WorldWideScience

Sample records for radiation 280-320 nm

  1. Response of sugar beet plants to ultraviolet-B (280-320 nm) radiation and Cercospora leaf spot disease

    International Nuclear Information System (INIS)

    Panagopoulos, I.; Bornman, J.F.; Björn, L.O.

    1992-01-01

    Sugar beet (Beta vulgaris L.) plants injected with Cercospora beticola Sacc. as well as non-infected plants were grown under visible light with or without ultraviolet-B (UV-B, 280-320 nm) radiation for 40 days. An interaction between UV-B radiation and Cercospora leaf spot disease was observed, resulting in a large reduction in leaf chlorophyll content, dry weight of leaf laminae, petioles and storage roots. Lipid peroxidation in leaves also increased the most under the combined treatments. This was also true for ultraweak luminescence from both adaxial and abaxial leaf surfaces. However, no correlation between lipid peroxidation and ultraweak luminescence was observed. Ultraviolet-B radiation given alone appeared to have either a stimulating effect, giving an increase in dry weight of laminac and reducing lipid peroxidation, or no effect. This lack of effect was seen in the absence of change in dry weight of storage roots and chlorophyll content relative to controls. The study demonstrated a harmful interaction between UV-B radiation and Cercospora leaf spot disease on sugar beet

  2. Induction of heat shock-like proteins in Vigna sinensis seedlings growing under ultraviolet-B (280-320 nm) enhanced radiation

    International Nuclear Information System (INIS)

    Nedunchezhian, N.; Annamalainathan, K.; Kulandaivelu, G.

    1992-01-01

    The effect of ultraviolet-B (UV-B) enhanced fluorescent radiation on protein profile and protein synthesis has been investigated in Vigna sinensis L. cv. Walp seedlings growing at various temperatures. In seedlings growing at 30°C, UV-B radiation decreased the level of several proteins as seen in Coomassie brilliant blue stained gel. However, fluorography of the same gel indicates induction of three sets of proteins in the range of 70. 53 and 16 k Da. Such induction under UV-B enhanced radiation resembled that found after heat shock treatments. In seedlings at 10 and 20°C, induction of such proteins varied both qualitatively and quantitatively. At 40°C. UV-B enhanced radiation caused a cumulative effect with temperature. Strong induction of specific proteins by UV-B radiation in seedlings growing under normal temperature indicates a possible protective role

  3. Ultraviolet-B (280-320 nm) absorbing pigments in the leaves of Silene vulgaris: their role in UV-B tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Staaij, J.W.M. van de; Ernst, W. H.O.; Hakvoort, H. W.J.; Rozema, J. [Vrije Univ., Amsterdam (Netherlands)

    1995-07-01

    The UV-B radiation tolerant perennial herb Silene vulgaris was tested on the influence of incident UV-B fluxes during growth on the synthesis of UV-B absorbing pigments in the leaves. Analysis of methanolic leaf extracts showed a stimulating effect of UV-B on the absorbing ability of leaf extracts. HPLC analysis made clear that UV-B radiation stimulated extractable flavonoid concentrations in leaves, but that UV-B absorption could only be partly attributed to these flavonoids. The contribution of flavonoids to UV-B absorption diminishes if plants mature. Other possible functions of flavonoids in plants growing under elevated UV-B conditions are discussed. (author)

  4. Ultraviolet-B (280-320 nm) absorbing pigments in the leaves of Silene vulgaris: their role in UV-B tolerance

    International Nuclear Information System (INIS)

    Staaij, J.W.M. van de; Ernst, W.H.O.; Hakvoort, H.W.J.; Rozema, J.

    1995-01-01

    The UV-B radiation tolerant perennial herb Silene vulgaris was tested on the influence of incident UV-B fluxes during growth on the synthesis of UV-B absorbing pigments in the leaves. Analysis of methanolic leaf extracts showed a stimulating effect of UV-B on the absorbing ability of leaf extracts. HPLC analysis made clear that UV-B radiation stimulated extractable flavonoid concentrations in leaves, but that UV-B absorption could only be partly attributed to these flavonoids. The contribution of flavonoids to UV-B absorption diminishes if plants mature. Other possible functions of flavonoids in plants growing under elevated UV-B conditions are discussed. (author)

  5. A garlic extract protects from ultraviolet B (280-320 nm) radiation-induced suppression of contact hypersensitivity

    International Nuclear Information System (INIS)

    Reeve, V.E.; Bosnic, M.; Rozinova, E.; Boehm-Wilcox, C.

