WorldWideScience

Sample records for radiation attenuation properties

  1. Toxicity attenuation optimization of crotalic venom by gamma radiation and studies of its immunogenic properties

    International Nuclear Information System (INIS)

    Clissa, Patricia Bianca

    1997-01-01

    Literature data show that 2.0 kGy dose of gamma radiation, generated by 60 source, reduces the toxic activity of Crotalus durissus terrificus venom, without altering its immunogenic capacity. When crotoxin, main toxin from crotalic venom, was irradiated with the same dose, toxicity was also reduced and the immunogenicity was maintained. This fact was attributed to aggregates (compounds with high molecular weight generated during irradiation), that showed no toxicity but were able to induce the antibodies formation against native venom. Crotalus durissus terrificus venom was irradiated with 2.0, 3.0, 5.0 and 10.0 kGy doses and submitted to molecular exclusion chromatography, in order to find an efficient dose that produces large amounts of non toxic but still immunogenic aggregates. After being isolated, the products of irradiation were evaluated for the amount produced, molecular alteration, and toxic and immunogenic activities. These parameters were also analyzed for the whole venom irradiated. The results from different doses irradiated venom were compared with native one, and 2.0 kGy dose was confirmed to be the most efficient in the association of toxicity attenuation with maintenance of immunogenicity of the crotalic venom, while other doses, in spite of being efficient in the toxicity attenuation, they were not able to keep the immunogenicity property. So, the dose of 2.0 kGy could be used to immunize animals in order to improve anticrotalic sera production. (author)

  2. Transport and attenuation of radiations

    CERN Document Server

    Nimal, J C

    2003-01-01

    This article treats of the calculation methods used for the dimensioning of the protections against radiations. The method consists in determining for a given point the flux of particles coming from a source at a given time. A strong attenuation (of about some few mu Sv.h sup - sup 1) is in general expected between the source and the areas accessible to the personnel or the public. The calculation has to take into account a huge number of radiation-matter interactions and to solve the integral-differential transport equation which links the particles flux to the source. Several methods exist from the simplified physical model with numerical developments to the more or less precise resolution of the transport equation. These methods allows also the calculation of the uncertainties of equivalent dose rates, heat sources, structure damages using the data covariances (efficient cross-sections, modeling, etc..): 1 - transport equation; 2 - Monte-Carlo method; 3 - semi-numerical methods S sub N; 4 - methods based o...

  3. Radiation-attenuated vaccine for lungworm disease

    International Nuclear Information System (INIS)

    Singh, C.M.

    1977-01-01

    The work done at the Indian Veternary Research Institute, Izatnagar, on the development of a vaccine for lungworm diseases is reported. Research work done includes: (1) studies on the epidemiology and the incidence of the lungworm infections, (ii) studies on the radiation-attenuated lungworm Dictyocaulus filaria vaccine, (iii) studies on other parasites using ionizing radiation, (iv) incidence of lungworm infection in sheep in Jammu and Kashmir State, (v) suitable dose of gamma radiation for attenuation, (vi) laboratory studies with radiation-attenuated D. filaria vaccine, (vii) serology of D. filaria infection, (viii) field trials with the radiation-attenuated vaccine, (ix) immune response of previously exposed lambs to vaccination, (x) comparative susceptibility of sheep and goats to infection with D. filaria, (xi) quantitative studies of D. filaria in lambs and (xii) production and supply of lungworm vaccine. (A.K.)

  4. Radiation attenuation gauge with magnetically coupled source

    International Nuclear Information System (INIS)

    Wallace, S.A.

    1978-01-01

    Disclosed is a radiation attenuation gauge for measuring thickness and density of a material which includes, in combination, a source of gamma radiation contained within a housing of magnetic or ferromagnetic material, and a means for measuring the intensity of gamma radiation. The measuring means has an aperture and magnetic means disposed adjacent to the aperture for attracting and holding the housed source in position before the aperture. The material to be measured is placed between the source and the measuring means

  5. Nuclear radiation and the properties of concrete

    International Nuclear Information System (INIS)

    Kaplan, M.F.

    1983-08-01

    Concrete is used for structures in which the concrete is exposed to nuclear radiation. Exposure to nuclear radiation may affect the properties of concrete. The report mentions the types of nuclear radiation while radiation damage in concrete is discussed. Attention is also given to the effects of neutron and gamma radiation on compressive and tensile strength of concrete. Finally radiation shielding, the attenuation of nuclear radiation and the value of concrete as a shielding material is discussed

  6. Attenuation of gamma radiation in concrete shields

    International Nuclear Information System (INIS)

    Azevedo e Souza, A.C. de.

    1978-12-01

    The attenuation characteristics of γ radiation in concrete layers considering their mechanical resistence and densities were determined. A 137 Cs source was used in a 'good geometry' arrangement to eliminate the effects of the buildup factor. The ordinary and the heavy concrete were irradiated and for the latter it was used as additives iron ore and Fe 2 O 3 pellets in various grain sizes. The detection system consisted of a 2' x 2' NaI (Tl) crystal coupled to a photomultiplier tube and the associated electronic equipment. FORTRAN programs were used for determining the absorption coefficients and the attenuation factors. These programs calculate photopeak areas eliminating all contributions due to Compton effect and background. (Author) [pt

  7. Radiation attenuation by lead and nonlead materials used in radiation shielding garments

    International Nuclear Information System (INIS)

    McCaffrey, J. P.; Shen, H.; Downton, B.; Mainegra-Hing, E.

    2007-01-01

    The attenuating properties of several types of lead (Pb)-based and non-Pb radiation shielding materials were studied and a correlation was made of radiation attenuation, materials properties, calculated spectra and ambient dose equivalent. Utilizing the well-characterized x-ray and gamma ray beams at the National Research Council of Canada, air kerma measurements were used to compare a variety of commercial and pre-commercial radiation shielding materials over mean energy ranges from 39 to 205 keV. The EGSnrc Monte Carlo user code cavity.cpp was extended to provide computed spectra for a variety of elements that have been used as a replacement for Pb in radiation shielding garments. Computed air kerma values were compared with experimental values and with the SRS-30 catalogue of diagnostic spectra available through the Institute of Physics and Engineering in Medicine Report 78. In addition to garment materials, measurements also included pure Pb sheets, allowing direct comparisons to the common industry standards of 0.25 and 0.5 mm 'lead equivalent'. The parameter 'lead equivalent' is misleading, since photon attenuation properties for all materials (including Pb) vary significantly over the energy spectrum, with the largest variations occurring in the diagnostic imaging range. Furthermore, air kerma measurements are typically made to determine attenuation properties without reference to the measures of biological damage such as ambient dose equivalent, which also vary significantly with air kerma over the diagnostic imaging energy range. A single material or combination cannot provide optimum shielding for all energy ranges. However, appropriate choice of materials for a particular energy range can offer significantly improved shielding per unit mass over traditional Pb-based materials

  8. Evaluation of gamma-ray attenuation properties of bismuth borate glass systems using Monte Carlo method

    Science.gov (United States)

    Tarim, Urkiye Akar; Ozmutlu, Emin N.; Yalcin, Sezai; Gundogdu, Ozcan; Bradley, D. A.; Gurler, Orhan

    2017-11-01

    A Monte Carlo method was developed to investigate radiation shielding properties of bismuth borate glass. The mass attenuation coefficients and half-value layer parameters were determined for different fractional amounts of Bi2O3 in the glass samples for the 356, 662, 1173 and 1332 keV photon energies. A comparison of the theoretical and experimental attenuation coefficients is presented.

  9. Evaluation of gamma-ray attenuation properties of bismuth borate glass systems using Monte Carlo method

    International Nuclear Information System (INIS)

    Tarim, Urkiye Akar; Ozmutlu, Emin N.; Yalcin, Sezai; Gundogdu, Ozcan; Bradley, D.A.; Gurler, Orhan

    2017-01-01

    A Monte Carlo method was developed to investigate radiation shielding properties of bismuth borate glass. The mass attenuation coefficients and half-value layer parameters were determined for different fractional amounts of Bi 2 O 3 in the glass samples for the 356, 662, 1173 and 1332 keV photon energies. A comparison of the theoretical and experimental attenuation coefficients is presented. - Highlights: • Radiation shielding properties of bismuth borate glass systems have been reported. • Mass attenuation coefficients increase linearly with increase in Bi concentration. • Half-value layer decreases with increasing concentration of Bi. • Half-value layer decreases with the increase in the sample density.

  10. Radiation Attenuation and Stability of ClearView Radiation Shielding TM-A Transparent Liquid High Radiation Shield.

    Science.gov (United States)

    Bakshi, Jayeesh

    2018-04-01

    Radiation exposure is a limiting factor to work in sensitive environments seen in nuclear power and test reactors, medical isotope production facilities, spent fuel handling, etc. The established choice for high radiation shielding is lead (Pb), which is toxic, heavy, and abidance by RoHS. Concrete, leaded (Pb) bricks are used as construction materials in nuclear facilities, vaults, and hot cells for radioisotope production. Existing transparent shielding such as leaded glass provides minimal shielding attenuation in radiotherapy procedures, which in some cases is not sufficient. To make working in radioactive environments more practicable while resolving the lead (Pb) issue, a transparent, lightweight, liquid, and lead-free high radiation shield-ClearView Radiation Shielding-(Radium Incorporated, 463 Dinwiddie Ave, Waynesboro, VA). was developed. This paper presents the motivation for developing ClearView, characterization of certain aspects of its use and performance, and its specific attenuation testing. Gamma attenuation testing was done using a 1.11 × 10 Bq Co source and ANSI/HPS-N 13.11 standard. Transparency with increasing thickness, time stability of liquid state, measurements of physical properties, and performance in freezing temperatures are reported. This paper also presents a comparison of ClearView with existing radiation shields. Excerpts from LaSalle nuclear power plant are included, giving additional validation. Results demonstrated and strengthened the expected performance of ClearView as a radiation shield. Due to the proprietary nature of the work, some information is withheld.

  11. Attenuation properties of radiation shielding materials such as granite and marble against γ-ray energies between 80 and 1350 keV

    Energy Technology Data Exchange (ETDEWEB)

    Eke, Canel [Akdeniz Univ., Antalya (Turkey). Nuclear Sciences Application and Research Center; Akdeniz Univ., Antalya (Turkey). Div. of Physics Education; Agar, Osman [Akdeniz Univ., Antalya (Turkey). Nuclear Sciences Application and Research Center; Karamanoglu Mehmetbey Univ., Karaman (Turkey). Dept. of Physics; Segebade, Christian [Akdeniz Univ., Antalya (Turkey). Nuclear Sciences Application and Research Center; Boztosun, Ismail [Akdeniz Univ., Antalya (Turkey). Nuclear Sciences Application and Research Center; Akdeniz Univ., Antalya (Turkey). Dept. of Physics

    2017-07-01

    In this study, the γ-ray energy-dependent mass and linear attenuation coefficients of various granite and Turkish marble species have been experimentally obtained. Radionuclides ({sup 133}Ba, {sup 137}Cs, {sup 60}Co and {sup 22}Na) with point geometry were used as γ-ray sources. The absorption capacity of each sample at nine γ-ray energies was measured using a high resolution γ-ray spectrometer equipped with a high purity germanium (HPGe) detector. To obtain the precision of the results (1σ standard deviation of the single value), this procedure was repeated six times for each species of granite and marble, respectively. The energy-dependent mass attenuation coefficient (MAC), linear attenuation coefficient (LAC), the half (HVL) and the tenth value layer (TVL) were calculated following that the MAC and LAC results were compared to the literature values.

  12. Radiation induced time dependent attenuation in a fiber

    International Nuclear Information System (INIS)

    Kelly, R.E.; Lyons, P.B.; Looney, L.D.

    1985-01-01

    Characteristics describing the time dependent attenuation coefficient of an optical fiber during and following a very short and intense radiation pulse are analyzed. This problem is important for transmission applications when the fiber is subjected to gamma, electron, or neutron beams. Besides time, the attenuation coefficient is a function of temperature, dose rate, dose, nature of the radiation (n, e, γ), fiber composition and purity, pre-existing solid state defects, and wavelength of the transmitted signal. The peak attenuation for a given fiber is mainly determined by the dose rate and pulse length, but temperature and strain (or athermal) annealing also contribute to a partial recovery during the pulse duration. The peak attenuation per unit dose appears to be smaller at high doses, perhaps caused by particle track overlap, which produces a saturation effect. After pulse termination, the attenuation coefficient tends to recover towards its pre-radiation value at different rates, depending upon the factors mentioned above. In particular, ionized electrons relax back to the positive lattice ions at a rate which depends upon initial separation distance and temperature. The initial separation distance is a function of beam energy. Some electrons will encounter a trap in the lattice and may recombine by quantum mechanical tunneling or be removed by photons (hence, absorption). Besides ionization, radiation may induce lattice displacements which in turn produce additional absorption centers. The displacement contribution has a different time constant than that associated with ionization. These topics, as they influence fiber characteristics, are discussed, along with supporting experimental data

  13. Ketoconazole attenuates radiation-induction of tumor necrosis factor

    Energy Technology Data Exchange (ETDEWEB)

    Hallahan, D.E.; Virudachalam, S.; Kufe, D.W.; Weichselbaum, R.R. [Dana Farber Cancer Institute, Boston, MA (United States)

    1994-07-01

    Previous work has demonstrated that inhibitors of phospholipase A2 attenuate ionizing radiation-induced arachidonic acid production, protein kinase C activation, and prevent subsequent induction of the tumor necrosis factor gene. Because arachidonic acid contributes to radiation-induced tumor necrosis factor expression, the authors analyzed the effects of agents which alter arachidonate metabolism on the regulation of this gene. Phospholipase A2 inhibitors quinicrine, bromphenyl bromide, and pentoxyfylline or the inhibitor of lipoxygenase (ketoconazole) or the inhibitor of cycloxygenase (indomethacine) were added to cell culture 1 h prior to irradiation. Radiation-induced tumor necrosis factor gene expression was attenuated by each of the phospholipase A2 inhibitors (quinicrine, bromphenylbromide, and pentoxyfylline). Furthermore, ketoconazole attenuated X ray induced tumor necrosis factor gene expression. Conversely, indomethacin enhanced tumor necrosis factor expression following irradiation. The finding that radiation-induced tumor necrosis factor gene expression was attenuated by ketoconazole suggests that the lipoxygenase pathway participates in signal transduction preceding tumor necrosis factor induction. Enhancement of tumor necrosis factor expression by indomethacin following irradiation suggests that prostaglandins produced by cyclooxygenase act as negative regulators of tumor necrosis factor expression. Inhibitors of tumor necrosis factor induction ameliorate acute and subacute sequelae of radiotherapy. The authors propose therefore, that ketoconazole may reduce acute radiation sequelae such as mucositis and esophagitis through a reduction in tumor necrosis factor induction or inhibition of phospholipase A2 in addition to its antifungal activity. 25 refs., 2 figs.

  14. Characteristics of liver tissue for attenuate the gamma radiation

    International Nuclear Information System (INIS)

    Arcos P, A.; Rodriguez N, S.; Pinedo S, A.; Amador V, P.; Chacon R, A.; Vega C, H.R.

    2005-01-01

    It was determined the lineal attenuation coefficient of hepatic tissue before gamma radiation of a source of 137 Cs. When exposing organic material before X or gamma radiation fields, part of the energy of the photons is absorbed by the material, while another part crosses it without producing any effect. The quantity of energy that is absorbed is a measure of the dose that receives the material. The three main mechanisms by means of which the gamma rays interacting with the matter are: The Photoelectric Effect, the Compton dispersion and the Even production; the sum of these three processes is translated in the attenuation coefficient of the radiation. In this work we have used hepatic tissue of bovine, as substitute of the human hepatic tissue, and we have measured the lineal attenuation coefficient for photons of 0.662 MeV. Through a series of calculations we have determined the lineal attenuation coefficient for photons from 10 -3 to 10 -5 MeV and the measured coefficient was compared with the one calculated. (Author)

  15. Radiation-induced attenuation in integrated optical materials

    International Nuclear Information System (INIS)

    Evans, B.D.

    1989-01-01

    This paper reports that three materials commonly employed in opto-electronic integrated circuits evaluated for radiation-induced optical attenuation in the range 300 nm to 3000 nm. These include optically clear epoxy and crystalline lithium niobate after Co-60 exposure and crystalline tellurium dioxide after mixed gamma/fast-neutron exposure. In all these materials, however, induced loss was restricted to shorter wavelengths; attenuation induced at the telecommunications windows near 850, 1300 and 1550 nm was <0.1 dB/cm

  16. Spectral and kinetic analysis of radiation induced optical attenuation in silica: towards intrinsic fibre optic dosimetry?

    International Nuclear Information System (INIS)

    Borgermans, P.

    2002-01-01

    The document is an abstract of a PhD thesis. The PhD work concerns the detailed investigation of the behaviour of optical fibres in radiation fields such as is the case for various nuclear and space application,s. The core of the work concerns the spectral and kinetic analysis of the radiation induced optical attenuation. Models describing underlying physical phenomena, both for the spectral and the time dimensions, have been developed. The potential of silica optical fibre waveguides for intrinsic dosimetry has been assessed by employing specific properties of radiation induced defects in the silica waveguide material

  17. Study characteristics of new concrete mixes and their mechanical, physical, and gamma radiation attenuation features

    Energy Technology Data Exchange (ETDEWEB)

    El-Samrah, Moamen G.; Abdel-Rahman, Mohamed A.E. [Nuclear Engineering Department, Military Technical College Kobry El-kobbah, Cairo (Egypt); Kany, Amr M.I. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt)

    2018-02-01

    Ordinary concrete and those of different compositions are regarded as suitable material in many applications concerning with gamma and neutron radiation shielding purposes. They are widely used in nuclear power plant, medical facilities, nuclear shelters, and for radioactive materials transportation as well as storage of radioactive wastes. In this study four different concrete mixes were prepared with the following different types of coarse aggregates: dolomite, barite, goethite, and steel slag. The effect of changes in the fine aggregates, selected to be 50 % local sand and 50 % limonite with addition of 10 % silica fume (SF) and 10 % fly ash (FA) by replacement of the total cement weight, on the performance of the samples was also investigated. To examine the performance of such samples for radiation shielding applications, a set of physical, mechanical, and radiation attenuation properties was studied and compared with those of ordinary concrete. This investigation includes compressive strength, slump test, bulk density, ultrasonic pulse velocity test, and gamma rays attenuation measurements for the different samples. A verification of the experimental results concerning the radiation attenuation measurements was performed using WinXcom program (Version 3.1). The experimental results revealed that all concrete mixes; goethite-limonite concrete (G.L), barite-limonite concrete (B.L), steel slag-limonite concrete (S.L) and dolomite concrete (D.C) have good physical and mechanical properties that successfully satisfying them as high performance concretes. In addition the barite-limonite and the steel slag-limonite have the higher γ-ray attenuation coefficients at low and high energy range and hence have a better radiation shielding. The obtained results from WinXcom program calculations showed a good agreement with the experimental results concerning γ-ray attenuation measurements for the studied concrete mixes. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGa

  18. Interlaboratory comparison of radiation-induced attenuation in optical fibers

    International Nuclear Information System (INIS)

    Friebele, E.J.; Lyons, P.B.; Blackburn, J.C.

    1989-08-01

    A comparison of the losses induced in step index multimode, graded index multimode and single mode fibers by pulsed radiation exposure has been made among 12 laboratories over a period of 5 years. The recoveries of the incremental attenuations from 10 -9 to 10 1 s are reported. Although a standard set of measurement parameters was attempted, differences between the laboratories are evident; possible origins for these are discussed. 18 refs., 18 figs., 7 tabs

  19. Photon attenuation properties of some thorium, uranium and plutonium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Singh, V. P.; Badiger, N. M. [Karnatak University, Department of Physics, Dharwad-580003, Karnataka (India); Vega C, H. R., E-mail: kudphyvps@rediffmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-10-15

    Mass attenuation coefficients, effective atomic numbers, effective electron densities for nuclear materials; thorium, uranium and plutonium compounds have been studied. The photon attenuation properties for the compounds have been investigated for partial photon interaction processes by photoelectric effect, Compton scattering and pair production. The values of these parameters have been found to change with photon energy and interaction process. The variations of mass attenuation coefficients, effective atomic number and electron density with energy are shown graphically. Moreover, results have shown that these compounds are better shielding and suggesting smaller dimensions. The study would be useful for applications of these materials for gamma ray shielding requirement. (Author)

  20. Radiative properties of clouds

    International Nuclear Information System (INIS)

    Twomey, S.

    1993-01-01

    The climatic effects of condensation nuclei in the formation of cloud droplets and the subsequent role of the cloud droplets as contributors to the planetary short-wave albedo is emphasized. Microphysical properties of clouds, which can be greatly modified by the degree of mixing with cloud-free air from outside, are discussed. The effect of clouds on visible radiation is assessed through multiple scattering of the radiation. Cloudwater or ice absorbs more with increasing wavelength in the near-infrared region, with water vapor providing the stronger absorption over narrower wavelength bands. Cloud thermal infrared absorption can be solely related to liquid water content at least for shallow clouds and clouds in the early development state. Three-dimensional general circulation models have been used to study the climatic effect of clouds. It was found for such studies (which did not consider variations in cloud albedo) that the cooling effects due to the increase in planetary short-wave albedo from clouds were offset by heating effects due to thermal infrared absorption by the cloud. Two permanent direct effects of increased pollution are discussed in this chapter: (a) an increase of absorption in the visible and near infrared because of increased amounts of elemental carbon, which gives rise to a warming effect climatically, and (b) an increased optical thickness of clouds due to increasing cloud droplet number concentration caused by increasing cloud condensation nuclei number concentration, which gives rise to a cooling effect climatically. An increase in cloud albedo from 0.7 to 0.87 produces an appreciable climatic perturbation of cooling up to 2.5 K at the ground, using a hemispheric general circulation model. Effects of pollution on cloud thermal infrared absorption are negligible

  1. Attenuate Eimeria Tenella parasite by gamma radiation in chicken vaccination

    International Nuclear Information System (INIS)

    El-atar, M.A.

    1998-01-01

    Mature occysts of eimeria tenella were attenuated by different doses of gamma radiation. The vitality, pathogenicity and immunogenicity of these occysts were examined by infecting one day old broiler chicks. The study revealed that the irradiated occysts lost pathogenicity by increasing radiation dose. To examine the immunogenicity of irradiated occysts, chickens were challenged 28 days post immunogenic infection. It was shown that the irradiated occycts kept their immunogenicity but this ability decreased when the irradiation dose was increased. Also, the number of vaccination doses as well as the level of irradiation were studied. Occysts irradiated with 15, 18, 20 Krad were used to vaccinate one-day old broiler chicks for one or two times, and seven-day old chicks for three times. High level of protection was observed as shown by disappeaeance of clinical signs or mortality in most vaccinated groups

  2. Effect of Steel Fiber Addition on Mechanical Properties and gamma-Ray Attenuation for Ordinary Concrete Used in El-Gabal El-Akhdar Area in Libya for Radiation Shielding Purposes

    International Nuclear Information System (INIS)

    Ikraiam, F.A.; Ali, J.M.; Abd El-Latif, A.; Abd ELazziz, A.

    2009-01-01

    This work deals with the study of ordinary concrete reinforced with steel fibers where the concrete was prepared from limestone ores as coarse aggregate, and sand as fine aggregate, in El-Gabal El-Akhdar in Libya in order to study some mechanical properties and gamma ray attenuation. For mechanical properties, compressive and tensile strengths have been studied, where tensile strength improved by a factor 1.189 at 3% steel fiber content in comparison with reference sample (0%), whereas the compressive strength improved by a factor of 1.012 at 1% steel fiber content. In relation to the concrete density, it is found that the optimum density was 2.217g/cm3 at 3% where the factor of improvement was 1.1. For gamma ray attenuation, the measurements have been obtained by a collimated beam of gamma ray from sources 60 Co, 22 Na and 137 Cs using a gamma ray spectrometer MCA cassy with inorganic scintillator Na(Tl). The total linear attenuation coefficient (μ cm - 1), mean free path length (λ), HVT (τ1/2) and TVT (τ1/10) are all evaluated in this study. The study reveals that concrete sample with 3% steel fiber content has the optimum values of all these nuclear parameters

  3. Program description of FIBRAM (Fiber Optic Radiation Attenuation Model): a radiation attenuation model for optical fibers

    International Nuclear Information System (INIS)

    Ingram, W.J.

    1987-06-01

    The report describes a fiber-optics system model and its computer implementation. This implementation can calculate the bit error ratio (BER) versus time for optical fibers that have been exposed to gamma radiation. The program is designed so that the user may arbitrarily change any or all of the system input variables and produce separate outputs. The primary output of the program is a table of the BER as a function of time. This table may be stored on magnetic media and later incorporated into computer graphic programs. The program was written in FORTRAN 77 for the IBM PC/AT/XT computers. Flow charts and program listings are included in the report

  4. Optimal Background Attenuation for Fielded Radiation Detection Systems

    International Nuclear Information System (INIS)

    Robinson, Sean M.; Kaye, William R.; Schweppe, John E.; Siciliano, Edward R.

    2006-01-01

    Radiation detectors are often placed in positions difficult to shield from the effects of terrestrial background. This is particularly true in the case of Radiation Portal Monitor (RPM) systems, as their wide viewing angle and outdoor installations make them susceptible to terrestrial background from the surrounding area. A low background is desired in most cases, especially when the background noise is of comparable strength to the signal of interest. The problem of shielding a generalized RPM from terrestrial background is considered. Various detector and shielding scenarios are modeled with the Monte-Carlo N Particle (MCNP) computer code. Amounts of nominal-density shielding needed to attenuate the terrestrial background to varying degrees are given, along with optimal shielding geometry to be used in areas where natural shielding is limited, and where radiation detection must occur in the presence of natural background. Common shielding solutions such as steel plating are evaluated based on the signal to noise ratio and the benefits are weighed against the incremental cost.

  5. Properties of synchrotron radiation

    International Nuclear Information System (INIS)

    Materlik, G.

    1982-01-01

    This paper forms the introductory chapter to a book concerning the use of synchrotron radiation for investigation of the structure and mechanism of biological macromolecules. After a historical section, the physics of synchrotron radiation is summarized so that the most promising experiments may be extrapolated. Irradiated power and intensity, polarization and angular distribution, brilliance of a real source, and developments such as wigglers and undulators are briefly dealt with. The paper includes a tabulated compilation of proposed and operating machines in 1982, with some of their characteristics. (U.K.)

  6. Study of radioactivity and radiation attenuation of a new heavy weight concrete

    International Nuclear Information System (INIS)

    Ramadan, A.B.; Fouda, S.; EL-Mongy, S.; Hodhod, O.; Yousef, M.

    2005-01-01

    The present study is concerned with studying the radioactivity levels and efficiency of proposed heavy weight concrete as a shielding material for low and intermediate level radioactive wastes. Effect of elevated temperatures on radiation attenuation characteristics of proposed materials was also studied. Three types of local natural aggregates (iron ores) namely magnetite, limonite and hematite have been prepared, analyzed for their radioactivity and tested to determine their suitability for the manufacture of heavy weight concrete, which can be used for shielding. Hematite was excluded and two types of concrete have been prepared by using magnetite and limonite. The gamma spectrometry and neutron activation have been used to determine both uranium and thorium contents in the investigated materials. The results obtained by the two methods showed that uranium and thorium were within the acceptable low levels. It was observed that the two types of concrete have good attenuation properties

  7. Attenuation characteristics of materials used in radiation protection as radiation shielding

    International Nuclear Information System (INIS)

    Almeida Junior, Airton T.; Araujo, F.G.S.; Nogueira, M.S.; Santos, M.A.P.

    2013-01-01

    Crystal glass has been widely used as shielding material in gamma radiation sources as well as x-ray generating equipment to replace the plumbiferous glass, in order to minimize exposure to individuals. In this work, ten plates of crystal glass, with dimensions of 20cm x 20cm and range of thicknesses from 0.5 to 2.0 cm, and barite concrete were irradiated with potential constants of 60kV, 80kV, 110kV, 150kV and gamma radiation of 60 Co. The curves of attenuation and of transmission were obtained for crystal glass, barite plaster and barite concrete (mGy/mA.min) at 1 meter as a function of thickness.Crystal glass has been widely used as shielding material in gamma radiation sources as well as x-ray generating equipment to replace the plumbiferous glass, in order to minimize exposure to individuals. In this work, ten plates of crystal glass, with dimensions of 20cm x 20cm and range of thicknesses from 0.5 to 2.0 cm, and barite concrete were irradiated with potential constants of 60kV, 80kV, 110kV, 150kV and gamma radiation of 60 Co. The curves of attenuation and of transmission were obtained for crystal glass, barite plaster and barite concrete (mGy/mA.min) at 1 meter as a function of thickness. (author)

  8. The properties of undulator radiation

    International Nuclear Information System (INIS)

    Howells, M.R.; Kincaid, B.M.

    1993-09-01

    A new generation of synchrotron radiation light sources covering the VUV, soft x-ray, and hard x-ray spectral regions is under construction in several countries. These sources are designed specifically to use periodic magnetic undulators and low-emittance electron or positron beams to produce high-brightness near-diffraction-limited synchrotron radiation beams. Some of the novel features of the new sources are discussed, along with the characteristics of the radiation produced, with emphasis on the Advanced Light Source, a third-generation 1.5 GeV storage ring optimized for undulator use. A review of the properties of undulator radiation is presented, followed by a discussion of some of the unique challenges being faced by the builders and users of the new undulator sources. These include difficult mechanical and magnetic tolerance limits, a complex interaction with the storage ring, high x-ray beam power, partial coherence, harmonics, optics contamination, and the unusual spectral and angular properties of undulator radiation

  9. Indomethacin attenuation of radiation-induced hyperthermia does not modify radiation-induced motor hypoactivity

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, J.L.; Kandasamy, S.B.; Harris, A.H.; Davis, H.D.; Landauer, M.R. [Armed Forces Radiobiology Research Inst., Bethesda, MD (United States)

    1996-09-01

    Exposure of rats to 5-10 Gy of ionizing radiation produces hyperthermia and reduces motor activity. Previous studies suggested that radiation-induced hyperthermia results from a relatively direct action on the brain and is mediated by prostaglandins. To test the hypothesis that hypoactivity may be, in part, a thermoregulatory response to this elevation in body temperature, adult male rats were given indomethacin (0.0, 0.5, 1.0, and 3.0 mg/kg, intraperitoneally), a blocker of prostaglandin synthesis, and were either irradiated (LINAC 18.6 MeV (nominal) high-energy electrons, 10 Gy at 10 Gy/min, 2.8 {mu}sec pulses at 2 Hz) or sham-irradiated. The locomotor activity of all rats was then measured for 30 min in a photocell monitor for distance traveled and number of vertical movements. Rectal temperatures of irradiated rats administered vehicle only were elevated by 0.9{+-}0.2degC at the beginning and the end of the activity session. Although indomethacin, at the two higher doses tested, attenuated the hyperthermia in irradiated rats by 52-75%, it did not attenuate radiation-induced reductions in motor activity. These results indicate that motor hypoactivity after exposure to 10 Gy of high-energy electrons is not due to elevated body temperature or to the increased synthesis of prostaglandins. (author)

  10. Indomethacin attenuation of radiation-induced hyperthermia does not modify radiation-induced motor hypoactivity

    International Nuclear Information System (INIS)

    Ferguson, J.L.; Kandasamy, S.B.; Harris, A.H.; Davis, H.D.; Landauer, M.R.

    1996-01-01

    Exposure of rats to 5-10 Gy of ionizing radiation produces hyperthermia and reduces motor activity. Previous studies suggested that radiation-induced hyperthermia results from a relatively direct action on the brain and is mediated by prostaglandins. To test the hypothesis that hypoactivity may be, in part, a thermoregulatory response to this elevation in body temperature, adult male rats were given indomethacin (0.0, 0.5, 1.0, and 3.0 mg/kg, intraperitoneally), a blocker of prostaglandin synthesis, and were either irradiated (LINAC 18.6 MeV (nominal) high-energy electrons, 10 Gy at 10 Gy/min, 2.8 μsec pulses at 2 Hz) or sham-irradiated. The locomotor activity of all rats was then measured for 30 min in a photocell monitor for distance traveled and number of vertical movements. Rectal temperatures of irradiated rats administered vehicle only were elevated by 0.9±0.2degC at the beginning and the end of the activity session. Although indomethacin, at the two higher doses tested, attenuated the hyperthermia in irradiated rats by 52-75%, it did not attenuate radiation-induced reductions in motor activity. These results indicate that motor hypoactivity after exposure to 10 Gy of high-energy electrons is not due to elevated body temperature or to the increased synthesis of prostaglandins. (author)

  11. Rosiglitazone attenuates pulmonary fibrosis and radiation-induced intestinal damage

    International Nuclear Information System (INIS)

    Mangoni, M.; Gerini, C.; Sottili, M.; Cassani, S.; Stefania, G.; Biti, G.; Castiglione, F.; Vanzi, E.; Bottoncetti, A.; Pupi, A.

    2011-01-01

    Full text of publication follows: Purpose.-The aim of the study was to evaluate radioprotective effect of rosiglitazone (RGZ) on a murine model of late pulmonary damage and of acute intestinal damage. Methods.- Lung fibrosis: C57 mice were treated with the radiomimetic agent bleomycin, with or without rosiglitazone (5 mg/kg/day). To obtain an independent qualitative and quantitative measure for lung fibrosis we used high resolution CT, performed twice a week during the entire observation period. Hounsfield Units (HU) of section slides from the upper and lower lung region were determined. On day 31 lungs were collected for histological analysis. Acute intestinal damage: mice underwent 12 Gy total body irradiation with or without rosiglitazone. Mice were sacrificed 24 or 72 h after total body irradiation and ileum and colon were collected. Results.- Lung fibrosis: after bleomycin treatment, mice showed typical CT features of lung fibrosis, including irregular septal thickening and patchy peripheral reticular abnormalities. Accordingly, HU lung density was dramatically increased. Rosiglitazone markedly attenuated the radiological signs of fibrosis and strongly inhibited HU lung density increase (60% inhibition at the end of the observation period). Histological analysis revealed that in bleomycin-treated mice, fibrosis involved 50-55% of pulmonary parenchyma and caused an alteration of the alveolar structures in 10% of parenchyma, while in rosiglitazone-treated mice, fibrosis involved only 20-25% of pulmonary parenchyma, without alterations of the alveolar structures. Acute intestinal damage: 24 h after 12 Gy of total body irradiation intestinal mucosa showed villi shortening, mucosal thickness and crypt necrotic changes. Rosiglitazone showed a histological improvement of tissue structure, with villi and crypts normalization and oedema reduction. Conclusion.- These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis and radiation

  12. Rosiglitazone attenuates pulmonary fibrosis and radiation-induced intestinal damage

    Energy Technology Data Exchange (ETDEWEB)

    Mangoni, M.; Gerini, C.; Sottili, M.; Cassani, S.; Stefania, G.; Biti, G. [Radiotherapy Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy); Castiglione, F. [Department of Human Pathology and Oncology, University of Florence, Firenze (Italy); Vanzi, E.; Bottoncetti, A.; Pupi, A. [Nuclear Medicine Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy)

    2011-10-15

    Full text of publication follows: Purpose.-The aim of the study was to evaluate radioprotective effect of rosiglitazone (RGZ) on a murine model of late pulmonary damage and of acute intestinal damage. Methods.- Lung fibrosis: C57 mice were treated with the radiomimetic agent bleomycin, with or without rosiglitazone (5 mg/kg/day). To obtain an independent qualitative and quantitative measure for lung fibrosis we used high resolution CT, performed twice a week during the entire observation period. Hounsfield Units (HU) of section slides from the upper and lower lung region were determined. On day 31 lungs were collected for histological analysis. Acute intestinal damage: mice underwent 12 Gy total body irradiation with or without rosiglitazone. Mice were sacrificed 24 or 72 h after total body irradiation and ileum and colon were collected. Results.- Lung fibrosis: after bleomycin treatment, mice showed typical CT features of lung fibrosis, including irregular septal thickening and patchy peripheral reticular abnormalities. Accordingly, HU lung density was dramatically increased. Rosiglitazone markedly attenuated the radiological signs of fibrosis and strongly inhibited HU lung density increase (60% inhibition at the end of the observation period). Histological analysis revealed that in bleomycin-treated mice, fibrosis involved 50-55% of pulmonary parenchyma and caused an alteration of the alveolar structures in 10% of parenchyma, while in rosiglitazone-treated mice, fibrosis involved only 20-25% of pulmonary parenchyma, without alterations of the alveolar structures. Acute intestinal damage: 24 h after 12 Gy of total body irradiation intestinal mucosa showed villi shortening, mucosal thickness and crypt necrotic changes. Rosiglitazone showed a histological improvement of tissue structure, with villi and crypts normalization and oedema reduction. Conclusion.- These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis and radiation

  13. Effective radiation attenuation calibration for breast density: compression thickness influences and correction

    Directory of Open Access Journals (Sweden)

    Thomas Jerry A

    2010-11-01

    Full Text Available Abstract Background Calibrating mammograms to produce a standardized breast density measurement for breast cancer risk analysis requires an accurate spatial measure of the compressed breast thickness. Thickness inaccuracies due to the nominal system readout value and compression paddle orientation induce unacceptable errors in the calibration. Method A thickness correction was developed and evaluated using a fully specified two-component surrogate breast model. A previously developed calibration approach based on effective radiation attenuation coefficient measurements was used in the analysis. Water and oil were used to construct phantoms to replicate the deformable properties of the breast. Phantoms consisting of measured proportions of water and oil were used to estimate calibration errors without correction, evaluate the thickness correction, and investigate the reproducibility of the various calibration representations under compression thickness variations. Results The average thickness uncertainty due to compression paddle warp was characterized to within 0.5 mm. The relative calibration error was reduced to 7% from 48-68% with the correction. The normalized effective radiation attenuation coefficient (planar representation was reproducible under intra-sample compression thickness variations compared with calibrated volume measures. Conclusion Incorporating this thickness correction into the rigid breast tissue equivalent calibration method should improve the calibration accuracy of mammograms for risk assessments using the reproducible planar calibration measure.

  14. Radiative properties of ice clouds

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.L.; Koracin, D.; Carter, E. [Desert Research Institute, Reno, NV (United States)

    1996-04-01

    A new treatment of cirrus cloud radiative properties has been developed, based on anomalous diffraction theory (ADT), which does not parameterize size distributions in terms of an effective radius. Rather, is uses the size distribution parameters directly, and explicitly considers the ice particle shapes. There are three fundamental features which characterize this treatment: (1) the ice path radiation experiences as it travels through an ice crystal is parameterized, (2) only determines the amount of radiation scattered and absorbed, and (3) as in other treatments, the projected area of the size distribution is conserved. The first two features are unique to this treatment, since it does not convert the ice particles into equivalent volume or area spheres in order to apply Mie theory.

  15. Nicaraven attenuates radiation-induced injury in hematopoietic stem/progenitor cells in mice.

    Directory of Open Access Journals (Sweden)

    Miho Kawakatsu

    Full Text Available Nicaraven, a chemically synthesized hydroxyl radical-specific scavenger, has been demonstrated to protect against ischemia-reperfusion injury in various organs. We investigated whether nicaraven can attenuate radiation-induced injury in hematopoietic stem/progenitor cells, which is the conmen complication of radiotherapy and one of the major causes of death in sub-acute phase after accidental exposure to high dose radiation. C57BL/6 mice were exposed to 1 Gy γ-ray radiation daily for 5 days in succession (a total of 5 Gy, and given nicaraven or a placebo after each exposure. The mice were sacrificed 2 days after the last radiation treatment, and the protective effects and relevant mechanisms of nicaraven in hematopoietic stem/progenitor cells with radiation-induced damage were investigated by ex vivo examination. We found that post-radiation administration of nicaraven significantly increased the number, improved the colony-forming capacity, and decreased the DNA damage of hematopoietic stem/progenitor cells. The urinary levels of 8-oxo-2'-deoxyguanosine, a marker of DNA oxidation, were significantly lower in mice that were given nicaraven compared with those that received a placebo treatment, although the levels of intracellular and mitochondrial reactive oxygen species in the bone marrow cells did not differ significantly between the two groups. Interestingly, compared with the placebo treatment, the administration of nicaraven significantly decreased the levels of the inflammatory cytokines IL-6 and TNF-α in the plasma of mice. Our data suggest that nicaraven effectively diminished the effects of radiation-induced injury in hematopoietic stem/progenitor cells, which is likely associated with the anti-oxidative and anti-inflammatory properties of this compound.

  16. The Effect of Various Waste Materials' Contents on the Attenuation Level of Anti-Radiation Shielding Concrete.

    Science.gov (United States)

    Azeez, Ali Basheer; Mohammed, Kahtan S; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Sandu, Andrei Victor; Razak, Rafiza Abdul

    2013-10-23

    Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised 137 Cs and ⁶⁰Co radioactive elements with photon energies of 0.662 MeV for 137 Cs and two energy levels of 1.17 and 1.33 MeV for the ⁶⁰Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10 -3 for 137 Cs and 0.92 ± 1.57 × 10 -3 for ⁶⁰Co. Substantial improvement in attenuation performance by 20%-25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%-30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities.

  17. The Effect of Various Waste Materials’ Contents on the Attenuation Level of Anti-Radiation Shielding Concrete

    Science.gov (United States)

    Azeez, Ali Basheer; Mohammed, Kahtan S.; Abdullah, Mohd Mustafa Al Bakri; Hussin, Kamarudin; Sandu, Andrei Victor; Razak, Rafiza Abdul

    2013-01-01

    Samples of concrete contain various waste materials, such as iron particulates, steel balls of used ball bearings and slags from steel industry were assessed for their anti-radiation attenuation coefficient properties. The attenuation measurements were performed using gamma spectrometer of NaI (Tl) detector. The utilized radiation sources comprised 137Cs and 60Co radioactive elements with photon energies of 0.662 MeV for 137Cs and two energy levels of 1.17 and 1.33 MeV for the 60Co. Likewise the mean free paths for the tested samples were obtained. The aim of this work is to investigate the effect of the waste loading rates and the particulate dispersive manner within the concrete matrix on the attenuation coefficients. The maximum linear attenuation coefficient (μ) was attained for concrete incorporates iron filling wastes of 30 wt %. They were of 1.12 ± 1.31×10−3 for 137Cs and 0.92 ± 1.57 × 10−3 for 60Co. Substantial improvement in attenuation performance by 20%–25% was achieved for concrete samples incorporate iron fillings as opposed to that of steel ball samples at different (5%–30%) loading rates. The steel balls and the steel slags gave much inferior values. The microstructure, concrete-metal composite density, the homogeneity and particulate dispersion were examined and evaluated using different metallographic, microscopic and measurement facilities. PMID:28788363

  18. Attenuation of Reactor Gamma Radiation and Fast Neutrons Through Large Single-Crystal Materials

    International Nuclear Information System (INIS)

    Adib, M.

    2009-01-01

    A generalized formula is given which, for neutron energies in the range 10-4< E< 10 eV and gamma rays with average energy 2 MeV , permits calculation of the transmission properties of several single crystal materials important for neutron scattering instrumentation. A computer program Filter was developed which permits the calculation of attenuation of gamma radiation, nuclear capture, thermal diffuse and Bragg-scattering cross-sections as a function of materials constants, temperature and neutron energy. The applicability of the deduced formula along with the code checked from the obtained agreement between the calculated and experimental neutron transmission through various single-crystals A feasibility study for use of Si, Ge, Pb, Bi and sapphire is detailed in terms of optimum crystal thickness, mosaic spread and cutting plane for efficient transmission of thermal reactor neutrons and for rejection of the accompanying fast neutrons and gamma rays.

  19. Determination of attenuation properties of massive ceramic bricks cladded with mortars containing barite used as protective barrier for radiodiagnostic rooms

    International Nuclear Information System (INIS)

    Barros, Frieda S.; Schelin, Hugo R.; Tilly Junior, Joao G.; Costa, Paulo R.; Nersissian, Denise Y.; Pereira, Marco A.G.

    2001-01-01

    The purpose of this work is to determine the properties of attenuation of the walls built with massive ceramic bricks to be used as protection barriers in environments of Medicine and Dentistry, when submitted to X-ray diagnosis. Massive ceramic bricks are used thoroughly in constructions as a calking element. The properties of attenuation of these materials were obtained starting from the application of the model of Archer to a group of attenuation curves with wide beams generated in the tensions of 70, 80, 100, 120, 140 and 150 kVp. A radiological equipment of constant potential was used in the Laboratory of IEE/USP, two cameras of ionization of 6cm 3 , coupled to two radiation monitors. The results show that for a tension of 100kVp, the thickness of 10cm of wall made with massive ceramic bricks corresponds to 1mm of lead. (author)

  20. Evaluation of radiation-shielding properties of the composite material

    International Nuclear Information System (INIS)

    Pavlenko, V.I.; Chekashina, N.I.; Yastrebinskij, R.N.; Sokolenko, I.V.; Noskov, A.V.

    2016-01-01

    The paper presents the evaluation of radiation-shielding properties of composite materials with respect to gamma-radiation. As a binder for the synthesis of radiation-shielding composites we used lead boronsilicate glass matrix. As filler we used nanotubular chrysotile filled with lead tungstate PbWO4. It is shown that all the developed composites have good physical-mechanical characteristics, such as compressive strength, thermal stability and can be used as structural materials. On the basis of theoretical calculation we described the graphs of the gamma-quanta linear attenuation coefficient depending on the emitted energy for all investigated composites. We founded high radiation-shielding properties of all the composites on the basis of theoretical and experimental data compared to materials conventionally used in the nuclear industry - iron, concrete, etc

  1. Attenuation of VHE Gamma Rays by the Milky Way Interstellar Radiation Field

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, Igor V.; /Stanford U., HEPL; Porter, Troy A.; /Louisiana State U.; Strong, Andrew W.; /Garching, Max Planck Inst., MPE

    2006-04-19

    The attenuation of very high energy gamma rays by pair production on the Galactic interstellar radiation field has long been thought of as negligible. However, a new calculation of the interstellar radiation field consistent with multi-wavelength observations by DIRBE and FIRAS indicates that the energy density of the Galactic interstellar radiation field is higher, particularly in the Galactic center, than previously thought. We have made a calculation of the attenuation of very high energy gamma rays in the Galaxy using this new interstellar radiation field which takes into account its nonuniform spatial and angular distributions. We find that the maximum attenuation occurs around 100 TeV at the level of about 25% for sources located at the Galactic center, and is important for both Galactic and extragalactic sources.

  2. Attenuation and cross-attenuation in taste aversion learning in the rat: Studies with ionizing radiation, lithium chloride and ethanol

    International Nuclear Information System (INIS)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1988-01-01

    The preexposure paradigm was utilized to evaluate the similarity of ionizing radiation, lithium chloride and ethanol as unconditioned stimuli for the acquisition of a conditioned taste aversion. Three unpaired preexposures to lithium chloride (3.0 mEq/kg, IP) blocked the acquisition of a taste aversion when a novel sucrose solution was paired with either the injection of the same dose of lithium chloride or exposure to ionizing radiation (100 rad). Similar pretreatment with radiation blocked the acquisition of a radiation-induced aversion, but had no effect on taste aversions produced by lithium chloride (3.0 or 1.5 mEq/kg). Preexposure to ethanol (4 g/kg, PO) disrupted the acquisition of an ethanol-induced taste aversion, but not radiation- or lithium chloride-induced aversions. In contrast, preexposure to either radiation or lithium chloride attenuated an ethanol-induced taste aversion in intact rats, but not in rats with lesions of the area postrema. The results are discussed in terms of relationships between these three unconditioned stimuli and in terms of implications of these results for understanding the nature of the proximal unconditioned stimulus in taste aversion learning

  3. Modeling silica aerogel optical performance by determining its radiative properties

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2016-02-01

    Full Text Available Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM. Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation. To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE. The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel’s microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.

  4. Modeling silica aerogel optical performance by determining its radiative properties

    Science.gov (United States)

    Zhao, Lin; Yang, Sungwoo; Bhatia, Bikram; Strobach, Elise; Wang, Evelyn N.

    2016-02-01

    Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM). Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation). To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm) of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE). The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel's microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.

  5. Evaluation of dose attenuation factor of armored car against radiation accidents

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Fujii, Katsutoshi; Murayama, Takashi

    2002-03-01

    The Tokyo Fire Department developed an armored car against radiation accidents. The car is covered by lead shields for attenuating dose from gamma rays. Dose from neutrons also can be attenuated by pouring water into tanks attached to the surface of the car. However, dose attenuation factors of the radiation shields had been determined by an estimation of single-layer shield, and more precise evaluation of multi-layer shield was required. By request from the Tokyo Fire Department, a precise evaluation of the dose attenuation in multi-layer shield was carried out. The evaluation was made by a Monte Carlo radiation transport simulation code MCNP4B for the shields used in the front, side and back of the car. Three types of the radiation sources ( 252 Cf as a neutron source, 60 Co as a gamma ray source, and radiation source corresponding to the JCO criticality accident) were considered in the calculation. Benchmark experiments using neutron and gamma ray sources were also performed for ensuring the evaluation method. As a result, it was found out that doses of neutron and gamma ray were attenuated to approximately 10% and 25% by the thickest shield, respectively. These values were close to the ones which had already obtained by the estimation of single-layer shield. (author)

  6. Attenuative effects of G-CSF in radiation induced intestinal injury

    International Nuclear Information System (INIS)

    Kim, Joong Sun; Gong, Eun Ji; Kim, Sung Dae; Heo, Kyu; Ryoo, Seung Bum; Yang, Kwang Mo

    2011-01-01

    Granulocyte colony stimulating factor (G-CSF) has been reported to protect from radiationinduced myelosuppression. Growing evidence suggests that G-CSF also has many important non-hematopoietic functions in other tissues, including the intestine (Kim et al., 2010; Kim et al., 2011). However, little is known about the influence of G-CSF on intestinal injury. Examination 12 hours after radiation (5 Gy) revealed that the G-CSF treated mice were significantly protected from apoptosis of jejunal crypt, compared with radiation controls. G-CSF treatment attenuated intestinal morphological changes such as decreased survival crypt, the number of villi, villous shortening, crypt depth and length of basal lamina of 10 enterocytes compared with the radiation control 3.5 days after radiation (10 Gy). G-CSF attenuated the change of peripheral blood from radiation-induced myelosuppression and displayed attenuation of mortality in lethally-irradiated (10 Gy) mice. The present results support the suggestion that G-CSF administrated prior to radiation plays an important role in the survival of irradiated mice, possibly due to the protection of hematopoietic cells and intestinal stem cells against radiation. The results indicate that G-CSF protects from radiation-mediated intestinal damage and from hematopoietic injury. G-CSF treatment may be useful clinically in the prevention of injury following radiation.

  7. Nano lead oxide and epdm composite for development of polymer based radiation shielding material: Gamma irradiation and attenuation tests

    Science.gov (United States)

    Özdemir, T.; Güngör, A.; Akbay, I. K.; Uzun, H.; Babucçuoglu, Y.

    2018-03-01

    It is important to have a shielding material that is not easily breaking in order to have a robust product that guarantee the radiation protection of the patients and radiation workers especially during the medical exposure. In this study, nano sized lead oxide (PbO) particles were used, for the first time, to obtain an elastomeric composite material in which lead oxide nanoparticles, after the surface modification with silane binding agent, was used as functional material for radiation shielding. In addition, the composite material including 1%, 5%, 10%, 15% and 20% weight percent nano sized lead oxide was irradiated with doses of 81, 100 and 120 kGy up to an irradiation period of 248 days in a gamma ray source with an initial dose rate of 21.1 Gy/h. Mechanical, thermal properties of the irradiated materials were investigated using DSC, DMA, TGA and tensile testing and modifications in thermal and mechanical properties of the nano lead oxide containing composite material via gamma irradiation were reported. Moreover, effect of bismuth-III oxide addition on radiation attenuation of the composite material was investigated. Nano lead oxide and bismuth-III oxide particles were mixed with different weight ratios. Attenuation tests have been conducted to determine lead equivalent values for the developed composite material. Lead equivalent thickness values from 0.07 to 0.65 (2-6 mm sample thickness) were obtained.

  8. Performance of composites made with polymers of silicone rubber and waste of lead on the properties of attenuation

    International Nuclear Information System (INIS)

    Barros, Frieda S.; Paredes, Ramon S.C.

    2009-01-01

    All facilities and personnel protection equipment which use ionizing radiation need protection. Based on this statement, several researchers have aimed their projects searching for new materials that present good behavior facing the attenuation properties. This research aims at the development of a composite by using the silicon rubber associated to the residue of lead in powder, obtained via the recycling of components of lead from automobile batteries. In this work , were checked the morphological physical - chemical properties of the materials isolated and associated, the calorimetrical properties of the performance of the composite related to the attenuation for X-Rays and gamma, through experimental rehearsals and computational simulation. For mixtures with 40% of lead residue, referential value in mass, favorable results were obtained about armor. In this way, it was allied the good performance of the composite with a reduction of an environmental passive to the process of recycling lead. (author)

  9. Attenuation of Electromagnetic Radiation by Haze, Fog, Clouds, and Rain

    Science.gov (United States)

    1975-04-01

    transmission data of Gebbie etal,(3 Gibbons (27) suggests that ai = 0.7 in the wavelength range from 0.61 to 11.48 pim regardless of the meteorological...attenuation at 10 Um becomes 10 to 100 times smaller than at 0.5 jim. It can be also observed that the 8 to 12 pm band is preferable to the 3 to 5 pim ...Water Aerosols and Fog-," Arl. ¢ Ott ., Vol. 9, 1970, pp. 2000-2006. 33. Gebbie, If. A., ot al., "Atmospheric Transmission in the 1 to 14P Region," Pro

  10. Influence of tube voltage on CT attenuation, radiation dose, and image quality: phantom study

    International Nuclear Information System (INIS)

    Li Fengtan; Li Dong; Zhang Yunting

    2013-01-01

    Objective: To assess the influence of tube current and tube voltage on the CT attenuation, radiation dose, and image quality. Methods: A total of 113 saline solutions with decreasing dilution of contrast medium (370 mg I/ml) was produced. MDCT scan was performed with 15 series of different settings of tube current and tube voltage. CT attenuations with 15 series of different settings were all measured, and influence of tube current and tube voltage on CT attenuations was analyzed. CT dose index (CTDIvol) was recorded. The CT attenuations with different tube voltage and current were compared with one-way ANOVA and Kruskal-Wallis rank sum test. The correlation of CT attenuation with different tube voltage and the influence of tube voltage and current on radiation dose and image quality were tested by correlation analysis. Results: Tube current (250, 200, 150, 100, and 50 mA) had no significant effect on CT attenuation (F = 0.001, 0.008, 0.075, P > 0.05), while tube voltage (120, 100, and 80 kV) had significant effect (H = 17.906, 17.906, 13.527, 20.124, 23.563, P < 0.05). The correlation between CT attenuation and tube voltage was determined with equation: CT attenuatio N_1_0_0 _k_V = 1.561 × CT attenuatio N_1_2_0 _k_v + 4.0818, CT attenuatio N_8_0 _k_v = 1.2131 × CT attenuatio N_1_2_0 _k_v + 0.9283. The influence of tube voltage on radiation dose and image quality was also analyzed, and equations were also obtained: N_1_2_0 -k_v = -5.9771 Ln (D_1_2_0 kv) + 25.412, N_1_0_0 _k_v = -10.544 Ln (D_1_0_0 _k_v) + 36.262, N_8_0 _k_v = -25.326 Ln (D_8_0 _k_v) + 62.816. According to the results of relationship among CT attenuation, radiation dose, and image quality, lower tube voltage with higher tube current can reduce the radiation dose. Conclusions: Lower tube voltage can reduce the radiation dose. However, CT attenuation was influenced, and correction should be done with the equations. (authors)

  11. Attenuated UV Radiation Alters Volatile Profile in Cabernet Sauvignon Grapes under Field Conditions.

    Science.gov (United States)

    Liu, Di; Gao, Yuan; Li, Xiao-Xi; Li, Zheng; Pan, Qiu-Hong

    2015-09-17

    This study aimed to explore the effect of attenuated UV radiation around grape clusters on the volatile profile of Cabernet Sauvignon grapes (Vitis vinifera L. cv.) under field conditions. Grape bunches were wrapped with two types of polyester films that cut off 89% (film A) and 99% (film B) invisible sunlight of less than 380 nm wavelength, respectively. Solar UV radiation reaching the grape berry surface was largely attenuated, and an increase in the concentrations of amino acid-derived benzenoid volatiles and fatty acid-derived esters was observed in the ripening grapes. Meanwhile, the attenuated UV radiation significantly reduced the concentrations of fatty acid-derived aldehydes and alcohols and isoprenoid-derived norisoprenoids. No significant impact was observed for terpenes. In most case, these positive or negative effects were stage-dependent. Reducing UV radiation from the onset of veraison to grape harvest, compared to the other stages, caused a larger alteration in the grape volatile profile. Partial Least Square Discriminant Analysis (PLS-DA) revealed that (E)-2-hexenal, 4-methyl benzaldehyde, 2-butoxyethyl acetate, (E)-2-heptenal, styrene, α-phenylethanol, and (Z)-3-hexen-1-ol acetate were affected most significantly by the attenuated UV radiation.

  12. Attenuated UV Radiation Alters Volatile Profile in Cabernet Sauvignon Grapes under Field Conditions

    Directory of Open Access Journals (Sweden)

    Di Liu

    2015-09-01

    Full Text Available This study aimed to explore the effect of attenuated UV radiation around grape clusters on the volatile profile of Cabernet Sauvignon grapes (Vitis vinifera L. cv. under field conditions. Grape bunches were wrapped with two types of polyester films that cut off 89% (film A and 99% (film B invisible sunlight of less than 380 nm wavelength, respectively. Solar UV radiation reaching the grape berry surface was largely attenuated, and an increase in the concentrations of amino acid-derived benzenoid volatiles and fatty acid-derived esters was observed in the ripening grapes. Meanwhile, the attenuated UV radiation significantly reduced the concentrations of fatty acid-derived aldehydes and alcohols and isoprenoid-derived norisoprenoids. No significant impact was observed for terpenes. In most case, these positive or negative effects were stage-dependent. Reducing UV radiation from the onset of veraison to grape harvest, compared to the other stages, caused a larger alteration in the grape volatile profile. Partial Least Square Discriminant Analysis (PLS-DA revealed that (E-2-hexenal, 4-methyl benzaldehyde, 2-butoxyethyl acetate, (E-2-heptenal, styrene, α-phenylethanol, and (Z-3-hexen-1-ol acetate were affected most significantly by the attenuated UV radiation.

  13. Radiation Background and Attenuation Model Validation and Development

    Energy Technology Data Exchange (ETDEWEB)

    Peplow, Douglas E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Santiago, Claudio P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-05

    This report describes the initial results of a study being conducted as part of the Urban Search Planning Tool project. The study is comparing the Urban Scene Simulator (USS), a one-dimensional (1D) radiation transport model developed at LLNL, with the three-dimensional (3D) radiation transport model from ORNL using the MCNP, SCALE/ORIGEN and SCALE/MAVRIC simulation codes. In this study, we have analyzed the differences between the two approaches at every step, from source term representation, to estimating flux and detector count rates at a fixed distance from a simple surface (slab), and at points throughout more complex 3D scenes.

  14. Wheat Germ Oil Attenuates Gamma Radiation-Induced Skeletal ...

    African Journals Online (AJOL)

    Muscular strength is important in sport as well as in daily activities. Exposure to ionizing radiation is thought to increase oxidative stress and damage muscle tissue. Wheat germ oil is a natural unrefined vegetable oil. It is an excellent source of vitamin E, octacosanol, linoleic and linolenic essential fatty acids, which may be ...

  15. Snowpack snow water equivalent measurement using the attenuation of cosmic gamma radiation

    International Nuclear Information System (INIS)

    Osterhuber, R.; Condreva, K.

    1998-01-01

    Incoming, background cosmic radiation constantly fluxes through the earth's atmosphere. The high energy gamma portion of this radiation penetrates many terrestrial objects, including the winter snowpack. The attenuation of this radiation is exponentially related to the mass of the medium through which it penetrates. For the past three winters, a device measuring cosmic gamma radiation--and its attenuation through snow--has been installed at the Central Sierra Snow Laboratory, near Donner Pass, California. This gamma sensor, measuring energy levels between 5 and 15 MeV, has proved to be an accurate, reliable, non-invasive, non-mechanical instrument with which to measure the total snow water equivalent of a snowpack. This paper analyzes three winters' worth of data and discusses the physics and practical application of the sensor for the collection of snow water equivalent data from a remote location

  16. Radiation modification of the properties of polypropylene ...

    Indian Academy of Sciences (India)

    Research and Technology, Atomic Energy Authority, P.O. Box 29, Nasr City, Egypt. 2Radiation ... tions such as radiation sterilized medical and pharmaceutical ... extensively studied to extend the shelf life of food prod- ucts. ..... ond step is in the range of 210–305 ... effect of radiation on the thermal properties of PP/15wt%.

  17. The measurement of attenuation coefficients at low photon energies using fluorescent x-radiation

    International Nuclear Information System (INIS)

    Peaple, L.H.J.; White, D.R.

    1978-03-01

    A rapid and accurate method has been developed to measure low energy attenuation coefficients for materials of importance in radiation dosimetry. It employs a collimated beam of fluorescent x-rays from which the required radiation is selected by means of a high resolution germanium detector and multi-channel analyser. The method is described in detail and its accuracy and application outlined with reference to the results from nine different materials. (author)

  18. Polymer composites with carbon nanotube for application of radiation attenuator in medical procedures

    Energy Technology Data Exchange (ETDEWEB)

    Fontainha, C.C.P.; Nunes, M.; Rosas, V.A., E-mail: crissia@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Anatomia e Imagem; Furtado, C.A.; Faria, L.O. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Medical radiology offers great benefit to patients, however, the radiation contributes for the workers and individuals exposure, significantly increasing dose to population. New attenuators materials have been widely investigated for radiation shielding to apply in medical procedures. Polymeric composites filled with attenuating metals and functionalized with carbon nanotubes (NTC) are being largely developed. In this work, composites were produced for radiation attenuation in radiodiagnostic imaging procedures. Two types of polymer matrices, polyvinylidene fluoride, PVDF, and its copolymer, poly(vinylidene-trifluorylene fluoride), P(VDF-TrFE), were filled bismuth oxide nanoparticles. Carbon nanotubes were added with different concentrations at the solution of attenuator metal under controlled magnetic stirring. The composites were characterized by differential heat flow scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and dispersive energy X-ray spectrometry (EDS) for thermal analysis. In this setup, one reference measure is directly exposed to the x-rays being diffracted by single crystal of Si (111). Another measure the attenuated beam is performed with the composite sample under detector. The samples present a good dispersion of the attenuator metal and the nanotube carbon. On the other hand, composites with PVDF matrix lost their plasticity, stiffening their structure, becoming brittle, even using the same methodology of synthesis. The P(VDF-Trfe) matrix showed better maleability than PVDF matrix. The cheaptube dispersion in the P(VDF-Trfe) matrix presented better than the 3100 carbon nanotubes. The attenuation for 8.047 keV monoenergetic photons was about 90% to 100 μm thickness for all composites. (author)

  19. Polymer composites with carbon nanotube for application of radiation attenuator in medical procedures

    International Nuclear Information System (INIS)

    Fontainha, C.C.P.; Nunes, M.; Rosas, V.A.

    2017-01-01

    Medical radiology offers great benefit to patients, however, the radiation contributes for the workers and individuals exposure, significantly increasing dose to population. New attenuators materials have been widely investigated for radiation shielding to apply in medical procedures. Polymeric composites filled with attenuating metals and functionalized with carbon nanotubes (NTC) are being largely developed. In this work, composites were produced for radiation attenuation in radiodiagnostic imaging procedures. Two types of polymer matrices, polyvinylidene fluoride, PVDF, and its copolymer, poly(vinylidene-trifluorylene fluoride), P(VDF-TrFE), were filled bismuth oxide nanoparticles. Carbon nanotubes were added with different concentrations at the solution of attenuator metal under controlled magnetic stirring. The composites were characterized by differential heat flow scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and dispersive energy X-ray spectrometry (EDS) for thermal analysis. In this setup, one reference measure is directly exposed to the x-rays being diffracted by single crystal of Si (111). Another measure the attenuated beam is performed with the composite sample under detector. The samples present a good dispersion of the attenuator metal and the nanotube carbon. On the other hand, composites with PVDF matrix lost their plasticity, stiffening their structure, becoming brittle, even using the same methodology of synthesis. The P(VDF-Trfe) matrix showed better maleability than PVDF matrix. The cheaptube dispersion in the P(VDF-Trfe) matrix presented better than the 3100 carbon nanotubes. The attenuation for 8.047 keV monoenergetic photons was about 90% to 100 μm thickness for all composites. (author)

  20. Curcumin Attenuates Gamma Radiation Induced Intestinal Damage in Rats

    International Nuclear Information System (INIS)

    EI-Tahawy, N.A.

    2009-01-01

    Small Intestine exhibits numerous morphological and functional alterations during radiation exposure. Oxidative stress, a factor implicated in the intestinal injury may contribute towards some of these alterations. The present work was designed to evaluate the efficacy of curcumin, a yellow pigment of turmeric on y-radiation-induced oxidative damage in the small intestine by measuring alterations in the level of thiobarbituric acid reactive substances (TSARS), serotonin metabolism, catecholamine levels, and monoamine oxidase (MAO) activity in parallel to changes in the architecture of intestinal tissues. In addition, monoamine level, MAO activity and TSARS level were determined in the serum. Curcumin was supplemented orally via gavages, to rats at a dose of (45 mg/ Kg body wt/ day) for 2 weeks pre-irradiation and the last supplementation was 30 min pre exposure to 6.5 Gy gamma radiations (applied as one shot dose). Animals were sacrificed on the 7th day after irradiation. The results demonstrated that, whole body exposure of rats to ionizing radiation has induced oxidative damage in small intestine obvious by significant increases of TSARS content, MAO activity and 5-hydroxy indole acetic acid (5-HIAA) and by significant decreases of serotonin (5-HT), dopamine (DA), norepinephrine (NE) and epinephrine (EPI) levels. In parallel histopathological studies of the small intestine of irradiated rats through light microscopic showed significant decrease in the number of villi, villus height, mixed sub mucosa layer with more fibres and fibroblasts. Intestinal damage was in parallel to significant alterations of serum MAO activity, TBARS, 5-HT, DA, NE and EPI levels. Administration of curcumin before irradiation has significantly improved the levels of monoamines in small intestine and serum of irradiated rats, which was associated with significant amelioration in MAO activity and TBARS contents

  1. Physical Properties of P.V.C. Attenuated Network Copolymers Produced by Ionizing Radiation; Proprietes physiques des copolymeres obtenus sous l'action de rayonnements ionisants et dont le reseau est attenue par l'effet du chlorure de polyvinyle; Fizicheskie svojstva polivinilkhloridnykh obednennykh tsepej sopolimerov, poluchennykh v rezul'tate vozdejstviya ioniziruyushchej radiatsii; Propiedades fisicas de los copolimeros de redes atenuadas por cloruro de polivinilo obtenidos por irradiacion

    Energy Technology Data Exchange (ETDEWEB)

    Pinner, S H [Tube Investments Research Laboratories, Hinxton Hall, Cambridge (United Kingdom)

    1960-07-15

    The cross-linking of polyvinyl chloride with ionizing radiation poses special problems. Due to rather unfavourable cross-linking and dislinking parameters for this polymer, the radiation doses necessary for high cross-link densities are uneconomicall y large and discolouration and dehydrohalogenatio n are simultaneously produced. These difficulties have been overcome by the incorporation into the P. V. C., prior to irradiation, of diallyl and triallyl esters. Heavily cross-linked products are thereby obtained with relatively low doses of ionizing radiation. Examination of the physical properties of the products suggests that these are not simply graft copolymers, which term normally implies the presence of long branch chains, but are polymer attenuated allyl networks. In these materials, the desirable properties of the parent polymer and of the allyl network are combined. The tensile strength, modulus and elongation of the attenuated network copolymers are presented and discussed as a function of temperature and of the concentration and functionality of the allyl ester. Reference is also made to the swelling and chemical resistance of the products. (author) [French] La reticulation du chlorure de polyvinyle sous l'action des rayonnements ionisants pose des problemes particuliers. Les parametres de reticulation et de degradation etant plutot defavorables pour ce polymere, les doses d'irradiation necessaires a l'obtention de fortes densites de pontage sont trop elevees pour donner des resultats economiquement interessants; elles provoquent simultanement la decoloration et la deshalogenhydratation. Il a ete possible de surmonter ces difficultes par introduction d'esters diallyliques et triallyliques dans le chlorure de polyvinyle, avant irradiation. Ce procede permet d'obtenir au moyen de doses d'irradiation relativement faibles des produits fortement reticules. L'etude des proprietes physiques de ces produits montre qu'il s'agit non pas de simples copolymeres greffes

  2. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    Science.gov (United States)

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  3. Attenuation of Ultraviolet Radiation by Dust in Interstellar Clouds

    Science.gov (United States)

    Escalante, V.

