila DNA oligonucleotide sequence encoding aerolysin protein. Under optimal conditions, the biosensor showed excellent selectivity toward complementary sequence in comparison with noncomplementary and two-base mismatch sequences. The dynamic linear range of this electrochemical DNA biosensor for detecting 20-mer oligonucleotide sequence of A. hydrophila was from 1 × 10"−"1"5 to 1 × 10"−"8 mol L"−"1. The proposed biosensor was successfully applied for the detection of DNA extracted from A. hydrophila in fish pond water up to 0.01 μg mL"−"1 with RSD of 5%. Besides, molecular docking was applied to consider the [Ru(bpy)_3]"2"+"/"3"+ interaction with ssDNA before and after hybridization. - Highlights: • New DNA biosensor is designed for sub-femtomolar detection of Aeromonas hydrophila DNA sequence. • Reduced graphene oxide decorated Ceria nanoparticles was used as a new immobilization platform. • Biosensor was successfully used to detect A. hydrophila DNA sequence in fish pond water.

  13. Radiation safety assessment of mobile telephone base stations

    International Nuclear Information System (INIS)

    Mohd Yusof Mohd Ali; Mohd Anuar Majid; Mohd Amirul Nizam

    2002-01-01

    Mobile telephone is fast getting popular among users and in fact it has become one of the fastest selling electronic products in the world. More base stations are expected to be built to meet such high demands and this has caused great concerned among members of the public, especially those living close to the stations, about the potential harmful health effects of radiofrequency (RF) radiation produced by such facilities. A project was initiated by MINT in early 2000 with aims to assess the radiation levels present in the areas around the base stations and to establish baseline data on the pattern and trend of the radiation emission from each different set up of the facilities. This paper highlights some basics facts about mobile telephones and preliminary findings of the project. The assessment has been carried out at 16 base station sites and the results indicate that the radiation levels present around these sites are very low. Their broadband readings vary between below the detection limit of 0.3μWatts/cm 2 to 11 μWatts/cm 2 and they are comparable to normal background radiation present in places away from any base stations. The highest level observed was 1.5% of the exposure limit recommended for members of the public. However, locations at close distance in front of the the antenna can be very serious in term of radiation exposure since the radiation level here can easily exceed the permissible exposure limit for public. Safety precaution needs to be taken when entering these areas and they should be out of bound for members of the public. (Author)

  14. Automatic Fourier transform and self-Fourier beams due to parabolic potential

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiqi, E-mail: zhangyiqi@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Xing [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Belić, Milivoj R., E-mail: milivoj.belic@qatar.tamu.edu [Science Program, Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Zhong, Weiping [Department of Electronic and Information Engineering, Shunde Polytechnic, Shunde 528300 (China); Petrović, Milan S. [Institute of Physics, P.O. Box 68, 11001 Belgrade (Serbia); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-12-15

    We investigate the propagation of light beams including Hermite–Gauss, Bessel–Gauss and finite energy Airy beams in a linear medium with parabolic potential. Expectedly, the beams undergo oscillation during propagation, but quite unexpectedly they also perform automatic Fourier transform, that is, periodic change from the beam to its Fourier transform and back. In addition to oscillation, the finite-energy Airy beams exhibit periodic inversion during propagation. The oscillating period of parity-asymmetric beams is twice that of the parity-symmetric beams. Based on the propagation in parabolic potential, we introduce a class of optically-interesting beams that are self-Fourier beams—that is, the beams whose Fourier transforms are the beams themselves.

  15. Fourier transform of momentum distribution in vanadium

    International Nuclear Information System (INIS)

    Singh, A.K.; Manuel, A.A.; Peter, M.; Singru, R.M.

    1985-01-01

    Experimental Compton profile and 2D-angular correlation of positron annihilation radiation data from vanadium are analyzed by the mean of their Fourier transform. They are compared with the functions calculated with the help of both the linear muffin-tin orbital and the Hubbard-Mijnarends band structure methods. The results show that the functions are influenced by the positron wave function, by the e + -e - many-body correlations and by the differences in the electron wave functions used for the band structure calculations. It is concluded that Fourier analysis is a sensitive approach to investigate the momentum distributions in transition metals and to understnad the effects of the positron. (Auth.)

  16. Fourier optical cryptosystem using complex spatial modulation

    International Nuclear Information System (INIS)

    Sarkadi, T; Koppa, P

    2014-01-01

    Our goal is to enhance the security level of a Fourier optical encryption system. Therefore we propose a Mach–Zehnder interferometer based encryption setup. The input data is organized in a binary array, and it is encoded in the two wave fronts propagated in the arms of the interferometer. Both input wave fronts are independently encrypted by Fourier systems, hence the proposed method has two encryption keys. During decryption, the encrypted wave fronts are propagated through the interferometer setup. The interference pattern of the output shows the reconstructed data in cases where the correct decryption Fourier keys are used. We propose a novel input image modulation method with a user defined phase parameter. We show that the security level of the proposed cryptosystem can be enhanced by an optimally chosen phase parameter. (paper)

  17. Radiation Hardened 10BASE-T Ethernet Physical Layer (PHY)

    Science.gov (United States)

    Lin, Michael R. (Inventor); Petrick, David J. (Inventor); Ballou, Kevin M. (Inventor); Espinosa, Daniel C. (Inventor); James, Edward F. (Inventor); Kliesner, Matthew A. (Inventor)

    2017-01-01

    Embodiments may provide a radiation hardened 10BASE-T Ethernet interface circuit suitable for space flight and in compliance with the IEEE 802.3 standard for Ethernet. The various embodiments may provide a 10BASE-T Ethernet interface circuit, comprising a field programmable gate array (FPGA), a transmitter circuit connected to the FPGA, a receiver circuit connected to the FPGA, and a transformer connected to the transmitter circuit and the receiver circuit. In the various embodiments, the FPGA, transmitter circuit, receiver circuit, and transformer may be radiation hardened.

  18. Predicting enteric methane emission of dairy cows with milk Fourier-transform infrared spectra and gas chromatography-based milk fatty acid profiles.

    Science.gov (United States)

    van Gastelen, S; Mollenhorst, H; Antunes-Fernandes, E C; Hettinga, K A; van Burgsteden, G G; Dijkstra, J; Rademaker, J L W

    2018-06-01

    The objective of the present study was to compare the prediction potential of milk Fourier-transform infrared spectroscopy (FTIR) for CH 4 emissions of dairy cows with that of gas chromatography (GC)-based milk fatty acids (MFA). Data from 9 experiments with lactating Holstein-Friesian cows, with a total of 30 dietary treatments and 218 observations, were used. Methane emissions were measured for 3 consecutive days in climate respiration chambers and expressed as production (g/d), yield (g/kg of dry matter intake; DMI), and intensity (g/kg of fat- and protein-corrected milk; FPCM). Dry matter intake was 16.3 ± 2.18 kg/d (mean ± standard deviation), FPCM yield was 25.9 ± 5.06 kg/d, CH 4 production was 366 ± 53.9 g/d, CH 4 yield was 22.5 ± 2.10 g/kg of DMI, and CH 4 intensity was 14.4 ± 2.58 g/kg of FPCM. Milk was sampled during the same days and analyzed by GC and by FTIR. Multivariate GC-determined MFA-based and FTIR-based CH 4 prediction models were developed, and subsequently, the final CH 4 prediction models were evaluated with root mean squared error of prediction and concordance correlation coefficient analysis. Further, we performed a random 10-fold cross validation to calculate the performance parameters of the models (e.g., the coefficient of determination of cross validation). The final GC-determined MFA-based CH 4 prediction models estimate CH 4 production, yield, and intensity with a root mean squared error of prediction of 35.7 g/d, 1.6 g/kg of DMI, and 1.6 g/kg of FPCM and with a concordance correlation coefficient of 0.72, 0.59, and 0.77, respectively. The final FTIR-based CH 4 prediction models estimate CH 4 production, yield, and intensity with a root mean squared error of prediction of 43.2 g/d, 1.9 g/kg of DMI, and 1.7 g/kg of FPCM and with a concordance correlation coefficient of 0.52, 0.40, and 0.72, respectively. The GC-determined MFA-based prediction models described a greater part of the observed variation in CH 4 emission than did the

  19. Reducing Approximation Error in the Fourier Flexible Functional Form

    Directory of Open Access Journals (Sweden)

    Tristan D. Skolrud

    2017-12-01

    Full Text Available The Fourier Flexible form provides a global approximation to an unknown data generating process. In terms of limiting function specification error, this form is preferable to functional forms based on second-order Taylor series expansions. The Fourier Flexible form is a truncated Fourier series expansion appended to a second-order expansion in logarithms. By replacing the logarithmic expansion with a Box-Cox transformation, we show that the Fourier Flexible form can reduce approximation error by 25% on average in the tails of the data distribution. The new functional form allows for nested testing of a larger set of commonly implemented functional forms.

  20. Ultrabroadband terahertz source and beamline based on coherent transition radiation

    Directory of Open Access Journals (Sweden)

    S. Casalbuoni

    2009-03-01

    Full Text Available Coherent transition radiation (CTR in the THz regime is an important diagnostic tool for analyzing the temporal structure of the ultrashort electron bunches needed in ultraviolet and x-ray free-electron lasers. It is also a powerful source of such radiation, covering an exceptionally broad frequency range from about 200 GHz to 100 THz. At the soft x-ray free-electron laser FLASH we have installed a beam transport channel for transition radiation (TR with the intention to guide a large fraction of the radiation to a laboratory outside the accelerator tunnel. The radiation is produced on a screen inside the ultrahigh vacuum beam pipe of the linac, coupled out through a diamond window and transported to the laboratory through an evacuated tube equipped with five focusing and four plane mirrors. The design of the beamline has been based on a thorough analysis of the generation of TR on metallic screens of limited size. The optical propagation of the radiation has been computed taking into account the effects of near-field (Fresnel diffraction. The theoretical description of the TR source is presented in the first part of the paper, while the design principles and the technical layout of the beamline are described in the second part. First experimental results demonstrate that the CTR beamline covers the specified frequency range and preserves the narrow time structure of CTR pulses emitted by short electron bunches.

  1. The new Wuerzburg data base for radiation therapy

    International Nuclear Information System (INIS)

    Richter, J.; Richter, E.; Tausch, J.

    1991-01-01

    Conception, structure and realisation of a new data base for radiation therapy are present. The data base utilizes the commercial data base system ORACLE and the data base language SQL. A program package for statistical analyses including Kaplan-Meier-calculations, logrank test and Gehan/Breslow test was elaborated. The input of the data recorded on form sheets is carried out on a data base of the Tumor Centre in the first instance. From there the data are transfered to the ORACLE data base. Up to now the courses of disease of about 13 000 patients are stored. Therefore, extensive and detailed statistical analyses are practicable. (orig.) [de

  2. Spectral radiative property control method based on filling solution

    International Nuclear Information System (INIS)

    Jiao, Y.; Liu, L.H.; Hsu, P.-F.

    2014-01-01

    Controlling thermal radiation by tailoring spectral properties of microstructure is a promising method, can be applied in many industrial systems and have been widely researched recently. Among various property tailoring schemes, geometry design of microstructures is a commonly used method. However, the existing radiation property tailoring is limited by adjustability of processed microstructures. In other words, the spectral radiative properties of microscale structures are not possible to change after the gratings are fabricated. In this paper, we propose a method that adjusts the grating spectral properties by means of injecting filling solution, which could modify the thermal radiation in a fabricated microstructure. Therefore, this method overcomes the limitation mentioned above. Both mercury and water are adopted as the filling solution in this study. Aluminum and silver are selected as the grating materials to investigate the generality and limitation of this control method. The rigorous coupled-wave analysis is used to investigate the spectral radiative properties of these filling solution grating structures. A magnetic polaritons mechanism identification method is proposed based on LC circuit model principle. It is found that this control method could be used by different grating materials. Different filling solutions would enable the high absorption peak to move to longer or shorter wavelength band. The results show that the filling solution grating structures are promising for active control of spectral radiative properties. -- Highlights: • A filling solution grating structure is designed to adjust spectral radiative properties. • The mechanism of radiative property control is studied for engineering utilization. • Different grating materials are studied to find multi-functions for grating

  3. Multi-year comparisons of ground-based and space-borne Fourier transform spectrometers in the high Arctic between 2006 and 2013

    Directory of Open Access Journals (Sweden)

    D. Griffin

    2017-09-01

    Full Text Available This paper presents 8 years (2006–2013 of measurements obtained from Fourier transform spectrometers (FTSs in the high Arctic at the Polar Environment Atmospheric Research Laboratory (PEARL; 80.05° N, 86.42° W. These measurements were taken as part of the Canadian Arctic ACE (Atmospheric Chemistry Experiment validation campaigns that have been carried out since 2004 during the polar sunrise period (from mid-February to mid-April. Each spring, two ground-based FTSs were used to measure total and partial columns of HF, O3, and trace gases that impact O3 depletion, namely, HCl and HNO3. Additionally, some tropospheric greenhouse gases and pollutant species were measured, namely CH4, N2O, CO, and C2H6. During the same time period, the satellite-based ACE-FTS made measurements near Eureka and provided profiles of the same trace gases. Comparisons have been carried out between the measurements from the Portable Atmospheric Research Interferometric Spectrometer for the InfraRed (PARIS-IR and the co-located high-resolution Bruker 125HR FTS, as well as with the latest version of the ACE-FTS retrievals (v3.5. The total column comparison between the two co-located ground-based FTSs, PARIS-IR and Bruker 125HR, found very good agreement for most of these species (except HF, with differences well below the estimated uncertainties ( ≤ 6  % and with high correlations (R ≥ 0. 8. Partial columns have been used for the ground-based to space-borne comparison, with coincident measurements selected based on time, distance, and scaled potential vorticity (sPV. The comparisons of the ground-based measurements with ACE-FTS show good agreement in the partial columns for most species within 6  % (except for C2H6 and PARIS-IR HF, which is consistent with the total retrieval uncertainty of the ground-based instruments. The correlation coefficients (R of the partial column comparisons for all eight species range from approximately 0.75 to 0

  4. Multi-year comparisons of ground-based and space-borne Fourier transform spectrometers in the high Arctic between 2006 and 2013

    Science.gov (United States)

    Griffin, Debora; Walker, Kaley A.; Conway, Stephanie; Kolonjari, Felicia; Strong, Kimberly; Batchelor, Rebecca; Boone, Chris D.; Dan, Lin; Drummond, James R.; Fogal, Pierre F.; Fu, Dejian; Lindenmaier, Rodica; Manney, Gloria L.; Weaver, Dan

    2017-09-01

    This paper presents 8 years (2006-2013) of measurements obtained from Fourier transform spectrometers (FTSs) in the high Arctic at the Polar Environment Atmospheric Research Laboratory (PEARL; 80.05° N, 86.42° W). These measurements were taken as part of the Canadian Arctic ACE (Atmospheric Chemistry Experiment) validation campaigns that have been carried out since 2004 during the polar sunrise period (from mid-February to mid-April). Each spring, two ground-based FTSs were used to measure total and partial columns of HF, O3, and trace gases that impact O3 depletion, namely, HCl and HNO3. Additionally, some tropospheric greenhouse gases and pollutant species were measured, namely CH4, N2O, CO, and C2H6. During the same time period, the satellite-based ACE-FTS made measurements near Eureka and provided profiles of the same trace gases. Comparisons have been carried out between the measurements from the Portable Atmospheric Research Interferometric Spectrometer for the InfraRed (PARIS-IR) and the co-located high-resolution Bruker 125HR FTS, as well as with the latest version of the ACE-FTS retrievals (v3.5). The total column comparison between the two co-located ground-based FTSs, PARIS-IR and Bruker 125HR, found very good agreement for most of these species (except HF), with differences well below the estimated uncertainties ( ≤ 6  %) and with high correlations (R ≥ 0. 8). Partial columns have been used for the ground-based to space-borne comparison, with coincident measurements selected based on time, distance, and scaled potential vorticity (sPV). The comparisons of the ground-based measurements with ACE-FTS show good agreement in the partial columns for most species within 6  % (except for C2H6 and PARIS-IR HF), which is consistent with the total retrieval uncertainty of the ground-based instruments. The correlation coefficients (R) of the partial column comparisons for all eight species range from approximately 0.75 to 0.95. The comparisons show no

  5. Modern Fourier analysis

    CERN Document Server

    Grafakos, Loukas

    2014-01-01

    This text is addressed to graduate students in mathematics and to interested researchers who wish to acquire an in depth understanding of Euclidean Harmonic analysis. The text covers modern topics and techniques in function spaces, atomic decompositions, singular integrals of nonconvolution type, and the boundedness and convergence of Fourier series and integrals. The exposition and style are designed to stimulate further study and promote research. Historical information and references are included at the end of each chapter. This third edition includes a new chapter entitled "Multilinear Harmonic Analysis" which focuses on topics related to multilinear operators and their applications. Sections 1.1 and 1.2 are also new in this edition. Numerous corrections have been made to the text from the previous editions and several improvements have been incorporated, such as the adoption of clear and elegant statements. A few more exercises have been added with relevant hints when necessary. Reviews fr...

  6. Electron Beam Induced Radiation Damage of the Semiconductor Radiation Detector based on Silicon

    International Nuclear Information System (INIS)

    Kim, Han Soo; Kim, Yong Kyun; Park, Se Hwan; Haa, Jang Ho; Kang, Sang Mook; Chung, Chong Eun; Cho, Seung Yeon; Park, Ji Hyun; Yoon, Tae Hyung

    2005-01-01

    A Silicon Surface Barrier (SSB) semiconductor detector which is generally used to detect a charged particle such as an alpha particle was developed. The performance of the developed SSB semiconductor detector was measured with an I-V curve and an alpha spectrum. The response for an alpha particle was measured by Pu-238 sources. A SSB semiconductor detector was irradiated firstly at 30sec, at 30μA and secondly 40sec, 40μA with a 2MeV pulsed electron beam generator in KAERI. And the electron beam induced radiation damage of a homemade SSB detector and the commercially available PIN photodiode were investigated. An annealing effect of the damaged SSB and PIN diode detector were also investigated using a Rapid Thermal Annealing (RTA). This data may assist in designing the silicon based semiconductor radiation detector when it is operated in a high radiation field such as space or a nuclear power plant

  7. Radiation

    International Nuclear Information System (INIS)

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  8. Synchrotron radiation based analytical techniques (XAS and XRF)

    International Nuclear Information System (INIS)

    Jha, Shambhu Nath

    2014-01-01

    A brief description of the principles of X-ray absorption spectroscopy (XAS) and X-ray fluorescence (XRF) techniques is given in this article with emphasis on the advantages of using synchrotron radiation-based instrumentation/beamline. XAS technique is described in more detail to emphasize the strength of the technique as a local structural probe. (author)

  9. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging.

    Science.gov (United States)

    Mintenig, S M; Int-Veen, I; Löder, M G J; Primpke, S; Gerdts, G

    2017-01-01

    The global presence of microplastic (MP) in aquatic ecosystems has been shown by various studies. However, neither MP concentrations nor their sources or sinks are completely known. Waste water treatment plants (WWTPs) are considered as significant point sources discharging MP to the environment. This study investigated MP in the effluents of 12 WWTPs in Lower Saxony, Germany. Samples were purified by a plastic-preserving enzymatic-oxidative procedure and subsequent density separation using a zinc chloride solution. For analysis, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FT-IR) and focal plane array (FPA)-based transmission micro-FT-IR imaging were applied. This allowed the identification of polymers of all MP down to a size of 20 μm. In all effluents MP was found with quantities ranging from 0 to 5 × 10 1  m -3  MP > 500 μm and 1 × 10 1 to 9 × 10 3  m -3  MP < 500 μm. By far, polyethylene was the most frequent polymer type in both size classes. Quantities of synthetic fibres ranged from 9 × 10 1 to 1 × 10 3  m -3 and were predominantly made of polyester. Considering the annual effluxes of tested WWTPs, total discharges of 9 × 10 7 to 4 × 10 9  MP particles and fibres per WWTP could be expected. Interestingly, one tertiary WWTP had an additionally installed post-filtration that reduced the total MP discharge by 97%. Furthermore, the sewage sludge of six WWTPs was examined and the existence of MP, predominantly polyethylene, revealed. Our findings suggest that WWTPs could be a sink but also a source of MP and thus can be considered to play an important role for environmental MP pollution. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Fourier transformations for difference analogs of the harmonic oscillator

    International Nuclear Information System (INIS)

    Askey, R.; Atakishiyev, N.M.