    1993-01-01

    Lyophilized aged garlic extract has been incorporated at concentrations of 0.1%, 1% and 4% by weight into semi purified powdered diets and fed to hairless mice. Under moderate UVB exposure conditions resulting in 58% suppression of the systemic contact hypersensitivity response in control-fed mice, a dose-responsive protection was observed in the garlic-fed mice; contact hypersensitivity in the UVB-exposed mice fed 4% garlic extract was suppressed by only 19%. If the UVB exposure was replaced by topical application of one of a series of lotions containing increasing concentrations of cis-urocanic acid, a dose-responsive suppression of contact hypersensitivity was demonstrated in control-fed mice (urocanic acid at 25, 50, 100 and 200 micrograms per mouse resulting in 22-46% suppression). Mice fed a diet containing 1% aged garlic extract were partially protected from cis-urocanic acid-induced suppression of contact hypersensitivity, with greater protection from the lower concentrations of urocanic acid. Mice fed a diet containing 4% aged garlic extract were protected from all concentrations of urocanic acid. The results indicate that aged garlic extract contains ingredient(s) that protect from UVB-induced suppression of contact hypersensitivity and suggest that the mechanism of protection is by antagonism of the cis-urocanic acid mediation of this form of immunosuppression

  6. Temperature dependence of UV radiation effects in Arctic and temperate isolates of three red macrophytes

    NARCIS (Netherlands)

    van de Poll, W.H.; Eggert, A.; Buma, A.G.J.; Breeman, Arno

    The temperature dependence of UV effects was studied for Arctic and temperate isolates of the red macrophytes Palmaria palmata, Coccotylus truncatus and Phycodrys rubens. The effects of daily repeated artificial ultraviolet B and A radiation (UVBR: 280-320 nm, UVAR: 320-400 nm) treatments were

  7. Effects of ultraviolet-B radiation on phytoplankton - zooplankton interactions = [Effecten van ultraviolet-B straling op interacties tussen fytoplankton en zooplankton

    NARCIS (Netherlands)

    Lange, de H.J.

    1999-01-01

    The decrease in stratospheric ozone concentration has received wide attention because the ozone layer protects the earth from harmful ultraviolet-B radiation (UVB, 280-320 nm). UVB radiation is harmful for organisms, and therefore scientific research into how UVB radiation affects organisms

  8. The effect of ultraviolet radiation on water-logging resistance in ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-01

    Dec 1, 2009 ... similar defense systems to reduce cellular damages and a phenomenon ... UV-B radiation (280 - 320 nm) was provided by UV-B Lamps. (Beijing Normal .... of the experiment, water-logging led to a decrease of. SOD activity ...

  9. Radiation Failures in Intel 14nm Microprocessors

    Science.gov (United States)

    Bossev, Dobrin P.; Duncan, Adam R.; Gadlage, Matthew J.; Roach, Austin H.; Kay, Matthew J.; Szabo, Carl; Berger, Tammy J.; York, Darin A.; Williams, Aaron; LaBel, K.; hide

    2016-01-01

    In this study the 14 nm Intel Broadwell 5th generation core series 5005U-i3 and 5200U-i5 was mounted on Dell Inspiron laptops, MSI Cubi and Gigabyte Brix barebones and tested with Windows 8 and CentOS7 at idle. Heavy-ion-induced hard- and catastrophic failures do not appear to be related to the Intel 14nm Tri-Gate FinFET process. They originate from a small (9 m 140 m) area on the 32nm planar PCH die (not the CPU) as initially speculated. The hard failures seem to be due to a SEE but the exact physical mechanism has yet to be identified. Some possibilities include latch-ups, charge ion trapping or implantation, ion channels, or a combination of those (in biased conditions). The mechanism of the catastrophic failures seems related to the presence of electric power (1.05V core voltage). The 1064 nm laser mimics ionization radiation and induces soft- and hard failures as a direct result of electron-hole pair production, not heat. The 14nm FinFET processes continue to look promising for space radiation environments.

  10. Ocular effects of ultraviolet radiation from 295 to 365 nm

    International Nuclear Information System (INIS)

    Pitts, D.G.; Cullen, A.P.; Hacker, P.D.