    1994-07-01

    Se han obtenido soluciones de la ecuación de transporte para la dispersión coherente, no conservativa y anisotrópica para estimar la precisión de métodos aproximados, usados en modelos de nubes en que la luz es atenuada principalmente por el polvo. En los cálculos se ha aplicado el metodo de armónicos esféricos para distintos parámetros del polvo. Se ha explorado la posibilidad de descubrir cambios en las caracterísiticas del polvo mediante observaciones de regiones fotodisociadas. Se muestra que para altos valores del albedo de dispersión simple y del parametro de asimetria de Ia función de fase que son adecuados para el polvo galáctico, no es posible determinar variaciones de más de un factor de 2 en el cociente de gas a polvo. Solutions to the transfer equation for coherent, non-conservative, anisotropic scattering have been obtained in order to estimate the accuracy of approximate methods used in models of clouds where light is attenuated mostly by dust. In the calculations the spherical harmonic method has been applied for different grain parameters. The possibility of discovering changes of dust characteristics through observations of photodissociation regions has been considered. It is shown that for the high values of the single scattering albedo and the asymmetry parameter of the phase function for redistribution that appear to be appropriate for galactic dust, it is not possible to determine variations of more than a factor of 2 in the gas to dust ratio.

  4. Attenuation of radiological consequences from CDA's by radiation. Progress report, October 1, 1976--September 31, 1977

    International Nuclear Information System (INIS)

    Chan, S.H.

    1977-01-01

    This technical progress report summarizes the research work accomplished during the first six months of the investigation on the significance of radiation heat transfer in attenuating the radiological consequences from LMFBR core disruptive accidents. Considerable progress has been made in modeling and computing the effects of radiative cooling on a rising HCDA bubble buoyant through a sodium pool. Our results reveal that most of the fuel vapor within the bubble can be effectively condensed out by radiating cooling. The finding has a profound implication as it could lead to a substantial reduction in subsequent aerosal releases

  5. Efficiency and attenuation correction factors determination in gamma spectrometric assay of bulk samples using self radiation

    International Nuclear Information System (INIS)

    Haddad, Kh.

    2009-02-01

    Gamma spectrometry forms the most important and capable tool for measuring radioactive materials. Determination of the efficiency and attenuation correction factors is the most tedious problem in the gamma spectrometric assay of bulk samples. A new experimental and easy method for these correction factors determination using self radiation was proposed in this work. An experimental study of the correlation between self attenuation correction factor and sample thickness and its practical application was also introduced. The work was performed on NORM and uranyl nitrate bulk sample. The results of proposed methods agreed with those of traditional ones.(author)

  6. Study on aerosol optical properties and radiative effect in cloudy weather in the Guangzhou region

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Tao, E-mail: tdeng@grmc.gov.cn [Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, China Meteorological Administration, Guangzhou 510080 (China); Deng, XueJiao; Li, Fei [Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, China Meteorological Administration, Guangzhou 510080 (China); Wang, ShiQiang [Zhuhai Meteorological Administration, Zhuhai 519000 (China); Wang, Gang [Haizhu Meteorological Administration, Guangzhou, 510000 (China)

    2016-10-15

    Currently, Guangzhou region was facing the problem of severe air pollution. Large amount of aerosols in the polluted air dramatically attenuated solar radiation. This study investigated the vertical optical properties of aerosols and inverted the height of boundary layer in the Guangzhou region using the lidar. Simultaneously, evaluated the impact of different types of clouds on aerosol radiation effects using the SBDART. The results showed that the height of the boundary layer and the surface visibility changed consistently, the average height of the boundary layer on the hazy days was only 61% of that on clear days. At the height of 2 km or lower, the aerosol extinction coefficient profile distribution decreased linearly along with height on clear days, but the haze days saw an exponential decrease. When there was haze, the changing of heating rate of atmosphere caused by the aerosol decreased from 3.72 K/d to 0.9 K/d below the height of 2 km, and the attenuation of net radiation flux at the ground surface was 97.7 W/m{sup 2}, and the attenuation amplitude was 11.4%; when there were high clouds, the attenuation was 125.2 W/m{sup 2} and the attenuation amplitude was 14.6%; where there were medium cloud, the attenuation was 286.4 W/m{sup 2} and the attenuation amplitude was 33.4%. Aerosol affected mainly shortwave radiation, and affected long wave radiation very slightly. - Highlights: • Large amount of aerosols dramatically attenuated solar radiation in Guangzhou region. • Investigated the aerosol extinction coefficient profile distribution and inverted the height of boundary layer using the lidar • Evaluated the impact of different types of clouds on aerosol radiation effects.

  7. Mass attenuation coefficients of X-rays in different barite concrete used in radiation protection as shielding against ionizing radiation

    International Nuclear Information System (INIS)

    Almeida, A. T. Jr.; Nogueira, M.S.; Santos, M.A.P.; Campos, L.L.; Araújo, F. G. S.

    2015-01-01

    The attenuation coefficient depends on the incident photon energy and the nature of the materials. In order to minimize exposure to individuals. Barite concrete has been largely used as a shielding material in installations housing gamma radiation sources as well as X-ray generating equipment. This study was conducted to evaluate the efficacy of different mixtures of barite concrete for shielding in diagnostic X-ray rooms. The mass attenuation coefficient (μ/ρ). The mass attenuation coefficients have been measured by employing the CdTe detector model XR-100T. The distance between the source and the exposed surface of all samples was measured by SSD light indicator of machine which was 350 cm. The slope of the linear plot of the intensity transmitted versus specimen thickness would yield the attenuation coefficient. The mass attenuation coefficients (μ/ρ) were compared with the tabulations based upon the results of the XCOM program. The rectangular barite concrete blocks in different thicknesses from were used for the radiation attenuation test. The experimental values were compared with theoretical values WinXcom. The plots of the logarithm of transmitted intensity versus specimen thickness were linear for all the samples and the µ/ρ was obtained from the plots by linear regression over the 25%-2% transmission range, under good geometrical condition. There is a good agreement between theoretical and experimental values, within the 9%. In fact over the entire transmission range of 25-2% the experimental and theoretical values agree well for both the energies. (authors)

  8. Effect of Different Concrete Grade on Radiation Linear Attenuation Coefficient (μ)

    International Nuclear Information System (INIS)

    Noor Azreen Masenwat; Mohammad Shahrizan Samsu; Mohamad Pauzi Ismail; Suhairy Sani; Ismail Mustapha; Nasharuddin Isa; Mohamad Haniza Mahmud

    2014-01-01

    In calculating the quantity of absorption of radiation and its relationship with the thickness of a material, linear attenuation coefficient (μ) of the material is one of the parameters to be taken into account. For normal concrete, the (μ) varies depending on the type of radiation used, 0.105 cm -1 for Co-60 and 0.123 cm -1 for Cs-137. Value (μ) is used in the calculation of the radiation absorption for concrete material does not take into account factors such concrete grades. In this research, concrete with different grades (Grade 15, Grade 20, Grade 25, Grade 30, Grade 35, Grade 40) are designed and manufactured with reference to the mixing method described in British Standard. Then, the linear attenuation (μ) for each grade are measured using the radiation from the source Co-60 and Cs-137 sources. This paper describes and discusses the impact of differences in concrete grade of linear attenuation (μ) for Co-60 source/ source Cs-137 and its relationship with the compressive strength. (author)

  9. Radiating properties of solar plasmas

    Science.gov (United States)

    Bruner, M. E.; Mcwhirter, R. W. P.

    1988-01-01

    Using a series of 14 previously obtained empirical emission measure distributions and a number of spectral lines observed by the SMM and P78-1 instruments, the total power radiated by a hot plasma is compared to that radiated by individual spectrum lines. Results are presented for different choices of ionization balance and power loss functions. The results indicate that for some lines such as the C IV resonance doublet at 1548 A and 1550 A, the ratio of the line intensity to the total radiated power varied only over a factor of 2, suggesting that well-calibrated measurements of a single line intensity may provide a fairly good estimation of the total radiated power output from the solar plasma.

  10. Radiating properties of solar plasmas

    International Nuclear Information System (INIS)

    Bruner, M.E.; Mcwhirter, R.W.P.

    1988-01-01

    Using a series of 14 previously obtained empirical emission measure distributions and a number of spectral lines observed by the SMM and P78-1 instruments, the total power radiated by a hot plasma is compared to that radiated by individual spectrum lines. Results are presented for different choices of ionization balance and power loss functions. The results indicate that for some lines such as the C IV resonance doublet at 1548 A and 1550 A, the ratio of the line intensity to the total radiated power varied only over a factor of 2, suggesting that well-calibrated measurements of a single line intensity may provide a fairly good estimation of the total radiated power output from the solar plasma. 21 references

  11. Study of material properties using channeling radiation

    International Nuclear Information System (INIS)

    Pantell, R.H.; Kephart, J.O.; Klein, R.K.; Park, H.; Berman, B.L.; Datz, S.

    1986-01-01

    A possible application for channeling radiation is for investigating the properties of crystals in which the channeling occurs. In this paper we present some general considerations concerning channeling radiation as a measurement technique, and then we proceed to describe several specific examples

  12. Schistosoma mansoni: migration potential of normal and radiation attenuated parasites in naive guinea pigs

    International Nuclear Information System (INIS)

    Kamiya, H.; McLaren, D.J.

    1987-01-01

    Compressed tissue autoradiography using [75Se]selenomethionine labelled parasites has been used to investigate the migration potential of normal and radiation attenuated cercariae of Schistosoma mansoni in naive guinea pigs. By Day 14 after infection. 44% of normal parasites were detected as reduced silver foci in the liver; this value corresponded well with the number of liver parasites recovered by retrograde perfusion of the hepatic portal system on Day 42 (42% of the challenge). In contrast, cercariae subjected to 50 krad of gamma irradiation failed to migrate out of the skin. The migration capacity of 20 krad irradiated parasites was less severely affected in that about half of the challenge parasites reached the lungs, but virtually none moved to the liver. These data are discussed in relation to the kinetics of immunity induced in guinea pigs by infection or vaccination with normal or radiation attenuated parasites

  13. Attenuation of a radiation-induced conditioned taste aversion after the development of ethanol tolerance

    International Nuclear Information System (INIS)

    Hunt, W.A.; Rabin, B.M.

    1988-01-01

    An attempt to reduce a radiation-induced conditioned taste aversion (CTA) was undertaken by rendering animals tolerant to ethanol. Ethanol tolerance, developed over 5 days, was sufficient to block a radiation-induced taste aversion, as well as an ethanol-induced CTA. Several intermittent doses of ethanol, which did not induce tolerance but removed the novelty of the conditioning stimulus, blocked an ethanol-induced CTA but not the radiation-induced CTA. A CTA induced by doses of radiation up to 500 rads was attenuated. These data suggest that radioprotection developing in association with ethanol tolerance is a result of a physiological response to the chronic presence of ethanol not to the ethanol itself

  14. Result of radiation therapy of sino-nasal cancers using partial attenuation filter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hee; Kim, Ok Bae; Choi, Tae Jin [Keimyung University College of Medicine, Daegu (Korea, Republic of)

    2007-06-15

    This study was to evaluate the survival and pattern of failure after radiation therapy of sino-nasal cancer using partial attenuation filer and wedged beams and to help radiotherapy planning of sino-nasal cancer. Between February 1992 and March 2003, 17 patients with sino-nasal cancers underwent radiation therapy using partial attenuation filter at Dongsan Medical Center, Keimyung university. There were 9 male and 8 female patients. Patients' age ranged from 40 to 75 years (median 59 years). There were 10 patients of maxillary sinus cancer, 7 patients of nasal cancer. The histologic type was squamous cell carcinoma in 11, adenoid cystic carcinoma in 4 and olfactory neuroblastoma in 2. The distribution of clinical stage by the AJCC system was 3 for stage II, 7 for III and 6 for IV. The five patients were treated with radiation alone and 12 patients were treated with surgery and postoperative radiation therapy. The range of total radiation dose delivered to the primary tumor was from 44 to 76 Gy (median 60 Gy). The follow-up period ranged from 3 to 173 months with median of 78 months. The overall 2 year survival rate and disease free survival rate was 76.4%. The 5 year and 10 year survival rate were 76.4% and 45.6% and the 5 year and 10 year disease free survival rate was 70.6%. The 5 year disease free survival rate by treatment modality was 91.6% for postoperative radiation group and 20% for radiation alone group, statistical significance was found by treatment modality ({rho} = 0.006). There were no differences in survival by pathology and stage. There were local failure in 5 patients (29%) but no distant failure and no severe complication required surgical intervention. Radiation therapy of sino-nasal cancer using partial attenuation filter was safe and effective. Combined modality with conservative surgery and radiation therapy was more advisable to achieve loco-regional control in sino-nasal cancer. Also we considered high precision radiation therapy with

  15. Properties of radiation cured coatings

    International Nuclear Information System (INIS)

    Larson, E.G.; Spencer, D.S.; Boettcher, T.E.; Melbauer, M.A.; Skarjune, R.P.

    1987-01-01

    Coatings were prepared from acrylate or methacrylate functionalized resins to study the effect of end group functionality on the physical properties of u.v. and electron beam cured coatings. Cure response was measured by solid state NMR and gel extraction, as expected, methacrylate resins cured much slower. Thermal Gravimetric Analysis (TGA) revealed acrylate coatings have greater thermal stability. Properties such as tensile strength and hardness showed little effect of end group functionality or curing method. The O 2 and H 2 O permeabilities of the coating were correlated with the processing conditions. (author)

  16. Property of the diamond radiation detector

    International Nuclear Information System (INIS)

    Sochor, V.; Cechak, T.; Sopko, B.

    2008-01-01

    The outstanding properties of diamond, such as radiation hardness, high carrier mobility, high band gap and breakdown field, distinguish it as a good candidate for radiation detectors. In the dosimetry for radiotherapy is permanently searched the detector with high sensitivity, high stability, linear dependence of the response, small size, tissue equivalent material and fast response, for the measuring of the temporal and space variations of the dose. The diamond detector properties as high sensitivity, good spatial and temporal resolution, low Leakage currents, low capacitance, possibility to fabricate robust and compact device and high temperature operation make it possible to use these detectors in many fields from high energy physics till radiation monitoring, from Medical therapy dosimetry till synchrotron radiation measurement. (authors)

  17. Effect of the [TiO{sub 2}] on the radiation attenuation properties on the human tissue simulator obtained from radiovulcanized natural rubber latex; Efeito da [TiO{sub 2}] nas propriedades de atenuacao da radiacao no simulador de tecido humano obtido do latex de borracha natural radiovulcanizado

    Energy Technology Data Exchange (ETDEWEB)

    Tomimasu, Sumie; Guedes, Selma Matheus Loureiro [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes]. E-mail: smguedes@net.ipen.br

    2002-07-01

    In this paper was studied the concentration effect of TiO{sub 2} used as filler in the radiation attenuation properties of human tissue simulator obtained from radio vulcanized natural rubber. The studied parameters were the following: the mass stopping power (S{sub mas}), the depth at maximum dose (Z{sub max}), the depth at 50% of maximum dose (R{sub 50}) the radiotherapeutic range (RR{sub 80}) and the electrons range (R). The natural rubber latex was formulated with [n-butyl acrylate ] = e phr and [KOH] = 0,2 phr and radio vulcanized by gamma rays (10 kGy) from {sup 60} Co source. The filler TiO{sub 2} was added (0-16 phr). The natural rubber slabs were obtained by casting method and theirs absorbed dose behavior was studied for each filler concentration using electrons beam (6 MeV) from an accelerator. The results showed that the addition of each phr of filler promoted the decrease of 0.019 cm for Z{sub max}, 0.021 cm for RR{sub 80}, 0.033 cm for R and 0.026 cm for R{sub 50} up to [Ti O{sub 2}] 15 phr. The S{sub mas} increased from 1.72 MeVcm2g-1 to 2.00 MeVcm2g-1 in the filler concentration range of 0-16 phr. The filler must be used in the 12-15 phr range. (author)

  18. Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo

    International Nuclear Information System (INIS)

    Ostrau, Christian; Huelsenbeck, Johannes; Herzog, Melanie; Schad, Arno; Torzewski, Michael; Lackner, Karl J.; Fritz, Gerhard

    2009-01-01

    Background and purpose: HMG-CoA-reductase inhibitors (statins) are widely used lipid-lowering drugs. Moreover, they have pleiotropic effects on cellular stress responses, proliferation and apoptosis in vitro. Here, we investigated whether lovastatin attenuates acute and subchronic ionizing radiation-induced normal tissue toxicity in vivo. Materials and methods: Four hours to 24 h after total body irradiation (6 Gy) of Balb/c mice, acute pro-inflammatory and pro-fibrotic responses were analyzed. To comprise subchronic radiation toxicity, mice were irradiated twice with 2.5 Gy and analyses were performed 3 weeks after the first radiation treatment. Molecular markers of inflammation and fibrosis as well as organ toxicities were measured. Results: Lovastatin attenuated IR-induced activation of NF-κB, mRNA expression of cell adhesion molecules and mRNA expression of pro-inflammatory and pro-fibrotic marker genes (i.e. TNFα, IL-6, TGFβ, CTGF, and type I and type III collagen) in a tissue- and time-dependent manner. γH2AX phosphorylation stimulated by IR was not affected by lovastatin, indicating that the statin has no major impact on the induction of DNA damage in vivo. Radiation-induced thrombopenia was significantly alleviated by lovastatin. Conclusions: Lovastatin inhibits both acute and subchronic IR-induced pro-inflammatory and pro-fibrotic responses and cell death in normal tissue in vivo. Therefore, lovastatin might be useful for selectively attenuating acute and subchronic normal tissue damage caused by radiotherapy.

  19. Protective properties of radiation-modified polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Surnina, N.N.; Saltykova, L.A.; Strochkova, E.M.; Tatarenko, O.F.

    1986-09-01

    A study was made of the mass transfer of corrosive liquids and gases through polyethylene films modified by radiation surface grafting. Studies were performed on an unstabilized type A film with graft adhesion-active layer based on polymethacrylic acid. The protective properties of the polymer coating in corrosive fluids with low vapor tension were estimated by impedance measurements. Steel specimens with a protective coating of radiation-modified polyethylene film were exposed to 10% sulfuric acid at room temperature. The results indicated that the acid did not penetrate through to the metal surface. The films retain their protective properties and protect the metal from the acid. Radiation modification significantly improves the adhesion of polyethylene to metals without reducing physical and mechanical properties of the polymers. 50 references, 1 figure.

  20. Partial protection of baboons against Schistosoma mansoni using radiation-attenuated cryopreserved schistosomula

    International Nuclear Information System (INIS)

    James, E.R.; Dobinson, A.R.; Otieno, M.; Monorei, J.; Else, J.G.

    1986-01-01

    Three groups of five baboons were vaccinated in Kenya using three doses of 10,000 viable cryopreserved schistosomula attenuated with either 10, 20 or 60 krad 60 co-irradiation. The results from perfusion indicated reductions in worm burdens in the 10, 20 and 60 krad vaccinated groups of 18%, 23% and 20% respectively, none of which was statistically significant. No stunting of adult worms could be demonstrated in any of the groups. Mean tissue egg burdens were higher in all vaccinated groups and consequently egg production per worm pair was also higher than in the challenge controls. The logistics of preparing and delivering a cryopreserved radiation-attenuated vaccine were amply demonstrated; however, in this study the levels of protection achieved were not statistically significant; possible reasons for this are discussed. (author)

  1. Coniferyl aldehyde attenuates radiation enteropathy by inhibiting cell death and promoting endothelial cell function.

    Science.gov (United States)

    Jeong, Ye-Ji; Jung, Myung Gu; Son, Yeonghoon; Jang, Jun-Ho; Lee, Yoon-Jin; Kim, Sung-Ho; Ko, Young-Gyo; Lee, Yun-Sil; Lee, Hae-June

    2015-01-01

    Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA), an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR) to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.

  2. Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis

    International Nuclear Information System (INIS)

    Flechsig, Paul; Hartenstein, Bettina; Teurich, Sybille; Dadrich, Monika; Hauser, Kai; Abdollahi, Amir; Groene, Hermann-Josef; Angel, Peter; Huber, Peter E.

    2010-01-01

    Purpose: Pulmonary fibrosis is a disorder of the lungs with limited treatment options. Matrix metalloproteinases (MMPs) constitute a family of proteases that degrade extracellular matrix with roles in fibrosis. Here we studied the role of MMP13 in a radiation-induced lung fibrosis model using a MMP13 knockout mouse. Methods and Materials: We investigated the role of MMP13 in lung fibrosis by investigating the effects of MMP13 deficiency in C57Bl/6 mice after 20-Gy thoracic irradiation (6-MV Linac). The morphologic results in histology were correlated with qualitative and quantitative results of volume computed tomography (VCT), magnetic resonance imaging (MRI), and clinical outcome. Results: We found that MMP13 deficient mice developed less pulmonary fibrosis than their wildtype counterparts, showed attenuated acute pulmonary inflammation (days after irradiation), and a reduction of inflammation during the later fibrogenic phase (5-6 months after irradiation). The reduced fibrosis in MMP13 deficient mice was evident in histology with reduced thickening of alveolar septi and reduced remodeling of the lung architecture in good correlation with reduced features of lung fibrosis in qualitative and quantitative VCT and MRI studies. The partial resistance of MMP13-deficient mice to fibrosis was associated with a tendency towards a prolonged mouse survival. Conclusions: Our data indicate that MMP13 has a role in the development of radiation-induced pulmonary fibrosis. Further, our findings suggest that MMP13 constitutes a potential drug target to attenuate radiation-induced lung fibrosis.

  3. Thermal radiation properties of PTFE plasma

    Science.gov (United States)

    Liu, Xiangyang; Wang, Siyu; Zhou, Yang; Wu, Zhiwen; Xie, Kan; Wang, Ningfei

    2017-06-01

    To illuminate the thermal transfer mechanism of devices adopting polytetrafluoroethylene (PTFE) as ablation materials, the thermal radiation properties of PTFE plasma are calculated and discussed based on local thermodynamic equilibrium (LTE) and optical thin assumptions. It is clarified that line radiation is the dominant mechanism of PTFE plasma. The emission coefficient shows an opposite trend for both wavelength regions divided by 550 nm at a temperature above 15 000 K. The emission coefficient increases with increasing temperature and pressure. Furthermore, it has a good log linear relation with pressure. Equivalent emissivity varies complexly with temperature, and has a critical point between 20 000 K to 25 000 K. The equivalent cross points of the average ionic valence and radiation property are about 10 000 K and 15 000 K for fully single ionization.

  4. Antioxidants attenuate atherosclerotic plaque development in a balloon-denuded and -radiated hypercholesterolemic rabbit

    International Nuclear Information System (INIS)

    Leborgne, Laurent; Fournadjiev, Jana; Pakala, Rajbabu; Dilcher, Christian; Cheneau, Edouard; Wolfram, Roswitha; Hellinga, David; Seaborn, Rufus; O'Tio, Fermin; Waksman, Ron

    2003-01-01

    Background: Oxidation of lipoproteins is considered to be a key contributor to atherogenesis. Antioxidants are potential antiatherogenic agents because they can inhibit lipoprotein oxidation. Radiation has been shown to increase oxidative stress leading to increased atherogenesis. This study is designed to test the potential of antioxidants to inhibit atherosclerotic plaque progression in balloon-denuded and -radiated rabbits. Methods and Results: Two groups of New Zealand white rabbits (n=36) were fed with 1% cholesterol diet (control diet) or with 1% cholesterol diet containing a mixture of various antioxidants for 1 week. Iliac arteries in all the animals were balloon denuded and continued to fed with 0.15% cholesterol diet or 0.15% cholesterol diet containing antioxidants (antioxidant diet). Four weeks after balloon denudation one iliac artery in 12 animals from each group was radiated and all the animals were continued to be fed with the same diet. Four weeks after radiation animals were sacrificed and morphometric analysis of iliac arteries (n=12) in nonradiated and radiated animals were performed. Plaque area (PA) in the rabbits that were fed with cholesterol diet is 0.2±0.12 mm 2 , and it is increased by 2.75-fold (P<.05) in the radiated arteries of animals fed with cholesterol diet. Plaque area in the animals fed with antioxidant diet is 50% less then the one in the animals fed with cholesterol diet. Similarly, plaque area in radiated arteries of the animals fed with antioxidant diet is 50% less then the animals fed with cholesterol diet. Conclusion: Antioxidants significantly attenuate atherosclerotic plaque progression in balloon-injured and -radiated hypercholesterolemic rabbits

  5. Radiation effect on polyethylene tube operational properties

    International Nuclear Information System (INIS)

    Kagan, D.F.; Kantor, L.A.; Sokolov, I.A.; Pogrebetskij, G.E.; Perlova, N.A.; Chumakov, V.V.

    1975-01-01

    The operational properties (stability on prolonged usage and creeping) were determined for pressure pipes made of high-density and low-density polyethylene subjected to γ-radiation. The dependence of the period up to the breaking point on the radiation dosage was extreme in character, with a maximum being near 25 Mrad. With an increase in the irradiation dosage the character of the breaking changes from plastic (at 0-15 Mrad) to brittle (at higher dosages). The plots of creepage, indepent from the amount of radiation, can be described by logarithmic equation epsilon=epsilonsub(0)+K lgt (where, epsilon-deformation of creepage, %; epsilonsub(0)- and K - creepage constants). Therefore creepage can be considered as a criterion determining the carrying capacity of the γ-irradiated polyethylene. It was established that only radiation-grafted high-density polyethylene is suitable for hot water supply pipes

  6. Attenuation of radiation- and drug-induced conditioned taste aversions following area postrema lesions in the rat

    International Nuclear Information System (INIS)

    Rabin, B.M.; Hunt, W.A.; Lee, J.

    1983-01-01

    The effects of lesions of the area postrema on the acquisition of radiation- and drug-induced (histamine and lithium chloride) conditioned taste aversions were investigated. The results indicated that area postrema lesions caused a significant attenuation of the aversion produced by pairing a novel sucrose solution with radiation (100 rad) or drug injection. Further, the area postrema lesions produced a similar level of attenuation of the taste aversion in all three treatment conditions. The results are discussed in terms of the implications of this finding for defining the mechanisms by which exposure to ionizing radiation can lead to the acquisition of a conditioned taste aversion

  7. Characterization of barite and crystal glass as attenuators in X-ray and gamma radiation shieldings

    International Nuclear Information System (INIS)

    Almeida Junior, Airton Tavares de

    2005-03-01

    Aiming to determine the barium sulphate (BaSO 4 ) ore and crystal glass attenuation features, both utilized as shieldings against ionizing X and gamma radiations in radiographic installations, a study of attenuation using barite plaster and barite concrete was carried out, which are used, respectively, on wall coverings and in block buildings. The crystal glass is utilized in screens and in windows. To do so, ten plates of barite plaster and three of barite concrete with 900 cm 2 and with an average thickness ranging from 1 to 5 cm, and three plates of crystal glass with 323 cm 2 and with thicknesses of 1, 2 and 4 cm were analyzed. The samples were irradiated with X-rays with potentials of 60, 80, 110 and 150 kilovolts, and also with 60 Co gamma rays. Curves of attenuation were obtained for barite plaster and barite concrete (mGy/mA.min) and (mGy/h), both at 1 meter, as a function of thickness and curve of transmission through barite plaster and barite concrete as a function of the thickness. The equivalent thicknesses of half and tenth value layers for barite plaster, barite concrete and crystal glass for all X-Ray energies were also determined. (author)

  8. Radiation protection clothing in X-ray diagnostics. Comparison of attenuation equivalents in narrow beam and inverse broad-beam geometry

    International Nuclear Information System (INIS)

    Pichler, Thomas; Schoepf, T.; Ennemoser, O.

    2011-01-01

    Purpose: Standard DIN EN 61 331-1 for attenuation measurements in the narrow and broad beam as well as DIN 6857-1 for the determination of shielding properties in the inverse broad-beam geometry are available for testing the attenuation of protection clothing. The attenuation measurements in the narrow beam don't consider scattered radiation and fluorescence due to the arrangement. This leads to the fact that the protective effect of lead-free materials will be misestimated when compared to lead. Therefore, the differences in attenuation equivalents, determined by both test methods for topical radiation protection aprons, were examined. Materials and Methods: The attenuations in inverse broad-beam geometry according to DIN 6857-1 and in the narrow beam according to DIN EN 61 331-1 were measured using commercially available aprons. They were made of lead, lead-reduced and lead-free materials. For determination of the attenuation equivalents, certificated lead-foils with high purity and a precise thickness of 0.1 to 1.25 mm were used. Results: The measurements in the narrow beam according to DIN EN 61 331-1 showed that nearly all aprons reach the required lead equivalent at mid-range tube voltages of 100 kV. At higher and lower tube voltages, the requirements of DIN EN 61 331-3 were largely not met. In contrast, the testing of the same aprons in inverse broad-beam geometry according to DIN 6857-1 showed that only a few aprons meet the requirements for being classified in the nominal protection class. Conclusion: The measurements suggest that testing method DIN 6857-1 has yet to prevail and that manufacturers are just beginning to develop the appropriate protective materials. (orig.)

  9. Measurement of radiation shielding properties of polymer composites by using HPGe detector

    International Nuclear Information System (INIS)

    Gupta, Anil; Pillay, H.C.M.; Kale, P.K.; Datta, D.; Suman, S.K.; Gover, V.

    2014-01-01

    Lead is the most common radiation shield and its composite with polymers can be used as flexible radiation shields for different applications. However, lead is very hazardous and has been found to be associated with neurological disorders, kidney failure and hematotoxicity. Lead free radiation shield material has been developed by synthesizing radiation cross linked PDMS/Bi 2 O 3 polymer composites. In order to have a lead free radiation shield the relevant shielding properties such as linear attenuation, half value thickness (HVT) and tenth value thickness (TVT) have been measured by using HPGe detector. The present study describes the methodology of measurement of the shielding properties of the lead free shield material. In the measurement gamma energies such as 59.537 keV ( 241 Am), 122.061 keV and 136.474 keV ( 57 Co) are taken into consideration

  10. Preparation of polymers suitable for radiation shielding and studying its properties (polyester composites with heavy metals salts)

    International Nuclear Information System (INIS)

    Kharita, M. H.; Al-Ajji, Z.; Yousef, S.

    2010-12-01

    Four composites were prepared in this work, based on polyester and heavy metals oxides and salts. The attenuation properties, as well as mechanical properties were studied, and the chemical stability was evaluated. It has been shown, that these composites can be used in radiation shielding for X-rays successfully, and the exact composition of these composites can be optimized according to the radiation energy to prepare the lightest possible shield. (author)

  11. Infrared radiation properties of anodized aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Kohara, S. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology; Niimi, Y. [Science Univ. of Tokyo, Noda, Chiba (Japan). Dept. of Materials Science and Technology

    1996-12-31

    The infrared radiation heating is an efficient and energy saving heating method. Ceramics have been used as an infrared radiant material, because the emissivity of metals is lower than that of ceramics. However, anodized aluminum could be used as the infrared radiant material since an aluminum oxide film is formed on the surface. In the present study, the infrared radiation properties of anodized aluminum have been investigated by determining the spectral emissivity curve. The spectral emissivity curve of anodized aluminum changed with the anodizing time. The spectral emissivity curve shifted to the higher level after anodizing for 10 min, but little changed afterwards. The infrared radiant material with high level spectral emissivity curve can be achieved by making an oxide film thicker than about 15 {mu}m on the surface of aluminum. Thus, anodized aluminum is applicable for the infrared radiation heating. (orig.)

  12. Iron influence in self-attenuation of gamma radiation in sand samples

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Reginaldo R.; Cavalcante, Fernanda; Pecequilo, Brigitte R.S, E-mail: raquino@ipen.br, E-mail: fcavalcante@ipen.br, E-mail: brigitte@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Self-attenuation of gamma rays are usually observed in sand samples, due to the presence of iron particles of natural or anthropogenic causes, which may lead to misleading activities concentrations results. As iron atoms are often present in sand samples, the self-attenuation contribution from this mineral requires special attention when assessing sand samples radioactivity. This contributions in verified in the in the present study, using several silica (sand-like) samples doped with different concentrations of iron. The samples were arranged with pure SiO{sub 4} (98,9%) mineral from the region of Setiba, (Espirito Santo state, Brazil) and Itabirito mineral, from Itabira (Minas Gerais state, Brazil), using standard 100 mL high density polyethylene (HDPE) flat-botton cylindrical flasks, each sealed using a 52.5 mm plan screw cap and bubble spigot. Three samples were arranged in different concentrations - Fe 25% and SiO{sub 4} 75%; Fe 50% and SiO{sub 4} 50%; Fe 75% and SiO{sub 4} 25% and two other samples were assembled in the same geometry, using 100% SiO{sub 4} and 100% Fe. These samples were exposed to a large spectrum of gamma radiation (121 keV to 1408 keV) emitted by sources of {sup 60}Co, {sup 137}Cs and {sup 152}Eu. These gamma radiations were collimated and directed over the doped samples in a high resolution gamma ray spectrometer, whose spectra were analyzed with the Winner Gamma software. The matrix effect intensity is inferred by the percentage differences observed in varying the iron concentration that proved to be more intense for lower energy radiation. (author)

  13. Coherence properties of the radiation from FLASH

    International Nuclear Information System (INIS)

    Schneidmiller, E.A.; Yurkov, M.V.

    2015-02-01

    FLASH is the first free electron laser user facility operating in the vacuum ultraviolet and soft x-ray wavelength range. Many user experiments require knowledge of the spatial and temporal coherence properties of the radiation. In this paper we present an analysis of the coherence properties of the radiation for the fundamental and for the higher odd frequency harmonics. We show that temporal and spatial coherence reach maximum close to the FEL saturation but may degrade significantly in the post-saturation regime. We also find that the pointing stability of short FEL pulses is limited due to the fact that non-azimuthal FEL eigenmodes are not sufficiently suppressed. We discuss possible ways for improving the degree of transverse coherence and the pointing stability.

  14. Assessment of dynamic material properties of intact rocks using seismic wave attenuation: an experimental study.

    Science.gov (United States)

    Wanniarachchi, W A M; Ranjith, P G; Perera, M S A; Rathnaweera, T D; Lyu, Q; Mahanta, B

    2017-10-01

    The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1-1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient ( α ) and quality factor ( Q ) values for the five selected rock types for both primary ( P ) and secondary ( S ) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus ( E ), bulk modulus ( K ), shear modulus ( µ ) and Poisson's ratio ( ν ). The P and S wave velocities for the selected rock types varied in the ranges of 2.43-4.61 km s -1 and 1.43-2.41 km h -1 , respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests.

  15. Impact attenuation properties of jazz shoes alter lower limb joint stiffness during jump landings.

    Science.gov (United States)

    Fong Yan, Alycia; Smith, Richard M; Hiller, Claire E; Sinclair, Peter J

    2017-05-01

    To quantify the impact attenuation properties of the jazz shoes, and to investigate the in-vivo effect of four jazz shoe designs on lower limb joint stiffness during a dance-specific jump. Repeated measures. A custom-built mechanical shoe tester similar to that used by athletic shoe companies was used to vertically impact the forefoot and heel region of four different jazz shoe designs. Additionally, dancers performed eight sautés in second position in bare feet and the shoe conditions. Force platforms and 3D-motion capture were used to analyse the joint stiffness of the midfoot, ankle, knee and hip during the jump landings. Mechanical testing of the jazz shoes revealed significant differences in impact attenuation characteristics among each of the jazz shoe designs. Gross knee and midfoot joint stiffness were significantly affected by the jazz shoe designs in the dancers' jump landings. The tested jazz shoe designs altered the impact attenuating capacity of jump landing technique in dancers. The cushioned jazz shoes are recommended particularly for injured dancers to reduce impact on the lower limb. Jazz shoe design should consider the impact attenuation properties of the forefoot region, due to the toe-strike landing technique in dance movement. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  16. APD Properties and Recovery from Radiation Damage

    CERN Document Server

    Baccaro, Stefania; Caruso, S; Cavallari, Francesca; Dafinei, Ioan; Diemoz, Marcella; Emeliantchik, Igor; Festinesi, Armando; Longo, Egidio; Montecchi, Marco; Organtini, Giovanni; Rosi, G

    1997-01-01

    Avalanche photodiodes will be used to detect scintillation light from PWO crystals in the CMS electromagnetic calorimeter. Properties of Hamamatsu APD are reported special attention has been devoted to the study of radiation hardness and room temperature annealing. We found a fast recovery with a time constant of 1.3 days a medium fast recovery with a lifetime of the order of 10 days and indication of a third component with very long time constant of the order of 300 days.

  17. Omega-3 Polyunsaturated Fatty Acids Attenuate Radiation-induced Oxidative Stress and Organ Dysfunctions in Rats

    International Nuclear Information System (INIS)

    Abdel Aziz, N.; Yacoub, S.F.

    2013-01-01

    The Aim of the present study was to determine the possible protective effect of omega-3 polyunsaturated fatty acids (omega-3 PUFA) against radiation-induced oxidative stress associated with organ dysfunctions. Omega-3 PUFA was administered by oral gavages to male albino rats at a dose of 0.4 g/ kg body wt daily for 4 weeks before whole body γ-irradiation with 4Gy. Significant increase of serum lipid peroxidation end product as malondialdehyde (MDA) along with the reduction in blood glutathione (GSH) content, superoxide dismutase (SOD) and glutathione peroxidase (GPX) enzyme activities were recorded on 3rd and 8th days post-irradiation. Oxidative stress was associated with a significant increase in lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) enzyme activities, markers of heart damage, significant increases in uric acid, urea and creatinine levels, markers of kidney damage, significant increases of alkaline phosphatase (ALP) and transaminases (ALT and AST) activities, markers of liver damage. Moreover significant increases in total cholesterol and triglycerides levels were recorded. Omega-3 PUFA administration pre-irradiation significantly attenuated the radiation-induced oxidative stress and organ dysfunctions tested in this study. It could be concluded that oral supplementation of omega-3 PUFA before irradiation may afford protection against radiation-induced oxidative stress and might preserve the integrity of tissue functions of the organs under investigations.

  18. Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense

    International Nuclear Information System (INIS)

    Winter, Thorsten R.; Rostas, Michael

    2008-01-01

    We investigated the effects of ambient ultraviolet (UV) radiation on (i) the performance and chemistry of soybean plants, (ii) the performance of Spodoptera frugiperda and (iii) the foraging behavior of the herbivore's natural enemy Cotesia marginiventris which exploits herbivore-induced plant volatiles (VOC) for host location. The accumulation of protective phenolics was faster in plants receiving ambient UV than in controls exposed to sun light lacking UV. Accordingly, isorhamnetin- and quercetin-based flavonoids were increased in UV exposed plants. No UV effects were found on the performance and feeding behavior of S. frugiperda. Herbivore-damaged plants emitted the same VOC when grown under ambient or attenuated UV for 5, 10 or 30 days. Consequently, C. marginiventris was attracted but did not discriminate between exposed and unexposed soybeans. In summary, ambient UV radiation affected soybean morphology and physiology but did not destabilize interactions between trophic levels. - Ambient ultraviolet radiation does not alter induced VOC emission in soybean and thus host location of the parasitoid Cotesia marginiventris remains effective

  19. Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Thorsten R. [Department of Botany II, Julius-von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 3, 97082 Wuerzburg (Germany); Rostas, Michael [Department of Botany II, Julius-von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 3, 97082 Wuerzburg (Germany)], E-mail: rostas@botanik.uni-wuerzburg.de

    2008-09-15

    We investigated the effects of ambient ultraviolet (UV) radiation on (i) the performance and chemistry of soybean plants, (ii) the performance of Spodoptera frugiperda and (iii) the foraging behavior of the herbivore's natural enemy Cotesia marginiventris which exploits herbivore-induced plant volatiles (VOC) for host location. The accumulation of protective phenolics was faster in plants receiving ambient UV than in controls exposed to sun light lacking UV. Accordingly, isorhamnetin- and quercetin-based flavonoids were increased in UV exposed plants. No UV effects were found on the performance and feeding behavior of S. frugiperda. Herbivore-damaged plants emitted the same VOC when grown under ambient or attenuated UV for 5, 10 or 30 days. Consequently, C. marginiventris was attracted but did not discriminate between exposed and unexposed soybeans. In summary, ambient UV radiation affected soybean morphology and physiology but did not destabilize interactions between trophic levels. - Ambient ultraviolet radiation does not alter induced VOC emission in soybean and thus host location of the parasitoid Cotesia marginiventris remains effective.

  20. Radiation-induced attenuation in polarization maintaining fibers: low dose rate response, stress, and materials effects

    International Nuclear Information System (INIS)

    Gingerich, M.E.; Friebele, E.J.; Hickey, S.J.; Brambani, L.A.; Onstott, J.R.

    1989-01-01

    The loss induced in polarization-maintaining (PM) fibers by low dose rate <0.01 Gy/h, where 1 Gy = 100 rads(Si) radiation exposure has been found to vary from <0.4 to ∼6 dB/km-10 Gy, depending on the wavelength of measurement and the fiber. Correlations have been established between low dose rate response and the ''permanent'' induced loss determined by fitting the recovery of the induced loss following high dose rate exposure to nth-order kinetics. Using this technique, both 0.85- and 1.3-μm PM fibers have been found which show virtually no permanent incremental loss and would therefore appear to be resistant to low dose rate radiation environments. The asymmetric stress inherent in PM fibers has been shown to reduce the permanent induced loss, while the recovery of the radiation-induced attenuation was found to be enhanced in fibers with Ge-F-doped silica clads

  1. Shielding data for hadron-therapy ion accelerators: Attenuation of secondary radiation in concrete

    CERN Document Server

    Agosteo, S; Sagia, E; Silari, M

    2014-01-01

    The secondary radiation field produced by seven different ion species (from hydrogen to nitrogen), impinging onto thick targets made of either iron or ICRU tissue, was simulated with the FLUKA Monte Carlo code, and transported through thick concrete shields: the ambient dose equivalent was estimated and shielding parameters evaluated. The energy for each ion beam was set in order to reach a maximum penetration in ICRU tissue of 290 mm (equivalent to the therapeutic range of 430 MeV/amu carbon ions). Source terms and attenuation lengths are given as a function of emission angle and ion species, along with fits to the Monte Carlo data, for shallow depth and deep penetration in the shield. Trends of source terms and attenuation lengths as a function of neutron emission angle and ion species impinging on tar- get are discussed. A comparison of double differential distributions of neutrons with results from similar simulation works reported in the literature is also included. The aim of this work is to provide shi...

  2. Protection from radiation injury through oral administration of PF4 gene carried by attenuated salmonella

    International Nuclear Information System (INIS)

    Zhao Lihua; Liu Bin; Yu Xiaofei; Zhang Lei; Han Zhongchao

    2005-01-01

    Objective: To investigate the in vivo radiation protection effect of PF4 by oral administration of attenuated salmonella as the carrier in mice. Methods: The eukaryotic vector pIRES2-EGFP-carried PF4 gene was transferred into an aroA-autotrophic mutant of salmonella typhimurium (SL3261), which was administered orally to BALBPc mice at 1x10 8 PFu once every interval three days. At 12 hours after the third oral administration the mice were subjected to a total body irradiation (TBI) of 700 cGy by a 60 Co source. The protective effect of SL3261/PF4 was determined by detection GFP ( green fluorescence protein) expression in tissues, peripheral blood count, culture of bone marrow colony-forming cells and survival time of mice. Results: Expression of GFP could be detected in the liver, spleen, intestine, kidney, peripheral blood and bone marrow. On days 7 and 14 after irradiation, Compared to controls, there were obvious differences in number of bone marrow mononuclear cells, CFU-GM (granulocyte-macrophage colony-forming unit ) and HPP-CFC (high proliferating potential-colony-forming cells) of mice treated with SL3261/PF4 (P<0.05) as well as prolongation of the survival time. Conclusion: These data demonstrate for the first time that PF4 protects mice from TBI injury and accelerates recovery of hematopoiesis by oral administration of attenuated salmonella carrying PF4 gene. (authors)

  3. Radiation shielding properties of some natural rocks in upper Egypt

    International Nuclear Information System (INIS)

    Abbady, A.; Ahmed, N.K.; Saied, M.H.; Uosif, M.A.; El-kamel, A.H.

    1999-01-01

    To support the use of some natural rocks in Upper Egypt as suitable radiation materials, the attenuation of gamma - ray through destructive and nondestructive samples of alabaster, marble and limestone have been tested in the energy range from 356 keV to 1173 keV. The attenuation coefficients of the nondestructive samples are found higher than the values of the destructive samples. The half - layer values for attenuation, and the concentration of uranium and thorium in the samples were calculated and discussed

  4. Altered patterns of gene expression underlying the enhanced immunogenicity of radiation-attenuated schistosomes.

    Directory of Open Access Journals (Sweden)

    Gary P Dillon

    2008-05-01

    Full Text Available Schistosome cercariae only elicit high levels of protective immunity against a challenge infection if they are optimally attenuated by exposure to ionising radiation that truncates their migration in the lungs. However, the underlying molecular mechanisms responsible for the altered phenotype of the irradiated parasite that primes for protection have yet to be identified.We have used a custom microarray comprising probes derived from lung-stage parasites to compare patterns of gene expression in schistosomula derived from normal and irradiated cercariae. These were transformed in vitro and cultured for four, seven, and ten days to correspond in development to the priming parasites, before RNA extraction. At these late times after the radiation insult, transcript suppression was the principal feature of the irradiated larvae. Individual gene analysis revealed that only seven were significantly down-regulated in the irradiated versus normal larvae at the three time-points; notably, four of the protein products are present in the tegument or associated with its membranes, perhaps indicating a perturbed function. Grouping of transcripts using Gene Ontology (GO and subsequent Gene Set Enrichment Analysis (GSEA proved more informative in teasing out subtle differences. Deficiencies in signalling pathways involving G-protein-coupled receptors suggest the parasite is less able to sense its environment. Reduction of cytoskeleton transcripts could indicate compromised structure which, coupled with a paucity of neuroreceptor transcripts, may mean the parasite is also unable to respond correctly to external stimuli.The transcriptional differences observed are concordant with the known extended transit of attenuated parasites through skin-draining lymph nodes and the lungs: prolonged priming of the immune system by the parasite, rather than over-expression of novel antigens, could thus explain the efficacy of the irradiated vaccine.

  5. Study of radiation dose attenuation by skull bone in head during radiotherapy treatment using MCNP

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Artur F.; Boia, Leonardo S.; Trombetta, Debora M.; Martins, Maximiano C.; Reis Junior, Juraci P.; Silva, Ademir X., E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Nuclear; Batista, Delano V.S., E-mail: delano@inca.gov.b [Instituto Nacional do Cancer (INCa), Rio de Janeiro, RJ (Brazil). Dept. de Fisica Medica

    2011-07-01

    In this study the MCNPX code was used to investigate possible influences of the attenuation beam by the surface bone during radiotherapy treatments of the skull. The computer simulation was performed on topographic image obtained from the National Cancer Institute, in Rio de Janeiro, database of patients treated with radiotherapy. The image segmentation process were performed using the SAPDI program developed to this purpose. The segmented image conversion for the input file recognized by MCNPX code was performed by SCAN2MCNP Software. The simulation was done using 10MeV Clinac 2300C spectrum considering two opposite parallel beams, with field size 2x2 and 4x4 cm{sup 2}, incident on a slice located above the eyes, containing two row of detectors positioned on the central region with a radius of 0.03 cm and arranged perpendicular to the radiation beams. After analyze the results, the relative error values in the range of 2 at 4% for the high dose region, and 26 at 37% for the low dose area were found, respectively. These differences were attributed to the radiation field attenuation on the bone surface at the entrance of the beam. It was observed that most situations on the high dose region the beam profile, from more realistic scenarios, became smaller than the one obtained when the tomography image was considered consisting of water. However for the low dose area the profile, obtained of the realistic situation, became higher than the one which was obtained when the tomography image was considered consisting of water. The results showed significant differences between both analyzed cases which show the need to use a correction factor by the treatment planning system used in radiotherapy services when the real chemical composition of patient head is unconsidered during the patient treatment planning. (author)

  6. Study of radiation dose attenuation by skull bone in head during radiotherapy treatment using MCNP

    International Nuclear Information System (INIS)

    Menezes, Artur F.; Boia, Leonardo S.; Trombetta, Debora M.; Martins, Maximiano C.; Reis Junior, Juraci P.; Silva, Ademir X.; Batista, Delano V.S.

    2011-01-01

    In this study the MCNPX code was used to investigate possible influences of the attenuation beam by the surface bone during radiotherapy treatments of the skull. The computer simulation was performed on topographic image obtained from the National Cancer Institute, in Rio de Janeiro, database of patients treated with radiotherapy. The image segmentation process were performed using the SAPDI program developed to this purpose. The segmented image conversion for the input file recognized by MCNPX code was performed by SCAN2MCNP Software. The simulation was done using 10MeV Clinac 2300C spectrum considering two opposite parallel beams, with field size 2x2 and 4x4 cm 2 , incident on a slice located above the eyes, containing two row of detectors positioned on the central region with a radius of 0.03 cm and arranged perpendicular to the radiation beams. After analyze the results, the relative error values in the range of 2 at 4% for the high dose region, and 26 at 37% for the low dose area were found, respectively. These differences were attributed to the radiation field attenuation on the bone surface at the entrance of the beam. It was observed that most situations on the high dose region the beam profile, from more realistic scenarios, became smaller than the one obtained when the tomography image was considered consisting of water. However for the low dose area the profile, obtained of the realistic situation, became higher than the one which was obtained when the tomography image was considered consisting of water. The results showed significant differences between both analyzed cases which show the need to use a correction factor by the treatment planning system used in radiotherapy services when the real chemical composition of patient head is unconsidered during the patient treatment planning. (author)

  7. The influence of body mass index and gender on the impact attenuation properties of flooring systems.

    Science.gov (United States)

    Bhan, Shivam; Levine, Iris; Laing, Andrew C

    2013-12-01

    The biomechanical effectiveness of safety floors has never been assessed during sideways falls with human volunteers. Furthermore, the influence of body mass index (BMI) and gender on the protective capacity of safety floors is unknown. The purpose of this study was to test whether safety floors provide greater impact attenuation compared with traditional flooring, and whether BMI and gender modify their impact attenuation properties. Thirty participants (7 men and 7 women of low BMI; 7 men and 9 women of high BMI) underwent lateral pelvis release trials on 2 common floors and 4 safety floors. As a group, the safety floors reduced peak force (by up to 11.7%), and increased the time to peak force (by up to 25.5%) compared with a traditional institutional grade floor. Force attenuation was significantly higher for the low BMI group, and for males. Force attenuation was greatest for the low BMI males, averaging 26.5% (SD = 3.0) across the safety floors. These findings demonstrate an overall protective effect of safety floors during lateral falls on the pelvis, but also suggest augmented benefits for frail older adults (often with low body mass) who are at an increased risk of hip fracture.

  8. Wheat Germ Oil Attenuates Gamma Radiation- Induced Skeletal Muscles Damage in Rats

    International Nuclear Information System (INIS)

    Said, U.Z.; Saada, H.N.; Shedid, Sh.M.; Mahdy, E.M.E.; Shousha, W.Gh.

    2008-01-01

    Muscular strength is important in sport as well as in daily activities. Exposure to ionizing radiation is thought to increase oxidative stress and damage muscle tissue. Wheat germ oil is a natural unrefined vegetable oil. It is an excellent source of vitamin E, octacosanol, linoleic and linolenic essential fatty acids, which may be beneficial in neutralizing the free oxygen radicals. The present study was designed to investigate the efficacy of wheat germ oil, on radiation-induced oxidative damage in rats skeletal muscle. Wheat germ oil was supplemented orally via gavages to rats at a dose of 54 mg/ kg body weight/day for 14 successive days pre- and 7 post-exposure to 5 Gy (one shot dose) of whole body gamma irradiation. Animals were sacrificed 7, 14 and 21 days post radiation exposure. The results revealed that whole body gamma-irradiation of rats induces oxidative stress in skeletal muscles obvious by significant elevation in the level of thiobarbituric acid reactive substances (TBARS) associated with significant decreases in the content of reduced glutathione (GSE1), as well as decreases in superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities. Irradiated rats showed, also, significant decreases in creatine phosphokinase (CPK), glutamate dehydrogenase (GDH) and glucose-6-phosphate dehydrogenase (G-6-PD) activities. Furthermore, total iron, total copper and total calcium levels were significantly increased in skeletal muscles of irradiated rats group compared to control group. Wheat germ oil treated-irradiated rats showed significantly less sever damage and remarkable improvement in all the measured parameters, compared to irradiated rats. It could be concluded that wheat germ oil by attenuating radiation induced oxidative stress might play a role in maintaining skeletal muscle integrity

  9. Preparation, characterization and X-ray attenuation property of Gd2O3-based nanocomposites

    Science.gov (United States)

    Jayakumar, Sangeetha; Saravanan, T.; Philip, John

    2017-11-01

    In an attempt to develop an alternate to lead-based X-ray shielding material, we describe the X-ray attenuation property of nanocomposites containing Gd2O3 as nanofiller and silicone resin as matrix, prepared by a simple solution-casting technique. Gd2O3 nanoparticles of size 30 and 56 nm are used at concentrations of 25 and 2.5 wt%. The nanoparticles and the nanocomposites are characterized using X-ray diffraction (XRD) studies, small angle X-ray spectroscopy (SAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The X-ray attenuation property of nanocomposites, studied using an industrial X-ray unit, shows that nanocomposites containing nanoparticles of size 56 nm (G2) exhibit better attenuation than nanocomposites containing nanoparticles of size 30 nm (G1), which is attributed to the greater interfacial interaction between the G2 nanofillers and silicone matrix. In the case of nanocomposites containing G1 nanoparticles, the interfacial interaction between the nanofiller and the matrix is so weak that it results in pulling out of nanofillers, causing voids in the matrix, which act as X-ray transparent region, thereby reducing the overall X-ray attenuation property of G1 nanocomposites. This is further corroborated from the AFM images of the nanocomposites. The weight loss and heat flow curves of pure silicone matrix and the nanocomposites containing Gd2O3 nanoparticles of size 30 and 56 nm show the degradation of silicone resin, due to chain scission, between 403 and 622 °C. The same onset temperature (403 °C) of degradation of matrix with and without nanoparticles shows that the addition of nanofillers to the matrix does not deteriorate the thermal stability of the matrix. This confirms the thermal stability of nanocomposites. Therefore, our study shows that nanocomposites containing G2 nanoparticles are potential candidates for the development of X-ray opaque fabric material.

  10. Basic radiation sterilization properties of packaging materials

    International Nuclear Information System (INIS)

    Zouharova, A.; Kolarova, J.; Olbrichova, D.

    1984-01-01

    The foils of various materials were irradiated with 60 Co with an activity of 11,538 TBq. The minimum radiation dose was 25 kGy. Changes in chemico-physical properties were evaluated by infrared spectroscopy and were not detected after irradiation with 25 kGy. Packing foils were subjected to the following tests: mechanical tests, tests of weld strength, tests of impact resistance, free fall tests, permeability tests for water vapour and microbiological tests. The results of all tests were tabulated. The tests showed that the foils are impermeable for microorganisms and provided the welds are airtight the packed products remain sterile. (J.P.)

  11. Radiation-induced pulmonary gene expression changes are attenuated by the CTGF antibody Pamrevlumab.

    Science.gov (United States)

    Sternlicht, Mark D; Wirkner, Ute; Bickelhaupt, Sebastian; Lopez Perez, Ramon; Tietz, Alexandra; Lipson, Kenneth E; Seeley, Todd W; Huber, Peter E

    2018-01-18

    Fibrosis is a delayed side effect of radiation therapy (RT). Connective tissue growth factor (CTGF) promotes the development of fibrosis in multiple settings, including pulmonary radiation injury. To better understand the cellular interactions involved in RT-induced lung injury and the role of CTGF in these responses, microarray expression profiling was performed on lungs of irradiated and non-irradiated mice, including mice treated with the anti-CTGF antibody pamrevlumab (FG-3019). Between group comparisons (Welch's t-tests) and principal components analyses were performed in Genespring. At the mRNA level, the ability of pamrevlumab to prolong survival and ameliorate RT-induced radiologic, histologic and functional lung deficits was correlated with the reversal of a clear enrichment in mast cell, macrophage, dendritic cell and mesenchymal gene signatures. Cytokine, growth factor and matrix remodeling genes that are likely to contribute to RT pneumonitis and fibrosis were elevated by RT and attenuated by pamrevlumab, and likely contribute to the cross-talk between enriched cell-types in injured lung. CTGF inhibition had a normalizing effect on select cell-types, including immune cells not typically regarded as being regulated by CTGF. These results suggest that interactions between RT-recruited cell-types are critical to maintaining the injured state; that CTGF plays a key role in this process; and that pamrevlumab can ameliorate RT-induced lung injury in mice and may provide therapeutic benefit in other immune and fibrotic disorders.

  12. Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices

    Directory of Open Access Journals (Sweden)

    Suwimon Ruengsri

    2014-01-01

    Full Text Available Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of the glass matrices. The silicate and phosphate glass systems are more appropriate choices as lead-based radiation shielding glass than the borate glass system. Moreover, comparison of results has shown that the glasses possess better shielding properties than standard shielding concretes, suggesting a smaller size requirement in addition to transparency in the visible region.

  13. Thermal, epithermal and thermalized neutron attenuation properties of ilmenite-serpentine heat resistant concrete shield

    International Nuclear Information System (INIS)

    Kany, A.M.I.; El-Gohary, M.I.; Kamal, S.M.

    1994-01-01

    Experimental measurements were carried out to study the attenuation properties of low-energy neutrons transmitted through unheated and preheated barriers of heavy-weight, highly hydrated and heat-resistant concrete shields. The concrete shields under investigation have been prepared from naturally occurring ilmenite and serpentine Egyptian ores. A collimated beam obtained from an Am-Be source was used as a source of neutrons, while the measurements of total thermal, epithermal, and thermalized neutron fluxes were performed using a BF-3 detector, multichannel analyzer and Cd filter. Results show that the ilmenite-serpentine concrete proved to be a better thermal, epithermal and thermalized neutron attenuator than the ordinary concrete especially at a high temperature of concrete exposure. (Author)

  14. Asymptotic stability and disturbance attenuation properties for a class of networked control systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, stability and disturbance attenuation issues for a class of Networked Control Systems (NCSs)under uncertain access delay and packet dropout effects are considered. Our aim is to find conditions on the delay and packet dropout rate, under which the system stability and H∞ disturbance attenuation properties are preserved to a desired level. The basic idea in this paper is to formulate such Networked Control System as a discrete-time switched system. Then the NCSs' stability and performance problems can be reduced to the corresponding problems for switched systems, which have been studied for decades and for which a number of results are available in the literature. The techniques in this paper are based on recent progress in the discrete-time switched systems and piecewise Lyapunov functions.

  15. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    Science.gov (United States)

    Govey, Peter M.; Zhang, Yue; Donahue, Henry J.

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both pbones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104

  16. Measurement of Thermal Radiation Properties of Solids

    Science.gov (United States)

    Richmond, J. C. (Editor)

    1963-01-01

    The overall objectives of the Symposium were to afford (1) an opportunity for workers in the field to describe the equipment and procedures currently in use for measuring thermal radiation properties of solids, (2) an opportunity for constructive criticism of the material presented, and (3) an open forum for discussion of mutual problems. It was also the hope of the sponsors that the published proceedings of the Symposium would serve as a valuable reference on measurement techniques for evaluating thermal radiation properties of solids, partic.ularly for those with limited experience in the field. Because of the strong dependence of emitted flux upon temperature, the program committee thought it advisable to devote the first session to a discussion of the problems of temperature measurement. All of the papers in Session I were presented at the request of and upon topics suggested by the Committee. Because of time and space limitations, it, was impossible to consider all temperature measurement problems that might arise--the objective was rather to call to the attention of the reader some of the problems that might be encountered, and to provide references that might provide solutions.

  17. Thermomechanical properties of radiation hardened oligoesteracrylates

    International Nuclear Information System (INIS)

    Lomonosova, N.V.; Chikin, Yu.A.

    1984-01-01

    Thermomechanical properties of radiation hardened oligoesteracrylates are studied by the methods of isothermal heating and thermal mechanics. Films of dimethacrylate of ethylene glycol, triethylene glycol (TGM-3), tetraethylene glycol, tridecaethylene glycol and TGM-3 mixture with methyl methacrylate hardened by different doses (5-150 kGy) using Co 60 installation with a dose rate of 2x10 -3 kGy/s served as a subject of the research. During oligoesteracrylate hargening a space network is formed, chain sections between lattice points of which are in a stressed state. Maximum of deformation is observed at 210-220 deg C on thermomechanical curves of samples hardened by doses > 5 kGy, which form and intensity is dependent on an absorbed dose. Presence of a high-temperature maximum on diaqrams of isometric heating of spatially cross-linked oligoesteracrylates is discovered. High thermal stability of three-dimensional network of radiation hardened oligoesteracrylates provides satisfactory tensile properties (40% of initial strength) in sample testing an elevated temperatures (200-250 deg C)

  18. Evaluation of attenuating materials: model for the distribution of scattered radiation

    International Nuclear Information System (INIS)

    Costa, Paulo R.

    1996-01-01

    A mathematical model for the behaviour of the distribution of photon scattered by attenuating media is presented. Shielding barriers or attenuating materials used in tests of quality control in radiology are proposed. Comparative results for Lucite are reported

  19. Characteristics of liver tissue for attenuate the gamma radiation; Caracteristicas del tejido hepatico para atenuar la radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Arcos P, A.; Rodriguez N, S.; Pinedo S, A.; Amador V, P.; Chacon R, A.; Vega C, H.R. [Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2005-07-01

    It was determined the lineal attenuation coefficient of hepatic tissue before gamma radiation of a source of {sup 137} Cs. When exposing organic material before X or gamma radiation fields, part of the energy of the photons is absorbed by the material, while another part crosses it without producing any effect. The quantity of energy that is absorbed is a measure of the dose that receives the material. The three main mechanisms by means of which the gamma rays interacting with the matter are: The Photoelectric Effect, the Compton dispersion and the Even production; the sum of these three processes is translated in the attenuation coefficient of the radiation. In this work we have used hepatic tissue of bovine, as substitute of the human hepatic tissue, and we have measured the lineal attenuation coefficient for photons of 0.662 MeV. Through a series of calculations we have determined the lineal attenuation coefficient for photons from 10{sup -3} to 10{sup -5} MeV and the measured coefficient was compared with the one calculated. (Author)

  20. Gamma radiation shielding and optical properties measurements of zinc bismuth borate glasses

    International Nuclear Information System (INIS)

    Yasaka, P.; Pattanaboonmee, N.; Kim, H.J.; Limkitjaroenporn, P.; Kaewkhao, J.

    2014-01-01

    Highlights: • 10ZnO:xBi 2 O 3 :(90−x)B 2 O 3 , (ZBB) glasses were prepared. • Radiation shielding and optical properties were investigated. • Higher 25 mol% of Bi 2 O 3 show better shielding property compared with concretes. • ZBB glasses can develop as a Pb-free radiation shielding material. - Abstract: In this work, the zinc bismuth borate (ZBB) glasses of the composition 10ZnO:xBi 2 O 3 :(90−x)B 2 O 3 (where x = 15, 20, 25 and 30 mol%) were prepared by the melt quenching technique. Their radiation shielding and optical properties were investigated and compared with theoretical calculations. The mass attenuation coefficients of ZBB glasses have been measured at different energies obtained from a Compton scattering technique. The results show a decrease of the mass attenuation coefficient, effective atomic number and effective electron density values with increasing of gamma-ray energies; and good agreements between experimental and theoretical values. The glass samples with Bi 2 O 3 concentrations higher than 25 mol% (25 and 30 mol%) were observed with lower mean free path (MFP) values than all the standard shielding concretes studied. These results are indications that the ZBB glasses in the present study may be developed as a lead-free radiation shielding material in the investigated energy range

  1. Radiation shielding properties of barite coated fabric by computer programme

    Energy Technology Data Exchange (ETDEWEB)

    Akarslan, F.; Molla, T. [Suleyman Demirel University, Engineering Fac. Textile Dep., Isparta (Turkey); Üncü, I. S. [Suleyman Demirel University, Technological Fac. Electrical-Electronic Eng. Dep., Isparta (Turkey); Kılıncarslan, S., E-mail: seref@tef.sdu.edu.tr [Suleyman Demirel University, Engineering Fac. Civil Eng. Dep., Isparta (Turkey); Akkurt, I. [Suleyman Demirel University, Art and Science Fac., Physics Dep., Isparta (Turkey)

    2015-03-30

    With the development of technology radiation started to be used in variety of different fields. As the radiation is hazardous for human health, it is important to keep radiation dose as low as possible. This is done mainly using shielding materials. Barite is one of the important materials in this purpose. As the barite is not used directly it can be used in some other materials such as fabric. For this purposes barite has been coated on fabric in order to improve radiation shielding properties of fabric. Determination of radiation shielding properties of coated fabric has been done by using computer program written C# language. With this program the images obtained from digital Rontgen films is used to determine radiation shielding properties in terms of image processing numerical values. Those values define radiation shielding and in this way the coated barite effect on radiation shielding properties of fabric has been obtained.

  2. Comparison of the x-ray attenuation properties of breast calcifications, aluminium, hydroxyapatite and calcium oxalate.

    Science.gov (United States)

    Warren, L M; Mackenzie, A; Dance, D R; Young, K C

    2013-04-07

    Aluminium is often used as a substitute material for calcifications in phantom measurements in mammography. Additionally, calcium oxalate, hydroxyapatite and aluminium are used in simulation studies. This assumes that these materials have similar attenuation properties to calcification, and this assumption is examined in this work. Sliced mastectomy samples containing calcification were imaged at ×5 magnification using a digital specimen cabinet. Images of the individual calcifications were extracted, and the diameter and contrast of each calculated. The thicknesses of aluminium required to achieve the same contrast as each calcification when imaged under the same conditions were calculated using measurements of the contrast of aluminium foils. As hydroxyapatite and calcium oxalate are also used to simulate calcifications, the equivalent aluminium thicknesses of these materials were also calculated using tabulated attenuation coefficients. On average the equivalent aluminium thickness was 0.85 times the calcification diameter. For calcium oxalate and hydroxyapatite, the equivalent aluminium thicknesses were 1.01 and 2.19 times the thickness of these materials respectively. Aluminium and calcium oxalate are suitable substitute materials for calcifications. Hydroxyapatite is much more attenuating than the calcifications and aluminium. Using solid hydroxyapatite as a substitute for calcification of the same size would lead to excessive contrast in the mammographic image.

  3. [Radiometers performance attenuation and data correction in long-term observation of total radiation and photosynthetically active radiation in typical forest ecosystems in China].

    Science.gov (United States)

    Zhu, Zhi-Lin; Sun, Xiao-Min; Yu, Gui-Rui; Wen, Xue-Fa; Zhang, Yi-Ping; Han, Shi-Jie; Yan, Jun-Hua; Wang, Hui-Min

    2011-11-01

    Based on the total radiation and photosynthetically active radiation (PAR) observations with net radiometer (CNR1) and quantum sensor (Li-190SB) in 4 ChinaFLUX forest sites (Changbaishan, Qianyanzhou, Dinghushan, and Xishuangbanna) in 2003-2008, this paper analyzed the uncertainties and the radiometers performance changes in long-term and continuous field observation. The results showed that the 98% accuracy of the total radiation measured with CNR1 (Q(cNR1)) could satisfy the technical criterion for the sites except Xishuangbanna where the Q(CNR1) was averagely about 7% lower than Q(CM11), the radiation measured with high accuracy pyranometer CM11. For most sites, though the temperature had definite effects on the performance of CNR1, the effects were still within the allowable range of the accuracy of the instrument. Besides temperature, the seasonal fog often occurred in tropical rain forests in Xishuangbanna also had effects on the performance of CNR1. Based on the long-term variations of PAR, especially its ratio to total radiation in the 4 sites, it was found that quantum sensor (Li-190SB) had obvious performance attenuation, with the mean annual attenuation rate being about 4%. To correct the observation error caused by Li-190SB, an attempt was made to give a post-correction of the PAR observations, which could basically eliminate the quantum sensor's performance attenuation due to long-term field measurement.