    1995-01-01

    The relation between the Mehler bilinear generating function for the Hermite polynomials and the kernel of the Fourier transformation that connect the spaces of coordinate and momentum is discussed. On the base of the relation the discrete analogs of the Fourier transformation for the Kravchuk and Charlier functions are considered. 6 refs

  11. Data base of radiation-resistant dielectric and insulating materials

    International Nuclear Information System (INIS)

    Hama, Yoshimasa; Sunazuka, Hideo; Nashiyama, Isamu; Kakuta, Tsunemi.

    1987-01-01

    In the data base of radiation-resistant dielectric and insulating materials, the data format contains such items as to give the summary; the data sheet contains the data in concrete form of respective properties from the references; the sheet of references contains the references in the former two. In the above three, there are attached code No., data sheet No., reference No. and key words. In the three areas as radiation-resistant dielectric and insulating materials, i.e., organic materials, inorganic materials and optical fibers, the following are explained: data format, data sheet and objectives. (Mori, K.)

  12. Intercomparison of radiation protection instruments based on microdosimetric principles

    International Nuclear Information System (INIS)

    Dietze, G.; Guldbakke, S.; Kluge, H.; Schmitz, T.

    1986-11-01

    Dosemeters based on low-pressure tissue-equivalent proportional counters were developed for the application in radiation protection area monitoring by several groups in Europe. Five different prototypes have been intercompared in a 60 Co photon field, in monoenergetic neutron fields with various energies between 73 keV and 5 MeV and in three neutron fields at a 252 Cf source moderated by a D 2 O sphere. This report describes the radiation fields, the measuring devices and first results of the intercomparison. Additional measurements with a system used in microdosimetry and with a conventional dose equivalent rate meter for neutrons (Rem Counter) were also described. (orig.) [de

  13. Stratocumulus Cloud Top Radiative Cooling and Cloud Base Updraft Speeds

    Science.gov (United States)

    Kazil, J.; Feingold, G.; Balsells, J.; Klinger, C.

    2017-12-01

    Cloud top radiative cooling is a primary driver of turbulence in the stratocumulus-topped marine boundary. A functional relationship between cloud top cooling and cloud base updraft speeds may therefore exist. A correlation of cloud top radiative cooling and cloud base updraft speeds has been recently identified empirically, providing a basis for satellite retrieval of cloud base updraft speeds. Such retrievals may enable analysis of aerosol-cloud interactions using satellite observations: Updraft speeds at cloud base co-determine supersaturation and therefore the activation of cloud condensation nuclei, which in turn co-determine cloud properties and precipitation formation. We use large eddy simulation and an off-line radiative transfer model to explore the relationship between cloud-top radiative cooling and cloud base updraft speeds in a marine stratocumulus cloud over the course of the diurnal cycle. We find that during daytime, at low cloud water path (CWP correlated, in agreement with the reported empirical relationship. During the night, in the absence of short-wave heating, CWP builds up (CWP > 50 g m-2) and long-wave emissions from cloud top saturate, while cloud base heating increases. In combination, cloud top cooling and cloud base updrafts become weakly anti-correlated. A functional relationship between cloud top cooling and cloud base updraft speed can hence be expected for stratocumulus clouds with a sufficiently low CWP and sub-saturated long-wave emissions, in particular during daytime. At higher CWPs, in particular at night, the relationship breaks down due to saturation of long-wave emissions from cloud top.

  14. Fourier transforms in the complex domain

    CERN Document Server

    Wiener, N

    1934-01-01

    With the aid of Fourier-Mellin transforms as a tool in analysis, the authors were able to attack such diverse analytic questions as those of quasi-analytic functions, Mercer's theorem on summability, Milne's integral equation of radiative equilibrium, the theorems of Münz and Szász concerning the closure of sets of powers of an argument, Titchmarsh's theory of entire functions of semi-exponential type with real negative zeros, trigonometric interpolation and developments in polynomials of the form \\sum^N_1A_ne^{i\\lambda_nx}, lacunary series, generalized harmonic analysis in the complex domain,

  15. Prototype Biology-Based Radiation Risk Module Project

    Science.gov (United States)

    Terrier, Douglas; Clayton, Ronald G.; Patel, Zarana; Hu, Shaowen; Huff, Janice

    2015-01-01

    Biological effects of space radiation and risk mitigation are strategic knowledge gaps for the Evolvable Mars Campaign. The current epidemiology-based NASA Space Cancer Risk (NSCR) model contains large uncertainties (HAT #6.5a) due to lack of information on the radiobiology of galactic cosmic rays (GCR) and lack of human data. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. Our proposed study will compare DNA damage, histological, and cell kinetic parameters after irradiation in normal 2D human cells versus 3D tissue models, and it will use a multi-scale computational model (CHASTE) to investigate various biological processes that may contribute to carcinogenesis, including radiation-induced cellular signaling pathways. This cross-disciplinary work, with biological validation of an evolvable mathematical computational model, will help reduce uncertainties within NSCR and aid risk mitigation for radiation-induced carcinogenesis.

  16. Fourier transforms in NMR, optical, and mass spectrometry

    International Nuclear Information System (INIS)

    Marshall, A.G.; Verdun, F.R.; Ohio State Univ., Columbus, OH

    1990-01-01

    This book is a teaching and reference text for Fourier transform methods as they are applied in spectroscopy. It offers a unified treatment of the three most popular types of FT/spectroscopy. Non-ideal effects are treated in detail: noise (source- and detector-limited); non-linear response; limits to spectrometer performance based on finite detection period, finite data size, mis-phasing, etc. Common puzzles and paradoxes are explained: e.g., use of mathematically complex variables to represent physically real quantities; interpretation of negative frequency signals; on-resonance versus off-resonance response; interpolation; ultimate accuracy of discrete representation of an analog signal; differences between linearly- and circularly-polarized radiation; multiplex advantage or disadvantage, etc. (author). refs.; figs.; tabs

  17. Ionizing radiation and a wood-based biorefinery

    International Nuclear Information System (INIS)

    Driscoll, Mark S.; Stipanovic, Arthur J.; Cheng, Kun; Barber, Vincent A.; Manning, Mellony; Smith, Jennifer L.; Sundar, Smith

    2014-01-01

    Woody biomass is widely available around the world. Cellulose is the major structural component of woody biomass and is the most abundant polymer synthesized by nature, with hemicellulose and lignin being second and third. Despite this great abundance, woody biomass has seen limited application outside of the paper and lumber industries. Its use as a feedstock for fuels and chemicals has been limited because of its highly crystalline structure, inaccessible morphology, and limited solubility (recalcitrance). Any economic use of woody biomass for the production of fuels and chemicals requires a “pretreatment” process to enhance the accessibility of the biomass to enzymes and/or chemical reagents. Electron beams (EB), X-rays, and gamma rays produce ions in a material which can then initiate chemical reactions and cleavage of chemical bonds. Such ionizing radiation predominantly scissions and degrades or depolymerizes both cellulose and hemicelluloses, less is known about its effects on lignin. This paper discusses how ionizing radiation can be used to make a wood-based biorefinery more environmentally friendly and profitable for its operators. - Highlights: • Ionizing radiation reduces the crystallinity of cellulose. • Ionizing radiation reduces cellulose's degree of polymerization. • The amount and rate of enzymatic hydrolysis of lignocellulosic materials, including wood, are increased with increasing radiation dose. • Wood and other lignocellulosic materials have the potential to be a renewable material for the production of chemicals and fuels

  18. Mixed field radiation modification of polyurethanes based on castor oil

    International Nuclear Information System (INIS)

    Mortley, A.; Bonin, H.W.; Bui, V.T.

    2006-01-01

    Polyurethane is among the polymers and polymer-based composite materials being investigated at the Royal Military College of Canada for the fabrication of leak-tight containers for the long-term disposal of radioactive waste. Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were subjected to a range of doses (0.0 - 3.0 MGy) produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The tensile mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. Increases in mechanical strength due to radiation-induced crosslinking and limitations of thermal curing were confirmed by tensile tests and changing 13 C-NMR and FTIR spectra. (author)

  19. Mixed field radiation modification of polyurethanes based on castor oil

    Energy Technology Data Exchange (ETDEWEB)

    Mortley, A.; Bonin, H.W.; Bui, V.T. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)]. E-mail: aba.mortley@rmc.ca

    2006-07-01

    Polyurethane is among the polymers and polymer-based composite materials being investigated at the Royal Military College of Canada for the fabrication of leak-tight containers for the long-term disposal of radioactive waste. Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were subjected to a range of doses (0.0 - 3.0 MGy) produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The tensile mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. Increases in mechanical strength due to radiation-induced crosslinking and limitations of thermal curing were confirmed by tensile tests and changing {sup 13}C-NMR and FTIR spectra. (author)

  20. Radiative transport-based frequency-domain fluorescence tomography

    International Nuclear Information System (INIS)

    Joshi, Amit; Rasmussen, John C; Sevick-Muraca, Eva M; Wareing, Todd A; McGhee, John

    2008-01-01

    We report the development of radiative transport model-based fluorescence optical tomography from frequency-domain boundary measurements. The coupled radiative transport model for describing NIR fluorescence propagation in tissue is solved by a novel software based on the established Attila(TM) particle transport simulation platform. The proposed scheme enables the prediction of fluorescence measurements with non-contact sources and detectors at a minimal computational cost. An adjoint transport solution-based fluorescence tomography algorithm is implemented on dual grids to efficiently assemble the measurement sensitivity Jacobian matrix. Finally, we demonstrate fluorescence tomography on a realistic computational mouse model to locate nM to μM fluorophore concentration distributions in simulated mouse organs

  1. A study on the application of Fourier series in IMRT treatment planning.

    Science.gov (United States)

    Almeida-Trinidad, R; Garnica-Garza, H M

    2007-12-01

    In intensity-modulated radiotherapy, a set of x-ray fluence profiles is iteratively adjusted until a desired absorbed dose distribution is obtained. The purpose of this article is to present a method that allows the optimization of fluence profiles based on the Fourier series decomposition of an initial approximation to the profile. The method has the advantage that a new fluence profile can be obtained in a precise and controlled way with the tuning of only two parameters, namely the phase of the sine and cosine terms of one of the Fourier components, in contrast to the point-by-point tuning of the profile. Also, because the method uses analytical functions, the resultant profiles do not exhibit numerical artifacts. A test case consisting of a mathematical phantom with a target wrapped around a critical structure is discussed to illustrate the algorithm. It is shown that the degree of conformality of the absorbed dose distribution can be tailored by varying the number of Fourier terms made available to the optimization algorithm. For the test case discussed here, it is shown that the number of Fourier terms to be modified depends on the number of radiation beams incident on the target but it is in general in the order of 10 terms.

  2. Modeling open nanophotonic systems using the Fourier modal method: generalization to 3D Cartesian coordinates.

    Science.gov (United States)

    Häyrynen, Teppo; Osterkryger, Andreas Dyhl; de Lasson, Jakob Rosenkrantz; Gregersen, Niels

    2017-09-01

    Recently, an open geometry Fourier modal method based on a new combination of an open boundary condition and a non-uniform k-space discretization was introduced for rotationally symmetric structures, providing a more efficient approach for modeling nanowires and micropillar cavities [J. Opt. Soc. Am. A33, 1298 (2016)JOAOD61084-752910.1364/JOSAA.33.001298]. Here, we generalize the approach to three-dimensional (3D) Cartesian coordinates, allowing for the modeling of rectangular geometries in open space. The open boundary condition is a consequence of having an infinite computational domain described using basis functions that expand the whole space. The strength of the method lies in discretizing the Fourier integrals using a non-uniform circular "dartboard" sampling of the Fourier k space. We show that our sampling technique leads to a more accurate description of the continuum of the radiation modes that leak out from the structure. We also compare our approach to conventional discretization with direct and inverse factorization rules commonly used in established Fourier modal methods. We apply our method to a variety of optical waveguide structures and demonstrate that the method leads to a significantly improved convergence, enabling more accurate and efficient modeling of open 3D nanophotonic structures.

  3. Application of γ field theory based calculation method to the monitoring of mine nuclear radiation environment

    International Nuclear Information System (INIS)

    Du Yanjun; Liu Qingcheng; Liu Hongzhang; Qin Guoxiu

    2009-01-01

    In order to find the feasibility of calculating mine radiation dose based on γ field theory, this paper calculates the γ radiation dose of a mine by means of γ field theory based calculation method. The results show that the calculated radiation dose is of small error and can be used to monitor mine environment of nuclear radiation. (authors)

  4. Development of Styrene-Grafted Polyurethane by Radiation-Based Techniques

    Directory of Open Access Journals (Sweden)

    Jin-Oh Jeong

    2016-06-01

    Full Text Available Polyurethane (PU is the fifth most common polymer in the general consumer market, following Polypropylene (PP, Polyethylene (PE, Polyvinyl chloride (PVC, and Polystyrene (PS, and the most common polymer for thermosetting resins. In particular, polyurethane has excellent hardness and heat resistance, is a widely used material for electronic products and automotive parts, and can be used to create products of various physical properties, including rigid and flexible foams, films, and fibers. However, the use of polar polymer polyurethane as an impact modifier of non-polar polymers is limited due to poor combustion resistance and impact resistance. In this study, we used gamma irradiation at 25 and 50 kGy to introduce the styrene of hydrophobic monomer on the polyurethane as an impact modifier of the non-polar polymer. To verify grafted styrene, we confirmed the phenyl group of styrene at 690 cm−1 by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR and at 6.4–6.8 ppm by 1H-Nuclear Magnetic Resonance (1H-NMR. Scanning Electron Microscope (SEM, X-ray Photoelectron Spectroscopy (XPS, Thermogravimetric Analysis (TGA and contact angle analysis were also used to confirm styrene introduction. This study has confirmed the possibility of applying high-functional composite through radiation-based techniques.

  5. Fourier analysis and stochastic processes

    CERN Document Server

    Brémaud, Pierre

    2014-01-01

    This work is unique as it provides a uniform treatment of the Fourier theories of functions (Fourier transforms and series, z-transforms), finite measures (characteristic functions, convergence in distribution), and stochastic processes (including arma series and point processes). It emphasises the links between these three themes. The chapter on the Fourier theory of point processes and signals structured by point processes is a novel addition to the literature on Fourier analysis of stochastic processes. It also connects the theory with recent lines of research such as biological spike signals and ultrawide-band communications. Although the treatment is mathematically rigorous, the convivial style makes the book accessible to a large audience. In particular, it will be interesting to anyone working in electrical engineering and communications, biology (point process signals) and econometrics (arma models). A careful review of the prerequisites (integration and probability theory in the appendix, Hilbert spa...

  6. Quadrature formulas for Fourier coefficients

    KAUST Repository

    Bojanov, Borislav; Petrova, Guergana

    2009-01-01

    We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node

  7. Symplectic geometry and Fourier analysis

    CERN Document Server

    Wallach, Nolan R

    2018-01-01

    Suitable for graduate students in mathematics, this monograph covers differential and symplectic geometry, homogeneous symplectic manifolds, Fourier analysis, metaplectic representation, quantization, Kirillov theory. Includes Appendix on Quantum Mechanics by Robert Hermann. 1977 edition.

  8. Diffusion tensor MRI shows progressive changes in the hippocampus and dentate gyrus after status epilepticus in rat - histological validation with Fourier-based analysis.

    Science.gov (United States)

    Salo, Raimo A; Miettinen, Tuukka; Laitinen, Teemu; Gröhn, Olli; Sierra, Alejandra

    2017-05-15

    Imaging markers for monitoring disease progression, recovery, and treatment efficacy are a major unmet need for many neurological diseases, including epilepsy. Recent evidence suggests that diffusion tensor imaging (DTI) provides high microstructural contrast even outside major white matter tracts. We hypothesized that in vivo DTI could detect progressive microstructural changes in the dentate gyrus and the hippocampal CA3bc in the rat brain after status epilepticus (SE). To test this hypothesis, we induced SE with systemic kainic acid or pilocarpine in adult male Wistar rats and subsequently scanned them using in vivo DTI at five time-points: prior to SE, and 10, 20, 34, and 79 days post SE. In order to tie the DTI findings to changes in the tissue microstructure, myelin- and glial fibrillary acidic protein (GFAP)-stained sections from the same animals underwent Fourier analysis. We compared the Fourier analysis parameters, anisotropy index and angle of myelinated axons or astrocyte processes, to corresponding DTI parameters, fractional anisotropy (FA) and the orientation angle of the principal eigenvector. We found progressive detectable changes in DTI parameters in both the dentate gyrus (FA, axial diffusivity [D || ], linear anisotropy [CL] and spherical anisotropy [CS], pFourier analysis revealed that both myelinated axons and astrocyte processes played a role in the water diffusion anisotropy changes detected by DTI in individual portions of the dentate gyrus (suprapyramidal blade, mid-portion, and infrapyramidal blade). In the whole dentate gyrus, myelinated axons markedly contributed to the water diffusion changes. In CA3bc as well as in CA3b and CA3c, both myelinated axons and astrocyte processes contributed to water diffusion anisotropy and orientation. Our study revealed that DTI is a promising method for noninvasive detection of microstructural alterations in the hippocampus proper. These alterations may be potential imaging markers for epileptogenesis

  9. Fourier transform nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Geick, R.

    1981-01-01

    This review starts with the basic principles of resonance phenomena in physical systems. Especially, the connection is shown between the properties of these systems and Fourier transforms. Next, we discuss the principles of nuclear magnetic resonance. Starting from the general properties of physical systems showing resonance phenomena and from the special properties of nuclear spin systems, the main part of this paper reviews pulse and Fourier methods in nuclear magnetic resonance. Among pulse methods, an introduction will be given to spin echoes, and, apart from the principle of Fourier transform nuclear magnetic resonance, an introduction to the technical problems of this method, e.g. resolution in the frequency domain, aliasing, phase and intensity errors, stationary state of the spin systems for repetitive measurements, proton decoupling, and application of Fourier methods to systems in a nonequilibrium state. The last section is devoted to special applications of Fourier methods and recent developments, e.g. measurement of relaxation times, solvent peak suppression, 'rapid scan'-method, methods for suppressing the effects of dipolar coupling in solids, two-dimensional Fourier transform nuclear magnetic resonance, and spin mapping or zeugmatography. (author)

  10. Solar Radiation Data Base for Nigeria | Chineke | Discovery and ...

    African Journals Online (AJOL)

    Solar Radiation Data Base for Nigeria. T C Chineke, J I Aina, S S Jagtap. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/dai.v11i3.15556 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's ...