    1977-01-01

    A 5,000 watt Xe--Hg source and a double monochromator were used to produce 6.6 nm full band-pass ultraviolet (UV) radiation. Pigmented rabbit eyes were exposed to the 6.6 nm band-pass UV radiant energy in 5 nm steps from 295 to 320 nm and at random intervals above 320 nm. Corneal and lenticular damage was assessed and classified with a biomicroscope. Corneal threshold radiant exposure (Hc) rose very rapidly from 0.022 Jcm -2 at 300 nm to 10.99 Jcm -2 at 335 nm. Radiant exposures exceeding 2 x Hc resulted in irreversible corneal damage. Lenticular damage was limited to wavebands above 295 nm. The action spectrum for the lens began at 295 nm and extended to about 315 nm. Permanent lenticular damage occurred at radiant exposure levels approximately twice the threshold for lenticular radiant exposure. The importance in establishing both corneal and lenticular damage criteria is emphasized

  11. Partial inhibition of in vitro pollen germination by simulated solar ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Flint, S.D.; Caldwell, M.M.

    1984-01-01

    Pollen from four temperate-latitude taxa were treated with UV radiation in a portion of the UV-B (280-320 nm) waveband during in vitro germination. Inhibition of germination was noted in this pollen compared to samples treated identically except for the exclusion of the UV-B portion of the spectrum. Levels similar to maximum solar UV-B found in temperate-latitude areas failed to inhibit pollen germination significantly, while levels similar to maximum solar UV-B found in equatorial alpine locations caused partial inhibition of germination in three of the four taxa examined

  12. Investigating Degradation Mechanisms in 130 nm and 90 nm Commercial CMOS Technologies Under Extreme Radiation Conditions

    Science.gov (United States)

    Ratti, Lodovico; Gaioni, Luigi; Manghisoni, Massimo; Traversi, Gianluca; Pantano, Devis

    2008-08-01

    The purpose of this paper is to study the mechanisms underlying performance degradation in 130 nm and 90 nm commercial CMOS technologies exposed to high doses of ionizing radiation. The investigation has been mainly focused on their noise properties in view of applications to the design of low-noise, low-power analog circuits to be operated in harsh environment. Experimental data support the hypothesis that charge trapping in shallow trench isolation (STI), besides degrading the static characteristics of interdigitated NMOS transistors, also affects their noise performances in a substantial fashion. The model discussed in this paper, presented in a previous work focused on CMOS devices irradiated with a 10 Mrad(SiO2) gamma -ray dose, has been applied here also to transistors exposed to much higher (up to 100 Mrad(SiO2 )) doses of X-rays. Such a model is able to account for the extent of the observed noise degradation as a function of the device polarity, dimensions and operating point.

  13. The effect of UV-B and UV-C radiation on Hibiscus leaves determined by ultraweak luminescence and fluorescence induction [chlorophyll fluorescence induction, ultraweak luminescence

    International Nuclear Information System (INIS)

    Panagopoulos, I.; Bornman, J.F.; Björn, L.O.

    1989-01-01

    The effects of UV-C (254 nm) and UV-B (280-320 nm) on chlorophyll fluorescence induction and ultraweak luminescence (UL) in detached leaves of Hibiscus rosa-sinensis L. were investigated. UL from leaves exposed to UV-B and UV-C radiation reached a maximum 72 h after irradiation. In both cases most of the light was of a wavelength over 600 nm. An increase in the percentage of long wavelength light with time was detected. UV radiation increased peroxidase activity, which also reached a maximum 72 h after irradiation. UV-B and UV-C both reduced variable chlorophyll fluorescence. No effect on the amount of chlorophyll or UV screening pigments was observed with the short-term irradiation used in this investigation. (author)

  14. Ultraviolet radiation in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Taalas, P.; Koskela, T.; Damski, J.; Supperi, A. [Finnish Meteorological Inst., Helsinki (Finland). Section of Ozone and UV Research; Kyroe, E. [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1996-12-31