  4. Infrared radiative properties of anodized aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V.C.; Sharma, A.

    1983-10-01

    Measurements of anodic film thicknesses and their total hemispherical thermal emittance for various current densities (0.55-3.85 ampere/dm/sup 2/), anodizing times (1-20 min), and oxalic acid concentrations (1-6 wt.%) show a linear relationship between the film thickness and the total hemispherical thermal emittance (epsilon). Changes in oxalic acid concentration (2-4 wt.%) have no significant effect on the film growth-rate and the rate at which epsilon increases with increasing anodizing time. Measurements of epsilon for wavelengths from 3 to 30 ..mu..m show that the film growth-rate has a marked effect on the I.R. radiative properties of aluminum.

  5. Critical analysis of soil hydraulic conductivity determination using monoenergetic gamma radiation attenuation

    International Nuclear Information System (INIS)

    Portezan Filho, Otavio

    1997-01-01

    Three soil samples of different textures: LVA (red yellow latosol), LVE (dark red latosol) and LRd (dystrophic dark red latosol) were utilized for unsaturated hydraulic conductivity K(θ) measurements. Soil bulk densities and water contents during internal water drainage were measured by monoenergetic gamma radiation attenuation, using homogeneous soil columns assembled in the laboratory. The measurements were made with a collimated gamma beam of 0.003 m in diameter using a Nal(Tl) (3'' x 3 '') detector and a 137 Cs gamma source of 74 X 10 8 Bq and 661.6 KeV. Soil columns were scanned with the gamma beam from 0.01 to 0.20 m depth, in 0.01m steps, for several soil water redistribution times. The results show a great variability of the unsaturated hydraulic conductivity relation K(θ), even though homogeneous soils were used. The variability among methods is significantly smaller in relation to variability in space. The assumption of unit hydraulic gradient during redistribution of soil water utilized in the methods of Hillel, Libardi and Sisson leads to hydraulic conductivity values that increase in depth. The exponential character of the K(θ) relationship, is responsible for the difficulty of estimating soil hydraulic conductivity, which is a consequence of small variations in the porous arrangement, even in samples supposed to be homogeneous. (author)

  6. Immunity to schistosomiasis mansoni in guinea-pigs vaccinated with radiation-attenuated cercariae

    International Nuclear Information System (INIS)

    Gordon, J.R.; McLaren, D.J.

    1987-01-01

    The anti-schistosomular humoral responses of guinea-pigs vaccinated with radiation-attenuated cercariae of Schistosoma mansoni have been investigated in vitro. The sera of vaccinated animals contain schistosomulicidal complement-fixing antibodies which peak in titre at week 5 after vaccination and predominantly consist of IgG 2 and IgM antibodies. The ability of the serum to arm macrophages from normal animals to bind to schistosomula, also peaks in titre at week 5 and is associated with IgG 2 antibodies. Basophils from normal animals can be sensitized in vitro by vaccine serum to degranulate in the presence of schistosomular antigens. This anaphylactic antibody activity is associated with IgG 1 but not IgE antibodies, and peaks in titre at week 10. Three antigens (14 kD, 20 kD and 43 kD) are specifically and transiently detected by vaccine serum on Western blots of schistosomular proteins; these antigens are first discernible at week 4, but were virtually undetectable at week 12. (author)

  7. Evaluation of the attenuating properties of selected Greek clays for toxic inorganic elements in landfill sites.

    Science.gov (United States)

    Mimides, T; Perraki, T

    2000-05-15

    Heavy metal attenuation properties of selected clay material collected from miscellaneous Greek sites is investigated and tested in the laboratory for their suitability, either as liners in hydrologically unsafe sites or as earth covers for sanitary landfill sites. Eleven potentially hazardous elements (As, Be, Cd, Cr, Cu, Hg, Ni, Pb, Se, V, and Zn) generated by a co-disposal landfill leachate have been considered. Experimental column and static equilibrium methods for the determination of dispersion and adsorption are described. Molecular diffusion dominates the migration phenomena with a velocity range between 1.3 x 10(-5) and 3.5 x 10(-4) cm/s throughout the experiments. A simple way to evaluate dispersion coefficients from breakthrough curves gave values of between 3.90 x 10(-6) and 3.5 x 10(-4) cm2/s, with a mean value of 1.5 x 10(-5). Static adsorption equilibrium studies supported by column runs showed that Freundlich (F = kCn) isotherms express in a better way the assimilative capacities of the tested clays, with k and n values ranging from 0.06 to 1.99 and 0.55 to 1.48 correspondingly. Mathematical models involving non-linear parabolic equations are involved. The experimental data, together with finite difference techniques and some physical clay characteristics, produced trilinear textural diagrams and predictive flow transport convection-dispersion breakthrough curves for a quick estimation of the attenuating properties of clays for heavy metals.

  8. Investigation of novel composite material based on extra-heavy concrete and basalt fiber for gamma radiation protection properties

    International Nuclear Information System (INIS)

    Romanenko, Yi.M.; Nosovs'kij, A.V.; Gulyik, V.Yi.; Golyuk, M.Yi.

    2018-01-01

    The paper presents a new composite material for radiation protection based on extra-heavy concrete reinforced by basalt fiber. Basalt fiber is a new material for concrete reinforcement, which provides improved mechanical characteristics of concrete, reduces the level of microcracks and increases the durability of concrete. Within the scope of present work, the gamma-ray radiation protection properties of concrete reinforced with basalt fiber was modeled. Two types of extra-heavy concrete were used for this paper. The main gamma-ray attenuation coefficients such as mean atomic number, mean atomic mass, mean electron density, effective atomic number, effective electron density, Murty effective atomic number were analyzed with help of WinXCom software. It has been shown that the addition of basalt fiber to concrete does not impair its gamma-ray radiation shielding properties. With increasing the basalt fiber dosage in concrete, the radiation properties against gamma radiation are improved.

  9. Radiative properties of strongly magnetized plasmas

    International Nuclear Information System (INIS)

    Weisheit, J.C.

    1993-11-01

    The influence of strong magnetic fields on quantum phenomena continues to be a topic of much interest to physicists and astronomers investigating a wide array of problems - the formation of high energy-density plasmas in pulsed power experiments, the crustal structure and radiative properties of neutron stars, transport coefficients of matter irradiated by subpicosecond lasers, the spectroscopy of magnetic white dwarf stars, the quantum Hall effect, etc. The passage of time finds more questions being asked than being answered in this subject, where even the hydrogen atom open-quotes paradigmclose quotes remains a major challenge. This theoretical program consists of two distinct parts: (1) investigation into the structure and transport properties of many-electron atoms in fields B > 10 8 Gauss; and (2) extension of spectral lineshape methods for diagnosing fields in strongly magnetized plasmas. Research during the past year continued to be focused on the first topic, primarily because of the interest and skills of Dr. E.P. Lief, the postdoctoral research associate who was hired to work on the proposal

  10. Cytokine production in BALB/c mice immunized with radiation attenuated third stage larvae of the filarial nematode, Brugia pahangi

    International Nuclear Information System (INIS)

    Bancroft, A.J.; Devaney, E.; Grencis, R.K.; Else, K.J.

    1993-01-01

    BALB/c mice immunized with radiation-attenuated third stage larvae of the filarial nematode Brugia pahangi are strongly immune to challenge infection. Investigation of the profile of cytokines secreted by spleen cells from immune mice stimulated in vitro with either parasite Ag or with Con A revealed high levels of IL-5 and IL-9 and moderate levels of IL-4. In contrast, secretion of IFN-γ by spleen cells from immune animals was negligible. Spleen cells from control mice secreted low levels of all cytokines assayed. Levels of parasite-specific IgE were significantly elevated in immune animals and a peripheral blood eosinophilia was observed, which exhibited a biphasic distribution. Our results are consistent with the preferential expansion of Th2 cells in immune animals and provide the basis for dissecting the means by which radiation-attenuated larvae of filarial nematodes stimulate immunity. 5l refs., 3 figs., 3 tabs

  11. Assessment of vaccination with schistosomules attenuated by using different doses of γ-radiation on experimental schistosomiasis mansoni

    International Nuclear Information System (INIS)

    Mohamed, E.N.H.

    2009-01-01

    Current strategies for the control of schistosomiasis are based primarily on chemotherapy but successful vaccination against infection has been also demonstrated in several host parasite models.The present study was designed to asses the immunogenic effects of the vaccination with autogenic targets in the form of schistosomula attenuated by different doses of γ-radiation (15, 20, 25 kilo rad) in mice challenged with S. mansoni cercariae as regard parasitological, histological, biochemical and immunological aspects.

  12. Radiation shielding properties of a novel cement–basalt mixture for nuclear energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Ipbüker, Cagatay; Nulk, Helena; Gulik, Volodymyr [University of Tartu, Institute of Physics (Estonia); Biland, Alex [HHK Technologies, Houston (United States); Tkaczyk, Alan Henry, E-mail: alan@ut.ee [University of Tartu, Institute of Physics (Estonia)

    2015-04-01

    Highlights: • Basalt fiber is a relatively cheap material that can be used as reinforcement. • Gamma-ray attenuation remains relatively stable with addition of basalt fiber. • Neutron attenuation remains relatively stable with addition of basalt fiber. • Cement–basalt mixture has a good potential for use in nuclear energy applications. - Abstract: The radiation shielding properties of a new proposed building material, a novel cement–basalt fiber mixture (CBM), are investigated. The authors analyze the possibility of this material to be a viable substitute to outgoing materials in nuclear energy applications, which will lead to a further sustained development of nuclear energy in the future. This computational study involves four types of concrete with various amounts of basalt fiber in them. The gamma-ray shielding characteristics of proposed CBM material are investigated with the help of WinXCom program, whereas the neutron shielding characteristics are computed by the Serpent code. For gamma-ray shielding, we find that the attenuation coefficients of concretes with basalt fibers are not notably influenced by the addition of fibers. For neutron shielding, additional basalt fiber in mixture presents negligible effect on neutron radiation shielding. With respect to radiation shielding, it can be concluded that basalt fibers have good potential as an addition to heavyweight concrete for nuclear energy applications.

  13. Radiation shielding properties of a novel cement–basalt mixture for nuclear energy applications

    International Nuclear Information System (INIS)

    Ipbüker, Cagatay; Nulk, Helena; Gulik, Volodymyr; Biland, Alex; Tkaczyk, Alan Henry

    2015-01-01

    Highlights: • Basalt fiber is a relatively cheap material that can be used as reinforcement. • Gamma-ray attenuation remains relatively stable with addition of basalt fiber. • Neutron attenuation remains relatively stable with addition of basalt fiber. • Cement–basalt mixture has a good potential for use in nuclear energy applications. - Abstract: The radiation shielding properties of a new proposed building material, a novel cement–basalt fiber mixture (CBM), are investigated. The authors analyze the possibility of this material to be a viable substitute to outgoing materials in nuclear energy applications, which will lead to a further sustained development of nuclear energy in the future. This computational study involves four types of concrete with various amounts of basalt fiber in them. The gamma-ray shielding characteristics of proposed CBM material are investigated with the help of WinXCom program, whereas the neutron shielding characteristics are computed by the Serpent code. For gamma-ray shielding, we find that the attenuation coefficients of concretes with basalt fibers are not notably influenced by the addition of fibers. For neutron shielding, additional basalt fiber in mixture presents negligible effect on neutron radiation shielding. With respect to radiation shielding, it can be concluded that basalt fibers have good potential as an addition to heavyweight concrete for nuclear energy applications

  14. Computer modelling of statistical properties of SASE FEL radiation

    International Nuclear Information System (INIS)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-01-01

    The paper describes an approach to computer modelling of statistical properties of the radiation from self amplified spontaneous emission free electron laser (SASE FEL). The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility being under construction at DESY

  15. Impact of UV radiation on the physical properties of polypropylene ...

    African Journals Online (AJOL)

    The purpose of this study was to analyse the influence of simulated sun light radiation (xenon lamp) on physical properties of polypropylene (PP) nonwoven material, which is used for the production of agrotextiles. The research showed that the properties of row cover change when radiated with UV light. Tensile, tearing ...

  16. Accuracy and Radiation Dose of CT-Based Attenuation Correction for Small Animal PET: A Monte Carlo Simulation Study

    International Nuclear Information System (INIS)

    Yang, Ching-Ching; Chan, Kai-Chieh

    2013-06-01

    -Small animal PET allows qualitative assessment and quantitative measurement of biochemical processes in vivo, but the accuracy and reproducibility of imaging results can be affected by several parameters. The first aim of this study was to investigate the performance of different CT-based attenuation correction strategies and assess the resulting impact on PET images. The absorbed dose in different tissues caused by scanning procedures was also discussed to minimize biologic damage generated by radiation exposure due to PET/CT scanning. A small animal PET/CT system was modeled based on Monte Carlo simulation to generate imaging results and dose distribution. Three energy mapping methods, including the bilinear scaling method, the dual-energy method and the hybrid method which combines the kVp conversion and the dual-energy method, were investigated comparatively through assessing the accuracy of estimating linear attenuation coefficient at 511 keV and the bias introduced into PET quantification results due to CT-based attenuation correction. Our results showed that the hybrid method outperformed the bilinear scaling method, while the dual-energy method achieved the highest accuracy among the three energy mapping methods. Overall, the accuracy of PET quantification results have similar trend as that for the estimation of linear attenuation coefficients, whereas the differences between the three methods are more obvious in the estimation of linear attenuation coefficients than in the PET quantification results. With regards to radiation exposure from CT, the absorbed dose ranged between 7.29-45.58 mGy for 50-kVp scan and between 6.61-39.28 mGy for 80-kVp scan. For 18 F radioactivity concentration of 1.86x10 5 Bq/ml, the PET absorbed dose was around 24 cGy for tumor with a target-to-background ratio of 8. The radiation levels for CT scans are not lethal to the animal, but concurrent use of PET in longitudinal study can increase the risk of biological effects. The

  17. Some properties of Cerenkov radiation due to the finite thickness of the radiator

    International Nuclear Information System (INIS)

    Kobzev, A.P.; Frank, I.M.

    1981-01-01

    The properties of Cerenkov radiation are analyzed for a small radiator thickness. It is shown that the directionality of the radiation, its threshold properties, and also the dependence on the electron energy and radiator thickness differ substantially from the well known characteristics of Cerenkov radiation corresponding to the case of an unlimited particle trajectory in an extended medium. We have experimentally studied the directionality and energy characteristics of radiation excited by electrons in a mica target of thickness 12 400 A at wavelength 4000 A. The experimental results are in good agreement with the calculations

  18. Lithium-doped hydroxyapatite nano-composites: Synthesis, characterization, gamma attenuation coefficient and dielectric properties

    Science.gov (United States)

    Badran, H.; Yahia, I. S.; Hamdy, Mohamed S.; Awwad, N. S.

    2017-01-01

    Lithium-hydroxyapatite (0, 1, 5, 10, 20, 30 and 40 wt% Li-HAp) nano-composites were synthesized by sol-gel technique followed by microwave-hydrothermal treatment. The composites were characterized by X-ray diffraction (XRD), Field emission scanning electron microscope (FE-SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and Raman techniques. Gamma attenuation coefficient and the dielectric properties for all composites were investigated. The crystallinity degree of Li-doped HAp was higher than that of un-doped HAp. Gamma attenuation coefficient values increased from 0.562 cm-1 for 0 wt% Li-HAp to 2.190 cm-1 for 40 wt% Li-HAp. The alternating current conductivity increased with increasing frequency. The concentration of Li affect the values of dielectric constant where Li doped HAp of low dielectric constant can have an advantage for healing in bone fractures. The calcium to phosphorus ratio decreased from 1.43 to 1.37 with the addition of lithium indicating the Ca deficiency in the studied composites. Our findings lead to the conclusion that Li-HAp is a new nano-composite useful for medical applications and could be doped with gamma shield materials.

  19. Infrared Radiative Properties of Food Materials

    Science.gov (United States)

    Precisely, infrared radiation is electromagnetic radiation whose wavelength is longer than that of visible light, but shorter than that of terahertz radiation and microwaves. The infrared portion of the electromagnetic spectrum spans roughly three orders of magnitude (750 nm to 100 µm) and has been...

  20. On plasma radiative properties in stellar conditions

    International Nuclear Information System (INIS)

    Turck-Chieze, S.; Delahaye, F.; Gilles, D.; Loisel, G.; Piau, L.; Loisel, G.

    2009-01-01

    The knowledge of stellar evolution is evolving quickly thanks to an increased number of opportunities to scrutinize the stellar internal plasma properties by stellar seismology and by 1D and 3D simulations. These new tools help us to introduce the internal dynamical phenomena in stellar modeling. A proper inclusion of these processes supposes a real confidence in the microscopic physics used, partly checked by solar or stellar acoustic modes. In the present paper we first recall which fundamental physics has been recently verified by helioseismology. Then we recall that opacity is an important ingredient of the secular evolution of stars and we point out why it is necessary to measure absorption coefficients and degrees of ionization in the laboratory for some well identified astrophysical conditions. We examine two specific experimental conditions which are accessible to large laser facilities and are suitable to solve some interesting questions of the stellar community: are the solar internal radiative interactions properly estimated and what is the proper role of the opacity in the excitation of the non-radial modes in the envelop of the β Cepheids and the Be stars? At the end of the paper we point out the difficulties of the experimental approach that we need to overcome. (authors)

  1. Variability in dynamic properties of tantalum : spall, attenuation and load/unload.

    Energy Technology Data Exchange (ETDEWEB)

    Furnish, Michael David; Reinhart, William Dodd; Trott, Wayne Merle; Vogler, Tracy John; Chhabildas, Lalit Chandra

    2005-07-01

    A suite of impact experiments was conducted to assess spatial and shot-to-shot variability in dynamic properties of tantalum. Samples had a uniform refined {approx}20 micron grain structure with a strong axisymmetric [111] crystallographic texture. Two experiments performed with sapphire windows (stresses of approximately 7 and 12 GPa) clearly showed elastic-plastic loading and slightly hysteretic unloading behavior. An HEL amplitude of 2.8 GPa (corresponding to Y 1.5 GPa) was observed. Free-surface spall experiments showed clear wave attenuation and spallation phenomena. Here, loading stresses were {approx} 12.5 GPa and various ratios of impactor to target thicknesses were used. Spatial and shot-to-shot variability of the spall strength was {+-} 20%, and of the HEL, {+-} 10%. Experiments conducted with smaller diameter flyer plates clearly showed edge effects in the line and point VISAR records, indicating lateral release speeds of roughly 5 km/s.

  2. Electromagnetic radiation properties of foods and agricultural products

    International Nuclear Information System (INIS)

    Mohsenin, N.N.

    1984-01-01

    In this book, the author examines the effects of the various regions of the electromagnetic radiation spectrum on foods and agricultural products. Among the regions of the electromagnetic radiation spectrum covered are high-energy beta and neutron particles, gamma-rays and X-rays, to lower-energy visible, near infrared, infrared, microwave and low-energy radiowaves and electric currents. Dr. Mohsenin applies these electromagnetic phenomena to food products such as fruits, vegetables, seeds, dairy products, meat and processed foods. Contents: Some Basic Concepts of Electromagnetic Radiation. Basic Instruments for Measurement of Optical Properties. Applications of Radiation in the Visible Spectrum. Color and its Measurement. Sorting for Color and Appearance. Near-Infrared and Infrared Radiation Applications. Applications of High-Energy Radiation. Related Concepts of Microwaves, Radiowaves, and Electric Currents. Measurement of Electrical Properties of Foods and Agricultural Products. Applications of Electrical Properties. Appendix, Cited References. Subject Index

  3. Attenuation of Neutron and Gamma Radiation by a Composite Material Based on Modified Titanium Hydride with a Varied Boron Content

    Science.gov (United States)

    Yastrebinskii, R. N.

    2018-04-01

    The investigations on estimating the attenuation of capture gamma radiation by a composite neutron-shielding material based on modified titanium hydride and Portland cement with a varied amount of boron carbide are performed. The results of calculations demonstrate that an introduction of boron into this material enables significantly decreasing the thermal neutron flux density and hence the levels of capture gamma radiation. In particular, after introducing 1- 5 wt.% boron carbide into the material, the thermal neutron flux density on a 10 cm-thick layer is reduced by 11 to 176 factors, and the capture gamma dose rate - from 4 to 9 times, respectively. The difference in the degree of reduction in these functionals is attributed to the presence of capture gamma radiation in the epithermal region of the neutron spectrum.

  4. Thermophysical properties of polyethylene modified under γ radiation

    International Nuclear Information System (INIS)

    Shut, N.I.; Musaelyan, I.N.; Besklubenko, Yu.D.; Karpovich, N.B.; Kasperskij, A.V.

    1986-01-01

    Thermophysical properties (thermal conductivity, specific heat) of polyethylene (PE) modified under gamma radiation were studied. Thermophysical parameter dependences on the temperature (-100-+100 deg C) and an absorbed radiation dose are given. Degree of polymere crystallinity using a structural method for determination of the crystallinity degree by density was ascertained. It is shown that the PE thermophysical characteristics correlate to a value of absorbed gamma radiation dose, therefore gamma radiation can be recommended as a modifying factor for the production of polymer materials with the given properties

  5. Dosimetric evaluation of scattered and attenuated radiation due to dental restorations in head and neck radiotherapy

    Directory of Open Access Journals (Sweden)

    Mona Azizi

    2018-01-01

    Full Text Available In radiotherapy of head and neck cancer, the presence of high density materials modifies photon dose distribution near these high density materials during treatment. The aim of this study is to calculate the backscatter and attenuation effects of a healthy tooth, Amalgam, Ni-Cr alloy and Ceramco on the normal tissues before and after these materials irradiated by 6 and 15 MV photon beams, respectively. All measurements were carried out in a water phantom with dimension of 50 × 50 × 50 cm3with an ionization chamber detector. Two points before and four points after the dental sample were considered to score the photon dose. The depth dose on the central beam axis was explored in a water phantom for source to surface distance (SSD of 100 cm in a 10 × 10 cm2 field size. The percentage dose change was obtained relative to the dose in water versus depth of water, tooth, Amalgam, Ni-Cr alloy and Ceramco for the photon beams. The absolute dose (cGy was measured by prescription of 100 cGy dose in the water phantom at depth of 2.0 and 3.1 cm for 6 and 15 MV photons, respectively. At depth of 0.6 cm, the maximum percentage dose increase was observed with values of 6.99% and 9.43%for Ni-Cr and lowest percentage dose increase of 1.49% and 2.63% are related to the healthy tooth in 6 and 15 MV photon beams, respectively. The maximum absolute dose of 95.58 cGy and 93.64 cGy were observed at depth of 0.6 cm in presence of Ni-Cr alloy for 6 and 15 MV photon beams, respectively. The presence of dental restorations can cause backscattering dose during head and neck radiation therapy. Introduction of compositions and electron density of high density materials can improve the accuracy of dosimetric calculations in treatment planning systems to deliver the relevant dose to target organ and reduce the backscattering dose in healthy tissues in the surrounding of tooth.

  6. Effect of physical, chemical and electro-kinetic properties of pumice samples on radiation shielding properties of pumice material

    International Nuclear Information System (INIS)

    Tapan, Mücip; Yalçın, Zeynel; İçelli, Orhan; Kara, Hüsnü; Orak, Salim; Özvan, Ali; Depci, Tolga

    2014-01-01

    Highlights: • Radiation shielding properties of pumice materials are studied. • The relationship between physical, chemical and electro-kinetic properties pumice samples is identified. • The photon atomic parameters are important for the absorber peculiarity of the pumices. - Abstract: Pumice has been used in cement, concrete, brick, and ceramic industries as an additive and aggregate material. In this study, some gamma-ray photon absorption parameters such as the total mass attenuation coefficients, effective atomic number and electronic density have been investigated for six different pumice samples. Numerous values of energy related parameters from low energy (1 keV) to high energy (100 MeV) were calculated using WinXCom programme. The relationship between radiation shielding properties of the pumice samples and their physical, chemical and electro-kinetic properties was evaluated using simple regression analysis. Simple regression analysis indicated a strong correlation between photon energy absorption parameters and density and SiO 2 , Fe 2 O 3 , CaO, MgO, TiO 2 content of pumice samples in this study. It is found that photon energy absorption parameters are not related to electro-kinetic properties of pumice samples

  7. k-space sampling optimization for ultrashort TE imaging of cortical bone: Applications in radiation therapy planning and MR-based PET attenuation correction

    International Nuclear Information System (INIS)

    Hu, Lingzhi; Traughber, Melanie; Su, Kuan-Hao; Pereira, Gisele C.; Grover, Anu; Traughber, Bryan; Muzic, Raymond F. Jr.

    2014-01-01

    Purpose: The ultrashort echo-time (UTE) sequence is a promising MR pulse sequence for imaging cortical bone which is otherwise difficult to image using conventional MR sequences and also poses strong attenuation for photons in radiation therapy and PET imaging. The authors report here a systematic characterization of cortical bone signal decay and a scanning time optimization strategy for the UTE sequence through k-space undersampling, which can result in up to a 75% reduction in acquisition time. Using the undersampled UTE imaging sequence, the authors also attempted to quantitatively investigate the MR properties of cortical bone in healthy volunteers, thus demonstrating the feasibility of using such a technique for generating bone-enhanced images which can be used for radiation therapy planning and attenuation correction with PET/MR. Methods: An angularly undersampled, radially encoded UTE sequence was used for scanning the brains of healthy volunteers. Quantitative MR characterization of tissue properties, including water fraction and R2 ∗ = 1/T2 ∗ , was performed by analyzing the UTE images acquired at multiple echo times. The impact of different sampling rates was evaluated through systematic comparison of the MR image quality, bone-enhanced image quality, image noise, water fraction, and R2 ∗ of cortical bone. Results: A reduced angular sampling rate of the UTE trajectory achieves acquisition durations in proportion to the sampling rate and in as short as 25% of the time required for full sampling using a standard Cartesian acquisition, while preserving unique MR contrast within the skull at the cost of a minimal increase in noise level. The R2 ∗ of human skull was measured as 0.2–0.3 ms −1 depending on the specific region, which is more than ten times greater than the R2 ∗ of soft tissue. The water fraction in human skull was measured to be 60%–80%, which is significantly less than the >90% water fraction in brain. High-quality, bone

  8. Properties of Natural Radiation and Radioactivity

    International Nuclear Information System (INIS)

    Strom, Daniel J.

    2009-01-01

    Ubiquitous natural sources of radiation and radioactive material (naturally occurring radioactive material, NORM) have exposed humans throughout history. To these natural sources have been added technologically-enhanced naturally occurring radioactive material (TENORM) sources and human-made (anthropogenic) sources. This chapter describes the ubiquitous radiation sources that we call background, including primordial radionuclides such as 40K, 87Rb, the 232Th series, the 238U series, and the 235U series; cosmogenic radionuclides such as 3H and 14C; anthropogenic radionuclides such as 3H, 14C, 137Cs, 90Sr, and 129I; radiation from space; and radiation from technologically-enhanced concentrations of natural radionuclides, particularly the short-lived decay products of 222Rn ('radon') and 220Rn ('thoron') in indoor air. These sources produce radiation doses to people principally via external irradiation or internal irradiation following intakes by inhalation or ingestion. The effective doses from each are given, with a total of 3.11 mSv y-1 (311 mrem y-1) to the average US resident. Over 2.5 million US residents receive over 20 mSv y-1 (2 rem y-1), primarily due to indoor radon. Exposure to radiation from NORM and TENORM produces the largest fraction of ubiquitous background exposure to US residents, on the order of 2.78 mSv (278 mrem) or about 89%. This is roughly 45% of the average annual effective dose to a US resident of 6.2 mSv y-1 (620 mrem y-1) that includes medical (48%), consumer products and air travel (2%), and occupational and industrial (0.1%). Much of this chapter is based on National Council on Radiation Protection and Measurements (NCRP) Report No. 160, 'Ionizing Radiation Exposure of the Population of the United States,' for which the author chaired the subcommittee that wrote Chapter 3 on 'Ubiquitous Background Radiation.'

  9. Spectral radiative property control method based on filling solution

    International Nuclear Information System (INIS)

    Jiao, Y.; Liu, L.H.; Hsu, P.-F.

    2014-01-01

    Controlling thermal radiation by tailoring spectral properties of microstructure is a promising method, can be applied in many industrial systems and have been widely researched recently. Among various property tailoring schemes, geometry design of microstructures is a commonly used method. However, the existing radiation property tailoring is limited by adjustability of processed microstructures. In other words, the spectral radiative properties of microscale structures are not possible to change after the gratings are fabricated. In this paper, we propose a method that adjusts the grating spectral properties by means of injecting filling solution, which could modify the thermal radiation in a fabricated microstructure. Therefore, this method overcomes the limitation mentioned above. Both mercury and water are adopted as the filling solution in this study. Aluminum and silver are selected as the grating materials to investigate the generality and limitation of this control method. The rigorous coupled-wave analysis is used to investigate the spectral radiative properties of these filling solution grating structures. A magnetic polaritons mechanism identification method is proposed based on LC circuit model principle. It is found that this control method could be used by different grating materials. Different filling solutions would enable the high absorption peak to move to longer or shorter wavelength band. The results show that the filling solution grating structures are promising for active control of spectral radiative properties. -- Highlights: • A filling solution grating structure is designed to adjust spectral radiative properties. • The mechanism of radiative property control is studied for engineering utilization. • Different grating materials are studied to find multi-functions for grating

  10. Application of conditional simulation of heterogeneous rock properties to seismic scattering and attenuation analysis in gas hydrate reservoirs

    Science.gov (United States)

    Huang, Jun-Wei; Bellefleur, Gilles; Milkereit, Bernd

    2012-02-01

    We present a conditional simulation algorithm to parameterize three-dimensional heterogeneities and construct heterogeneous petrophysical reservoir models. The models match the data at borehole locations, simulate heterogeneities at the same resolution as borehole logging data elsewhere in the model space, and simultaneously honor the correlations among multiple rock properties. The model provides a heterogeneous environment in which a variety of geophysical experiments can be simulated. This includes the estimation of petrophysical properties and the study of geophysical response to the heterogeneities. As an example, we model the elastic properties of a gas hydrate accumulation located at Mallik, Northwest Territories, Canada. The modeled properties include compressional and shear-wave velocities that primarily depend on the saturation of hydrate in the pore space of the subsurface lithologies. We introduce the conditional heterogeneous petrophysical models into a finite difference modeling program to study seismic scattering and attenuation due to multi-scale heterogeneity. Similarities between resonance scattering analysis of synthetic and field Vertical Seismic Profile data reveal heterogeneity with a horizontal-scale of approximately 50 m in the shallow part of the gas hydrate interval. A cross-borehole numerical experiment demonstrates that apparent seismic energy loss can occur in a pure elastic medium without any intrinsic attenuation of hydrate-bearing sediments. This apparent attenuation is largely attributed to attenuative leaky mode propagation of seismic waves through large-scale gas hydrate occurrence as well as scattering from patchy distribution of gas hydrate.

  11. Radiation processing and functional properties of soybean (Glycine max)

    International Nuclear Information System (INIS)

    Pednekar, Mrinal; Das, Amit K.; Rajalakshmi, V; Sharma, Arun

    2010-01-01

    Effect of radiation processing (10, 20 and 30 kGy) on soybean for better utilization was studied. Radiation processing reduced the cooking time of soybean and increased the oil absorption capacity of soy flour without affecting its proximate composition. Irradiation improved the functional properties like solubility, emulsification activity and foam stability of soybean protein isolate. The value addition effect of radiation processing has been discussed for the products (soy milk, tofu and tofu fortified patties) prepared from soybean.

  12. Radiation modification of the properties of polypropylene

    Indian Academy of Sciences (India)

    ... were used to investigate some selected properties such as thermal properties, ... The properties of original and irradiated PP/15wt% CMC blend were investigated. ... 5, 10 and 20 kGy were subjected to biodegradation in soil burial tests for 6 ...

  13. Method for evaluation of radiative properties of glass samples

    Energy Technology Data Exchange (ETDEWEB)

    Mohelnikova, Jitka [Faculty of Civil Engineering, Brno University of Technology, Veveri 95, 602 00 Brno (Czech Republic)], E-mail: mohelnikova.j@fce.vutbr.cz

    2008-04-15

    The paper presents a simple calculation method which serves for an evaluation of radiative properties of window glasses. The method is based on a computer simulation model of the energy balance of a thermally insulated box with selected glass samples. A temperature profile of the air inside of the box with a glass sample exposed to affecting radiation was determined for defined boundary conditions. The spectral range of the radiation was considered in the interval between 280 and 2500 nm. This interval is adequate to the spectral range of solar radiation affecting windows in building facades. The air temperature rise within the box was determined in a response to the affecting radiation in the time between the beginning of the radiation exposition and the time of steady-state thermal conditions. The steady state temperature inside of the insulated box serves for the evaluation of the box energy balance and determination of the glass sample radiative properties. These properties are represented by glass characteristics as mean values of transmittance, reflectance and absorptance calculated for a defined spectral range. The data of the computer simulations were compared to experimental measurements on a real model of the insulated box. Results of both the calculations and measurements are in a good compliance. The method is recommended for preliminary evaluation of window glass radiative properties which serve as data for energy evaluation of buildings.

  14. Properties of sound attenuation around a two-dimensional underwater vehicle with a large cavitation number

    International Nuclear Information System (INIS)

    Ye Peng-Cheng; Pan Guang

    2015-01-01

    Due to the high speed of underwater vehicles, cavitation is generated inevitably along with the sound attenuation when the sound signal traverses through the cavity region around the underwater vehicle. The linear wave propagation is studied to obtain the influence of bubbly liquid on the acoustic wave propagation in the cavity region. The sound attenuation coefficient and the sound speed formula of the bubbly liquid are presented. Based on the sound attenuation coefficients with various vapor volume fractions, the attenuation of sound intensity is calculated under large cavitation number conditions. The result shows that the sound intensity attenuation is fairly small in a certain condition. Consequently, the intensity attenuation can be neglected in engineering. (paper)

  15. Investigating Radiation Shielding Properties of Different Mineral Origin Heavyweight Concretes

    Science.gov (United States)

    Basyigit, Celalettin; Uysal, Volkan; Kilinçarslan, Şemsettin; Mavi, Betül; Günoǧlu, Kadir; Akkurt, Iskender; Akkaş, Ayşe

    2011-12-01

    The radiation although has hazardous effects for human health, developing technologies bring lots of usage fields to radiation like in medicine and nuclear power station buildings. In this case protecting from undesirable radiation is a necessity for human health. Heavyweight concrete is one of the most important materials used in where radiation should be shielded, like those areas. In this study, used heavyweight aggregates of different mineral origin (Limonite, Siderite), in order to prepare different series in concrete mixtures and investigated radiation shielding properties. The experimental results on measuring the radiation shielding, the heavyweight concrete prepared with heavyweight aggregates of different mineral origin show that, are useful radiation absorbents when they used in concrete mixtures.

  16. Investigating Radiation Shielding Properties of Different Mineral Origin Heavyweight Concretes

    International Nuclear Information System (INIS)

    Basyigit, Celalettin; Uysal, Volkan; Kilincarslan, Semsettin; Akkas, Ayse; Mavi, Betuel; Guenoglu, Kadir; Akkurt, Iskender

    2011-01-01

    The radiation although has hazardous effects for human health, developing technologies bring lots of usage fields to radiation like in medicine and nuclear power station buildings. In this case protecting from undesirable radiation is a necessity for human health. Heavyweight concrete is one of the most important materials used in where radiation should be shielded, like those areas. In this study, used heavyweight aggregates of different mineral origin (Limonite, Siderite), in order to prepare different series in concrete mixtures and investigated radiation shielding properties. The experimental results on measuring the radiation shielding, the heavyweight concrete prepared with heavyweight aggregates of different mineral origin show that, are useful radiation absorbents when they used in concrete mixtures.

  17. Radiation Shielding Properties of Some Marbles in Turkey

    International Nuclear Information System (INIS)

    Guenoglu, K.; Akkurt, I.

    2011-01-01

    Especially after development of technology, radiation started to be used in a large fields such as medicine, industry and energy. Using radiation in those fields bring hazardous effect of radiation into humancell. Thus radiation protection becomes important in physics. Although there are three ways for radiation protection, shielding of the radiation is the most commonly used method. Natural Stones such as marble is used as construction material especially in critical building and thus its radiation shielding capability should be determined.In this study, gamma ray shielding properties of some different types of marble mined in Turkey, have been measured using a NaI(Tl) scintillator detector. The measured results were also compared with the theoretical calculations XCOM.

  18. Calculation of radiation attenuation coefficients, effective atomic numbers and electron densities for some building materials

    International Nuclear Information System (INIS)

    Damla, N.; Baltas, H.; Celik, A.; Kiris, E.; Cevik, U.

    2008-01-01

    Some building materials, regularly used in Turkey, such as sand, cement, gas concrete (lightweight, aerated concrete), tile and brick, have been investigated in terms of mass attenuation coefficient, effective atomic, numbers (Z eff ), effective electron densities (N e ) and photon interaction cross section (σ a ) at 14 different energies from 81- to 1332-keV gamma-ray energies. The gamma rays were detected by using gamma-ray spectroscopy, a High Purity Germanium (HPGe) detector. The elemental compositions of samples were analysed using an energy dispersive X-ray fluorescence spectrometer. Mass attenuation coefficients of these samples have been compared with tabulations based upon the results of WinXcom. The theoretical mass attenuation coefficients were estimated using the mixture rule and the experimental values of investigated parameters were compared with the calculated values. The agreement of measured values of mass attenuation coefficient, effective atomic numbers, effective electron densities and photon interaction cross section with the theory has been found to be quite satisfactory. (authors)

  19. Taurine attenuates radiation-induced lung fibrosis in C57/Bl6 fibrosis prone mice.

    LENUS (Irish Health Repository)

    Robb, W B

    2010-03-01

    The amino acid taurine has an established role in attenuating lung fibrosis secondary to bleomycin-induced injury. This study evaluates taurine\\'s effect on TGF-beta1 expression and the development of lung fibrosis after single-dose thoracic radiotherapy.

  20. Study of 60 Co gamma radiation effects on the biochemical, biological and immunological properties of the Bothrops jararaca venom

    International Nuclear Information System (INIS)

    Guarnieri, M.C.

    1992-01-01

    Gamma radiation, by including different modifications on the toxic, enzymatic and immunological activities of proteins, could be an useful implement for detoxification of snake venoms. The present work was done to study the mechanism of action and effects of gamma rays on the Bothrops jararaca venom, determining the radiation dose that attenuates the toxic and enzymatic activities maintaining the immunological properties of venom, and also the most important free radicals on this process. The results of immuno diffusion, immunoblotting, immunoprecipitation, immunization of mice and rabbits, and neutralization tests, showed the maintenance of antigenic and immunogenic properties and decrease of neutralizing capacity of antibodies induced by 3,000 and 4,000 Gy irradiated venom. Since the immunological properties were the most radioresistant, it was possible to determine the dose of 2,000 Gy, as the ideal radiation dose in the treatment of venoms aiming the improvement of the immunization schedule to obtain bothropic antisera. (author). 164 refs, 19 tabs, 54 figs

  1. Radiation Shielding Properties of Some Marbles in Turkey

    Science.gov (United States)

    Günoǧlu, K.; Akkurt, I.

    2011-12-01

    Especially after development of technology, radiation started to be used in a large fields such as medicine, industry and energy. Using radiation in those fields bring hazordous effect of radition into humancell. Thus radiation protection becomes important in physics. Although there are three ways for radiation protection, shielding of the radiation is the most commonly used method. Natural Stones such as marble is used as construction material especially in critical building and thus its radiation shielding capability should be determined. In this study, gamma ray shielding properties of some different types of marble mined in Turkey, have been measured using a NaI(Tl) scintillator detector. The measured results were also compared with the theoretical calculations XCOM.

  2. Measurement of fractional x-ray absorption for radiation attenuating surgical gloves

    International Nuclear Information System (INIS)

    Nagalakshmi, B.; Sawant, S.G.; Nair, C.P.R.; Joshi, V.D.

    2000-01-01

    It is essential to make use of lead gloves having 0.25 mm lead equivalence only for routine x-ray screening as stipulated by International Commission on Radiological Protection. Such surgical gloves which provide attenuation to the extent of one half value thickness for low energy are very useful for the present trend of special x-ray examinations which are on the increase

  3. Optimization of transmission-scan time for the FixER method: a MR-based PET attenuation correction with a weak fixed-position external radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Hiroshi; Hirano, Yoshiyuki; Kershaw, Jeff; Yoshida, Eiji [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba (Japan); Shiraishi, Takahiro [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba (Japan); Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Suga, Mikio [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba (Japan); Center for Frontier Medical Engineering, Chiba University (Japan); Obata, Takayuki [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba (Japan); Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Ito, Hiroshi; Yamaya, Taiga [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba (Japan)

    2014-07-29

    In recent work, we proposed an MRI-based attenuation-coefficient (μ-value) estimation method that uses a weak fixed-position external radiation source to construct an attenuation map for PET/MRI. In this presentation we refer to this method as FixER, and perform a series of simulations to investigate the duration of the transmission scan required to accurately estimate μ-values.

  4. Optimization of transmission-scan time for the FixER method: a MR-based PET attenuation correction with a weak fixed-position external radiation source

    International Nuclear Information System (INIS)

    Kawaguchi, Hiroshi; Hirano, Yoshiyuki; Kershaw, Jeff; Yoshida, Eiji; Shiraishi, Takahiro; Suga, Mikio; Obata, Takayuki; Ito, Hiroshi; Yamaya, Taiga

    2014-01-01

    In recent work, we proposed an MRI-based attenuation-coefficient (μ-value) estimation method that uses a weak fixed-position external radiation source to construct an attenuation map for PET/MRI. In this presentation we refer to this method as FixER, and perform a series of simulations to investigate the duration of the transmission scan required to accurately estimate μ-values.

  5. Low-dose radiation attenuates chemical mutagenesis in vivo. Cross adaptation

    International Nuclear Information System (INIS)

    Kakinuma, Shizuko; Yamauchi, Kazumi; Amasaki, Yoshiko; Nishimura, Mayumi; Shimada, Yoshiya

    2009-01-01

    The biological effects of low-dose radiation are not only of social concern but also of scientific interest. The radioadaptive response, which is defined as an increased radioresistance by prior exposure to low-dose radiation, has been extensively studied both in vitro and in vivo. Here we briefly review the radioadaptive response with respect to mutagenesis, survival rate, and carcinogenesis in vivo, and introduce our recent findings of cross adaptation in mouse thymic cells, that is, the suppressive effect of repeated low-dose radiation on mutation induction by the alkylating agent N-ethyl-N-nitrosourea. (author)

  6. Properties of immobilized papain by radiation polymerization

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Kaetsu, Isao

    1984-01-01

    Papain was immobilized by the radiation polymerization of various monomers at low temperatures and the effects of the polymer matrix on the enzyme activity and thermal stability of the immobilized enzymes were studied. The activity of the immobilized enzymes prepared from monofunctional (acrylate and methacrylate) monomers was higher than that from bifunctional (bismethacrylate) monomers and that from polyoxyethylene dimethacrylate monomers increased with an increase in the number of oxyethylene units. The thermal stability of the immobilized enzymes prepared from hydrophilic monomers was higher than that from hydrophobic monomers and increased markedly with increasing monomer concentration. (author)

  7. Factors Influencing Virulence and Plaque Properties of Attenuated Venezuelan Equine Encephalomyelitis Virus Populations

    Science.gov (United States)

    Hearn, Henry J.; Seliokas, Zenonas V.; Andersen, Arthur A.

    1969-01-01

    A minority of stable large-plaque virus increased proportionally in stored unstable attenuated (9t) Venezuelan equine encephalomyelitis virus populations. L-cell-grown progeny (9t2) of stored 9t showed large amounts of large-plaque virus and increased virulence. Small-plaque virus inhibited large-plaque virus but not the reverse. Serial passage of small-plaque virus from 9t2 yielded a strain (20t) that was more attenuated than 9t. PMID:5823235

  8. Thermal radiative properties of a DLC coating

    Czech Academy of Sciences Publication Activity Database

    Hanzelka, Pavel; Králík, Tomáš; Mašková, A.; Musilová, Věra; Vyskočil, J.

    2008-01-01

    Roč. 48, 9-10 (2008), s. 455-457 ISSN 0011-2275 Institutional research plan: CEZ:AV0Z20650511 Keywords : thin films * heat transfer * radiant properties * cryostats Subject RIV: BJ - Thermodynamics Impact factor: 0.915, year: 2008

  9. Radiation influence on properties of nanocrystalline alloy

    International Nuclear Information System (INIS)

    Holkova, D.; Sitek, J.; Novak, P.; Dekan, J.

    2016-01-01

    Our work is focused on the studied of structural changes amorphous and nanocrystalline alloys after irradiation with electrons. For the analysis of these alloy we use two spectroscopic methods: Moessbauer spectroscopy and XRD. Measurements of nanocrystalline (Fe 3 Ni 1 ) 81 Nb 7 B 12 samples before and after electrons irradiation by means of Moessbauer spectroscopy and XRD showed that the electrons causes changes in magnetic structure which is reflected changes of direction of net magnetic moment. Structural changes occurs in the frame of error indicated by both spectroscopic methods. We can confirm that this kind alloys a resistive again electrons irradiation up to doses of 4 MGy. We observed in this frame only beginning of the radiation damage. (authors)

  10. Mechanical and radiation shielding properties of mortars with additive fine aggregate mine waste

    International Nuclear Information System (INIS)

    Gallala, Wissem; Hayouni, Yousra; Gaied, Mohamed Essghaier; Fusco, Michael; Alsaied, Jasmin; Bailey, Kathryn; Bourham, Mohamed

    2017-01-01

    Highlights: • Effectiveness of mine waste as additive fine aggregate has been investigated. • Experimental results are verified by computationally from composition of synthesized samples. • Work focuses on shielding materials for nuclear systems including spent fuel storage and drycasks. - Abstract: Incorporation of barite-fluorspar mine waste (BFMW) as a fine aggregate additive has been investigated for its effect on the mechanical and shielding properties of cement mortar. Several mortar mixtures were prepared with different proportions of BFMW ranging from 0% to 30% as fine aggregate replacement. Cement mortar mixtures were evaluated for density, compressive and tensile strengths, and gamma ray radiation shielding. The results revealed that the mortar mixes containing 25% BFMW reaches the highest compressive strength values, which exceeded 50 MPa. Evaluation of gamma-ray attenuation was both measured by experimental tests and computationally calculated using MicroShield software package, and results have shown that using BFMW aggregates increases attenuation coefficient by about 20%. These findings have demonstrated that the mine waste can be suitably used as partial replacement aggregate to improve radiation shielding as well as to reduce the mortar and concrete costs.

  11. Experimental study on radiation resistant properties of seismic isolation elements

    International Nuclear Information System (INIS)

    Yoneda, G.; Nojima, O.; Aizawa, S.; Uchiyama, Y.; Ikenaga, M.; Yoshizawa, T.

    1991-01-01

    Recently, studies on the application of a seismic isolation system to a reactor building and or the equipment of a nuclear power plant has been carried out. This study aims at investigating the influence which is exerted upon the mechanical properties of the seismic isolation elements by radiation. The authors conducted irradiation tests, using γ rays, on natural rubber bearings (NRB), lead rubber bearings (LRB), high damping rubber bearings (HRB), and the viscous fluid used in viscous dampers. The maximum radiation intensity was 5 x 10 7 R (Roentgen). The comparison between the mechanical properties of each seismic isolation element before and after the irradiation test are reported in the following. (author)

  12. Fibre optics cabling design for LHC detectors upgrade using variable radiation induced attenuation model

    CERN Document Server

    Shoaie, Mohammad Amin; Machado, Simao; Ricci, Daniel

    2018-01-01

    Foreseen upgrades over the next decades enable LHC to operate at a higher luminosity (HL-LHC). Accordingly, the optical links designed to transmit particle collision data need to be hardened against increased radiation level, allowing for a reliable communication. In this paper we study the fibre cabling design of a link between the transceiver optical front-end and the data control room. The radiation penalty calculation takes temperature drop down to ‒30°C into account. The proposed solution concatenates radiation-resistance and conventional fibres using multi-fibre interconnections. The end-to-end link loss during HL-LHC lifetime is estimated strictly less than 3.5 dB complying with predefined margin.

  13. Radiation-induced transient attenuation of optical fibers at 800 and 1300 nm

    International Nuclear Information System (INIS)

    Looney, L.D.; Lyons, P.B.

    1987-01-01

    Radiation-induced absorption in optical fibers has been a subject of considerable interest throughout the world. As availability and applications of fibers have evolved from ''first window'' systems operating near 850 nm to ''second window'' systems near 1300 nm, interest in wavelength dependence of radiation effects in optical fibers has similarly evolved. The present work summarizes second-window, radiation-induced transient absorption measurements in optical fibers for times shorter than 5 μs. Comparisons to first window data for these fibers are also presented. Only high purity silica fibers with low-OH concentrations were used in the present study to avoid the large OH absorption band in this region. This paper also collects first window data on several high-OH optical fibers

  14. The fascinating diatom frustule—can it play a role for attenuation of UV radiation?

    DEFF Research Database (Denmark)

    Ellegaard, Marianne; Lenau, Torben Anker; Lundholm, Nina

    2016-01-01

    size range as wave lengths of visible and ultraviolet (UV) light. This has prompted research into the possible role of the frustule in mediating light for the diatoms’ photosynthesis as well as into possible photonic applications of the diatom frustule. One of the possible biological roles, as well...... as area of potential application, is UV protection. In this review, we explore the possible adaptive value of the silica frustule with focus on research on the effect of UV radiation ondiatoms. We also explore the possible effect of the frustules on UV radiation, from a theoretical, biological......, and applied perspective, including recent experimental data on UV transmission of diatom frustules....

  15. Analysis of the variation of the attenuation curve in function of the radiation field size for k Vp X-ray beams using the MCNP-5C code

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Marco A.R., E-mail: marco@cetea.com.b, E-mail: marfernandes@fmb.unesp.b [Universidade Estadual Paulista Julio de Mesquita Filho (FMB/UNESP), Botucatu, SP (Brazil). Fac. de Medicina; Ribeiro, Victor A.B. [Universidade Estadual Paulista Julio de Mesquita Filho (IBB/UNESP), Botucatu, SP (Brazil). Inst. de Biociencias; Viana, Rodrigo S.S.; Coelho, Talita S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The paper illustrates the use of the Monte Carlo method, MCNP-5C code, to analyze the attenuation curve behavior of the 50 kVp radiation beam from superficial radiotherapy equipment as Dermopan2 model. The simulations seek to verify the MCNP-5C code performance to study the variation of the attenuation curve - percentage depth dose (PDD) curve - in function of the radiation field dimension used at radiotherapy of skin tumors with 50 kVp X-ray beams. The PDD curve was calculated for six different radiation field sizes with circular geometry of 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 cm in diameter. The radiation source was modeled considering a tungsten target with inclination 30 deg, focal point of 6.5 mm in diameter and energy beam of 50 kVp; the X-ray spectrum was calculated with the MCNP-5C code adopting total filtration (beryllium window of 1 mm and aluminum additional filter of 1 mm). The PDD showed decreasing behavior with the attenuation depth similar what is presented on the literature. There was not significant variation at the PDD values for the radiation field between 1.0 and 4.0 cm in diameter. The differences increased for fields of 5.0 and 6.0 cm and at attenuation depth higher than 1.0 cm. When it is compared the PDD values for fields of 3.0 and 6.0 cm in diameter, it verifies the greater difference (12.6 %) at depth of 5.7 cm, proving the scattered radiation effect. The MCNP-5C code showed as an appropriate procedure to analyze the attenuation curves of the superficial radiotherapy beams. (author)

  16. Radiative properties of optical board embedded with optical black holes

    International Nuclear Information System (INIS)

    Qiu, J.; Liu, L.H.; Hsu, P.-F.

    2011-01-01

    Unique radiative properties, such as wavelength-selective transmission or absorption, have been intensively studied. Historically, geometries for wavelength-selective of light absorption were developed based on metallic periodical structures, which were only applied in the case of TM wave incidence due to the excitation of surface plasmons. In this paper, we develop an alternative approach to selective wavelength of light absorption (both TE and TM waves), based on an optical board periodical embedded with optical black holes. Numerical work was carried out to study such structure's radiative properties within the wavelength range of 1-100 μm. The electromagnetic wave transmission through such a structure is predicted by solving Maxwell's equations using the finite-difference time-domain (FDTD) method. Spectral absorptance varies with the period of optical black holes. When the incidence wavelength is much larger than the inner core radius, most of the light energy will be transmitted through the inner core. Otherwise, the energy will be mainly absorbed. Numerical results of the radiative properties of the optical board with different incidence wavelengths are also obtained. The effect of the oblique incidence wave is investigated. This study helps us gain a better understanding of the radiative properties of an optical board embedded with optical black holes and develop an alternative approach to selective light absorption.

  17. Gamma radiation effect study in polycarbonate optical and mechanics properties

    International Nuclear Information System (INIS)

    Araujo, E.S. de.

    1991-02-01

    Polycarbonates (PC) are used in different industrial applications due to their excellent dielectric characteristics, impact resistance, and high temperature resistance. In some of these applications, the polycarbonates are exposed to gamma radiation which produces molecular scissions, causing changes in the polycarbonate properties. To estimate the radiation effects in the Durolon polycarbonate, samples were irradiated with 60 Co gamma rays with doses between 0,2 kGy and 300 kGy. The results obtained showed that the PC mechanical properties are not changed due to the gamma radiation. However the results showed an expressive variation in the yellowness index for doses above 1 kGy. The results showed that it is possible to use the gamma sterilization of PC in applications where the coloration of PC is not critical. (author). 21 refs, 25 figs, 3 tabs

  18. Attenuation of Visible Solar Radiation in the Upper Water Column: A Model Based on IOPs

    National Research Council Canada - National Science Library

    Lee, Zhong P; Du, KePing; Arnone, Robert; Liew, SooChin; Penta, Bradley

    2005-01-01

    .... Currently, KPAR is estimated based on chlorophyll concentration ([C]) from ocean color. This kind of approach works well for waters where all optical properties can be adequately described by values of [C...

  19. Resveratrol attenuates radiation damage in Caenorhabditis elegans by preventing oxidative stress

    International Nuclear Information System (INIS)

    Ye Kan; Gu Guixiong; Ji Chenbo; Ni Yuhui; Chen Xiaohui; Guo Xirong; Lu Xiaowei; Gao Chunlin; Zhao Yaping

    2010-01-01

    Resveratrol, a member of a class of polyphenolic compounds known as flavonols, has been extensively studied for its anticancer, antiviral, anti-inflammatory, and neuroprotective roles. Caenorhabidits elegans is a well-established animal for investigating responses to radiation. We found that resveratrol may provide protection against hazardous radiation. Pre-treatment with resveratrol extended both the maximum and mean life span of irradiated C. elegans. Resveratrol acted as a strong radical scavenger and regulated superoxide dismutase (SOD) expression. In addition, resveratrol was shown to be capable of alleviating γ-ray radiation exposure-induced reduction in mitochondrial SOD expression. Ultimately, a correlation may exist between dietary intake of trace amounts of resveratrol and anti-aging effects. A specific response mechanism may be activated after the administration of resveratrol in irradiated animals. Our results suggest the protective effect of resveratrol is due to its strong ability to protect from oxidative stress and protective effects in mitochondria. Therefore, resveratrol is potentially an effective protecting agent against irradiative damage. (author)

  20. Radiation mitigating properties of the lignan component in flaxseed

    International Nuclear Information System (INIS)

    Pietrofesa, Ralph; Christofidou-Solomidou, Melpo; Turowski, Jason; Tyagi, Sonia; Dukes, Floyd; Arguiri, Evguenia; Busch, Theresa M; Gallagher-Colombo, Shannon M; Solomides, Charalambos C; Cengel, Keith A

    2013-01-01

    Wholegrain flaxseed (FS), and its lignan component (FLC) consisting mainly of secoisolariciresinol diglucoside (SDG), have potent lung radioprotective properties while not abrogating the efficacy of radiotherapy. However, while the whole grain was recently shown to also have potent mitigating properties in a thoracic radiation pneumonopathy model, the bioactive component in the grain responsible for the mitigation of lung damage was never identified. Lungs may be exposed to radiation therapeutically for thoracic malignancies or incidentally following detonation of a radiological dispersion device. This could potentially lead to pulmonary inflammation, oxidative tissue injury, and fibrosis. This study aimed to evaluate the radiation mitigating effects of FLC in a mouse model of radiation pneumonopathy. We evaluated FLC-supplemented diets containing SDG lignan levels comparable to those in 10% and 20% whole grain diets. 10% or 20% FLC diets as compared to an isocaloric control diet (0% FLC) were given to mice (C57/BL6) (n=15-30 mice/group) at 24, 48, or 72-hours after single-dose (13.5 Gy) thoracic x-ray treatment (XRT). Mice were evaluated 4 months post-XRT for blood oxygenation, lung inflammation, fibrosis, cytokine and oxidative damage levels, and survival. FLC significantly mitigated radiation-related animal death. Specifically, mice fed 0% FLC demonstrated 36.7% survival 4 months post-XRT compared to 60–73.3% survival in mice fed 10%-20% FLC initiated 24–72 hours post-XRT. FLC also mitigated radiation-induced lung fibrosis whereby 10% FLC initiated 24-hours post-XRT significantly decreased fibrosis as compared to mice fed control diet while the corresponding TGF-beta1 levels detected immunohistochemically were also decreased. Additionally, 10-20% FLC initiated at any time point post radiation exposure, mitigated radiation-induced lung injury evidenced by decreased bronchoalveolar lavage (BAL) protein and inflammatory cytokine/chemokine release at 16 weeks

  1. Radiation Improved Mechanical and Thermal Property of PP/HDPE

    International Nuclear Information System (INIS)

    Chaisupaditsin, M.; Thammit, C.; Techakiatkul, C.

    1998-01-01

    The mechanical properties, thermal properties and gel contents of PP-irradiated HDPE blends were studied. HDPE was gamma irradiated in the dose range of 10-30 kGy. The ratios of polymer blends of 30PP:70HDPE was mixed by a twin screw extruder at speed of 50 rpm. Irradiated HDPE with 30 kGy showed the highest gel contents. The blends ratio of 30PP:70HDPE (30 kGy) shows better heat resistance than the blends with non-irradiated HDPE. With increasing the radiation doses, the mechanical properties of the blends were improved

  2. Radiation dose estimation and mass attenuation coefficients of cement samples used in Turkey

    International Nuclear Information System (INIS)

    Damla, N.; Cevik, U.; Kobya, A.I.; Celik, A.; Celik, N.; Van Grieken, R.

    2010-01-01

    Different cement samples commonly used in building construction in Turkey have been analyzed for natural radioactivity using gamma-ray spectrometry. The mean activity concentrations observed in the cement samples were 52, 40 and 324 Bq kg -1 for 226 Ra, 232 Th and 40 K, respectively. The measured activity concentrations for these radionuclides were compared with the reported data of other countries and world average limits. The radiological hazard parameters such as radium equivalent activities (Ra eq ), gamma index (I γ ) and alpha index (I α ) indices as well as terrestrial absorbed dose and annual effective dose rate were calculated and compared with the international data. The Ra eq values of cement are lower than the limit of 370 Bq kg -1 , equivalent to a gamma dose of 1.5 mSv y -1 . Moreover, the mass attenuation coefficients were determined experimentally and calculated theoretically using XCOM in some cement samples. Also, chemical compositions analyses of the cement samples were investigated.

  3. Radiation dose estimation and mass attenuation coefficients of marble used in Turkey

    International Nuclear Information System (INIS)

    Cevik, U.; Damla, N.; Kobya, A.I.; Celik, A.; Kara, A.

    2010-01-01

    In this study the natural radioactivity in marble samples used in Turkey was measured by means of gamma spectrometry. The results showed that the specific activities of 226 Ra, 232 Th and 40 K ranged from 10 to 92 Bq kg -1 , from 4 to 122 Bq kg -1 and from 28 to 676 Bq kg -1 , respectively. The radiological hazards in marble samples due to the natural radioactivity were inferred from calculations of radium equivalent activities (Ra eq ), indoor absorbed dose rate in air values, the annual effective dose and gamma and alpha indexes. These radiological parameters were evaluated and compared with the internationally recommended values. The measurements showed that marble samples used in Turkey have low level of natural radioactivity; therefore, the use of these types of marble in dwellings is safe for inhabitants. Mass attenuation coefficients (μ/ρ) were obtained both experimentally and theoretically for different marble samples produced in Turkey by using gamma-ray transmission method. Experimental values showed a good agreement with the theoretical values.

  4. Pathology associated with vaccination against Schistosoma mansoni in mice using cryopreserved radiation attenuated schistosomula

    International Nuclear Information System (INIS)

    James, E.R.; Dobinson, A.R.

    1985-01-01

    Twenty-one mice were injected intramuscularly with 2000 Schistosoma mansoni schistosomula irradiated at 20 krad and cryopreserved; three mice were killed on each of day 0, 2, 5, 9, 19, 28 and 44 days after infection and muscle from the site of injection in the left hind leg, the lungs and livers removed for histological examination. Schistosomula were seen in sections from the leg muscle from days 0 to 19 inclusive, in the lungs from day 2 to day 28 inclusive and in the livers from days 9 to 28 inclusive. Most schistosomula were seen in sections of the leg muscle with considerably fewer parasites occurring in the lungs and especially the livers. Granulomatous reactions comprising eosinophils, polymorphs, plasma cells and macrophages were first seen in the leg muscle on day 2, in the lungs on day 5 and in the liver on day 19. The peak inflammatory reactions appeared to occur between days 5 and 9, 9 and 19 and 28 and 44 respectively in the three tissues. The pathology is discussed in relation to the dose of irradiation required to attenuate the schistosomula for optimal immunogenicity. (author)

  5. Tailoring Thermal Radiative Properties with Doped-Silicon Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuomin [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-08-28

    Aligned doped-silicon nanowire (D-SiNW) arrays form a hyperbolic metamaterial in the mid-infrared and have unique thermal radiative properties, such as broadband omnidirectional absorption, low-loss negative refraction, etc. A combined theoretical and experimental investigation will be performed to characterize D-SiNW arrays and other metamaterials for tailoring thermal radiative properties. Near-field thermal radiation between anisotropic materials with hyperbolic dispersions will also be predicted for potential application in energy harvesting. A new kind of anisotropic metamaterial with a hyperbolic dispersion in a broad infrared region has been proposed and demonstrated based on aligned doped-silicon nanowire (D-SiNW) arrays. D-SiNW-based metamaterials have unique thermal radiative properties, such as broadband omnidirectional absorption whose width and location can be tuned by varying the filling ratio and/or doping level. Furthermore, high figure of merit (FOM) can be achieved in a wide spectral region, suggesting that D-SiNW arrays may be used as a negative refraction material with much less loss than other structured materials, such as layered semiconductor materials. We have also shown that D-SiNWs and other nanostructures can significantly enhance near-field thermal radiation. The study of near-field radiative heat transfer between closely spaced objects and the electromagnetic wave interactions with micro/nanostructured materials has become an emerging multidisciplinary field due to its importance in advanced energy systems, manufacturing, local thermal management, and high spatial resolution thermal sensing and mapping. We have performed extensive study on the energy streamlines involving anisotropic metamaterials and the applicability of the effective medium theory for near-field thermal radiation. Graphene as a 2D material has attracted great attention in nanoelectronics, plasmonics, and energy harvesting. We have shown that graphene can be used to

  6. Program description of FIBRAM: a radiation attenuation model for optical fibers

    International Nuclear Information System (INIS)

    Ingram, W.J.

    1987-06-01

    The report describes a fiber optics system model and its computer implementation. This implementation can calculate the bit error ratio (BER) versus time for optical fibers that have been exposed to gamma radiation. The program is designed so that the user may arbitrarily change any or all of the system input variables and produce separate output calculations. The primary output of the program is a table of the BER as a function of time. This table may be stored on magnetic media and later incorporated into computer graphics programs

  7. On the radiative and thermodynamic properties of the cosmic radiations using COBE FIRAS instrument data: I. Cosmic microwave background radiation

    Science.gov (United States)

    Fisenko, Anatoliy I.; Lemberg, Vladimir

    2014-07-01

    Using the explicit form of the functions to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, and pressure in the finite range of frequencies v 1≤ v≤ v 2 are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60-600 GHz frequency interval at the temperature T=2.72548 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant σ are calculated. In the case of the dipole spectrum, the constants a and σ, and the radiative and thermodynamic properties of the CMB radiation are obtained using the mean amplitude T amp=3.358 mK. It is shown that the Doppler shift leads to a renormalization of the radiation density constant a, the Stefan-Boltzmann constant σ, and the corresponding constants for the thermodynamic functions. The expressions for new astrophysical parameters, such as the entropy density/Boltzmann constant, and number density of CMB photons are obtained. The radiative and thermodynamic properties of the Cosmic Microwave Background radiation for the monopole and dipole spectra at redshift z≈1089 are calculated.

  8. Towards a quantitative, measurement-based estimate of the uncertainty in photon mass attenuation coefficients at radiation therapy energies

    Science.gov (United States)

    Ali, E. S. M.; Spencer, B.; McEwen, M. R.; Rogers, D. W. O.

    2015-02-01

    In this study, a quantitative estimate is derived for the uncertainty in the XCOM photon mass attenuation coefficients in the energy range of interest to external beam radiation therapy—i.e. 100 keV (orthovoltage) to 25 MeV—using direct comparisons of experimental data against Monte Carlo models and theoretical XCOM data. Two independent datasets are used. The first dataset is from our recent transmission measurements and the corresponding EGSnrc calculations (Ali et al 2012 Med. Phys. 39 5990-6003) for 10-30 MV photon beams from the research linac at the National Research Council Canada. The attenuators are graphite and lead, with a total of 140 data points and an experimental uncertainty of ˜0.5% (k = 1). An optimum energy-independent cross section scaling factor that minimizes the discrepancies between measurements and calculations is used to deduce cross section uncertainty. The second dataset is from the aggregate of cross section measurements in the literature for graphite and lead (49 experiments, 288 data points). The dataset is compared to the sum of the XCOM data plus the IAEA photonuclear data. Again, an optimum energy-independent cross section scaling factor is used to deduce the cross section uncertainty. Using the average result from the two datasets, the energy-independent cross section uncertainty estimate is 0.5% (68% confidence) and 0.7% (95% confidence). The potential for energy-dependent errors is discussed. Photon cross section uncertainty is shown to be smaller than the current qualitative ‘envelope of uncertainty’ of the order of 1-2%, as given by Hubbell (1999 Phys. Med. Biol 44 R1-22).

  9. Radiation cured polyester compositions containing metal-properties

    Science.gov (United States)

    Szalińska, H.; Pietrzak, M.; Gonerski, A.

    The subject of the studies was unsaturated polyester resin, Polimal-109 and its compositions containing acrylates of: sodium, potassium, calcium, magnesium, barium, manganese, iron, cobalt, copper and acrylic acid. Polyester resin modified with acrylic acid salts was cured with 60Co gamma radiation. Measurements of Vicat softening temperature, water absorption, creep current resistance, volume and surface resistivity, the tangent of dielectric loss angle and permittivity of radiation cured compositions were carried out. The results of the studies presented testify to the fact that the properties of cross-linked polymers alter after ionogenic compounds have been introduced into them.

  10. Radiation cured polyester compositions containing metal-properties

    International Nuclear Information System (INIS)

    Szalinska, H.; Pietrzak, M.; Gonerski, A.

    1987-01-01

    The subject of the studies was unsaturated polyester resin, Polimal-109 and its compositions containing acrylates of: sodium, potassium, calcium, magnesium, barium, manganese, iron, cobalt, copper and acrylic acid. Polyester resin modified with acrylic acid salts was cured with 60 Co gamma radiation. Measurements of Vicat softening temperature, water absorption, creep current resistance, volume and surface resistivity, the tangent of dielectric loss angle and permittivity of radiation cured compositions were carried out. The results of the studies presented testify to the fact that the properties of cross-linked polymers alter after ionogenic compounds have been introduced into them. (author)

  11. Evaluation of the vibration attenuation properties of an air-inflated cushion with two different heavy machinery seats in multi-axis vibration environments including jolts.