  11. Vulnerability of OFDR-based distributed sensors to radiations

    Energy Technology Data Exchange (ETDEWEB)

    Rizzolo, S. [Laboratoire Hubert Curien, Universite Jean Monnet, CNRS UMR 5516, 18 Rue Benoit Lauras, 42000, Saint-Etienne (France); Dipartimento di Fisica e Chimica, Universita di Palermo, Viale delle Scienze Parco d' Orleans II, Ed. 17, 90128 Palermo (Italy); Areva Centre Technique, Boulevard de l' Industrie, 71200, Le Creusot (France); Boukenter, A.; Marin, E.; Ouerdane, Y.; Girard, S. [Laboratoire Hubert Curien, Universite Jean Monnet, CNRS UMR 5516, 18 Rue Benoit Lauras, 42000, Saint-Etienne (France); Cannas, M. [Dipartimento di Fisica e Chimica, Universita di Palermo, Viale delle Scienze Parco d' Orleans II, Ed. 17, 90128 Palermo (Italy); Perisse, J. [Areva NP, 10 Rue Juliette Recamier, 69006, Lyon (France); Bauer, S. [Areva Centre Technique, Boulevard de l' Industrie, 71200, Le Creusot (France); Mace, J.R. [Areva NP, 1, Place Jean-Millier 92084, Paris-La Defense (France)

    2015-07-01

    overcome the issues identified for next generation of NPPs. Such integration will only be possible if the OFDR based systems are able to resist to the constraints associated with industrial environments, one of the most constraining being the presence of high level of radiations. In this work, we carry out a systematic study to highlight the OFDR interest and sensitivity to probe the optical samples at high irradiation dose levels. The responses of five optical fibers types, from radiation hardened to radiation sensitive ones, are investigated to explore the influence of both the material compositions and the γ-irradiation on the ODFR sensors. Using these samples, we should highlight the influence of the core dopant concentration on the observed radiation-induced changes as well as the difference observed when the cladding is either radiation resistant or radiation sensitive. Our samples were irradiated using a {sup 60}Co source facility reaching total doses varying from 1 MGy up to a maximum of 10 MGy. All the measurements are performed after diverse months from irradiation to study permanents effects induced from these high γ-rays doses. We'll present at the conference all the experimental results acquired and use them to estimate the potential of OFDR-based systems for operation in radiation environments. (authors)

  12. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications

    International Nuclear Information System (INIS)

    Raafat, Amany I.; Eid, Mona; El-Arnaouty, Magda B.

    2012-01-01

    A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.

  13. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications

    Science.gov (United States)

    Raafat, Amany I.; Eid, Mona; El-Arnaouty, Magda B.

    2012-07-01

    A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.

  14. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications

    Energy Technology Data Exchange (ETDEWEB)

    Raafat, Amany I., E-mail: ismaelraafat_a@hotmail.com [Polymer Chemistry Department, National Center for Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo (Egypt); Eid, Mona; El-Arnaouty, Magda B. [Polymer Chemistry Department, National Center for Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo (Egypt)

    2012-07-15

    A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.

  15. Three dimensional image reconstruction in the Fourier domain

    International Nuclear Information System (INIS)

    Stearns, C.W.; Chesler, D.A.; Brownell, G.L.

    1987-01-01

    Filtered backprojection reconstruction algorithms are based upon the relationship between the Fourier transform of the imaged object and the Fourier transforms of its projections. A new reconstruction algorithm has been developed which performs the image assembly operation in Fourier space, rather than in image space by backprojection. This represents a significant decrease in the number of operations required to assemble the image. The new Fourier domain algorithm has resolution comparable to the filtered backprojection algorithm, and, after correction by a pointwise multiplication, demonstrates proper recovery throughout image space. Although originally intended for three-dimensional imaging applications, the Fourier domain algorithm can also be developed for two-dimensional imaging applications such as planar positron imaging systems

  16. The morphing of geographical features by Fourier transformation.

    Science.gov (United States)

    Li, Jingzhong; Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang

    2018-01-01

    This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features' continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable.

  17. Double Fourier analysis for Emotion Identification in Voiced Speech

    International Nuclear Information System (INIS)

    Sierra-Sosa, D.; Bastidas, M.; Ortiz P, D.; Quintero, O.L.

    2016-01-01

    We propose a novel analysis alternative, based on two Fourier Transforms for emotion recognition from speech. Fourier analysis allows for display and synthesizes different signals, in terms of power spectral density distributions. A spectrogram of the voice signal is obtained performing a short time Fourier Transform with Gaussian windows, this spectrogram portraits frequency related features, such as vocal tract resonances and quasi-periodic excitations during voiced sounds. Emotions induce such characteristics in speech, which become apparent in spectrogram time-frequency distributions. Later, the signal time-frequency representation from spectrogram is considered an image, and processed through a 2-dimensional Fourier Transform in order to perform the spatial Fourier analysis from it. Finally features related with emotions in voiced speech are extracted and presented. (paper)

  18. Analyzing Seasonal Variations in Suicide With Fourier Poisson Time-Series Regression: A Registry-Based Study From Norway, 1969-2007.

    Science.gov (United States)

    Bramness, Jørgen G; Walby, Fredrik A; Morken, Gunnar; Røislien, Jo

    2015-08-01

    Seasonal variation in the number of suicides has long been acknowledged. It has been suggested that this seasonality has declined in recent years, but studies have generally used statistical methods incapable of confirming this. We examined all suicides occurring in Norway during 1969-2007 (more than 20,000 suicides in total) to establish whether seasonality decreased over time. Fitting of additive Fourier Poisson time-series regression models allowed for formal testing of a possible linear decrease in seasonality, or a reduction at a specific point in time, while adjusting for a possible smooth nonlinear long-term change without having to categorize time into discrete yearly units. The models were compared using Akaike's Information Criterion and analysis of variance. A model with a seasonal pattern was significantly superior to a model without one. There was a reduction in seasonality during the period. Both the model assuming a linear decrease in seasonality and the model assuming a change at a specific point in time were both superior to a model assuming constant seasonality, thus confirming by formal statistical testing that the magnitude of the seasonality in suicides has diminished. The additive Fourier Poisson time-series regression model would also be useful for studying other temporal phenomena with seasonal components. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Algorithm for three dimension reconstruction of magnetic resonance tomographs and X-ray images based on Fast Fourier Transform; Algoritmo para reconstrucao tridimensional de imagens de tomografos de ressonancia magnetica e de raio-X baseado no uso de Transformada Rapida de Fourier

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Josiane M.; Traina, Agma Juci M. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Ciencias Matematicas; Cruvinel, Paulo E. [EMBRAPA, Sao Carlos, SP (Brazil). CNPDIA

    1995-12-31

    This work presents an algorithm for three-dimensional digital image reconstruction. Such algorithms based on the combination of both a Fast Fourier Transform method with Hamming Window and the use of a tri-linear interpolation function. The algorithm allows not only the generation of three-dimensional spatial spin distribution maps for Magnetic Resonance Tomography data but also X and Y-rays linear attenuation coefficient maps for CT scanners. Results demonstrates the usefulness of the algorithm in three-dimensional image reconstruction by doing first two-dimensional reconstruction and rather after interpolation. The algorithm was developed in C++ language, and there are two available versions: one under the DOS environment, and the other under the UNIX/Sun environment. (author) 10 refs., 5 figs.

  20. Fourier evaluation of broad Moessbauer spectra

    International Nuclear Information System (INIS)

    Vincze, I.

    1981-01-01

    It is shown by the Fourier analysis of broad Moessbauer spectra that the even part of the distribution of the dominant hyperfine interaction (hyperfine field or quadrupole splitting) can be obtained directly without using least-square fitting procedures. Also the odd part of this distribution correlated with other hyperfine parameters (e.g. isomer shift) can be directly determined. Examples for amorphous magnetic and paramagnetic iron-based alloys are presented. (author)

  1. Fourier evaluation of broad Moessbauer spectra

    International Nuclear Information System (INIS)

    Vincze, I.

    1981-09-01

    It is shown by the Fourier analysis of broad Moessbauer spectra that the even part of the distribution of the dominant hyperfine interaction (hyperfine field or quadrupole splitting) can be obtained directly without using least-square fitting procedures. Also the odd part of this distribution correlated with other hyperfine parameters (e.g. isomer shift) can be directly determined. Examples covering the case of amorphous magnetic and paramagnetic iron-based alloys are presented. (author)

  2. Optical Fibre Temperature Sensor Based On A Blackbody Radiation

    Science.gov (United States)

    Hypszer, Ryszard; Plucinski, Jerzy; Wierzba, Henryk J.

    1990-01-01

    The principle of operation of the fibre optical temperature sensor based on a blackbody radiation and its construction model is given in the paper. A quartz rod of 0.6 mm diameter and 20 cm length with a blackbody cavity at the one end was used to construct the sensor. The cavity was made by vacuum evaporation of a chromium layer and a silicone monooxide layer was used as a protection. Infrared radiation is transmitted by the fibre optic to the detection circuit. This sensor enables temperature measurement from 400 to 1200°C. The range of measurement is determined by the detection sensitivity and by rod softening. The resolution is of the order of 10-2°C. The sensor calibration was done by using PtRh1O-Pt thermocouple.

  3. Radiation-damage measurements on PVT-based plastic scintillators

    International Nuclear Information System (INIS)

    Ilie, S.; Schoenbacher, H.; Tavlet, M.

    1993-01-01

    Samples of PVT-based plastic scintillators produced by Nuclear Enterprise Technology Ltd. (NET) were irradiated up to 9 kGy, both with a gamma source and within a typical accelerator radiation field (CERN PS ACOL Irradiation Facility). The consequent reduction of scintillating efficiency and light transmission were measured, as well as subsequent recovery, over a period of several months. The main results show that irradiation affects more the light transmission than the light emission. The radiation type does not affect either the amount of transmission reduction or the recovery. Observations were also made by means of polarized light. Non-uniformities and internal stresses were observed in scintillator bulks which were polymerized too quickly. These defects influence the light transmission. (orig.)

  4. Modifying EPA radiation risk models based on BEIR VII

    International Nuclear Information System (INIS)

    Pawel, D.; Puskin, J.

    2007-01-01

    This paper summarizes a 'draft White Paper' that provides details on proposed changes in EPA's methodology for estimating radiogenic cancer risks. Many of the changes are based on the contents of a recent National Academy of Sciences (NAS) report (BEIR VII), that addresses cancer and genetic risks from low doses of low-LET radiation. The draft White Paper was prepared for a meeting with the EPA's Science Advisory Board's Radiation Advisory Committee (RAC) in September for seeking advice on the application of BEIR VII and on issues relating to these modifications and expansions. After receiving the Advisory review, we plan to implement the changes by publishing the new methodology in an EPA report, which we expect to submit to the RAC for final review. The revised methodology could then be applied to update the cancer risk coefficients for over 800 radionuclides that are published in EPA's Federal Guidance Report 13. (author)

  5. FPGA-based prototype of portable environmental radiation monitor

    Energy Technology Data Exchange (ETDEWEB)

    Benahmed, A.; Elkarch, H. [CNESTEN -Centre National de l' Energie des Sciences et Techniques Nucleaires (Morocco)

    2015-07-01

    This new portable radiological environmental monitor consists of 2 main components, Gamma ionization chamber and a FPGA-based electronic enclosure linked to convivial software for treatment and analyzing. The HPIC ion chamber is the heart of this radiation measurement system and is running in range from 0 to 100 mR/h, so that the sensitivity at the output is 20 mV/μR/h, with a nearly flat energy response from 0,07 to 10 MEV. This paper presents a contribution for developing a new nuclear measurement data acquisition system based on Cyclone III FPGA Starter Kit ALTERA, and a user-friendly software to run real-time control and data processing. It was developed to substitute the older radiation monitor RSS-112 PIC installed in CNESTEN's Laboratory in order to improve some of its functionalities related to acquisition time and data memory capacity. As for the associated acquisition software, it was conceived under the virtual LabView platform from National Instrument, and offers a variety of system setup for radiation environmental monitoring. It gives choice to display both the statistical data and the dose rate. Statistical data shows a summary of current data, current time/date and dose integrator values, and the dose rate displays the current dose rate in large numbers for viewing from a distance as well as the date and time. The prototype version of this new instrument and its data processing software has been successfully tested and validated for viewing and monitoring the environmental radiation of Moroccan nuclear center. (authors)

  6. The Geostationary Fourier Transform Spectrometer

    Science.gov (United States)

    Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

    2012-01-01

    The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

  7. A knowledge based system for training radiation emergency response personnel

    International Nuclear Information System (INIS)

    Kuriakose, K.K.; Peter, T.U.; Natarajan, A.

    1992-01-01

    One of the important aspects of radiation emergency preparedness is to impart training to emergency handling staff. Mock exercises are generally used for this purpose. But practical considerations limit the frequency of such exercises. A suitably designed computer software can be effectively used to impart training. With the advent of low cost personal computers, the frequency with which the training programme can be conducted is unlimited. A computer software with monotonic behaviour is inadequate for such training. It is necessary to provide human like tutoring capabilities. With the advances in knowledge based computer systems, it is possible to develop such a system. These systems have the capability of providing individualized training. This paper describes the development of such a system for training and evaluation of agencies associated with the management of radiation emergency. It also discusses the utility of the software as a general purpose tutor. The details required for the preparation of data files and knowledge base files are included. It uses a student model based on performance measures. The software is developed in C under MS-DOS. It uses a rule based expert system shell developed in C. The features of this shell are briefly described. (author). 5 refs

  8. General Correlation Theorem for Trinion Fourier Transform

    OpenAIRE

    Bahri, Mawardi

    2017-01-01

    - The trinion Fourier transform is an extension of the Fourier transform in the trinion numbers setting. In this work we derive the correlation theorem for the trinion Fourier transform by using the relation between trinion convolution and correlation definitions in the trinion Fourier transform domains.

  9. Fourier Series, the DFT and Shape Modelling

    DEFF Research Database (Denmark)

    Skoglund, Karl

    2004-01-01

    This report provides an introduction to Fourier series, the discrete Fourier transform, complex geometry and Fourier descriptors for shape analysis. The content is aimed at undergraduate and graduate students who wish to learn about Fourier analysis in general, as well as its application to shape...

  10. Fourier analysis: from cloaking to imaging

    Science.gov (United States)

    Wu, Kedi; Cheng, Qiluan; Wang, Guo Ping

    2016-04-01

    Regarding invisibility cloaks as an optical imaging system, we present a Fourier approach to analytically unify both Pendry cloaks and complementary media-based invisibility cloaks into one kind of cloak. By synthesizing different transfer functions, we can construct different devices to realize a series of interesting functions such as hiding objects (events), creating illusions, and performing perfect imaging. In this article, we give a brief review on recent works of applying Fourier approach to analysis invisibility cloaks and optical imaging through scattering layers. We show that, to construct devices to conceal an object, no constructive materials with extreme properties are required, making most, if not all, of the above functions realizable by using naturally occurring materials. As instances, we experimentally verify a method of directionally hiding distant objects and create illusions by using all-dielectric materials, and further demonstrate a non-invasive method of imaging objects completely hidden by scattering layers.

  11. Fourier analysis: from cloaking to imaging

    International Nuclear Information System (INIS)

    Wu, Kedi; Ping Wang, Guo; Cheng, Qiluan

    2016-01-01

    Regarding invisibility cloaks as an optical imaging system, we present a Fourier approach to analytically unify both Pendry cloaks and complementary media-based invisibility cloaks into one kind of cloak. By synthesizing different transfer functions, we can construct different devices to realize a series of interesting functions such as hiding objects (events), creating illusions, and performing perfect imaging. In this article, we give a brief review on recent works of applying Fourier approach to analysis invisibility cloaks and optical imaging through scattering layers. We show that, to construct devices to conceal an object, no constructive materials with extreme properties are required, making most, if not all, of the above functions realizable by using naturally occurring materials. As instances, we experimentally verify a method of directionally hiding distant objects and create illusions by using all-dielectric materials, and further demonstrate a non-invasive method of imaging objects completely hidden by scattering layers. (review)

  12. Correcting sample drift using Fourier harmonics.

    Science.gov (United States)

    Bárcena-González, G; Guerrero-Lebrero, M P; Guerrero, E; Reyes, D F; Braza, V; Yañez, A; Nuñez-Moraleda, B; González, D; Galindo, P L

    2018-07-01

    During image acquisition of crystalline materials by high-resolution scanning transmission electron microscopy, the sample drift could lead to distortions and shears that hinder their quantitative analysis and characterization. In order to measure and correct this effect, several authors have proposed different methodologies making use of series of images. In this work, we introduce a methodology to determine the drift angle via Fourier analysis by using a single image based on the measurements between the angles of the second Fourier harmonics in different quadrants. Two different approaches, that are independent of the angle of acquisition of the image, are evaluated. In addition, our results demonstrate that the determination of the drift angle is more accurate by using the measurements of non-consecutive quadrants when the angle of acquisition is an odd multiple of 45°. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. A micro-controller based palm-size radiation monitor

    International Nuclear Information System (INIS)

    Bhingare, R.R.; Bajaj, K.C.; Kannan, S.

    2001-01-01

    A micro-controller based, palm-size radiation monitor, PALMRAD, using a silicon P-N junction diode as a detector has been developed. It is useful for radiation protection monitoring during radiation emergency as well as radioactive source loading operations. Some of the features of PALMRAD developed are the use of a semiconductor diode as the detector, simultaneous display of integrated dose and dose rate on a 16-digit alpha numeric LCD display, measurable integrated dose range from 1 μSv to 5000 μSv and dose rate range from 1 mSv/h to 1,000 mSv/h, RS 232C serial interface for connection to a Personal Computer,-storage of integrated dose and dose rate readings, recall of stored readings on LCD display, presentable integrated dose alarm from 1 μSv to 5000 μSv and dose rate from 1 mSv/h to 1,000 mSv/h, battery status and memory status check during measurement, LCD display with LED back-lighting, etc. (author)

  14. Gamma radiation damage in pixelated detector based on carbon nanotubes

    International Nuclear Information System (INIS)

    Leyva, A.; Pinnera, I.; Leyva, D.; Abreu, Y.; Cruz, C. M.

    2013-01-01

    The aim of this paper is to evaluate the possible gamma radiation damage in high pixelated based on multi-walled carbon nanotubes detectors, grown on two different substrata, when it is operating in aggressive radiational environments. The radiation damage in displacements per atom (dpa) terms were calculated using the MCCM algorithm, which takes into account the McKinley-Feshbach approach with the Kinchin-Pease approximation for the damage function. Was observed that with increasing of the gamma energy the displacement total number grows monotonically reaching values of 0.39 displacements for a 10 MeV incident photon. The profiles of point defects distributions inside the carbon nanotube pixel linearly rise with depth, increasing its slope with photon energy. In the 0.1 MeV - 10 MeV studied energy interval the electron contribution to the total displacement number become higher than the positron ones, reaching this last one a maximum value of 12% for the 10 MeV incident photons. Differences between the calculation results for the two used different substrata were not observed. (Author)

  15. VCSEL-based radiation tolerant optical data links

    CERN Document Server

    Gregor, I M; Dowell, J; Jovanovic, P; Kootz, A; Mahout, G; Mandic, I; Weidberg, T

    2000-01-01

    The Large Hadron Collider (LHC) will become operational in 2005 at The European Laboratory for Particle Physics (CERN). The LHC will be the highest energy proton-proton collider in the world. One of the electronic particle detectors which will operate at the LHC is called ATLAS. The environment for electronics placed within ATLAS is extremely hostile due to the high levels of radiation and the general lack of access to components during the expected 10 year lifetime of the experiment. It is planned to use custom radiation tolerant VCSEL- based optical links to transfer data from the ATLAS inner detector to remote data acquisition electronics. A low mass, non-magnetic and radiation tolerant VCSEL packaging has been developed for the most hostile region in the center of ATLAS where the inner detector is located. The performance of the package is reported on. Qualification tests of commercial VCSELs are also described. The VCSELs were irradiated with neutrons (up to 8.10/sup 14/ n(1 MeV)/cm/sup 2/) and annealing...

  16. Fourier-Accelerated Nodal Solvers (FANS) for homogenization problems

    Science.gov (United States)

    Leuschner, Matthias; Fritzen, Felix

    2017-11-01

    Fourier-based homogenization schemes are useful to analyze heterogeneous microstructures represented by 2D or 3D image data. These iterative schemes involve discrete periodic convolutions with global ansatz functions (mostly fundamental solutions). The convolutions are efficiently computed using the fast Fourier transform. FANS operates on nodal variables on regular grids and converges to finite element solutions. Compared to established Fourier-based methods, the number of convolutions is reduced by FANS. Additionally, fast iterations are possible by assembling the stiffness matrix. Due to the related memory requirement, the method is best suited for medium-sized problems. A comparative study involving established Fourier-based homogenization schemes is conducted for a thermal benchmark problem with a closed-form solution. Detailed technical and algorithmic descriptions are given for all methods considered in the comparison. Furthermore, many numerical examples focusing on convergence properties for both thermal and mechanical problems, including also plasticity, are presented.