    Solar ultraviolet radiation is damaging for living organisms due to its high energy pro each photon. The UV radiation is often separated into three regions according to the wavelength: UVC (200-280 nm), UVB (280-320 nm) and UVA (320-400 nm). The most hazardous part, UVC is absorbed completely in the upper atmosphere by molecular oxygen. UVB radiation is absorbed by atmospheric ozone partly, and it is reaching Earth`s surface, as UVA radiation. Besides atmospheric ozone, very important factors in determining the intensity of UVB radiation globally are the solar zenith angle and cloudiness. It may be calculated from global ozone changes that the clear-sky UVB doses may have enhanced by 10-15 % during spring and 5-10 % during summer at the latitudes of Finland, following the decrease of total ozone between 1979-90. The Finnish ozone and UV monitoring activities have become a part of international activities, especially the EU Environment and Climate Programme`s research projects. The main national level effort has been the Finnish Academy`s climatic change programme, SILMU 1990-95. This presentation summarises the scientific results reached during the SILMU project

  15. Ultraviolet radiation in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Taalas, P; Koskela, T; Damski, J; Supperi, A [Finnish Meteorological Inst., Helsinki (Finland). Section of Ozone and UV Research; Kyroe, E [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1997-12-31

    Solar ultraviolet radiation is damaging for living organisms due to its high energy pro each photon. The UV radiation is often separated into three regions according to the wavelength: UVC (200-280 nm), UVB (280-320 nm) and UVA (320-400 nm). The most hazardous part, UVC is absorbed completely in the upper atmosphere by molecular oxygen. UVB radiation is absorbed by atmospheric ozone partly, and it is reaching Earth`s surface, as UVA radiation. Besides atmospheric ozone, very important factors in determining the intensity of UVB radiation globally are the solar zenith angle and cloudiness. It may be calculated from global ozone changes that the clear-sky UVB doses may have enhanced by 10-15 % during spring and 5-10 % during summer at the latitudes of Finland, following the decrease of total ozone between 1979-90. The Finnish ozone and UV monitoring activities have become a part of international activities, especially the EU Environment and Climate Programme`s research projects. The main national level effort has been the Finnish Academy`s climatic change programme, SILMU 1990-95. This presentation summarises the scientific results reached during the SILMU project

  16. Protection against ultraviolet-B radiation-induced local and systemic suppression of contact hypersensitivity and edema responses in C3H/HeN mice by green tea polyphenols

    International Nuclear Information System (INIS)

    Katiyar, S.K.; Elmets, C.A.; Agarwal, Rajesh; Mukhtar, Hasan

    1995-01-01

    Exposure of skin to UV radiation can cause diverse biological effects, including induction of inflammation, alteration in cutaneous immune cells and impairment of contact hypersensitivity (CHS) responses. Our laboratory has demonstrated that oral feeding as well as topical application of a polyphenolic fraction isolated from green tea (GTP) affords protection against the carcinogenic effects of UVB (280-320 nm) radiation. In this study, we investigated whether GTP could protect against UVB-induced immunosuppression and cutaneous inflammatory responses in C3H mice. Immunosuppression was assessed by contact sensitization with 2,4-dinitrofluorobenzene applied to UVB-irradiated skin (local suppression) or to a distant site (systemic suppression), while double skin-fold swelling was used as the measure of UVB-induced inflammation. (author)

  17. Characterization of radiation effects in 65 nm digital circuits with the DRAD digital radiation test chip

    International Nuclear Information System (INIS)

    Casas, L.M. Jara; Ceresa, D.; Kulis, S.; Christiansen, J.; Francisco, R.; Miryala, S.; Gnani, D.

    2017-01-01

    A Digital RADiation (DRAD) test chip has been specifically designed to study the impact of Total Ionizing Dose (TID) (<1 Grad) and Single Event Upset (SEU) on digital logic gates in a 65 nm CMOS technology. Nine different versions of standard cell libraries are studied in this chip, basically differing in the device dimensions, V t flavor and layout of the device. Each library has eighteen test structures specifically designed to characterize delay degradation and power consumption of the standard cells. For SEU study, a dedicated test structure based on a shift register is designed for each library. TID results up to 500 Mrad are reported.