    Science.gov (United States)

    Ji, Xiaoxu; Eger, Tammy R; Dickey, James P

    2017-03-01

    Seats and cushions can attenuate whole-body vibration (WBV) exposures and minimize health risks for heavy machine operators. We successfully developed neural network (NN) algorithms to identify the vibration attenuation properties for four different seating conditions (seat/cushion combinations), and implemented each of the NN models to predict the equivalent daily exposure A(8) values for various vehicles in the forestry and mining environments. We also evaluated the performance of the new prototype No-Jolt™ air-inflated cushion and the original cushion of each seat with jolt exposures. We observed that the air cushion significantly improved the vibration attenuation properties of the seat that initially had good performance, but not for the seat that had relatively poor vibration attenuation properties. In addition, operator's anthropometrics and sex influenced the performance of the air-inflated cushion when the vibration environment included jolt exposures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Study of Radiation Shielding Properties of selected Tropical Wood Species for X-rays in the 50-150 keV Range

    Directory of Open Access Journals (Sweden)

    S. Aggrey-Smith

    2016-03-01

    Full Text Available This paper compares the attenuation coefficients of 20 tropical hard wood species based on their linear and mass attenuation and half value layer (HVL properties for X-rays of energy 50–150 keV using a narrow collimated beam from a Cs-137 source. The narrow collimated beam method made corrections from multiple and small-angle scatterings of photons unnecessary. The attenuation depended on the chemical composition and densities of the wood species. The linear attenuation coefficients of wood species at 50–150 keV were highest for Pterygota macrocarpa (4.53 m−1 and lowest for Antiaris africana (1.24 m−1; the mass attenuation coefficient was highest for Triplochiton scleroxylon (17.62 m2/kg and lowest for Nesogordonia papaverifera (2.27 m2/kg.The HVL was highest for Antiaris africana (0.27 m and lowest for Pterygota macrocarpa (0.149 m. Pterygota macrocarpa of about 0.36 m thickness could serve as a more affordable radiation shielding material against secondary scatter and leakage radiations in place of lead, copper or concrete for low X-ray radiations up to 150 keV.

  13. Properties of an extrapolation chamber for beta radiation dosimetry

    International Nuclear Information System (INIS)

    Caldas, L.V.E.

    The properties of a commercial extrapolation chamber were studied, and the possibility is shown of its use in beta radiation dosimetry. The chamber calibration factors were determined for several sources ( 90 Sr, 90 Y- 204 Tl and 147 Pm) making known the dependence of its response on the energy of the incident radiation. Extrapolation curves allow to obtain independence on energy for each source. One of such curves, shown for the 90 Sr- 90 Y source at 50 cm from the detector, is obtained through the variation of the chamber window thickness and the extrapolation to the null distance (determined graphically). Different curves shown also: 1) the dependence of the calibration factor on the average energy of beta radiation; 2) the variation of ionization current with the distance between the chamber and the sources; 3) the effect of the collecting electrode area on the value of calibration factors for the different sources. (I.C.R.) [pt

  14. Assembly of gamma radiation detection with directivity properties

    International Nuclear Information System (INIS)

    Stoica, M.; Talpalariu, C.

    2016-01-01

    An assembly of gamma radiation detection with directivity properties and small size enables the development of portable equipment or robots specialized in finding and signaling radioactively contaminated areas in case of nuclear incidents or decommissioning of nuclear installations. Directivity characteristic of the assembly of gamma radiation detection is very important when aiming to build an equipment for searching radioactively contaminated areas. In order to obtain a suitable directivity characteristics in terms of detection of gamma rays, it was necessary to construct a lead collimator with a cylindrical shape. The detector, preamplifier and amplifier pulse were placed inside the collimator and pulse discriminator circuit and power source were placed beside the collimator, all being disposed within the housing cylindrical experimental. A PIN photodiode type was used as a detector of gamma radiation. (authors)

  15. Degrading radiation effects on properties of bromobutyl rubber compounds

    Energy Technology Data Exchange (ETDEWEB)

    Scagliusi, Sandra R.; Cardoso, Elisabeth C.L.; Pozenato, Cristina A.; Lugao, Ademar B., E-mail: srscagliusi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    The understanding of chemistry involved in degradation induced radiation is becoming more and more relevant in the re-use of polymeric materials, as well in beneficial radiation uses. Degrading radiation effects have been considered from viewpoint of controlled degradation for isoprene/isobutene in rubbers for recycling purposes. Bromobutyl rubber (BIIR) is an isobutylene/isoprene copolymer comprising 1.9 to 2.1% bromine and has a lot of applications including in tires air-chambers. In this work there were evaluated gamma-irradiation effects for re-use or recycling objectives in elastomeric bromobutyl compositions irradiated at 5, 15, 25, 50, 100,150 and 200 kGy. Mechanical properties, hardness and swelling were assessed in non-vulcanized and vulcanized rubber, non-irradiated and irradiated at different doses. The major gamma radiation effect in butyl rubber is the generation of free radicals along changes in mechanical properties. Irradiation effects in bromobutyl rubber compounds were comprehensively investigated, demonstrated and discussed. (author)

  16. Properties of radiation-synthesized polyvinylpyrrolidone/chitosan hydrogel blends

    Energy Technology Data Exchange (ETDEWEB)

    Mahmud, Maznah [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia); Radiation Processing Technology Division, Malaysian Nuclear Agency, 43000 Kajang, Selangor (Malaysia); Daik, Rusli [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia); Adam, Zainah [Radiation Processing Technology Division, Malaysian Nuclear Agency, 43000 Kajang, Selangor (Malaysia)

    2015-09-25

    Poly(vinylpyrrolidone) (PVP)-crosslinked chitosan hydrogels were prepared by gamma radiation at various doses; 1, 3 5, 7, 10, 15, 20, 25 and 30kGy. Gamma radiation was used as a crosslinking tool which requires no chemical initiator, no heating process and need no purification step on the end products obtained. The hydrogel formulations were composed of 6% chitosan with average molecular weight (Mw) = 48 800 g/mol and 14% PVP with Mw = 10 000 g/mol in 2% lactic acid. Physical properties of hydrogels such as gel fraction and swelling property at pH 5.5 and pH 7.0 as well as syneresis activity were determined. It was found that different radiation dose induces different effect on hydrogels’ network formed. Morphological study of hydrogels has been carried out by scanning electron microscope (SEM). From these preliminary evaluations, it can be concluded that gamma radiation is an effective tool for network development of hydrogels and it also induces enhancement on characteristics of hydrogels synthesized.

  17. Degrading radiation effects on properties of bromobutyl rubber compounds

    International Nuclear Information System (INIS)

    Scagliusi, Sandra R.; Cardoso, Elisabeth C.L.; Pozenato, Cristina A.; Lugao, Ademar B.

    2013-01-01

    The understanding of chemistry involved in degradation induced radiation is becoming more and more relevant in the re-use of polymeric materials, as well in beneficial radiation uses. Degrading radiation effects have been considered from viewpoint of controlled degradation for isoprene/isobutene in rubbers for recycling purposes. Bromobutyl rubber (BIIR) is an isobutylene/isoprene copolymer comprising 1.9 to 2.1% bromine and has a lot of applications including in tires air-chambers. In this work there were evaluated gamma-irradiation effects for re-use or recycling objectives in elastomeric bromobutyl compositions irradiated at 5, 15, 25, 50, 100,150 and 200 kGy. Mechanical properties, hardness and swelling were assessed in non-vulcanized and vulcanized rubber, non-irradiated and irradiated at different doses. The major gamma radiation effect in butyl rubber is the generation of free radicals along changes in mechanical properties. Irradiation effects in bromobutyl rubber compounds were comprehensively investigated, demonstrated and discussed. (author)

  18. The attenuation effect of UVc radiation doses in gram-negative bacteria (Brucella, Yersinia, Escherichia coli)

    International Nuclear Information System (INIS)

    Al-Mariri, A.

    2007-01-01

    The gram-negative bacteria Yersinia enterocolitica sero group O:3 and O:9, and Brucella (Melitensis and abortus) together with Escherichia coli (O:157, DH5alpha-pEt15b), were investigated to evaluate their susceptibility to UV radiation at 254 nm. If the dose of UVc was 18.7 mW/cm2, the time required for inactivation of Y. enterocolitica and E. coli DH5alpha-pEt15b and O:157 was 240s and 360s in the dark and light respectively. Where if the dose was 19.5 mW/cm2, the time required was 60s in the dark and 120s in light respectively. The time required for inactivation of Brucella strains (melitensis and abortus) if the dose was 18.7 mW/cm2 was 240s in both dark and light, whereas it was 120s (dark) and 240s (light) respectively, when the dose was 19.5 mW/cm2. Using E. coli O:157 as control, it appears that Y. enterocolitica sero group O:3 and O:9 and vaccinal strains of Brucella (Rev. 1 and S19) are more sensitive to UV than wild Brucella strains. No relation was found between the sensitivity of Y. enterocolitica to UV and the presence or absence of a pYV+ virulence plasmid. (author)

  19. The attenuation effect of UVc radiation doses in gram-negative bacteria (Brucella, Yersinia, Escherichia coli)

    International Nuclear Information System (INIS)

    Al-Mariri, A.

    2006-06-01

    The gram-negative bacteria Yersinia enterocolitica sero group O:3 and O:9, and Brucella (Melitensis and abortus) together with Escherichia coli (O:157, DH5α-pEt15b), were investigated to evaluate their susceptibility to UV radiation at 254 nm. If the dose of UVc was 18.7 mW/cm 2 , the time required for inactivation of Y. enterocolitica and E. coli DH5α-pEt15b and O:157 was 240s and 360s in the dark and light respectively; where if the dose was 19.5 mW/cm 2 , the time required was 60s in the dark and 120s in light respectively. The time required for inactivation of Brucella strains (melitensis and abortus) if the dose was 18.7 mW/cm 2 was 240s in both dark and light, whereas it was 120s(dark) and 240s (light) respectively, when the dose was 19.5 mW/cm 2 . Using E. coli O:157 as control, it appears that Y. enterocolitica sero group O:3 and O:9 and vaccinal strains of Brucella (Rev. 1 and S19) are more sensitive to UV than wild Brucella strains. No relation was found between the sensitivity of Y. enterocolitica to UV and the presence or absence of a pYV + virulence plasmid. (author)

  20. Effect of radiation damage on the infrared properties of apatite

    International Nuclear Information System (INIS)

    Anis Faridah Md Nori; Yusof Mohd Amin; Rosli Mahat; Burhanuddin Kamaluddin

    1991-01-01

    Apatites are known to contain radioactive elements such as uranium and thorium at a few ppm in concentration. These elements decay and produce fission tracks inside the crystals. The presence of such tracks have been known to affect the thermoluminescence (TL) properties of apatites. These fission tracks can be removed by annealing the crystals in air. In this paper we present the result of a preliminary study on the effect of radiation damage on the infrared transmission of apatites

  1. Study of decontamination and radiation resistance properties of Indian paints

    International Nuclear Information System (INIS)

    Shah, S.M.; Gopinathan, E.; Bhagwath, A.M.

    1976-01-01

    A brief introduction to the study of contamination and radiation resistance properties of Indian paints used as coating for structural materials in the nuclear industry is given. The general composition of paints such as epoxy, vinyl, alkyd, phenolic, chlesimated rubber, etc. is given. Method of sample preparation, processing and actual evaluation of decontaminability are described. The results have been discussed in terms of decontamination factors. Some recommendations based on the performance of the paints studied are also included. (K.B.)

  2. Analytical properties of the radiance in atmospheric radiative transfer theory

    International Nuclear Information System (INIS)

    Otto, Sebastian

    2014-01-01

    It is demonstrated mathematically strictly that state density functions, as the radiance (specific intensity), exist to describe certain state properties of transported photons on microscopic and the state of the radiation field on macroscopic scale, which have independent physical meanings. Analytical properties as boundedness, continuity, differentiability and integrability of these functions to describe the photon transport are discussed. It is shown that the density functions may be derived based on the assumption of photons as real particles of non-zero and finite size, independently of usual electrodynamics, and certain historically postulated functional relationships between them were proved, that is, these functions can be derived mathematically strictly and consistently within the framework of the theory of the phenomenological radiative transfer if one takes the theory seriously by really assuming photons as particles. In this sense these functions may be treated as fundamental physical quantities within the scope of this theory, if one considers the possibility of the existence of photons. -- Highlights: • Proof of existence of the radiance within the scope of the theory of atmospheric radiative transfer. • Proof of relations between the photon number and photon energy density function and the radiance. • Strictly mathematical derivation of the analytical properties of these state density functions

  3. A proposal for PET/MRI attenuation correction with μ-values measured using a fixed-position radiation source and MRI segmentation

    International Nuclear Information System (INIS)

    Kawaguchi, Hiroshi; Hirano, Yoshiyuki; Yoshida, Eiji; Kershaw, Jeff; Shiraishi, Takahiro; Suga, Mikio; Ikoma, Yoko; Obata, Takayuki; Ito, Hiroshi; Yamaya, Taiga

    2014-01-01

    Several MRI-based attenuation correction methods have been reported for PET/MRI; these methods are expected to make efficient use of high-quality anatomical MRIs and reduce the radiation dose for PET/MRI scanning. The accuracy of the attenuation map (μ-map) from an MRI depends on the accuracy of tissue segmentation and the attenuation coefficients to be assigned (μ-values). In this study, we proposed an MRI-based μ-value estimation method with a non-rotational radiation source to construct a suitable μ-map for PET/MRI. The proposed method uses an accurately segmented tissue map, the partial path length of each tissue, and detected intensities of attenuated radiation from a fixed-position (rather than a rotating) radiation source to obtain the μ-map. We estimated the partial path length from a virtual blank scan of fixed-point radiation with the same scanner geometry using the known tissue map from MRI. The μ-values of every tissue were estimated by inverting a linear relationship involving the partial path lengths and measured radioactivity intensity. Validation of the proposed method was performed by calculating a fixed- point data set based upon real a real transmission scan. The root-mean-square error between the μ-values derived from a conventional transmission scan and those obtained with our proposed method were 2.4±1.4%, 17.4±9.1% and 6.6±4.3% for brain, bone and soft tissue other than brain, respectively. Although the error estimates for bone and soft tissue are not insignificant, the method we propose is able to estimate the brain μ-value accurately and it is this factor that most strongly affects the quantitative value of PET images because of the large volumetric ratio of the brain. -- Highlights: • An MRI-derived µ-map for the attenuation correction of PET images is proposed. • Method relies on segmentation of MRI and a fixed-point source transmission scan. • Tissue segmentation reduces the number of unknown µ-values. • Method

  4. A proposal for PET/MRI attenuation correction with μ-values measured using a fixed-position radiation source and MRI segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Hiroshi, E-mail: kwgc@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Hirano, Yoshiyuki, E-mail: yhirano@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Yoshida, Eiji, E-mail: rush@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Kershaw, Jeff, E-mail: len@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Shiraishi, Takahiro, E-mail: tshira@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Suga, Mikio, E-mail: mikio.suga@faculty.chiba-u.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Graduate School of Engineering of Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Ikoma, Yoko, E-mail: ikoma@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Obata, Takayuki, E-mail: t_obata@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Ito, Hiroshi, E-mail: hito@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Yamaya, Taiga, E-mail: taiga@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2014-01-11

    Several MRI-based attenuation correction methods have been reported for PET/MRI; these methods are expected to make efficient use of high-quality anatomical MRIs and reduce the radiation dose for PET/MRI scanning. The accuracy of the attenuation map (μ-map) from an MRI depends on the accuracy of tissue segmentation and the attenuation coefficients to be assigned (μ-values). In this study, we proposed an MRI-based μ-value estimation method with a non-rotational radiation source to construct a suitable μ-map for PET/MRI. The proposed method uses an accurately segmented tissue map, the partial path length of each tissue, and detected intensities of attenuated radiation from a fixed-position (rather than a rotating) radiation source to obtain the μ-map. We estimated the partial path length from a virtual blank scan of fixed-point radiation with the same scanner geometry using the known tissue map from MRI. The μ-values of every tissue were estimated by inverting a linear relationship involving the partial path lengths and measured radioactivity intensity. Validation of the proposed method was performed by calculating a fixed- point data set based upon real a real transmission scan. The root-mean-square error between the μ-values derived from a conventional transmission scan and those obtained with our proposed method were 2.4±1.4%, 17.4±9.1% and 6.6±4.3% for brain, bone and soft tissue other than brain, respectively. Although the error estimates for bone and soft tissue are not insignificant, the method we propose is able to estimate the brain μ-value accurately and it is this factor that most strongly affects the quantitative value of PET images because of the large volumetric ratio of the brain. -- Highlights: • An MRI-derived µ-map for the attenuation correction of PET images is proposed. • Method relies on segmentation of MRI and a fixed-point source transmission scan. • Tissue segmentation reduces the number of unknown µ-values. • Method

  5. Low skeletal muscle radiation attenuation and visceral adiposity are associated with overall survival and surgical site infections in patients with pancreatic cancer.

    Science.gov (United States)

    van Dijk, David P J; Bakens, Maikel J A M; Coolsen, Mariëlle M E; Rensen, Sander S; van Dam, Ronald M; Bours, Martijn J L; Weijenberg, Matty P; Dejong, Cornelis H C; Olde Damink, Steven W M

    2017-04-01

    Cancer cachexia and skeletal muscle wasting are related to poor survival. In this study, quantitative body composition measurements using computed tomography (CT) were investigated in relation to survival, post-operative complications, and surgical site infections in surgical patients with cancer of the head of the pancreas. A prospective cohort of 199 patients with cancer of the head of the pancreas was analysed by CT imaging at the L3 level to determine (i) muscle radiation attenuation (average Hounsfield units of total L3 skeletal muscle); (ii) visceral adipose tissue area; (iii) subcutaneous adipose tissue area; (iv) intermuscular adipose tissue area; and (v) skeletal muscle area. Sex-specific cut-offs were determined at the lower tertile for muscle radiation attenuation and skeletal muscle area and the higher tertile for adipose tissues. These variables of body composition were related to overall survival, severe post-operative complications (Dindo-Clavien ≥ 3), and surgical site infections (wounds inspected daily by an independent trial nurse) using Cox-regression analysis and multivariable logistic regression analysis, respectively. Low muscle radiation attenuation was associated with shorter survival in comparison with moderate and high muscle radiation attenuation [median survival 10.8 (95% CI: 8.8-12.8) vs. 17.4 (95% CI: 14.7-20.1), and 18.5 (95% CI: 9.2-27.8) months, respectively; P site infection rate, OR: 2.4 (95% CI: 1.1-5.3; P = 0.027). Low muscle radiation attenuation was associated with reduced survival, and high visceral adiposity was associated with an increase in surgical site infections. The strong correlation between muscle radiation attenuation and intermuscular adipose tissue suggests the presence of ectopic fat in muscle, warranting further investigation. CT image analysis could be implemented in pre-operative risk assessment to assist in treatment decision-making. © 2016 The Authors. Journal of Cachexia, Sarcopenia and Muscle

  6. Ultrasonic P- and S-Wave Attenuation and Petrophysical Properties of Deccan Flood Basalts, India, as Revealed by Borehole Studies

    Science.gov (United States)

    Vedanti, Nimisha; Malkoti, Ajay; Pandey, O. P.; Shrivastava, J. P.

    2018-03-01

    Petrophysical properties and ultrasonic P- and S-wave attenuation measurements on 35 Deccan basalt core specimens, recovered from Killari borehole site in western India, provide unique reference data-sets for a lesser studied Deccan Volcanic Province. These samples represent 338-m-thick basaltic column, consisting four lava flows each of Ambenali and Poladpur Formations, belonging to Wai Subgroup of the Deccan volcanic sequence. These basalt samples are found to be iron-rich (average FeOT: 13.4 wt%), but relatively poor in silica content (average SiO2: 47.8 wt%). The saturated massive basalt cores are characterized by a mean density of 2.91 g/cm3 (range 2.80-3.01 g/cm3) and mean P- and S-wave velocities of 5.89 km/s (range 5.01-6.50 km/s) and 3.43 km/s (range 2.84-3.69 km/s), respectively. In comparison, saturated vesicular basalt cores show a wide range in density (2.40-2.79 g/cm3) as well as P-wave (3.28-4.78 km/s) and S-wave (1.70-2.95 km/s) velocities. Based on the present study, the Deccan volcanic sequence can be assigned a weighted mean density of 2.74 g/cm3 and a low V p and V s of 5.00 and 3.00 km/s, respectively. Such low velocities in Deccan basalts can be attributed mainly to the presence of fine-grained glassy material, high iron contents, and hydrothermally altered secondary mineral products, besides higher porosity in vesicular samples. The measured Q values in saturated massive basalt cores vary enormously (Q p: 33-1960 and Q s: 35-506), while saturated vesicular basalt samples exhibit somewhat lesser variation in Q p (6-46) as well as Q s (5-49). In general, high-porosity rocks exhibit high attenuation, but we observed the high value of attenuation in some of the massive basalt core samples also. In such cases, energy loss is mainly due to the presence of fine-grained glassy material as well as secondary alteration products like chlorophaeite, that could contribute to intrinsic attenuation. Dominance of weekly bound secondary minerals might also be

  7. Radiation toxins: molecular mechanisms of action and radiomimetic properties .

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav

    . Injection of SRD-3 in toxic doses to experimen-tal animals. The clinical symptoms were: increased peristalsis, vomiting, diarrhea with blood. Postmortem section demonstrated multiple petechiae on the cell walls and serous membranes of the abdomen. Experiment N4. Injection of SRD-4 to experimental animals resulted in develop-ment lymphocytopenia, leukocytopenia, trombocytopenia. Autopsy of those animals that died showed changes that are specific a Hematopoietic form of the ARS with development of marked hemorrhagias into tissues of internal organs. Conclusion: 1. Administration of radiation toxins of SRD group to radiation naive animals in toxic doses 0.1 mg/kg; 0,5 mg/kg; 1 mg/kg; 2 mg/kg;3 mg/kg up to 30 mg/kg and more initiates development of specific toxic reactions with symptoms of the ARS. 2.Biological molecules of the Radiation Toxins SRD-group possess both toxic and antigenic properties.

  8. Development and biological properties of a new live attenuated mumps vaccine.

    Science.gov (United States)

    Saika, Shizuko; Kidokoro, Minoru; Kubonoya, Hiroko; Ito, Kozo; Ohkawa, Tokitada; Aoki, Athuko; Nagata, Noriyo; Suzuki, Kazuyoshi

    2006-01-01

    To develop a new live attenuated mumps vaccine, a wild mumps Y7 strain isolated from a patient who developed mild parotitis was treated with nitrosoguanidine and ultraviolet, followed by selection of a temperature-sensitive clone. The selected clone, Y125, showed stable temperature-sensitivity in Vero cells. Intraspinal inoculation of marmosets with the Y125 produced only minimal histopathological changes, while intracerebral inoculation of neonatal rats revealed that the Y125 did not cause hydrocephalus. Both these effects of the Y125 were similar to those of the non-neurovirulent Jeryl Lynn strain. Furthermore, subcutaneous inoculation of the Y125 induced high levels of neutralizing antibodies in all Cercopithecus monkeys examined. Although the safety and immunogenicity should be confirmed in further field trials in humans, the present results indicate that the Y125 could be a promising vaccine candidate.

  9. Properties of solar generators with reflectors and radiators

    Science.gov (United States)

    Ebeling, W. D.; Rex, D.; Bierfischer, U.

    1980-06-01

    Radiation cooled concentrator systems using silicon and GaAs cells were studied. The principle of radiation cooling by the reflector surfaces is discussed for cylindrical parabolic reflectors (SARA), truncated hexagonal pyramids, and a small trough configuration. Beam paths, collection properties for imperfect orientation, and thermal optimization parameters were analyzed. The three concentrating systems with radiation cooling offer advantages over the plane panel and over the large trough. With silicon solar cells they exhibit considerably lower solar cell consumption per Kw and also lower mass per kW. With GaAs cells the SARA system reduces the number of solar cells needed per kW to less than 10%. Also in all other cases SARA offers the best values for alpha and F sub sol, as long as narrow angular tolerances of the panel orientation can be met. Analysis of the energy collecting properties for imperfect orientation shows the superiority of the hexagonal concentrator. This device can produce power for even large angles between the sun and the panel normal.

  10. Gamma radiation effects on the structure and properties of polystyrene

    International Nuclear Information System (INIS)

    Lima, Ivania Soares de

    1996-01-01

    Polystyrene is a linear thermoplastic with a molecular weight ranging from 130,000 to 300,000 g/mole. This polymer has wide industrial applications. In medicine it is used to manufacture medical supplies which can be sterilized by ionizing radiation. The sterilization of medical instruments by ionizing radiation was introduced in the 60's as an alternative method to the conventional treatment with ethylene oxide gas. Radiosterilization is now worldwide standard procedure, as it is cheaper and cleaner. Some polymers, however, may show some changes in their physical properties following irradiation. These changes are due to the prevailing crosslinking and main chain scission induced by the irradiation of the polymeric system. In the present work, Brazilian-made polystyrene Lustrex was irrigated with γ rays in the presence of air at room temperature. Under these conditions, the analysis of viscosimetric essays showed the prevalence of crosslinking effects at doses up to 25 kGy and of main scission effects at does from 25 to 200 kGy. Observed G values (number of events per 100 eV of absorbed energy) pointed to low degrees of both crosslinking (Gx ∼ 0.15) and main chain scission (Gs ∼ 0.09). Therefore, the minor changes in Lustrex's molecular structure induced by irradiation have not influenced significantly its mechanical, thermal, and optical properties. As a result, Lustrex can be used in applications involving radiation without the need to introduce radioprotective to the polymeric system. (author)

  11. Toxic properties of specific radiation determinant molecules, derived from radiated species

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav; Kedar, Prasad; Casey, Rachael; Jones, Jeffrey

    Introduction: High doses of radiation induce the formation of radiation toxins in the organs of irradiated mammals. After whole body irradiation, cellular macromolecules and cell walls are damaged as a result of long-lived radiation-induced free radicals, reactive oxygen species, and fast, charged particles of radiation. High doses of radiation induce breaks in the chemical bonds of macromolecules and cross-linking reactions via chemically active processes. These processes result in the creation of novel modified macromolecules that possess specific toxic and antigenic properties defined by the type and dose of irradiation by which they are generated. Radiation toxins isolated from the lymph of irradiated animals are classified as hematotoxic, neurotoxic, and enteric non-bacterial (GI) radiation toxins, and they play an important role in the development of hematopoietic, cerebrovascular, and gastrointestinal acute radiation syndromes (ARS). Seven distinct toxins derived from post-irradiated animals have been designated as Specific Radiation Determinants (SRD): SRD-1 (neurotoxic radiation toxin generated by the cerebrovascular form of ARS), SRD-3 (enteric non-bacterial radiation toxins generated by the gastrointestinal form of ARS), and SRD-4 (hematotoxic radiation toxins generated by the hematological, bone marrow form of ARS). SRD-4 is further subdivided into four groups depending on the severity of the ARS induced: SRD-4/1, mild ARS; SRD-4/2, moderate ARS; SRD-4/3, severe ARS; and SRD-4/4, extremely severe ARS. The seventh SRD, SRD-2 is a toxic extract derived from animals suffering from a fourth form of ARS, as described in European literature and produces toxicity primarily in the autonimic nervous system. These radiation toxins have been shown to be responsible for the induction of important pathophysiological, immunological, and biochemical reactions in ARS. Materials and Methods: These studies incorporated the use of statistically significant numbers of a

  12. Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron

    Energy Technology Data Exchange (ETDEWEB)

    Zorla, Eyüp; Ipbüker, Cagatay [University of Tartu, Institute of Physics (Estonia); Biland, Alex [US Basalt Corp., Houston (United States); Kiisk, Madis [University of Tartu, Institute of Physics (Estonia); Kovaljov, Sergei [OÜ Basaltest, Tartu (Estonia); Tkaczyk, Alan H. [University of Tartu, Institute of Physics (Estonia); Gulik, Volodymyr, E-mail: volodymyr.gulik@gmail.com [Institute for Safety Problems of Nuclear Power Plants, Lysogirska 12, of. 201, 03028 Kyiv (Ukraine)

    2017-03-15

    Highlights: • Basalt fiber infused with natural and enriched boron in varying proportions. • Gamma-ray attenuation remains stable with addition of basalt-boron fiber. • Improvement in neutron shielding for nuclear facilities producing fast fission spectrum. • Basalt-boron fiber could decrease the shielding thickness in thermal spectrum reactors. - Abstract: The importance of radiation shielding is increasing in parallel with the expansion of the application areas of nuclear technologies. This study investigates the radiation shielding properties of two types of high strength concrete reinforced with basalt fibers infused with 12–20% boron oxide, containing varying fractions of natural and enriched boron. The gamma-ray shielding characteristics are analyzed with the help of the WinXCom, whereas the neutron shielding characteristics are modeled and computed by Monte Carlo Serpent code. For gamma-ray shielding, the attenuation coefficients of the studied samples do not display any significant variation due to the addition of basalt-boron fibers at any mixing proportion. For neutron shielding, the addition of basalt-boron fiber has negligible effects in the case of very fast neutrons (14 MeV), but it could considerably improve the neutron shielding of concrete for nuclear facilities producing a fast fission spectrum (e.g. with reactors as BN-800, FBTR) and thermal neutron spectrum (Light Water Reactors (LWR)). It was also found that basalt-boron fiber could decrease the thickness of radiation shielding material in thermal spectrum reactors.

  13. Radiation shielding properties of high performance concrete reinforced with basalt fibers infused with natural and enriched boron

    International Nuclear Information System (INIS)

    Zorla, Eyüp; Ipbüker, Cagatay; Biland, Alex; Kiisk, Madis; Kovaljov, Sergei; Tkaczyk, Alan H.; Gulik, Volodymyr

    2017-01-01

    Highlights: • Basalt fiber infused with natural and enriched boron in varying proportions. • Gamma-ray attenuation remains stable with addition of basalt-boron fiber. • Improvement in neutron shielding for nuclear facilities producing fast fission spectrum. • Basalt-boron fiber could decrease the shielding thickness in thermal spectrum reactors. - Abstract: The importance of radiation shielding is increasing in parallel with the expansion of the application areas of nuclear technologies. This study investigates the radiation shielding properties of two types of high strength concrete reinforced with basalt fibers infused with 12–20% boron oxide, containing varying fractions of natural and enriched boron. The gamma-ray shielding characteristics are analyzed with the help of the WinXCom, whereas the neutron shielding characteristics are modeled and computed by Monte Carlo Serpent code. For gamma-ray shielding, the attenuation coefficients of the studied samples do not display any significant variation due to the addition of basalt-boron fibers at any mixing proportion. For neutron shielding, the addition of basalt-boron fiber has negligible effects in the case of very fast neutrons (14 MeV), but it could considerably improve the neutron shielding of concrete for nuclear facilities producing a fast fission spectrum (e.g. with reactors as BN-800, FBTR) and thermal neutron spectrum (Light Water Reactors (LWR)). It was also found that basalt-boron fiber could decrease the thickness of radiation shielding material in thermal spectrum reactors.

  14. The effects of high energy radiation on the pulping properties of Pinus radiation and Eucalyptus regnans

    International Nuclear Information System (INIS)

    McLaren, K.G.; Garland, C.P.; Higgins, H.G.

    1976-01-01

    Studies have been made of the effects of high energy radiation on the pulping behaviour of Eucalyptus regnans and Pinus radiata. Pre-irradiation of wood chips with small doses of 60 Co gamma radiation (up to about 0.2 Mrad) caused little degradation of the cellulose, and had only minor effects on the kraft pulping properties of both wood species. Pulp yield, Kappa number and strength properties of the pulps showed little change. There was also little effect on the bisulphite cooking of Pinus radiata. As the dose was increased to 1 Mrad, degradation of cellulose (as indicated by degree of polymerisation measurements) became significant, and Kraft pulp yields from both woods showed small reductions. The Kappa number and physical properties of these pulps were little affected at this dose level. A gamma radiation dose of 10 Mrad produced marked depolymerisation of the cellulose, and big reductions in kraft and neutral sulphite semi-chemical pulp yields. The kraft pulps showed a much higher lignin content. Some low dose (0.15 Mrad) irradiations on thin chips were carried out with a 1 MeV electron accelerator. In contrast to comparable gamma irradiations, this treatment produced discernible changes in kraft pulping behaviour. The pulp yield, under the same cooking conditions, appears to be slightly higher, but the Lignin content of the pulp was increased. (Author)

  15. Calculation of the radiative properties of photosynthetic microorganisms

    International Nuclear Information System (INIS)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-01-01

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers–Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively

  16. Calculation of the radiative properties of photosynthetic microorganisms

    Science.gov (United States)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; Fournier, Richard

    2015-08-01

    A generic methodological chain for the predictive calculation of the light-scattering and absorption properties of photosynthetic microorganisms within the visible spectrum is presented here. This methodology has been developed in order to provide the radiative properties needed for the analysis of radiative transfer within photobioreactor processes, with a view to enable their optimization for large-scale sustainable production of chemicals for energy and chemistry. It gathers an electromagnetic model of light-particle interaction along with detailed and validated protocols for the determination of input parameters: morphological and structural characteristics of the studied microorganisms as well as their photosynthetic-pigment content. The microorganisms are described as homogeneous equivalent-particles whose shape and size distribution is characterized by image analysis. The imaginary part of their refractive index is obtained thanks to a new and quite extended database of the in vivo absorption spectra of photosynthetic pigments (that is made available to the reader). The real part of the refractive index is then calculated by using the singly subtractive Kramers-Krönig approximation, for which the anchor point is determined with the Bruggeman mixing rule, based on the volume fraction of the microorganism internal-structures and their refractive indices (extracted from a database). Afterwards, the radiative properties are estimated using the Schiff approximation for spheroidal or cylindrical particles, as a first step toward the description of the complexity and diversity of the shapes encountered within the microbial world. Finally, these predictive results are confronted to experimental normal-hemispherical transmittance spectra for validation. This entire procedure is implemented for Rhodospirillum rubrum, Arthrospira platensis and Chlamydomonas reinhardtii, each representative of the main three kinds of photosynthetic microorganisms, i.e. respectively

  17. Anisotropy of the Elastic Properties of Normal and Pathological Myocardium: Angular Dependence of Ultrasonic Backscatter, Attenuation, and Velocity.

    Science.gov (United States)

    Verdonk, Edward Dennis

    The focus of this thesis is the measurement of anisotropies in the ultrasonic parameters of soft tissues. The goal is to contribute to a better understanding of the physics which underlies the interaction of ultrasonic waves with inhomogeneous and anisotropic media. Broadband measurements using a piezoelectric transducer are reported for investigations of excised specimens of human and canine myocardial tissue. Emphasis is placed on identifying the effect that the muscle fiber orientation, relative to the direction of insonification, has on the propagation and scattering properties of ultrasonic waves. Results of the anisotropy of backscatter, the anisotropy of attenuation, and the anisotropy of quasilongitudinal velocity are presented for data obtained in 2^ circ increments through the full 360 ^circ relative to the myofibers. Measured velocities are used in conjunction with measured specimen densities to determine the elastic stiffness constants c_{11} and c_ {33} and to estimate specific mechanical moduli for thin layers of myocardium.

  18. Attenuation-based kV pair selection in dual source dual energy computed tomography angiography of the chest: impact on radiation dose and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Renapurkar, Rahul D.; Azok, Joseph; Lempel, Jason; Karim, Wadih; Graham, Ruffin [Thoracic Imaging, L10, Imaging Institute, Cleveland Clinic, Cleveland, OH (United States); Primak, Andrew [Siemens Medical Solutions, Malvern, PA (United States); Tandon, Yasmeen [Case Western Reserve University-Metro Health Medical Center, Department of Radiology, Cleveland, OH (United States); Bullen, Jennifer [Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH (United States); Dong, Frank [Section of Medical Physics, Cleveland Clinic, Cleveland, OH (United States)

    2017-08-15

    The purpose of this study was to evaluate the impact of attenuation-based kilovoltage (kV) pair selection in dual source dual energy (DSDE)-pulmonary embolism (PE) protocol examinations on radiation dose savings and image quality. A prospective study was carried out on 118 patients with suspected PE. In patients in whom attenuation-based kV pair selection selected the 80/140Sn kV pair, the pre-scan 100/140Sn CTDIvol (computed tomography dose index volume) values were compared with the pre-scan 80/140Sn CTDIvol values. Subjective and objective image quality parameters were assessed. Attenuation-based kV pair selection switched to the 80/140Sn kV pair (''switched'' cohort) in 63 out of 118 patients (53%). The mean 100/140Sn pre-scan CTDIvol was 8.8 mGy, while the mean 80/140Sn pre-scan CTDIvol was 7.5 mGy. The average estimated dose reduction for the ''switched'' cohort was 1.3 mGy (95% CI 1.2, 1.4; p < 0.001), representing a 15% reduction in dose. After adjusting for patient weight, mean attenuation was significantly higher in the ''switched'' vs. ''non-switched'' cohorts in all five pulmonary arteries and in all lobes on iodine maps. This study demonstrates that attenuation-based kV pair selection in DSDE examination is feasible and can offer radiation dose reduction without compromising image quality. (orig.)

  19. Effects of gamma radiation on sensorial properties in black tea

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Ana Paula M.; Fanaro, Gustavo B.; Costa, Helbert S.F.; Silva, Priscila V.; Santillo, Amanda G.; Villavicencio, Anna Lucia C.H., E-mail: ana.paula.silveira@usp.b, E-mail: villavic@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    The black tea (Camellia sinensis) is the most consumed beverage in the world and its consumption has increased, manly in occidental countries, due to the fact that this drink has large antioxidants quantities. In this type of tea, the taste determines the product qualities and its final value. Several studies reported that food irradiation is an excellent process to disinfect food, reducing storage losses and extended its shelf life. This treatment can inhibit cellular division, promoting a molecular and DNA structural modification. Depending on the dose applied, the irradiation can modify sensorial properties, influencing the marked cost. The sensorial analysis is one of the main tests to detect any better or worse changes, by consumers. The aim of this study is to evaluate the effect of ionizing radiation on sensorial properties in black tea. Samples will be irradiated with a {sup 60}Co source, at doses of 0, 5, and 10 kGy. (author)

  20. Effects of gamma radiation on sensorial properties in black tea

    International Nuclear Information System (INIS)

    Silveira, Ana Paula M.; Fanaro, Gustavo B.; Costa, Helbert S.F.; Silva, Priscila V.; Santillo, Amanda G.; Villavicencio, Anna Lucia C.H.

    2009-01-01

    The black tea (Camellia sinensis) is the most consumed beverage in the world and its consumption has increased, manly in occidental countries, due to the fact that this drink has large antioxidants quantities. In this type of tea, the taste determines the product qualities and its final value. Several studies reported that food irradiation is an excellent process to disinfect food, reducing storage losses and extended its shelf life. This treatment can inhibit cellular division, promoting a molecular and DNA structural modification. Depending on the dose applied, the irradiation can modify sensorial properties, influencing the marked cost. The sensorial analysis is one of the main tests to detect any better or worse changes, by consumers. The aim of this study is to evaluate the effect of ionizing radiation on sensorial properties in black tea. Samples will be irradiated with a 60 Co source, at doses of 0, 5, and 10 kGy. (author)

  1. Radiation protective agents possessing anti-oxidative properties

    Energy Technology Data Exchange (ETDEWEB)

    Anzai, Kazunori; Ueno, Emi; Yoshida, Akira; Furuse, Masako; Ikota, Nobuo [National Inst. of Radiological Sciences, Research Center for Radiation Safety, Chiba, Chiba (Japan)

    2005-11-15

    The purpose of studies is to see mechanisms of radiation protection of agents possessing anti-oxidative properties because the initial step resulting in radiation hazard is the formation of radicals by water radiolysis. Agents were commercially available or synthesized proxyl derivatives (spin prove agents), commercially available spin-trapping agents, edaravone and TMG (a tocopherol glycoside). Mice and cultured cells were X-irradiated by Shimadzu Pantak HF-320 or 320S. Survivals of cells were determined by colony assay and of mice, to which the agents were given intraperitoneally before or after X-irradiation, within 30 days post irradiation. Plasma and marrow concentrations of proxyls were estimated by electron spin resonance (ESR) spectrometry. Mechanisms of their radiation protective effects were shown different from agent to agent. TMG was found effective even post irradiation, which suggests a possibility for a new drug development. Some (spin trapping agents and TMG), virtually ineffective at the cell level, were found effective in the whole body, suggesting the necessity of studies on their disposition and metabolism. (S.I.)

  2. Radiation protective agents possessing anti-oxidative properties

    International Nuclear Information System (INIS)

    Anzai, Kazunori; Ueno, Emi; Yoshida, Akira; Furuse, Masako; Ikota, Nobuo

    2005-01-01

    The purpose of studies is to see mechanisms of radiation protection of agents possessing anti-oxidative properties because the initial step resulting in radiation hazard is the formation of radicals by water radiolysis. Agents were commercially available or synthesized proxyl derivatives (spin prove agents), commercially available spin-trapping agents, edaravone and TMG (a tocopherol glycoside). Mice and cultured cells were X-irradiated by Shimadzu Pantak HF-320 or 320S. Survivals of cells were determined by colony assay and of mice, to which the agents were given intraperitoneally before or after X-irradiation, within 30 days post irradiation. Plasma and marrow concentrations of proxyls were estimated by electron spin resonance (ESR) spectrometry. Mechanisms of their radiation protective effects were shown different from agent to agent. TMG was found effective even post irradiation, which suggests a possibility for a new drug development. Some (spin trapping agents and TMG), virtually ineffective at the cell level, were found effective in the whole body, suggesting the necessity of studies on their disposition and metabolism. (S.I.)

  3. Radiative properties tailoring of grating by comb-drive microactuator

    International Nuclear Information System (INIS)

    Jiao, Y.; Liu, L.H.; Liu, L.J.; Hsu, P.-F.

    2014-01-01

    Micro-scale grating structures are widely researched in recent years. Although micro-scale fabrication technology is highly advanced today, with grating aspect ratio greater than 25:1 being achievable some fabrication requirements, such as fine groove processing, are still challenging. Comb-drive microactuator is proposed in this paper to be utilized on simple binary grating structures for tailoring or modulating spectral radiation properties by active adjustment. The rigorous coupled-wave analysis (RCWA) is used to calculate the absorptance of proposed structures and to investigate the impacts brought by the geometry and displacement of comb-drive microactuator. The results show that the utilization of comb-drive microactuator on grating improves the absorptance of simple binary grating while avoiding the difficulty fine groove processing. Spectral radiation property tailoring after gratings are fabricated becomes possible with the comb-drive microactuator structure. - Highlights: • A microscale grating structure with comb-driven microactuator is proposed. • The movement of microactuator changes peak absorptance resonance wavelength. • Geometric and displacement effects of comb finger on absorptance are investigated. • Both RCWA and LC circuit models are developed to predict the resonance wavelength. • Resonance frequency equations of LC circuits allow quick design analysis

  4. Impacts of radiation processing on physicochemical properties of Table Eggs

    International Nuclear Information System (INIS)

    Farag, M. D. H.; Abdul Azeem, A. M.

    2012-12-01

    This study investigated the effect of gamma irradiation on pathogens, quality, and functional properties of shell eggs. Using intact, fresh while and brown shell eggs, inoculated with 10 9 colony-forming units (cfu) of S enteritidis and S, typhimurium. The effect of gamma-irradiation at doses 2,4 and 6 kGy of gamma irradiation on bacteriologic and population and physical characteristics (Haugh units and yolk color), chemical composition (moisture, crude protein, crude fat and ash), the rheological changes (viscosity), pH and protean solubility of the eggs were determinate d. Results showed that 2 kGy, the number of S, enteritidis and eggs internal quality as freshness as measured by albumen height and the number of hugh units, and yolk color index were all significantly reduced with increasing irradiation doses. On significant change was found after irradiation in egg white or yolk in the chemical composition (moisture, crude protein, crude fat and ash). After irradiation, the foaming ability and foam capacity of egg white were increasing radiation doses> The viscosity of egg white and yolk decreased with increasing doses of irradiation. The pH of the egg white and yolk increasing doses of radiation dose. The protein salability decreased significantly in egg white and yolk with increasing radiation dose. These Results Suggest that gamma irradiation reduce the freshness of shell eggs and improving important functional properties such as to foaming ability and foaming capacity. Gamma irradiation can also be applied to the egg breaking process sine irradiation reduces the viscosity of egg white and yolk, which can allow egg whites and yolks to be separated with greater efficiency. (Author)

  5. Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 Micro and Nano-particles for radiation shielding

    Science.gov (United States)

    Verdipoor, Khatibeh; Alemi, Abdolali; Mesbahi, Asghar

    2018-06-01

    Novel shielding materials for photons based on silicon resin and WO3, PbO, and Bi2O3 Micro and Nano-particles were designed and their mass attenuation coefficients were calculated using Monte Carlo (MC) method. Using lattice cards in MCNPX code, micro and nanoparticles with sizes of 100 nm and 1 μm was designed inside a silicon resin matrix. Narrow beam geometry was simulated to calculate the attenuation coefficients of samples against mono-energetic beams of Co60 (1.17 and 1.33 MeV), Cs137 (663.8 KeV), and Ba133 (355.9 KeV). The shielding samples made of nanoparticles had higher mass attenuation coefficients, up to 17% relative to those made of microparticles. The superiority of nano-shields relative to micro-shields was dependent on the filler concentration and the energy of photons. PbO, and Bi2O3 nanoparticles showed higher attenuation compared to WO3 nanoparticles in studied energies. Fabrication of novel shielding materials using PbO, and Bi2O3 nanoparticles is recommended for application in radiation protection against photon beams.

  6. Radiation damage in silicon. Defect analysis and detector properties

    International Nuclear Information System (INIS)

    Hoenniger, F.

    2008-01-01

    describe the radiation induced changes in macrsocopic detector properties as affected by the microscopic defect generation. Finally charge collection measurements have been performed at high radiation doses. (orig.)

  7. Radiation damage in silicon. Defect analysis and detector properties

    Energy Technology Data Exchange (ETDEWEB)

    Hoenniger, F.

    2008-01-15

    acceptor, a model has been introduced to describe the radiation induced changes in macrsocopic detector properties as affected by the microscopic defect generation. Finally charge collection measurements have been performed at high radiation doses. (orig.)

  8. Experimental immunization of ponies with Strongylus vulgaris radiation-attenuated larvae or crude soluble somatic extracts from larval or adult stages.

    Science.gov (United States)

    Monahan, C M; Taylor, H W; Chapman, M R; Klei, T R

    1994-12-01

    Protection from Strongylus vulgaris infection through immunization with radiation-attenuated third-stage larvae (L3) or crude soluble homogenates from larval or adult stages was examined. Yearling ponies raised parasite-free were divided into 3 immunization groups: radiation-attenuated L3; soluble adult somatic extracts; larval somatic extracts with excretory/secretory products (E/S) from in vitro culture; and 1 medium control group. Ponies were immunized twice; attenuated larvae were administered orally and somatic extracts or controls injected intramuscularly with adjuvant. Approximately 6 wk following the second immunization, all ponies were challenged. Necrospy examinations were performed 6 wk following challenge. Irradiated larvae recipients had the fewest postchallenge clinical signs and lesions and were 91% protected from infection determined by larval recoveries from arterial dissections. Soluble antigen recipients and controls had similar larval recoveries and thus equal susceptibility to challenge. Soluble antigen recipients had more severe clinical signs and lesions than controls, suggesting that parenteral immunization exacerbated postchallenge inflammatory responses. Protection by immunization with irradiated larvae was associated with an anamnestic eosinophilia and postimmunization antibody recognition of S. vulgaris L3 surface antigens. Histologic staining of eosinophils within tissues of this group suggested that this immunization induced a cytophilic antibody response that facilitated degranulation.

  9. Measurement of X-ray mass attenuation coefficient of nickel around the K-edge using synchrotron radiation based X-ray absorption study

    International Nuclear Information System (INIS)

    Roy, Bunty Rani; Rajput, Parasmani; Jha, S.N.; Nageswara Rao, A.S.

    2015-01-01

    The work presents the X-ray absorption fine structure (XAFS) technique for measuring the X-ray mass attenuation coefficient of nickel metal foil in the X-ray energy range of 8271.2–8849.4 eV using scanning XAFS beam line (BL-09) at Indus-2 synchrotron radiation source facility, Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore, India. The result represents the X-ray mass attenuation coefficient data for 0.02 mm thick Ni metal foil in the XAFS region of Ni K-edge. However, the results are compared to theoretical values using X-COM. There is a maximum deviation which is found exactly near the K-edge jump and decreases as we move away from the absorption edge. Oscillatory structure appears just above the observed absorption edge i.e., 8348.7 eV and is confined to around 250 eV above the edge. - Highlights: • Mass attenuation coefficient measurements of nickel using synchrotron radiation. • The measurements were taken exactly near the Ni K-edge at an energy step of 1 eV. • A maximum deviation is found near the K-edge

  10. Assessment of Radiation-Attenuated Vaccine or Thyme Oil Treatment on Controlling DNA Damage and Nitric Oxide Synthesis in Brain of Rat Infected with Toxocara canis

    International Nuclear Information System (INIS)

    Amin, M.M.; Hafez, E.N.; Abd Raboo, M.A.

    2016-01-01

    Toxocara canis is a worldwide zoonotic roundworm that infects a number of hosts including humans. It exhibits marked affinity to the nervous tissues. This study deals with the changes in the brain of Toxocara canis infected rats regarding parasitological, nitric oxide (NO) level and DNA damage compared to the effect of vaccination with gamma radiation-attenuated embryonated egg or thyme oil treatment. Eighty rats were classified into four groups (twenty each): GI (normal control); GII infected with 2500 T. canis infective eggs/ml/rat (infected control); GIII vaccinated with 800 Gy gamma-attenuated embryonated eggs (vaccinated group) and GIV infected with 2500 T. canis eggs and treated with thyme oil (thyme treated group). At the 14th day post-infection, ten rats from each group were sacrificed and the remaining were re-infected (challenged) with the same number of eggs. At the 14th days post challenge, brain tissues were taken for larval recovery, nitric oxide level evaluation and DNA damage using fragmentation and comet assay. The results exhibited a significant decrease in larval count and nitric oxide level with less damage in brain cells in thyme treated and gamma radiation-attenuated vaccinated groups compared to control infected group. It is also, concluded that vaccination using γ- rays is more effective in protection compared to using thyme oil.

  11. Cosmic radiation shielding properties of COLUMBUS and REMSIM multi-layer external shells

    Science.gov (United States)

    Durante, Marco; Manti, Lorenzo; Rusek, Adam; Belluco, Maurizio; Lobascio, Cesare

    The European module COLUMBUS has been recently installed on the International Space Station. Future plans for exploration involve the use of inflatable modules, such as the REMSIM concept proposed in a previous ESA funded study. We studied the radiation shielding properties of COLUMBUS and REMSIM external shell using 1 GeV/n Feor H-ions accelerated at the NASA Space Radiation Laboratory at the Brookhaven National Laboratory (Long Island, NY, USA). COLUMBUS has a 22 mm rigid multi-layer shell with Al, Nextel and Kevlar, as materials of the double bumper for meteoroids and debris protection, MLI for thermal reasons and again Al as pressure shell. Inside the module, astronauts are further protected by secondary structures, including racks, a number of electronic devices and payload equipment. This internal equipment has been simulated using Al and Kevlar, bringing the total thickness to about 15 g/cm2. REMSIM consists of a thermal multi-layer (MLI), four Nextel layers used to provide shock of the impacting micro-meteoroids, a ballistic restraint multi-layer of Kevlar used to absorb debris cloud's kinetic energy, a Kevlar structural restraint to support pressure loads incurred from inflating the module. To contain air inside the module, REMSIM adopts three layers of airtight material separated by two layers of Kevlar (air bladder). A final layer of Nomex provide protection against punctures and fire. In the flight configuration there are also spacer elements (foam) needed to guarantee correct spacing between consecutive bumper layers. These spacers were not included in the tests, making the total thickness about 1.1 cm. The internal equipment in REMSIM was not been defined, but due to its application for exploration missions it was decided to exploit water, valuable resource used for drinking, washing and technical usage, as a radiation shielding. In this test, we have included about 8 cm of water. Measured dose attenuation shows that the Columbus module reduces the

  12. The LCLS Gas Attenuator Revisited

    International Nuclear Information System (INIS)

    Ryutov, D

    2005-01-01

    In the report ''X-ray attenuation cell'' [1] a preliminary analysis of the gas attenuator for the Linac Coherent Light Source (LCLS) was presented. This analysis was carried out for extremely stringent set of specifications. In particular, a very large diameter for the unobstructed beam was set (1 cm) to accommodate the spontaneous radiation; the attenuator was supposed to cover the whole range of energies of the coherent radiation, from 800 eV to 8000 eV; the maximum attenuation was set at the level of 10 4 ; the use of solid attenuators was not allowed, as well as the use of rotating shutters. The need to reach a sufficient absorption at the high-energy end of the spectrum predetermined the choice of Xe as the working gas (in order to have a reasonable absorption at a not-too-high pressure). A sophisticated differential pumping system that included a Penning-type ion pump was suggested in order to minimize the gas leak into the undulator/accelerator part of the facility. A high cost of xenon meant also that an efficient (and expensive) gas-recovery system would have to be installed. The main parameter that determined the high cost and the complexity of the system was a large radius of the orifice. The present viewpoint allows for much smaller size of the orifice, r 0 = 1.5 mm. (1) The use of solid attenuators is also allowed (R.M. Bionta, private communication). It is, therefore, worthwhile to reconsider various parameters of the gas attenuator for these much less stringent conditions. This brief study should be considered as a physics input for the engineering design. As a working gas we consider now the argon, which, on the one hand, provides a reasonable absorption lengths and, on the other hand, is inexpensive enough to be exhausted into the atmosphere (no recovery). The absorption properties of argon are illustrated by Fig.1 where the attenuation factor A is shown for various beam energies, based on Ref. [2]. The other relevant parameters for argon are

  13. Light scattering reviews 7 radiative transfer and optical properties of atmosphere and underlying surface

    CERN Document Server

    Kokhanovsky, Alexander A

    2014-01-01

    This book describes modern advances in radiative transfer and light scattering. Coverage includes fast radiative transfer techniques, use of polarization in remote sensing and recent developments in remote sensing of snow properties from space observations.

  14. GSK-3β Inhibition Attenuates LPS-Induced Death but Aggravates Radiation-Induced Death via Down-Regulation of IL-6

    Directory of Open Access Journals (Sweden)

    Bailong Li

    2013-12-01

    Full Text Available Background: Exposure of high dose ionizing radiation is lethal. Signal pathways involved in radiation biology reaction still remain illdefined. Lipopolysaccharides (LPS, the ligands of Toll-like receptor 4(TLR4, could elicit strong immune responses. Glycogen synthase kinase-3β(GSK-3β promotes the production of inflammatory molecules and cell migration. Inhibition of GSK-3β provides protection against inflammation in animal models. The aim of the study was to investigate role of GSK-3β in LPS shock and ionizing radiation. Methods: WT or IL-6-/-mice or cells were pretreated with SB216763, a GSK-3β inhibitor, and survival of the mice was determined. Cell viability was assayed by Cell Counting Kit. Apoptosis was assayed by Annexin V-PI double staining. Serum concentrations of IL-6 and TNF-α were determined by ELISA. Results: SB216763 attenuated LPS induced mice or cell death but aggravated radiation induced mice or cell death. SB216763 reduced IL-6, but not TNF-α levels in vivo. IL-6-/- mice were more resistant to LPS-induced death but less resistant to radiation-induced death than wild type mice. Conclusions: Inhibition of GSK-3β conferred resistance to LPS shock but fostered death induced by ionizing radiation. Inhibition of GSK-3β was effective by reducing IL-6.

  15. Radiation accident dosimetry: TL properties of mobile phone screen glass

    International Nuclear Information System (INIS)

    Bassinet, C.; Pirault, N.; Baumann, M.; Clairand, I.

    2014-01-01

    Mobile phones are carried by a large part of the population and previous studies have shown that they may be able to function as individual fortuitous dosimeters in case of radiological accident. This study deals with thermoluminescence (TL) properties of mobile phone screen glass. The presence of a significant background signal which partially overlaps with the radiation-induced signal is a serious issue for dose reconstruction. A mechanical method to reduce this signal using a diamond grinding bit is presented. An over-response at low energy (∼50 keV) is observed for two investigated glasses. The results of a dose recovery test using a single-aliquot regenerative-dose (SAR) procedure are discussed. - Highlights: • Mobile phone screen glass is a promising material for retrospective dosimetry. • The TL non-radiation induced background signal can be significantly reduced by a mechanical method. • A dose recovery test using an SAR procedure was successfully carried out for the investigated glass

  16. Salvianolic Acids Attenuate Rat Hippocampal Injury after Acute CO Poisoning by Improving Blood Flow Properties

    Directory of Open Access Journals (Sweden)

    Li Guan

    2015-01-01

    Full Text Available Carbon monoxide (CO poisoning causes the major injury and death due to poisoning worldwide. The most severe damage via CO poisoning is brain injury and mortality. Delayed encephalopathy after acute CO poisoning (DEACMP occurs in forty percent of the survivors of acute CO exposure. But the pathological cause for DEACMP is not well understood. And the corresponding therapy is not well developed. In order to investigate the effects of salvianolic acid (SA on brain injury caused by CO exposure from the view point of hemorheology, we employed a rat model and studied the dynamic of blood changes in the hemorheological and coagulative properties over acute CO exposure. Compared with the groups of CO and 20% mannitol + CO treatments, the severe hippocampal injury caused by acute CO exposure was prevented by SA treatment. These protective effects were associated with the retaining level of hematocrit (Hct, plasma viscosity, fibrinogen, whole blood viscosities and malondialdehyde (MDA levels in red blood cells (RBCs. These results indicated that SA treatment could significantly improve the deformation of erythrocytes and prevent the damage caused by CO poisoning. Meanwhile, hemorheological indexes are good indicators for monitoring the pathological dynamic after acute CO poisoning.

  17. Co-localization of a CD1d-binding glycolipid with a radiation-attenuated sporozoite vaccine in LN-resident DCs for a robust adjuvant effect

    OpenAIRE

    Li, Xiangming; Kawamura, Akira; Andrews, Chasity D.; Miller, Jessica L.; Wu, Douglass; Tsao, Tiffany; Zhang, Min; Oren, Deena; Padte, Neal N.; Porcelli, Steven A.; Wong, Chi-Huey; Kappe, Stefan H. I.; Ho, David D.; Tsuji, Moriya

    2015-01-01

    A CD1d-binding glycolipid, α-Galactosylceramide (αGalCer), activates invariant natural killer T (iNKT) cells and acts as an adjuvant. We previously identified a fluorinated phenyl ring-modified αGalCer analog, 7DW8-5, displaying nearly 100-fold stronger CD1d binding affinity. In the present study, 7DW8-5 was found to exert a more potent adjuvant effect than αGalCer for a vaccine based on radiation-attenuated sporozoites (RAS) of a rodent malaria parasite, Plasmodium yoelii, also referred to a...

  18. Thermoluminescent properties of CVD diamond: applications to ionising radiation dosimetry

    International Nuclear Information System (INIS)

    Petitfils, A.

    2007-09-01

    Remarkable properties of synthetic diamond (human soft tissue equivalence, chemical stability, non-toxicity) make this material suitable for medical application as thermoluminescent dosimeter (TLD). This work highlights the interest of this material as radiotherapy TLD. In the first stage of this work, we looked after thermoluminescent (TL) and dosimetric properties of polycrystalline diamond made by Chemically Vapor Deposited (CVD) synthesis. Dosimetric characteristics are satisfactory as TLD for medical application. Luminescence thermal quenching on diamond has been investigated. This phenomenon leads to a decrease of dosimetric TL peak sensitivity when the heating rate increases. The second part of this work analyses the use of synthetic diamond as TLD in radiotherapy. Dose profiles, depth dose distributions and the cartography of an electron beam obtained with our samples are in very good agreement with results from an ionisation chamber. It is clearly shown that CVD) diamond is of interest to check beams of treatment accelerators. The use of these samples in a control of treatment with Intensity Modulated Radiation Therapy underlines good response of synthetic diamond in high dose gradient areas. These results indicate that CVD diamond is a promising material for radiotherapy dosimetry. (author)

  19. Radiation Effects on Mechanical Properties of LDPE/EVA blend

    International Nuclear Information System (INIS)

    Lee, Chung; Kim, Ki Yup; Im, Don Sun; Ryu, Boo Hyung

    2005-01-01

    Restricted properties and a limited use of homopolymers alone, have given rise to an exploration of composites, copolymers, blends, etc. Copolymers such as poly(ethylene-co-vinyl acetate) (EVA), poly(ethylene-co-butyl acrylate), poly(ethylene-co-ethyl acrylate) (EEA) have wide usages in different industry. Among the numerous ethylene copolymers, due to its wide range of properties depending on its vinyl acetate content, EVA has become one of the most useful copolymers in the electrical industry as a cable insulator, and in many other industries as a hot melt adhesive, a coating, etc. Several works looked at the influence of gamma rays on polymers. Zhang et al have blended EVA with PE because crosslinked PE has a low flexibility for use as a cable insulation. It was reported that the blend showed have a better elongation, flexibility and heat aging effect than PE, but its hardness and softening point were lower. In this study, the radiation degradation of LDPE/EVA blends as a function of the vinyl acetate contents was investigated by using TGA, gelation and elongation

  20. Exploring gamma radiation effect on exoelectron emission properties of bone

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, M.; Dekhtyar, Y.; Bogucharska, T.; Noskov, V. [Riga Technical Univ., Biomedical Engineering and Nanotechnology Institute (Latvia)

    2006-07-01

    Gamma radiation is used for radiation therapy to treat carcinogenic diseases including bone cancer. Ionising radiation kills carcinogenic calls. However, there are side effects of the gamma radiation on the bone surface electron structure. One of the effects is in the form of altering electron density of states of bone that, with time, influences biomedical reactions on bone life condition. (authors)

  1. Exploring gamma radiation effect on exoelectron emission properties of bone

    International Nuclear Information System (INIS)

    Zakaria, M.; Dekhtyar, Y.; Bogucharska, T.; Noskov, V.

    2006-01-01

    Gamma radiation is used for radiation therapy to treat carcinogenic diseases including bone cancer. Ionising radiation kills carcinogenic calls. However, there are side effects of the gamma radiation on the bone surface electron structure. One of the effects is in the form of altering electron density of states of bone that, with time, influences biomedical reactions on bone life condition. (authors)

  2. Assessment of Antioxidant Properties of Radiation Processed Lupin Seeds

    International Nuclear Information System (INIS)

    El-Niely, H.F.G.

    2011-01-01

    In the present study, the radiation processing of lupin seeds (Lupinus albus spp. Giza 2) were carried out at dose levels of 2.5, 5 and 10 kGy. The chemical composition (protein, fat, total phenolic compounds, total flavonoids and fatty acids) and antioxidant properties of its methanolic extracts were assessed. The result showed that there were non-significant changes observed for protein, fat and ash of processed samples as compared with non-irradiated samples. Meanwhile, the crude fiber was decreased linearly as a function of radiation dose. The total phenolic compounds were increased by 9.92%, 11.75% and 13.82% and flavonoids by 2.5%, 7.1% and 7.5% for the 2.5, 5 and 10 kGy irradiated samples, respectively. Regarding lupin fatty acid contents, the results indicated that gamma irradiation up to 10 kGy did not cause important changes in the percentage of the fatty acids. At 7.5 and 10.0 mg/ml of sample concentration, the antioxidant activities of methanolic extracts for 2.5 to 10 kGy irradiated lupin seeds were significantly higher than those of methanolic extracts of the non-irradiated control. Reducing powers of methanolic extracts from lupin irradiated at 2.5 and 5 kGy were comparable except for 10 kGy irradiated lupin seeds, and had more power than methanolic extracts from non-irradiated lupin. The reducing powers of the methanolic extract from 10 kGy irradiated lupin was decreased at all concentrations (from 0.5 to 10 mg/ml) than of methanolic extracts from non-irradiated or irradiated lupin seeds at 2.5 and 5 kGy. At 2.5 mg/ml, all methanolic extracts showed excellent scavenging abilities of 91.6 to 103.27% against DPPH radicals. The scavenging abilities of methanolic extracts from 2.5 to 10 kGy irradiated lupin were better than that of the non-irradiated control at 10 mg/ml. With irradiation at 2.5-10 kGy, lupin seeds showed higher chelating ability on ferrous ions than did the non-irradiated control. It could be concluded that gamma irradiation of lupin

  3. Attenuation-based automatic kilovolt (kV)-selection in computed tomography of the chest: effects on radiation exposure and image quality.

    Science.gov (United States)

    Eller, Achim; Wuest, Wolfgang; Scharf, Michael; Brand, Michael; Achenbach, Stephan; Uder, Michael; Lell, Michael M

    2013-12-01

    To evaluate an automated attenuation-based kV-selection in computed tomography of the chest in respect to radiation dose and image quality, compared to a standard 120 kV protocol. 104 patients were examined using a 128-slice scanner. Fifty examinations (58 ± 15 years, study group) were performed using the automated adaption of tube potential (100-140 kV), based on the attenuation profile of the scout scan, 54 examinations (62 ± 14 years, control group) with fixed 120 kV. Estimated CT dose index (CTDI) of the software-proposed setting was compared with a 120 kV protocol. After the scan CTDI volume (CTDIvol) and dose length product (DLP) were recorded. Image quality was assessed by region of interest (ROI) measurements, subjective image quality by two observers with a 4-point scale (3--excellent, 0--not diagnostic). The algorithm selected 100 kV in 78% and 120 kV in 22%. Overall CTDIvol reduction was 26.6% (34% in 100 kV) overall DLP reduction was 22.8% (32.1% in 100 kV) (all pimage quality was excellent in both groups. The attenuation based kV-selection algorithm enables relevant dose reduction (~27%) in chest-CT while keeping image quality parameters at high levels. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Attenuation-based automatic kilovolt (kV)-selection in computed tomography of the chest: Effects on radiation exposure and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Eller, Achim; Wuest, Wolfgang; Scharf, Michael; Brand, Michael [Department of Radiology, University Erlangen (Germany); Achenbach, Stephan [Department of Cardiology, University Erlangen (Germany); Uder, Michael [Department of Radiology, University Erlangen (Germany); Imaging Science Institute, Erlangen (Germany); Lell, Michael M., E-mail: Michael.lell@uk-erlangen.de [Department of Radiology, University Erlangen (Germany); Imaging Science Institute, Erlangen (Germany)

    2013-12-01

    Objectives: To evaluate an automated attenuation-based kV-selection in computed tomography of the chest in respect to radiation dose and image quality, compared to a standard 120 kV protocol. Materials and methods: 104 patients were examined using a 128-slice scanner. Fifty examinations (58 ± 15 years, study group) were performed using the automated adaption of tube potential (100–140 kV), based on the attenuation profile of the scout scan, 54 examinations (62 ± 14 years, control group) with fixed 120 kV. Estimated CT dose index (CTDI) of the software-proposed setting was compared with a 120 kV protocol. After the scan CTDI volume (CTDIvol) and dose length product (DLP) were recorded. Image quality was assessed by region of interest (ROI) measurements, subjective image quality by two observers with a 4-point scale (3 – excellent, 0 – not diagnostic). Results: The algorithm selected 100 kV in 78% and 120 kV in 22%. Overall CTDIvol reduction was 26.6% (34% in 100 kV) overall DLP reduction was 22.8% (32.1% in 100 kV) (all p < 0.001). Subjective image quality was excellent in both groups. Conclusion: The attenuation based kV-selection algorithm enables relevant dose reduction (∼27%) in chest-CT while keeping image quality parameters at high levels.

  5. Attenuation-based automatic kilovolt (kV)-selection in computed tomography of the chest: Effects on radiation exposure and image quality

    International Nuclear Information System (INIS)

    Eller, Achim; Wuest, Wolfgang; Scharf, Michael; Brand, Michael; Achenbach, Stephan; Uder, Michael; Lell, Michael M.