  17. Fourier series, Fourier transform and their applications to mathematical physics

    CERN Document Server

    Serov, Valery

    2017-01-01

    This text serves as an introduction to the modern theory of analysis and differential equations with applications in mathematical physics and engineering sciences.  Having outgrown from a series of half-semester courses given at University of Oulu, this book consists of four self-contained parts. The first part, Fourier Series and the Discrete Fourier Transform, is devoted to the classical one-dimensional trigonometric Fourier series with some applications to PDEs and signal processing.  The second part, Fourier Transform and Distributions, is concerned with distribution theory of L. Schwartz and its applications to the Schrödinger and magnetic Schrödinger operations.  The third part, Operator Theory and Integral Equations, is devoted mostly to the self-adjoint but unbounded operators in Hilbert spaces and their applications to integral equations in such spaces. The fourth and final part, Introduction to Partial Differential Equations, serves as an introduction to modern methods for classical theory o...

  18. Fourier series and orthogonal polynomials

    CERN Document Server

    Jackson, Dunham

    2004-01-01

    This text for undergraduate and graduate students illustrates the fundamental simplicity of the properties of orthogonal functions and their developments in related series. Starting with a definition and explanation of the elements of Fourier series, the text follows with examinations of Legendre polynomials and Bessel functions. Boundary value problems consider Fourier series in conjunction with Laplace's equation in an infinite strip and in a rectangle, with a vibrating string, in three dimensions, in a sphere, and in other circumstances. An overview of Pearson frequency functions is followe

  19. Hydration induced material transfer in membranes of osmotic pump tablets measured by synchrotron radiation based FTIR.

    Science.gov (United States)

    Wu, Li; Yin, Xianzhen; Guo, Zhen; Tong, Yajun; Feng, Jing; York, Peter; Xiao, Tiqiao; Chen, Min; Gu, Jingkai; Zhang, Jiwen

    2016-03-10

    Osmotic pump tablets are reliable oral controlled drug delivery systems based on their semipermeable membrane coating. This research used synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy and imaging to investigate the hydration induced material transfer in the membranes of osmotic pump tablets. SR-FTIR was applied to record and map the chemical information of a micro-region of the membranes, composed of cellulose acetate (CA, as the water insoluble matrix) and polyethylene glycol (PEG, as the soluble pore forming agent and plasticizing agent). The microstructure and chemical change of membranes hydrated for 0, 5, 10 and 30min were measured using SR-FTIR, combined with scanning electronic microscopy and atom force microscopy. The SR-FTIR microspectroscopy results indicated that there was a major change at the absorption range of 2700-3100cm(-1) in the membranes after different periods of hydration time. The absorption bands at 2870-2880cm(-1) and 2950-2960cm(-1) were assigned to represent CA and PEG, respectively. The chemical group signal distribution illustrated by the ratio of PEG to CA demonstrated that the trigger of drug release in the preliminary stage was due to the rapid transfer of PEG into liquid medium with a sharp decrease of PEG in the membranes. The SR-FTIR mapping results have demonstrated the hydration induced material transfer in the membranes of osmotic pump tablets and enabled reassessment of the drug release mechanism of membrane controlled osmotic pump systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Recent state of CdTe-based radiation detectors

    International Nuclear Information System (INIS)

    Ohno, R.

    2004-01-01

    Recent state for development of CdTe-based radiation detectors is reviewed. The progress of the technologies such as the crystal growth of CdTe and CdZnTe, the deposition of electrodes on the crystal, the design of read out ASIC, and the bonding between crystal and ASIC, opened the way for the development of imaging devices for practical uses. A X-ray imager for non destructive inspections and a gamma ray imager for small animal radioisotope experiments or nuclear medicine are presented as examples. (author)

  1. The application and improvement of Fourier transform spectrometer experiment

    Science.gov (United States)

    Liu, Zhi-min; Gao, En-duo; Zhou, Feng-qi; Wang, Lan-lan; Feng, Xiao-hua; Qi, Jin-quan; Ji, Cheng; Wang, Luning

    2017-08-01

    According to teaching and experimental requirements of Optoelectronic information science and Engineering, in order to consolidate theoretical knowledge and improve the students practical ability, the Fourier transform spectrometer ( FTS) experiment, its design, application and improvement are discussed in this paper. The measurement principle and instrument structure of Fourier transform spectrometer are introduced, and the spectrums of several common Laser devices are measured. Based on the analysis of spectrum and test, several possible improvement methods are proposed. It also helps students to understand the application of Fourier transform in physics.

  2. FOURIER SERIES MODELS THROUGH TRANSFORMATION

    African Journals Online (AJOL)

    DEPT

    monthly temperature data (1996 – 2005) collected from the National Root ... KEY WORDS: Fourier series, square transformation, multiplicative model, ... fluctuations or movements are often periodic(Ekpeyong,2005). .... significant trend or not, if the trend is not significant, the grand mean may be used as an estimate of trend.

  3. Fourier transform wavefront control with adaptive prediction of the atmosphere.

    Science.gov (United States)

    Poyneer, Lisa A; Macintosh, Bruce A; Véran, Jean-Pierre

    2007-09-01

    Predictive Fourier control is a temporal power spectral density-based adaptive method for adaptive optics that predicts the atmosphere under the assumption of frozen flow. The predictive controller is based on Kalman filtering and a Fourier decomposition of atmospheric turbulence using the Fourier transform reconstructor. It provides a stable way to compensate for arbitrary numbers of atmospheric layers. For each Fourier mode, efficient and accurate algorithms estimate the necessary atmospheric parameters from closed-loop telemetry and determine the predictive filter, adjusting as conditions change. This prediction improves atmospheric rejection, leading to significant improvements in system performance. For a 48x48 actuator system operating at 2 kHz, five-layer prediction for all modes is achievable in under 2x10(9) floating-point operations/s.

  4. A radiation-hardened SOI-based FPGA

    International Nuclear Information System (INIS)

    Han Xiaowei; Wu Lihua; Zhao Yan; Li Yan; Zhang Qianli; Chen Liang; Zhang Guoquan; Li Jianzhong; Yang Bo; Gao Jiantou; Wang Jian; Li Ming; Liu Guizhai; Zhang Feng; Guo Xufeng; Chen, Stanley L.; Liu Zhongli; Yu Fang; Zhao Kai

    2011-01-01

    A radiation-hardened SRAM-based field programmable gate array VS1000 is designed and fabricated with a 0.5 μm partial-depletion silicon-on-insulator logic process at the CETC 58th Institute. The new logic cell (LC), with a multi-mode based on 3-input look-up-table (LUT), increases logic density about 12% compared to a traditional 4-input LUT The logic block (LB), consisting of 2 LCs, can be used in two functional modes: LUT mode and distributed read access memory mode. The hierarchical routing channel block and switch block can significantly improve the flexibility and routability of the routing resource. The VS1000 uses a CQFP208 package and contains 392 reconfigurable LCs, 112 reconfigurable user I/Os and IEEE 1149.1 compatible with boundary-scan logic for testing and programming. The function test results indicate that the hardware and software cooperate successfully and the VS1000 works correctly. Moreover, the radiation test results indicate that the VS1000 chip has total dose tolerance of 100 krad(Si), a dose rate survivability of 1.5 x 10 11 rad(Si)/s and a neutron fluence immunity of 1 x 10 14 n/cm 2 . (semiconductor integrated circuits)

  5. A STUDY ON RANKING METHOD IN RETRIEVING WEB PAGES BASED ON CONTENT AND LINK ANALYSIS: COMBINATION OF FOURIER DOMAIN SCORING AND PAGERANK SCORING

    Directory of Open Access Journals (Sweden)

    Diana Purwitasari

    2008-01-01

    Full Text Available Ranking module is an important component of search process which sorts through relevant pages. Since collection of Web pages has additional information inherent in the hyperlink structure of the Web, it can be represented as link score and then combined with the usual information retrieval techniques of content score. In this paper we report our studies about ranking score of Web pages combined from link analysis, PageRank Scoring, and content analysis, Fourier Domain Scoring. Our experiments use collection of Web pages relate to Statistic subject from Wikipedia with objectives to check correctness and performance evaluation of combination ranking method. Evaluation of PageRank Scoring show that the highest score does not always relate to Statistic. Since the links within Wikipedia articles exists so that users are always one click away from more information on any point that has a link attached, it it possible that unrelated topics to Statistic are most likely frequently mentioned in the collection. While the combination method show link score which is given proportional weight to content score of Web pages does effect the retrieval results.

  6. Adsorption and oxidation of acetaldehyde on carbon supported Pt, PtSn and PtSn-based trimetallic catalysts by in situ Fourier transform infrared spectroscopy

    Science.gov (United States)

    Beyhan, Seden; Léger, Jean-Michel; Kadırgan, Figen

    2013-11-01

    The adsorption and oxidation of acetaldehyde on carbon supported Pt, Pt90Sn10 and Pt80Sn10M10 (M = Ni, Co, Rh, Pd) catalysts have been investigated by using in situ Fourier transform infrared (FTIR) spectroscopy. The result revealed that Pt90Sn10/C catalyst is not very efficient for the conversion of acetaldehyde to CO2 due to the weak adsorption of acetaldehyde in the presence of Sn. However, the addition of a third metal to Pt--Sn facilitates the C-C bond cleavage of acetaldehyde. It seems that acetaldehyde is adsorbed dissociatively on the surface of Pt80Sn10Ni10/C, Pt80Sn10Co10/C, Pt80Sn10Rh10/C catalysts, producing CH3 and CHO adsorbate species, which can be further oxidized to CO2. However, the pathway forming CO2 for Pt80Sn10Pd10/C catalyst mainly originates from the oxidation of CH3CO species. Thus, the presence of third metal in the PtSn catalyst has a strong impact upon the acetaldehyde adsorption behaviour and its reaction products.

  7. Multivariate analysis of attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopic data to confirm phase partitioning in methacrylate-based dentin adhesive.

    Science.gov (United States)

    Ye, Qiang; Parthasarathy, Ranganathan; Abedin, Farhana; Laurence, Jennifer S; Misra, Anil; Spencer, Paulette

    2013-12-01

    Water is ubiquitous in the mouths of healthy individuals and is a major interfering factor in the development of a durable seal between the tooth and composite restoration. Water leads to the formation of a variety of defects in dentin adhesives; these defects undermine the tooth-composite bond. Our group recently analyzed phase partitioning of dentin adhesives using high-performance liquid chromatography (HPLC). The concentration measurements provided by HPLC offered a more thorough representation of current adhesive performance and elucidated directions to be taken for further improvement. The sample preparation and instrument analysis using HPLC are, however, time-consuming and labor-intensive. The objective of this work was to develop a methodology for rapid, reliable, and accurate quantitative analysis of near-equilibrium phase partitioning in adhesives exposed to conditions simulating the wet oral environment. Analysis by Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate statistical methods, including partial least squares (PLS) regression and principal component regression (PCR), were used for multivariate calibration to quantify the compositions in separated phases. Excellent predictions were achieved when either the hydrophobic-rich phase or the hydrophilic-rich phase mixtures were analyzed. These results indicate that FT-IR spectroscopy has excellent potential as a rapid method of detection and quantification of dentin adhesives that experience phase separation under conditions that simulate the wet oral environment.

  8. Theory of edge radiation

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Kocharyan, V.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2008-08-15

    We formulate a complete theory of Edge Radiation based on a novel method relying on Fourier Optics techniques. Similar types of radiation like Transition UndulatorRadiation are addressed in the framework of the same formalism. Special attention is payed in discussing the validity of approximations upon which the theory is built. Our study makes consistent use of both similarity techniques and comparisons with numerical results from simulation. We discuss both near and far zone. Physical understanding of many asymptotes is discussed. Based on the solution of the field equation with a tensor Green's function technique, we also discuss an analytical model to describe the presence of a vacuum chamber. In particular, explicit calculations for a circular vacuum chamber are reported. Finally, we consider the use of Edge Radiation as a tool for electron beam diagnostics. We discuss Coherent Edge Radiation, Extraction of Edge Radiation by a mirror, and other issues becoming important at high electron energy and long radiation wavelength. Based on this work we also study the impact of Edge Radiation on XFEL setups and we discuss recent results. (orig.)

  9. ROENTGEN: case-based reasoning and radiation therapy planning.

    Science.gov (United States)

    Berger, J.

    1992-01-01

    ROENTGEN is a design assistant for radiation therapy planning which uses case-based reasoning, an artificial intelligence technique. It learns both from specific problem-solving experiences and from direct instruction from the user. The first sort of learning is the normal case-based method of storing problem solutions so that they can be reused. The second sort is necessary because ROENTGEN does not, initially, have an internal model of the physics of its problem domain. This dependence on explicit user instruction brings to the forefront representational questions regarding indexing, failure definition, failure explanation and repair. This paper presents the techniques used by ROENTGEN in its knowledge acquisition and design activities. PMID:1482869

  10. GSM base station electromagnetic radiation and oxidative stress in rats.

    Science.gov (United States)

    Yurekli, Ali Ihsan; Ozkan, Mehmed; Kalkan, Tunaya; Saybasili, Hale; Tuncel, Handan; Atukeren, Pinar; Gumustas, Koray; Seker, Selim

    2006-01-01

    The ever increasing use of cellular phones and the increasing number of associated base stations are becoming a widespread source of nonionizing electromagnetic radiation. Some biological effects are likely to occur even at low-level EM fields. In this study, a gigahertz transverse electromagnetic (GTEM) cell was used as an exposure environment for plane wave conditions of far-field free space EM field propagation at the GSM base transceiver station (BTS) frequency of 945 MHz, and effects on oxidative stress in rats were investigated. When EM fields at a power density of 3.67 W/m2 (specific absorption rate = 11.3 mW/kg), which is well below current exposure limits, were applied, MDA (malondialdehyde) level was found to increase and GSH (reduced glutathione) concentration was found to decrease significantly (p < 0.0001). Additionally, there was a less significant (p = 0.0190) increase in SOD (superoxide dismutase) activity under EM exposure.

  11. Ticor-based scintillation detectors for detection of mixed radiation

    CERN Document Server

    Litvinov, L A; Kolner, V B; Ryzhikov, V D; Volkov, V G; Tarasov, V A; Zelenskaya, O V

    2002-01-01

    Detection of mixed radiation of thermal neutrons and gamma-rays have been realized using a new ceramic material based on small-crystalline long-wave scintillator alpha-Al sub 2 O sub 3 :Ti (Ticor) and lithium fluoride. Characteristics are presented for scintillators with Si-PIN-PD type photoreceivers and PMT under sup 2 sup 3 sup 9 Pu alpha-particles, sup 2 sup 0 sup 7 Bi internal conversion electrons,as well as sup 2 sup 4 sup 1 Am and sup 1 sup 3 sup 7 Cs gamma-quanta. Detection efficiency of thermal neutron is estimated for composite materials based on Ticor and lithium fluoride.

  12. Cylindrical angular spectrum using Fourier coefficients of point light source and its application to fast hologram calculation.

    Science.gov (United States)

    Oh, Seungtaik; Jeong, Il Kwon

    2015-11-16

    We will introduce a new simple analytic formula of the Fourier coefficient of the 3D field distribution of a point light source to generate a cylindrical angular spectrum which captures the object wave in 360° in the 3D Fourier space. Conceptually, the cylindrical angular spectrum can be understood as a cylindrical version of the omnidirectional spectral approach of Sando et al. Our Fourier coefficient formula is based on an intuitive observation that a point light radiates uniformly in all directions. Our formula is defined over all frequency vectors lying on the entire sphere in the 3D Fourier space and is more natural and computationally more efficient for all around recording of the object wave than that of the previous omnidirectional spectral method. A generalized frequency-based occlusion culling method for an arbitrary complex object is also proposed to enhance the 3D quality of a hologram. As a practical application of the cylindrical angular spectrum, an interactive hologram example is presented together with implementation details.

  13. Non-Halal biomarkers identification based on Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography-Time of Flight Mass Spectroscopy (GC-TOF MS) techniques

    Science.gov (United States)

    Witjaksono, Gunawan; Saputra, Irwan; Latief, Marsad; Jaswir, Irwandi; Akmeliawati, Rini; Abdelkreem Saeed Rabih, Almur

    2017-11-01

    Consumption of meat from halal (lawful) sources is essential for Muslims. The identification of non-halal meat is one of the main issues that face consumers in meat markets, especially in non-Islamic countries. Pig is one of the non-halal sources of meat, and hence pig meat and its derivatives are forbidden for Muslims to consume. Although several studies have been conducted to identify the biomarkers for nonhalal meats like pig meat, these studies are still in their infancy stages, and as a result there is no universal biomarker which could be used for clear cut identification. The purpose of this paper is to use Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography-Time of Flight Mass Spectroscopy (GC-TOF MS) techniques to study fat of pig, cow, lamb and chicken to find possible biomarkers for pig fat (lard) identification. FTIR results showed that lard and chicken fat have unique peaks at wavenumbers 1159.6 cm-1, 1743.4 cm-1, 2853.1 cm-1 and 2922.5 cm-1 compared to lamb and beef fats which did not show peaks at these wavenumbers. On the other hand, GC/MS-TOF results showed that the concentration of 1,2,3-trimethyl-Benzene, Indane, and Undecane in lard are 250, 14.5 and 1.28 times higher than their concentrations in chicken fat, respectively, and 91.4, 2.3 and 1.24 times higher than their concentrations in cow fat, respectively. These initial results clearly indicate that there is a possibility to find biomarkers for non-halal identification.

  14. Quantitative measurements of fly ash, slag, and cement in limestone-based blends by Fourier transform infrared-attenuated total reflectance method

    International Nuclear Information System (INIS)

    Rebagay, T.V.; Dodd, D.A.; Claghorn, R.D.; Voogd, J.A.

    1991-02-01

    The disposal of the low-level radioactive liquids involves mixing the liquid waste with pozzolanic blend to form grout. Since the long-term performance of the grout depends on the composition of the blend, a rapid and reliable quantitative method to monitor blend compositions is needed. Earlier studies by Westinghouse Hanford Company demonstrated the utility of a Fourier transform infrared-attenuated total reflectance method for the analysis of cement blends. A sequential spectral subtraction technique was used to analyze the blend; however, its reproducibility depends on the operator's skill to perform spectral subtractions. A partial-least-squares (PLS) algorithm has replaced spectral subtraction. The PLS method is a statistical quantitative method suitable for analysis of multicomponent systems. Calibration blends are prepared by mixing the blend components in various proportions following a carefully designed calibration model. For the model, limestone content ranges from 30-50 wt%; blast furnace slag from 18-38 wt%; fly ash from 18-38 wt%; and cement from 0-16 wt%. Use of the large concentration range will enhance the chance that the calibration will be useful when target concentration change. The ability of the PLS method to predict limestone, slag, fly ash, and cement values in test blends was assessed. The prediction step of the PLS algorithm required only a few seconds to analyze the test spectra. The best and worst results for each component of the blends calculated by this method are shown in tables. The standard error of prediction of the true value is <2 wt% for limestone, <4 wt% for both fly ash and blast furnace slag, and <10 wt% for cement. 2 refs., 8 figs., 7 tabs

  15. HZETRN radiation transport validation using balloon-based experimental data

    Science.gov (United States)

    Warner, James E.; Norman, Ryan B.; Blattnig, Steve R.