  18. Synchrotron Radiation Lithography for Manufacturing Integrated Circuits Beyond 100 nm.

    Science.gov (United States)

    Kinoshita, H; Watanabe, T; Niibe, M

    1998-05-01

    Extreme ultraviolet lithography is a powerful tool for printing features of 0.1 micro m and below; in Japan and the USA there is a growing tendency to view it as the wave of the future. With Schwarzschild optics, replication of a 0.05 micro m pattern has been demonstrated in a 25 micro m square area. With a two-aspherical-mirror system, a 0.15 micro m pattern has been replicated in a ring slit area of 20 mm x 0.4 mm; a combination of this system with illumination optics and synchronized mask and wafer stages has enabled the replication of a 0.15 micro m pattern in an area of 10 mm x 12.5 mm. Furthermore, in the USA, the Sandia National Laboratory has succeeded in fabricating a fully operational NMOS transistor with a gate length of 0.1 micro m. The most challenging problem is the fabrication of mirrors with the required figure error of 0.28 nm. However, owing to advances in measurement technology, mirrors can now be made to a precision that almost satisfies this requirement. Therefore, it is time to move into a rapid development phase in order to obtain a system ready for practical use by the year 2004. In this paper the status of individual technologies is discussed in light of this situation, and future requirements for developing a practical system are considered.

  19. Comparison of the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation.

    Science.gov (United States)

    Yin, Jian; Han, Zhengfeng; Guo, Baofeng; Guo, Han; Zhang, Tongtong; Zeng, Yanjun; Ren, Longxi

    2015-07-01

    To compare the ablation ability of nucleus pulposus after 1,064 nm Nd:YAG laser and 980 nm diode laser radiation. Goat spine specimen (GSS) was radiated using Nd:YAG laser and 980 nm diode laser and then divided into five groups based on the final energy--200, 400, 600, 800 and 1,000 J groups. The ablation quality of nucleus pulposus after radiation was recorded. The ablation quality of GSS was greater at higher radiation energies in both lasers. When compared at the same energy level, the ablation quality of GSS was greater in 980 nm diode laser than in 1,064 nm Nd:YAG laser. Statistical significance was observed in 200 and 400 J groups (P diode laser showed better ablation ability than 1,064 nm Nd:YAG laser.

  20. Effects of ultraviolet radiation on photosynthetic performance and N2 fixation in Trichodesmium erythraeum IMS 101

    Science.gov (United States)

    Cai, Xiaoni; Hutchins, David A.; Fu, Feixue; Gao, Kunshan

    2017-10-01

    Biological effects of ultraviolet radiation (UVR; 280-400 nm) on marine primary producers are of general concern, as oceanic carbon fixers that contribute to the marine biological CO2 pump are being exposed to increasing UV irradiance due to global change and ozone depletion. We investigated the effects of UV-B (280-320 nm) and UV-A (320-400 nm) on the biogeochemically critical filamentous marine N2-fixing cyanobacterium Trichodesmium (strain IMS101) using a solar simulator as well as under natural solar radiation. Short exposure to UV-B, UV-A, or integrated total UVR significantly reduced the effective quantum yield of photosystem II (PSII) and photosynthetic carbon and N2 fixation rates. Cells acclimated to low light were more sensitive to UV exposure compared to high-light-grown ones, which had more UV-absorbing compounds, most likely mycosporine-like amino acids (MAAs). After acclimation under natural sunlight, the specific growth rate was lower (by up to 44 %), MAA content was higher, and average trichome length was shorter (by up to 22 %) in the full spectrum of solar radiation with UVR, than under a photosynthetically active radiation (PAR) alone treatment (400-700 nm). These results suggest that prior shipboard experiments in UV-opaque containers may have substantially overestimated in situ nitrogen fixation rates by Trichodesmium, and that natural and anthropogenic elevation of UV radiation intensity could significantly inhibit this vital source of new nitrogen to the current and future oligotrophic oceans.

  1. Comparative mutagenesis and interaction between near-ultraviolet (313- to 405-nm) and far-ultraviolet (254-nm) radiation in Escherichia coli strains with differing repair capabilities

    International Nuclear Information System (INIS)

    Turner, M.A.; Webb, R.B.