    2013-01-01

    Objectives: To evaluate an automated attenuation-based kV-selection in computed tomography of the chest in respect to radiation dose and image quality, compared to a standard 120 kV protocol. Materials and methods: 104 patients were examined using a 128-slice scanner. Fifty examinations (58 ± 15 years, study group) were performed using the automated adaption of tube potential (100–140 kV), based on the attenuation profile of the scout scan, 54 examinations (62 ± 14 years, control group) with fixed 120 kV. Estimated CT dose index (CTDI) of the software-proposed setting was compared with a 120 kV protocol. After the scan CTDI volume (CTDIvol) and dose length product (DLP) were recorded. Image quality was assessed by region of interest (ROI) measurements, subjective image quality by two observers with a 4-point scale (3 – excellent, 0 – not diagnostic). Results: The algorithm selected 100 kV in 78% and 120 kV in 22%. Overall CTDIvol reduction was 26.6% (34% in 100 kV) overall DLP reduction was 22.8% (32.1% in 100 kV) (all p < 0.001). Subjective image quality was excellent in both groups. Conclusion: The attenuation based kV-selection algorithm enables relevant dose reduction (∼27%) in chest-CT while keeping image quality parameters at high levels

  6. Attenuation of a non-parallel beam of gamma radiation by thick shielding-application to the determination of the 235U enrichment with NaI detectors

    International Nuclear Information System (INIS)

    Mortreau, Patricia; Berndt, Reinhard

    2005-01-01

    The traditional method used to determine the Uranium enrichment by nondestructive analysis is based on the 'enrichment meter principle' [1]. It involves measuring the intensity of the 186 keV net peak area of 235 U in 'quasi-infinite' samples. A prominent factor, which affects the peak intensity, is the presence of gamma absorbing material (e.g., container wall, detector cover) between the sample and the detector. Its effect is taken into consideration in a commonly called 'wall thickness' correction factor. Often calculated on the basis of approximations, its performance is adequate for small attenuation factors applicable to the case of narrow beams. However these approximations do not lead to precise results when wide non-parallel beams are attenuated through thick container walls. This paper is dedicated to the calculation by numerical integration of the geometrical correction factor (K wtc ) which describes the effective mean path length of the radiation through the absorbing layer. This factor was calculated as a function of various measurement parameters (types and dimensions of the detector, of the collimator and of the shielding) for the most commonly used collimator shapes and detectors. Both coherent scattering (Rayleigh) and incoherent scattering (Compton) are taken into account for the calculation of the radiation interaction within the detector

  7. Analysis and comparison of immune reactivity in guinea-pigs immunized with equivalent numbers of normal or radiation-attenuated cercariae of Schistosoma mansoni

    International Nuclear Information System (INIS)

    Rogers, M.V.; McLaren, D.J.

    1987-01-01

    Guinea-pigs immunized with equivalent numbers of normal or radiation-attenuated cercariae of Schistosoma mansoni develop close to complete resistance to reinfection at weeks 12 and 4.5 respectively. We here analyse and compare the immune responses induced by the two populations of cercariae. Both radiation-attenuated and normal parasites of S. mansoni elicited an extensive germinal centre response in guinea-pigs by week 4.5 post-immunization. The anti-parasite antibody titre and cytotoxic activity of serum from 4.5-week-vaccinated, or 4.5-week-infected guinea-pigs were approximately equal, but sera from 12-week-infected individuals had high titres of anti-parasite antibody, which promoted significant larvicidal activity in vitro. In all cases, larvicidal activity was mediated by the IgG 2 fraction of the immune serum. Lymphocyte transformation tests conducted on splenic lymphocytes from 4.5-week vaccinated guinea-pigs revealed maximal stimulation against cercarial, 2-week and 3-week worm antigens, whereas spleen cells from 4.5-week-infected guinea-pigs were maximally stimulated by cercarial and 6-week worm antigens. The splenic lymphocyte responses of 12-week infected animals were dramatic against antigens prepared from all life-stages of the parasite. (author)

  8. Aerosol optical properties and direct radiative forcing at Taihu.

    Science.gov (United States)

    Lü, Rui; Yu, Xingna; Jia, Hailing; Xiao, Sihan

    2017-09-01

    Ground-based characteristics (optical, type, size, and radiative properties) of aerosols measured between 2005 and 2012 were investigated over the Taihu rim region, which encompasses the cities of Shanghai, Suzhou, Wuxi, and Changzhou. The aerosol optical depth (AOD) showed a distinct seasonal variation with the highest value in summer and the lowest AOD in winter. There was broadest frequency distribution with a multimodal structure in summer. The Ångström exponent (AE) showed high values during spring; the relative frequency of AE in the range of 0-0.8 was 5-10 times greater than that of other seasons. The samples with high AOD 440 and low AE 440-870 were mainly observed in spring, which is attributed to the relative abundance of coarse particles. The monthly aerosol volume size distributions presented a bimodal structure (fine and coarse modes). The coarse mode was dominant during spring, while the fine mode was predominant in other seasons. The main aerosol type over Taihu during all the seasons was the mixed small-particle category, followed by the urban/industrial category. The minimum single scattering albedo (SSA) occurred in winter, suggesting that atmosphere aerosol had a higher absorption. All monthly averaged asymmetry factors (ASY) had positive values and no distinct seasonal variation. Both high real (Re) and imaginary (Im) parts of the refractive index occurred in winter. The atmospheric warming effect of aerosol was more significant in winter compared with other seasons, with the averaged atmosphere aerosol radiative forcing (ARF) and the corresponding atmospheric heating rate up to +69.46  W·m -2 and 1.95  K·day -1 , respectively. There existed a significant positive correlation between AOD and ARF (absolute value), and the correlation coefficients (r) exceeded 0.86 in each season with maximum r in summer. Along with the increasing of the SSA, the aerosol radiative forcing efficiency (absolute value) showed a decreasing trend at the

  9. The Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period Examining Aerosol Properties and Radiative Influences: Preface to Special Section

    Science.gov (United States)

    Ferrare, Richard; Feingold, Graham; Ghan, Steven; Ogren, John; Schmid, Beat; Schwartz, Stephen E.; Sheridan, Pat

    2006-01-01

    Atmospheric aerosols influence climate by scattering and absorbing radiation in clear air (direct effects) and by serving as cloud condensation nuclei, modifying the microphysical properties of clouds, influencing radiation and precipitation development (indirect effects). Much of present uncertainty in forcing of climate change is due to uncertainty in the relations between aerosol microphysical and optical properties and their radiative influences (direct effects) and between microphysical properties and their ability to serve as cloud condensation nuclei at given supersaturations (indirect effects). This paper introduces a special section that reports on a field campaign conducted at the Department of Energy Atmospheric Radiation Measurement site in North Central Oklahoma in May, 2003, examining these relations using in situ airborne measurements and surface-, airborne-, and space-based remote sensing.

  10. Glycolic Acid Physical Properties, Impurities, And Radiation Effects Assessment

    International Nuclear Information System (INIS)

    Pickenheim, B.; Bibler, N.

    2010-01-01

    The DWPF is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H 2 and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O 2 when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be hindered. A

  11. Study of effect of gamma radiation on molecular weight and mechanical properties of PHB and PHNV

    International Nuclear Information System (INIS)

    Fechine, Guilhermino J.M.; Terence, Mauro C.; Rabello, M.S.; Willen, Renate M.R.

    2011-01-01

    The effect of gamma radiation on molecular weight and mechanical properties (tensile and flexural) of PHB and PHBV samples was investigated. The values of stress and strain at the break point for both mechanical properties indicated that scission molecular reactions were predominant in PHB and PHBV samples submitted to gamma radiation. These results were confirmed by Size Exclusion Chromatography (SEC) analysis. (author)

  12. Radiation-optical properties of the glasses for the space application

    International Nuclear Information System (INIS)

    Akishin, A.I.; Tseplyaev, L.I.

    2006-01-01

    The data are presented and generalized on variations of optical properties of glass and light guides under simulative cosmic ionizing radiation. It is shown that changes in optical properties (coloration, bleaching, opacity, luminescence) under ionizing radiation are associated with color centers formation and annealing [ru

  13. Effect of radioactive radiation on catalytic properties of solid materials

    Energy Technology Data Exchange (ETDEWEB)

    Sokol' skii, D V; Kuzembaev, K K; Kel' man, I V [AN Kazakhskoj SSR, Alma-Ata. Inst. Organicheskogo Kataliza i Ehlektrokhimii

    1977-05-01

    General survey is made of the problem of radiation modification of the action of solid catalysts with respect to the various types of heterogeneous catalytic reactions. Consideration is given to the key mechanisms responsible for radiation damage in the interaction of high-energy radiation with a solid body. The effect of ionizing radiation on the adsorption capacity and catalytic activity of solid bodies is discussed.

  14. Attenuation of G2 cell cycle checkpoint control in human tumor cells is associated with increased frequencies of unrejoined chromosome breaks but not increased cytotoxicity following radiation exposure

    International Nuclear Information System (INIS)

    Schwartz, J.L.; Cowan, J.; Grdina, D.J.

    1997-01-01

    The contribution of G 2 cell cycle checkpoint control to ionizing radiation responses was examined in ten human tumor cell lines. Most of the delay in cell cycle progression seen in the first cell cycle following radiation exposure was due to blocks in G 2 and there were large cell line-to-cell line variations in the length of the G 2 block. Longer delays were seen in cell lines that had mutations in p53. There was a highly significant inverse correlation between the length of G 2 delay and the frequency of unrejoined chromosome breaks seen as chromosome terminal deletions in mitosis, and observation that supports the hypothesis that the signal for G 2 delay in mammalian cells is an unrejoined chromosome break. There were also an inverse correlation between the length of G 2 delay and the level of chromosome aneuploidy in each cell line, suggesting that the G 2 and mitotic spindel checkpoints may be linked to each other. Attenuation in G 2 checkpoint control was not associated with alterations in either the frequency of induced chromosome rearrangements or cell survival following radiation exposure suggesting that chromosome rearrangements, the major radiation-induced lethal lesion in tumor cells, form before cells enters G 2 . Thus, agents that act solely to override G 2 arrest should produce little radiosensitization in human tumor cells

  15. Synchrotron radiation sources: their properties and applications for VUV and X-ray spectroscopy

    International Nuclear Information System (INIS)

    Koch, E.E.

    1976-09-01

    Synchrotron radiation from accelerators and storage rings offers far reaching possibilities for many fields of basic and applied physics. The properties of synchrotron radiation, existing and planned synchrotron radiation facilities, as well as instrumental aspects are discussed. In order to illustrate the usefulness of the synchrotron radiation sources a few highlights from atomic, molelucar, and solid state spectroscopy are presented and examples from x-ray experiments and from the field of applied physics are given. (orig.) [de

  16. The wave properties of matter and the zeropoint radiation field

    International Nuclear Information System (INIS)

    Pena, L. de la; Cetto, A.M.

    1994-01-01

    The origin of the wave properties of matter is discussed from the point of view of stochastic electrodynamics. A nonrelativistic model of a changed particle with an effective structure embedded in the random zeropoint radiation field reveals that the field induces a high-frequency vibration on the particle; internal consistency of the theory fixes the frequency of this jittering at mc 2 /h. The particle is therefore assumed to interact intensely with stationary zeropoint waves of this frequency as seen from its proper frame of reference; such waves, identified here as de Broglie's phase waves, give rise to a modulated wave in the laboratory frame, with de Broglie's wavelength and phase velocity equal to the particle velocity. The time-independent equation that describes this modulated wave is shown to be the stationary Schroedinger equation (or the Klein-Gordon equation in the relativistic version). In a heuristic analysis applied to simple periodic cases, the quantization rules are recovered from the assumption that for a particle in a stationary state there must correspond a stationary modulation. Along an independent and complementary line of reasoning, an equation for the probability amplitude in configuration space for a particle under a general potential V(x) is constructed, and it is shown that under conditions derived from stochastic electrodynamics it reduces to Schroedinger's equation. This equation reflects therefore the dual nature of the quantum particles, by describing simultaneously the corresponding modulated wave and the ensemble of particles

  17. Measurements of the thermal radiative properties of liquid uranium

    International Nuclear Information System (INIS)

    Havstad, M.A.; McLean, W. II; Self, S.A.

    1992-07-01

    Measurements of the thermal radiative properties of liquid uranium have been made using an instrument with two optical systems, one for measuring the complex index of refraction by ellipsometry, the other for measuring the normal spectral emissivity by direct comparison to an integral blackbody cavity. The measurements cover the wavelength range 0.4 to 10 μm with sample temperatures between 940 and 1630 K. Two 5keV ion sputter guns and an Auger spectrometer produce and verify, in-situ, atomically pure sample surfaces. Good agreement between the two methods is observed for the normal spectral emissivity, which varies with wavelength in a manner typical of transition metals. The two components of the complex index of refraction, the index of refraction and the extinction coefficient, increase with wavelength, from ∼3 at 0.4 μm to -20 at 9.5 μm. Both components of polarized reflectivity are shown for visible to infrared wavelengths

  18. Directional radiative properties of anisotropic rough silicon and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.J.; Chen, Y.B.; Zhang, Z.M. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2006-11-15

    Recent studies have shown that the topography of some chemically etched microrough silicon surfaces is non-Gaussian and may be strongly anisotropic. However, the bidirectional reflectance distribution function (BRDF) of anisotropic surfaces has not been fully understood. The present study uses the Monte Carlo method to investigate the out-of-plane BRDF, multiple scattering, and the change of the polarization state upon reflection. Two ray-tracing algorithms are developed that incorporate the surface topography or slope distribution of the samples obtained by the use of an atomic force microscope. The predicted BRDFs for silicon surfaces with or without a gold coating are in reasonable agreement with the results measured using a laser scatterometer at a wavelength of 635nm. The employment of surface topographic data is indispensable to the BRDF modeling of anisotropic surfaces. While first-order scattering makes the dominant contribution to reflections from the studied surfaces, it is critical to consider the polarization state change in order to correctly predict the out-of-plane BRDF. The versatile Monte Carlo modeling tools developed through the present study help gain a better understanding of the directional radiative properties of microrough surfaces and, furthermore, will have an impact on thermal metrology in the semiconductor industry. (author)

  19. Evaluation of the attenuation properties of MR equipment for its use in a whole-body PET/MR scanner

    International Nuclear Information System (INIS)

    Delso, G; Martinez-Moeller, A; Bundschuh, R A; Ziegler, S I; Ladebeck, R; Candidus, Y; Faul, D

    2010-01-01

    The combination of magnetic resonance imaging (MR) and positron emission tomography (PET) scanners can provide a powerful tool for clinical diagnosis and investigation. Among the challenges of developing a combined scanner, obtaining attenuation maps for PET reconstruction is of critical importance. This requires accounting for the presence of MR hardware in the field of view. The attenuation introduced by this hardware cannot be obtained from MR data. We propose the creation of attenuation models of MR hardware, to be registered into the MR-based attenuation map prior to PET reconstruction. Two steps were followed to assess the viability of this method. First, transmission and emission measurements were performed on MR components (RF coils and medical probes). The severity of the artifacts in the reconstructed PET images was evaluated. Secondly, a high-exposure computed tomography (CT) scan was used to obtain a model of a head coil. This model was registered into the attenuation map of PET/CT scans of a uniform phantom fitted with the coil. The resulting PET images were compared to the PET/CT reconstruction in the absence of coils. The artifacts introduced by misregistration of the model were studied. The transmission scans revealed 17% count loss due to the presence of head and neck coils in the field of view. Important sources of attenuation were found in the lock, signal cables and connectors. However, the worst source of attenuation was the casing between both coils. None of the measured medical probes introduced a significant amount of attenuation. Concerning the attenuation model of the head coil, reconstructed PET images with model-based correction were comparable to the reference PET/CT reconstruction. However, inaccuracies greater than 1-2 mm in the axial positioning of the model led to important artifacts. In conclusion, the results show that model-based attenuation correction is possible. Using a high-exposure scan to create an attenuation model of the

  20. Investigation of the Dependences of the Attenuation Properties of Cryogenic Metal-Powder Filters on the Preparation Method

    Science.gov (United States)

    Lee, Sung Hoon; Lee, Soon-Gul

    2018-04-01

    We fabricated low-pass metal powder filters for use in low-noise measurements at cryogenic temperatures and investigated their attenuation characteristics for different wire-turn densities, metalpowder shapes, and preparation methods at frequencies up to 20 GHz. We used nominally 30-μmsized stainless-steel 304L powder and mixed it with low-temperature binders. The low-temperature binders used were Stycast 2850FT (Emerson and Cumming) with catalyst 23LV and GE-7031 varnish. A 0.1-mm insulated copper wire was wound on preformed powder-mixture bobbins in the shape of a circular rod and was encapsulated in metal tubes with the powder mixture. All the fabricated powder filters showed a large attenuation at high frequencies with a cut-off frequency near 1 GHz. For filters of the same wire length, a lower wiring density showed a larger attenuation, which implies that the amount of powder in close contact with the wire determines the attenuation. Filters made of a powder/varnish mixture showed significantly larger attenuations than those of a powder/stycast mixture, and the attenuation improved with increasing powder ratio in the mixture. The low-temperature thermal conductivities of a 2 : 1 powder/Stycast mixture and a 5 : 1 powder/varnish mixture showed similar values at temperatures up to 4.2 K.

  1. Effect of Flyash Addition on Mechanical and Gamma Radiation Shielding Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Kanwaldeep Singh

    2014-01-01

    Full Text Available Six concrete mixtures were prepared with 0%, 20%, 30%, 40%, 50%, and 60% of flyash replacing the cement content and having constant water to cement ratio. The testing specimens were casted and their mechanical parameters were tested experimentally in accordance with the Indian standards. Results of mechanical parameters show their improvement with age of the specimens and results of radiation parameters show no significant effect of flyash substitution on mass attenuation coefficient.

  2. Measurements of radiative material properties for astrophysical plasmas

    International Nuclear Information System (INIS)

    Bailey, James E.

    2010-01-01

    The new generation of z-pinch, laser, and XFEL facilities opens the possibility to produce astrophysically-relevant laboratory plasmas with energy densities beyond what was previously possible. Furthermore, macroscopic plasmas with uniform conditions can now be created, enabling more accurate determination of the material properties. This presentation will provide an overview of our research at the Z facility investigating stellar interior opacities, AGN warm-absorber photoionized plasmas, and white dwarf photospheres. Atomic physics in plasmas heavily influence these topics. Stellar opacities are an essential ingredient of stellar models and they affect what we know about the structure and evolution of stars. Opacity models have become highly sophisticated, but laboratory tests have not been done at the conditions existing inside stars. Our research is presently focused on measuring Fe at conditions relevant to the base of the solar convection zone, where the electron temperature and density are believed to be 190 eV and 9 x 10 22 e/cc, respectively. The second project is aimed at testing atomic kinetics models for photoionized plasmas. Photoionization is an important process in many astrophysical plasmas and the spectral signatures are routinely used to infer astrophysical object's characteristics. However, the spectral synthesis models at the heart of these interpretations have been the subject of very limited experimental tests. Our current research examines photoionization of neon plasma subjected to radiation flux similar to the warm absorber that surrounds active galactic nuclei. The third project is a recent initiative aimed at producing a white dwarf photosphere in the laboratory. Emergent spectra from the photosphere are used to infer the star's effective temperature and surface gravity. The results depend on knowledge of H, He, and C spectral line profiles under conditions where complex physics such as quasi-molecule formation may be important. These

  3. Density determination in Pino Radiata (D.Don) samples using 59.5 keV gamma radiation attenuation

    International Nuclear Information System (INIS)

    Dinator, Maria I.; Morales, Jose R.; Aliaga, Nelson; Karsulovic, Jose T.; Sanchez, Jaime; Leon, Adolfo

    1996-01-01

    A non destructive method to determine wood samples density is presented. The photon mass attenuation coefficient in samples of Pino radiata (D.Don) was measured at 59.5 keV with a radioactive source of Am-241. The value of 0.192 ± 0.002 cm 2 /g was obtained with a gamma spectroscopy system and later used on the determination of the mass density in sixteen samples of the same species. Comparison of these results with those of gravimetric method through a linear regression showed a slope of 1.001 and a correlation factor of 0.94. (author)

  4. A method to determine density in wood samples using attenuation of 59.5 KeV gamma radiation

    International Nuclear Information System (INIS)

    Dinator, M.I.; Morales, J.R.; Aliaga, N.; Karsulovic, J.T.; Sanchez, J.; Leon, L.A.

    1996-01-01

    A nondestructive method to determine the density of wood samples is presented. The photon mass attenuation coefficient in samples of Pino Radiata was measured at 59.5 KeV with a radioactive source of Am-241. The value of 0.192 ± 0.002 cm 2 /g was obtained with a gamma spectroscopy system and later used on the determination of the mass density in sixteen samples of the same species. Comparison of these results with those of gravimetric method through a linear regression showed a slope of 1.001 and correlation factor of 0.94. (author)

  5. Theoretical studies of radiative properties of broken clouds

    International Nuclear Information System (INIS)

    Titov, G.A.

    1994-01-01

    One of the three goals of the Atmospheric Radiation Measurement (ARM) Program is to improve the quality of radiation models under clear sky, homogeneous cloud, and broken cloud conditions. This report is concerned with the development of the theory of radiation transfer in the broken clouds. Our approach is based on a stochastic description of the interaction between the radiation and cloud field with stochastic geometry; In the following, we discuss (1) the mean radiation fluxes in the near IR spectral range 2.7 to 3.2 μm; (2) the influence of random geometry of individual cumulus clouds on the mean fluxes of visible solar radiation; (3) the equations of the mean radiance in the statistically inhomogeneous cloud fields

  6. Tylvalosin exhibits anti-inflammatory property and attenuates acute lung injury in different models possibly through suppression of NF-κB activation.

    Science.gov (United States)

    Zhao, Zhanzhong; Tang, Xiangfang; Zhao, Xinghui; Zhang, Minhong; Zhang, Weijian; Hou, Shaohua; Yuan, Weifeng; Zhang, Hongfu; Shi, Lijun; Jia, Hong; Liang, Lin; Lai, Zhi; Gao, Junfeng; Zhang, Keyu; Fu, Ling; Chen, Wei

    2014-07-01

    Tylvalosin, a new broad-spectrum, third-generation macrolides, may exert a variety of pharmacological activities. Here, we report on its anti-oxidative and anti-inflammatory activity in RAW 264.7 macrophages and mouse treated with lipopolysaccharide (LPS) as well as piglet challenged with porcine reproductive and respiratory syndrome virus (PRRSV). Tylvalosin treatment markedly decreased IL-8, IL-6, IL-1β, PGE2, TNF-α and NO levels in vitro and in vivo. LPS and PRRSV-induced reactive oxygen species (ROS) production, and the lipid peroxidation in mice lung tissues reduced after tylvalosin treatments. In mouse acute lung injury model induced by LPS, tylvalosin administration significantly attenuated tissues injury, and reduced the inflammatory cells recruitment and activation. The evaluated phospholipase A2 (PLA2) activity and the increased expressions of cPLA2-IVA, p-cPLA2-IVA and sPLA2-IVE were lowered by tylvalosin. Consistent with the mouse results, tylvalosin pretreatment attenuated piglet lung scores with improved growth performance and normal rectal temperature in piglet model induced by PRRSV. Furthermore, tylvalosin attenuated the IκBα phosphorylation and degradation, and blocked the NF-κB p65 translocation. These results indicate that in addition to its direct antimicrobial effect, tylvalosin exhibits anti-inflammatory property and attenuates acute lung injury through suppression of NF-κB activation. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Optical characterization of OLED emitter properties by radiation pattern analyses

    Energy Technology Data Exchange (ETDEWEB)

    Flaemmich, Michael

    2011-09-08

    Researches in both, academia and industry are investigating optical loss channels in OLED layered systems by means of optical simulation tools in order to derive promising concepts for a further enhancement of the overall device performance. Besides other factors, the prospects of success of such optimization strategies rely severely on the credibility of the optical input data. The present thesis provides a guideline to measure the active optical properties of OLED emitter materials in situ by radiation pattern analyses. Reliable and widely applicable methods are introduced to determine the internal electroluminescence spectrum, the profile of the emission zone, the dipole emitter orientation, and the internal luminescence quantum efficiency of emissive materials from the optical far field emission of OLEDs in electrical operation. The proposed characterization procedures are applied to sets of OLEDs containing both, fluorescent polymeric materials as well as phosphorescent small-molecular emitters, respectively. On the one hand, quite expected results are obtained. On the other hand, several novel and truly surprising results are found. Most importantly, this thesis contains the first report of a non-isotropic, mainly parallel emitter orientation in a phosphorescent small-molecular guest-host system (Ir(MDQ)2(acac) in a-NPD). Due to the latter result, emitter orientation based optimization of phosphorescent OLEDs seems to be within reach. Since parallel dipoles emit preferably into air, the utilization of smart emissive materials with advantageous molecular orientation is capable to boost the efficiency of phosphorescent OLEDs by 50%. Materials design, the influence of the matrix material and the substrate, as well as film deposition conditions are just a few parameters that need to be studied further in order to exploit the huge potential of the dipole emitter orientation in phosphorescent OLEDs.

  8. Multiple low-dose radiation prevents type 2 diabetes-induced renal damage through attenuation of dyslipidemia and insulin resistance and subsequent renal inflammation and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Minglong Shao

    Full Text Available Dyslipidemia and lipotoxicity-induced insulin resistance, inflammation and oxidative stress are the key pathogeneses of renal damage in type 2 diabetes. Increasing evidence shows that whole-body low dose radiation (LDR plays a critical role in attenuating insulin resistance, inflammation and oxidative stress.The aims of the present study were to investigate whether LDR can prevent type 2 diabetes-induced renal damage and the underlying mechanisms.Mice were fed with a high-fat diet (HFD, 40% of calories from fat for 12 weeks to induce obesity followed by a single intraperitoneal injection of streptozotocin (STZ, 50 mg/kg to develop a type 2 diabetic mouse model. The mice were exposed to LDR at different doses (25, 50 and 75 mGy for 4 or 8 weeks along with HFD treatment. At each time-point, the kidney weight, renal function, blood glucose level and insulin resistance were examined. The pathological changes, renal lipid profiles, inflammation, oxidative stress and fibrosis were also measured.HFD/STZ-induced type 2 diabetic mice exhibited severe pathological changes in the kidney and renal dysfunction. Exposure of the mice to LDR for 4 weeks, especially at 50 and 75 mGy, significantly improved lipid profiles, insulin sensitivity and protein kinase B activation, meanwhile, attenuated inflammation and oxidative stress in the diabetic kidney. The LDR-induced anti-oxidative effect was associated with up-regulation of renal nuclear factor E2-related factor-2 (Nrf-2 expression and function. However, the above beneficial effects were weakened once LDR treatment was extended to 8 weeks.These results suggest that LDR exposure significantly prevented type 2 diabetes-induced kidney injury characterized by renal dysfunction and pathological changes. The protective mechanisms of LDR are complicated but may be mainly attributed to the attenuation of dyslipidemia and the subsequent lipotoxicity-induced insulin resistance, inflammation and oxidative stress.

  9. Attenuation of laser radiation by the flame of burning hydrocarbons and efficiency of remote cutting of metals

    Science.gov (United States)

    Gvozdev, S. V.; Glova, A. F.; Dubrovskii, V. Yu; Durmanov, S. T.; Krasyukov, A. G.; Lysikov, A. Yu; Smirnov, G. V.; Pleshkov, V. M.

    2017-12-01

    Mobile laser technological complex MLTC-20 with radiation power 20 kW and radiation wavelength 1.07 μm created in SRC RF TRINITI on the base of a three cw fiber Yb lasers is used successfully at remote cutting of the metalworks at carrying out of the emergency-reduction works on the out of control gas wells. In this work the results of the investigation of the possibility and the efficiency of laser radiation application for remote cutting of metals on the emergency oil wells have been presented. Measurements of the mean absorption coefficient of the radiation of a cw fiber Yb laser under its propagation in a flame of burning oil in dependence on radiation intensity have been carried out. It was shown that at the intensity ~104 W/cm2 the absorption coefficient traverses the maximum where its value is equal to ~0.1 cm-1, and at the intensity increasing to the values 105 - 106 W/cm2 it stabilizes on a small level ~5·10-3 - 10-2 cm-1. It is established that the maximal velocity and the efficiency of remote cutting of the steel plates with a thickness up to 10 mm by the radiation with the intensity 106 W/cm2 exceed these factors at the intensity 104 W/cm2. The possibility of the efficient remote cutting of steel plate with a thickness of 60 mm by laser radiation having the power 7.5 kW and the intensity 105 W/cm2 has been demonstrated.

  10. Transient attenuation in optical fibers

    International Nuclear Information System (INIS)

    Hopkins, A.A.; Kelly, R.E.; Looney, L.D.; Lyons, P.B.

    1984-01-01

    Low and high energy pulsed electron beams were used to generate radiation-induced transient attenuation in high-OH, Suprasil core, PCS fibers, demonstrating the energy dependence of the radiation damage and recovery mechanisms. A radiation resistant low-OH fiber was studied and its performance contrasted to that of high-OH materials. Several fibers with differing core compositions were also studied

  11. Effect of gamma radiation on optical and electrical properties of ...

    Indian Academy of Sciences (India)

    Wintec

    Tellurium dioxide; thin films; optical bandgap; gamma radiation dose; dosimeter. 1. Introduction. It is now ... material to ionizing radiations (such as X-rays, gamma rays, beta ..... Mag. 19 19. Mott N F and Davis E 1979 Electronic process in non-.

  12. Radioprotective properties of tocopherol succinate against ionizing radiation in mice

    International Nuclear Information System (INIS)

    Singh, V.K.; Singh, P.K.; Wise, S.Y.; Posarac, A.; Fatanmi, O.O.

    2013-01-01

    Threats of nuclear and other radiologic exposures have been increasing but no countermeasure for acute radiation syndrome has been approved by regulatory authorities. In prior publications we have demonstrated the efficacy of tocopherol succinate (TS) as a promising radiation countermeasure with the potential to protect against lethal doses of ionizing radiation exposure. The aim of this study was to gain further insight regarding how TS protects mice against a lethal dose of radiation. CD2F1 mice were injected subcutaneously with 400 mg/kg of TS, and 24 h later exposed to 60 Co γ-radiation. Intestinal tissues or spleen/thymus were harvested after irradiation and analyzed for CD68-positive inflammatory cells and apoptotic cells by immunostaining of jejunal cross-sections. Comet assay was used to analyze DNA damage in various tissues. Phospho-histone H3 (pH3) and the proliferating cell nuclear antigen (PCNA) were used as mitotic markers for immunostaining jejunal cross-sections. We observed that injecting TS significantly decreased the number of CD68-positive cells, DNA damage and apoptotic cells (bcl-associated X protein (BAX), caspase 3 and cleaved poly (ADP-ribose) polymerase-positive cells) as judged by various apoptotic pathway markers. TS treatment also increased proliferating cells in irradiated mice. Results of this study further support our contention that TS protects mice against lethal doses of ionizing radiation by inhibiting radiation-induced apoptosis and DNA damage while enhancing cell proliferation. (author)

  13. Radiation induced improvement of superconducting properties of HTSC materials (Review)

    International Nuclear Information System (INIS)

    Ibragimova, E.M.; Kirk, M.A.

    2002-01-01

    The aim of this paper is to demonstrate unique opportunities for significant improvement of superconducting properties of YBaCuO single crystals, ceramics, films and tapes by means of different irradiation. It was found (about 200 papers) that irradiation with moderate doses of high energy particles (electron, protons, neutrons, ions) results in significant enhancement of magnetization and Jc at high magnetic fields (1-5 T). So called flux pinning centers responsible for such enhancement are still a subject for study. Most researches ascribe the stronger pinners to linear and columnar defects, and weaker ones to point defects. Several researches reported also about small increase of the critical temperature Tc after ionizing irradiation (X- or gamma-rays). All these data are related to improvement of Jc in bulk - intragranular critical current, which is much higher than the real intragranular transport critical current Ic limited by weak intergrain contacts. Much less studied is the effect of irradiation on the intragranular critical current and conductivity. Several authors found some increase of current carrying ability of YBaCuO ceramics, crystals and films after X-ray , gamma-ray, oxygen plasma, electron and proton irradiations. However there was not mentioned direct correlation between the radiation induced changes in the Tc, Jc, Ic and the normal state resistivity. Only a few papers are devoted to synthesis or sintering the particular texture ensuring enhancement of the intergranular contacts by minimizing both off-plan and in-plan grain misorientation. The transport Ic at 77 K and the normal state resistivity correlated well each to other and with the c-axis-texturing degree of the YBaCuO ceramics. Our latest experiment on proton irradiation at elevated temperatures of the coated conductors (the second generation of HTSC tapes) demonstrated a noticeable increase of the transport (intergranular) Ic at 77 K and a significant decrease of the normal state

  14. Improvement of BaO:B2O3:Fly ash glasses: Radiation shielding, physical and optical properties

    International Nuclear Information System (INIS)

    Tuscharoen, S.; Kaewkhao, J.; Limkitjaroenporn, P.; Limsuwan, P.; Chewpraditkul, W.

    2012-01-01

    Highlights: ► BaO:B 2 O 3 :Fly ash glasses have been improved in radiation Shielding, physical and optical properties. ► The visible light transmission of RHA glass was better than SiO 2 . ► At all BaO concentrations, exhibited the better half values layer in comparison window and ordinary concrete. -- Abstract: Rice husk ash glass (RHA-glass) of composition xBaO:(80 − x)B 2 O 3 :20RHA where x = 45, 50, 55, 60, 65 and 70 wt.% have been prepared using melt-quenching method and investigated on their optical, physical and gamma-rays shielding properties. The densities of these glass samples were increased with increasing of BaO content, due to higher molecular weight of BaO comparing with B 2 O 3 . The molar volume of these glasses was increased with increasing content of BaO; BaO acts as modifier to increase the loose packing. The visible light transmission of RHA glass was better than SiO 2 glass prepared in same formula and preparing condition. The experimental values of gamma ray shielding properties such as; mass attenuation coefficients, atomic cross sections and effective atomic numbers, were found in good agreement with the theoretical values as calculated from WinXCom. Moreover the glass system at all BaO concentrations, exhibited the better half values layer in comparison window and ordinary concrete.

  15. Thermal Radiation Properties of Turbulent Lean Premixed Methane Air Flames

    National Research Council Canada - National Science Library

    Ji, Jun; Sivathanu, Y. R; Gore, J. P

    2000-01-01

    ... of turbulent premixed flames. Reduced cooling airflows in lean premixed combustors, miniaturization of combustors, and the possible use of radiation sensors in combustion control schemes are some of the practical reasons...

  16. Effects of radiation induced polymerisation on the mechanical properties of polymer impregnated concrete

    International Nuclear Information System (INIS)

    Ohgishi, S.; Ono, H.; Kasahara, Y.

    1980-01-01

    In this programme, effects of electron irradiation energy on mechanical properties of polymer impregnated concrete (PIC) were examined with regard to the density of the base cement mortar, the total exposure dose, the radiation source and other factors. (author)

  17. Influence of gamma radiation on the immunological and immunochemical properties of cholera

    International Nuclear Information System (INIS)

    Nedugova, G.I.; Rubtsov, I.V.; Samojlenko, I.I.

    1984-01-01

    Results of studying the effect of gamma-radiation on immunochemical properties and serologic activity of unpurified cholera exotoxin are presented. It is found that in irradiated toxin preparations physico-chemical alterations take place as the dose of ionizing radiation increases, which brings about the increase in electrophoretic mobility, aggregation of protein components. It is shown that serologic activity contained in antigene toxin preparations retains within the limits of radiation doses studied

  18. Effects of γ-radiation on the properties of insulating oil

    International Nuclear Information System (INIS)

    Abdel Aziz, M.M.; Elshazly-Zaghloul, M.; Zaghloul, A.R.M.; Fikry, L.; Raieh, M.

    1986-01-01

    Electrical Equipment used in an irradiated environment suffer from ionization and other effects. Insulating oil, e.g. of transformers, in a nuclear power station is subjected to γ-radiation. In this communication we provide a detailed experimental study of insulating oil subjected to γ-radiation. Unused oil samples of the type used in Egypt were subjected to γ-radiation for different time periods. The electrical properties of these samples are measured; dielectric constant and breakdown strength

  19. Study of material properties important for an optical property modulation-based radiation detection method for positron emission tomography

    OpenAIRE

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2017-01-01

    We compare the performance of two detector materials, cadmium telluride (CdTe) and bismuth silicon oxide (BSO), for optical property modulation-based radiation detection method for positron emission tomography (PET), which is a potential new direction to dramatically improve the annihilation photon pair coincidence time resolution. We have shown that the induced current flow in the detector crystal resulting from ionizing radiation determines the strength of optical modulation signal. A large...

  20. Test on radiation-withstanding properties of sensors

    International Nuclear Information System (INIS)

    Yagi, Hideyuki; Kakuta, Tsunemi; Ara, Katsuyuki

    1986-01-01

    In order to use for the remote operation system or in-line measuring system in the facilities handling radioactive substances, the development of the sensors having strengthened radiation-withstanding performance has been advanced. As a part of it, efforts have been exerted to phenomenologically grasp the radiation effect on various sensors and their materials, and to acquire the basic data. Irradiation test was carried out on solid image pick-up elements, optical parts eddy current sensors, pressure sensitive rubber, photo-electric proximity sensors and others, and the knowledge on their deterioration was obtained. Besides, the sensors and video-cameras having improved radiation-withstanding performance were made for trial, and the performance was tested. The interim report on these test results is made. By a series of the irradiation tests reported here, the basic data required for giving the guideline to the development of radiation withstanding sensors were able to be obtained. But in the present irradiation test, the number of specimens was too small to assure the radiation withstanding performance. In order to improve further the radiation withstanding performance of these sensors, it is necessary to carry out the irradiation test on such elements as condensers, diodes and ICs to accumulate the basic data. (Kako, I.)

  1. Cloud forming properties of ambient aerosol in the Netherlands and resultant shortwave radiative forcing of climate

    NARCIS (Netherlands)

    Khlystov, A.

    1998-01-01

    This thesis discusses properties of ambient aerosols in the Netherlands which are controlling the magnitude of the local aerosol radiative forcing. Anthropogenic aerosols influence climate by changing the radiative transfer through the atmosphere via two effects, one is direct and a second

  2. Radiation crosslinking of polymer materials and its functional properties

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2006-01-01

    It was found out that radiation crosslinking of biodegradable polymer such as poly (butylene succinate, PBS) and poly(ε-caprolactone, PCL) could be achieved by radiation in the presence of small amount of trimethallyl isocyanurate (TMAIC) or 1% triallyl isocyanurate (TAIC). Such modification is very effective to improve heat resistance for PBS and PCL. Poly (lactic acid, PLA) undergoes crosslinking effectively with 3% TAIC by radiation. Outstanding feature of these polymers is their biodegradability even after crosslinking. Radiation crosslinking of polysaccharide derivatives such as carboxymethyl-cellulose (CMC) is also achieved in aqueous solution at high concentration (paste-like state). The crosslinking behavior was largely affected by the degree of substitution (DS) and polymer concentration. After removal of water the dry CMC gel is used as water absorbent material. This dry gel is the most effective for removal of large amounts of water from organic wastes, resulting in the acceleration of their fermentation. Measurement of swelling ratio of the dry CMC gel in 0.9% NaCl aqueous solution was carried out to expand application fields for this material. Radiation crosslinked poly (vinyl alcohol) hydrogel was successfully commercialized from July 2004 as wound dressing for accelerated healing. Furthermore, this material was also used as gel protector to prevent shore sore and was further commercialized. (author)

  3. Action of an ionizing radiation and hydrodynamic effect on matrix properties of DNA during extracellular synthesis of RNA, and thiophosphate protection of matrix properties of T2-DNA against. gamma. -radiation. [gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shekhtman, Ya L; Domashenko, A D; Kamzolova, S G; Medvedkov, A A [AN SSSR, Pushchino-na-Oke. Inst. Biologicheskoj Fiziki

    1976-05-01

    Action of an ionizing radiation and the hydrodynamic effect of the matrix activity of thymus DNA and T2 phase DNA have been studied in vitro in the RNA: polymerase system of E.coli B. Also studied have been the thiophosphate protection of matrix properties of T2-DNA against ..gamma..-radiation.

  4. Radiation - induced changes in the optical properties of hemoglobin molecule

    International Nuclear Information System (INIS)

    Selim, N.S; El-Marakby, S.M.

    2009-01-01

    Adult male albino rats were exposed to different doses of gamma radiation from Cs-137 source. Hemoglobin samples were analyzed 24 hrs after irradiation. The UV-visible spectrum of hemoglobin molecule was measured in the range 200 to 700 nm. The overall spectrum of the hemoglobin molecule showed hypochromicity that increased with dose increase. To investigate the effect of radiation on the hemoglobin molecule, different parameters of the spectrum were calculated: molar absorption coefficient, absorption cross section, transition dipole moment , dipole length, the optical energy gap and activation energy for each characteristic peak. The obtained results revealed that the radiation effect can induce rearrangement of the transition dipole moments and change molecular energy levels of the hemoglobin molecule

  5. The utilize of gamma radiation on the examination of mechanical properties of polymeric materials

    Directory of Open Access Journals (Sweden)

    F. Greškovič

    2012-04-01

    Full Text Available The article deals about the application area of radiation crosslinking of plastics, which follows after the injection moulding. The main objective of the presented article is the research of influence irradiation dosage on mechanical properties of materials: PP filled by 15 % of mineral filler – talc. Mechanical properties - tensile strength and impact strength by Charpy were examined in dependence on absorbed dose of the gamma rays on various conditions and were compared with non-irradiated samples. Radiation processing involves mainly the use of either electron beams from electron accelerators or gamma radiation from Cobalt-60 sources.

  6. The mechanical properties of radiation-vulcanized NR/BR blending system

    Energy Technology Data Exchange (ETDEWEB)

    Yan Aoshuang E-mail: yanas@public3.bta.net.cn; Guo Zhengtao; Li Li; Zhai Ying; Zhou Peng

    2002-03-01

    The effect of radiation dose on the mechanical properties of NR/BR blending system is reported in this paper. A comparison was made between sulphur vulcanization and radiation vulcanization for an optimal nature rubber (NR)/ butyl rubber (BR) blending ratio (60/40) at dose range from 10 to 150 kGy. The result shows that the mechanical properties, especially, tensile strength, elongation at break, and tear strength have been improved significantly by radiation-vulcanization. This finding was also proved by thermal aging experiment on a selected NR/BR blend at 70 deg. C for up to 168 h.

  7. Calculation extinction cross sections and molar attenuation coefficient of small gold nanoparticles and experimental observation of their UV-vis spectral properties

    Science.gov (United States)

    Tang, Junqi; Gao, Kunpeng; Ou, Quanhong; Fu, Xuewen; Man, Shi-Qing; Guo, Jie; Liu, Yingkai

    2018-02-01

    Gold nanoparticles (AuNPs) have been researched extensively, such as applied in various biosensors, biomedical imaging and diagnosis, catalysis and physico-chemical analysis. These applications usually required to know the nanoparticle size or concentration. Researchers have been studying a simply and quick way to estimate the concentration or size of nanoparticles from their optical spectra and SPR feature for several years. The extinction cross-sections and the molar attenuation coefficient were one of the key parameters. In this study, we calculated the extinction cross-sections and molar attenuation coefficient (decadic molar extinction coefficient) of small gold nanoparticles by dipole approximation method and modified Beer-Lambert law. The theoretical result showed that the surface plasmon resonance peak of small gold nanoparticles was blueshift with an increase size. Moreover, small AuNPs (sub-10 nm) were prepared by using of dextran or trisodium citrate as reducing agent and capping agent. The experimental synthesized AuNPs was also shows a blueshift as increasing particle size in a certain range. And the concentration of AuNPs was calculated based on the obtained molar attenuation coefficient. For small nanoparticles, the size of nanoparticles and surface plasmon resonance property was not showed a positive correlation compared to larger nanoparticles. These results suggested that SPR peak depended not only on the nanoparticle size and shape but also on the nanoparticles environment.

  8. Cryopreservation and distribution of radiation-attenuated helminth larvae and the use of radioisotopes to monitor their survival. Coordinated programme on preparation of irradiated vaccines against some human diseases

    International Nuclear Information System (INIS)

    James, E.

    1982-06-01

    Techniques for the cryopreservation of schistosomula are described, from the methanol/two-step cooling technique, through a technique which uses 40% methanol and rapid cooling to the current technique which employs a two-step addition of ethanediol and rapid cooling. Levels of survival with these techniques have improved from 0.3% to 5.9% and now to 47% of control values. The 40% methanol/rapid cooling technique is described in detail as this forms the basis for understanding the role of cryoprotective additives and cooling and warming rates in the cryopreservation of schistosomula. The toxicity of 12 different potentially cryoprotective compounds is described. Cryopreservation of S.japonicum and S.bovis is described. The effect of the age of the schistosomula and their cryopreservability is related to the development of water sensitivity and the permeation and damage produced by glycerol and it is postulated that morphological changes occurring in the tegument during transformation from a cercaria to schistosomulum may account for these observations. Studies with 14 C-ethanediol are described which attempt to provide an understanding of permeability of cryoprtectants to schistosomula of different ages and at different temperatures. Vaccination studies with cryopreserved and radiation-attenuated schistosomula are also reported. Radiation-attenuated schistosomula are also reported. Radiation-attenuated cercariae and schistosomula produced high (64% to 89%) levels of protection in baboons, and cryopreserved schistosomula produced comparable levels of protection in vaccinated mice to normal schistosomula. Cryopreserved radiation-attenuated schistosomula produced a significant level of protection (49% reduction) in sheep although the numbers of normally motile organisms injected was low (1,000 per dose, 2 doses). It is concluded that normally-motile cryopreserved radiation-attenuated schistosomula are as immunogenic as fresh organisms

  9. CHARACTERIZING ULTRAVIOLET AND INFRARED OBSERVATIONAL PROPERTIES FOR GALAXIES. I. INFLUENCES OF DUST ATTENUATION AND STELLAR POPULATION AGE

    International Nuclear Information System (INIS)

    Mao Yewei; Kong Xu; Kennicutt, Robert C. Jr.; Hao, Cai-Na; Zhou Xu

    2012-01-01

    The correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color (or ultraviolet spectral slope), i.e., the IRX-UV (or IRX-β) relation, found in studies of starburst galaxies is a prevalent recipe for correcting extragalactic dust attenuation. Considerable dispersion in this relation discovered for normal galaxies, however, complicates its usability. In order to investigate the cause of the dispersion and to have a better understanding of the nature of the IRX-UV relation, in this paper, we select five nearby spiral galaxies, and perform spatially resolved studies on each of the galaxies, with a combination of ultraviolet and infrared imaging data. We measure all positions within each galaxy and divide the extracted regions into young and evolved stellar populations. By means of this approach, we attempt to discover separate effects of dust attenuation and stellar population age on the IRX-UV relation for individual galaxies. In this work, in addition to dust attenuation, stellar population age is interpreted to be another parameter in the IRX-UV function, and the diversity of star formation histories is suggested to disperse the age effects. At the same time, strong evidence shows the need for more parameters in the interpretation of observational data, such as variations in attenuation/extinction law. Fractional contributions of different components to the integrated luminosities of the galaxies suggest that the integrated measurements of these galaxies, which comprise different populations, would weaken the effect of the age parameter on IRX-UV diagrams. The dependence of the IRX-UV relation on luminosity and radial distance in galaxies presents weak trends, which offers an implication of selective effects. The two-dimensional maps of the UV color and the infrared-to-ultraviolet ratio are displayed and show a disparity in the spatial distributions between the two galaxy parameters, which offers a spatial interpretation of the scatter in

  10. Attenuation of radiation-induced DNA damage due to paracrine interactions between normal human epithelial and stromal cells

    International Nuclear Information System (INIS)

    Saenko, V.A.; Nakazawa, Yu.; Rogounovitch, T.I.; Suzuki, K.; Mitsutake, N.; Matsuse, M.; Yamashita, S.

    2007-01-01

    Complete text of publication follows. Objective: Developmentally, every tissue accommodates different types of cells, such as epitheliocytes and stromal cells in parenchymal organs. To better understand the complexity of radiation response, it is necessary to evaluate possible cross-talk between different tissue components. This work was set out to investigate reciprocal influence of normal human epithelial cells and fibroblasts on the extent of radiation-induced DNA damage. Methods: Model cultures of primary human thyrocytes (PT), normal diploid fibroblasts (BJ), PT/BJ cell co-culture and conditioned medium transfer were used to examine DNA damage in terms of γ-H2AX foci number per cell or by Comet assay after exposure to different doses of γ-rays. Results: In co-cultures, the kinetics of γ-H2AX foci number change was dose-dependent and similar to that in individual PT and BJ cultures. The number of γ-H2AX foci in co-cultures was significantly lower (∼25%) in both types of cells comparing to individual cultures. Reciprocal conditioned medium transfer to individual counterpart cells prior to irradiation resulted in approximately 35% reduction in the number γ-H2AX foci at 1 Gy and lower doses in both PT and BJ demonstrating the role of paracrine soluble factors. Comet assay corroborated the results of γ-H2AX foci counting in conditioned medium transfer experiments. In contrast to medium conditioned on PT cells, conditioned medium collected from several human thyroid cancer cell lines failed to establish DNA-protected state in BJ fibroblasts. In its turn, medium conditioned on BJ cells did not change the extent of radiation-induced DNA damage in cancer cell lines tested. Conclusion: The results imply the existence of a network of soluble factor-mediated paracrine interactions between normal epithelial and stromal cells that could be a part of natural mechanism by which cells protect DNA from genotoxic stress.

  11. Investigation of radiation keeping property of barite coated cloth via image processing method

    Science.gov (United States)

    Kilinçarslan, Ş.; Akkurt, İ.; Molla, T.; Akarslan, F.

    2012-09-01

    Preservative clothes which are able to absorb radiation beam are needed not only for saving people working at radioactive environment but also for saving others from natural and man-made radiation sources we are exposed in daily life. Barite is a mineral which can be used for armour plating because of high atomic numbered element barium constituent of barite. In this study, armour plating property of barite was applied to fabrics. Barite coated fabric having characteristic of keeping radiation was obtained by penetrating barite on cloth via coating method. Radiation keeping property of fabrics obtained was determined via image processing. The results of experiments showed that barite coated fabrics have blocked radiation more than normal fabrics have done.

  12. Investigation of radiation keeping property of barite coated cloth via image processing method

    Energy Technology Data Exchange (ETDEWEB)

    Kilincarslan, S.; Akkurt, I.; Molla, T.; Akarslan, F. [Department of Construction Education, Suleyman Demirel University, Isparta (Turkey); Department of Physics, Science Faculty, Suleyman Demirel University, Isparta (Turkey); Department of Construction Education, Suleyman Demirel University, Isparta (Turkey); Textil Engineering, Engineering Faculty, Suleyman Demirel University, Isparta (Turkey)

    2012-09-06

    Preservative clothes which are able to absorb radiation beam are needed not only for saving people working at radioactive environment but also for saving others from natural and man-made radiation sources we are exposed in daily life. Barite is a mineral which can be used for armour plating because of high atomic numbered element barium constituent of barite. In this study, armour plating property of barite was applied to fabrics. Barite coated fabric having characteristic of keeping radiation was obtained by penetrating barite on cloth via coating method. Radiation keeping property of fabrics obtained was determined via image processing. The results of experiments showed that barite coated fabrics have blocked radiation more than normal fabrics have done.

  13. Infuence of gamma radiation on the rheological and functional properties of bread wheats

    International Nuclear Information System (INIS)

    Paredes-Lopez, O.; Covarrubias-Alvarez, M.M.

    1984-01-01

    The effects of gamma irradiation on some biochemical, rheological and functional properties of bread wheats were studied. Two wheat cultivars were selected to represent medium-strong and weak dough mixing strengths. Falling number values were severely depressed at doses of 500 and 1000 krad. Rheological dough properties, as assessed with the mixograph and farinograph, were also investigated. Radiation at medium doses produced an increase in the farinograph water absorption for both wheats. Radiation decreased the amount of bound water as compared to the control sample. For the medium-strong wheat low levels of radiation produced bread with volumes and overall bread quality equal to or slightly better than those of the control flour, whereas for the weak wheat an improvement of the baking performance was obtained at all the low doses of radiation. However, the overall bread quality of both wheats was highly reduced at medium doses of radiation. (author)

  14. Investigation of radiation keeping property of barite coated cloth via image processing method

    International Nuclear Information System (INIS)

    Kilinçarslan, Ş.; Akkurt, İ.; Molla, T.; Akarslan, F.

    2012-01-01

    Preservative clothes which are able to absorb radiation beam are needed not only for saving people working at radioactive environment but also for saving others from natural and man-made radiation sources we are exposed in daily life. Barite is a mineral which can be used for armour plating because of high atomic numbered element barium constituent of barite. In this study, armour plating property of barite was applied to fabrics. Barite coated fabric having characteristic of keeping radiation was obtained by penetrating barite on cloth via coating method. Radiation keeping property of fabrics obtained was determined via image processing. The results of experiments showed that barite coated fabrics have blocked radiation more than normal fabrics have done.

  15. Influence of Variable Fluid Properties and Radiative Heat loss on ...

    African Journals Online (AJOL)

    Consequently, comparative analysis is also performed on the wall shear stress and local heat transfer of the present study with the available results.The results show that the inclusion variable viscosity and thermal conductivity, and radiative heat loss mechanism cause significant effects on the fluid flow velocity, temperature ...

  16. Low temperature thermal radiative properties of gold coated metals

    Czech Academy of Sciences Publication Activity Database

    Frolec, Jiří; Králík, Tomáš; Srnka, Aleš

    2017-01-01

    Roč. 82, OCT (2017), s. 51-55 ISSN 0140-7007 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : gold films * heat transfer * thermal radiation * cryogenics Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 2.779, year: 2016

  17. Effect of gamma radiation on properties of a composite rocket propellant

    International Nuclear Information System (INIS)

    Dedgaonkar, V.G.; Pol, V.G.; Navle, P.B.; Ghorpade, V.G.; Wani, V.S.

    2000-01-01

    Gamma radiation was employed for modifying the properties of a composite rocket propellant prepared in a standard way. It was observed that when the same gamma dose was imparted to hydroxy terminated polybutadiene (HTPB) then converted into propellant, the enhancement in the properties was much larger than the irradiated propellant samples. (author)

  18. Impacts and implementation of fuel moisture release and radiation properties in modelling of pulverized fuel combustion processes

    DEFF Research Database (Denmark)

    Yin, Chungen

    2015-01-01

    . Therefore, cares must be taken in particle radiation, especially particle radiative properties. The refined weighted-sum-of-gray-gases model (WSGGM) and conversion-dependent particle radiative property models presented in the paper are recommended for use in generic CFD modelling of PF combustion....

  19. Inverse Estimation of Surface Radiation Properties Using Repulsive Particle Swarm Optimization Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyun Ho [Sejong University, Sejong (Korea, Republic of); Kim, Ki Wan [Agency for Defense Development, Daejeon (Korea, Republic of)

    2014-09-15

    The heat transfer mechanism for radiation is directly related to the emission of photons and electromagnetic waves. Depending on the participation of the medium, the radiation can be classified into two forms: surface and gas radiation. In the present study, unknown radiation properties were estimated using an inverse boundary analysis of surface radiation in an axisymmetric cylindrical enclosure. For efficiency, a repulsive particle swarm optimization (RPSO) algorithm, which is a relatively recent heuristic search method, was used as inverse solver. By comparing the convergence rates and accuracies with the results of a genetic algorithm (GA), the performances of the proposed RPSO algorithm as an inverse solver was verified when applied to the inverse analysis of the surface radiation problem.

  20. Inverse Estimation of Surface Radiation Properties Using Repulsive Particle Swarm Optimization Algorithm

    International Nuclear Information System (INIS)

    Lee, Kyun Ho; Kim, Ki Wan

    2014-01-01

    The heat transfer mechanism for radiation is directly related to the emission of photons and electromagnetic waves. Depending on the participation of the medium, the radiation can be classified into two forms: surface and gas radiation. In the present study, unknown radiation properties were estimated using an inverse boundary analysis of surface radiation in an axisymmetric cylindrical enclosure. For efficiency, a repulsive particle swarm optimization (RPSO) algorithm, which is a relatively recent heuristic search method, was used as inverse solver. By comparing the convergence rates and accuracies with the results of a genetic algorithm (GA), the performances of the proposed RPSO algorithm as an inverse solver was verified when applied to the inverse analysis of the surface radiation problem

  1. A preliminary assessment of the effects of radiation on polymer properties

    International Nuclear Information System (INIS)

    Dickson, L.W.

    1988-01-01

    The literature on the effects of radiation on the properties of various polymers and composites has been briefly reviewed for the purpose of identifying polymeric materials that could be irradiated to improve their performance. Radiation treatment of polymers may lead to cross-linking or chain scission reactions, depending on the chemical nature of the polymer. Cross-linking generally leads to an improvement in the mechanical properties of the polymer. Chain scission leads to deterioration in mechanical properties. The properties of irradiated polymers also depend on the degree of polymer crystallinity and the irradiation conditions, including dose rate and the presence of oxygen, cross-linking agents and other additives. A 30% increase in the tensile strength of many polymers may be obtained by radiation cross-linking under appropriate conditions. 40 refs

  2. Gamma radiation effects on the rheological properties of high and low density polyethylenes

    International Nuclear Information System (INIS)

    Rangel-Nafaile, C.; Garcia-Rejon, A.; Garcia Leon, A.

    1986-01-01

    High energy radiation of polymeric materials is a topic of considerable interest from commercial and scientific points of view. Within an inert atmosphere, irradiation of polyethylene yields a crosslinking effect with a consequent improvement in its mechanical properties in comparison to the virgin materials. Additionally, if irradiated specimens are melted and recrystallized, the radiation-induced crosslinking hinders their crystalline growth altering dramatically their flow properties such as the elasticity. This work portrays the effects of the gamma radiation on the rheological properties of high and low density polyethylenes manufactured by PEMEX and analyzes the implications of theoretical results derived from the Acierno's model when it is implemented with the rheological properties of high energy irradiated polyethylenes. (author)

  3. Colocalization of a CD1d-Binding Glycolipid with a Radiation-Attenuated Sporozoite Vaccine in Lymph Node-Resident Dendritic Cells for a Robust Adjuvant Effect.

    Science.gov (United States)

    Li, Xiangming; Kawamura, Akira; Andrews, Chasity D; Miller, Jessica L; Wu, Douglass; Tsao, Tiffany; Zhang, Min; Oren, Deena; Padte, Neal N; Porcelli, Steven A; Wong, Chi-Huey; Kappe, Stefan H I; Ho, David D; Tsuji, Moriya

    2015-09-15

    A CD1d-binding glycolipid, α-Galactosylceramide (αGalCer), activates invariant NK T cells and acts as an adjuvant. We previously identified a fluorinated phenyl ring-modified αGalCer analog, 7DW8-5, displaying nearly 100-fold stronger CD1d binding affinity. In the current study, 7DW8-5 was found to exert a more potent adjuvant effect than αGalCer for a vaccine based on radiation-attenuated sporozoites of a rodent malaria parasite, Plasmodium yoelii, also referred to as irradiated P. yoelii sporozoites (IrPySpz). 7DW8-5 had a superb adjuvant effect only when the glycolipid and IrPySpz were conjointly administered i.m. Therefore, we evaluated the effect of distinctly different biodistribution patterns of αGalCer and 7DW8-5 on their respective adjuvant activities. Although both glycolipids induce a similar cytokine response in sera of mice injected i.v., after i.m. injection, αGalCer induces a systemic cytokine response, whereas 7DW8-5 is locally trapped by CD1d expressed by dendritic cells (DCs) in draining lymph nodes (dLNs). Moreover, the i.m. coadministration of 7DW8-5 with IrPySpz results in the recruitment of DCs to dLNs and the activation and maturation of DCs. These events cause the potent adjuvant effect of 7DW8-5, resulting in the enhancement of the CD8(+) T cell response induced by IrPySpz and, ultimately, improved protection against malaria. Our study is the first to show that the colocalization of a CD1d-binding invariant NK T cell-stimulatory glycolipid and a vaccine, like radiation-attenuated sporozoites, in dLN-resident DCs upon i.m. conjoint administration governs the potency of the adjuvant effect of the glycolipid. Copyright © 2015 by The American Association of Immunologists, Inc.

  4. Properties of Radiation Cured Elastomer/ Thermoplastic Blends Containing Different Additives

    International Nuclear Information System (INIS)

    Abou Zeid, M.M.; Shaltout, N.A.; Khalil, A.M.; El Miligy, A.A.

    2008-01-01

    The effect of different co agents on the physico-chemical properties of NBR/HDPE composites reinforced with 40 phr (part per hundred part of rubber by weight) HAF carbon black and cured with accelerated electrons was investigated. The co agents N, N- methylene bis acrylamide (MBAAm) and trimethylol propane trimethacrylate (TMPTMA) were used at a constant content of 10 phr. The physico-chemical properties such as tensile strength (TS), tensile modulus at 50% elongation (M50), elongation at break (Eb), hardness, soluble fraction (SF), swelling number (SN) and thermal properties were studied. The results obtained showed that the TMPTMA as a co agent is more effective than MDA in enhancing the mechanical and physical properties of NBR/HDPE vulcanized composites

  5. Some properties of commercial dyed plastic as radiation dosimeters

    International Nuclear Information System (INIS)

    Rageh, M.S.I.; El-Assy, N.B.; Ashry, M.

    1986-01-01

    The use of commercial dyed plastics (red and green perspex) as radiation dosimeters in a cobalt-60 sterilizing plant is described. The results are satisfactory and offer advantages over the other dosimeters. The increase in the optical density for red perspex at wavelengths 650 and 750 nm with radiation can be used for absorbed dose measurements over the ranges from 1 to 7.5 KGy and from 5 to 25 KGy correspondingly. The decrease in the optical density for green perspex at 596, 612 and 641 nm with absorbed dose can extend the linear response range up to about 45 KGy. The fading of intensity of the irradiation induced absorption bands in dyed plastics after storage at different temperatures had been investigated

  6. Radiation as a source of information on matter properties

    International Nuclear Information System (INIS)

    2001-01-01

    The report is a review of applications of ionizing radiation in industry, environment protection and biology. Many examples of the use of radiation technologies, nuclear instruments, radiotracers, and nuclear analytical methods in Poland and elsewhere have been presented. The report has been divided into 12 subject chapters; age estimation - study on the objects age; investigations of copper ores enrichment processes; study of object dynamics; application of radiotracer method for tightness control and leakage localization in industrial objects; radiotracer investigations of natural and artificial water reservoirs; radioisotope measuring instruments; radiometric instruments and measuring systems in mining and energetics; instruments for radiotracer investigations; well logging; application of neutron activation analysis; application of Moessbauer spectroscopy; application of nuclear techniques for conservation and identification of art objects

  7. Attenuation coefficients of soils

    International Nuclear Information System (INIS)

    Martini, E.; Naziry, M.J.

    1989-01-01

    As a prerequisite to the interpretation of gamma-spectrometric in situ measurements of activity concentrations of soil radionuclides the attenuation of 60 to 1332 keV gamma radiation by soil samples varying in water content and density has been investigated. A useful empirical equation could be set up to describe the dependence of the mass attenuation coefficient upon photon energy for soil with a mean water content of 10%, with the results comparing well with data in the literature. The mean density of soil in the GDR was estimated at 1.6 g/cm 3 . This value was used to derive the linear attenuation coefficients, their range of variation being 10%. 7 figs., 5 tabs. (author)

  8. Radiation hydrolysate of tuna cooking juice with enhanced antioxidant properties

    International Nuclear Information System (INIS)

    Choi, Jong-il; Sung, Nak-Yun; Lee, Ju-Woon

    2012-01-01

    Tuna protein hydrolysates are of increasing interest because of their potential application as a source of bioactive peptides. Large amounts of tuna cooking juice with proteins and extracts are produced during the process of tuna canning, and these cooking juice wastes cause environmental problems. Therefore, in this study, cooking juice proteins were hydrolyzed by irradiation for their utilization as functional additives. The degree of hydrolysis of tuna cooking juice protein increased from 0% to 15.1% at the absorbed doses of 50 kGy. To investigate the antioxidant activity of the hydrolysate, it was performed the ferric reducing antioxidant power (FRAP) assay, and the lipid peroxidation inhibitory and superoxide radical scavenging activities were measured. The FRAP values increased from 1470 μM to 1930 μM and IC 50 on superoxide anion was decreased from 3.91 μg/mL to 1.29 μg/mL at 50 kGy. All of the antioxidant activities were increased in the hydrolysate, suggesting that radiation hydrolysis, which is a simple process that does not require an additive catalysts or an inactivation step, is a promising method for food and environmental industries. - Highlights: ► Radiation was applied for the hydrolysis of tuna cooking juice protein. ► The degree of hydrolysis were increased by irradiation and the antioxidant activity of hydrolysate was higher than protein. ► This result suggest that radiation is useful method for the hydrolysis of protein.

  9. Optical properties of the PANDA barrel DIRC radiator bars

    Energy Technology Data Exchange (ETDEWEB)

    Kalicy, Grzegorz; Krebs, Marvin; Peters, Klaus [GSI, Darmstadt (Germany); Goethe Universitaet, Frankfurt (Germany); Schwarz, Carsten; Schwiening, Jochen [GSI, Darmstadt (Germany); Collaboration: PANDA-Collaboration

    2015-07-01

    The PANDA experiment at the Facility for Antiproton and Ion Research in Europe (FAIR) at GSI, Darmstadt, will study fundamental questions of hadron physics and QCD. A fast focusing DIRC (Detection of Internally Reflected Cherenkov light) counter will provide hadronic particle identification (PID) in the barrel region of the PANDA detector. To meet the PID requirements, the Barrel DIRC has to provide precise measurements of the Cherenkov angle, which is conserved for Cherenkov photons propagating through the radiator by total internal reflection. The radiators, rectangular bars made from fused silica, have to fulfill very strict optical and mechanical requirements. This includes the squareness and parallelism of the sides of the bars, sharp corners, and a very smooth surface polish, ensuring that the Cherenkov photons reach the optical sensors without angular distortions. Currently the Barrel DIRC is at the final design stage and several different bar shapes and fabrication methods are being considered for the final detector. An optical setup, consisting of a computer-controlled positioning and a multi-wavelength laser system, is used to evaluate the radiator bars to obtain critical values like transmittance and reflectivity. The current results and techniques are presented on this poster.

  10. Mechanical properties of polyamide 6,6/low density polyethylene blend by ionizing radiation

    International Nuclear Information System (INIS)

    Pino, Eddy S.; Feitosa, Marcos A.F.

    2007-01-01

    Polymer blending is a growing scientific and commercial development activity. In most of the cases, polymeric blends are formed by thermodynamically immiscible components. Such blends require the use of compatibilizers that, often, are copolymers, graft copolymers or any mean that improves the dispersion and adhesion of the blend phases. Compatibility of a polymer blend plays an important role in determining the blend properties for its end use. In this work, the improvement of mechanical properties of PA 6,6/LDPE 75/25% wt/wt composition blend, using electron radiation, was studied. Samples for mechanical test were melt-mixed in an extruder and then injection-molded. These samples were electron irradiated to overall doses of 50, 100, 150, 200 and 250 kGy. Tensile measurements have shown that the strength at break increases with an increase of radiation dose. Hardness Shore D measurements show that this property also increases as a function of radiation dose. On the other hand, Impact Izod tests show that the resistance to impact decreases with the increase of radiation dose. The behavior of these bulk and surface properties implies that ionizing radiation produces changes in the mechanical performance of the irradiated blend due to a combined radiation inducing effects, cross-linking and the compatibility of blend components. (author)

  11. Photodamage to human skin by suberythemal exposure to solar ultraviolet radiation can be attenuated by sunscreens: a review.

    Science.gov (United States)

    Seité, S; Fourtanier, A; Moyal, D; Young, A R

    2010-11-01

    The effects of acute or repeated suberythemal solar ultraviolet radiation (UVR) exposure on human skin have been insufficiently investigated. Such exposure almost certainly has important long-term consequences that include skin ageing and skin cancer. This review summarizes the published data on the biological effects of suberythemal exposure using a wide range of clinical, cellular and molecular endpoints, some of which may be considered as biomarkers for skin cancer and photoageing. We also include some recent unpublished results from our laboratories. The effects of UVA (320-400 nm), UVB (290-320 nm) and total solar UVR (290-400 nm) are compared. We demonstrate that avoiding sunburn does not prevent many indicators of cutaneous biological damage and that use of low sun protection factor (SPF) sunscreen can inhibit much of the damages induced by suberythemal exposure to UVR. However, even when applied correctly, sunscreen use will result in suberythemal exposure. The degree and spectral quality of such exposure will depend on the SPF and absorption spectrum of the sunscreen, but nonetheless it may contribute to cumulative photodamage. This review may help to determine the level of photoprotection required in sunscreens and daily use products, as well as the ideal ratio of UVB/UVA protection, to improve long-term photoprotection outcomes. © 2010 The Authors. BJD © 2010 British Association of Dermatologists.