    2018-05-01

    The deterministic radiation transport code HZETRN (High charge (Z) and Energy TRaNsport) was developed by NASA to study the effects of cosmic radiation on astronauts and instrumentation shielded by various materials. This work presents an analysis of computed differential flux from HZETRN compared with measurement data from three balloon-based experiments over a range of atmospheric depths, particle types, and energies. Model uncertainties were quantified using an interval-based validation metric that takes into account measurement uncertainty both in the flux and the energy at which it was measured. Average uncertainty metrics were computed for the entire dataset as well as subsets of the measurements (by experiment, particle type, energy, etc.) to reveal any specific trends of systematic over- or under-prediction by HZETRN. The distribution of individual model uncertainties was also investigated to study the range and dispersion of errors beyond just single scalar and interval metrics. The differential fluxes from HZETRN were generally well-correlated with balloon-based measurements; the median relative model difference across the entire dataset was determined to be 30%. The distribution of model uncertainties, however, revealed that the range of errors was relatively broad, with approximately 30% of the uncertainties exceeding ± 40%. The distribution also indicated that HZETRN systematically under-predicts the measurement dataset as a whole, with approximately 80% of the relative uncertainties having negative values. Instances of systematic bias for subsets of the data were also observed, including a significant underestimation of alpha particles and protons for energies below 2.5 GeV/u. Muons were found to be systematically over-predicted at atmospheric depths deeper than 50 g/cm2 but under-predicted for shallower depths. Furthermore, a systematic under-prediction of alpha particles and protons was observed below the geomagnetic cutoff, suggesting that

  16. Radiation Synthesis of Superabsorbent Polymers Based on Natural Polymers

    International Nuclear Information System (INIS)

    Sen, Murat; Hayrabolulu, Hande

    2010-01-01

    The objectives of proposed research contract were first synthesize superabsorbent polymers based on natural polymers to be used as disposable diapers and soil conditioning materials in agriculture, horticulture and other super adsorbent using industries. We have planned to use the natural polymers; locust beam gum, tara gum, guar gum and sodium alginate on the preparation of natural superabsorbent polymers(SAP). The aqueous solution of natural polymers and their blends with trace amount of monomer and cross-linking agents will be irradiated in paste like conditions by gamma rays for the preparation of cross-linked superabsorbent systems. The water absorption and deswellling capacity of prepared super adsorbents and retention capacity, absorbency under load, suction power, swelling pressure and pet-rewet properties will be determined. Use of these materials instead of synthetic super absorbents will be examined by comparing the performance of finished products. The experimental studies achieved in the second year of project mainly on the effect of radiation on the chemistry of sodium alginate polymers in different irradiation conditions and structure-property relationship particularly with respect to radiation induced changes on the molecular weight of natural polymers and preliminary studies on the synthesis of natural-synthetic hydride super adsorbent polymers were given in details

  17. Climate variation based on temperature and solar radiation data ...

    African Journals Online (AJOL)

    ckaonga

    2015-03-12

    Mar 12, 2015 ... addition, the concentration of carbon dioxide over Malawi within the same period as temperature and solar radiation data ... plant diseases and pests which may have adverse effects ... object that absorbs and emits radiation).

  18. Cellular telephone-based wide-area radiation detection network

    Science.gov (United States)

    Craig, William W [Pittsburg, CA; Labov, Simon E [Berkeley, CA

    2009-06-09

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  19. Radiofrequency radiation injures trees around mobile phone base stations.

    Science.gov (United States)

    Waldmann-Selsam, Cornelia; Balmori-de la Puente, Alfonso; Breunig, Helmut; Balmori, Alfonso

    2016-12-01

    In the last two decades, the deployment of phone masts around the world has taken place and, for many years, there has been a discussion in the scientific community about the possible environmental impact from mobile phone base stations. Trees have several advantages over animals as experimental subjects and the aim of this study was to verify whether there is a connection between unusual (generally unilateral) tree damage and radiofrequency exposure. To achieve this, a detailed long-term (2006-2015) field monitoring study was performed in the cities of Bamberg and Hallstadt (Germany). During monitoring, observations and photographic recordings of unusual or unexplainable tree damage were taken, alongside the measurement of electromagnetic radiation. In 2015 measurements of RF-EMF (Radiofrequency Electromagnetic Fields) were carried out. A polygon spanning both cities was chosen as the study site, where 144 measurements of the radiofrequency of electromagnetic fields were taken at a height of 1.5m in streets and parks at different locations. By interpolation of the 144 measurement points, we were able to compile an electromagnetic map of the power flux density in Bamberg and Hallstadt. We selected 60 damaged trees, in addition to 30 randomly selected trees and 30 trees in low radiation areas (n=120) in this polygon. The measurements of all trees revealed significant differences between the damaged side facing a phone mast and the opposite side, as well as differences between the exposed side of damaged trees and all other groups of trees in both sides. Thus, we found that side differences in measured values of power flux density corresponded to side differences in damage. The 30 selected trees in low radiation areas (no visual contact to any phone mast and power flux density under 50μW/m 2 ) showed no damage. Statistical analysis demonstrated that electromagnetic radiation from mobile phone masts is harmful for trees. These results are consistent with the fact

  20. An interactive Web-based radiation protection course in fluoroscopy

    International Nuclear Information System (INIS)

    Aldrich, J.

    2001-01-01

    The teaching of radiation protection to a large group of physicians, who are separated geographically and have complicated schedules, is a formidable problem. Therefore a Web-based solution is attractive, allowing access to the material at any time and place. In this implementation the didactic material is presented in a Web-based format. Subsequently, students attend a practical demonstration in one of the departments' fluoroscopy rooms. Because of local experience with distance education, WebCT was chosen to present the material. WebCT (Web Course Tools) was developed by the University of British Columbia (UBC) to allow educators, with or without technical expertise, to create a sophisticated Web-base. Authors use a standard Web browser to create courses, and students use their browsers to access course material. WebCT provides a wide variety of tools and features that can be added to a course. Among the most useful tools used in this fluoroscopy course are the glossary, multiple-choice questions for each section, and a final test which is scored by the computer. As with all Web-based material the courses can be viewed in the traditional linear fashion or in any random way through the use of linkages. (author)

  1. Monitoring of Electromagnetic Radiation from Cellular Base Stations in Kuwait

    International Nuclear Information System (INIS)

    Al-Otaibi, A.H.; Al-Ajmi, D.; Williams, T.; McGee, D.; Dennis, J.A.; Beg, M.U.

    1998-01-01

    A survey of the radio frequency electromagnetic environment in Kuwait was carried out. The primary purpose of this survey was to monitor electromagnetic radiation (EMR) field strength levels emitted by cellular base stations installed and operated by the Kuwait Mobile Telecommunications Company (MTC). Measurements were made at 26 cellular-phone base stations, chosen as a representative sample to include 14 school sites, 2 residential sites, 2 hospital sites, 3 ministerial building sites, 3 commercial sites and 1 typical stand-alone site. On all the selected sites measurements were made with a spectrum analyser to determine the emission level in the frequency bands used by the base station transmitters (917-960 MHz). The results indicated that total field strength, specifically due to the MTC base stations, found in public access areas, varied generally between 0.05 and 1.13 V.m -1 . These values are in the order of between 40 and 800 times lower than the new pan-European CENELEC pre-standard ENV 50166-2 'Human Exposure to Electromagnetic Fields'. In terms of power density the highest observed value (0.34 μW.m -2 ) was more than a thousand times below the prescribed standards. (author)

  2. From Fourier analysis to wavelets

    CERN Document Server

    Gomes, Jonas

    2015-01-01

    This text introduces the basic concepts of function spaces and operators, both from the continuous and discrete viewpoints.  Fourier and Window Fourier Transforms are introduced and used as a guide to arrive at the concept of Wavelet transform.  The fundamental aspects of multiresolution representation, and its importance to function discretization and to the construction of wavelets is also discussed. Emphasis is given on ideas and intuition, avoiding the heavy computations which are usually involved in the study of wavelets.  Readers should have a basic knowledge of linear algebra, calculus, and some familiarity with complex analysis.  Basic knowledge of signal and image processing is desirable. This text originated from a set of notes in Portuguese that the authors wrote for a wavelet course on the Brazilian Mathematical Colloquium in 1997 at IMPA, Rio de Janeiro.

  3. The internal radiation dose calculations based on Chinese mathematical phantom

    International Nuclear Information System (INIS)

    Wang Haiyan; Li Junli; Cheng Jianping; Fan Jiajin

    2006-01-01

    The internal radiation dose calculations built on Chinese facts become more and more important according to the development of nuclear medicine. the MIRD method developed and consummated by the society of Nuclear Medicine (America) is based on the European and American mathematical phantom and can't fit Chinese well. The transport of γ-ray in the Chinese mathematical phantom was simulated with Monte Carlo method in programs as MCNP4C. the specific absorbed fraction (Φ) of Chinese were calculated and the Chinese Φ database was created. The results were compared with the recommended values by ORNL. the method was proved correct by the coherence when the target organ was the same with the source organ. Else, the difference was due to the different phantom and the choice of different physical model. (authors)

  4. Relative radiation hazards of coal based and nuclear power plants

    International Nuclear Information System (INIS)

    Mishra, U.C.

    1983-04-01

    Coal, like most materials found in nature, contains trace quantities of naturally occurring radionuclides. However, low concentrations may become important if large quantities of coal are burnt in thermal power plants. Therefore a study was performed to determine the radioactivity in coal, in fly-ash and slag and assess the importance of radioactive emissions from thermal power plants. The results were compared to the radiological impact of nuclear power stations. Based on these data, theoretical estimates for the population living within 80km from power stations indicate that the collective dose commitments of coal-fired plants are one order of magnitude higher than those for BWR-type nuclear plants. Measurements taken in the vicinity of coal-fired plants were comparable to those for nuclear plants, i.e. within the range of variation of natural background radiation in India

  5. Research sources of ionizing radiation based on transplutonium elements

    Science.gov (United States)

    Radchenko, V. M.; Ryabinin, M. A.

    2010-03-01

    Scientific and technical demand stimulates an extension of the practical implementation field of TPE, requirements to their ecological safety calling for the development of such materials which could be most resistant to the environment and most suitable for the production of a wide range of sources different in their application and design. Such materials can involve pure metals of transplutonium elements and their alloys with metals of platinum group as well as their chemically stable compounds (such as silicides, carbides etc.) At SSC RIAR production processes of sources of different type and application have been implemented. Examples of the most recent developments of the sources are presented below. Presented is the analysis of the current state of issues related to designing, production and application of radionuclide research sources based on transplutonium elements. Examples of the development of the most up-to-date sources of alpha-, gamma- and neutron radiation and also fission ones are considered.

  6. Data base management system for a radiation safety program

    International Nuclear Information System (INIS)

    McKetty, M.H.; Roach, D.M.

    1991-01-01

    A data base management system (DBMS) has been developed that simplifies the retrieval of data concerning radioisotope use at a university and hospital. The system customizes software that is commercially available to perform several functions. Reports can be developed concerning receipt of radioactive materials, radioactive waste disposal, and research proposals submitted by investigators. Reports can be prepared that utilize the software's ability to perform numerical calculations. The main advantage of the DBMS is that it allows the easy retrieval of information that is used in the day-to-day operation of a radiation safety office; it also provides easy access and manipulation of data for the preparation of reports, budget proposals, and justifications for purchases

  7. Uncertainty Principles and Fourier Analysis

    Indian Academy of Sciences (India)

    analysis on the part of the reader. Those who are not fa- miliar with Fourier analysis are encouraged to look up Box. 1 along with [3]. (A) Heisenberg's inequality: Let us measure concentration in terms of standard deviation i.e. for a square integrable func-. 00 tion defined on 1R and normalized so that J If(x)12d,x = 1,. -00. 00.

  8. Development and application of a Fourier transform based methodology for the identification of instability in boiling water reactors at a local scale

    Energy Technology Data Exchange (ETDEWEB)

    Walser, Stefan Franz

    2017-04-06

    This thesis addresses the development of an analysis methodology for BWR instability phenomena and aims at the identification of in-core, local thermal-hydraulic processes during a transient. The analysis methodology is designed to apply as input data the simulation results of time domain coupled system codes. For the application described in this thesis, a coupled TRACE/PARCS model representing the Oskarshamn-2 (O2) NPP with a one-to-one core channel representation has been used. The coupled model simulates the O2-1999 feedwater transient; an instability event characterized by an in-phase mode of oscillation with reactor power amplitudes up to 132 %. The analysis methodology is a two-step approach and uses in the first step the fast-fourier transform algorithm applied on normalized core parameters in twodimensional spacial direction of the core. The normalization of the data implies the advantage of directly comparable results in spectral representation. The spectral analysis results show for each data node the oscillation amplitude to its corresponding frequency. In the second step the dominating frequency of each single parameter is determined and the relative phase shift of the dominating components is calculated. The application of the developed methodology on the simulation results of the O2-1999 feedwater transient show that the channel mass flow rates have among all investigated parameters the clearest differences in the local expression of oscillation and are a governing indicator for BWR instability due to the density wave mechanism. The spectral analysis of the core channel in planar direction points out a heterogeneous oscillation behavior of the fuel assemblies mass fl ow rates. A certain pattern of core channels with striking mass flow rate oscillations is prevailing and the pattern shows proportionality to the fuel assemblies relative power ratio. Moreover the mass ow rate oscillations of the peripheral core channels are observed to employ a quasi

  9. Analog fourier transform channelizer and OFDM receiver

    OpenAIRE

    2007-01-01

    An OFDM receiver having an analog multiplier based I-Q channelizing filter, samples and holds consecutive analog I-Q samples of an I-Q baseband, the I-Q basebands having OFDM sub-channels. A lattice of analog I-Q multipliers and analog I-Q summers concurrently receives the held analog I-Q samples, performs analog I-Q multiplications and analog I-Q additions to concurrently generate a plurality of analog I-Q output signals, representing an N-point discrete Fourier transform of the held analog ...

  10. An introduction to Fourier series and integrals

    CERN Document Server

    Seeley, Robert T

    2006-01-01

    This compact guide emphasizes the relationship between physics and mathematics, introducing Fourier series in the way that Fourier himself used them: as solutions of the heat equation in a disk. 1966 edition.

  11. 38 CFR 3.311 - Claims based on exposure to ionizing radiation.

    Science.gov (United States)

    2010-07-01

    ... to ionizing radiation. 3.311 Section 3.311 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF... Evaluations; Service Connection § 3.311 Claims based on exposure to ionizing radiation. (a) Determinations of... to ionizing radiation in service, an assessment will be made as to the size and nature of the...

  12. Radiation level survey of a mobile phone base station

    International Nuclear Information System (INIS)

    Campos, M.C.; Schaffer, S.R.

    2006-01-01

    Electromagnetic field (E.M.F.) evaluations were carried out in the surroundings of a roof-top mobile-phone radio-base station (R.B.S.). Four of its sector-panel antennas are installed on two parallel vertical masts, each supporting two panels in a vertical collinear-array. The geometry is such that the vertical plane containing both masts is about 10 meters distant and parallel to the backside of an educational institution. This proximity provoked great anxiety among the local community members regarding potential health hazards.1. Introduction: To keep up with the expansion of the mobile-phone services, the number of Radio-Base Stations (R.B.S.) installations is increasing tremendously in Brazil. Efficient control and radiation monitoring to assess R.B.S. compliance to existing regulations are still lacking and particularly in big cities, clearly non - compliant R.B.S. can be seen which represent potentially hazardous E.M.F. sources to the nearby population. This first survey of an irregular R.B.S. revealed significant E-field strengths outside, as well as inside a classroom of an educational building where an usually prolonged stay is necessary. These results confirm that this problem deserves further attention, moreover, if one considers that public and occupational exposure limits set by I.C.N.I.R.P. (also adopted in Brazil) are exclusively based on the immediate thermal effects of acute exposure, disregarding any potential health risk from prolonged exposure to lower level radiation. Research activities focusing on quantitative aspects of electromagnetic radiation from R.B.S., as well as on biological and adverse health effects are still at a very incipient level, urging for immediate actions to improve this scenario in our country. 2. Material, methods and results Measurements were carried out with a broadband field strength monitor, E.M.R.-300 (W and G) coupled to an isotropic E-field probe (100 khz to 3 GHz). Preliminary measurements helped locating

  13. Research on cloud background infrared radiation simulation based on fractal and statistical data

    Science.gov (United States)

    Liu, Xingrun; Xu, Qingshan; Li, Xia; Wu, Kaifeng; Dong, Yanbing

    2018-02-01

    Cloud is an important natural phenomenon, and its radiation causes serious interference to infrared detector. Based on fractal and statistical data, a method is proposed to realize cloud background simulation, and cloud infrared radiation data field is assigned using satellite radiation data of cloud. A cloud infrared radiation simulation model is established using matlab, and it can generate cloud background infrared images for different cloud types (low cloud, middle cloud, and high cloud) in different months, bands and sensor zenith angles.

  14. Properties of the distributional finite Fourier transform

    OpenAIRE

    Carmichael, Richard D.

    2016-01-01

    The analytic functions in tubes which obtain the distributional finite Fourier transform as boundary value are shown to have a strong boundedness property and to be recoverable as a Fourier-Laplace transform, a distributional finite Fourier transform, and as a Cauchy integral of a distribution associated with the boundary value.

  15. Fourier techniques in X-ray timing

    NARCIS (Netherlands)

    van der Klis, M.

    1988-01-01

    Basic principles of Fourier techniques often used in X-ray time series analysis are reviewed. The relation between the discrete Fourier transform and the continuous Fourier transform is discussed to introduce the concepts of windowing and aliasing. The relation is derived between the power spectrum

  16. Validation of the IASI operational CH4 and N2O products using ground-based Fourier Transform Spectrometer: preliminary results at the Izaña Observatory (28ºN, 17ºW

    Directory of Open Access Journals (Sweden)

    Omaira García

    2014-01-01

    Full Text Available Within the project VALIASI (VALidation of IASI level 2 products the validation of the IASI operational atmospheric trace gas products (total column amounts of H2O, O3, CH4, N2O, CO2 and CO as well H2O and O3 profiles will be carried out. Ground-based FTS (Fourier Transform Spectrometer trace gas measurements made in the framework of NDACC (Network for the Detection of Atmospheric Composition Change serve as the validation reference. In this work, we will present the validation methodology developed for this project and show the first intercomparison results obtained for the Izaña Atmospheric Observatory between 2008 and 2012. As example, we will focus on two of the most important greenhouse gases, CH4 and N2O.

  17. Radiation treatment of materials - elaboration bases of radiation technology; Obrobka radiacyjna materialow - zasady opracowywania technologii

    Energy Technology Data Exchange (ETDEWEB)

    Panta, P P [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-10-01

    The basic rules in design of radiation technologies have been presented and discussed. The recommendations for achieving of assigned goal in respect of obliged regulations have been done and explained on the example of radiation technology of adhesive materials and glue production.

  18. Self-Fourier functions and coherent laser combination

    International Nuclear Information System (INIS)

    Corcoran, C J; Pasch, K A

    2004-01-01

    The Gaussian and Comb functions are generally quoted as being the two basic functions that are their own Fourier transforms. In 1991, Caola presented a recipe for generating functions that are their own Fourier transforms by symmetrizing any transformable function and then adding its own Fourier transform to it. In this letter, we present a new method for generating a set of functions that are exactly their own Fourier transforms, and which have direct application to laser cavity design for a wide variety of applications. The generated set includes the Gaussian and Comb functions as special cases and forms a continuous bridge of functions between them. The new generating method uses the Gaussian and Comb functions as bases and does not rely on the Fourier operator itself. This self-Fourier function promises to be particularly useful in high-power laser design through coherent laser beam combination. Although these results are presented in a single dimension as with a linear array, the results are equally valid in two dimensions. (letter to the editor)

  19. Ultrasound-based guidance of intensity-modulated radiation therapy

    International Nuclear Information System (INIS)

    Fung, Albert Y.C.; Ayyangar, Komanduri M.; Djajaputra, David; Nehru, Ramasamy M.; Enke, Charles A.

    2006-01-01

    In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception. Three-dimensional (3D) ultrasound devices capture and correlate series of 2-dimensional (2D) B-mode images. The transducers are often arranged in a convex array for focusing. Lower frequency reaches greater depth, but results in low resolution. For clear image, some gel is usually applied between the probe and the skin contact surface. For prostate positioning, axial and sagittal scans are performed, and the volume contours from computed tomography (CT) planning are superimposed on the ultrasound images obtained before radiation delivery at the linear accelerator. The planning volumes are then overlaid on the ultrasound images and adjusted until they match. The computer automatically deduces the offset necessary to move the patient so that the treatment area is in the correct location. The couch is translated as needed. The currently available commercial equipment can attain a positional accuracy of 1-2 mm. Commercial manufacturer designs differ in the detection of probe coordinates relative to the isocenter. Some use a position-sensing robotic arm, while others have infrared light-emitting diodes or pattern-recognition software with charge-couple-device cameras. Commissioning includes testing of image quality and positional accuracy. Ultrasound is mainly used in prostate positioning. Data for 7825 daily fractions of 234 prostate patients indicated average 3D inter-fractional displacement of about 7.8 mm. There was no perceivable trend of shift over time. Scatter plots showed slight prevalence toward superior-posterior directions. Uncertainties of ultrasound guidance included tissue inhomogeneities, speckle noise, probe pressure, and inter

  20. Corrosion of copper-based materials in gamma radiation

    International Nuclear Information System (INIS)

    Yunker, W.H.