    1981-01-01

    Comparative mutagenesis and possible synergistic interaction between broad-spectrum (313- to 405-nm) near-ultraviolet (black light bulb [BLB]) radiation and 254-nm radiation were studied in Escherichia coli strains WP2 (wild type), WP2s (uvrA), WP10 (recA), WP6 (polA), WP6s (polA uvrA), WP100 (uvrA recA), and WP5 (lexA). With BLB radiation, strains WP2s and WP6s demonstrated a high level of mutagenesis, whereas strains WP2, WP5, WP6, WP10, and WP100 did not demonstrate significant mutagenesis. In contrast, 254-nm radiation was mutagenic in strains WP2, WP2s, WP6, and WP6s, but strains WP5, WP10, and WP100 were not significantly mutated. The absence of mutagenesis by BLB radiation in lexA and recA strains WP10, WP5, and WP100 suggests that lex + rec + repair may play a major role in mutagenesis by both BLB and 254-nm radiation. The hypothesis that BLB radiation selectively inhibits rec + lex + repair was tested by sequential BLB-254 nm radiation. With strain WP2, a fluence of 30 J/m 2 at 254 nm induced trp + revertants at a frequency of 15 x 10 -6 . However, when 10 5 J/m 2 or more BLB radiation preceded the 254-nm exposure, no trp + revertants could be detected. A similar inhibition of 254-nm mutagenesis was observed with strain WP6 (polA). However, strains WP2s (uvrA) and WP6s (polA uvrA) showed enhanced 254-nm mutagenesis when a prior exposure to BLB radiation was given

  2. Enhanced escape rate for Hg 254 nm resonance radiation in fluorescent lamps

    International Nuclear Information System (INIS)

    Lawler, James E; Raizen, Mark G

    2013-01-01

    The potential of the low-cost MAGIS isotopic separation method to improve fluorescent lamp efficacy is explored using resonance radiation transport simulations. New Hg isotopic mixes are discovered that yield escape rates for 254 nm Hg I resonance radiation equal to 117% to 122% of the rate for a natural isotopic mix under the same lamp conditions. (paper)

  3. Study on the specificity of yeast cell damage by high-intensity UV radiation (266nm)

    International Nuclear Information System (INIS)

    Burchuladze, T.G.; Frajkin, G.Ya.; Rubin, L.B.

    1981-01-01

    Peculiarities of photoreactivation and photoprotection of the Candida guilliermondii and Candida utilis yeast cells, irradiated with far and near ultraviolet radiation, are considered. New results on the study of the dependence of the cells inactivation degree on the intensity of ultraviolet radiation are presented. The impulse rate density at 266 nm reached 10 10 Ix m -2 xs -1 at the impulse duration of 10 -8 s. Survival curves of the yeast cells during their irradiation with ultraviolet radiation of 266 nm and 254 nm are given. It is shown that with the increase of the irradiation intensity of 266 nm the rates and final levels of photoreactivation decrease. Under the effect of ultraviolet irradiation of high intensity contribution of pyrimidine dimers to the cell inactivation decreases [ru

  4. New apparatus with high radiation energy between 320 to 460 nm: physical description and dermatological applications

    International Nuclear Information System (INIS)

    Mutzhas, M.F.; Holzle, E.; Hofmann, C.; Plewig, G.

    1981-01-01

    A new apparatus (UVASUN 5000) is presented with high radiation energy between 320 to 460 nm. The radiator is a specially developed source for high uv-A intensity, housing a quartz bulb with a mixture of argon, mercury and metal-halides. The uv-A energy in the range of 320 to 400 nm is about 84% of the total radiation energy. Effects of very high doses of uv-A on human skin were studied. Following single uv-A applications the minimal tanning dose uv-A (MTD) and the immediate pigment darkening (IPD) dose of uv-A were established. Repeated exposure to this uv-A delivering system yields long lasting dark brown skin pigmentation without any clinical or histological signs of sunburn (uv-B) damage, epidermal hyperplasia or thickening of the stratum corneum. Minimal therapeutic results were seen in the phototherapy of vitiligo and inflammatory acne

  5. Radiation-induced transient attenuation of optical fibers at 800 and 1300 nm

    International Nuclear Information System (INIS)

    Looney, L.D.; Lyons, P.B.

    1987-01-01

    Radiation-induced absorption in optical fibers has been a subject of considerable interest throughout the world. As availability and applications of fibers have evolved from ''first window'' systems operating near 850 nm to ''second window'' systems near 1300 nm, interest in wavelength dependence of radiation effects in optical fibers has similarly evolved. The present work summarizes second-window, radiation-induced transient absorption measurements in optical fibers for times shorter than 5 μs. Comparisons to first window data for these fibers are also presented. Only high purity silica fibers with low-OH concentrations were used in the present study to avoid the large OH absorption band in this region. This paper also collects first window data on several high-OH optical fibers

  6. Ultraviolet Radiations: Skin Defense-Damage Mechanism.

    Science.gov (United States)