  12. Application of the technique of attenuation of the gamma radiation of the 241Am in vegetable substratum

    International Nuclear Information System (INIS)

    Oliveira, Helder de; Mortatti, Jefferson; Bortoletto Junior, Milton J.; Lopes, Renato A.; Camargo, Fabiana T. de

    2005-01-01

    The substratum animal, vegetable, mineral or artificial exercises the function of the soil, supplying to the plant sustain, nutritious, water and oxygen. The constant extraction of the fern-acu (xaxim), it has been taking to the presence in the official list of the threatened Brazilian species of extinction in reason of this intense destined commercial exploration the floriculture and gardening. For this reason the cut is being prohibited in several law of the Brazilian. As attempt of substitution of the exploration of the plant fiber fiber, a new substratum is being marketed at the market, it is the coxim, industrialized product of the coconut fiber (Cocus nucifera). Produced in the Northeast, where the culture of the coconut tree is extensive, the coconut fiber is a natural vegetable material abundant, renewable and very light resulting from the industrial processing of the peels of the coconut. Therefore, considering the substratum as important variable of the productive cycle of plants free from the soil, and for this responsible for the development and growth of the plants, it was had as objective in the present study, to determine density gradients in vegetable substratum of xaxim and coconut fiber in different humidity conditions, for the method of radiation gamma of the 241 Am, seeking your application in the production of roses. (author)

  13. GPR measurements of attenuation in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, David, E-mail: djeisen@cnde.iastate.edu; Margetan, Frank J., E-mail: djeisen@cnde.iastate.edu; Pavel, Brittney, E-mail: djeisen@cnde.iastate.edu [Center for Nondestructive Evaluation, Iowa State University, 1915 Scholl Road, Ames, IA 50011-3042 (United States)

    2015-03-31

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.

  14. GPR measurements of attenuation in concrete

    Science.gov (United States)

    Eisenmann, David; Margetan, Frank J.; Pavel, Brittney

    2015-03-01

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.

  15. GPR measurements of attenuation in concrete

    International Nuclear Information System (INIS)

    Eisenmann, David; Margetan, Frank J.; Pavel, Brittney

    2015-01-01

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups

  16. An Evaluation on Radiation Shielding and Activation Properties of ISOL-bunker Structural Materials for Radiation Safety in RAON Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Hyun; Kim, Song Hyun; Woo, Myeong Hyeon; Lee, Jae Yong; Kim, Jong Woo; Shin, Chang Ho [Hanyang University, Seoul (Korea, Republic of); Nam, Shin Woo [Institute for Basic Science, Daejeon (Korea, Republic of)

    2015-10-15

    RAON heavy ion accelerator has been designed by the Institute for Basic Science (IBS). ISOL is one of RAON facilities to generate and separate rare isotopes. For generating rare isotopes, high intensity proton beam, which has 70 MeV energy, is induced into UCx target. From this reaction, lots of neutrons are concomitantly generated. To meet our design goal, it was required that the structural material of ISOL-bunker should be carefully selected. In this study, to select the structural material which has lower activation property with higher performance for radiation shielding, following aspects were evaluated: (i) residual dose, (ii) radioactive wastes, and (iii) shielding performance in ISOL-bunker. In this study, to effectively design the radiation shielding of the RAON ISOL-bunker, two methods were proposed. No.1 strategy is a method to replace the normal concrete to specific concretes. No.2 strategy is to design dual-layer radiation shields that a specific shielding material is located inner side of the normal concrete. Using the strategies, performance evaluations were evaluated for three aspects, which are residual dose, radioactive waste, and prompt radiation. The results show that the residual radiation can be effectively reduced using B{sub 4}C, borated polyethylene and polyethylene with No.2 strategy. Also, the colemanite concrete and B{sub 4}C shielding give a good ability to reduce the radioactive wastes.

  17. Immunity to Schistosoma mansoni in guinea-pigs vaccinated with radiation-attenuated cercariae. T-cell activation of macrophages for larval killing

    International Nuclear Information System (INIS)

    Gordon, J.R.; McLaren, D.J.

    1988-01-01

    This study addresses macrophage activation in guinea-pigs vaccinated with radiation-attenuated cercariae of Schistosom mansoni. Peritoneal exudate macrophages elicited in vaccinated animals by mineral oil injection were activated to kill larval schistosomes in vitro. Killing efficiency is dependent upon the cell:target ratio employed and is enhanced by, but is not strictly dependent on, the presence of specific antibodies. Macrophages co-cultured with parasites release superoxide radicals and hydrogen peroxide, but the use of inhibitors has shown that neither of these reactive oxygen intermediates are the causal agents of cellular cytotoxicity in this system. Oil-elicited macrophages from naive guinea-pigs do not show comparable activation; they can, however, be activated in vitro by incubation with culture supernatant fluids from schistosome antigen-stimulated spleen, or lymph node cells harvested from vaccinated guinea-pigs. Naive macrophages activated in this way kill schistosomula in vitro and release the activation markers IL-l and superoxide anion. The macrophage-activating factor (MAF) present in spleen cell culture supernatant fluids has a MW of 35,000-55,000, but does not have the chemical characteristics of gamma-interferon. (author)

  18. Statistical and coherence properties of radiation from X-ray free electron lasers

    International Nuclear Information System (INIS)

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2009-12-01

    We describe statistical and coherence properties of the radiation from X-ray free electron lasers (XFEL). It is shown that the X-ray FEL radiation before saturation is described with gaussian statistics. Particularly important is the case of the optimized X-ray FEL, studied in detail. Applying similarity techniques to the results of numerical simulations allowed us to find universal scaling relations for the main characteristics of an X-ray FEL operating in the saturation regime: efficiency, coherence time and degree of transverse coherence. We find that with an appropriate normalization of these quantities, they are functions of only the ratio of the geometrical emittance of the electron beam to the radiation wavelength. Statistical and coherence properties of the higher harmonics of the radiation are highlighted as well. (orig.)

  19. Statistical and coherence properties of radiation from X-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E L; Schneidmiller, E A; Yurkov, M V

    2009-12-15

    We describe statistical and coherence properties of the radiation from X-ray free electron lasers (XFEL). It is shown that the X-ray FEL radiation before saturation is described with gaussian statistics. Particularly important is the case of the optimized X-ray FEL, studied in detail. Applying similarity techniques to the results of numerical simulations allowed us to find universal scaling relations for the main characteristics of an X-ray FEL operating in the saturation regime: efficiency, coherence time and degree of transverse coherence. We find that with an appropriate normalization of these quantities, they are functions of only the ratio of the geometrical emittance of the electron beam to the radiation wavelength. Statistical and coherence properties of the higher harmonics of the radiation are highlighted as well. (orig.)

  20. Low temperature radiative properties of materials used in cryogenics

    Czech Academy of Sciences Publication Activity Database

    Musilová, Věra; Hanzelka, Pavel; Králík, Tomáš; Srnka, Aleš

    2005-01-01

    Roč. 45, č. 8 (2005), s. 529-536 ISSN 0011-2275 R&D Projects: GA AV ČR(CZ) IBS2065109 Keywords : structural materials * radiant properties * cryostats Subject RIV: BJ - Thermodynamics Impact factor: 0.762, year: 2005

  1. Radiation dosimetry properties of smart-phone CMOS sensors

    International Nuclear Information System (INIS)

    Van Hoey, Olivier; Salavrakos, Alexia; Marques, Antonio; Nagao, Alexandre; Vanhavere, Filip; Cauwels, Vanessa; Nascimento, Luana F.; Willems, Ruben

    2016-01-01

    During the past years, several smart-phone applications have been developed for radiation detection. These applications measure radiation using the smart-phone camera complementary metal-oxide-semiconductor sensor. They are potentially useful for data collection and personal dose assessment in case of a radiological incident. However, it is important to assess these applications. Six applications were tested by means of irradiations with calibrated X-ray and gamma sources. It was shown that the measurement stabilises only after at least 10-25 min. All applications exhibited a flat dose rate response in the studied ambient dose equivalent range from 2 to 1000 μSv h -1 . Most applications significantly over- or underestimate the dose rate or are not calibrated in terms of dose rate. A considerable energy dependence was observed below 100 keV but not for the higher energy range more relevant for incident scenarios. Photon impact angle variation gave a measured signal variation of only about 10 %. (authors)

  2. Development of paints with infrared radiation reflective properties

    Directory of Open Access Journals (Sweden)

    Eliane Coser

    2015-06-01

    Full Text Available AbstractLarge buildings situated in hot regions of the Globe need to be agreeable to their residents. Air conditioning is extensively used to make these buildings comfortable, with consequent energy consumption. Absorption of solar visible and infrared radiations are responsible for heating objects on the surface of the Earth, including houses and buildings. To avoid excessive energy consumption, it is possible to use coatings formulated with special pigments that are able to reflect the radiation in the near- infrared, NIR, spectrum. To evaluate this phenomenon an experimental study about the reflectivity of paints containing infrared-reflective pigments has been made. By irradiating with an IR source and by measuring the surface temperatures of the samples we evaluated: color according to ASTM D 2244-14, UV/VIS/NIR reflectance according to ASTM E 903-12 and thermal performance. Additionally, the spectral reflectance and the IR emittance were measured and the solar reflectance of the samples were calculated. The results showed that plates coated with paints containing IR-reflecting pigments displayed lower air temperature on the opposite side as compared to conventional coatings, indicating that they can be effective to reflect NIR and decrease the temperature of buildings when used in roofs and walls.

  3. Effect of Ionizing Beta Radiation on the Mechanical Properties of Poly(ethylene under Thermal Stress

    Directory of Open Access Journals (Sweden)

    Bednarik Martin

    2016-01-01

    Full Text Available It was found in this study, that ionizing beta radiation has a positive effect on the mechanical properties of poly(ethylene. In recent years, there have been increasing requirements for quality and cost effectiveness of manufactured products in all areas of industrial production. These requirements are best met with the polymeric materials, which have many advantages in comparison to traditional materials. The main advantages of polymer materials are especially in their ease of processability, availability, and price of the raw materials. Radiation crosslinking is one of the ways to give the conventional plastics mechanical, thermal, and chemical properties of expensive and highly resistant construction polymers. Several types of ionizing radiation are used for crosslinking of polymers. Each of them has special characteristics. Electron beta and photon gamma radiation are used the most frequently. The great advantage is that the crosslinking occurs after the manufacturing process at normal temperature and pressure. The main purpose of this paper has been to determine the effect of ionizing beta radiation on the tensile modulus, strength and elongation of low and high density polyethylene (LDPE and HDPE. These properties were examined in dependence on the dosage of the ionizing beta radiation (non-irradiated samples and those irradiated by dosage 99 kGy were compared and on the test temperature. Radiation cross-linking of LDPE and HDPE results in increased tensile strength and modulus, and decreased of elongation. The measured results indicate that ionizing beta radiation treatment is effective tool for improvement of mechanical properties of LDPE and HDPE under thermal stress.

  4. Investigation of the radiation properties of magnetospheric ELF waves induced by modulated ionospheric heating

    Science.gov (United States)

    Wang, Feng; Ni, Binbin; Zhao, Zhengyu; Zhao, Shufan; Zhao, Guangxin; Wang, Min

    2017-05-01

    Electromagnetic extremely low frequency (ELF) waves play an important role in modulating the Earth's radiation belt electron dynamics. High-frequency (HF) modulated heating of the ionosphere acts as a viable means to generate artificial ELF waves. The artificial ELF waves can reside in two different plasma regions in geo-space by propagating in the ionosphere and penetrating into the magnetosphere. As a consequence, the entire trajectory of ELF wave propagation should be considered to carefully analyze the wave radiation properties resulting from modulated ionospheric heating. We adopt a model of full wave solution to evaluate the Poynting vector of the ELF radiation field in the ionosphere, which can reflect the propagation characteristics of the radiated ELF waves along the background magnetic field and provide the initial condition of waves for ray tracing in the magnetosphere. The results indicate that the induced ELF wave energy forms a collimated beam and the center of the ELF radiation shifts obviously with respect to the ambient magnetic field with the radiation power inversely proportional to the wave frequency. The intensity of ELF wave radiation also shows a weak correlation with the size of the radiation source or its geographical location. Furthermore, the combination of ELF propagation in the ionosphere and magnetosphere is proposed on basis of the characteristics of the ELF radiation field from the upper ionospheric boundary and ray tracing simulations are implemented to reasonably calculate magnetospheric ray paths of ELF waves induced by modulated ionospheric heating.

  5. The optical properties of equatorial cirrus in the pilot radiation observation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Platt, C.M.R.; Young, S.A.; Manson, P.; Patterson, G.R. [CSIRO, Victoria (Australia)] [and others

    1996-04-01

    The development of a sensitive filter radiometer for the Atmospheric Radiation Measurement (ARM) Program has been reported. The aim was to develop a reliable and fast instrument that could be used alongside a lidar to obtain near realtime optical properties of clouds, particularly high ice clouds, as they drifted over an ARM Cloud and Radiation Testbed (CART) site allowing calculation of the radiation divergence in the atmosphere over the site. Obtaining cloud optical properties by the lidar/radiometer, or LIRAD, method was described by Platt et al.; the latter paper also describes a year`s data on mid-latitude cirrus. The optical properties of equatorial cirrus (i.e., cirrus within a few degrees of the equator) have hardly been studied at all. The same is true of tropical cirrus, although a few observations have been reported by Davis and Platt et al.This paper describes obersvations performed on cirrus clouds, analysis methods used, and results.

  6. Polarization Property Measurement of the Long Undulator Radiation Using Cr/C Multilayer Polarization Elements

    International Nuclear Information System (INIS)

    Niibe, Masahito; Mukai, Mikihito; Shoji, Yoshihiko; Kimura, Hiroaki

    2004-01-01

    A rotating analyzer ellipsometry (RAE) system was developed with Cr/C multilayers that function as polarization elements for photon energy range of 110 - 280 eV. Polarization properties of a planar undulator change axisymmetrically in off-axial manner, and the second harmonic is more remarkable for the change. By using the RAE system, the polarization property of the second harmonic radiation from the NewSUBARU long undulator at the energy of 180 eV was examined. The degree of linear polarization of the on-axis radiation was over 0.996. The spatial distribution of the polarization azimuth was measured and was in fair agreement with the theoretical calculation. A peculiar behavior of the polarization property near the radiation peak of the second harmonic was observed by changing the height of the undulator gap

  7. Dichloroacetate induces tumor-specific radiosensitivity in vitro but attenuates radiation-induced tumor growth delay in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zwicker, F.; Roeder, F.; Debus, J.; Huber, P.E. [University Hospital Center Heidelberg, Heidelberg (Germany). Dept. of Radiation Oncology; Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Clinical Cooperation Unit Molecular Radiation Oncology; Kirsner, A.; Weber, K.J. [University Hospital Center Heidelberg, Heidelberg (Germany). Dept. of Radiation Oncology; Peschke, P. [Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany). Clinical Cooperation Unit Molecular Radiation Oncology

    2013-08-15

    Background: Inhibition of pyruvate dehydrogenase kinase (PDK) by dichloroacetate (DCA) can shift tumor cell metabolism from anaerobic glycolysis to glucose oxidation, with activation of mitochondrial activity and chemotherapy-dependent apoptosis. In radiotherapy, DCA could thus potentially enhance the frequently moderate apoptotic response of cancer cells that results from their mitochondrial dysfunction. The aim of this study was to investigate tumor-specific radiosensitization by DCA in vitro and in a human tumor xenograft mouse model in vivo. Materials and methods: The interaction of DCA with photon beam radiation was investigated in the human tumor cell lines WIDR (colorectal) and LN18 (glioma), as well as in the human normal tissue cell lines HUVEC (endothelial), MRC5 (lung fibroblasts) and TK6 (lymphoblastoid). Apoptosis induction in vitro was assessed by DAPI staining and sub-G1 flow cytometry; cell survival was quantified by clonogenic assay. The effect of DCA in vivo was investigated in WIDR xenograft tumors growing subcutaneously on BALB/c-nu/nu mice, with and without fractionated irradiation. Histological examination included TUNEL and Ki67 staining for apoptosis and proliferation, respectively, as well as pinomidazole labeling for hypoxia. Results: DCA treatment led to decreased clonogenic survival and increased specific apoptosis rates in tumor cell lines (LN18, WIDR) but not in normal tissue cells (HUVEC, MRC5, TK6). However, this significant tumor-specific radiosensitization by DCA in vitro was not reflected by the situation in vivo: The growth suppression of WIDR xenograft tumors after irradiation was reduced upon additional DCA treatment (reflected by Ki67 expression levels), although early tumor cell apoptosis rates were significantly increased by DCA. This apparently paradoxical effect was accompanied by a marked DCA-dependent induction of hypoxia in tumor-tissue. Conclusion: DCA induced tumor-specific radiosensitization in vitro but not in vivo

  8. Properties and recrystallization of radiation damaged pyrochlore and titanite

    Energy Technology Data Exchange (ETDEWEB)

    Zietlow, Peter

    2016-11-02

    Radiation damage in minerals is caused by the alpha-decay of incorporated radionuclides, such as U and Th and their decay products. The effect of thermal annealing (400-1400 K) on radiation-damaged pyrochlores has been investigated by Raman scattering, X-ray powder diffraction (XRD), and combined differential scanning calorimetry/thermogravimetry (DSC/TG) (Zietlow et al., in print). The analysis of three natural radiation-damaged pyrochlore samples from Miass/Russia (6.4 wt% Th, 23.1.10{sup 18} a-decay events per gram (dpg)), Zlatoust/Russia (6.3 wt% Th, 23.1.10{sup 18} dpg), Panda Hill/Tanzania (1.6 wt% Th, 1.6.10{sup 18} dpg), and Blue River/Canada (10.5 wt% U, 115.4.10{sup 18} dpg), are compared with a crystalline reference pyrochlore from Schelingen (Germany). The type of structural recovery depends on the initial degree of radiation damage (Panda Hill 28 %, Blue River 85 %, Zlatoust and Miass 100 % according to XRD), as the recrystallization temperature increases with increasing degree of amorphization. Raman spectra indicate reordering on the local scale during annealing-induced recrystallization. As Raman modes around 800 cm{sup -1} are sensitive to radiation damage (Vandenborre and Husson 1983, Moll et al. 2011), the degree of local order was deduced from the ratio of the integrated intensities of the sum of the Raman bands between 605 and 680 cm{sup -1} devided by the sum of the integrated intensities of the bands between 810 and 860 cm{sup -1}. The most radiation damaged pyrochlores (Miass and Zlatoust) show an abrupt recovery of both, its short- (Raman) and long-range order (X-ray) between 800 and 850 K. The volume decrease upon recrystallization in Zlatoust pyrochlore was large enough to crack the sample repeatedly. In contrast, the weakly damaged pyrochlore (Panda Hill) begins to recover at considerably lower temperatures (near 500 K), extending over a temperature range of ca. 300 K, up to 800 K (Raman). The pyrochlore from Blue River shows in its

  9. Effect of 60Co-gamma radiation on the binding properties in furs

    International Nuclear Information System (INIS)

    Raina, R.K.

    1992-01-01

    New Zealand white rabbit pelts were pickled by the usual procedure and were tanned with basic aluminium sulphate, basic chromium sulphate and their combinations. Tanned furs were irradiated with 60 Co-gamma radiations in the dose range of 5.0-114.0 kGy. The effect of radiation on the binding properties of various added substances like mineral tannins, fats, moisture and shrinkage temperature has been assessed by their comparison with the control samples. The results of these investigations show that radiation on furs causes detannage, increases the moisture and bound fat content and decreases the shrinkage temperature of the furs. (author)

  10. Effect of [sup 60]Co-gamma radiation on the binding properties in furs

    Energy Technology Data Exchange (ETDEWEB)

    Raina, R K [Regional Research Lab., Srinagar (India)

    1992-09-01

    New Zealand white rabbit pelts were pickled by the usual procedure and were tanned with basic aluminium sulphate, basic chromium sulphate and their combinations. Tanned furs were irradiated with [sup 60]Co-gamma radiations in the dose range of 5.0-114.0 kGy. The effect of radiation on the binding properties of various added substances like mineral tannins, fats, moisture and shrinkage temperature has been assessed by their comparison with the control samples. The results of these investigations show that radiation on furs causes detannage, increases the moisture and bound fat content and decreases the shrinkage temperature of the furs. (author).

  11. Radiation degradation in the mechanical properties of Polyetheretherketone–alumina composites

    International Nuclear Information System (INIS)

    Lawrence, Falix; Mallika, C.; Kamachi Mudali, U.; Natarajan, R.; Ponraju, D.; Seshadri, S.K.; Sampath Kumar, T.S.

    2012-01-01

    Polyetheretherketone (PEEK) is extensively employed in corrosive and radiation environments. To improve the radiation tolerance of PEEK in the presence of high energetic radiation, PEEK was reinforced with micron sized alumina powder (5–25% by weight) and PEEK–alumina composite sheets fabricated were irradiated to 10 MGy. Mechanical properties of the irradiated composites revealed significant reduction in the degradation of PEEK with addition of alumina as the polymer reinforced with ceramic additives is expected to increase the interface area of the constituents in the system resulting in an improvement in the performance of the reinforced material.

  12. Charge transport properties of CdMnTe radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim K.; Rafiel, R.; Boardman, M.; Reinhard, I.; Sarbutt, A.; Watt, G.; Watt, C.; Uxa, S.; Prokopovich, D.A.; Belas, E.; Bolotnikov, A.E.; James, R.B.

    2012-04-11

    Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe)radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading chargecollection is reduced with increasing values of bias voltage. The electron transit time was determined from time of flight measurements. From the dependence of drift velocity on applied electric field the electron mobility was found to be n = (718 55) cm2/Vs at room temperature.

  13. Charge transport properties of CdMnTe radiation detectors

    Directory of Open Access Journals (Sweden)

    Prokopovich D. A.

    2012-10-01

    Full Text Available Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading charge collection is reduced with increasing values of bias voltage. The electron drift velocity was calculated from the rise time distribution of the preamplifier output pulses at each measured bias. From the dependence of drift velocity on applied electric field the electron mobility was found to be μn = (718 ± 55 cm2/Vs at room temperature.

  14. Effect of ionizing radiation on structural and conductive properties of copper nanotubes

    Science.gov (United States)

    Zdorovets, M. V.; Borgekov, D. B.; Kenzhina, I. E.; Kozlovskiy, A. L.

    2018-01-01

    The use of electron radiation is an effective tool for stimulating a controlled modification of structural and conductive properties of nanomaterials in modern materials science. The paper presents the results of studies of the influence of various types of radiation on structural and conductive properties of copper nanotubes obtained by electrochemical synthesis in pores of templates based on polyethylene terephthalate. Such methods as SEM, X-ray diffraction and EDS show that irradiation with a stream of high-energy electrons with doses of 50-250 kGy makes it possible to modify the crystal structure of nanotubes, increasing their conductivity and decreasing the resistance of nanostructures without destroying the structure.

  15. Chemical structure and physical properties of radiation-induced crosslinking of polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Ikeda, Shigetoshi; Katoh, Etsuko; Tabata, Yoneho

    2001-01-01

    The chemical structure and physical properties of polytetrafluoroethylene (PTFE) that has been crosslinked by radiation have been studied by various methods. It has been found that a Y-type crosslinking structure and a Y-type structure incorporating a double bond (modified Y-type) is formed in PTFE by radiation-crosslinking in the molten state. In addition, various types of double bond structures, excluding the crosslinking site, have been identified. The crosslinked PTFE has a good light transparency due to the loss of crystallites, whilst it retains the excellent properties of electrical insulation and heat resistance. The coefficient of abrasion and the permanent creep are also greatly improved by crosslinking

  16. Effects of radiation on the physical properties of PP membrane for the removal of dissolved oxygen

    International Nuclear Information System (INIS)

    Kang, D. W.; Song, Y. W.; Kim, M. S.; Ji, J. H.; Kim, S. I.

    2003-01-01

    The physical properties of polypropylene (PP) hollow fiber membranes and its deoxygenation efficiency were investigated. We supposed the conditions of PP hollow fiber membranes under radiation field and irradiated the PP membranes using differential scanning calorimetry(DSC), thermal gravimetric analyzer (TGA), fourier transform infrared (FT-IR), and contact angle. In addition, the deoxygenation efficiency of the exposed PP membranes was estimated by using an oxygen removal test kit. From the results, we found that the physical properties and deoxygenation efficiency of PP membrane was still keep good condition under the simulated radiation field

  17. Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi.

    Science.gov (United States)

    Dadachova, Ekaterina; Bryan, Ruth A; Huang, Xianchun; Moadel, Tiffany; Schweitzer, Andrew D; Aisen, Philip; Nosanchuk, Joshua D; Casadevall, Arturo

    2007-05-23

    Melanin pigments are ubiquitous in nature. Melanized microorganisms are often the dominating species in certain extreme environments, such as soils contaminated with radionuclides, suggesting that the presence of melanin is beneficial in their life cycle. We hypothesized that ionizing radiation could change the electronic properties of melanin and might enhance the growth of melanized microorganisms. Ionizing irradiation changed the electron spin resonance (ESR) signal of melanin, consistent with changes in electronic structure. Irradiated melanin manifested a 4-fold increase in its capacity to reduce NADH relative to non-irradiated melanin. HPLC analysis of melanin from fungi grown on different substrates revealed chemical complexity, dependence of melanin composition on the growth substrate and possible influence of melanin composition on its interaction with ionizing radiation. XTT/MTT assays showed increased metabolic activity of melanized C. neoformans cells relative to non-melanized cells, and exposure to ionizing radiation enhanced the electron-transfer properties of melanin in melanized cells. Melanized Wangiella dermatitidis and Cryptococcus neoformans cells exposed to ionizing radiation approximately 500 times higher than background grew significantly faster as indicated by higher CFUs, more dry weight biomass and 3-fold greater incorporation of (14)C-acetate than non-irradiated melanized cells or irradiated albino mutants. In addition, radiation enhanced the growth of melanized Cladosporium sphaerospermum cells under limited nutrients conditions. Exposure of melanin to ionizing radiation, and possibly other forms of electromagnetic radiation, changes its electronic properties. Melanized fungal cells manifested increased growth relative to non-melanized cells after exposure to ionizing radiation, raising intriguing questions about a potential role for melanin in energy capture and utilization.

  18. Influence of ionizing radiation and use of plasticizers on the mechanical properties and barrier properties of biodegradable films

    International Nuclear Information System (INIS)

    Ponce, Patricia; Parra, Duclerc F.; Carr, Laura G.; Sato, Juliana S.; Lugao, Ademar B.

    2005-01-01

    This work reports the influence of radiation and plasticizers on the barrier properties [water vapour permeability (WVP)] and mechanical properties (tensile strength and elongation) of edible films made of starch. These films were prepared with 4 g of starch/100 mL of water; 2-10 g polyethylene glycol (PEG)/100 g starch; and at natural pH. Tensile strength and percentage elongation were measured using a Mechanical Universal Testing Machine Instron 4400R and the water vapour permeability was determined according to ASTM E96-80 (ASTM, 1989). The mechanical properties of starch films are influenced by the plasticizer concentration. An increase in PEG content showed a considerable increase in elongation percentage and a decrease in the tensile strength of the films, also increase the permeability of the films in water. After irradiation, the barrier properties [water vapour permeability (WVP)] and mechanical properties (tensile strength and elongation) of the films were improved due to chemical reactions among polymer molecules. The films were irradiated at room temperature with gamma radiation. Irradiated starch cassava films with polyethylene glycol (PEG) as plasticizer have good flexibility and low water permeability, which indicate potential application as edible films (author)

  19. Spectrometric properties and radiation damage of BGO crystals

    Science.gov (United States)

    Kim, Gen C.; Gasanov, Eldar M.

    1997-07-01

    Spectrometric properties, such as light output, energy resolution BGO crystals before and after (superscript 60)Co gamma-ray (dose 10(superscript 4) - 10(superscript 6) R) and neutron irradiation (fluence 10(superscript 14) cm(superscript -2)) are investigated. Condition for degradation of spectrometric properties and their recovering after irradiation are studied. The energy spectrum of the photons emitted from BGO crystals irradiated with neutron fluence contains the long living background peak which is caused by self-irradiation with radioactive isotopes produced in the crystals. The defect production was studied in crystals under the high dose gamma-irradiation with (superscript 60)Co isotope. It was found that after doses above 10(superscript 8) R the color center at 365 nm and doses higher than 10(superscript 9) R a wide absorption band in the region of 300 - 350 nm occur. Comparison of these results with those of reactor irradiation has shown that under the high dose gamma-irradiation the structure defect production takes place.

  20. Effects of radiation on lithium aluminate samples properties

    Energy Technology Data Exchange (ETDEWEB)

    Botter, F.; Lefevre, F.; Rasneur, B.; Trotabas, M.; Roth, E.

    The irradiation behaviour of lithium aluminate, a candidate material for a fusion reactor blanket, has been investigated. About 130 samples of 7.5% WLi content el-LiAlO2 have been loaded in a 6 level device, and were irradiated for 25.7 FPD in the core of the Osiris reactor at Saclay at the end of 1984, within an experiment named ALICE 1. The properties of several textural groups have been examined before and after irradiation and the correlation of the results observed as a funcion of the irradiation conditions is given. No significant variation of the properties, as a whole, was shown at 400C under fluences of 4.7x10S n cm S fast neutrons (>1 MeV) and 1.48x10S n cm S thermal neutrons. At 600C, under the highest flux, weight losses less than 1%, and decreases of 2 to 8% of the sound velocity were measured. Generally, neither swelling nor breakage, except those due to combined mechanical and thermal shocks, were observed.

  1. Radiation hydrolysate of tuna cooking juice with enhanced antioxidant properties

    Science.gov (United States)

    Choi, Jong-il; Sung, Nak-Yun; Lee, Ju-Woon

    2012-08-01

    Tuna protein hydrolysates are of increasing interest because of their potential application as a source of bioactive peptides. Large amounts of tuna cooking juice with proteins and extracts are produced during the process of tuna canning, and these cooking juice wastes cause environmental problems. Therefore, in this study, cooking juice proteins were hydrolyzed by irradiation for their utilization as functional additives. The degree of hydrolysis of tuna cooking juice protein increased from 0% to 15.1% at the absorbed doses of 50 kGy. To investigate the antioxidant activity of the hydrolysate, it was performed the ferric reducing antioxidant power (FRAP) assay, and the lipid peroxidation inhibitory and superoxide radical scavenging activities were measured. The FRAP values increased from 1470 μM to 1930 μM and IC50 on superoxide anion was decreased from 3.91 μg/mL to 1.29 μg/mL at 50 kGy. All of the antioxidant activities were increased in the hydrolysate, suggesting that radiation hydrolysis, which is a simple process that does not require an additive catalysts or an inactivation step, is a promising method for food and environmental industries.

  2. Tracking properties of the ATLAS Transition Radiation Tracker (TRT)

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00349845; The ATLAS collaboration

    2017-01-01

    The tracking performance parameters of the ATLAS Transition Radiation Tracker (TRT) as part of the ATLAS Inner Detector (ID) are described for different data taking conditions in proton-proton collisions at the Large Hadron Collider (LHC). These studies are performed using data collected during the first (Run 1) and the second (Run 2) periods of LHC operation and are compared with Monte Carlo simulations. The performance of the TRT, operating with Xe-based (Xe-based) and Argon-based (Ar-based) gas mixtures and its dependence on the TRT occupancy is presented. No significant degradation of position measurement accuracy was found up to occupancies of about 20\\% in Run 1. The relative number of reconstructed tracks in ID that also have a extension in the TRT was observed to be almost constant with the increase of occupancies up to 50\\%. Even in configurations where tracks are close to each other, the reconstruction algorithm is still able to find the correct TRT hits and properly reconstruct the tracks.

  3. Measurement and evaluation of the radiative properties of a thin solid fuel

    Science.gov (United States)

    Pettegrew, Richard; Street, Kenneth; Pitch, Nancy; Tien, James; Morrison, Phillip

    2003-01-01

    Accurate modeling of combustion systems requires knowledge of the radiative properties of the system. Gas phase properties are well known, but detailed knowledge of surface properties is limited. Recent work has provided spectrally resolved data for some solid fuels, but only for the unburned material at room temperature, and for limited sets of previously burned and quenched samples. Due to lack of knowledge of the spectrally resolved properties at elevated temperatures, as well as processing limitations in the modeling effort, graybody values are typically used for the fuels surface radiative properties. However, the spectrally resolved properties for the fuels at room temperature can be used to give a first-order correction for temperature effects on the graybody values. Figure 1 shows a sample of the spectrally resolved emittance/absorptance for a thin solid fuel of the type commonly used in combustion studies, from approximately 2 to 20 microns. This plot clearly shows a strong spectral dependence across the entire range. By definition, the emittance is the ratio of the emitted energy to that of a blackbody at the same temperature. Therefore, to determine a graybody emittance for this material, the spectrally resolved data must be applied to a blackbody curve. The total area under the resulting curve is ratioed to the total area under the blackbody curve to yield the answer. Due to the asymmetry of the spectrally resolved emittance and the changing shape of the blackbody curve as the temperature increases, the relative importance of the emittance value at any given wavelength will change as a function of temperature. Therefore, the graybody emittance value for a given material will change as a function of temperature even if the spectral dependence of the radiative properties remains unchanged. This is demonstrated in Figures 2 and 3, which are plots of the spectrally resolved emittance for KimWipes (shown in Figure 1) multiplied by the blackbody curves for

  4. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    OpenAIRE

    Peter W. Gaiser; Magdalena D. Anguelova

    2012-01-01

    Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam ...

  5. Impact of morphology on the radiative properties of fractal soot aggregates

    International Nuclear Information System (INIS)

    Doner, Nimeti; Liu, Fengshan

    2017-01-01

    The impact of morphology on the radiative properties of fractal soot aggregates was investigated using the discrete dipole approximation (DDA). The optical properties of four different types of aggregates of freshly emitted soot with a fractal dimension D f =1.65 and a fractal pre-factor k f =1.76 were calculated. The four types of aggregates investigated are formed by uniform primary particles in point-touch, by uniform but overlapping primary particles, by uniform but enlarged primary particles in point-touch, and formed by point-touch and polydisperse primary particles. The radiative properties of aggregates consisting of N=20, 56 and 103 primary particles were numerically evaluated for a given refractive index at 0.532 and 1.064 μm. The radiative properties of soot aggregates vary strongly with the volume equivalent radius a eff and wavelength. The accuracy of DDA was evaluated in the first and fourth cases against the generalized multi-sphere Mie (GMM) solution in terms of the vertical–vertical differential scattering cross section (C vv ). The model predicted the average relative deviations from the base case to be within 15–25% for C vv , depending on the number of particles for the aggregate. The scattering cross sections are only slightly affected by the overlapping but more significantly influenced by primary particle polydispersity. It was also found that the enlargement of primary particles by 20% has a strong effect on soot aggregate radiative properties. - Highlights: • The radiative properties of aggregates of N=20, 56 and 103 primary particles were investigated. • Four different cases, formed by point-touch, overlapping, aggregate expansion and polydispersion, were studied. • The effects of overlapping and aggregate expansion on morphology are found to be the same.

  6. Gamma radiation effects on physical properties of parchment documents: Assessment of Dmax

    International Nuclear Information System (INIS)

    Nunes, Inês; Mesquita, Nuno; Cabo Verde, Sandra; João Trigo, Maria; Ferreira, Armando; Manuela Carolino, Maria; Portugal, António; Luísa Botelho, Maria

    2012-01-01

    Parchments are important documents that give testimony for History; therefore these materials should be respected and preserved. Considering incremental biodeterioration problems that have to be faced daily, the Archive of the University of Coimbra (AUC) is involved in different scientific projects in order to evaluate and determine new methods for document decontamination and preservation. The aim of this study was to evaluate gamma radiation effects on the colour and texture of the AUC parchment documents. The assessment of these effects was used to estimate the maximum gamma radiation dose (D max ) that could guarantee parchment documents′ decontamination treatment, without significant alteration of their physical properties. Parchment samples were exposed to gamma radiation doses ranging from 10 to 30 kGy. The texture and colour of samples were assessed before and after the irradiation procedure, using a texture analyser and an electronic colorimeter. Hardness and springiness were determined based on texture spectra. Lightness (L⁎), Chroma (C), greenness vs. redness (a*) and yellowness vs. blueness (b*) values were obtained from colorimetric measures. Results indicate no significant effects of gamma radiation on the texture and colour of parchment for the studied doses. - Highlights: ► Study on the effects of gamma radiation in parchment physical properties. ► Evaluation of the uniformity of parchment samples′ physical parameters. ► Proposal of a maximum gamma radiation dose for parchment decontamination treatment.

  7. Effect of forming temperature conditions on the properties of radiation laced polyethylene films

    Energy Technology Data Exchange (ETDEWEB)

    Trizno, M S; Gasparyan, K A; Arutyunyan, G V; Borovko, V N

    1978-11-01

    The effect of radiation lace on the thermomechanical properties of polyethylene films depending on the radiation dose and temperature conditions of their formation was studied. The samples were produced at 160 deg under the pressure of 150 kN/m/sup 2/ with the following cooling in two temperature conditions: 1) cooling of the sample just after pressing in the icy water, and 2) slow cooling of the sample in a press. Films obtained using above conditions were subjected to the radiation lace in the argon medium using ..gamma..-radiation of /sup 60/Co at the exposure dose of 0.8x10/sup 6/ rad/hr. The total radiation dose was from 30 to 200 Mrad. It is shown that the films, obtained under the first cooling conditions have a lower degree of crystallinity. Investigations of gel-fraction content, density, elastic modulus, deformability, modulus of high elasticity, breaking stress, and relative elongation for rupture depending on radiation doze and the degree of crystallinity have shown that minimum degree of crystallinity of initial films provided most uniform adn compact net structure in the laced polyethylene(LP). In this case the material working capacity increases at high temperatures. In order to improve the mechanical properties of LP when exploiting it in the amorphous crystalline state it is recommended to irradiate material with maximum degree of crystallinity.

  8. Tensile behaviour and properties of a bone analogue composite (HA, HDPE) crosslinked by gamma radiation

    International Nuclear Information System (INIS)

    Romero, G.; Smolko, Eduardo E.

    2005-01-01

    A natural composite material, hydroxyapatite (HA) and high density polyethylene (HDPE) crosslinked by ionizing radiations is been developed as a bioactive analogue material for bone replacement. Mechanical properties of the composites irradiated up to 300 kGy under tensile tests was studied. Gel content and micrographs of different composite fractures are shown. (author)

  9. Effect of laser radiation on physicochemical and functional properties of human hemoglobin in vitro

    NARCIS (Netherlands)

    Irzhak, LI; Zotova, EA; Mamaeva, SA

    Exposure to laser radiation increases pH and isoelectric point of human hemoglobin solution, improves the acid-base properties, increases affinity for oxygen, and decreases the Bohr effect in comparison with intact hemoglobin. The mechanisms underlying these changes are discussed.

  10. Influence of gamma radiation on the immunobiological and immunochemical properties of cholera exotoxin

    International Nuclear Information System (INIS)

    Nedugova, G.I.; Rubtsov, I.V.; Samojlenko, I.I.

    1984-01-01

    Native cholera exotoxin (abacterial centrifugalized deposit) has been irradiated using gamma-installations with a 60 Co source. A high inactivating effect of gamma-radiation on native cholera exotoxin is established: with the increase of radiation dose cholerogenity decreased for certain (at the dose 50 kGy) a complete inactivation of all studied series of liquid filtrate-toxin took place), activity of permeability factor and toxicity for mice decreased. A higher radiostability of dry toxin preparations as compared with the liquid ones is detected. Sterilization effect of radiation is achieved at the dose 20 kGy for liquid preparations and at the dose of 30 kGy for dry ones. When preserving the irradiated preparations of raw toxin in different temperature regimes for 6 months to 1.5 year (observation time) toxic properties are not restored, immunogenous properties do not change

  11. Effect of gamma radiation dose and sensitizer on the physical properties of irradiated natural rubber latex

    International Nuclear Information System (INIS)

    Komgrit, R.; Thawat, C.; B, Tripob; Wirach, T.

    2009-07-01

    Full text: The vulcanization of natural rubber latex can be induced by gamma radiation, which enhances cross-linking within the rubber matrix. The purpose of this research is to investigate the effect of gamma radiation dose and sensitizers on the physical properties of irradiated natural rubber. Three sensitizers n-butyl acrylate (n-B A), tetrachloroethylene (C 2 Cl 4 ) and trichloromethane (CHCl 3 ) were mixed with natural rubber latex before irradiation with gamma ray dose varied from 14 to 22 kGy. Results showed that the mixture of three sensitizers with specific ratios effectively induced the cross-linking of natural rubber latex. The cross-linking ratio and improved physical properties increased with increasing gamma dose. Therefore, the mixture ratios of n-B A, C 2 Cl 4 and CHCl 3 have shown to be a critical parameter in the vulcanization of natural rubber latex by gamma radiation

  12. Radiation damage studies on the optical and mechanical properties of plastic scintillators

    International Nuclear Information System (INIS)

    Mizue Hamada, Margarida; Roberto Rela, Paulo; Eduardo da Costa, Fabio; Henrique de Mesquita, Carlos

    1999-01-01

    This paper describes the radiation damage studies on a large volume plastic scintillator based in polystyrene doped with PPO and POPOP. The consequences on their mechanical and scintillation properties were evaluated before and after irradiation with different dose rates of 60 Co gamma radiation, in several doses. The optical results show a significant difference in the radiation susceptibility, when the plastic scintillator is irradiated at low rate (0.1 kGy/h) with that irradiated at high dose rate (85 kGy/h). The losses in the optical and mechanical properties increase as the irradiation dose is increased. The damage evaluated by the transmittance, emission intensity, pulse height and tensile strength was normalized as a damage fraction and fitted by a bi-exponential function. It was observed that the damage for irradiation is not permanent and it obeys a bi-exponential function

  13. Physical, chemical, and biological properties of radiocerium relevant to radiation protection guidelines

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Present knowledge of the relevant physical, chemical, and biological properties of radiocerium as a basis for establishing radiation protection guidelines is summarized. The first section of the report reviews the chemical and physical properties of radiocerium relative to the biological behavior of internally-deposited cerium and other lanthanides. The second section of the report gives the sources of radiocerium in the environment and the pathways to man. The third section of the report describes the metabolic fate of cerium in several mammalian species as a basis for predicting its metabolic fate in man. The fourth section of the report considers the biomedical effects of radiocerium in light of extensive animal experimentation. The last two sections of the report describe the history of radiation protection guidelines for radiocerium and summarize data required for evaluating the adequacy of current radiation protection guidelines. Each section begins with a summary of the most important findings that follow

  14. Physicomechanical properties of PVC radiation-modified by tridecaethyleneglycol methacrylic ester

    International Nuclear Information System (INIS)

    Lomonosova, N.V.

    1988-01-01

    A study was made on physicomechanical properties of radiation-modified system on the basis of PVC and TGM-13 oligomer (dimethacrylic ester of tridecaethyleneglycol, 43.2%). Main physical properties of the composition (maximal stresses, softening point, double refraction value, activation energy, temperature positions of the first and the second maximums on isometric heating diagram) were used to determine its isotropic and oriented states, depending on absorbed radiation dose (0-128 kGy). It is shown that radiation PVC modification by TGM-13 oligomer results in formation of linked 'soft' plastic. In terms of strength it is on a par with isotropic linear PVC, but compare favourably with it with respect to t ρ and ε

  15. The measurement of longwave radiation properties upon plastic films used in greenhouses

    International Nuclear Information System (INIS)

    Horiguchi, I.; Tani, H.; Sugaya, H.

    1982-01-01

    Due to the rising cost of heating oils in recent years, the subject of heat conservation on a greenhouse has become more important. In this aspect, the plastic films used for reducing heat losses must have low transmittance property for longwave radiation, also need to have low emissivity. The properties of plastic films which affect on the transfer of energy are important. The paper discusses the measurements of reflectance, transmittance, and emissivity of longwave radiation (thermal radiation) upon various plastic films used for crop protection in agriculture, particularly in a greenhouse. New measuring methods for reflectance and emissivity were presented, and the previous transmittance calculations (Hagiwara and Horiguchi, 1972) were improved by using newly obtained reflectance values. The transmittance values obtained from the present study are about 2-5 percent larger than the values obtained from the previous study. The reason for the discrepancy may be due to the negligence of the reflectance term in the previous calculation. (author)

  16. The role of cloud-scale resolution on radiative properties of oceanic cumulus clouds

    International Nuclear Information System (INIS)

    Kassianov, Evgueni; Ackerman, Thomas; Kollias, Pavlos

    2005-01-01

    Both individual and combined effects of the horizontal and vertical variability of cumulus clouds on solar radiative transfer are investigated using a two-dimensional (x- and z-directions) cloud radar dataset. This high-resolution dataset of typical fair-weather marine cumulus is derived from ground-based 94GHz cloud radar observations. The domain-averaged (along x-direction) radiative properties are computed by a Monte Carlo method. It is shown that (i) different cloud-scale resolutions can be used for accurate calculations of the mean absorption, upward and downward fluxes; (ii) the resolution effects can depend strongly on the solar zenith angle; and (iii) a few cloud statistics can be successfully applied for calculating the averaged radiative properties

  17. Effect of ionizing radiation on the properties of PLA packaging materials

    International Nuclear Information System (INIS)

    Melski, K.; Kubera, H.; Gluszewski, W.; Zimek, Z.

    2011-01-01

    Poly(lactic acid) (PLA) is attractive as a substitute for classical polymer packaging material due to its biodegradability and sufficient mechanical and barrier properties. Presented research was focused on the changes of basic mechanical parameters after ionizing irradiation performed with doses in the range of 2.5-25 kGy, commonly used in radiation sterilization and preservation of foods. Two commercial available PLA packaging films were tested. The influence of radiation dose on the mechanical properties - tensile strength and elongation were determined using standardized methods. Radiation resistance of PLA is sufficient for packaging applications. The investigations of gas products of radiolysis of PLA have been made by gas chromatography after electron beam (EB) irradiations. (authors)

  18. Electromagnetic and Radiative Properties of Neutron Star Magnetospheres

    Science.gov (United States)

    Li, Jason G.

    2014-05-01

    Magnetospheres of neutron stars are commonly modeled as either devoid of plasma in "vacuum'' models or filled with perfectly conducting plasma with negligible inertia in "force-free'' models. While numerically tractable, neither of these idealized limits can simultaneously account for both the plasma currents and the accelerating electric fields that are needed to explain the morphology and spectra of high-energy emission from pulsars. In this work we improve upon these models by considering the structure of magnetospheres filled with resistive plasma. We formulate Ohm's Law in the minimal velocity fluid frame and implement a time-dependent numerical code to construct a family of resistive solutions that smoothly bridges the gap between the vacuum and force-free magnetosphere solutions. We further apply our method to create a self-consistent model for the recently discovered intermittent pulsars that switch between two distinct states: an "on'', radio-loud state, and an "off'', radio-quiet state with lower spin-down luminosity. Essentially, we allow plasma to leak off open field lines in the absence of pair production in the "off'' state, reproducing observed differences in spin-down rates. Next, we examine models in which the high-energy emission from gamma-ray pulsars comes from reconnecting current sheets and layers near and beyond the light cylinder. The reconnected magnetic field provides a reservoir of energy that heats particles and can power high-energy synchrotron radiation. Emitting particles confined to the sheet naturally result in a strong caustic on the skymap and double peaked light curves for a broad range of observer angles. Interpulse bridge emission likely arises from interior to the light cylinder, along last open field lines that traverse the space between the polar caps and the current sheet. Finally, we apply our code to solve for the magnetospheric structure of merging neutron star binaries. We find that the scaling of electromagnetic

  19. Influence of ionizing radiation on the mechanical properties of BisGMA/TEGDMA based experimental resin

    International Nuclear Information System (INIS)

    LMP, Campos; Boaro, LC; LKG, Santos; Parra, DF; Lugão, AB

    2015-01-01

    Dental restorative composites are activated by visible light and the polymerization process, known as direct technique, is initiated by absorbing light in a specific wavelength range (450–500 nm). However this technique presented some disadvantages. If light is not inserted correctly, layers uncured can cause countless damage to restoration, especially with regard to mechanical properties. A clinical alternative used to reduce the shortcomings of direct application is the use of composite resins for indirect application. These composites are adaptations of resins prepared for direct use, with differences mainly in the healing process. Besides the traditional photoactivation, indirect application composites may be submitted to particular curing conditions, such as a slow curing rate, heating, vacuum, and inert-gas pressure leading to an oxygen-free environment. However few studies have been conducted on the process of post-curing by ionizing radiation at low doses. On this sense the purpose of this study was to evaluate possible interactions of ionizing radiation in the post-curing process of the experimental composites based on BisGMA/TEGDMA filled with silica Aerosil OX-50 silanized. Characterization of the experimental composites was performed by thermogravimetry analysis, infrared spectroscopy, elastic modulus and flexural strength. Statistical analysis of results was calculated by one-way ANOVA/Tukey's test. Cross-linking of the polymeric matrix caused by ionizing radiation, influenced the thermal stability of irradiated specimens. FTIR analysis showed that the ionizing radiation induced a post-cure reaction in the specimens. The irradiation dose influenced directly the mechanical properties that showed a strong positive correlation between flexural strength and irradiation and between modulus strength and irradiation. - Highlights: • Interactions of ionizing radiation in BisGMA/TEGDMA experimental dental composites filled with sylanized silica.

  20. Optical radiative properties of ablating polymers exposed to high-power arc plasmas

    Science.gov (United States)

    Becerra, Marley; Pettersson, Jonas

    2018-03-01

    The radiative properties of polymers exposed to high-intensity radiation are of importance for the numerical simulation of arc-induced ablation. The paper investigates the optical properties of polymethylmethacrylate PMMA and polyamide PA6 films exposed to high-power arc plasmas, which can cause ablation of the material. A four-flux radiative approximation is first used to estimate absorption and scattering coefficients of the tested materials in the ultraviolet (UV) and in the visible (VIS) ranges from spectrophotometric measurements. The temperature-induced variation of the collimated transmissivity of the polymers is also measured from room temperature to the glass temperature of PMMA and the melting temperature of PA6. Furthermore, band-averaged absorption and scattering coefficients of non-ablating and ablating polymers are estimated from the UV to the short-wavelength infrared (SWIR), covering the range of interest for the simulation of arc-induced ablation. These estimates are obtained from collimated transmissivities measured with an additional in situ photometric system that uses a high-power, transient arc plasma to both illuminate the samples and to induce ablation. It is shown that the increase in the bulk temperature of PA6 leads to a strong reversible increase in collimated transmissivity, significantly reducing the absorption and scattering coefficients of the material. A weaker but opposite effect of temperature on the optical properties is found in PMMA. As a consequence, it is suggested that the absorption coefficient of polymers used for arc-induced ablation estimates should not be taken directly from direct collimated transmissivity measurements at room temperature. The band-averaged radiation measurements also show that the layer of products released by ablation of PMMA produces scattering radiation losses mainly in the VIS-SWIR ranges, which are only a small fraction of the total incident arc radiation. In a similar manner, the ablation layer

  1. Coherence properties of blackbody radiation and application to energy harvesting and imaging with nanoscale rectennas

    Science.gov (United States)

    Lerner, Peter B.; Cutler, Paul H.; Miskovsky, Nicholas M.

    2015-01-01

    Modern technology allows the fabrication of antennas with a characteristic size comparable to the electromagnetic wavelength in the optical region. This has led to the development of new technologies using nanoscale rectifying antennas (rectennas) for solar energy conversion and sensing of terahertz, infrared, and visible radiation. For example, a rectenna array can collect incident radiation from an emitting source and the resulting conversion efficiency and operating characteristics of the device will depend on the spatial and temporal coherence properties of the absorbed radiation. For solar radiation, the intercepted radiation by a micro- or nanoscale array of devices has a relatively narrow spatial and angular distribution. Using the Van Cittert-Zernike theorem, we show that the coherence length (or radius) of solar radiation on an antenna array is, or can be, tens of times larger than the characteristic wavelength of the solar spectrum, i.e., the thermal wavelength, λT=2πℏc/(kBT), which for T=5000 K is about 3 μm. Such an effect is advantageous, making possible the rectification of solar radiation with nanoscale rectenna arrays, whose size is commensurate with the coherence length. Furthermore, we examine the blackbody radiation emitted from an array of antennas at temperature T, which can be quasicoherent and lead to a modified self-image, analogous to the Talbot-Lau self-imaging process but with thermal rather than monochromatic radiation. The self-emitted thermal radiation may be important as a nondestructive means for quality control of the array.

  2. Experimental and theoretical investigation of radiation and dynamics properties in laser-produced carbon plasmas

    Science.gov (United States)

    Min, Qi; Su, Maogen; Wang, Bo; Cao, Shiquan; Sun, Duixiong; Dong, Chenzhong

    2018-05-01

    The radiation and dynamics properties of laser-produced carbon plasma in vacuum were studied experimentally with aid of a spatio-temporally resolved emission spectroscopy technique. In addition, a radiation hydrodynamics model based on the fluid dynamic equations and the radiative transfer equation was presented, and calculation of the charge states was performed within the time-dependent collisional radiative model. Detailed temporal and spatial evolution behavior about plasma parameters have been analyzed, such as velocity, electron temperature, charge state distribution, energy level population, and various atomic processes. At the same time, the effects of different atomic processes on the charge state distribution were examined. Finally, the validity of assuming a local thermodynamic equilibrium in the carbon plasma expansion was checked, and the results clearly indicate that the assumption was valid only at the initial (applicable near the plasma boundary because of a sharp drop of plasma temperature and electron density.

  3. Properties and use of construction plastics modified by ioni-- zing radiation

    International Nuclear Information System (INIS)

    Pandur, Ya.

    1983-01-01

    The change of material structure both during irradiation of ready details and preliminary irradiation of granulate before heat treatment has been studied. The change of mechanical and thermal chracteristics of polyamides of the brand ultramide AZK and ultramide BZK, as well as of propylene of the brand pro-fax 6523 (PP) and polyethylene of the brand liten 7006 (PE), irradiated with γ-rays and electrons, depending on radiation dose absorbed, has been considered. The polymer materials considered possess the optimum physicomechanical properties at the following radiation doses absorbed (in MGy): PE and PP 0.70 and 0.15 during γ-radiation and 0.20 and 0.10 during electron radiation. As a result of irradiation mechanical characteristics of the polymers except impact strength and ultimate stress during bending are increased

  4. Evaluation of the electron beam radiation effects on the mechanical properties of the polypropylene

    International Nuclear Information System (INIS)

    Souza, Clecia M.; Moura, Esperidiana A.B.; Chinellato, Anne

    2009-01-01

    This paper studied the electron beam radiation effects on the mechanical properties of the polypropylene (PP) resin. The PP resin was submitted to 150-250 kGy radiation dose, at the dose rate of 14 kGy/s, room temperature and presence of air, using a 1.5 MeV electron accelerator. After the irradiation, the irradiated and non irradiated resin samples were submitted to the mechanical testes of traction resistance and impact Izod resistance. The results shown that the traction resistance at drainage of PP samples have not experienced significant modifications (p < 0.05) after the irradiation. However, the original PP rupture resistance (non irradiated samples) presented a gain up to 100 % as function of the applied radiation dose; the percentage of deformation in the rupture presented a reduction up to 65 % and the Izod impact resistance presented a reduction up to 70 % with the increase of the radiation dose (p < 0.05)

  5. Effect of radiation processing on nutritional, functional, sensory and antioxidant properties of red kidney beans

    International Nuclear Information System (INIS)

    Marathe, S.A.; Deshpande, R.; Khamesra, Arohi; Ibrahim, Geeta; Jamdar, Sahayog N.

    2016-01-01

    In the present study dry red kidney beans (Phaseolus vulgaris), irradiated in the dose range of 0.25–10.0 kGy were evaluated for proximate composition, functional, sensory and antioxidant properties. Radiation processing up to 10 kGy did not affect proximate composition, hydration capacity and free fatty acid value. All the sensory attributes were unaffected at 1.0 kGy dose. The dose of 10 kGy, showed lower values for odor and taste, however, they were in acceptable range. Significant improvement in textural quality and reduction in cooking time was observed at dose of 10 kGy. Antioxidant activity of radiation processed samples was also assessed after normal processing such as soaking and pressure cooking. Both phenolic content and antioxidant activity evaluated in terms of DPPH free radical scavenging assay and inhibition in lipid peroxidation using rabbit erythrocyte ghost system, were marginally improved (5–10%) at the dose of 10 kGy in dry and cooked samples. During storage of samples for six months, no significant change was observed in sensory, cooking and antioxidant properties. Thus, radiation treatment of 1 kGy can be applied to get extended shelf life of kidney beans with improved functional properties without impairing bioactivity; nutritional quality and sensory property. - Highlights: • Nutritional and sensory aspects of kidney beans are not altered up to 10 kGy dose of gamma radiation. • Radiation processing at 10 kGy improves cooking quality of kidney bean seeds. • Radiation processing at 10 kGy increases antioxidant activity of kidney bean seeds.

  6. Effect of radiation on the optical properties of some ferroelectrics

    International Nuclear Information System (INIS)

    Pirogova, G.N.; Kritskaya, V.E.; Malov, N.A.; Ryabov, A.I.; Voronin, Y.V.

    1986-01-01

    This paper studies the effect of gamma-irradiation and impulsive irradiation with electrons on the optical properties of crystals used in nonlinear optics: potassium dihydrophosphate KH 2 PO 4 , and cesium dihydroarsenate CsH 2 AsO 4 . The authors used two types of crystals obtained by extraction of the condensate, lowering of the temperature and recirculation. The content of iron-group impurity atoms (A1, Cu, and Mg) were determined with the help of atomic absorption spectrometry and was less than 1.10 -3 mole %. The samples were irradiated with a Co 60 gamma-ray source and impulsive irradiation with electrons was performed with a U-12 linear accelerator. A comparison of the spectra of gamma-irradiated single crystals and crystals irradiated with electrons shows that they are identical in the UV region. The impulse technique, however, enables observing the absorption bands which under gamma-irradiation are lost owing to the large increment of the optical density in the ultraviolet region and the shift of the absorption edge into the long-wavelength region

  7. Effects of Co60 gamma radiation on the immunogenic and antigenic properties of Bothrops jararacussu venom

    International Nuclear Information System (INIS)

    Spencer, Patrick J.; Nascimento, Nanci do; Rogero, Jose R.

    1997-01-01

    Ionizing radiation has been successfully employed to attenuate animals toxins and venoms for immunizing antisera producing animals. However, the radiation effects on antigenicity and immunogenecity have not yet been elucidated. In the present work, we investigated the effects of gamma rays on the antigenic and immunogenicity have not yet been elucidated. In the present work, we investigated the effects of gamma rays on the antigenic and immunogenic behaviour of Bothrops jararacussu venon. Venom samples (2mg/ml in 150 mM NaCl) were irradiated with 500, 1000 and 2000 Gy of 60 Co gamma rays. These samples were submitted to antigen capture ELISA on plates coated with commercial bothropic antiserum. Results suggest a loss of reactivity of the 1000 and 2000 Gy irradiated samples. Antibodies against native and 2000 Gy irradiated venoms were produced in rabbits. Both sera able to bind native venom with a slightly higher titer for anti-irradiated serum. These data suggest that radiation promoted structural modification on the antigen molecules. However since the antibodies produced against irradiated antivenom were able to recognize native venom, there must have been preservation of some antigenic determinants. It has already been demosntrated that irradiation of proteins leads to structural modifications and unfolding of the molecules. Our data suggest that irradiation led to conformational epitopes destruction with preservation of linear epitopes and that the response against irradiated venom may be attributed to these linear antigenic determinants. (author). 8 refs., 3 figs

  8. Quantum Radiation Properties of Dirac Particles in General Nonstationary Black Holes

    Directory of Open Access Journals (Sweden)

    Jia-Chen Hua

    2014-01-01

    Full Text Available Quantum radiation properties of Dirac particles in general nonstationary black holes in the general case are investigated by both using the method of generalized tortoise coordinate transformation and considering simultaneously the asymptotic behaviors of the first-order and second-order forms of Dirac equation near the event horizon. It is generally shown that the temperature and the shape of the event horizon of this kind of black holes depend on both the time and different angles. Further, we give a general expression of the new extra coupling effect in thermal radiation spectrum of Dirac particles which is absent from the thermal radiation spectrum of scalar particles. Also, we reveal a relationship that is ignored before between thermal radiation and nonthermal radiation in the case of scalar particles, which is that the chemical potential in thermal radiation spectrum is equal to the highest energy of the negative energy state of scalar particles in nonthermal radiation for general nonstationary black holes.

  9. physical, chemical, technological and biological properties of some mutant oil seeds induced by gamma radiation

    International Nuclear Information System (INIS)

    Ali, H.G.M.

    2003-01-01

    The present study has been undertaken to evaluated sesame, sunflower and safflower seeds induced by gamma rays, as plant breeding unit, plant research department, radioisotope application division, nuclear research center, atomic energy authority Inshas. the obtained results indicate the following : chemical composition of mutant seeds: the radiation mutation caused a significant increase in both oil and ash content total carbohydrates showed a significant decreased in sesame seeds. radiation mutation induced significant increase in oil and protein content of sunflower and safflower seeds. while the total carbohydrate showed a significant decrease. physiochemical properties of oils extracted mutant seeds: the radiation mutation had no real effect on the refractive index and A.V of oils extracted from control and mutant sesame, sunflower and safflower seeds. while it caused a slight increase in red color and P.V. of sesame oil, the thiobarbituric acid (TBA) value of mutant sesame oil was not alter upon radiation mutation, but it induced a slight decrease in TBA of mutant sunflower and safflower oils. the unsaponifiable matter percentage of oils extracted from mutant sesame, sunflower and safflower seeds were slightly increased by radiation mutation .radiation mutation of seeds had no real effect on the total SFA and USFA of sesame oil. however, radiation mutation induced a remarkable changes in fatty acid profiles of sunflower and safflower oil as total SFA decreased, while USFA increased. Uric acid was only detected in oil extracted from mutant sunflower seeds

  10. Improvement of Some Physical Properties of Loaded Nitrile Rubber Vulcanized by Ionizing Radiation

    International Nuclear Information System (INIS)

    Abdel-Aziz, M.M.; Basfar, A.A.; Mofti, S.

    2000-01-01

    The effect of four-selected polyfunctional compounds namely, tri methylacrylic ester, trimethylol propane trimethacrylate, zinc diacrylate and modified pentaerthritol triacrylate, as crosslinking agents, on the mechanical properties of radiation vulcanized nitrile rubber was studied. The effect of incorporation of either HAF-carbon black or fumed silica, as filler and reinforcing agents, on its mechanical properties was also studied. The co agent namely, tri methylacrylic ester, was found to produce a set of optimum mechanical properties, i.e. moderate crosslink density, good tensile strength and elasticity at low irradiation doses, i.e.40 kGy

  11. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    International Nuclear Information System (INIS)

    Ghazali, Z.; Dahlan, K.Z.; Wongsuban, B.; Idris, S.; Muhammad, K.

    2001-01-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  12. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    Energy Technology Data Exchange (ETDEWEB)

    Ghazali, Z.; Dahlan, K.Z. [Malaysian Institute for Nuclear and Technology Research (MINT), Bangi, Kajang (Malaysia); Wongsuban, B.; Idris, S.; Muhammad, K. [Universiti Putra Malaysia, Faculty of Food Science and Biotechnology, Department of Food Science, Serdang (Malaysia)

    2001-03-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  13. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  14. Tailoring the structure and properties of amorphous starch blending and EB-radiation processing

    International Nuclear Information System (INIS)

    Khandal, D.; Bliard, C.; Coqueret, X.; Mikus, P.Y.; Dole, P.; Baumberger, S.

    2011-01-01

    Complete text of publication follows. Starch can be used alone and in combination with other compounds to make biodegradable articles from renewable resources. Lignins and their derivatives are good candidates for limiting the water sensitivity of starch-based materials, but they exhibit poor compatibility in blends with polysaccharides. Electron beam (EB) processing is proposed as an efficient method for inducing covalent linkages between the two constituents. Compared to unirradiated starting materials, the surface and bulk properties of EB-irradiated starch - lignin blends submitted to EB irradiation showed an interesting reduction in hydrophilicity. Radiation induced grafting of lignin models onto starch was shown to impede long-term retrogradation, with limited loss of mechanical properties. The reactivity under radiation of model blends was examined by several analytical methods. Maldi-T of mass spectrometry allowed us to propose reasonable free radical mechanisms that account for the grafting of various benzyl and cinnamyl alcohols onto maltodextrins. The presence of cinnamyl derivatives was found not only to limit degradation, but also modify the properties of the formulations (improved hydrophobicity, mechanical properties). Size exclusion chromatography and gel fraction measurements confirmed unambiguously the attachment of UV-absorbing chromophores onto the maltodextrin main chain. The combination of the obtained results demonstrates the possibility of altering in a favourable way the tensile properties of plasticized starch by applying high energy radiation to properly formulated blends including aromatic compounds like cinnamyl alcohol.

  15. Study of gamma radiation shielding properties of ZnO-TeO_2 glasses

    International Nuclear Information System (INIS)

    Issa, Shama A.M.; Sayyed, M.I.; Kurudirek, Murat

    2017-01-01

    Mass attenuation coefficient (μm), half value layer (HVL) and mean free path (MFP) for xZnO-(100-x)TeO_2, where x=10, 15, 20, 25, 30, 35 and 40 mol%, have been measured for 0.662, 1.173 and 1.33 MeV photons emitted from "1"3"7Cs and "6"0Co using a 3 x 3 inch NaI (Tl) detector. Some relevant parameters such as effective atomic numbers (Z_e_f_f) and electron densities (Nel) of glass samples have been also calculated in the photon energy range of 0.015-15 MeV. Moreover, gamma-ray energy absorption buildup factor (EABF) and exposure buildup factor (EBF) were estimated using a five-parameter Geometric Progression (GP) fitting approximation, for penetration depths up to 40 MFP and in the energy range 0.015-15 MeV. The measured mass attenuation coefficients were found to agree satisfactorily with the theoretical values obtained through WinXcom. Effective atomic numbers (Z_e_f_f) and electron densities (N_e_l) were found to be the highest for 40ZnO-60TeO_2 glass in the energy range 0.04-0.2 MeV. The 10ZnO-90TeO_2 glass sample has lower values of gamma-ray EBFs in the intermediate energy region. The reported new data on radiation shielding characteristics of zinc tellurite glasses should be beneficial from the point of proper gamma shield designs when intended to be used as radiation shields. (author)

  16. Radiation

    International Nuclear Information System (INIS)

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  17. Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties

    OpenAIRE

    Sendobry, Sandra M; Cornicelli, Joseph A; Welch, Kathryn; Bocan, Thomas; Tait, Bradley; Trivedi, Bharat K; Colbry, Norman; Dyer, Richard D; Feinmark, Steven J; Daugherty, Alan

    1997-01-01

    15-Lipoxygenase (15-LO) has been implicated in the pathogenesis of atherosclerosis because of its localization in lesions and the many biological activities exhibited by its products. To provide further evidence for a role of 15-LO, the effects of PD 146176 on the development of atherosclerosis in cholesterol-fed rabbits were assessed. This novel drug is a specific inhibitor of the enzyme in vitro and lacks significant non specific antioxidant properties.PD 146176 inhibited rabbit reticulocyt...

  18. Effect of radiation on disinfection and mechanical properties of Korean traditional paper, Hanji

    International Nuclear Information System (INIS)

    Choi, Jong-il; Chung, Yong Jae; Kang, Dai Ill; Lee, Kyu Shik; Lee, Ju-Woon

    2012-01-01

    Fumigants, including methyl bromide and ethylene oxide, are generally used for the preservation of the Korean cultural heritage, especially paper products like letters and books. However, the use of fumigants is banned because of their harmful effects on humans and the environment. Gamma irradiation is being considered as an alternative for the sterilization of insects and fungi in organic products. Therefore, the purpose of this study was to investigate the sterilization effects of radiation and its effect on the mechanical properties of the Korean traditional paper—Hanji. Treatment doses of 9 kGy and 8 kGy of gamma irradiation inactivated 5 log units of Aspergillus niger and Bacillus cereus spores inoculated on Hanji, respectively. The gamma irradiations up to an absorbed dose of 50 kGy resulted in no significant changes in the tensile strength, bursting strength, and appearance of Hanji. These results confirmed that radiation treatment disinfects the Korean traditional paper efficiently without changing its properties and that this treatment could be used to prevent the damage of Korean ancient archives by molds and fungi. - Highlights: ► Radiation sensitivity of mold was tested on Korean traditional paper, Hanji. ► Mechanical properties of Hanji were measured to investigate the effect of irradiation. ► This result is useful to conserve the Korean cultural heritages made by Hanji with the radiation technology.

  19. Effect of nuclear radiation on the electrical properties of chemical double layer capacitors

    International Nuclear Information System (INIS)

    Laghari, J.R.; Hammoud, A.N.