    1986-06-01

    The corrosion behaviors of pure copper (CDA 101), 7% aluminum-copper bronze (CDA 613) and 30% nickel-copper (CDA 715) are being studied in a gamma radiation field of 1 x 10 5 R/h. These studies are in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project, by Lawrence Livermore National Laboratory (LLNL), of copper-based materials for possible use in container systems for the permanent geologic burial of nuclear waste. Weight loss, tear drop (stressed), and crevice specimens of the three materials were exposed to water vapor-air atmospheres at 95 0 C and 150 0 C and to liquid water at 95 0 C for periods of one, three, and six months. Longer exposures are in progress. Measurements include: changes in the chemical composition of the gas and water, specimen weight changes, oxide film weights, evidence of microcracking and crevice corrosion, and chemical composition of the oxide films by Auger electron spectroscopy and x-ray diffraction. Interim results show considerable pit and under-film corrosion of alloys CDA 613 and CDA 715. Uniform corrosion rates range from 0.012 mil/yr (0.30 μm/yr) to 0.22 mil/yr (5.6 μm/yr), based on specimen weight losses during six- and seven-month exposures. The time dependencies will be determined as more data become available

  1. Volume-based geometric modeling for radiation transport calculations

    International Nuclear Information System (INIS)

    Li, Z.; Williamson, J.F.

    1992-01-01

    Accurate theoretical characterization of radiation fields is a valuable tool in the design of complex systems, such as linac heads and intracavitary applicators, and for generation of basic dose calculation data that is inaccessible to experimental measurement. Both Monte Carlo and deterministic solutions to such problems require a system for accurately modeling complex 3-D geometries that supports ray tracing, point and segment classification, and 2-D graphical representation. Previous combinatorial approaches to solid modeling, which involve describing complex structures as set-theoretic combinations of simple objects, are limited in their ease of use and place unrealistic constraints on the geometric relations between objects such as excluding common boundaries. A new approach to volume-based solid modeling has been developed which is based upon topologically consistent definitions of boundary, interior, and exterior of a region. From these definitions, FORTRAN union, intersection, and difference routines have been developed that allow involuted and deeply nested structures to be described as set-theoretic combinations of ellipsoids, elliptic cylinders, prisms, cones, and planes that accommodate shared boundaries. Line segments between adjacent intersections on a trajectory are assigned to the appropriate region by a novel sorting algorithm that generalizes upon Siddon's approach. Two 2-D graphic display tools are developed to help the debugging of a given geometric model. In this paper, the mathematical basis of our system is described, it is contrasted to other approaches, and examples are discussed

  2. Cosmic radiation exposure on Canadian-based commercial airline routes

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; Tume, P.; Bennett, L.G.I.; Pierre, M.; Green, A.R

    1998-07-01

    As a result of the recent recommendations of the ICRP-60 and in anticipation of possible regulation on occupational exposure of commercial aircrew, a two-phase investigation was carried out over a one-year period to determine the total dose equivalent on representative Canadian-based flight routes. In the first phase of the study, dedicated scientific flights on a Northern round-trip route between Ottawa and Resolute Bay provided the opportunity to characterize the complex mixed-radiation field, and to intercompare various instrumentation using both a conventional suite of powered detectors and passive dosimetry. In the second phase, volunteer aircrew carried (passive) neutron bubble detectors during their routine flight duties. From these measurements, the total dose equivalent was derived for a given route with a knowledge of the neutron fraction as determined from the scientific flights and computer code (CART-LF) calculations. This study has yielded an extensive database of over 3100 measurements providing the total dose equivalent for 385 different routes. By folding in flight frequency information and the accumulated flight hours, the annual occupational exposures of 26 flight crew have been determined. This study has indicated that most Canadian-based domestic and international aircrew will exceed the proposed annual ICRP-60 public limit of 1 mSv y{sup -1} but will be well below the occupational limit of 20 mSv y{sup -1}. (author)

  3. Cosmic Radiation Exposure on Canadian-Based Commercial Airline Routes

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; Tume, P.; Bennett, L.G.I.; Pierre, M.; Green, A.R.; Cousins, T.; Hoffarth, B.E.; Jones, T.A.; Brisson, J.R

    1999-07-01

    As a result of the recent recommendations of ICRP 60 and in anticipation of possible regulation on occupational exposure of commercial aircrew, a two-part investigation was carried out over a one-year period to determine the total dose equivalent on representative Canadian-based flight routes. As part of the study, a dedicated scientific measurement flight (using both a conventional suite of powered detectors and passive dosimetry) was used to characterise the complex mixed radiation field and to intercompare the various instrumentation. In the other part of the study, volunteer aircrew carried (passive) neutron bubble detectors during their routine flight duties. From these measurements, the total dose equivalent was derived for a given route with a knowledge of the neutron fraction as determined from the scientific flight and computer code (CARI-LF) calculations. This investigation has yielded an extensive database of over 3100 measurements providing the total dose equivalent for 385 different routes. By folding in flight frequency information and the accumulated flight hours, the annual occupational exposures of 26 flight crew have also been determined. This study has indicated that most Canadian-based domestic and international aircrew will exceed the proposed annual ICRP 60 public limit of 1 mSv.y{sup -1}, but will be below the occupational limit of 20 mSv.y{sup -1}. (author)

  4. Fluence-based and microdosimetric event-based methods for radiation protection in space

    International Nuclear Information System (INIS)

    Curtis, S.B.

    2002-01-01

    The National Council on Radiation Protection and Measurements (NCRP) has recently published a report (Report no.137) that discusses various aspects of the concepts used in radiation protection and the difficulties in measuring the radiation environment in spacecraft for the estimation of radiation risk to space travelers. Two novel dosimetric methodologies, fluence-based and microdosimetric event-based methods, are discussed and evaluated, along with the more conventional quality factor/linear energy transfer (LET) method. It was concluded that for the present, any reason to switch to a new methodology is not compelling. It is suggested that because of certain drawbacks in the presently-used conventional method, these alternative methodologies should be kept in mind. As new data become available and dosimetric techniques become more refined, the question should be revisited and that in the future, significant improvement might be realized. In addition, such concepts as equivalent dose and organ dose equivalent are discussed and various problems regarding the measurement/estimation of these quantities are presented. (author)

  5. Study and Search for Main Reason of Lung Cancers Based on Cherenkov Radiation in Environmental Radiation

    Science.gov (United States)

    Ito, Hiroshi; Emoto, Yusaku; Fujihara, Kento; Kawai, Hideyuki; Kimura, Shota; Kodama, Satoshi; Mizuno, Takahiro

    2018-01-01

    The number of lung-cancer-related death is highest among all cancers in the world, and it is increasing in Japan where population aging in progressing. The main reason for the lung cancer of non-smokers is regarded to be environmental pollution or exposure of the lung to radon in the nature. The risk of lung cancer was estimated to increase by 8 to 13% per every 100 Bq m-3 concentration of radon in the air. We observed beta rays with maximum energy of 3.27 MeV emitted from 214Bi as one of the progenies based on a detection of Cherenkov radiation. The surface radioactivity concentration of 214Bi on the sample was measured; the relation between the concentration and exposure time for the sample at the room air is researched. The behavior of the radon progenies in the air is discussed by a research for the progenies attaching on the sample after the radon decay. The inhalation of the radon progenies is not clear. Thus, to understand the behavior of progenies in the air make to clear the causal relation between the radon concentration and lung cancers.

  6. Radiations

    International Nuclear Information System (INIS)

    Pujol Mora, J.

    1999-01-01

    The exposition to ionizing radiations is a constant fact in the life of the human being and its utilization as diagnostic and therapeutic method is generalized. However, it is notorious how as years go on, the fear to the ionizing radiation seems to persist too, and this fact is not limited to the common individual, but to the technical personnel and professional personnel that labors with them same. (S. Grainger) [es

  7. Validation of Fourier analysis of videokeratographic data.

    Science.gov (United States)

    Sideroudi, Haris; Labiris, Georgios; Ditzel, Fienke; Tsaragli, Efi; Georgatzoglou, Kimonas; Siganos, Haralampos; Kozobolis, Vassilios

    2017-06-15

    The aim was to assess the repeatability of Fourier transfom analysis of videokeratographic data using Pentacam in normal (CG), keratoconic (KC) and post-CXL (CXL) corneas. This was a prospective, clinic-based, observational study. One randomly selected eye from all study participants was included in the analysis: 62 normal eyes (CG group), 33 keratoconus eyes (KC group), while 34 eyes, which had already received CXL treatment, formed the CXL group. Fourier analysis of keratometric data were obtained using Pentacam, by two different operators within each of two sessions. Precision, repeatability and Intraclass Correlation Coefficient (ICC), were calculated for evaluating intrassesion and intersession repeatability for the following parameters: Spherical Component (SphRmin, SphEcc), Maximum Decentration (Max Dec), Regular Astigmatism, and Irregularitiy (Irr). Bland-Altman analysis was used for assessing interobserver repeatability. All parameters were presented to be repeatable, reliable and reproductible in all groups. Best intrasession and intersession repeatability and reliability were detected for parameters SphRmin, SphEcc and Max Dec parameters for both operators using ICC (intrasession: ICC > 98%, intersession: ICC > 94.7%) and within subject standard deviation. Best precision and lowest range of agreement was found for the SphRmin parameter (CG: 0.05, KC: 0.16, and CXL: 0.2) in all groups, while the lowest repeatability, reliability and reproducibility was detected for the Irr parameter. The Pentacam system provides accurate measurements of Fourier tranform keratometric data. A single Pentacam scan will be sufficient for most clinical applications.

  8. Plenary panel 1: The scientific bases of radiation protection. Non-targeted effects of ionising radiation - Implications for radiation protection

    International Nuclear Information System (INIS)

    Salomaa, S.

    2006-01-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (L.N.T.) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (authors)

  9. Plenary panel 1: The scientific bases of radiation protection. Non-targeted effects of ionising radiation - Implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Salomaa, S. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (L.N.T.) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (authors)

  10. Fourier-transform optical microsystems

    Science.gov (United States)

    Collins, S. D.; Smith, R. L.; Gonzalez, C.; Stewart, K. P.; Hagopian, J. G.; Sirota, J. M.

    1999-01-01

    The design, fabrication, and initial characterization of a miniature single-pass Fourier-transform spectrometer (FTS) that has an optical bench that measures 1 cm x 5 cm x 10 cm is presented. The FTS is predicated on the classic Michelson interferometer design with a moving mirror. Precision translation of the mirror is accomplished by microfabrication of dovetailed bearing surfaces along single-crystal planes in silicon. Although it is miniaturized, the FTS maintains a relatively high spectral resolution, 0.1 cm-1, with adequate optical throughput.

  11. Fourier analysis and its applications

    CERN Document Server

    Folland, Gerald B

    2009-01-01

    This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern ana

  12. Fourier Transform Methods. Chapter 4

    Science.gov (United States)

    Kaplan, Simon G.; Quijada, Manuel A.

    2015-01-01

    This chapter describes the use of Fourier transform spectrometers (FTS) for accurate spectrophotometry over a wide spectral range. After a brief exposition of the basic concepts of FTS operation, we discuss instrument designs and their advantages and disadvantages relative to dispersive spectrometers. We then examine how common sources of error in spectrophotometry manifest themselves when using an FTS and ways to reduce the magnitude of these errors. Examples are given of applications to both basic and derived spectrophotometric quantities. Finally, we give recommendations for choosing the right instrument for a specific application, and how to ensure the accuracy of the measurement results..

  13. Radiations from GSM Base Stations and its Biological Effects

    African Journals Online (AJOL)

    Michael Horsfall

    All rights reserved ... radiofrequency radiations on albino mice placed in exposure cages and ... information in Nigeria on the possible effects of the .... The slides were left to dry on the hot plate ... potential health effect of the RF radiations. It is also a pointer to the need for .... The telecommunication industry is an essential.

  14. Radiation

    International Nuclear Information System (INIS)

    Winther, J.F.; Ulbak, K.; Dreyer, L.; Pukkala, E.; Oesterlind, A.

    1997-01-01

    Exposure to solar and ionizing radiation increases the risk for cancer in humans. Some 5% of solar radiation is within the ultraviolet spectrum and may cause both malignant melanoma and non-melanocytic skin cancer; the latter is regarded as a benign disease and is accordingly not included in our estimation of avoidable cancers. Under the assumption that the rate of occurrence of malignant melanoma of the buttocks of both men and women and of the scalp of women would apply to all parts of the body in people completely unexposed to solar radiation, it was estimated that approximately 95% of all malignant melanomas arising in the Nordic populations around the year 2000 will be due to exposure to natural ultraviolet radiation, equivalent to an annual number of about 4700 cases, with 2100 in men and 2600 in women, or some 4% of all cancers notified. Exposure to ionizing radiation in the Nordic countries occurs at an average effective dose per capita per year of about 3 mSv (Iceland, 1.1 mSv) from natural sources, and about 1 mSv from man-made sources. While the natural sources are primarily radon in indoor air, natural radionuclides in food, cosmic radiation and gamma radiation from soil and building materials, the man-made sources are dominated by the diagnostic and therapeutic use of ionizing radiation. On the basis of measured levels of radon in Nordic dwellings and associated risk estimates for lung cancer derived from well-conducted epidemiological studies, we estimated that about 180 cases of lung cancer (1% of all lung cancer cases) per year could be avoided in the Nordic countries around the year 2000 if indoor exposure to radon were eliminated, and that an additional 720 cases (6%) could be avoided annually if either radon or tobacco smoking were eliminated. Similarly, it was estimated that the exposure of the Nordic populations to natural sources of ionizing radiation other than radon and to medical sources will each give rise to an annual total of 2120

  15. Radiological Engineering: A graduate engineering - based curriculum for radiation protection

    International Nuclear Information System (INIS)

    Kearfott, K.J.; Wepfer, W.J.

    1994-01-01

    Several U.S. universities maintain formal graduate health physics curricula within their Colleges of Engineering. The term radiological engineering was coined to describe the discipline of applying engineering principles to the radiation protection aspects of nuclear technology. Radiological engineering programmes may require a specific core group of courses such as radiation biology, radiation protection practice, nuclear physics, radiation detectors, and radiation dosimetry. Students then might specialist in environmental, nuclear facilities or medical applications areas by selecting advanced courses and graduate design or research projects. In some instances the master's degree may be completed through remotely-delivered lectures. Such programmes promise to assist in educating a new group of engineering professionals dedicated to the safe utilisation of nuclear technology. The Georgis Institute of Technology's programme will serve as the specific example for this report. 8 refs., 1 fig

  16. Ground-based spectral measurements of solar radiation, (2)

    International Nuclear Information System (INIS)

    Murai, Keizo; Kobayashi, Masaharu; Goto, Ryozo; Yamauchi, Toyotaro

    1979-01-01

    A newly designed spectro-pyranometer was used for the measurement of the global (direct + diffuse) and the diffuse sky radiation reaching the ground. By the subtraction of the diffuse component from the global radiation, we got the direct radiation component which leads to the spectral distribution of the optical thickness (extinction coefficient) of the turbid atmosphere. The measurement of the diffuse sky radiation reveals the scattering effect of aerosols and that of the global radiation allows the estimation of total attenuation caused by scattering and absorption of aerosols. The effects of the aerosols are represented by the deviation of the real atmosphere measured from the Rayleigh atmosphere. By the combination of the measured values with those obtained by theoretical calculation for the model atmosphere, we estimated the amount of absorption by the aerosols. Very strong absorption in the ultraviolet region was recognized. (author)

  17. Improved Solar-Radiation-Pressure Models for GPS Satellites

    Science.gov (United States)

    Bar-Sever, Yoaz; Kuang, Da

    2006-01-01

    A report describes a series of computational models conceived as an improvement over prior models for determining effects of solar-radiation pressure on orbits of Global Positioning System (GPS) satellites. These models are based on fitting coefficients of Fourier functions of Sun-spacecraft- Earth angles to observed spacecraft orbital motions.

  18. Radiation response of SiC-based fibers

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Jones, R.H. [Battelle Pacific Northwest Labs., Richland, WA (United States); Kohyama, A. [Inst. of Advanced Energy, Kyoto Univ. (Japan); Snead, L.L. [Oak Ridge National Lab., TN (United States)

    1998-10-01

    Loss of strength in irradiated fiber-reinforced SiC/SiC composite generally is related to degradation in the reinforcing fiber. To assess fiber degradation, the density and length changes were determined for four types of SiC-based fibers (Tyranno, Nicalon CG, Hi Nicalon and Dow X) after high temperature (up to 1000 C) and high dose (up to 80 dpa-SiC) irradiations. For the fibers with nonstoichiometric compositions (the first three types in the list), the fiber densities increased from 6% to 12%. In contrast, a slight decrease in density (<1%) was observed for the Dow X fiber with a quasi-stoichiometric composition. Fiber length changes (0-5.6% shrinkage) suggested small mass losses (1-6%) had occurred for irradiated uncoated fibers. In contrast, excessive linear shrinkage of the pyrocarbon-coated Nicalon CG and Tyranno fibers (7-9% and 16-32%, respectively) indicated that much larger mass losses (11-84%) had occurred for these coated fibers. Crystallization and crystal growth were observed to have taken place at fiber surfaces by SEM and in the bulk by XRD, moreso for irradiated Nicalon CG than for Hi Nicalon fiber. The radiation response of the quasi-stoichiometric Dow X fiber was the most promising. Further testing of this type fiber is recommended. (orig.) 11 refs.

  19. Radiation safety of mobile phones and base stations

    International Nuclear Information System (INIS)

    Jokela, K.; Leszczynski, D.; Paile, W.; Salomaa, S.; Puranen, L.; Hyysalo, P.

    1997-06-01

    The recent expansion of personal telecommunications has led to a rapid increase in the exposure of people to the radio-frequency (RF) radiation. Although the mobile phones are low power devices, the antenna is so close to the head that the local exposure may slightly exceed 2 W/kg, the current exposure limit for the local specific absorption rate SAR for the general public. The increase in the temperature is, however, too small to have any physiological significance. On the basis of experiments with cell cultures it is possible that other biological effects caused by some unknown non-thermal mechanism exist, but thus far there is conclusive biological or epidemiological evidence to suggest any diseases adverse physiological changes below the thermal threshold. The use of a mobile phone by a person wearing a pace-maker, the immunity which against the electromagnetic interference from the mobile phone has not be assured, is not recommended. The exposure caused by the base stations is in almost all practical ceases all below the power density limits for general public. (orig.) (115 refs.)

  20. Radiation safety of handheld mobile phones and base stations

    International Nuclear Information System (INIS)

    Jokela, K.; Leszczynski, D.; Paile, W.; Salomaa, S.; Puranen, L.; Hyysalo, P.