    Mohania, Dheeraj; Chandel, Shikha; Kumar, Parveen; Verma, Vivek; Digvijay, Kumar; Tripathi, Deepika; Choudhury, Khushboo; Mitten, Sandeep Kumar; Shah, Dilip

    2017-01-01

    UV-radiations are the invisible part of light spectra having a wavelength between visible rays and X-rays. Based on wavelength, UV rays are subdivided into UV-A (320-400 nm), UV-B (280-320 nm) and UV-C (200-280 nm). Ultraviolet rays can have both harmful and beneficial effects. UV-C has the property of ionization thus acting as a strong mutagen, which can cause immune-mediated disease and cancer in adverse cases. Numbers of genetic factors have been identified in human involved in inducing skin cancer from UV-radiations. Certain heredity diseases have been found susceptible to UV-induced skin cancer. UV radiations activate the cutaneous immune system, which led to an inflammatory response by different mechanisms. The first line of defense mechanism against UV radiation is melanin (an epidermal pigment), and UV absorbing pigment of skin, which dissipate UV radiation as heat. Cell surface death receptor (e.g. Fas) of keratinocytes responds to UV-induced injury and elicits apoptosis to avoid malignant transformation. In addition to the formation of photo-dimers in the genome, UV also can induce mutation by generating ROS and nucleotides are highly susceptible to these free radical injuries. Melanocortin 1 receptor (MC1R) has been known to be implicated in different UV-induced damages such as pigmentation, adaptive tanning, and skin cancer. UV-B induces the formation of pre-vitamin D3 in the epidermal layer of skin. UV-induced tans act as a photoprotection by providing a sun protection factor (SPF) of 3-4 and epidermal hyperplasia. There is a need to prevent the harmful effects and harness the useful effects of UV radiations.

  7. Toxic effects of ultraviolet radiation on the skin

    International Nuclear Information System (INIS)

    Matsumura, Yasuhiro; Ananthaswamy, Honnavara N.

    2004-01-01

    Ultraviolet (UV) irradiation present in sunlight is an environmental human carcinogen. The toxic effects of UV from natural sunlight and therapeutic artificial lamps are a major concern for human health. The major acute effects of UV irradiation on normal human skin comprise sunburn inflammation (erythema), tanning, and local or systemic immunosuppression. At the molecular level, UV irradiation causes DNA damage such as cyclobutane pyrimidine dimers and (6-4) photoproducts, which are usually repaired by nucleotide excision repair (NER). Chronic exposure to UV irradiation leads to photoaging, immunosuppression, and ultimately photocarcinogenesis. Photocarcinogenesis involves the accumulation of genetic changes, as well as immune system modulation, and ultimately leads to the development of skin cancers. In the clinic, artificial lamps emitting UVB (280-320 nm) and UVA (320-400 nm) radiation in combination with chemical drugs are used in the therapy of many skin diseases including psoriasis and vitiligo. Although such therapy is beneficial, it is accompanied with undesirable side effects. Thus, UV radiation is like two sides of the same coin--on one side, it has detrimental effects, and on the other side, it has beneficial effects

  8. Picosecond laser texturization of mc-silicon for photovoltaics: A comparison between 1064 nm, 532 nm and 355 nm radiation wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Binetti, Simona [Department of Materials Science and Milano-Bicocca Solar Energy Research Center (MIB-SOLAR), University of Milano-Bicocca, Via Cozzi 55, 20125 Milano (Italy); Le Donne, Alessia, E-mail: alessia.ledonne@mater.unimib.it [Department of Materials Science and Milano-Bicocca Solar Energy Research Center (MIB-SOLAR), University of Milano-Bicocca, Via Cozzi 55, 20125 Milano (Italy); Rolfi, Andrea [Department of Materials Science and Milano-Bicocca Solar Energy Research Center (MIB-SOLAR), University of Milano-Bicocca, Via Cozzi 55, 20125 Milano (Italy); Jäggi, Beat; Neuenschwander, Beat [Bern University of Applied Sciences, Engineering and Information Technology, Institute for Applied Laser, Photonics and Surface Technologies ALPS, Pestalozzistrasse 20, CH-3400 Burgdorf (Switzerland); Busto, Chiara [ENI Spa, Via Giacomo Fauser, 4, 28100 Novara (Italy); Frigeri, Cesare [CNR-IMEM Institute, Parco Area Delle Scienze 37/A, Fontanini, 43010 Parma (Italy); Scorticati, Davide; Longoni, Luca; Pellegrino, Sergio [Laserpoint Srl, Via Della Burrona 51, 20090 Vimodrone, Milano (Italy)