    1990-01-01

    The effects of nuclear radiation on the electrical properties of chemical double layer capacitors are determined. The capacitors were irradiated in a 2-MW nuclear reactor to different fluence levels. The exposure rate was 2.2 x 10 10 n/cm 2 · s of thermal neutrons, 9.52 x 10 8 n/cm 2 · s of fast neutrons (> 2 MeV), and 1.47 x 10 6 rad/h of gamma radiation. The properties measured during and after irradiation included the capacitance, equivalent series resistance, and open-circuit voltage. The post-irradiation effect on the leakage current was also determined. It was found that while the capacitance increased during irradiation, the equivalent series resistance and the open-circuit voltage decreased slightly during irradiation. Changes in these properties were not permanent s was evident from post-irradiation measurements. The leakage current did not show any significant change with radiation. The results indicate that chemical double layer capacitors can be suitably used as backup power source in electronic equipment operating in a radiation environment with total fluences up to 4.05 x 10 14 n/cm 2

  20. γ-ray radiation effect on properties of straw powder/PBS composite

    International Nuclear Information System (INIS)

    Yang Mingcheng; Luo Yongquan; Liu Wentao; Zhu Jun; Guo Dongquan; Li Zhaopeng; Gen Feng; Qu Lingbo

    2013-01-01

    Background: In recent years, with decreasing global fossil resources and increasing 'white pollution', renewable and biodegradable materials attract more and more attentions. Poly (butylene succinate) (PBS) has good mechanical property, biodegradability and processing performance, which is the focus of hot topics in the study of biodegradable plastic materials, however, being soft and of high cost, it is still limited in application range. Purpose: In order to improve the mechanical and thermal properties, a series of wheat straw powder/PBS composites were prepared by melt extrusion, and then the 60 Co-y ray was directly utilized to irradiate the straw powder/PBS composite. Methods: The influence of TAIC (triallyl isocyanurate) radiation absorbed dose and radiation sensitizer on the mechanical property and thermal performance of straw powder/PBS composite was investigated, and the impact fracture surface morphology of the composite was observed by SEM (scanning electron microscope). Results: The tensile strength and flexural strength were enhanced with increasing radiation dosage, and then tend to be stable, the heat distortion temperature also increased but not significantly with increasing radiation dosage. The results show that when TAIC content is 2%, with straw powder/PBS composite irradiated by 30-kGy dose, the tensile strength and flexural strength are increased by 26% and 39.8%, respectively. Conclusion: The radiation modification of composite material has no effect on thermal stability, but do improve the tensile strength and flexural strength when up to 2% of TAIC is integrated and irradiated by certain dose. The interface cohesiveness between straw powder and PBS is strengthened after radiation. (authors)

  1. Theoretical radiative properties between states of the triplet manifold of NH radical

    International Nuclear Information System (INIS)

    Owono Owono, L.C.; Jaidane, N.; Ben Lakhdar, Z.

    2007-12-01

    Ab initio transition dipole moments between states of the triplet manifold of NH radical are presented. This enables the computation of various radiative characteristics such as Einstein coefficients, radiative lifetimes and oscillator strengths. These properties concern valence and Rydberg states as well for which spectroscopic parameters are rather scarce and sometimes inexistent. Our results show good agreement with available experimental data in comparison to other theoretical numbers reported in the literature. This helps to build confidence on the quantities for which data were not found for comparative purposes. It is expected that the present study may enhance further astrophysical and laboratory investigations. (author)

  2. Gamma radiation effects on photorefractive and photoelectric properties of lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vartanyan, Eh.S.; Ovsepyan, R.K.; Pogosyan, A.R.; Timofeev, A.L.

    1984-08-01

    Investigations into the gamma radiation effect on the photorefractive aned photoelectric properties of lithium niobate crystals have been carried out for the first time. Gamma irradiation has been found to lead to an increase in the photorefractive sensitivity. The effect of optical decoloration has been discovered for the first time along with photorelaxation currents resulting from radiation center decay under the action of light. It has been shown that an increase of photorefractive sensitivity in gamma-irradiated lithium niobate crystals is caused by a new photorefraction mechanism - photorelaxation currents.

  3. Radiation processing of polymer insulators as a method of improving their properties and performance

    International Nuclear Information System (INIS)

    Ivanov, V.S.; Migunova, L.I.; Kalinina, N.A.; Aleksandrov, G.N.

    1995-01-01

    Polymer insulators for electric apparatus and high-voltage overhead lines are promising for replacing porcelain and glass insulators. The possibility of application of radiation-chemical technology was showed by manufacture of rod-shaped polymer insulators. In this work, an ethylene and vinyl acetate copolymer was used as the polymer basis of the composition for insulators. By forming a three-dimensional network in polymer bulk radiation processing improves service properties of polymer insulators: shape and heat stability > 200 degree C and stability to tracking erosion > 200 h

  4. Properties of electret ionization chambers for routine dosimetry in photon radiation fields

    International Nuclear Information System (INIS)

    Doerschel, B.; Pretzsch, G.

    1985-01-01

    The main properties of photon routine dosemeters are their energy and angular dependence as well as their measuring range and accuracy. The determination of radiation exposure from dosemeter response is based on the choice of an appropriate conversion factor taking into account the influence of body backscattering on the dosemeter response. Measuring range and accuracy of an electret ionization chamber first of all depend on electret stability, methods of charge measurement, and geometry of the chamber. The dosemeter performance is described for an electret ionization chamber which was designed for application to routine monitoring of radiation workers. (author)

  5. Scattering and radiative properties of semi-external versus external mixtures of different aerosol types

    International Nuclear Information System (INIS)

    Mishchenko, Michael I.; Liu Li; Travis, Larry D.; Lacis, Andrew A.

    2004-01-01

    The superposition T-matrix method is used to compute the scattering of unpolarized light by semi-external aerosol mixtures in the form of polydisperse, randomly oriented two-particle clusters with touching components. The results are compared with those for composition-equivalent external aerosol mixtures, in which the components are widely separated and scatter light in isolation from each other. It is concluded that aggregation is likely to have a relatively weak effect on scattering and radiative properties of two-component tropospheric aerosols and can be replaced by the much simpler external-mixture model in remote sensing studies and atmospheric radiation balance computations

  6. The application of semianalytic method for calculating the thickness of biological shields of nuclear reactors. Part 1. Theoretical basis of a semianalytic method. Attenuation of neutrons' radiation

    International Nuclear Information System (INIS)

    Lukaszek, W.; Kucypera, S.

    1982-01-01

    The basis of a semianalytic method for calculating attenuation of rays (neutron, gamma) in material medium is described. The method was applied in determining the neutrons' flux density in one dimensional Cartesian geometry of the reflector and the shield. (author)

  7. The influence of gamma radiation on HDPE properties for tibial tray

    International Nuclear Information System (INIS)

    Sulistioso, G.S.; Dewi, R.K.; Maria, C.P.; Nada, M.

    2012-01-01

    A research on HDPE as tibial tray in total knee joint replacement surgery has been done. The aims of this research were to characterize the influence of gamma radiation on chemical, and mechanical properties on HDPE is made by using hot press method then irradiated with various doses of gamma rays of 0 kGy, 25 kGy, 50 kGy, 75 kGy, 100 kGy, 125 kGy, and 150 kGy at a dose rate 9 kGy/h. The irradiated HDPE were tested for their chemical, and mechanical properties. The chemical properties test, involve crosslinking and free radicals. The mechanical properties test, involve hardness, tensile strength, and elongation at break. The results showed that gamma radiation from IRKA IV th category can enhance the, chemical properties of HDPE in terms of percentage and number of radical crosslinking and mechanical properties of HDPE in terms of hardness, tensile strength and elongation at break with different changes from the initial state before radiation also the optimum dose to obtain better physical, chemical, and mechanical properties of HDPE, crosslinking percentage at 99.71%; height of radical peroxide curve at 13 cm; hardness (shore A) at 94.33; modulus of elasticity at 1113.03 N/mm 2 ; yield stress at 26.38 N/mm 2 ; tensile strength at 31.11 N/mm 2 ; and elongation at break at 440.37%, so that HDPE can be used as tibial tray. (author)

  8. Determining the radiative properties of pulverized-coal particles from experiments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Menguec, M.P.

    1992-02-01

    A comprehensive coupled experimental-theoretical study has been performed to determine the effective radiative properties of pulverized-coal/char particles. The results obtained show that the ``effective`` scattering phase function of coal particles are highly forward scattering and show less sensitivity to the size than predicted from the Lorenz-Mie theory. The main reason for this is the presence of smaller size particles associated with each larger particle. Also, the coal/char particle clouds display more side scattering than predicted for the same size range spheres, indicating the irregular shape of the particles and fragmentation. In addition to these, it was observed that in the visible wavelength range the coal absorption is not gray, and slightly vary with the wavelength. These two experimental approaches followed in this study are unique in a sense that the physics of the problem are not approximated. The properties determined include all uncertainties related to the particle shape, size distribution, inhomogeneity and spectral complex index of refraction data. In order to obtain radiative property data over a wider wavelength spectrum, additional ex-situ experiments have been carried out using a Fourier Transform Infrared (FT-IR) Spectrometer. The spectral measurements were performed over the wavelength range of 2 to 22 {mu}m. These results were interpreted to obtain the ``effective`` efficiency factors of coal particles and the corresponding refractive index values. The results clearly show that the coal/char radiative properties display significant wavelength dependency in the infrared spectrum.

  9. Co-localization of a CD1d-binding glycolipid with a radiation-attenuated sporozoite vaccine in LN-resident DCs for a robust adjuvant effect

    Science.gov (United States)

    Li, Xiangming; Kawamura, Akira; Andrews, Chasity D.; Miller, Jessica L.; Wu, Douglass; Tsao, Tiffany; Zhang, Min; Oren, Deena; Padte, Neal N.; Porcelli, Steven A.; Wong, Chi-Huey; Kappe, Stefan H. I.; Ho, David D.; Tsuji, Moriya

    2015-01-01

    A CD1d-binding glycolipid, α-Galactosylceramide (αGalCer), activates invariant natural killer T (iNKT) cells and acts as an adjuvant. We previously identified a fluorinated phenyl ring-modified αGalCer analog, 7DW8-5, displaying nearly 100-fold stronger CD1d binding affinity. In the present study, 7DW8-5 was found to exert a more potent adjuvant effect than αGalCer for a vaccine based on radiation-attenuated sporozoites (RAS) of a rodent malaria parasite, Plasmodium yoelii, also referred to as irradiated P. yoelii sporozoites (IrPySpz). 7DW8-5 had a superb adjuvant effect only when the glycolipid and IrPySpz were conjointly administered intramuscularly (i.m.). Therefore, we evaluated the impact of distinctly different biodistribution patterns of αGalCer and 7DW8-5 on their respective adjuvant activities. While both glycolipids induce a similar cytokine response in sera of mice injected intravenously, after i.m. injection, αGalCer induces a systemic cytokine response, whereas 7DW8-5 is locally trapped by CD1d expressed by dendritic cells (DCs) in draining lymph nodes (dLNs). Moreover, the i.m. co-administration of 7DW8-5 with IrPySpz results in the recruitment of DCs to dLNs and the activation and maturation of DCs. These events cause the potent adjuvant effect of 7DW8-5, resulting in the enhancement of the CD8+ T-cell response induced by IrPySpz, and, ultimately, improved protection against malaria. Our study is the first to show that the co-localization of a CD1d-binding iNKT-cell stimulatory glycolipid and a vaccine, like RAS, in dLN-resident DCs upon i.m. conjoin administration governs the potency of the adjuvant effect of the glycolipid. PMID:26254338

  10. Analysis of biological samples by x-ray attenuation measurements

    International Nuclear Information System (INIS)

    Cesareo, R.

    1988-01-01

    Over the last few years there has been an increasing interest in X-ray attenuation measurements, mainly due to the enormous development of computer assisted tomography (CAT). With CAT, analytical information concerning the density and the mean atomic number distributions in a sample is deduced from a large number of attenuation measurements. Particular transmission methods developed, based on the differential attenuation method are discussed. The theoretical background for attenuation of radiation and for differential attenuation of radiation is given. Details about the generation of monoenergetic X-rays are discussed. Applications of attenuation measurements in the field of Medicine are presented

  11. The effect of gamma radiation on the properties of activated carbon cloth

    Directory of Open Access Journals (Sweden)

    DANIJELA R. SEKULIĆ

    2009-09-01

    Full Text Available Activated carbon cloth dressing is an appropriate wound healing material due to its biocompatibility and adsorption characteristics. The in-fluence of gamma radiation as a sterilization process on the adsorption and mechanical properties of activated carbon cloth was investigated. The specific surface area, micropore volume, pore size distribution, surface chemistry as well as the breaking load of activated carbon cloth before and after gamma radiation were examined. Characterization by nitrogen adsorption showed that the activated carbon cloth was a microporous material with a high specific surface area and micropores smaller than 1 nm. Gamma radiation decreased the specific surface area and micropore volume but increased the pore width. The sterilization process changed the surface chemistry quantitatively, but not qualitatively. In addition, the breaking load decreased but without any influence considering the further application of this material.

  12. Effect of Solar Radiation on Viscoelastic Properties of Bovine Leather: Temperature and Frequency Scans

    Science.gov (United States)

    Nalyanya, Kallen Mulilo; Rop, Ronald K.; Onyuka, Arthur S.

    2017-04-01

    This work presents both analytical and experimental results of the effect of unfiltered natural solar radiation on the thermal and dynamic mechanical properties of Boran bovine leather at both pickling and tanning stages of preparation. Samples cut from both pickled and tanned pieces of leather of appropriate dimensions were exposed to unfiltered natural solar radiation for time intervals ranging from 0 h (non-irradiated) to 24 h. The temperature of the dynamic mechanical analyzer was equilibrated at 30°C and increased to 240°C at a heating rate of 5°C \\cdot Min^{-1}, while its oscillation frequency varied from 0.1 Hz to 100 Hz. With the help of thermal analysis (TA) control software which analyzes and generates parameter means/averages at temperature/frequency range, the graphs were created by Microsoft Excel 2013 from the means. The viscoelastic properties showed linear frequency dependence within 0.1 Hz to 30 Hz followed by negligible frequency dependence above 30 Hz. Storage modulus (E') and shear stress (σ ) increased with frequency, while loss modulus (E''), complex viscosity (η ^{*}) and dynamic shear viscosity (η) decreased linearly with frequency. The effect of solar radiation was evident as the properties increased initially from 0 h to 6 h of irradiation followed by a steady decline to a minimum at 18 h before a drastic increase to a maximum at 24 h. Hence, tanning industry can consider the time duration of 24 h for sun-drying of leather to enhance the mechanical properties and hence the quality of the leather. At frequencies higher than 30 Hz, the dynamic mechanical properties are independent of the frequency. The frequency of 30 Hz was observed to be a critical value in the behavior in the mechanical properties of bovine hide.

  13. Study of the effect of ionizing radiation on properties of polyamide 6 with fibreglass reinforcement

    International Nuclear Information System (INIS)

    Pinto, Clovis

    2007-01-01

    It is each time more common the use of polymers reinforced with fibreglass in the domestic market. Between them it is used polyamide 6 that it presents good tension resistance, to the impact and the humidity absorption compared with non-reinforced, being also at the present time used in the automobile industry in parts underneath the hood, especially in the radiator frames. The aim of this work is to study the effect of ionizing radiation on properties of polyamide 6 with fibreglass reinforcement, undergone to different radiation doses. Samples were prepared and irradiated on JOB 188 accelerator with an electron beam energy of 1.5 MeV in air with different doses (100 to 600 kGy) and a dose rate of 22.61 kGy/h. Afterward the irradiation, the properties of the samples of irradiated polyamide 6 with fibreglass reinforcement were evaluated and compared with the samples non-irradiated. It evidenced that the mechanical properties flexural resistance and tension resistance increased and the resistance to the impact decreased. Regarding the thermal properties of the temperature of fusing decreased of 224,4 deg C for 212,5 deg C but the loss of mass ahead of the constant increase of the temperature also decreased. In the property of resistance to the glow wire the polyamide 6 with fibreglass reinforcement had a good performance. The images caught for Scanning Electronic Microscopy show that the irradiation provoked a good integration enters the fibreglass and polymer what was responsible for the good performance in the property of resistance to the glow wire. (author)

  14. Contrasting aerosol optical and radiative properties between dust and urban haze episodes in megacities of Pakistan

    Science.gov (United States)

    Iftikhar, Muhammad; Alam, Khan; Sorooshian, Armin; Syed, Waqar Adil; Bibi, Samina; Bibi, Humera

    2018-01-01

    Satellite and ground based remote sensors provide vital information about aerosol optical and radiative properties. Analysis of aerosol optical and radiative properties during heavy aerosol loading events in Pakistan are limited and, therefore, require in-depth examination. This work examines aerosol properties and radiative forcing during Dust Episodes (DE) and Haze Episodes (HE) between 2010 and 2014 over mega cities of Pakistan (Karachi and Lahore). Episodes having the daily averaged values of Aerosol Optical Depth (AOD) exceeding 1 were selected. DE were associated with high AOD and low Ångström Exponent (AE) over Karachi and Lahore while high AOD and high AE values were associated with HE over Lahore. Aerosol volume size distributions (AVSD) exhibited a bimodal lognormal distribution with a noticeable coarse mode peak at a radius of 2.24 μm during DE, whereas a fine mode peak was prominent at a radius 0.25 μm during HE. The results reveal distinct differences between HE and DE for spectral profiles of several parameters including Single Scattering Albedo (SSA), ASYmmetry parameter (ASY), and the real and imaginary components of refractive index (RRI and IRI). The AOD-AE correlation revealed that dust was the dominant aerosol type during DE and that biomass burning and urban/industrial aerosol types were pronounced during HE. Aerosol radiative forcing (ARF) was estimated using the Santa Barbra DISORT Atmospheric Radiative Transfer (SBDART) model. Calculations revealed a negative ARF at the Top Of the Atmosphere (ARFTOA) and at the Bottom Of the Atmosphere (ARFBOA), with positive ARF within the Atmosphere (ARFATM) during both DE and HE over Karachi and Lahore. Furthermore, estimations of ARFATM by SBDART were shown to be in good agreement with values derived from AERONET data for DE and HE over Karachi and Lahore.

  15. The effect of proteins on the aging properties of radiation vulcanized natural rubber latex

    International Nuclear Information System (INIS)

    Abad, L.V.

    1993-01-01

    The effect of natural rubber latex (NRL) proteins on the aging properties of NRL films was investigated. SDS-PAGE electrophoresis of the rubber proteins in NRL (Sri-Lanka) indicated a total of 18 proteins. A sharp decrease in tensile strength was observed after aging when NRL films were leached in 1% NH 4 OH. However, when these films were soaked in ethanol prior to leaching, the aging properties approximated those of the unleashed samples. Electrophoretic analysis of the proteins present in the NH 3 extracts of leached RVNRL films showed a high concentration of the protein herein. This protein was not found in the NH 3 extracts of ethanol soaked films. NRL proteins were shown to decelerate the aging process of Radiation Vulcanized Natural Rubber Latex (RVNRL) films. Among the proteins, herein exhibited good anti-aging properties. The hydrolyzates from NR proteins also enhanced considerably the aging properties of RVNRL. (auth.). 8 refs.; 40 figs.; 30 tabs

  16. Investigation of efficient termination structure for improved breakdown properties of semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Krizaj, D.; Resnik, D.; Vrtacnik, D.; Amon, S.

    1998-01-01

    Efficiency of a new junction termination structure for improvement of breakdown properties of semiconductor radiation detectors is investigated. The structure consists of a diffused resistor winding around the active junction in a spiral fashion. The current flow through the spiral enables controlled potential distribution along the spiral turns and thus controlled depletion spreading from the main junction, efficiently preventing premature avalanche breakdown. Both multiple guard-ring structures and spiral junction termination structures have shown good breakdown properties typically three to five times higher than breakdown voltages of diodes without junction termination. The breakdown voltages of spiral junction termination structures are only weakly influenced by changes in substrate doping concentration caused by neutron irradiation. They can thus be considered for termination of future semiconductor radiation detectors

  17. The influence of radiation on bacterial cells and their proteolytic properties

    International Nuclear Information System (INIS)

    Szulc, M.; Stefaniakowa, A.; Stanczak, B.; Peconek, J.

    1980-01-01

    The suspension of bacterial cells and their spores were exposed to X rays in the environment with and without protein. The doses of radiation ranged from 1 to 100 Gy and in case of spores of B. subtilis from 50 to 1000 Gy. It was found that irradiation to Proteus vulgaris, Pseudomonas fluorescens and Ps. aeruginosa caused an inconsiderable decrease of proteolytic properties of the generation originated from irradiated bacteria. Irradiation of B. subtilis spores did not influence the proteolytic activity of bacterial cells derived from the exposed spores. The degree of wasting away of bacteria exposed to the same radiation was higher than the rate of proteolytic properties decrease. The presence of protein in the surroundings had no influence on proteolytic characteristics of new generations. (author)

  18. Effect of crosslinking on the physico-chemical properties of radiation grafted PEM fuel cell membranes

    International Nuclear Information System (INIS)

    Mohamed Mahmoud Nasef; Hamdani Saidi

    2006-01-01

    The effect of crosslinking on the physico-chemical properties of radiation grafted proton conducting membranes (PFA-g-PSSA) was investigated. The membranes were prepared by radiation induced grafting of styrene/divinylbenzene (DVB) mixtures onto poly (tetrafluoroethylene-co-perfluorovinyl either) (PFA) films followed by sulfonation reactions. The variation of DVB content in the grafting mixture was in the range of 1-4 vol %. The equivalent weight, swelling, behavior and the proton conductivity of crosslinked membranes having equal degrees of grafting prepared found to be dependent predominantly on the level of crosslinking. The obtained membranes were found to posses a good combination of physico-chemical properties that is matching the commercial Nation 117 membranes

  19. Preparation of highly absorbing polymeric hydrogels by radiation processing: mechanical and physical properties

    International Nuclear Information System (INIS)

    Dragusin, M.

    1994-01-01

    Some highly absorbing polymeric hydrogels such as acrylic polymers were produced by radiation processing with gamma sources Co-60 of 10,000 Ci, 3 kGy/h and an electron beam accelerator of 3 - 6 MeV, 0.3 - 3 kGy/s. For practical purposes, such as different applications in agriculture, etc, we studied the physical properties of residual monomers by refractometric and polarographic methods and the mechanical properties (gel strength) with devices made in our laboratory. (Author)

  20. Properties of an electret ionisation chamber for individual dosimetry in photon radiation fields

    International Nuclear Information System (INIS)

    Doerschel, B.; Pretzsch, G.

    1985-01-01

    The main properties of individual photon dosemeters are their energy and angular dependence and their measuring range and measurement accuracy. The determination of radiation exposure from the dosemeter readout is based on the choice of appropriate conversion factors, taking into account the influence of body backscatter on the dosemeter readout. The measurement range and accuracy of an electret ionisation chamber primarily depend on the electret stability and charge state measurement as well as on the chamber geometry. Dosimetric properties are described for an electret ionisation chamber designed for personnel monitoring. (author)

  1. Mechanical properties in polypropylene-polyethylene blends modified by gamma radiation

    International Nuclear Information System (INIS)

    Ruiz, F.C.; Terence, M.C.

    2008-01-01

    One of the way to obtain a better mechanical property of polypropylene and polyethylene is related to increase the number polymer chains cross-linked by gamma radiation. After irradiation a network is formed which is the result of various chemical reactions occurred during this process, where the radicals formed are concentrated in the amorphous phase. With the objective to increase the mechanical properties of PP, blends with PE were prepared and irradiated in doses up to 100kGy, in atmospheric ambient. The tests showed increase in rigidity and a particular behaviour in Izod impact resistance. (author)

  2. Effect of gamma radiation on the physical and chemical properties of some polymer blends

    International Nuclear Information System (INIS)

    Ibrahim, S.M.

    2000-01-01

    this work has been carried out to investigate the characterization of poly(vinyl alcohol) (PVA) / carboxymethyl cellulose (CMC) polymer blends exposed to various doses of gamma radiation has been investigated . the application of this blend after grafting with styrene monomer in absorbing waste dye from waste water was also studied . moreover, the effect of glycerol as a plasticizer on the structure property behavior of the same blend was reported. finally, the structure -property behavior of gamma and electron beam irradiated polyvinyl chloride (PVC) / nitrile butadiene rubber (NBR) was investigated

  3. Synthesis and properties of radiation modified thermally cured castor oil based polyurethanes

    Energy Technology Data Exchange (ETDEWEB)

    Mortley, Aba [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, P.O. Box 17000, Stn Forces, Kingston, ON, K7K 7B4 (Canada)], E-mail: aba.mortley@rmc.ca; Bonin, H.W.; Bui, V.T. [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, P.O. Box 17000, Stn Forces, Kingston, ON, K7K 7B4 (Canada)

    2007-12-15

    Thermally cured polyurethanes were prepared from castor oil and hexamethylene diisocyanate (HMDI). Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were exposed to doses up to 3.0 MGy produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The physico-mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. A four-fold increase in modulus and tensile strength values from 0.930 to 4.365 MPa and 0.149 to 0.747 MPa, respectively, suggests improved physico-mechanical properties resulting from radiation. The changing areas of the carbonyl and the NH absorbance peaks and the disappearance of the isocyanate peak in the FTIR spectra as radiation progressed, indicates increased hydrogen bonding and intermolecular crosslinking, which is in agreement with the mechanical tests. Unchanging {sup 13}C solid state NMR spectra imply limited sample degradation with increasing radiation.

  4. Effect of ionizing radiation on properties of acrylic pressure sensitive adhesives

    International Nuclear Information System (INIS)

    Panta, P.P.; Zimek, Z.A.; Giuszewski, W.; Kowalewski, R.; Wojtynska, E.; Wnuk, A.

    1998-01-01

    Pressure-sensitive adhesives for technical application are widely produced. The biological properties of adhesives depend on the type of monomers used. The available literature data as experience of the authors of this study in the area of pressure-sensitive acrylic adhesive, polymers used in medicine, polymerisation in aqueous media, radiation sterilization, permit to make an assumption that it is possible to elaborate the technology of production of pressure-sensitive adhesives in aqueous emulsion for medical applications. Identification of phenomena influencing the adhesive properties, especially its adhesion, cohesion, tack and durability is of great importance. The control of polymer structure is performed by means of adequate selection of conditions of synthesis and parameters of radiation processing. The authors investigate the influence on the final products of such factors as the type and amount of monomers used, their mutual ratio, as well as the ratio monomers and the dose of ionising radiation. There is no available literature information concerning the investigation of resistance of acrylic emulsion adhesive to sterilisation by electron beam. It is known from unpublished research that some adhesives are resistant to radiation, while others undergo destruction. It probably depends on the composition of emulsion, specifically on the additives which modify adhesives. Simultaneous achievement of good cohesion and adhesion in the case of such types of pressure sensitive adhesives is very difficult pressure sensitive adhesives is very difficult

  5. Simulation of African dust properties and radiative effects during the 2015 SHADOW campaign in Senegal

    Science.gov (United States)

    Péré, J.-C.; Rivellini, L.; Crumeyrolle, S.; Chiapello, I.; Minvielle, F.; Thieuleux, F.; Choël, M.; Popovici, I.

    2018-01-01

    The aim of this work is to estimate optical and radiative properties of dust aerosols and their potential feedbacks on atmospheric properties over Western Africa for the period 20 March-28 April 2015, by using numerical simulations and different sets of remote-sensing and in-situ measurements. Comparisons of simulations made by the on-line coupled meteorological-chemistry model WRF-CHEM with MODIS, AERONET and in-situ observations result in a general agreement for the spatio-temporal variations of aerosol extinction at both local and regional scales. Simulated SSA reached elevated values between 0.88 and 0.96 along the visible/near-infrared in close agreement with AERONET inversions, suggesting the predominance of dust over Western Africa during this specific period. This predominance of dust is confirmed by in-situ measurements of the aerosol size distribution, fitting well with the aerosols size distribution simulated by WRF-CHEM. The impact of this large dust load on the radiative fluxes leads to large modifications of the shortwave and longwave radiative budget both at the ground and at the top of the atmosphere. In return, the response of the atmosphere to these dust-induced radiative changes is the alteration of the surface air temperature and wind fields, with non-negligible impact on the dust emission and transport.

  6. Formation and properties of radiation-induced defects and radiolysis products in lithium orthosilicate

    Energy Technology Data Exchange (ETDEWEB)

    Tiliks, J.E.; Kizane, G.K.; Supe, A.A.; Abramenkovs, A.A.; Tiliks, J.J. (Latvian Univ., Riga (Latvia)); Vasiljev, V.G. (Acad. A.A. Bochvar Inst. of Inorganic Materials, Moscow (USSR))

    1991-12-01

    Formation and properties of radiation-induced defects and radiolysis products in polycrystalline powders and ceramic pellets of Li{sub 4}SiO{sub 4} were studied under the effect of various types of ionizing irradiation ({gamma} quants, accelerated electrons, reactor irradiation), humidity, temperature, impurities in the samples, etc. The content of radiation defects and radiolysis products poorly depends on irradiation type, dose rate, admixture elements. The concentration of defects highly depends on the temperature of irradiation, humidity, granural size. Empirical dependence of radiolysis degree {alpha} on the dose was found: {alpha}=5x10{sup -2}xD{sup 0.5} for {gamma} and electron irradiation (T{sub rad}=300-350 K) and {alpha}=5x10{sup -3}xD{sup 0.5} for reactor radiation (T{sub rad}=700-800 K); {alpha} - matrix dissociation degree (in %); D - dose (in MGy). Colloidal lithium and silicon, lithium and silicon oxides, and O{sub 2} are the final products of radiolysis. Radiation-induced defects change tritium thermo-extraction parameters, deteriorate mechanical, thermo-physical and electric properties of ceramics. (orig.).

  7. Influence of ionizing radiation on the catalytic properties of oxide catalysts tested by hydrogen peroxide decomposition

    International Nuclear Information System (INIS)

    Mucka, V.

    1987-01-01

    Results of a study of some physical and catalytic properties of different oxide catalysts as affected by ionizing radiation (γ, n, e - ) and tested by the decomposition of hydrogen peroxide in aqueous solution are presented in this paper. The oxidation state of the active component present on the catalyst surface was found to be one of the most sensitive properties to the ionizing radiation. Changes of this state induced by γ-irradiation were found to be positive in most cases; electron pre-irradiation of the oxides leads, as a rule, to negative effects and the effects of neutron irradiation may be positive or negative. On the other hand, changes in the catalytic activity of the oxides after γ-or electron-irradiation seem to be mostly negative and positive, respectively; the effects of fast neutrons seem to vary here. Neither quantitative or qualitative correlation was found between the radiation-induced changes in these two quantities. The results give evidence that ionizing radiation principally affects the surface concentration of the catalytic sites. Both the character and magnitude of the changes in surface oxidation abilities and in catalytic activities of the oxide catalysts seem to be dependent upon the actual state of the catalyst surface. (author)

  8. Synthesis and properties of radiation modified thermally cured castor oil based polyurethanes

    International Nuclear Information System (INIS)

    Mortley, Aba; Bonin, H.W.; Bui, V.T.

    2007-01-01

    Thermally cured polyurethanes were prepared from castor oil and hexamethylene diisocyanate (HMDI). Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were exposed to doses up to 3.0 MGy produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The physico-mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. A four-fold increase in modulus and tensile strength values from 0.930 to 4.365 MPa and 0.149 to 0.747 MPa, respectively, suggests improved physico-mechanical properties resulting from radiation. The changing areas of the carbonyl and the NH absorbance peaks and the disappearance of the isocyanate peak in the FTIR spectra as radiation progressed, indicates increased hydrogen bonding and intermolecular crosslinking, which is in agreement with the mechanical tests. Unchanging 13 C solid state NMR spectra imply limited sample degradation with increasing radiation

  9. Effect of polyfunctional monomers on properties of radiation crosslinked EPDM/waste tire dust blend

    International Nuclear Information System (INIS)

    Yasin, Tariq; Khan, Sajid; Nho, Young-Chang; Ahmad, Rashid

    2012-01-01

    In this study, waste tire dust is recycled as filler and blended with ethylene-propylene diene monomer (EPDM) rubber. Three different polyfuntional monomers (PFMs) are incorporated into the standard formulation and irradiated under electron beam at different doses up to maximum of 100 kGy. The combined effects of PFMs and absorbed dose on the physical properties of EPDM/WTD blend are measured and compared with sulfur crosslinked formulation. Thermogravimetric analysis showed that radiation developed better crosslinked network with higher thermal stability than sulfur crosslinked structure. The physical properties of radiation crosslinked blend are similar to the sulfur crosslinked blend. The absence of toxic chemicals/additives in radiation crosslinked blends made them an ideal candidate for many applications such as roof sealing sheets, water retention pond, playground mat, sealing profile for windows etc. - Highlights: ► We have recycled waste tire dust and blended it with EPDM. ► EB crosslinking is carried in the presence of polyfuntional monomers. ► Radiation gave better network with higher thermal stability than sulfur. ► The absence of toxic chemicals in EB blends will increase its acceptability.

  10. High energy radiation effects on mechanical properties of butyl rubber compounds

    International Nuclear Information System (INIS)

    Pozenato, Cristina A.; Scagliusi, Sandra R.; Cardoso, Elisabeth C.L.; Lugao, Ademar B.

    2013-01-01

    The high energy radiation on butyl rubber compounds causes a number of chemical reactions that occur after initial ionization and excitation events. These reactions lead to changes in molecular mass of the polymer through scission and crosslinking of the molecules, being able to affect the physical and mechanical properties. Butyl rubber has excellent mechanical properties and oxidation resistance as well as low gas and water vapor permeability. Due to all these properties butyl rubber is widely used industrially and particularly in tires manufacturing. In accordance with various authors, the major effect of high energy, such as gamma rays in butyl rubber, is the yielding of free-radicals along with changes in mechanical properties. There were evaluated effects imparted from high energy radiation on mechanical properties of butyl rubber compounds, non-irradiated and irradiated with 25 kGy, 50 kGy, 150 kGy and 200 kGy. It was also observed a sharp reducing in stress rupture and elongation at break for doses higher than 50 kGy, pointing toward changes in polymeric chain along build-up of free radicals and consequent degradation. (author)

  11. Waste Tire Particles and Gamma Radiation as Modifiers of the Mechanical Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Eduardo Sadot Herrera-Sosa

    2014-01-01

    Full Text Available In polymer reinforced concrete, the Young’s modulus of both polymers and cement matrix is responsible for the detrimental properties of the concrete, including compressive and tensile strength, as well as stiffness. A novel methodology for solving such problems is based on use of ionizing radiation, which has proven to be a good tool for improvement on physical and chemical properties of several materials including polymers, ceramics, and composites. In this work, particles of 0.85 mm and 2.80 mm obtained from waste tire were submitted at 250 kGy of gamma radiation in order to modify their physicochemical properties and then used as reinforcement in Portland cement concrete for improving mechanical properties. The results show diminution on mechanical properties in both kinds of concrete without (or with irradiated tire particles with respect to plain concrete. Nevertheless such diminutions (from 2 to 16% are compensated with the use of high concentration of waste tire particles (30%, which ensures that the concrete will not significantly increase the cost.

  12. Numerical investigation of radiative properties and surface plasmon resonance of silver nanorod dimers on a substrate

    International Nuclear Information System (INIS)

    An, Wei; Zhu, Tong; Zhu, QunZhi

    2014-01-01

    When the distance between two silver nanoparticles is small enough, interparticle surface plasmon coupling has a great impact on their radiative properties. It is becoming a promising technique to use in the sensing and imaging. A model based on finite difference time domain method is developed to investigate the effect of the assembled parameters on the radiative properties and the field-enhancement effect of silver nanorod dimer. The numerical results indicate that the radiative properties of silver nanorod dimer are very sensitive to the assembled angle and the polarization orientation of incident wave. There is great difference on the intensity and location of field-enhancement effect for the cases of different assembled angle and polarization. The most intensive field-enhancement effect occurs in the middle of two nanorods when two nanorods is assembled head to head and the polarization orientation parallels to the length axis of nanorods. Moreover, compared with the single nanorod, the wavelength of extinction peak of dimer has a red-shift, and the intensity of field-enhancement effect on the dimer is more intensive than that of single particle. With the increasing of particle length, extinction cross-section of silver nanorod dimer rises, while extinction efficiency and scattering efficiency firstly increase then drop down gradually. In addition, the extinction peaks of silver nanorod dimer on the substrate are smaller than that without the substrate, and their extinction peaks has a red-shift compared with that without the substrate. -- Highlights: ► Radiative properties of silver nanorod dimer are very sensitive to the assembled angle. ► The projective length of nanorod dimer on the polarization orientation is crucial. ► Compared with single nanorod, wavelength of extinction peak of dimer has a red-shift. ► Extinction peaks of dimer on the substrate are smaller than that without the substrate

  13. The influence of different black carbon and sulfate mixing methods on their optical and radiative properties

    Science.gov (United States)

    Zhang, Hua; Zhou, Chen; Wang, Zhili; Zhao, Shuyun; Li, Jiangnan

    2015-08-01

    Three different internal mixing methods (Core-Shell, Maxwell-Garnett, and Bruggeman) and one external mixing method are used to study the impact of mixing methods of black carbon (BC) with sulfate aerosol on their optical properties, radiative flux, and heating rate. The optical properties of a mixture of BC and sulfate aerosol particles are considered for three typical bands. The results show that mixing methods, the volume ratio of BC to sulfate, and relative humidity have a strong influence on the optical properties of mixed aerosols. Compared to internal mixing, external mixing underestimates the particle mass absorption coefficient by 20-70% and the particle mass scattering coefficient by up to 50%, whereas it overestimates the particle single scattering albedo by 20-50% in most cases. However, the asymmetry parameter is strongly sensitive to the equivalent particle radius, but is only weakly sensitive to the different mixing methods. Of the internal methods, there is less than 2% difference in all optical properties between the Maxwell-Garnett and Bruggeman methods in all bands; however, the differences between the Core-Shell and Maxwell-Garnett/Bruggeman methods are usually larger than 15% in the ultraviolet and visible bands. A sensitivity test is conducted with the Beijing Climate Center Radiation transfer model (BCC-RAD) using a simulated BC concentration that is typical of east-central China and a sulfate volume ratio of 75%. The results show that the internal mixing methods could reduce the radiative flux more effectively because they produce a higher absorption. The annual mean instantaneous radiative force due to BC-sulfate aerosol is about -3.18 W/m2 for the external method and -6.91 W/m2 for the internal methods at the surface, and -3.03/-1.56/-1.85 W/m2 for the external/Core-Shell/(Maxwell-Garnett/Bruggeman) methods, respectively, at the tropopause.

  14. Modeling Optical and Radiative Properties of Clouds Constrained with CARDEX Observations

    Science.gov (United States)

    Mishra, S. K.; Praveen, P. S.; Ramanathan, V.

    2013-12-01

    Carbonaceous aerosols (CA) have important effects on climate by directly absorbing solar radiation and indirectly changing cloud properties. These particles tend to be a complex mixture of graphitic carbon and organic compounds. The graphitic component, called as elemental carbon (EC), is characterized by significant absorption of solar radiation. Recent studies showed that organic carbon (OC) aerosols absorb strongly near UV region, and this faction is known as Brown Carbon (BrC). The indirect effect of CA can occur in two ways, first by changing the thermal structure of the atmosphere which further affects dynamical processes governing cloud life cycle; secondly, by acting as cloud condensation nuclei (CCN) that can change cloud radiative properties. In this work, cloud optical properties have been numerically estimated by accounting for CAEDEX (Cloud Aerosol Radiative Forcing Dynamics Experiment) observed cloud parameters and the physico-chemical and optical properties of aerosols. The aerosol inclusions in the cloud drop have been considered as core shell structure with core as EC and shell comprising of ammonium sulfate, ammonium nitrate, sea salt and organic carbon (organic acids, OA and brown carbon, BrC). The EC/OC ratio of the inclusion particles have been constrained based on observations. Moderate and heavy pollution events have been decided based on the aerosol number and BC concentration. Cloud drop's co-albedo at 550nm was found nearly identical for pure EC sphere inclusions and core-shell inclusions with all non-absorbing organics in the shell. However, co-albedo was found to increase for the drop having all BrC in the shell. The co-albedo of a cloud drop was found to be the maximum for all aerosol present as interstitial compare to 50% and 0% inclusions existing as interstitial aerosols. The co-albedo was found to be ~ 9.87e-4 for the drop with 100% inclusions existing as interstitial aerosols externally mixed with micron size mineral dust with 2

  15. The influence of different black carbon and sulfate mixing methods on their optical and radiative properties

    International Nuclear Information System (INIS)

    Zhang, Hua; Zhou, Chen; Wang, Zhili; Zhao, Shuyun; Li, Jiangnan

    2015-01-01

    Three different internal mixing methods (Core–Shell, Maxwell-Garnett, and Bruggeman) and one external mixing method are used to study the impact of mixing methods of black carbon (BC) with sulfate aerosol on their optical properties, radiative flux, and heating rate. The optical properties of a mixture of BC and sulfate aerosol particles are considered for three typical bands. The results show that mixing methods, the volume ratio of BC to sulfate, and relative humidity have a strong influence on the optical properties of mixed aerosols. Compared to internal mixing, external mixing underestimates the particle mass absorption coefficient by 20–70% and the particle mass scattering coefficient by up to 50%, whereas it overestimates the particle single scattering albedo by 20–50% in most cases. However, the asymmetry parameter is strongly sensitive to the equivalent particle radius, but is only weakly sensitive to the different mixing methods. Of the internal methods, there is less than 2% difference in all optical properties between the Maxwell-Garnett and Bruggeman methods in all bands; however, the differences between the Core–Shell and Maxwell-Garnett/Bruggeman methods are usually larger than 15% in the ultraviolet and visible bands. A sensitivity test is conducted with the Beijing Climate Center Radiation transfer model (BCC-RAD) using a simulated BC concentration that is typical of east-central China and a sulfate volume ratio of 75%. The results show that the internal mixing methods could reduce the radiative flux more effectively because they produce a higher absorption. The annual mean instantaneous radiative force due to BC–sulfate aerosol is about –3.18 W/m 2 for the external method and –6.91 W/m 2 for the internal methods at the surface, and –3.03/–1.56/–1.85 W/m 2 for the external/Core–Shell/(Maxwell-Garnett/Bruggeman) methods, respectively, at the tropopause. - Highlights: • The aerosol optical properties with different mixing

  16. Thermophysical Properties of Matter - The TPRC Data Series. Volume 8. Thermal Radiative Properties - Nonmetallic Solids

    Science.gov (United States)

    1972-01-01

    Iron oxldes- kaolin -aagneslum oxides- manganese oxldes-marble-nlckel oxldes-obsldlan-opal-opal glass-plexlglas- mylar—polyethylene-pyrocerams—quarts...34Dielectric Dispersion of Some Perovskite Zirconates," Phys. Rev. , A138(5), 1537-8, 1965. Loferski, J. J., "Infra-Red Optical Properties of Single...1), 131-40, 1967. Perry, C. H., "Far-Infrared Reflectance Spectra and Dielectric Dispersion of a Variety of Materials Having the Perovskite and

  17. Gamma radiations induced micro-structural modifications and track registration properties in cellulose triacetate polymer

    International Nuclear Information System (INIS)

    Prasher, Sangeeta; Mukesh Kumar; Singh, Surinder

    2015-01-01

    The influences of gamma radiations from a 60 Co source on the physical and the chemical properties of cellulose triacetate polymer have been analyzed and reported. The analytical techniques such as FTIR and UV-VIS spectroscopy have been employed to study the chemical properties of the polymer before and after irradiation. The band gap and urbech's energies have been calculated from the UV-VIS spectral data and those were found to remain constant up to a gamma dose of 10 kGy and decrease thereafter. FTIR studies reveal the fact that there is a generation of CO 2 and -OH groups at higher doses, which is further confirmed from the decarboxylation mechanism in esters. Aliphatic C-H stretching intensity has also been found to increase with gamma dose. G-value for some groups and bond stretches, has also been reported evidencing the percentage degradation of the polymer by gamma radiations. The changes in track registration properties of the polymer alongwith the activation energies for bulk and track etch rates have been reported. The etch rates have been observed to increase, which can accounts for the presence of oxygen. It is found that cellulose triacetate is a highly radiation resistant polymer as it is influenced to a very little extent up to the dose of 10 kGy. The changes are pronounced at higher gamma doses of 500 and 10 3 kGy. (author)

  18. Effects of agrochemicals, ultra violet stabilisers and solar radiation on the radiometric properties of greenhouse films

    Directory of Open Access Journals (Sweden)

    Giuliano Vox

    2013-10-01

    Full Text Available Agrochemicals, based on iron, sulphur and chlorine, generate by products that lead to a degradation of greenhouse films together with a decrease in their mechanical and physical properties. The degradation due to agrochemicals depends on their active principles, method and frequency of application, and greenhouse ventilation. The aim of the research was to evaluate how agrochemical contamination and solar radiation influence the radiometric properties of ethylene-vinyl acetate copolymer greenhouse films by means of laboratory and field tests. The films, manufactured on purpose with the addition of different light stabiliser systems, were exposed to natural outdoor weathering at the experimental farm of the University of Bari (Italy; 41° 05’ N in the period from 2006 to 2008. Each film was tested for two low tunnels: one low tunnel was sprayed from inside with the agrochemicals containing iron, chlorine and sulphur while the other one was not sprayed and served as control. Radiometric laboratory tests were carried out on the new films and on samples taken at the end of the trials. The experimental tests showed that both the natural weathering together with the agrochemicals did not modify significantly the radiometric properties of the films in the solar and in the photosynthetically active radiation wavelength range. Within six months of experimental field tests the variations in these radiometric characteristics were at most 10%. Significant variations, up to 70% of the initial value, were recorded for the stabilised films in the long-wave infrared radiation wavelength range.

  19. Post radiation grafting of vinyl acetate onto low density polyethylene films: preparation and properties of membrane

    International Nuclear Information System (INIS)

    Dessouki, A.M.

    1987-01-01

    Reverse osmosis membranes were prepared by the post radiation grafting of vinyl acetate onto low density polyethylene films. The factors affecting the grafting process such as radiation dose, monomer concentration and temperature on the grafting yield were studied. It was found that the dependence of the grafting rate on radiation intensity and monomer concentration was found to be of 0.64 and 1.4 order, respectively. The activation energy for this grafting system was calculated and found to be 4.45 kcal/mol above 30 0 C. Some properties of the grafted films such as specific electric resistance, water uptake, mechanical properties and thermal and chemical stability were investigated. An improvement in these properties was observed which makes possible the use of these membranes in some practical applications. The use of such membranes for reverse osmosis desalination of saline water was tested. The effect of operating time, degree of grafting and applied pressure on the water flux and salt rejection were determined. The results showed salt rejection percent over 90% and a reasonable water flux. A suitable degree of grafting of the membrane was determined as well as the optimum applied pressure. (author)

  20. Starch Digestibility and Functional Properties of Rice Starch Subjected to Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Luís Fernando Polesi

    2018-01-01

    Full Text Available This study investigated the effect of gamma radiation on the digestibility and functional properties of rice starch. Rice cultivars IRGA417 and IAC202 were used for isolation of starch by the alkaline method. Starch samples were irradiated with 1, 2 and 5 kGy doses of 60Co at a rate of 0.4 kGy/h. A control sample, which was not irradiated, was used for comparison. Irradiated and control starches were characterized by in vitro starch digestibility, total dietary fiber, color, water absorption index, water solubility index, syneresis, swelling factor, amylose leaching, pasting properties and gel firmness. Irradiations changed starch digestibility differently in either cultivar. Increasing radiation doses promoted increase in the color parameter b* (yellow, elevation in the capacity to absorb water, and solubility in water as well as the amylose leached from granules for both cultivars. Pasting properties showed a decrease that was proportional to the dose applied, caused by the depolymerization of starch molecules. Gel firmness of the starch from IAC202 was inversely proportional to the radiation dose applied, whereas for IRGA417, there was a reduction at 5 kGy dose. Rice starches can be modified by irradiation to exhibit different functional characteristics and they can be used by the food industries in products such as soups, desserts, flans, puddings and others.

  1. Synthesis of PVA/PVP hydrogels having two layers by radiation and their physical properties

    International Nuclear Information System (INIS)

    Nho, Y.C.; Park, K.R.

    2002-01-01

    Complete text of publication follows. The radiation can induce chemical reaction to modify polymer under even the solid state or in the low temperature. The radiation crosslinking can be easily adjusted by controlling the radiation dose and is reproducible. The finished product contains no residuals of substances required to initiate the chemical crosslinking that can restrict the application possibilities. In these studies, two layer's hydrogel which consisted of urethane membrane and a mixture of polyvinyl alcohol/poly-N-vinylpyrrolidone /glycerin/chitosan was made by gamma-ray irradiation or two steps of 'freezing and thawing' and gamma-ray irradiation for wound dressing. The physical properties such as gelation, water absorptivity, and gel strength were examined to evaluate the hydrogels for wound dressing. Urethane was dissolved in solvent, the urethane solution was poured on the mould, and then dried to make the thin membrane. Hydrophilic polymer solutions were poured on the urethane membranes, they were exposed to gamma irradiation or 'freezing and thawing' and gamma irradiation doses of 25, 35, 50 and 60 kGy to evaluate the physical properties of hydrogels. The physical properties of hydrogels such as gelation and gel strength were improved, and the evaporation speed of water in hydrogel was low when urethane membrane was used

  2. Effect of the gamma radiation on the chemical, rheological, baker and microbiological properties in wheat flour

    International Nuclear Information System (INIS)

    Agundez A, Z.; Fernandez R, M.V.; Arce C, M.E.; Cruz Z, E.; Chernov, V.; Barboza F, M.

    2002-01-01

    The gamma radiation has been used in several places of the World as a sterilization method, preservation and pasteurization of foodstuffs, effect which is achieved due to diminishing or elimination of the microorganisms, reaching every time more acceptance, moreover eliminates the uses of toxic and carcinogenic substances, of general use, but at the present, being in the process of being totally prohibited, due to the higher risk in the human health. In this work the related results with the effects of the gamma radiation are presented, coming from a 60 Co source, in commercial wheat flour exposed to a dose of 1.0 KGy. The used dose is that allowed according to the NOM-033-SSA1-1993 standard. It was determined that the chemical characteristics of humidity, protein and ashes were not affected by radiation. The rheological properties neither suffer severe effects as consequence of radiation; the pharynographic and alveographic parameters were lightly affected by the treatment. Significant changes were detected in the percentage of water absorption and in the tolerance index to mixing. However a diminish of 10% in the development time and an increase of 13% in the stability was observed, for the irradiated samples respect to the those samples not irradiated. In relation to the alveograph parameters it was only detected a diminish of 7% in the force parameter (w) without changes in the tenacity/blowing up index ratio (P/L). The fall number diminish 11% indicating a small diminution in viscosity. The bakering properties do not turn out modified by the irradiation treatment finding a specific weight of 4.6 and 4.5 (cm 3 /g) for the control and irradiated samples, respectively. In the mesophyll analysis it was found a diminish of 96% from the original charge in control samples, observing a diminution of 74 and 25% in yeasts and mushrooms respectively. Microbiologically it was determined absence of total coliforms bacteria and faecal coliforms in the control samples and of

  3. Growth, bioconversion of isoflavones and probiotic properties of parent and subsequent passages of Lactobacillus upon ultraviolet radiation.

    Science.gov (United States)

    Yeo, Siok-Koon; Liong, Min-Tze

    2012-11-01

    The objective of this study was to evaluate the effects of ultraviolet (UV) radiation (UVB; 90 J/m²) on growth, bioconversion of isoflavones and probiotic properties of parent and subsequent passages of L. casei FTDC 2113. UV radiation significantly enhanced (P radiation also promoted (P radiation were only prevalent in the parent cells without inheritance by first, second and third passage of cells. Although temporary, our results suggested that UV radiation could enhance the bioactive and probiotic potentials of L. casei FTDC 2113, and thus could be applied for the production of probiotic products with enhanced bioactivity.

  4. Effect of Ex Vivo Ionizing Radiation on Static and Fatigue Properties of Mouse Vertebral Bodies

    Science.gov (United States)

    Emerzian, Shannon R.; Pendleton, Megan M.; Li, Alfred; Liu, Jennifer W.; Alwood, Joshua S.; O’Connell, Grace D.; Keaveny, Tony M.

    2018-01-01

    For a variety of medical and scientific reasons, human bones can be exposed to a wide range of ionizing radiation levels. In vivo radiation therapy (0.05 kGy) is used in cancer treatment, and ex vivo irradiation (25-35 kGy) is used to sterilize bone allografts. Ionizing radiation in these applications has been shown to increase risk of fracture, decrease bone quality and degrade collagen integrity. Past studies have investigated the deleterious effects of radiation on cortical or trabecular bone specimens individually, but to date no studies have examined whole bones containing both cortical and trabecular tissue. Furthermore, a clear relationship between the dose and the mechanical and biochemical response of bone's extracellular matrix has yet to be established for doses ranging from cancer therapy to allograft sterilization (0.05-35 kGy). To gain insight into these issues, we conducted an ex vivo radiation study to investigate non-cellular (i.e. matrix) effects of ionizing radiation dose on vertebral whole bone mechanical properties, over a range of radiation doses (0.05-35 kGy), with a focus on any radiation-induced changes in collagen. With underlying mechanisms of action in mind, we hypothesized that any induced reductions in mechanical properties would be associated with changes in collagen integrity. METHODS: 20-week old female mice were euthanized and the lumbar spine was dissected using IACUC approved protocols. The lumbar vertebrae (L1- S1) were extracted from the spine via cuts through adjacent intervertebral discs, and the endplates, posterior processes, surrounding musculature, and soft tissues were removed (approx. 1.5mm diameter, approx. 2mm height). Specimens were randomly assigned to one of five groups for ex vivo radiation exposure: x-ray irradiation at 0.05, 1, 17, or 35 kGy, or a 0 kGy control. Following irradiation, the vertebrae were imaged using microcomputed tomography (micro-CT) and then subjected to either monotonic compressive loading to

  5. Electrical properties study under radiation of the 3D-open-shell-electrode detector

    Directory of Open Access Journals (Sweden)

    Manwen Liu

    2018-05-01

    Full Text Available Since the 3D-Open-Shell-Electrode Detector (3DOSED is proposed and the structure is optimized, it is important to study 3DOSED’s electrical properties to determine the detector’s working performance, especially in the heavy radiation environments, like the Large Hadron Collider (LHC and it’s upgrade, the High Luminosity (HL-LHC at CERN. In this work, full 3D technology computer-aided design (TCAD simulations have been done on this novel silicon detector structure. Simulated detector properties include the electric field distribution, the electric potential distribution, current-voltage (I-V characteristics, capacitance-voltage (C-V characteristics, charge collection property, and full depletion voltage. Through the analysis of calculations and simulation results, we find that the 3DOSED’s electric field and potential distributions are very uniform, even in the tiny region near the shell openings with little perturbations. The novel detector fits the designing purpose of collecting charges generated by particle/light in a good fashion with a well defined funnel shape of electric potential distribution that makes these charges drifting towards the center collection electrode. Furthermore, by analyzing the I-V, C-V, charge collection property and full depletion voltage, we can expect that the novel detector will perform well, even in the heavy radiation environments.

  6. Study of the ionizing radiation effect on the polyamide 6,6 mechanical properties

    International Nuclear Information System (INIS)

    Colombo, Maria Aparecida da Silva

    2004-01-01

    Polyamide 6,6 due to its excellent mechanical, thermal and electrical properties and its great performance in multiple industrial applications is considered one of the most important engineering polymers. However, in specific applications, some of its properties need to be improved by means additives or fillers to reach the required properties increasing its final cost. By these considerations, the aim of this work was to apply the ionizing radiation to improve the natural mechanical properties of polyamide 6,6. Also, to evaluate the irradiation parameters, and the mechanical performance of the irradiated polymer in order to use the cross-linking, induced by ionizing radiation, as substitute of additives and fillers. Row polyamide 6,6 samples, for mechanical tests, were prepared by injection molded and then irradiated with high energetic electrons to reach doses of 70, 100, 150, and 200 kGy. The mechanical performance, of non-irradiated and irradiated samples, was evaluated by tensile strength, impact, hardness and wear measurements. Furthermore, hardness and wear tests were carried out with samples, which were immersed in petroleum and sea water for 6 months. The experimental results have shown that, in the studied dose range, the tensile strength increases 25%, the hardness Shore D 15%, the impact values diminished by 80% and the wear values decreased 20 times between 0 and 200 kGy. The effect of the petroleum and sea water were shown mainly in the nonirradiated samples. (author)

  7. Physical properties and thermoluminescence of glasses designed for radiation dosimetry measurements

    International Nuclear Information System (INIS)

    Laopaiboon, R.; Bootjomchai, C.

    2015-01-01

    Highlights: • TL stability of soda-lime glass was corrected by dopants. • D LDL values indicated that the glass samples have good radiation sensitivity. • Bond compression model theory was used to confirm the results from experimental. • High elastic moduli of glass samples indicated that high stability of structure. - Abstract: Soda lime glasses doped with CeO 2 , Nd 2 O 3 and MnO 2 were prepared. Thermoluminescence (TL) properties, such as glow curves and linearity of TL response on irradiation dose were investigated. Results showed that the TL properties depended on the type and concentration of the dopants. Samples were selected to calculate energy trap depth parameters. To design materials for radiation dosimetry, physical properties, ion concentration, elastic properties and effective atomic numbers are important. Theoretical bond compression models were used to determine the elastic moduli for comparison with experimental values. Results show fair agreement between theoretical and experimental measurements. The high elastic moduli of the glass samples indicated high rigidity and stability of the glass matrix structure

  8. Comparison of the properties polyamide 6.6 surfaces treated by plasma and by ionizing radiation

    International Nuclear Information System (INIS)

    Irineu, Rosa Maria da Silva

    2010-01-01

    This study aims to compare the surface properties of polyamide 6.6 plasma treatment and ionizing radiation, as well as determine the best technique and condition of the surface activation, adhesion of the same order and polyacrylic rubber used in manufacturing of automotive retainers. Treatment of polyamide 6.6 plasma was performed using an equipment 'Electronic Diener - Plasma - Surface-Technology LFG40' with nitrogen gas at a pressure of 1.40 kg/cm 2 . Samples of polyamide 6.6 were also treated with ionizing radiation, atmospheric pressure and in vacuum, using an industrial electron accelerator, Dynamitron JOB 188 with radiation dose of 5, 10, 20, 40, 50, 100, 200, 300, 400 and 500kGy with a dose rate of 11.22 kGy/s for all doses and rate of 11.22 kGy/s and 22.38 kGy/s for a dose of 20kGy. After the processes of surface modification of polyamide 6.6, part of the untreated samples, treated by plasma and by ionizing radiation were incorporated into the polyacrylic rubber, and another part was designed to characterize the surface using the techniques of SEM / EDS, FT- IR, PIXE / RBS, AFM and contact angle. Untreated samples and the irradiated samples did not join the polyacrylic rubber. The samples treated by plasma joined the polyacrylic rubber efficiently and showed differences in roughness in SEM and AFM, and an increase in contact angle when compared with untreated samples. The irradiated samples showed no significant differences in the analysis of properties used in this study when compared with untreated samples. Ionizing radiation was not effective in surface modification of polyamide 6.6 for adherence with polyacrylic rubber. (author)

  9. Neutrino and dark radiation properties in light of recent CMB observations

    Science.gov (United States)

    Archidiacono, Maria; Giusarma, Elena; Melchiorri, Alessandro; Mena, Olga

    2013-05-01

    Recent cosmic microwave background measurements at high multipoles from the South Pole Telescope and from the Atacama Cosmology Telescope seem to disagree in their conclusions for the neutrino and dark radiation properties. In this paper we set new bounds on the dark radiation and neutrino properties in different cosmological scenarios combining the ACT and SPT data with the nine-year data release of the Wilkinson Microwave Anisotropy Probe (WMAP-9), baryon acoustic oscillation data, Hubble Telescope measurements of the Hubble constant, and supernovae Ia luminosity distance data. In the standard three massive neutrino case, the two high multipole probes give similar results if baryon acoustic oscillation data are removed from the analyses and Hubble Telescope measurements are also exploited. A similar result is obtained within a standard cosmology with Neff massless neutrinos, although in this case the agreement between these two measurements is also improved when considering simultaneously baryon acoustic oscillation data and Hubble Space Telescope measurements. In the Neff massive neutrino case the two high multipole probes give very different results regardless of the external data sets used in the combined analyses. When considering extended cosmological scenarios with a dark energy equation of state or with a running of the scalar spectral index, the evidence for neutrino masses found for the South Pole Telescope in the three neutrino scenario disappears for all the data combinations explored here. Again, adding Hubble Telescope data seems to improve the agreement between the two high multipole cosmic microwave background measurements considered here. In the case in which a dark radiation background with unknown clustering properties is also considered, SPT data seem to exclude the standard value for the dark radiation viscosity cvis2=1/3 at the 2σ C.L., finding evidence for massive neutrinos only when combining SPT data with baryon acoustic oscillation

  10. Effect of electromagnetic radiation on the physico-chemical properties of minerals

    International Nuclear Information System (INIS)

    Lopez M, A.; Delgadillo G, J. A.; Vega C, H. R.

    2014-08-01

    The electromagnetic radiation effect represented by gamma rays was investigated through; chemical analysis, X-ray diffraction (XRD), scanning electron microscopy (Sem) and magnetization when applied at a dose of 0.5704 Gy (0.5704 J/ kg) at a feed relation of 18.40 ± 1.13 mGy/ h., in different minerals; in order to characterize the impact of the same from 137 Cs in the physicochemical properties of these minerals. All the irradiated samples showed chemical stability at this stage undetectable other both in the XRD study and in the images analysis obtained by Sem; and at present almost the same chemical composition as the non-irradiated samples. So the same patterns of X-ray diffraction thereof, show a tendency to slightly lower the intensity of the most representative peaks of each mineral phase, which may be due to a decrease in crystallinity or preferential crystallographic orientation in crystals. In the micrographs analysis obtained by Sem on the irradiated samples, some holes (open pores) present in the particles were observed, mainly chalcopyrite and sphalerite lesser extent, seen this fact may be due to Compton Effect, in the radiation process. In relation to the magnetization property, a variation is obtained in the saturation magnetization (Ms) for the irradiated samples containing iron and more significantly in the chalcopyrite case. Therefore, with the radiation level used; slight changes occurring in the physical properties of minerals, whereas they remained stable chemically. These small changes may represent a signal that electromagnetic radiation applied at higher doses, is a viable option for improving the mineral processing. (author)

  11. Monthly and seasonal variations of aerosol optical properties and direct radiative forcing over Zanjan, Iran

    Science.gov (United States)

    Gharibzadeh, Maryam; Alam, Khan; Abedini, Yousefali; Bidokhti, Abbasali Aliakbari; Masoumi, Amir

    2017-11-01

    Aerosol optical properties and radiative forcing over Zanjan in northwest of Iran has been analyzed during 2010-2013. The aerosol optical and radiative properties are less studied over Zanjan, and therefore, require a careful and in depth analysis. The optical properties like Aerosol Optical Depth (AOD), Ångström Exponent (AE), ASYmmetry parameter (ASY), Single Scattering Albedo (SSA), and Aerosol Volume Size Distribution (AVSD) have been evaluated using the ground-based AErosol RObotic NETwork (AERONET) data. Higher AOD while relatively lower AE were observed in the spring and summer, which showed the presence of coarse mode particles in these seasons. An obvious increase of coarse mode particles in AVSD distribution, as well as a higher value of SSA represented considerable addition of coarse mode particles like dust into the atmosphere of Zanjan in these two seasons. Increase in AE, while a decrease in AOD was detected in the winter and fall. The presence of fine particles indicates the dominance of particles like urban-industrial aerosols from local sources especially in the winter. The Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model was utilized to calculate the Aerosol Radiative Forcing (ARF) at the Top of the Atmosphere (TOA), earth's surface and within the atmosphere. The annual averaged ARF values were -13.47 W m-2 and -36.1 W m-2 at the TOA and earth's surface, respectively, which indicate a significant cooling effect. Likewise, the ARF efficiencies at the TOA and earth's surface were -65.08 W m-2 and -158.43 W m-2, respectively. The annual mean atmospheric ARF and heating rate within the atmosphere were 22.63 W m-2 and 0.27 Kday-1 respectively, represented the warming effect within the atmosphere. Finally, a good agreement was found between AERONET retrieved ARF and SBDART simulated ARF.

  12. Comparative study of silicate glasses containing Bi2O3, PbO and BaO: Radiation shielding and optical properties

    International Nuclear Information System (INIS)

    Kirdsiri, K.; Kaewkhao, J.; Chanthima, N.; Limsuwan, P.

    2011-01-01

    Research highlights: → We change Bi 2 O 3 , PbO and BaO concentration in silicate glasses. → The densities of Bi 2 O 3 glasses more than PbO glasses and BaO glasses. → The Um of Bi 2 O 3 glasses and PbO glasses are comparable and more than BaO glasses. → This suggests that Bi 2 O 3 can replace PbO in radiation shielding glasses. - Abstract: The radiation shielding and optical properties of xBi 2 O 3 :(100-x)SiO 2 , xPbO:(100-x)SiO 2 and xBaO:(100-x)SiO 2 glass systems (where 30 ≤ x ≤ 70 is the composition by weight%) have been investigated. Total mass attenuation coefficients (μ m ) of glasses at 662 keV were improved by increasing their Bi 2 O 3 and PbO content, which raised the photoelectric absorption in glass matrices. Raising the BaO content to the same fraction range, however, brought no significant change to μ m . These results indicate that photon is strongly attenuated in Bi 2 O 3 and PbO containing glasses, and but not in BaO containing glass. The results from the optical absorption spectra show an edge that was not sharply defined; clearly indicating the amorphous nature of glass samples. It is observed that the cutoff wavelength for Bi 2 O 3 containing glass was longer than PbO and BaO containing glasses.

  13. Gamma-ray attenuation studies of PbO-BaO-B2O3 glass system

    International Nuclear Information System (INIS)

    Singh, Narveer; Singh, Kanwar Jit; Singh, Kulwant; Singh, Harvinder

    2006-01-01

    PbO-BaO-B 2 O 3 glass system has been investigated in terms of molar mass, mass attenuation coefficient and half value layer parameters by using gamma-ray at 511,662 and 1274keV photon energies. Gamma-ray attenuation coefficients of the prepared glass samples have been compared with tabulations based upon the results of XCOM. Good agreement has been observed between experimental and theoretical tabulations. Our results have uncertainty less than 3%. Radiation shielding properties of the glass system have been compared with some standard radiation shielding concretes

  14. Experimental design of mixture applied to study PVP hydrogels properties crosslinked by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Alcantara, Mara Tania S.; Lugao, Ademar B., E-mail: maratalcantara@uol.com.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Taqueda, Maria Elena S. [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Quimica

    2009-07-01

    Hydrogels are three dimensional hydrophilic crosslinked polymeric networks that have capacity to swell by absorbing water or biological fluids without dissolve. Hydrogels have been widely used in different application fields from agriculture, industry and in biomedicine. The properties of a hydrogel are extremely important in selecting which materials are suitable for a specific application. So mixtures can offer hydrogels with different properties to different applications. The PVP hydrogels were prepared by gamma radiation of an aqueous polymer solution and crosslinked by gamma ray, an effective and simple method for hydrogel formation that offers some advantages over the other techniques. In this work, a mixture experimental design was used to study the relationship between polymer cross-linking and swelling properties of PVP hydrogels with PEG as plasticizer and agar as gellifier. The gel fraction was measured for every mixture specified for the experiment D-optimal designs. (author)

  15. Experimental design of mixture applied to study PVP hydrogels properties crosslinked by ionizing radiation

    International Nuclear Information System (INIS)

    Alcantara, Mara Tania S.; Lugao, Ademar B.; Taqueda, Maria Elena S.

    2009-01-01

    Hydrogels are three dimensional hydrophilic crosslinked polymeric networks that have capacity to swell by absorbing water or biological fluids without dissolve. Hydrogels have been widely used in different application fields from agriculture, industry and in biomedicine. The properties of a hydrogel are extremely important in selecting which materials are suitable for a specific application. So mixtures can offer hydrogels with different properties to different applications. The PVP hydrogels were prepared by gamma radiation of an aqueous polymer solution and crosslinked by gamma ray, an effective and simple method for hydrogel formation that offers some advantages over the other techniques. In this work, a mixture experimental design was used to study the relationship between polymer cross-linking and swelling properties of PVP hydrogels with PEG as plasticizer and agar as gellifier. The gel fraction was measured for every mixture specified for the experiment D-optimal designs. (author)

  16. Influence of γ-ray radiation on the electrical properties of CuGaSe2

    International Nuclear Information System (INIS)

    Gasimov, I.K.; Kerimova, T.G.; Mamedova, I.A.