    1999-01-01

    The recent expansion of personal telecommunications has led to a rapid increase in the exposure of people to the radio-frequency (RF) radiation. Although the mobile phones are low power devices, the antenna is so close to the head that the local exposure may slightly exceed 2 W/kg, the current exposure limit for the local specific absorption rate SAR for the general public. The increase in the temperature is, however, too small to have any physiological significance. On the basis of experiments with cell cultures it is possible that other biological effects caused by some unknown non-thermal mechanism exist, but thus far there is no conclusive biological or epidemiological evidence to suggest any diseases or adverse physiological changes below the thermal threshold. The use of a mobile phone by a person wearing a pace-maker, is not recommended, if the immunity of the pace-maker has not been assured. The exposure caused by the base stations is in all practical cases well below the power density limits for general public. (author)

  1. Radiation safety of handheld mobile phones and base stations

    Energy Technology Data Exchange (ETDEWEB)

    Jokela, K.; Leszczynski, D.; Paile, W.; Salomaa, S.; Puranen, L.; Hyysalo, P

    1999-01-01

    The recent expansion of personal telecommunications has led to a rapid increase in the exposure of people to the radio-frequency (RF) radiation. Although the mobile phones are low power devices, the antenna is so close to the head that the local exposure may slightly exceed 2 W/kg, the current exposure limit for the local specific absorption rate SAR for the general public. The increase in the temperature is, however, too small to have any physiological significance. On the basis of experiments with cell cultures it is possible that other biological effects caused by some unknown non-thermal mechanism exist, but thus far there is no conclusive biological or epidemiological evidence to suggest any diseases or adverse physiological changes below the thermal threshold. The use of a mobile phone by a person wearing a pace-maker, is not recommended, if the immunity of the pace-maker has not been assured. The exposure caused by the base stations is in all practical cases well below the power density limits for general public. (author) 118 refs.

  2. Radiation synthesized protein-based nanoparticles: A technique overview

    International Nuclear Information System (INIS)

    Varca, Gustavo H.C.; Perossi, Gabriela G.; Grasselli, Mariano; Lugão, Ademar B.

    2014-01-01

    Seeking for alternative routes for protein engineering a novel technique – radiation induced synthesis of protein nanoparticles – to achieve size controlled particles with preserved bioactivity has been recently reported. This work aimed to evaluate different process conditions to optimize and provide an overview of the technique using γ-irradiation. Papain was used as model protease and the samples were irradiated in a gamma cell irradiator in phosphate buffer (pH=7.0) containing ethanol (0–35%). The dose effect was evaluated by exposure to distinct γ-irradiation doses (2.5, 5, 7.5 and 10 kGy) and scale up experiments involving distinct protein concentrations (12.5–50 mg mL −1 ) were also performed. Characterization involved size monitoring using dynamic light scattering. Bityrosine detection was performed using fluorescence measurements in order to provide experimental evidence of the mechanism involved. Best dose effects were achieved at 10 kGy with regard to size and no relevant changes were observed as a function of papain concentration, highlighting very broad operational concentration range. Bityrosine changes were identified for the samples as a function of the process confirming that such linkages play an important role in the nanoparticle formation. - Highlights: • Synthesis of protein-based nanoparticles by γ-irradiation. • Optimization of the technique. • Overview of mechanism involved in the nanoparticle formation. • Engineered papain nanoparticles for biomedical applications

  3. Pointwise convergence of Fourier series

    CERN Document Server

    Arias de Reyna, Juan

    2002-01-01

    This book contains a detailed exposition of Carleson-Hunt theorem following the proof of Carleson: to this day this is the only one giving better bounds. It points out the motivation of every step in the proof. Thus the Carleson-Hunt theorem becomes accessible to any analyst.The book also contains the first detailed exposition of the fine results of Hunt, Sjölin, Soria, etc on the convergence of Fourier Series. Its final chapters present original material. With both Fefferman's proof and the recent one of Lacey and Thiele in print, it becomes more important than ever to understand and compare these two related proofs with that of Carleson and Hunt. These alternative proofs do not yield all the results of the Carleson-Hunt proof. The intention of this monograph is to make Carleson's proof accessible to a wider audience, and to explain its consequences for the pointwise convergence of Fourier series for functions in spaces near $äcal Lü^1$, filling a well-known gap in the literature.

  4. KERMA-based radiation dose management system for real-time patient dose measurement

    Science.gov (United States)

    Kim, Kyo-Tae; Heo, Ye-Ji; Oh, Kyung-Min; Nam, Sang-Hee; Kang, Sang-Sik; Park, Ji-Koon; Song, Yong-Keun; Park, Sung-Kwang

    2016-07-01

    Because systems that reduce radiation exposure during diagnostic procedures must be developed, significant time and financial resources have been invested in constructing radiation dose management systems. In the present study, the characteristics of an existing ionization-based system were compared to those of a system based on the kinetic energy released per unit mass (KERMA). Furthermore, the feasibility of using the KERMA-based system for patient radiation dose management was verified. The ionization-based system corrected the effects resulting from radiation parameter perturbations in general radiography whereas the KERMA-based system did not. Because of this difference, the KERMA-based radiation dose management system might overestimate the patient's radiation dose due to changes in the radiation conditions. Therefore, if a correction factor describing the correlation between the systems is applied to resolve this issue, then a radiation dose management system can be developed that will enable real-time measurement of the patient's radiation exposure and acquisition of diagnostic images.

  5. Radiation imaging with optically read out GEM-based detectors

    Science.gov (United States)

    Brunbauer, F. M.; Lupberger, M.; Oliveri, E.; Resnati, F.; Ropelewski, L.; Streli, C.; Thuiner, P.; van Stenis, M.

    2018-02-01

    Modern imaging sensors allow for high granularity optical readout of radiation detectors such as MicroPattern Gaseous Detectors (MPGDs). Taking advantage of the high signal amplification factors achievable by MPGD technologies such as Gaseous Electron Multipliers (GEMs), highly sensitive detectors can be realised and employing gas mixtures with strong scintillation yield in the visible wavelength regime, optical readout of such detectors can provide high-resolution event representations. Applications from X-ray imaging to fluoroscopy and tomography profit from the good spatial resolution of optical readout and the possibility to obtain images without the need for extensive reconstruction. Sensitivity to low-energy X-rays and energy resolution permit energy resolved imaging and material distinction in X-ray fluorescence measurements. Additionally, the low material budget of gaseous detectors and the possibility to couple scintillation light to imaging sensors via fibres or mirrors makes optically read out GEMs an ideal candidate for beam monitoring detectors in high energy physics as well as radiotherapy. We present applications and achievements of optically read out GEM-based detectors including high spatial resolution imaging and X-ray fluorescence measurements as an alternative readout approach for MPGDs. A detector concept for low intensity applications such as X-ray crystallography, which maximises detection efficiency with a thick conversion region but mitigates parallax-induced broadening is presented and beam monitoring capabilities of optical readout are explored. Augmenting high resolution 2D projections of particle tracks obtained with optical readout with timing information from fast photon detectors or transparent anodes for charge readout, 3D reconstruction of particle trajectories can be performed and permits the realisation of optically read out time projection chambers. Combining readily available high performance imaging sensors with compatible

  6. Radiation-induced changes affecting polyester based polyurethane binder

    Science.gov (United States)

    Pierpoint, Sujita Basi

    The application of thermoplastic polyurethane elastomers as binders in the high energy explosives particularly when used in weapons presents a significantly complex and challenging problem due to the impact of the aging of this polymer on the useful service life of the explosive. In this work, the effects of radiation on the aging of the polyester based polyurethane were investigated using both electron beam and gamma irradiation at various dose rates in the presence and absence of oxygen. It was found by means of GPC that, in the presence and absence of oxygen, the poly (ester urethane) primarily undergoes cross-linking, by means of a carbon-centered secondary alkyl radical. It was also concluded that the polymer partially undergoes scission of the backbone of the main chain at C-O, N-C, and C-C bonds. Substantial changes in the conditions of irradiation and in dose levels did not affect the cross-linking and scission yields. Experiments were also performed with EPR spectroscopy for the purpose of identifying the initial carbon-centered free radicals and for studying the decay mechanisms of these radicals. It was found that the carbon-centered radical which is produced via C-C scission (primary alkyl radical) is rapidly converted to a long-lived allylic species at higher temperatures; more than 80% radicals are converted to allyl species in 2.5 hours. In the presence of oxygen, the allyl radical undergoes a fast reaction to produce a peroxyl radical; this radical decays with a 1.7 hour half-life by pseudo first-order kinetics to negligible levels in 13 hours. FTIR measurements were conducted to identify the radiation-induced changes to the functional groups in the polyester polyurethane. These measurements show an increase in carbonyl, amine and carboxylic groups as a result of reaction of H atoms with R-C-O·, ·NH-R and R-COO·. The FTIR results also demonstrate the production of the unsaturation resulting from hydrogen atom transfer during intrachain conversion

  7. Approximate modal analysis using Fourier decomposition

    International Nuclear Information System (INIS)

    Kozar, Ivica; Jericevic, Zeljko; Pecak, Tatjana

    2010-01-01

    The paper presents a novel numerical approach for approximate solution of eigenvalue problem and investigates its suitability for modal analysis of structures with special attention on plate structures. The approach is based on Fourier transformation of the matrix equation into frequency domain and subsequent removal of potentially less significant frequencies. The procedure results in a much reduced problem that is used in eigenvalue calculation. After calculation eigenvectors are expanded and transformed back into time domain. The principles are presented in Jericevic [1]. Fourier transform can be formulated in a way that some parts of the matrix that should not be approximated are not transformed but are fully preserved. In this paper we present formulation that preserves central or edge parts of the matrix and compare it with the formulation that performs transform on the whole matrix. Numerical experiments on transformed structural dynamic matrices describe quality of the approximations obtained in modal analysis of structures. On the basis of the numerical experiments, from the three approaches to matrix reduction one is recommended.

  8. Fourier transform inequalities for phylogenetic trees.

    Science.gov (United States)

    Matsen, Frederick A

    2009-01-01

    Phylogenetic invariants are not the only constraints on site-pattern frequency vectors for phylogenetic trees. A mutation matrix, by its definition, is the exponential of a matrix with non-negative off-diagonal entries; this positivity requirement implies non-trivial constraints on the site-pattern frequency vectors. We call these additional constraints "edge-parameter inequalities". In this paper, we first motivate the edge-parameter inequalities by considering a pathological site-pattern frequency vector corresponding to a quartet tree with a negative internal edge. This site-pattern frequency vector nevertheless satisfies all of the constraints described up to now in the literature. We next describe two complete sets of edge-parameter inequalities for the group-based models; these constraints are square-free monomial inequalities in the Fourier transformed coordinates. These inequalities, along with the phylogenetic invariants, form a complete description of the set of site-pattern frequency vectors corresponding to bona fide trees. Said in mathematical language, this paper explicitly presents two finite lists of inequalities in Fourier coordinates of the form "monomial < or = 1", each list characterizing the phylogenetically relevant semialgebraic subsets of the phylogenetic varieties.

  9. Resolution optimization with irregularly sampled Fourier data

    International Nuclear Information System (INIS)

    Ferrara, Matthew; Parker, Jason T; Cheney, Margaret

    2013-01-01

    Image acquisition systems such as synthetic aperture radar (SAR) and magnetic resonance imaging often measure irregularly spaced Fourier samples of the desired image. In this paper we show the relationship between sample locations, their associated backprojection weights, and image resolution as characterized by the resulting point spread function (PSF). Two new methods for computing data weights, based on different optimization criteria, are proposed. The first method, which solves a maximal-eigenvector problem, optimizes a PSF-derived resolution metric which is shown to be equivalent to the volume of the Cramer–Rao (positional) error ellipsoid in the uniform-weight case. The second approach utilizes as its performance metric the Frobenius error between the PSF operator and the ideal delta function, and is an extension of a previously reported algorithm. Our proposed extension appropriately regularizes the weight estimates in the presence of noisy data and eliminates the superfluous issue of image discretization in the choice of data weights. The Frobenius-error approach results in a Tikhonov-regularized inverse problem whose Tikhonov weights are dependent on the locations of the Fourier data as well as the noise variance. The two new methods are compared against several state-of-the-art weighting strategies for synthetic multistatic point-scatterer data, as well as an ‘interrupted SAR’ dataset representative of in-band interference commonly encountered in very high frequency radar applications. (paper)

  10. A Fourier Optical Model for the Laser Doppler Velocimeter

    DEFF Research Database (Denmark)

    Lading, Lars

    1972-01-01

    The treatment is based on a fourier optical model. It is shown how the various configurations (i.e. ldquodifferential moderdquo and reference beam mode with both one and two incident beams) are incorporated in the model, and how it can be extended to three dimensions. The particles are represented...... filtering ability vanishes as the aperture size converges towards zero. The results based on fourier optics are compared with the rough estimates obtainable by using the "antenna formular" for heterodyning (ArΩr≈λ2)....

  11. Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa

    Science.gov (United States)

    Meloni, Daniela; di Sarra, Alcide; Brogniez, Gérard; Denjean, Cyrielle; De Silvestri, Lorenzo; Di Iorio, Tatiana; Formenti, Paola; Gómez-Amo, José L.; Gröbner, Julian; Kouremeti, Natalia; Liuzzi, Giuliano; Mallet, Marc; Pace, Giandomenico; Sferlazzo, Damiano M.

    2018-03-01

    Detailed measurements of radiation, atmospheric and aerosol properties were carried out in summer 2013 during the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) campaign in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) experiment. This study focusses on the characterization of infrared (IR) optical properties and direct radiative effects of mineral dust, based on three vertical profiles of atmospheric and aerosol properties and IR broadband and narrowband radiation from airborne measurements, made in conjunction with radiosonde and ground-based observations at Lampedusa, in the central Mediterranean. Satellite IR spectra from the Infrared Atmospheric Sounder Interferometer (IASI) are also included in the analysis. The atmospheric and aerosol properties are used as input to a radiative transfer model, and various IR radiation parameters (upward and downward irradiance, nadir and zenith brightness temperature at different altitudes) are calculated and compared with observations. The model calculations are made for different sets of dust particle size distribution (PSD) and refractive index (RI), derived from observations and from the literature. The main results of the analysis are that the IR dust radiative forcing is non-negligible and strongly depends on PSD and RI. When calculations are made using the in situ measured size distribution, it is possible to identify the refractive index that produces the best match with observed IR irradiances and brightness temperatures (BTs). The most appropriate refractive indices correspond to those determined from independent measurements of mineral dust aerosols from the source regions (Tunisia, Algeria, Morocco) of dust transported over Lampedusa, suggesting that differences in the source properties should be taken into account. With the in situ size distribution and the most appropriate refractive index the estimated dust IR radiative forcing

  12. Leakage radiation interference microscopy.

    Science.gov (United States)

    Descrovi, Emiliano; Barakat, Elsie; Angelini, Angelo; Munzert, Peter; De Leo, Natascia; Boarino, Luca; Giorgis, Fabrizio; Herzig, Hans Peter

    2013-09-01

    We present a proof of principle for a new imaging technique combining leakage radiation microscopy with high-resolution interference microscopy. By using oil immersion optics it is demonstrated that amplitude and phase can be retrieved from optical fields, which are evanescent in air. This technique is illustratively applied for mapping a surface mode propagating onto a planar dielectric multilayer on a thin glass substrate. The surface mode propagation constant estimated after Fourier transformation of the measured complex field is well matched with an independent measurement based on back focal plane imaging.

  13. Radiation Tolerant, FPGA-based SmallSat Computer System

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to mature the technology readiness of a radiation tolerant smallsat computer system for a subsequent orbital flight demonstration. The...

  14. Multicomplementary operators via finite Fourier transform

    International Nuclear Information System (INIS)

    Klimov, Andrei B; Sanchez-Soto, Luis L; Guise, Hubert de

    2005-01-01

    A complete set of d + 1 mutually unbiased bases exists in a Hilbert space of dimension d, whenever d is a power of a prime. We discuss a simple construction of d + 1 disjoint classes (each one having d - 1 commuting operators) such that the corresponding eigenstates form sets of unbiased bases. Such a construction works properly for prime dimension. We investigate an alternative construction in which the real numbers that label the classes are replaced by a finite field having d elements. One of these classes is diagonal, and can be mapped to cyclic operators by means of the finite Fourier transform, which allows one to understand complementarity in a similar way as for the position-momentum pair in standard quantum mechanics. The relevant examples of two and three qubits and two qutrits are discussed in detail

  15. Nursing-led management of side effects of radiation: evidence-based recommendations for practice

    Directory of Open Access Journals (Sweden)

    Poirier P

    2013-03-01

    Full Text Available Patricia PoirierUniversity of Maine School of Nursing, Orono, ME, USAAbstract: It has been estimated that 50%–60% of patients diagnosed with cancer will receive radiation therapy at some point in their treatment. Although radiation therapy can play a significant role in the cure or control of cancer, and the palliation of symptoms, it also has side effects. Side effects of radiation therapy can interfere with patient quality of life and daily functioning. Severe side effects can lead to delays in treatment, potentially affecting the outcome of treatment. All patients receiving radiation therapy are at risk of fatigue and skin reactions in the area of the body being treated. Other side effects of radiation therapy are specific to the part of the body being treated. Radiation therapy to the head and neck area may cause oral mucositis, dryness, and nutritional deficiencies. Radiation therapy to the chest or lung area may lead to difficulty in swallowing and eating. Radiation therapy to the pelvis frequently causes diarrhea. There are many nursing interventions available to manage the side effects of treatment based on best available evidence and expert opinion. Nurses in all settings are essential in helping patients manage the side effects of treatment and maintain their quality of life. The purpose of this review is to provide nurses with evidence-based recommendations and suggestions for managing common acute side effects of radiation therapy.Keywords: evidence-based practice, radiation therapy, side effects, nursing management

  16. Sensors of absorbed dose of ionizing radiation based on mosfet

    Directory of Open Access Journals (Sweden)

    Perevertaylo V. L.

    2010-10-01

    Full Text Available The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  17. Bases for protection against radiation and conventional hazards

    International Nuclear Information System (INIS)

    Ganguly, A.K.

    1977-01-01

    The living and working environment of man is polluted by : (1) ionizing radiations, both natural and man-made, (2) man-made non-ionizing radiations e.g. microwaves, and (3) man-made chemicals. Many of these agents are carcinogenic and mutagenic. The basic radiation safety standards laid down by the ICRP have long-term objectives and take into account all aspects of radiation protection problem, but in the case of other agents the safety standards, whatever few are available, have short-term objectives and differ widely from country to country. If the paramountcy of man's health is accepted as the objective of all safety programmes i.e. either for radiation hazards or conventional hazards, the above disparity must be removed. In order to achieve this goal, just as assessment of damage to organs and tissues of man is available in the case of ionizing radiations, similar assessment in the case of conventional hazards must be made available by collecting relevant data. (M.G.B.)

  18. Radiation hardening of CMOS-based circuitry in SMART transmitters

    International Nuclear Information System (INIS)

    Loescher, D.H.

    1993-02-01

    Process control transmitters that incorporate digital signal processing could be used advantageously in nuclear power plants; however, because such transmitters are too sensitive to radiation, they are not used. The Electric Power Research Institute sponsored work at Sandia National Laboratories under EPRI contract RP2614-58 to determine why SMART transmitters fail when exposed to radiation and to design and demonstrate SMART transmitter circuits that could tolerate radiation. The term ''SMART'' denotes transmitters that contain digital logic. Tests showed that transmitter failure was caused by failure of the complementary metal oxide semiconductors (CMOS)-integrated circuits which are used extensively in commercial transmitters. Radiation-hardened replacements were not available for the radiation-sensitive CMOS circuits. A conceptual design showed that a radiation-tolerant transmitter could be constructed. A prototype for an analog-to-digital converter subsection worked satisfactorily after a total dose of 30 megarads(Si). Encouraging results were obtained from preliminary bench-top tests on a dc-to-dc converter for the power supply subsection

  19. Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review

    KAUST Repository

    Chae, Sejung R.; Moon, Juhyuk; Yoon, Seyoon; Bae, Sungchul; Levitz, Pierre; Winarski, Robert; Monteiro, Paulo J. M.

    2013-01-01

    We report various synchrotron radiation laboratory based techniques used to characterize cement based materials in nanometer scale. High resolution X-ray transmission imaging combined with a rotational axis allows for rendering of samples in three

  20. Jovian decametric radiation seen from Juno, Cassini, STEREO A, WIND, and Earth-based radio observatories

    Science.gov (United States)

    Imai, M.; Kurth, W. S.; Hospodarsky, G. B.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.; Lecacheux, A.; Lamy, L.; Zarka, P.; Clarke, T. E.; Higgins, C. A.