    2002-01-01

    The ternary A 1 B 3 C 3 6 compounds are perspective materials for creation on their base the high effective transformers of solar energy, photodetectors with the high efficiency. In this paper the results of the investigation of the short-circuit current dependence on the wavelength and influence of the γ-ray radiation on the electrical properties of the p-type CuGaSe 2 crystals have been reported. The (Co 60 ) with the quantum energy of 1.25 MeV was used as a g amma - ray source. The CnGaSe 2 crystals were obtained by the chemical transport reactions. Iodine crystalline was used as a transporter. The lattice parameters were determined by the X-ray method as a=5.607 Angstroms, c=10.99 Angstroms, c/a=l.96. The In-Ga eutectic contacts were put on the nature surfaces of the films for the earring out the measurements. The films with the ρ=10 2 -10 7 Ω·cm resistivity were investigated. The films one can divide into two group: low resistance ρ=10 2 -10 3 Ω·cm and high resistance ρ=10 5 -10 7 Ω·cm films. The inverse of the current is observed in the I ns ∼f(λ) short-circuit current dependence with the wavelength in the low resistance films. The inverse is not observed in the high resistance ones. The measurement of the resistivity of the CuGaSe 2 films radiated by γ-ray radiation were carried out at 77 K. The resistivity of the low-resistance films under the radiation up to 50 p/s changes slowly, then increases sharply and achieves the value ρ=10 6 Ω·cm. Beginning from 300 p/s the resistivity decreases. Further increasing of the power doesn't influence on the resistivity. The resistivity of the high resistance films decreases up to 10 6 Ω·cm at 100 p/s with the increasing of the dose of γ-ray radiation and then doesn't change with the radiation dose. The investigation of the temperature dependence of the resistivity in the low resistance films previously radiated under the γ-ray radiation showed that increasing of the γ-ray radiation doesn't almost

  17. The importance of secondary radiation at radiation protection clothing; Die Bedeutung der Sekundaerstrahlung bei Strahlenschutzkleidung

    Energy Technology Data Exchange (ETDEWEB)

    Eder, Heinrich

    2017-07-01

    For a long time, the protective material lead was seen as ''gold standard'' for the shielding of photon radiation (X-ray and γ-rays). At long sight, however, lead should be eliminated from medical products. When irradiated, substitutes of lead can produce much more secondary radiation. Moreover, the radiobiological impact of the low energetic secondary radiation has to be rated higher than that of primary radiation. With the introduction of the new measuring standard IEC 6133-1 secondary radiation now is considered when evaluating attenuation properties of protective clothing.

  18. Multiple-energy tissue-cancellation applications of a digital beam attenuator to chest radiography

    International Nuclear Information System (INIS)

    Dobbins, J.T. III.

    1985-01-01

    The digitally-formed primary beam attenuator (DBA) spatially modulates the x-ray fluence incident upon the patient to selectively attenuate regions of interest. The DBA attenuating mask is constructed from CeO 2 powder by a modified printing technique and uses image information from an initial low-dose exposure. Two tissue-cancellation imaging techniques are investigated with the DBA: (1) energy-dependent information is used to form a beam attenuator that attenuates specific tissues in the primary x-ray beam for tissue-cancelled film radiography; (2) the beam attenuator is used to improve image signal-to-noise and scattered radiation properties in traditional energy-subtraction tissue-cancellation imaging with digital detectors. The tissue-cancellation techniques in the primary x-ray beam were capable of adequately removing either soft-tissue or bone from the final compensated film radiograph when using a phantom with well defined soft-tissue and bone sections. However, when tried on an anthropomorphic chest phantom the results were adequate for cancellation of large soft tissue structures, but unsatisfactory for cancellation of bony structures such as the ribs, because of the limited spatial frequency content of the attenuating mask. The second technique (with digital detectors) showed improved uniformity of image signal-to-noise and a two-fold increase in soft-tissue nodule contrast due to improved scattered radiation properties. The tissue-cancelled images contained residual image contributions from the presence of the attenuating mask, but this residual may be correctable by future algorithms

  19. Characterization of barite and crystal glass as attenuators in X-ray and gamma radiation shieldings; Caracterizacao da barita e do vidro cristal como atenuadores na blindagem das radiacoes X e gama

    Energy Technology Data Exchange (ETDEWEB)

    Almeida Junior, Airton Tavares de

    2005-03-15

    Aiming to determine the barium sulphate (BaSO{sub 4}) ore and crystal glass attenuation features, both utilized as shieldings against ionizing X and gamma radiations in radiographic installations, a study of attenuation using barite plaster and barite concrete was carried out, which are used, respectively, on wall coverings and in block buildings. The crystal glass is utilized in screens and in windows. To do so, ten plates of barite plaster and three of barite concrete with 900 cm{sup 2} and with an average thickness ranging from 1 to 5 cm, and three plates of crystal glass with 323 cm{sup 2} and with thicknesses of 1, 2 and 4 cm were analyzed. The samples were irradiated with X-rays with potentials of 60, 80, 110 and 150 kilovolts, and also with {sup 60}Co gamma rays. Curves of attenuation were obtained for barite plaster and barite concrete (mGy/mA.min) and (mGy/h), both at 1 meter, as a function of thickness and curve of transmission through barite plaster and barite concrete as a function of the thickness. The equivalent thicknesses of half and tenth value layers for barite plaster, barite concrete and crystal glass for all X-Ray energies were also determined. (author)

  20. NOAA Climate Data Record (CDR) of Cloud and Clear-Sky Radiation Properties, Version 1.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NASA LaRC cloud and clear sky radiation properties dataset is generated using algorithms initially developed for application to TRMM and MODIS imagery within the...

  1. Radiation grafting processes and properties of leathers modified with butyl acrylate

    International Nuclear Information System (INIS)

    Pietrucha, K.

    1982-01-01

    Conditions for radiation induced grafting with butyl acrylate dispersed in water emulsion onto chrome-tanned pig skins have been worked out for γ-rays and electron beam irradiations. The highest yield of grafting was observed at monomer concentration approximately 25% (w/w), dose equal to 25 kGy and dose rate not exceeding 10 MGy/h. At these conditions the yield of grafting attained a value approximately 25% and content of homopolymer in the leather amounted to 6%. The efficiency of monomer to polymer conversion decreases when the concentration of monomer in emulsion and dose rate increases. Yield of homopolymer is independent of the dose rate. An explanation of the observed relations has been proposed. The physical and used properties of grafted leathers were tested. Radiation processed leathers were found superior to samples finished by traditional methods. One has to point to better tolerance against chemical cleaning and reduced water take-up without loss of high permeability of water vapour, responsible for good hygienic properties of leather products. Recommendations for industrial scale radiation grafting are given. (author)

  2. Parameterization of cirrus microphysical and radiative properties in larger-scale models

    International Nuclear Information System (INIS)

    Heymsfield, A.J.; Coen, J.L.

    1994-01-01

    This study exploits measurements in clouds sampled during several field programs to develop and validate parameterizations that represent the physical and radiative properties of convectively generated cirrus clouds in intermediate and large-scale models. The focus is on cirrus anvils because they occur frequently, cover large areas, and play a large role in the radiation budget. Preliminary work focuses on understanding the microphysical, radiative, and dynamical processes that occur in these clouds. A detailed microphysical package has been constructed that considers the growth of the following hydrometer types: water drops, needles, plates, dendrites, columns, bullet rosettes, aggregates, graupel, and hail. Particle growth processes include diffusional and accretional growth, aggregation, sedimentation, and melting. This package is being implemented in a simple dynamical model that tracks the evolution and dispersion of hydrometers in a stratiform anvil cloud. Given the momentum, vapor, and ice fluxes into the stratiform region and the temperature and humidity structure in the anvil's environment, this model will suggest anvil properties and structure

  3. A new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties

    Science.gov (United States)

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-10-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) annihilation photon pair coincidence time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit of around 100 ps. On the other hand, modulation mechanisms of a material's optical properties as exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to study whether ionizing radiation can also produce fast modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5x10-6 is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the radiation source flux rate and average photon energy.

  4. A promising new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties

    Science.gov (United States)

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-11-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit for the coincidence time resolution of around 100 ps. On the other hand, modulation mechanisms of the optical properties of a material exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to for the first time study whether ionizing radiation can produce modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5× {{10}-6} is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the detected event rate and average photon energy of the radiation source.

  5. Properties of cellulose derivatives produced from radiation-Modified cellulose pulps

    International Nuclear Information System (INIS)

    Iller, Edward; Stupinska, Halina; Starostka, Pawel

    2007-01-01

    The aim of project was elaboration of radiation methods for properties modification of cellulose pulps using for derivatives production. The selected cellulose pulps were exposed to an electron beam with energy 10 MeV in a linear accelerator. After irradiation pulps underwent the structural and physico-chemical investigations. The laboratory test for manufacturing carboxymethylocellulose (CMC), cellulose carbamate (CC) and cellulose acetate (CA) with cellulose pulps irradiated dose 10 and 15 kGy have been performed. Irradiation of the pulp influenced its depolimerisation degree and resulted in the drop of viscosity of CMC. However, the expected level of cellulose activation expressed as a rise of the substitution degree or increase of the active substance content in the CMC sodium salt was not observed. In the case of cellulose esters (CC, CA) formation, the action of ionising radiation on cellulose pulps with the dose 10 and 15 kGy enables obtaiment of the average values of polimerisation degree as required for CC soluble in aqueous sodium hydroxide solution. The properties of derivatives prepared by means of radiation and classic methods were compared

  6. Effect of 60Co radiation-induced grafting of methyl methacrylate on mechanical properties of bamboo

    International Nuclear Information System (INIS)

    Zhang Hao; Zhou Liang; Liu Shengquan; Qian Liangcun; Fei Benhua; Jiang Zehui

    2011-01-01

    In order to investigate the effect of radiation grafting on mechanical properties of bamboo, the original and carbonized bamboo soaked with monomer MMA were radiation grafted by 60 Co γ rays with the doses of 60-220 kGy. The results showed that compared with original blanks, treated with MMA and irradiated with the dose of 180 kGy the specific gravity, bending strength modulus of elasticity of original bamboo increased by 6.7%, 4.4%, and 28%, meanwhile its oven-dried radial, tangential and volumetric shrinkage decreased by 38.9%, 47.4%, and 32.9%, respectively. What is more, treated with MMA and irradiated with the doses of 140 kGy the specific gravity and modulus of elasticity of carbonized bamboo increased by 6.8% and 20%, while its oven-dried radial, tangential, volumetric shrinkage decreased by 11%, 4.6% and 12%, respectively. The study reveals that mechanical properties of original and carbonized bamboo can be enhanced by radiation grafting copolymerization with suitable absorbed doses, which may be valuable for the further research of developing new bamboo plastic composites. (authors)

  7. Effect of rare earth Ce on the far infrared radiation property of iron ore tailings ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie [Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130 (China); Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130 (China); Meng, Junping, E-mail: srlj158@sina.com [Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130 (China); Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130 (China); Liang, Jinsheng; Duan, Xinhui [Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130 (China); Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130 (China); Huo, Xiaoli [Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130 (China); Tang, Qingguo [Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130 (China); Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin 300130 (China)

    2015-06-15

    Highlights: • Detailed process proposed for preparation of iron ore tailings ceramics. • Replace natural minerals with iron ore tailings as raw materials for preparing functional ceramics. • Impact mechanism of Ce on far infrared ceramics, as well as its optimum addition amounts can be obtained. • Propose a new perspective on considering the mechanism of far infrared radiation. - Abstract: A kind of far infrared radiation ceramics was prepared by using iron ore tailings, CaCO{sub 3} and SiO{sub 2} as main raw materials, and Ce as additive. The result of Fourier transform infrared spectroscopy showed that the sample exhibits excellent radiation value of 0.914 when doping 7 wt.% Ce. Ce{sup 4+} dissolved into iron diopside and formed interstitial solid solution with it sintered at 1150 °C. The oxidation of Fe{sup 2+} to Fe{sup 3+} caused by Ce{sup 4+} led to a decrease of crystallite sizes and enhancement of Mg–O and Fe–O vibration in iron diopside, which consequently improved the far infrared radiation properties of iron ore tailings ceramics.

  8. Mechanical properties of human bone-tendon-bone grafts preserved by different methods and radiation sterilised

    International Nuclear Information System (INIS)

    Kaminski, A.; Gut, G.

    2008-01-01

    Full text: Patellar tendon auto and allografts are commonly used in orthopaedic surgery for reconstruction of the anterior crucial ligaments (ACL). Autografts are mainly used for primary reconstruction, while allografts are useful for revision surgery. To avoid the risk of infection diseases transmission allografts should be radiation-sterilised. As radiation-sterilisation is supposed to decrease the mechanical strength of tendon tissue, it is important to establish methods of allografts preservation and sterilisation resulting in their best quality and safety. Therefore, the purpose of the study was to compare the tensile strength of the central one third of human patellar tendon (as used for ACL reconstruction), preserved by different methods (deep fresh freezing, lyophilisation) and subsequently radiation-sterilised with doses of 0 (control), 25, 50 or 100 kGy. Bone-tendon-bone grafts were prepared from cadaveric human patella tendon with both patellar and tibial attachments. BTB grafts were preserved by deep freezing, glicerolisation or lyophilisation and radiation-sterilised with doses of 0 (control), 25, 50 or 100 kGy. To estimate mechanical properties all samples were subjected to tensile tests to failure using Instron system. Before these tests all lyophilised grafts were rehydrated. We found decrease of tensile strength of irradiated grafts compared to non-irradiated controls. Obtained results of the mechanical testing of studied grafts indicate their potential usefulness for clinical applications.(Author)

  9. Effect of the gamma radiation in the properties of PEBD / amphiprotic starch blend

    International Nuclear Information System (INIS)

    Texeira, Magno F.H.B.I.; Caetano, Viviane F.; Ferreira, Flavia G.D.; Almeida, Yeda M.B. de; Vinhas, Gloria M.

    2009-01-01

    The degradation of the polyethylene of low density (PEBD) it can be accelerated through the addition of natural polymer, minimizing the impact caused by the residues discarded in the environment. In this work the effect of the radiation gamma was evaluated in the PEBD / amphiprotic starch blend, in the doses of 25, 60 and 120 kGy. This blend after exposed to gamma radiation was analyzed by differential scanning calorimeter (DSC), Fourier Transform Infrared Spectroscopy (FTIR) and mechanical properties. The blends after irradiation in the doses of 60 and 25 kGy had not presented change in the melting point temperature. Already the blends radiated in the dose of 120 kGy presented two melting point temperatures. Through the analyses in the infrared was detected the presence of the group carbonyl and primary and secondary alcohols as a result of the structural alteration in function of the radiolytic degradation. In the mechanical rehearsals, the blends presented decrease in the specific deformation in the rupture and in the module of elasticity when irradiated in the doses of 25, 60 and 120 kGy, respectively. Already the tension results in the rupture stayed practically unaffected with the effect of the gamma radiation. (author)

  10. Radiation effects on the electrical properties of hafnium oxide based MOS capacitors.

    Energy Technology Data Exchange (ETDEWEB)

    Petrosky, J. C. (Air Force Institute of Technology, Wright-Patterson Air Force Base, OH); McClory, J. W. (Air Force Institute of Technology, Wright-Patterson Air Force Base, OH); Bielejec, Edward Salvador; Foster, J. C. (Air Force Institute of Technology, Wright-Patterson Air Force Base, OH)

    2010-10-01

    Hafnium oxide-based MOS capacitors were investigated to determine electrical property response to radiation environments. In situ capacitance versus voltage measurements were analyzed to identify voltage shifting as a result of changes to trapped charge with increasing dose of gamma, neutron, and ion radiation. In situ measurements required investigation and optimization of capacitor fabrication to include dicing, cleaning, metalization, packaging, and wire bonding. A top metal contact of 200 angstroms of titanium followed by 2800 angstroms of gold allowed for repeatable wire bonding and proper electrical response. Gamma and ion irradiations of atomic layer deposited hafnium oxide on silicon devices both resulted in a midgap voltage shift of no more than 0.2 V toward less positive voltages. This shift indicates recombination of radiation induced positive charge with negative trapped charge in the bulk oxide. Silicon ion irradiation caused interface effects in addition to oxide trap effects that resulted in a flatband voltage shift of approximately 0.6 V also toward less positive voltages. Additionally, no bias dependent voltage shifts with gamma irradiation and strong oxide capacitance room temperature annealing after ion irradiation was observed. These characteristics, in addition to the small voltage shifts observed, demonstrate the radiation hardness of hafnium oxide and its applicability for use in space systems.

  11. Spectral properties of plant leaves pertaining to urban landscape design of broad-spectrum solar ultraviolet radiation reduction

    Science.gov (United States)

    Yoshimura, Haruka; Zhu, Hui; Wu, Yunying; Ma, Ruijun

    2010-03-01

    Human exposure to harmful ultraviolet (UV) radiation has important public health implications. Actual human exposure to solar UV radiation depends on ambient UV irradiance, and the latter is influenced by ground reflection. In urban areas with higher reflectivity, UV exposure occurs routinely. To discover the solar UV radiation regulation mechanism of vegetation, the spectral reflectance and transmittance of plant leaves were measured with a spectrophotometer. Typically, higher plants have low leaf reflectance (around 5%) and essentially zero transmittance throughout the UV region regardless of plant species and seasonal change. Accordingly, incident UV radiation decreases to 5% by being reflected and is reduced to zero by passing through a leaf. Therefore, stratified structures of vegetation are working as another terminator of UV rays, protecting whole terrestrial ecosystems, while vegetation at waterfronts contributes to protect aquatic ecosystems. It is possible to protect the human population from harmful UV radiation by urban landscape design of tree shade and the botanical environment. Even thin but uniformly distributed canopy is effective in attenuating UV radiation. To intercept diffuse radiation, UV screening by vertical structures such as hedges should be considered. Reflectivity of vegetation is around 2%, as foliage surfaces reduce incident UV radiation via reflection, while also eliminating it by transmittance. Accordingly, vegetation reduces incident UV radiation to around 2% by reflection. Vegetation influence on ambient UV radiation is broad-spectrum throughout the UV region. Only trees provide cool UV protective shade. Urban landscapes aimed at abating urban heat islands integrated with a reduction of human UV over-exposure would contribute to mitigation of climate change.

  12. Effect of active-region “volume” on the radiative properties of laser heterostructures with radiation output through the substrate

    Energy Technology Data Exchange (ETDEWEB)

    Nekorkin, S. M.; Zvonkov, B. N.; Baidus, N. V.; Dikareva, N. V., E-mail: dnat@ro.ru; Vikhrova, O. V. [Nizhny Novgorod State University, Physicotechnical Research Institute (Russian Federation); Afonenko, A. A.; Ushakov, D. V. [Belarussian State University (Belarus)

    2017-01-15

    The radiative properties of InGaAs/GaAs/InGaP laser structures with radiation output through the substrate depending on the number of quantum wells in the active region and laser diodes on their basis are investigated. It is established that the presence of six–eight quantum wells in the active region is optimum from the viewpoint of observable values of the threshold current and the output optical power of lasers.

  13. Attenuation of the DNA Damage Response by Transforming Growth Factor-Beta Inhibitors Enhances Radiation Sensitivity of Non–Small-Cell Lung Cancer Cells In Vitro and In Vivo

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shisuo; Bouquet, Sophie; Lo, Chen-Hao; Pellicciotta, Ilenia; Bolourchi, Shiva [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States); Parry, Renate [Varian Medical Systems, Palo Alto, California (United States); Barcellos-Hoff, Mary Helen, E-mail: mhbarcellos-hoff@nyumc.org [Department of Radiation Oncology, New York University School of Medicine, New York, New York (United States)

    2015-01-01

    Purpose: To determine whether transforming growth factor (TGF)-β inhibition increases the response to radiation therapy in human and mouse non–small-cell lung carcinoma (NSCLC) cells in vitro and in vivo. Methods and Materials: TGF-β–mediated growth response and pathway activation were examined in human NSCLC NCI-H1299, NCI-H292, and A549 cell lines and murine Lewis lung cancer (LLC) cells. Cells were treated in vitro with LY364947, a small-molecule inhibitor of the TGF-β type 1 receptor kinase, or with the pan-isoform TGF-β neutralizing monoclonal antibody 1D11 before radiation exposure. The DNA damage response was assessed by ataxia telangiectasia mutated (ATM) or Trp53 protein phosphorylation, γH2AX foci formation, or comet assay in irradiated cells. Radiation sensitivity was determined by clonogenic assay. Mice bearing syngeneic subcutaneous LLC tumors were treated with 5 fractions of 6 Gy and/or neutralizing or control antibody. Results: The NCI-H1299, A549, and LLC NSCLC cell lines pretreated with LY364947 before radiation exposure exhibited compromised DNA damage response, indicated by decreased ATM and p53 phosphorylation, reduced γH2AX foci, and increased radiosensitivity. The NCI-H292 cells were unresponsive. Transforming growth factor-β signaling inhibition in irradiated LLC cells resulted in unresolved DNA damage. Subcutaneous LLC tumors in mice treated with TGF-β neutralizing antibody exhibited fewer γH2AX foci after irradiation and significantly greater tumor growth delay in combination with fractionated radiation. Conclusions: Inhibition of TGF-β before radiation attenuated DNA damage recognition and increased radiosensitivity in most NSCLC cells in vitro and promoted radiation-induced tumor control in vivo. These data support the rationale for concurrent TGF-β inhibition and RT to provide therapeutic benefit in NSCLC.

  14. Attenuation of a non-parallel beam of gamma radiation by thick shielding-application to the determination of the {sup 235}U enrichment with NaI detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mortreau, Patricia [European Commission, Joint Research Centre, Institute for the Protection and Security of the Citizen, TP 800 Via Fermi, Ispra (Vatican City State, Holy See,) (Italy)]. E-mail: patricia.mortreau@jrc.it; Berndt, Reinhard [European Commission, Joint Research Centre, Institute for the Protection and Security of the Citizen, TP 800 Via Fermi, Ispra (VA) (Italy)

    2005-09-21

    The traditional method used to determine the Uranium enrichment by nondestructive analysis is based on the 'enrichment meter principle' [1]. It involves measuring the intensity of the 186 keV net peak area of {sup 235}U in 'quasi-infinite' samples. A prominent factor, which affects the peak intensity, is the presence of gamma absorbing material (e.g., container wall, detector cover) between the sample and the detector. Its effect is taken into consideration in a commonly called 'wall thickness' correction factor. Often calculated on the basis of approximations, its performance is adequate for small attenuation factors applicable to the case of narrow beams. However these approximations do not lead to precise results when wide non-parallel beams are attenuated through thick container walls. This paper is dedicated to the calculation by numerical integration of the geometrical correction factor (K {sub wtc}) which describes the effective mean path length of the radiation through the absorbing layer. This factor was calculated as a function of various measurement parameters (types and dimensions of the detector, of the collimator and of the shielding) for the most commonly used collimator shapes and detectors. Both coherent scattering (Rayleigh) and incoherent scattering (Compton) are taken into account for the calculation of the radiation interaction within the detector.

  15. Neutron radiation shielding properties of polymer incorporated self compacting concrete mixes.

    Science.gov (United States)

    Malkapur, Santhosh M; Divakar, L; Narasimhan, Mattur C; Karkera, Narayana B; Goverdhan, P; Sathian, V; Prasad, N K

    2017-07-01

    In this work, the neutron radiation shielding characteristics of a class of novel polymer-incorporated self-compacting concrete (PISCC) mixes are evaluated. Pulverized high density polyethylene (HDPE) material was used, at three different reference volumes, as a partial replacement to river sand in conventional concrete mixes. By such partial replacement of sand with polymer, additional hydrogen contents are incorporated in these concrete mixes and their effect on the neutron radiation shielding properties are studied. It has been observed from the initial set of experiments that there is a definite trend of reductions in the neutron flux and dose transmission factor values in these PISCC mixes vis-à-vis ordinary concrete mix. Also, the fact that quite similar enhanced shielding results are recorded even when reprocessed HDPE material is used in lieu of the virgin HDPE attracts further attention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Graphene coated subwavelength wires: a theoretical investigation of emission and radiation properties

    International Nuclear Information System (INIS)

    Cuevas, Mauro

    2017-01-01

    Highlights: • Decay rate in a dielectric graphene coated wire. • Localized surface plasmons. • Excitation of multipolar resonances. - Abstract: This work analyzes the emission and radiation properties of a single optical emitter embedded in a graphene–coated subwavelength wire. We discuss the modifications of the spontaneous emission rate and the radiation efficiency as a function of the position and orientation of the dipole inside the wire. Our results show that these quantities can be enhanced by several orders of magnitude when the emission frequency coincides with one of the resonance frequencies of the graphene–coated wire. In particular, high–order plasmon resonances are excited when the emitter is moved from the wire center. Modifications resulting from varying the orientation of the dipole in the near field distribution and in the far field intensities are shown.

  17. Modification on liquid retention property of cassava starch by radiation grafting with acrylonitrile: Pt. 1

    International Nuclear Information System (INIS)

    Kiatkamjornwong, S.; Nakason, C.; Chvajarempun, J.

    1993-01-01

    Radiation modification on liquid retention properties of native cassava starch, gelatinized at 85 o C, by graft copolymerization with acrylonitrile was carried out by mutual irradiation to gamma-rays. A thin aluminium foil was used to cover the inner wall of the reaction vessel, so that the homopolymer concentration was reduced to be less than 1.0% with a distilled water retention value of 665 g/g of the dry weight of the saponified grafted product. Confirmation of graft copolymerization and saponification reactions was made by the infrared spectrophotometric technique. The combined effect of radiation parameters in terms of an irradiation time and a dose rate to the total dose on the extent of the grafting reaction expressed in terms of grafting parameters which directly influenced liquid retention values was evaluated in conjunction with statistical analysis. (author)

  18. On the influence of sewage sludge irradiation by gamma radiation on the sludge properties

    International Nuclear Information System (INIS)

    Hegemann, W.

    1976-01-01

    The gamma irradiation is a technically usable method to disinfect sewage sludge. Furthermore, the slurry properties are also improved. After 24 hours' thickening time, a significantly smaller volume of concentrated thick slurry could be removed compared to untreated sludge. On the other hand, a dilution occurs with pasteurization if the heat is introduced by steam, and the initial concentration could not be achieved again even after thickening for 24 hours. The drainability of the treated sludge was also improved by irradiation, expressed by a reduction of the specific filter resistance. The costs are essentially determined by the radiation sources used. If it is technically possible to process reactor wastes in such a manner that they can be used in slurry radiation plants, costs of 3.50-4.00 DM/m 3 treated sludge seem possible. (orig.) [de

  19. Preparation and physical properties of enhanced radiation induced crosslinking of ethylene-vinyl alcohol copolymer (EVOH)

    International Nuclear Information System (INIS)

    Deng Pengyang; Liu Meihua; Zhang Wanxi; Sun Jiazhen

    2007-01-01

    Preparation and physical properties of ethylene-vinyl alcohol copolymer (EVOH) crosslinked by enhanced radiation have been studied through various methods. It was found that the most effective agent for irradiation-crosslinking was triallyl isocyanurate (TAIC) among four kinds of polyfunctional monomers. Gel content (65.6%) was formed for EVOH-44 (content of ethylene is 44 mol%) at 200 kGy with 5% TAIC, but for EVOH-32 (content of ethylene is 32 mol%), only 37.4% gel content was formed under the same conditions. This result showed that the more the content of ethylene units comprised in EVOH, the easier the chemical bonds could be formed between different molecular chains. Tensile strength and elastic modulus increased after crosslinking at high test temperature and elongation at break decreased at the same time. Hygroscopicity of EVOH showed noticeable decrease after enhancement radiation-crosslinking

  20. Temperature dependence of deformation vs. strength properties of radiation-crosslinked polyethylene

    International Nuclear Information System (INIS)

    Matusevich, Yu.I.; Krul', L.P.

    1992-01-01

    The authors have studied the deformation vs. strength properties of radiation-crosslinked low-density polyethylene irradiated by γ irradiation up to doses from 5.0 sm-bullet 10 4 to 1.0 sm-bullet 10 6 Gy. The authors present the elongation diagrams taken at temperatures below and above the melting point of the polymer. The authors have obtained the dependences of the breaking stress and the pre-break elongation of the polymer on the irradiation doses and the testing temperature. Based on the kinetic lifetime equation, The authors calculated the values of the activation energy for mechanical fracture and the structure-sensitive coefficient γ. The authors show that in the crystalline state the strength of radiation-crosslinked polyethylene is determined by the chemical interactions along the chain of polymer macromolecules; and in molten polyethylene, by the crosslinks between the macromolecules. 8 refs., 4 figs., 1 tab

  1. Coherence properties of the radiation from X-ray free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E L; Schneidmiller, E A; Yurkov, M V

    2006-08-15

    We present a comprehensive analysis of coherence properties of the radiation from X-ray free electron laser (XFEL). We consider practically important case when XFEL is optimized for maximum gain. Such an optimization allows to reduce significantly parameter space. Application of similarity techniques to the results of numerical simulations allows to present all output characteristics of the optimized XFEL as functions of the only parameter, ratio of the emittance to the radiation wavelength, {epsilon}=2{pi} {epsilon}/{lambda}. Our studies show that optimum performance of the XFEL in terms of transverse coherence is achieved at the value of the parameter {epsilon} of about unity. At smaller values of {epsilon} the degree of transverse coherence is reduced due to strong influence of poor longitudinal coherence on a transverse one. At large values of the emittance the degree of transverse coherence degrades due to poor mode selection. Comparative analysis of existing XFEL projects, European XFEL, LCLS, and SCSS is presented as well. (orig.)

  2. Effect of low-intensity electromagnetic radiation on structurization properties of bacterial lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Grigory E. Brill

    2014-09-01

    Full Text Available Purpose — to investigate the effects of low-intensity electromagnetic radiation on the process of dehydration selforganization of bacterial lipopolysaccharide (LPS. Material and Methods — The method of wedge dehydration has been used to study the structure formation of bacterial LPS. Image-phases analysis included their qualitative characteristics, as well as the calculation of quantitative indicators, followed by statistical analysis. Results — Low-intensity ultra high frequency (UHF radiation (1 GHz, 0.1 μW/cm2, 10 min has led to the changes in the suspension system of the LPS-saline reflected in the kinetics of structure formation. Conclusion — 1 GHz corresponds to the natural frequency of oscillation of water clusters and, presumably, the effect of UHF on structure of LPS mediates through the changes in water-salt environment. Under these conditions, properties of water molecules of hydration and possibly the properties of hydrophobic and hydrophilic regions in the molecule of LPS, which can affect the ability of toxin molecules to form aggregates change. Therefore the LPS structure modification may result in the change of its toxic properties.

  3. Analysis of physical properties of color and texture in goji-berry processed by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Pâmela Galo da; Koike, Amanda Cristina Ramos; Villavicencio, Anna Lucia Casañas Haasis, E-mail: pamela.gallo@outlook.com, E-mail: amandaramosk@gmail.com, E-mail: villavic@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Rodrigues, Flavio Thihara, E-mail: flaviot@ymail.com [Instituto Federal de Educação, Ciência e Tecnologia de Goiás (IFG), Inhumas, GO (Brazil)

    2017-07-01

    Goji-berry is fruit native from China, found on a red berry form and keeps an excellent source of antioxidants, such as carotenoids. The consumption of goji-berry is growing on the Brazilian commerce. To allow the commercialization of this foods its necessary of these foods are free of contaminants agents which may cause damages to the consumers health. For this warranty it's required of this method does not harm the food properties and quality. For this check was made the study using goji-berry. Irradiation is one of the methods that improves the safety and extends the shelf life of some foods. Food irradiation is a technology process of exposing a particular food to a controlled dose of ionizing radiation. This study aimed compares the effects of ionizing radiation processing on physical properties of color and texture in goji-berries at different irradiation doses. Samples were bought on the retail market in the city of São Paulo and processed by ionizing radiation on Nuclear and Energy Research Institute (IPEN/CNEN-SP) at doses of 2.5; 5.0; 7.5; 10.0 kGy and the control group. Then the samples were followed by color and texture analyses. The color assay's results showed that the irradiation process decreased red and yellow pigments. On the other hand, the sample's luminosity increased after being processed by ionizing radiation. On the texture assay was verified a decrease of the fruit compressive force, turning the fruit more softened. (author)

  4. Analysis of physical properties of color and texture in goji-berry processed by ionizing radiation

    International Nuclear Information System (INIS)

    Silva, Pâmela Galo da; Koike, Amanda Cristina Ramos; Villavicencio, Anna Lucia Casañas Haasis; Rodrigues, Flavio Thihara

    2017-01-01

    Goji-berry is fruit native from China, found on a red berry form and keeps an excellent source of antioxidants, such as carotenoids. The consumption of goji-berry is growing on the Brazilian commerce. To allow the commercialization of this foods its necessary of these foods are free of contaminants agents which may cause damages to the consumers health. For this warranty it's required of this method does not harm the food properties and quality. For this check was made the study using goji-berry. Irradiation is one of the methods that improves the safety and extends the shelf life of some foods. Food irradiation is a technology process of exposing a particular food to a controlled dose of ionizing radiation. This study aimed compares the effects of ionizing radiation processing on physical properties of color and texture in goji-berries at different irradiation doses. Samples were bought on the retail market in the city of São Paulo and processed by ionizing radiation on Nuclear and Energy Research Institute (IPEN/CNEN-SP) at doses of 2.5; 5.0; 7.5; 10.0 kGy and the control group. Then the samples were followed by color and texture analyses. The color assay's results showed that the irradiation process decreased red and yellow pigments. On the other hand, the sample's luminosity increased after being processed by ionizing radiation. On the texture assay was verified a decrease of the fruit compressive force, turning the fruit more softened. (author)

  5. Application of Terahertz Attenuated Total Reflection Spectroscopy to Detect Changes in the Physical Properties of Lactose during the Lubrication Process Required for Drug Formulation.

    Science.gov (United States)

    Dohi, Masafumi; Momose, Wataru; Yamashita, Kazunari; Hakomori, Tadashi; Sato, Shusaku; Noguchi, Shuji; Terada, Katsuhide

    2017-02-01

    Manufacturing the solid dosage form of an orally administered drug requires lubrication to enhance manufacturability, ensuring that critical quality attributes such as disintegration and dissolution of the drug product are maintained during manufacture. Here, to evaluate lubrication performance during manufacture, we used terahertz attenuated total reflection (THz-ATR) spectroscopy to detect differences in the physical characteristics of the lubricated powder. We applied a simple formulation prepared by blending granulated lactose as filler with magnesium stearate as lubricant. A flat tablet was prepared using the lubricated powder to acquire sharp THz-ATR absorption peaks of the samples. First, we investigated the effects of lubricant concentration and compression pressure on preparation of the tablet and then determined the effect of the pressure applied to samples in contact with the ATR prism on sample absorption amplitude. We focused on the differences in the magnitudes of spectra at the lactose-specific frequency. Second, we conducted the dynamic lubrication process using a 120-L mixer to investigate differences in the magnitudes of absorption corresponding to the lactose-specific frequency during lubrication. In both studies, enriching the lubricated powder with a higher concentration of magnesium stearate or prolonging blending time correlated with higher magnitudes of spectra at the lactose-specific frequency. Further, in the dynamic lubrication study, the wettability and disintegration time of the tablets were compared with the absorption spectra amplitudes at the lactose-specific frequency. We conclude that THz-ATR spectroscopy is useful for detecting differences in densities caused by a change in the physical properties of lactose during lubrication.

  6. H2O2 attenuates IGF-1R tyrosine phosphorylation and its survival signaling properties in neuronal cells via NR2B containing NMDA receptor.

    Science.gov (United States)

    Zeng, Zhiwen; Wang, Dejun; Gaur, Uma; Rifang, Liao; Wang, Haitao; Zheng, Wenhua

    2017-09-12

    Impairment of insulin-like growth factor I (IGF-I) signaling plays an important role in the development of neurodegeneration. In the present study, we investigated the effect of H 2 O 2 on the survival signaling of IGF-1 and its underlying mechanisms in human neuronal cells SH-SY5Y. Our results showed that IGF-1 promoted cell survival and stimulated phosphorylation of IGF-1R as well as its downstream targets like AKT and ERK1/2 in these cells. Meanwhile, these effects of IGF-1 were abolished by H 2 O 2 at 200μM concentration which did not cause any significant toxicity to cells itself in our experiments. Moreover, studies using various glutamate receptor subtype antagonists displayed that N-methyl-D -aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) blocked the effects of H 2 O 2 , whereas other glutamate receptor subtype antagonists, such as non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX), metabolic glutamate receptor antagonists LY341495 and CPCCOEt, had no effect. Further studies revealed that NR2B-containing NMDARs are responsible for these effects as its effects were blocked by pharmacological inhibitor Ro25-698 or specific siRNA for NR2B, but not NR2A. Finally, our data also showed that Ca 2+ influx contributes to the effects of H 2 O 2 . Similar results were obtained in primary cultured cortical neurons. Taken together, the results from the present study suggested that H 2 O 2 attenuated IGF-1R tyrosine phosphorylation and its survival signaling properties via NR2B containing NMDA receptors and Ca 2+ influx in SH-SY5Y cells. Therefore, NMDAR antagonists, especially NR2B-selective ones, combined with IGF-1 may serve as an alternative therapeutic agent for oxidative stress related neurodegenerative disease.

  7. Preparation and properties of hydrogels of PVA/PVP/chitosan by radiation

    International Nuclear Information System (INIS)

    Nho, Y. C.; Park, K. R.

    2001-01-01

    The radiation can induce chemical reaction to modify polymer under even the solid condition or in the low temperature. The radiation crosslinking can be easily adjusted and is easily reproducible by controlling the radiation dose. The finished product contains no residuals of substances required to initiate the chemical crosslinking which can restrict the application possibilities. In these studies, hydrogels from a mixture of chitosan and polyvinyl alcohol(PVA)/Poly-N-vinylpyrrolidone(PVP) were made by 'freezing and thawing', or gamma-ray irradiation or two steps of 'freezing and thawing', and gamma-ray irradiation or two steps of 'freezing and thawing' and gamma-ray irradiation for wound dressing. The mechanical properties such as gelation, water absorptivity, and gel strength were examined to evaluate the hydrogels for wound dressing. The composition of PVA:PVP was 60:40, PVA/PVP: chitosan ratio was in the range of 9:1 -7:3, and the solid concentration of PVA/PVP/chitosan solution was 15wt%. Gamma irradiation doses of 25, 35, 50, 60 and 70kGy, respectively were exposed to a mixture of PVA/PVP/chitosan to evaluate the effect of irradiation dose on the mechanical properties of hydrogels. Water-soluble chitosan was used to in this experiment. The mechanical properties of hydrogels such as gelation and gel strength was higher when two steps of 'freezing and thawing' and irradiation were used than only 'freezing and thawing' was utilized. Gel content was influenced slightly by PVA/PVP:chitosan composition and irradiation dose, but swelling was done greatly by them. Swelling percent was much increased as the composition of chitosan in PVA/PVP/chitosan increased

  8. γ radiation induced changes in the bioadhesion properties of Ca-alginate gels

    International Nuclear Information System (INIS)

    Popeski-Dimovski, Riste

    2009-01-01

    The need for controlled release of drugs and their administration in specific zone of the organism asks for developing of carriers of drugs who will do the job. The two greatest needs, controlled release, and attention on the site, organ, of the organism that's treated its bioadhesion is best done with polymer gels. From the many choices of polymer gels, ether synthetic or natural the Na-alginate gels are the best suited because of their easy of access and good controlled release as being nontoxic to the living organisms and showing promising bioadhesion capability. Because of that examining the possibility for modification of the bioadhesion properties with gamma radiation is of interest. In this work Ca-alginate gels are irradiated with different absorbed doses to see if there will be any changes of the bioadhesion properties. For this mechanical compressibility tests and bioadhesion pull test are conducted on the irradiated samples. The results show that under irradiation gels louse their structural integrity becoming softer but the bioadhesive properties increase. But this increase is very small of up to 20% and its of no interest in practical circumstances where the practice is interested in changes of at least 100% and up, so changing the doses and properties of the gels to increase the bioadhesive properties might be of further interest. (Author)

  9. Estimation of mechanical properties of gelatin using a microbubble under acoustic radiation force

    International Nuclear Information System (INIS)

    Shirota, Eriko; Ando, Keita

    2015-01-01

    This paper is concerned with observations of the translation of a microbubble (80 μm or 137 μm in radius) in a viscoelastic medium (3 w% gelatin), which is induced by acoustic radiation force originating from 1 MHz focused ultrasound. An optical system using a high-speed camera was designed to visualize the bubble translation and deformation. If the bubble remains its spherical shape under the sonication, the bubble translation we observed can be described by theory based on the Voigt model for linear viscoelastic solids; mechanical properties of the gelatin are calculated from measurements of the terminal displacement under the sonication. (paper)

  10. Impact of hydrogen fuelling on confinement properties in radiative improved mode

    International Nuclear Information System (INIS)

    Kalupin, D; Dumortier, P; Messiaen, A; Tokar, M Z; Unterberg, B; Verdoolaege, Geert; Wassenhove, G Van; Weynants, R

    2003-01-01

    The radiative improved (RI) mode at TEXTOR is a high confinement regime, which is obtained by the seeding of neon into deuterium plasmas. Recent experiments were aimed to study the influence of external gas fuelling on the confinement properties of the RI mode. In particular, it was found that a hydrogen puff into such plasmas leads to lower confinement compared with the discharges fuelled with the same amount of deuterium gas. This paper attempts to explain the reduction of confinement in RI plasmas with an external hydrogen puff and its relation to the level of impurity concentration, which is a critical parameter for RI mode confinement

  11. Growth, characterization and properties of CVD diamond films for applications as radiation detectors

    International Nuclear Information System (INIS)

    Sciorti, S.

    1999-01-01

    The aim of the work is to give a picture of the current state of the art of CVD (chemical vapour deposition) diamond. The interest is due to the capability to grow over large areas a material with physical properties suitable for an impressive number of applications. The authors focuses on the potential of diamond as a radiation detector and gets into details of the huge field that extends from the thermochemistry of the deposition process to the test of a diamond-based tracker with a fast readout electronics

  12. Fission fragment simulation of fusion neutron radiation effects on bulk mechanical properties

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Mitchell, J.B.; Guinan, M.W.; Stuart, R.N.; Borg, R.J.

    1976-01-01

    This research demonstrates the feasibility of using homogeneously-generated fission fragments to simulate high-fluence fusion neutron damage in niobium tensile specimens. This technique makes it possible to measure radiation effects on bulk mechanical properties at high damage states, using conveniently short irradiation times. The primary knock-on spectrum for a fusion reactor is very similar to that produced by fission fragments, and nearly the same ratio of gas atoms to displaced atoms is produced in niobium. The damage from fission fragments is compared to that from fusion neutrons and fission reactor neutrons in terms of experimentally measured yield strength increase, transmission electron microscopy (TEM) observations, and calculated damage energies

  13. Attenuation of G{sub 2} cell cycle checkpoint control in human tumor cells is associated with increased frequencies of unrejoined chromosome breaks but not increased cytotoxicity following radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, J.L.; Cowan, J.; Grdina, D.J. [and others

    1997-08-01

    The contribution of G{sub 2} cell cycle checkpoint control to ionizing radiation responses was examined in ten human tumor cell lines. Most of the delay in cell cycle progression seen in the first cell cycle following radiation exposure was due to blocks in G{sub 2} and there were large cell line-to-cell line variations in the length of the G{sub 2} block. Longer delays were seen in cell lines that had mutations in p53. There was a highly significant inverse correlation between the length of G{sub 2} delay and the frequency of unrejoined chromosome breaks seen as chromosome terminal deletions in mitosis, and observation that supports the hypothesis that the signal for G{sub 2} delay in mammalian cells is an unrejoined chromosome break. There were also an inverse correlation between the length of G{sub 2} delay and the level of chromosome aneuploidy in each cell line, suggesting that the G{sub 2} and mitotic spindel checkpoints may be linked to each other. Attenuation in G{sub 2} checkpoint control was not associated with alterations in either the frequency of induced chromosome rearrangements or cell survival following radiation exposure suggesting that chromosome rearrangements, the major radiation-induced lethal lesion in tumor cells, form before cells enters G{sub 2}. Thus, agents that act solely to override G{sub 2} arrest should produce little radiosensitization in human tumor cells.

  14. Study for evaluation of filter thickness in the determination of k Vp in function of the attenuation relative factors of the radiation

    International Nuclear Information System (INIS)

    Martin, J.G.; Souza, R.T.F.; Carbi, E.D.O.; Pina, D.R.

    2009-01-01

    This work consisted of evaluating 3 pairs of filters (cupper). The aim of it was to verify the best combination between attenuating material thicknesses for determination voltage value applied to X ray tube as function of attenuation relative factors. The employed methodology consisted of measuring the relative expositions, using thicknesses copper plates: (0,3, 0,5 and 0,8) mm. The thicknesses had been combined between itself with the purpose to form pairs of filters look that used ones ink Vp measurers. The great kVp band was used for 3 X ray equipment with generators of single-phase. Three-phase tension of 12 pulses and generator of tension in high frequency. The results had pointed the best combination, the thicknesses of filters (0,5/0,3) mm, because it does not have presented duplicity of values throughout all the band of evaluated tension. The results had still shown that the relative attenuation factors had not suffered significant variations between the different equipment with different voltage wave form. The variations found are related with differences in the effective energy of X ray beam. (author)

  15. Influence of the radiation type on properties of silicon doped by erbium

    International Nuclear Information System (INIS)

    Nazyrov, D.E.

    2006-01-01

    Full text: It is known that on effectiveness of formation and kinetics of annealing of radiation damages presence causing, uncontrollable electrical of fissile or inactive impurities, the concentration and position in a lattice of the semiconductor strongly influence. From this point of view, the impurities of group of rare earths elements (REE) represent major interest, since interacting with primary radiation imperfections they create electrical passive complexes such as 'impurity + defect', thus raising radiation stability of silicon. The purpose of sectional operation was the investigations of influence such as radiation exposures: in γ-quanta 60 Co and high-velocity electrons with an energy 3,5 MeV on properties of silicon doped REE-erbium. The doping of silicon REE was carried out during cultivation. The concentration REE in silicon, on sectional of a neutron-activation analysis was equaled 10 14 10 18 cm -3 . As control is model the monocrystalline silicon such as KEP-15 50 was investigation. The experimental outcomes are obtained through methods DLTS, IRC, and also at examination of a Hall effect and conductance is model, measuring of concentration optically active of centers of oxygen and carbon. In samples irradiated in the γ-quanta 60 Co in an interval of doses 10 16 -5·10 18 cm -2 and high-velocity electrons from 5·10 13 up to 10 18 el.·cm -2 the formation various DL in a forbidden region is revealed, which parameters are well-known A- and, E-centres etc. Depending on a radiation dose in an energy distribution of radiation imperfections in Si of essential concentration modifications is not observed. The comparison doses of associations detected DL in irradiated n-Si with similar associations in control samples shows, that a velocity of introduction of radiation imperfections (A- and E-centres) and imperfection with a deep level Ec-0,32 eV) in samples containing REE much lower, than in control samples. The lifetime of non-equilibrium charge carriers

  16. Thermomechanical and adhesive properties of radiation-modified polymer composites for thermosetting products

    International Nuclear Information System (INIS)

    Kalkis, V.; Maksimov, R.D.; Kalnins, M.; Zicans, J.; Bocoka, T.; Revjakin, O.

    2000-01-01

    The gamma-irradiated blends of polyethylene (PE) with ethylene / propylene / diene copolymer (Epdm) and thermotropic liquid crystalline polymer (LCP) are investigated. The radiation dose absorbed does not exceed 150 kGy (10 kGy=1 Mrad). It is shown that the even small amounts of LCP added to PE improve the mechanical and operational properties of composites and the thermosetting products made of them. The temperature dependences of the elastics modulus, tension diagrams at a temperature above the PE melting point, and recovery curves of the oriented specimens are presented. The kinetics of thermorelaxation and residual setting stresses upon isometric heating and cooling of the previously oriented composites is studied. The data on the influence of LCP on the adhesion interaction of the blend with steel are obtained. The features of thermomechanical and adhesive properties are discussed and the results of morphological and calorimetric tests are given. (author)

  17. Magnetic tunnel structures: Transport properties controlled by bias, magnetic field, and microwave and optical radiation

    International Nuclear Information System (INIS)

    Volkov, N.V.; Eremin, E.V.; Tarasov, A.S.; Rautskii, M.V.; Varnakov, S.N.; Ovchinnikov, S.G.; Patrin, G.S.

    2012-01-01

    Different phenomena that give rise to a spin-polarized current in some systems with magnetic tunnel junctions are considered. In a manganite-based magnetic tunnel structure in CIP geometry, the effect of current-channel switching was observed, which causes bias-driven magnetoresistance, rf rectification, and the photoelectric effect. The second system under study, ferromagnetic/insulator/semiconductor, exhibits the features of the transport properties in CIP geometry that are also related to the current-channel switching effect. The described properties can be controlled by a bias, a magnetic field, and optical radiation. At last, the third system under consideration is a cooperative assembly of magnetic tunnel junctions. This system exhibits tunnel magnetoresistance and the magnetic-field-driven microwave detection effect.

  18. The influence of radiation and microwave agents on some properties of haemopoietic stem cells

    International Nuclear Information System (INIS)

    Barakina, N.F.; Rakhmanina, O.N.

    1985-01-01

    Sublethal irradiation of donors leads to a change in some properties of bone marrow haemopoetic stem cells (HSC) during the exponential growth (days 1-8) of the syngeneic recipients in the spleen. They are: an increase in the rate of proliferation, a slight reduction in time of the population doubling, and a tendency toward an increase in the percentage of cells settled in the spleen after transplantation. Theses changes in the properties of HSC provide a more rapid repopulation thereof as compared to HSC of intact mice. In all appearance, a pretreatment of donors with AET and 2ADT does not influence the HSC changes induced by radiation, and, at the same time, retains the number of HSC at a high level

  19. Effect of neutron radiation on mechanical properties of permanent near core structures

    International Nuclear Information System (INIS)

    Tavassoli, A.A.

    1988-01-01

    Several hundred specimens have been tested in order to assess the effects of low dose neutron radiation ( 0 C and ductility and toughness are primary design concerns, the changes provoked, by doses up to 1.3 dpa, in overall mechanical properties of welded joints are small. For upper core structure, where the operating temperature is about 550 0 C and fatigue and creep resistance are major design needs, the changes induced, through formation of up to about 2 appm helium, in conventional fatigue properties or fatigue with short hold times are negligible. With increasing hold time, intergranular rupture in irradiated specimens is enhanced but the limited number of tests does not allow definite conclusions to be drawn. 53 refs, 3 tabs, 9 figs

  20. Radiation Shielding Properties Comparison of Pb-Based Silicate, Borate, and Phosphate Glass Matrices

    OpenAIRE

    Ruengsri, Suwimon

    2014-01-01

    Theoretical calculations of mass attenuation coefficients, partial interactions, atomic cross-section, and effective atomic numbers of PbO-based silicate, borate, and phosphate glass systems have been investigated at 662 keV. PbO-based silicate glass has been found with the highest total mass attenuation coefficient and then phosphate and borate glasses, respectively. Compton scattering has been the dominate interaction contributed to the different total attenuation coefficients in each of th...

  1. The multispectral reflectance of shortwave radiation by agricultural crops in relation with their morphological and optical properties

    NARCIS (Netherlands)

    Bunnik, N.J.J.

    1978-01-01

    Relations between morphological properties of uniform canopies. optical properties of the leaves and reflection of shortwave radiation, in the visible light region and the near infrared, by crops are the subject of this thesis.

    The aim of the study was a further investigation of

  2. Influence of surface oxidation on the radiative properties of ZrB{sub 2}-SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ning, E-mail: lncaep@163.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900 (China); Xing, Pifeng; Li, Cui [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900 (China); Wang, Peng [School of Material Science and Engineering, Shandong University of Technology, Zibo 255049 (China); Jin, Xinxin [College of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040 (China); Zhang, Xinghong [Science and Technology on Advanced Composites in Special Environments Laboratory, Harbin Institute of Technology, Harbin 150001 (China)

    2017-07-01

    Highlights: • Surface component affected radiative properties of ZrB{sub 2}-SiC composites significantly. • Emissivity in long-wave range gradually increased with the thickness of oxide scale. • The surface temperature had a little effect on radiative properties of composites. • Influence of surface roughness on emissivity could be negligible. • Covering the surface with glass is a method for improving radiative properties. - Abstract: The spectral emissivities of ZrB{sub 2}-20 vol.% SiC composites with various surface components of ZrB{sub 2}/SiC (ZS1), silica-rich glass (ZS2) and porous zirconia (ZS3) were measured using infrared spectrometer in the wavelength range from 2.5 to 25.0 μm. The relationship between surface oxidation (associated with surface component, thickness of oxide scale, testing temperature as well as roughness) and the radiative properties of ZrB{sub 2}-SiC composites were investigated systematically. Surface component affected the radiative properties of composites significantly. The total emissivity of ZS1 varied from 0.22 to 0.81 accompanied with surface oxidation in the temperature range 300–900 °C. The emissivity of ZS2 was about 1.5 times as that of ZS3 under the same testing conditions. The oxide scale on specimen surface enhanced the radiative properties especially in terms of short-wave range, and the emissivity in the long-wave range gradually increased with the thickness of oxide scale within a certain range. The influence of testing temperature and surface roughness was also investigated. The testing temperature had a little effect on radiative properties, whereas effect of surface roughness could be negligible.

  3. Photonic crystal and photonic quasicrystal patterned in PDMS surfaces and their effect on LED radiation properties

    Energy Technology Data Exchange (ETDEWEB)

    Suslik, Lubos [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Pudis, Dusan, E-mail: pudis@fyzika.uniza.sk [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Goraus, Matej [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Nolte, Rainer [Fakultät für Maschinenbau FG Lichttechnik Ilmenau University of Technology, Ilmenau (Germany); Kovac, Jaroslav [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Durisova, Jana; Gaso, Peter [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Hronec, Pavol [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Schaaf, Peter [Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany)

    2017-02-15

    Graphical abstract: Photonic quasicrystal patterned in the surface of polydimethylsiloxane membrane (left) and radiation pattern of light emitting diode with patterned membrane applied in the surface (right). - Highlights: • We presented fabrication technique of PDMS membranes with patterned surface by photonic crystal (PhC) and photonic quasi-crystal (PQC). • Presented technique is effective for preparation PhC and PQC PDMS membranes easily implementing in the LED chip. • From the goniophotometer measurements, the membranes document effective angular emission due to the diffraction on patterned surfaces. • 12 fold symmetry PQC structure shows homogeneous radiation pattern, while the 2 fold symmetry of square PhC shows evident diffraction lobes. - Abstract: We present results of fabrication and implementation of thin polydimethylsiloxane (PDMS) membranes with patterned surface for the light emitting diode (LED). PDMS membranes were patterned by using the interference lithography in combination with embossing technique. Two-dimensional photonic crystal and photonic quasicrystal structures with different period were patterned in the surface of thin PDMS membranes with depth up to 550 nm. Patterned PDMS membranes placed on the LED chip effectively diffracted light and increased angular emission of LED radiation pattern. We presented effective technique for fabrication of patterned PDMS membranes, which could modify the emission properties of optoelectronic devices and can be applied directly on surface LEDs and small optical devices.

  4. Effect of gamma radiation and endodontic treatment on mechanical properties of human and bovine root dentin

    International Nuclear Information System (INIS)

    Novais, Veridiana Resende; Soares, Priscilla Barbosa Ferreira; Guimaraes, Carlla Martins; Schliebe, Lais Rani Sales Oliveira; Braga, Stella Sueli Lourenco; Soares, Carlos Jose

    2016-01-01

    This study evaluated the effect of gamma radiation and endodontic treatment on the microhardness and flexural strength of human and bovine root dentin. Forty single rooted human teeth and forty bovine incisor teeth were collected, cleaned and stored in distilled water at 4 °C. The human and bovine teeth were divided into 4 groups (n=10) resulting from the combination of two study factors: first, regarding the endodontic treatment in 2 levels: with or without endodontic treatment; and second, radiotherapy in two levels: with or without radiotherapy by 60 Gy of Co-60 gamma radiation fractioned into 2 Gy daily doses five days per week. Each tooth was longitudinally sectioned in two parts; one-half was used for the three-point bending test and the other for the Knoop hardness test (KHN). Data were analyzed by 3-way ANOVA and Tukey HSD test (α=0.05). No significant difference was found for flexural strength values. The human dentin had significantly higher KHN than the bovine. The endodontic treatment and radiotherapy resulted in significantly lower KHN irrespective of tooth origin. The results indicated that the radiotherapy had deleterious effects on the microhardness of human and bovine dentin and this effect is increased by the interaction with endodontic therapy. The endodontic treatment adds additional negative effect on the mechanical properties of radiated tooth dentin; the restorative protocols should be designed taking into account this effect. (author)

  5. Effect of gamma radiation and endodontic treatment on mechanical properties of human and bovine root dentin

    Energy Technology Data Exchange (ETDEWEB)

    Novais, Veridiana Resende; Soares, Priscilla Barbosa Ferreira; Guimaraes, Carlla Martins; Schliebe, Lais Rani Sales Oliveira; Braga, Stella Sueli Lourenco; Soares, Carlos Jose, E-mail: carlosjsoares@ufu.br [Universidade Federal de Uberlandia (UFU), MG (Brazil)

    2016-11-15

    This study evaluated the effect of gamma radiation and endodontic treatment on the microhardness and flexural strength of human and bovine root dentin. Forty single rooted human teeth and forty bovine incisor teeth were collected, cleaned and stored in distilled water at 4 °C. The human and bovine teeth were divided into 4 groups (n=10) resulting from the combination of two study factors: first, regarding the endodontic treatment in 2 levels: with or without endodontic treatment; and second, radiotherapy in two levels: with or without radiotherapy by 60 Gy of Co-60 gamma radiation fractioned into 2 Gy daily doses five days per week. Each tooth was longitudinally sectioned in two parts; one-half was used for the three-point bending test and the other for the Knoop hardness test (KHN). Data were analyzed by 3-way ANOVA and Tukey HSD test (α=0.05). No significant difference was found for flexural strength values. The human dentin had significantly higher KHN than the bovine. The endodontic treatment and radiotherapy resulted in significantly lower KHN irrespective of tooth origin. The results indicated that the radiotherapy had deleterious effects on the microhardness of human and bovine dentin and this effect is increased by the interaction with endodontic therapy. The endodontic treatment adds additional negative effect on the mechanical properties of radiated tooth dentin; the restorative protocols should be designed taking into account this effect. (author)

  6. Influence of mechanical, thermal and radiation impacts on structure and properties of poly-L-lactide

    International Nuclear Information System (INIS)

    Marchenko, L.A.; Butovskaya, G.V.; Tapal'skij, D.V.; Krul', L.P.

    2014-01-01

    Poly-L-lactide both in the form of granules and plates obtained by injection molding has been revealed using differential scanning calorimetry and dynamic mechanical (relaxation) spectroscopy to be in the amorphous-crystalline phase state, the crystal phase being in two forms which differ in a degree of ordering. The radiation dose increase has been shown to facilitate the transition of disordered crystal phase into ordered one. Two types of amorphous phase of poly-L-lactide, mobile and rigid, differing in temperatures of the relaxation transitions have been revealed. A symbate change of the mobile amorphous phase content and antibate change of that of the rigid one with the radiation dose has been found. High strength properties and low deformability of the polymer under mechanical stretching at room temperature as well as the resistance to mechanical impact at a temperature of liquid nitrogen has been pointed out. It has been shown that chain degradation of the poly-L-lactide under conditions of vapor sterilization and radiation are negligible, so these methods may be used for disinfecting of medical devices based on this polymer. (authors)

  7. Spectroscopic analysis of radiation-generated changes in tensile properties of a polyetherimide film

    International Nuclear Information System (INIS)

    Long, E.R. Jr.; Long, S.A.T.

    1985-05-01

    The effects of electron radiation on Ultem, a polyetherimide were studied for doses from 2 x 10 to the 9th power to 6 x 10 to the 9th power rad. Specimens were studied for tensile property testing and for electron paramagnetic resonance and infrared spectroscopic measurements of molecular structure. A Faraday cup design and a method for remote temperature measurement were developed. The spectroscopic data show that radiation caused dehydrogenation of methyl groups, rupture of main-chain ether linkage, and opening of imide rings, all to form radicals and indicate that the so-formed atomic hydrogen attached to phenyl radicals, but not to phenoxyl radicals, which would have formed hydroxyls. The observed decays of the radiation-generated phenoxyl, gem-dimethyl, and carbonyl radicals were interpreted as a combining of the radicals to form crosslinking. This crosslinking is the probable cause of the major reduction in the elongation of the tensile specimens after irradiation. Subsequent classical solubility tests indicate that the irradiation caused massive crosslinking

  8. Magnetic Properties Studies on Thermal Aged Fe-Cu Alloys for the Simulation of Radiation Damage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. K.; Kishore, M.B.; Park, D. G. [KAERI, Daejeon (Korea, Republic of); Son, De Rac. [Hannam University, Daejeon (Korea, Republic of)

    2016-05-15

    We evaluated the changes in magnetic properties due to cold rolling and thermal ageing of a Fe-1%Cu model alloy in this study. Initially, the alloy was 10% cold rolled, and isothermally aged at 400 .deg. C for 1, 10, 100 and 1000 hr. The samples were prepared at various thermal aging conditions and all the conditions were interpreted. The hysteresis loops, Magnetic Barkhausen noise (BN). The change of magnetic properties can be interpreted in terms of the domain wall motion and dislocation dynamics associated with copper rich precipitates (CRPs).The results were interpreted in terms of ageing time dependence of the precipitates evolution such as the volume fraction and size distribution. In order to evaluate the radiation embrittlement of RPV steel, A Cold rolled Fe-Cu model Alloy was prepared, The prepared samples were thermally aged by annealing at 400 .deg. C for various times, the magnetic properties of the annealed samples were measured, The Barkhausen noise and BH Loop shows a considerable trend corresponding to the Ageing time. The magnetic properties were interpreted and correlated to the CRPs formed through annealing process.

  9. Effect of radiation on disinfection and mechanical properties of Korean traditional paper, Hanji

    Science.gov (United States)

    Choi, Jong-il; Chung, Yong Jae; Kang, Dai Ill; Lee, Kyu Shik; Lee, Ju-Woon

    2012-08-01

    Fumigants, including methyl bromide and ethylene oxide, are generally used for the preservation of the Korean cultural heritage, especially paper products like letters and books. However, the use of fumigants is banned because of their harmful effects on humans and the environment. Gamma irradiation is being considered as an alternative for the sterilization of insects and fungi in organic products. Therefore, the purpose of this study was to investigate the sterilization effects of radiation and its effect on the mechanical properties of the Korean traditional paper—Hanji. Treatment doses of 9 kGy and 8 kGy of gamma irradiation inactivated 5 log units of Aspergillus niger and Bacillus cereus spores inoculated on Hanji, respectively. The gamma irradiations up to an absorbed dose of 50 kGy resulted in no significant changes in the tensile strength, bursting strength, and appearance of Hanji. These results confirmed that radiation treatment disinfects the Korean traditional paper efficiently without changing its properties and that this treatment could be used to prevent the damage of Korean ancient archives by molds and fungi.

  10. Chemical vapor deposition diamond based multilayered radiation detector: Physical analysis of detection properties

    International Nuclear Information System (INIS)

    Almaviva, S.; Marinelli, Marco; Milani, E.; Prestopino, G.; Tucciarone, A.; Verona, C.; Verona-Rinati, G.; Angelone, M.; Pillon, M.; Dolbnya, I.; Sawhney, K.; Tartoni, N.

    2010-01-01

    Recently, solid state photovoltaic Schottky diodes, able to detect ionizing radiation, in particular, x-ray and ultraviolet radiation, have been developed at the University of Rome 'Tor Vergata'. We report on a physical and electrical properties analysis of the device and a detailed study of its detection capabilities as determined by its electrical properties. The design of the device is based on a metal/nominally intrinsic/p-type diamond layered structure obtained by microwave plasma chemical vapor deposition of homoepitaxial single crystal diamond followed by thermal evaporation of a metallic contact. The device can operate in an unbiased mode by using the built-in potential arising from the electrode-diamond junction. We compare the expected response of the device to photons of various energies calculated through Monte Carlo simulation with experimental data collected in a well controlled experimental setup i.e., monochromatic high flux x-ray beams from 6 to 20 keV, available at the Diamond Light Source synchrotron in Harwell (U.K.).

  11. Materials for Concentrator Photovoltaic Systems: Optical Properties and Solar Radiation Durability

    Science.gov (United States)

    French, R. H.; Rodríguez-Parada, J. M.; Yang, M. K.; Lemon, M. F.; Romano, E. C.; Boydell, P.

    2010-10-01

    Concentrator photovoltaic (CPV) systems are designed to operate over a wide range of solar concentrations, from low concentrations of ˜1 to 12 Suns to medium concentrations in the range from 12 to 200 Suns, to high concentration CPV systems going up to 2000 Suns. Many transparent optical materials are used for a wide variety of functions ranging from refractive and reflective optics to homogenizers, encapsulants and even thermal management. The classes of materials used also span a wide spectrum from hydrocarbon polymers (HCP) and fluoropolymers (FP) to silicon containing polymers and polyimides (PI). The optical properties of these materials are essential to the optical behavior of the system. At the same time radiation durability of these materials under the extremely wide range of solar concentrations is a critical performance requirement for the required lifetime of a CPV system. As part of our research on materials for CPV we are evaluating the optical properties and solar radiation durability of various polymeric materials to define the optimum material combinations for various CPV systems.

  12. Selected properties of the potato snacks expanded in the microwave radiation

    Directory of Open Access Journals (Sweden)

    Mitrus Marcin

    2018-01-01

    Full Text Available The results of measurements of the selected properties of the extruded potato pellets and snacks expanded in the microwave field are presented in the paper. The potato pellets with the addition of the baking soda were prepared with a single screw extruder TS-45. The snacks were obtained by pellets expansion in a conventional microwave oven. The expansion index and the hardness of the pellets and the snacks, as well as, the texture properties of the snacks were evaluated during this study. The results showed that baking soda addition reduced the potato pellet expansion during their extrusion. This was an effect of a smaller thickness of the obtained pellets. The addition of baking soda had positive influence on potato snacks expansion in microwave radiation. The higher content of the soda additive resulted in lower hardness of pellets during cutting tests. The opposite effect was observed during texture measurements of the snacks. The addition of baking soda increased hardness of the expanded snacks. Soda addition lowers crispness and fragilityof the potato snacks expanded in the microwave radiation.

  13. CHANGE IN DEFORMATION PROPERTIES MODELING OF CONCRETE IN PROTECTIVE STRUCTURES OF NUCLEAR REACTOR BY IONIZING RADIATION

    Directory of Open Access Journals (Sweden)

    E. K. Agakhanov

    2016-01-01

    Full Text Available The necessity of studying the effect impact of elementary particles impact on the strength and deformation materials properties used in protective constructions nuclear reactors and reactor technology has been stipulated. A nuclear reactor pressure vessel from prestressed concrete, combining the functions of biological protection is to be considered. The neutron flux problem distribution in the pressure vessel of a nuclear reactor has been solved. The solution is made in axisymmetric with the finite element method using a flat triangular finite element. Computing has been conducted in Matlab package. The comparison with the results has been obtained using the finite difference method, as well as the graphs of changes under the influence of radiation exposure and the elastic modulus of concrete radiation deformations have been constructed. The proposed method allows to simulate changes in the deformation properties of concrete under the influence of neutron irradiation. Results of the study can be used in the calculation of stress-strain state of structures, taking into account indirect heterogeneity caused by the physical fields influence.

  14. Effect of penetrating ionising radiation on the mechanical properties of pericardium

    Energy Technology Data Exchange (ETDEWEB)

    Daar, Eman, E-mail: e.daar@surrey.ac.u [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Woods, E. [Royal Free Hampstead NHS Trust, Pond Street, Hampstead, London NW3 2QG (United Kingdom); Keddie, J.L. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Nisbet, A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Royal Surrey County Hospital, Guildford (United Kingdom); Bradley, D.A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2010-07-21

    The pericardium is an anistropic composite material made up of collagen and elastin fibres embedded in an amorphous matrix mainly composed of proteoglycan and hyaluronan. The collagen fibres a