    2017-09-01

    Jupiter's decametric (DAM) radiation is generated very close to the local gyrofrequency by the electron cyclotron maser instability (CMI). The first two-point common detections of Jovian DAM radiation were made using the Voyager spacecraft and ground-based radio observatories in early 1979, but, due to geometrical constraints and limited flyby duration, a full understanding of the latitudinal beaming of Jovian DAM radiation remains elusive. The stereoscopic DAM radiation viewed from Juno, Cassini, STEREO A, WIND, and Earth-based radio observatories provides a unique opportunity to analyze the CMI emission mechanism and beaming properties.

  1. Long-distance transmission of light in a scintillator-based radiation detector

    Science.gov (United States)

    Dowell, Jonathan L.; Talbott, Dale V.; Hehlen, Markus P.

    2017-07-11

    Scintillator-based radiation detectors capable of transmitting light indicating the presence of radiation for long distances are disclosed herein. A radiation detector can include a scintillator layer and a light-guide layer. The scintillator layer is configured to produce light upon receiving incident radiation. The light-guide layer is configured to receive light produced by the scintillator layer and either propagate the received light through the radiation detector or absorb the received light and emit light, through fluorescence, that is propagated through the radiation detector. A radiation detector can also include an outer layer partially surrounding the scintillator layer and light-guide layer. The index of refraction of the light-guide layer can be greater than the index of refraction of adjacent layers.

  2. Fabrication and characterization of jute fabrics reinforced polypropylene-based composites: effects of ionizing radiation and disaccharide (sucrose)

    Science.gov (United States)

    Sahadat Hossain, Md.; Uddin, Muhammad B.; Razzak, Md.; Sarwaruddin Chowdhury, A. M.; Khan, Ruhul A.

    2017-12-01

    Composites were prepared successfully by compression molding technique using jute fabrics (reinforcing agent) and polypropylene (matrix). Jute fabrics were treated with disaccharide (sucrose) solution and composites were fabricated with the treated fabric and polypropylene. The fiber content of the prepared composites was 40% by weight. It was found that the sucrose (2% solution) decreased the tensile strength (TS) and elongation at break about 6% and 37%, respectively, but tensile modulus and impact strength improved about 27% and 32%, respectively. When gamma radiation was applied through the untreated and treated composites the mechanical properties were improved much higher in non-treated Jute/PP-based composites than that of sucrose treated composites. For 5.0 kGy gamma dose the highest mechanical properties were observed for non-treated composites. At 5.0 kGy gamma dose the improvement of TS was 14% and 2% for non-treated and sucrose treated composites, respectively. The water uptake property of the sucrose treated composites was performed up to 10 days and composites absorbed 18% water. The functional groups of the both composites were analyzed by Fourier transform infrared spectroscopy machine. The scanning electron microscopic images of the both composites were taken for the surface and fiber adhesion analysis.

  3. Applications of Fourier transforms to generalized functions

    CERN Document Server

    Rahman, M

    2011-01-01

    This book explains how Fourier transforms can be applied to generalized functions. The generalized function is one of the important branches of mathematics and is applicable in many practical fields. Its applications to the theory of distribution and signal processing are especially important. The Fourier transform is a mathematical procedure that can be thought of as transforming a function from its time domain to the frequency domain.The book contains six chapters and three appendices. Chapter 1 deals with preliminary remarks on Fourier series from a general point of view and also contains an introduction to the first generalized function. Chapter 2 is concerned with the generalized functions and their Fourier transforms. Chapter 3 contains the Fourier transforms of particular generalized functions. The author has stated and proved 18 formulas dealing with the Fourier transforms of generalized functions, and demonstrated some important problems of practical interest. Chapter 4 deals with the asymptotic esti...

  4. A differential optical absorption spectroscopy method for retrieval from ground-based Fourier transform spectrometers measurements of the direct solar beam

    Science.gov (United States)

    Huo, Yanfeng; Duan, Minzheng; Tian, Wenshou; Min, Qilong

    2015-08-01

    A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam. Different to the spectral fitting method, which minimizes the difference between the observed and simulated spectra, the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve from measurements of the shortwave infrared (SWIR) band. Based on sensitivity tests, a super channel-pair is carefully selected to reduce the effects of solar lines, water vapor, air temperature, pressure, instrument noise, and frequency shift on retrieval errors. The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method. Multi-day Total Carbon Column Observing Network (TCCON) measurements under clear-sky conditions at two sites (Tsukuba and Bremen) are used to derive xxxx for the algorithm evaluation and validation. The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.

  5. X-ray stress measurement of ferritic steel using fourier analysis of Debye-Scherrer ring

    International Nuclear Information System (INIS)

    Fujimoto, Yohei; Sasaki, Toshihiko; Miyazaki, Toshiyuki

    2015-01-01

    In this study, X-ray stress measurements of ferritic steel based on Fourier analysis are conducted. Taira et al. developed the cosα method for X-ray stress measurements using a two-dimensional X-ray detector. Miyazaki et al. reported that the cosα method can be described more concisely by developing the Fourier series (the Fourier analysis method). The Fourier analysis method is expected to yield the stress measurement with an imperfect Debye-Scherrer ring and there is a possibility that the materials evaluation is different compared with the conventional method, that is, the sin 2 ψ method. In the Fourier analysis method, the strain measured by X-rays is developed as a Fourier series, and all the plane-stress components can be calculated from the Fourier series. In this study, the normal stress calculation was confirmed. In addition, the Fourier-analysis and cosα methods were used for X-ray stress measurements during a four-point bending test on a S45C test piece, and the effectiveness of the Fourier analysis method was confirmed. It was found that the experimental results from the Fourier analysis and cosα methods were nearly identical. In addition, the measurement accuracies of both the methods were equivalent. (author)

  6. Fourier transform n.m.r. spectroscopy

    International Nuclear Information System (INIS)

    Shaw, D.

    1976-01-01

    This book is orientated to techniques rather than applications. The basic theory of n.m.r. is dealt with in a unified approach to the Fourier theory. The middle section of the book concentrates on the practical aspects of Fourier n.m.r., both instrumental and experimental. The final chapters briefly cover general application of n.m.r., but concentrate strongly on those areas where Fourier n.m.r. can give information which is not available by conventional techniques

  7. A simple approach to Fourier aliasing

    International Nuclear Information System (INIS)

    Foadi, James

    2007-01-01

    In the context of discrete Fourier transforms the idea of aliasing as due to approximation errors in the integral defining Fourier coefficients is introduced and explained. This has the positive pedagogical effect of getting to the heart of sampling and the discrete Fourier transform without having to delve into effective, but otherwise long and structured, introductions to the topic, commonly met in advanced, specialized books

  8. Tunable fractional-order Fourier transformer

    International Nuclear Information System (INIS)

    Malyutin, A A

    2006-01-01

    A fractional two-dimensional Fourier transformer whose orders are tuned by means of optical quadrupoles is described. It is shown that in the optical scheme considered, the Fourier-transform order a element of [0,1] in one of the mutually orthogonal planes corresponds to the transform order (2-a) in another plane, i.e., to inversion and inverse Fourier transform of the order a. (laser modes and beams)

  9. Fourier transform n. m. r. spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, D [Varian Ltd., Walton (UK)

    1976-01-01

    This book is orientated to techniques rather than applications. The basic theory of n.m.r. is dealt with in a unified approach to the Fourier theory. The middle section of the book concentrates on the practical aspects of Fourier n.m.r., both instrumental and experimental. The final chapters briefly cover general application of n.m.r., but concentrate strongly on those areas where Fourier n.m.r. can give information which is not available by conventional techniques.

  10. Fabrication and performance analysis of MEMS-based Variable Emissivity Radiator for Space Applications

    International Nuclear Information System (INIS)

    Lee, Changwook; Oh, Hyung-Ung; Kim, Taegyu

    2014-01-01

    All Louver was typically representative as the thermal control device. The louver was not suitable to be applied to small satellite, because it has the disadvantage of increase in weight and volume. So MEMS-based variable radiator was developed to support the disadvantage of the louver MEMS-based variable emissivity radiator was designed for satellite thermal control. Because of its immediate response and low power consumption. Also MEMS- based variable emissivity radiator has been made smaller by using MEMS process, it could be solved the problem of the increase in weight and volume, and it has a high reliability and immediate response by using electrical control. In this study, operation validation of the MEMS radiator had been carried out, resulting that emissivity could be controlled. Numerical model was also designed to predict the thermal control performance of MEMS-based variable emissivity radiator

  11. Couch height–based patient setup for abdominal radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ohira, Shingo [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita (Japan); Ueda, Yoshihiro [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita (Japan); Nishiyama, Kinji [Department of Radiation Oncology, Yao Municipal Hospital, Yao (Japan); Miyazaki, Masayoshi; Isono, Masaru; Tsujii, Katsutomo [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Takashina, Masaaki; Koizumi, Masahiko [Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita (Japan); Kawanabe, Kiyoto [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Teshima, Teruki, E-mail: teshima-te@mc.pref.osaka.jp [Department of Radiation Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan)

    2016-04-01

    There are 2 methods commonly used for patient positioning in the anterior-posterior (A-P) direction: one is the skin mark patient setup method (SMPS) and the other is the couch height–based patient setup method (CHPS). This study compared the setup accuracy of these 2 methods for abdominal radiation therapy. The enrollment for this study comprised 23 patients with pancreatic cancer. For treatments (539 sessions), patients were set up by using isocenter skin marks and thereafter treatment couch was shifted so that the distance between the isocenter and the upper side of the treatment couch was equal to that indicated on the computed tomographic (CT) image. Setup deviation in the A-P direction for CHPS was measured by matching the spine of the digitally reconstructed radiograph (DRR) of a lateral beam at simulation with that of the corresponding time-integrated electronic portal image. For SMPS with no correction (SMPS/NC), setup deviation was calculated based on the couch-level difference between SMPS and CHPS. SMPS/NC was corrected using 2 off-line correction protocols: no action level (SMPS/NAL) and extended NAL (SMPS/eNAL) protocols. Margins to compensate for deviations were calculated using the Stroom formula. A-P deviation > 5 mm was observed in 17% of SMPS/NC, 4% of SMPS/NAL, and 4% of SMPS/eNAL sessions but only in one CHPS session. For SMPS/NC, 7 patients (30%) showed deviations at an increasing rate of > 0.1 mm/fraction, but for CHPS, no such trend was observed. The standard deviations (SDs) of systematic error (Σ) were 2.6, 1.4, 0.6, and 0.8 mm and the root mean squares of random error (σ) were 2.1, 2.6, 2.7, and 0.9 mm for SMPS/NC, SMPS/NAL, SMPS/eNAL, and CHPS, respectively. Margins to compensate for the deviations were wide for SMPS/NC (6.7 mm), smaller for SMPS/NAL (4.6 mm) and SMPS/eNAL (3.1 mm), and smallest for CHPS (2.2 mm). Achieving better setup with smaller margins, CHPS appears to be a reproducible method for abdominal patient setup.

  12. Fast Fourier single-pixel imaging via binary illumination.

    Science.gov (United States)

    Zhang, Zibang; Wang, Xueying; Zheng, Guoan; Zhong, Jingang

    2017-09-20

    Fourier single-pixel imaging (FSI) employs Fourier basis patterns for encoding spatial information and is capable of reconstructing high-quality two-dimensional and three-dimensional images. Fourier-domain sparsity in natural scenes allows FSI to recover sharp images from undersampled data. The original FSI demonstration, however, requires grayscale Fourier basis patterns for illumination. This requirement imposes a limitation on the imaging speed as digital micro-mirror devices (DMDs) generate grayscale patterns at a low refreshing rate. In this paper, we report a new strategy to increase the speed of FSI by two orders of magnitude. In this strategy, we binarize the Fourier basis patterns based on upsampling and error diffusion dithering. We demonstrate a 20,000 Hz projection rate using a DMD and capture 256-by-256-pixel dynamic scenes at a speed of 10 frames per second. The reported technique substantially accelerates image acquisition speed of FSI. It may find broad imaging applications at wavebands that are not accessible using conventional two-dimensional image sensors.

  13. Comparative analysis of imaging configurations and objectives for Fourier microscopy.

    Science.gov (United States)

    Kurvits, Jonathan A; Jiang, Mingming; Zia, Rashid

    2015-11-01

    Fourier microscopy is becoming an increasingly important tool for the analysis of optical nanostructures and quantum emitters. However, achieving quantitative Fourier space measurements requires a thorough understanding of the impact of aberrations introduced by optical microscopes that have been optimized for conventional real-space imaging. Here we present a detailed framework for analyzing the performance of microscope objectives for several common Fourier imaging configurations. To this end, we model objectives from Nikon, Olympus, and Zeiss using parameters that were inferred from patent literature and confirmed, where possible, by physical disassembly. We then examine the aberrations most relevant to Fourier microscopy, including the alignment tolerances of apodization factors for different objective classes, the effect of magnification on the modulation transfer function, and vignetting-induced reductions of the effective numerical aperture for wide-field measurements. Based on this analysis, we identify an optimal objective class and imaging configuration for Fourier microscopy. In addition, the Zemax files for the objectives and setups used in this analysis have been made publicly available as a resource for future studies.

  14. Metasurface Enabled Wide-Angle Fourier Lens.

    Science.gov (United States)

    Liu, Wenwei; Li, Zhancheng; Cheng, Hua; Tang, Chengchun; Li, Junjie; Zhang, Shuang; Chen, Shuqi; Tian, Jianguo

    2018-06-01

    Fourier optics, the principle of using Fourier transformation to understand the functionalities of optical elements, lies at the heart of modern optics, and it has been widely applied to optical information processing, imaging, holography, etc. While a simple thin lens is capable of resolving Fourier components of an arbitrary optical wavefront, its operation is limited to near normal light incidence, i.e., the paraxial approximation, which puts a severe constraint on the resolvable Fourier domain. As a result, high-order Fourier components are lost, resulting in extinction of high-resolution information of an image. Other high numerical aperture Fourier lenses usually suffer from the bulky size and costly designs. Here, a dielectric metasurface consisting of high-aspect-ratio silicon waveguide array is demonstrated experimentally, which is capable of performing 1D Fourier transform for a large incident angle range and a broad operating bandwidth. Thus, the device significantly expands the operational Fourier space, benefitting from the large numerical aperture and negligible angular dispersion at large incident angles. The Fourier metasurface will not only facilitate efficient manipulation of spatial spectrum of free-space optical wavefront, but also be readily integrated into micro-optical platforms due to its compact size. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. On a model-based approach to radiation protection

    International Nuclear Information System (INIS)

    Waligorski, M.P.R.

    2002-01-01

    There is a preoccupation with linearity and absorbed dose as the basic quantifiers of radiation hazard. An alternative is the fluence approach, whereby radiation hazard may be evaluated, at least in principle, via an appropriate action cross section. In order to compare these approaches, it may be useful to discuss them as quantitative descriptors of survival and transformation-like endpoints in cell cultures in vitro - a system thought to be relevant to modelling radiation hazard. If absorbed dose is used to quantify these biological endpoints, then non-linear dose-effect relations have to be described, and, e.g. after doses of densely ionising radiation, dose-correction factors as high as 20 are required. In the fluence approach only exponential effect-fluence relationships can be readily described. Neither approach alone exhausts the scope of experimentally observed dependencies of effect on dose or fluence. Two-component models, incorporating a suitable mixture of the two approaches, are required. An example of such a model is the cellular track structure theory developed by Katz over thirty years ago. The practical consequences of modelling radiation hazard using this mixed two-component approach are discussed. (author)

  16. Numerical methods for characterization of synchrotron radiation based on the Wigner function method

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2014-06-01

    Full Text Available Numerical characterization of synchrotron radiation based on the Wigner function method is explored in order to accurately evaluate the light source performance. A number of numerical methods to compute the Wigner functions for typical synchrotron radiation sources such as bending magnets, undulators and wigglers, are presented, which significantly improve the computation efficiency and reduce the total computation time. As a practical example of the numerical characterization, optimization of betatron functions to maximize the brilliance of undulator radiation is discussed.

  17. Application of chemometrics in quality control of Turmeric (Curcuma longa) based on Ultra-violet, Fourier transform-infrared and 1H NMR spectroscopy.

    Science.gov (United States)

    Gad, Haidy A; Bouzabata, Amel

    2017-12-15

    Turmeric (Curcuma longa L.) belongs to the family Zingiberaceae that is widely used as a spice in food preparations in addition to its biological activities. UV, FT-IR, 1 H NMR in addition to HPLC were applied to construct a metabolic fingerprint for Turmeric in an attempt to assess its quality. 30 samples were analyzed, and then principal component analysis (PCA) and hierarchical clustering analysis (HCA) were utilized to assess the differences and similarities between collected samples. PCA score plot based on both HPLC and UV spectroscopy showed the same discriminatory pattern, where the samples were segregated into four main groups depending on their total curcuminoids content. The results revealed that UV could be utilized as a simple and rapid alternative for HPLC. However, FT-IR failed to discriminate between the same species. By applying 1 H NMR, the metabolic variability between samples was more evident in the essential oils/fatty acid region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The rapid determination of volatile fatty acid number in para rubber latex using fourier transform-near infrared spectroscopy based on quantification and discrimination model

    Directory of Open Access Journals (Sweden)

    Sureeporn Narongwongwattana

    2015-09-01

    Full Text Available Volatile Fatty Acid number (VFA no. is one of the parameters indicating the state of quality of Para rubber latex at that particular time. Most factories analyze this parameter using standard analytical method as in ISO 506:1992(E. Nevertheless, this procedure is complicated, chemical and time consuming, as well as skilled analyst required. Therefore, near infrared (NIR spectroscopy which is rapid, accurate and nonchemicals method was applied to determine the VFA no. in field latex and concentrated latex based on quantification and discriminant model. The best calibration equation was obtained from standard normal variate (SNV spectra in the region of 6109.7–5770.3, 4613.1–4242.9 cm-1 with R = 0.832, SECV = 0.036 and no bias. From the performance check, statistically it was found that SECV and bias were low enough for practical acceptance and the predicted VFA no. was not different significantly from actual VFA no. at 95% confidence intervals. In addition, discriminant model was developed to separate good quality latex from the deteriorated latex using VFA no. at 0.06 as standard as in ISO 2004:2010(E. The discriminant model can be used to screen the latex with overall accuracy of 91.86% in validation set.

  19. A computer based learning program for radiation therapy

    International Nuclear Information System (INIS)

    Frenzel, T.; Kruell, A.; Schmidt, R.

    1999-01-01

    Many textbooks about radiation therapy for the education of medical, technical and scientific staff are available. But they are restricted to transfer of knowledge via text and figures. On the other hand movies and animated pictures can give you a more realistic impression of the procedures and technical equipment of a radiation therapy department. Therefore, an interactive multimedia teaching program was developed at the Universitaets-Krankenhaus Eppendorf for the department of radiation therapy. The electronic textbook runs under 'MS Windows 3.1 trademark ' (with multimedia extensions) and 'MS Windows 95 trademark ', contains eight chapters and can be used without any preliminary knowledge. The program has been tested by medical personnel, nurses, physicists and physicians and was generally welcome. The program was designed for people with different levels of education to reach as many users as possible. It was not created to replace textbooks but was designed for their supplement. (orig.) [de

  20. Molecular dosimetry based on radiation induced degradation of polyisobutylene

    International Nuclear Information System (INIS)

    Joerkov Thomsen, Kristina

    1999-01-01

    This project investigates the possibility of qualitative measurement of radiation doses through detection of changes in the average molecular weight in the polymer Polyisobutylene (PIB). Changes in molecular weight and molecular weight distribution is detected by Gel Permeation Chromatography (GPC). The aim of the project is to decide whether or not it is possible to determine a quality difference between α-radiation ( 241 Am, 5,5 MeV) and γ-radiation ( 60 Co, 1,25 MeV) in the dose range 0,5 to 10 kGy by irradiation of PIB. Irradiation with 60 Co changes the average number molecular weight M n by 12% per kGy and the average weight molecular weight M w by 23% per kGy. The presence of antioxidant in the irradiated sample inhibits a change in average molecular weight by 5% and 16% for M n and M w respectively. (au)