    2016-05-15

    Highlights: • Self-organized surface structures were produced by picosecond laser pulses on mc-Si. • Three laser wavelengths were used which effectively reduce Si reflectivity up to 8%. • The subsurface damage induced by the three lasers was studied in detail. • μ-Raman, PL and TEM proved that UV laser provides the lowest subsurface damage. • UV laser induced damage is located above the depletion region of the p–n junction. - Abstract: Self-organized surface structures were produced by picosecond laser pulses on multi-crystalline silicon for photovoltaic applications. Three different laser wavelengths were employed (i.e. 1064 nm, 532 nm and 355 nm) and the resulting morphologies were observed to effectively reduce the reflectivity of the samples after laser irradiation. Besides, a comparative study of the laser induced subsurface damage generated by the three different wavelengths was performed by confocal micro-Raman, photoluminescence and transmission electron microscopy. The results of both the structural and optical characterization showed that the mc-Si texturing performed with the laser at 355 nm provides surface reflectivity between 11% and 8% over the spectral range from 400 nm to 1 μm, while inducing the lowest subsurface damage, located above the depletion region of the p–n junction.

  9. Multiphoton ionization and fragmentation study of acetone using 308 nm laser radiation

    Science.gov (United States)

    Liu Houxiang, Li Shutao, Han Jingcheng, Zhu Rong, Guan Yifu, Wu Cunkai

    1988-10-01

    Multiphoton ionization and fragmentation (MPI-F) of acetone molecules using 308 nm laser radiation was studied by using a molecular beam and quadrupole mass spectrometer. The ion peaks of acetone molecule appear at m/e=15 and 43, corresponding to the two fragments CH3+ and CH3CO+. It is considered that these two ions are, respectively, formed by direct (2+1) and 2-photon ionization of methyl and acetyl radicals, generated by photodissociation of acetone molecule.

  10. New silicon photodiodes for detection of the 1064nm wavelength radiation

    Science.gov (United States)

    Wegrzecki, Maciej; Piotrowski, Tadeusz; Puzewicz, Zbigniew; Bar, Jan; Czarnota, Ryszard; Dobrowolski, Rafal; Klimov, Andrii; Kulawik, Jan; Kłos, Helena; Marchewka, Michał; Nieprzecki, Marek; Panas, Andrzej; Seredyński, Bartłomiej; Sierakowski, Andrzej; Słysz, Wojciech; Synkiewicz, Beata; Szmigiel, Dariusz; Zaborowski, Michał

    2016-12-01

    In this paper a concept of a new bulk structure of p+-υ-n+ silicon photodiodes optimized for the detection of fast-changing radiation at the 1064 nm wavelength is presented. The design and technology for two types of quadrant photodiodes, the 8-segment photodiode and the 32-element linear photodiode array that were developed according to the concept are described. Electric and photoelectric parameters of the photodiodes mentioned above are presented.

  11. Investigation of 207 nm UV radiation for degradation of organic dye ...

    African Journals Online (AJOL)

    The photo-degradation of organic dye C.I. Acid Red 213 (AR-213) was achieved by 207 nm UV radiation emitted from a planar KrBr* excimer lamp without addition of oxidants at varying initial pH values. Precipitates were found to be generated when the irradiated solution of initial acid pH was adjusted to alkaline pH and ...

  12. New apparatus with high radiation energy between 320-460 nm: physical description and dermatological applications

    International Nuclear Information System (INIS)

    Mutzhas, M.F.; Holzle, E.; Hofmann, C.; Plewig, G.

    1981-01-01

    A new apparatus (UVASUN 5000) is presented with high-radiation energy between 320 to 460 nm. The measureable energy below 320 nm was shown to be many orders of magnitude too low to produce erythema. The radiator is a specially developed source for high uv-A intensity, housing a quartz bulb with a mixture of argon, mercury and metal-halides. At a skin-target distance of 0.2 m the size of the irradiated area is 0.35 x 0.35 m, and the measured mean uv-A intensity is about 1400 W. m-2 (140 mW . cm-2). The uv-A energy in the range of 320 to 400 nm is about 84% of the total radiation energy. Effects of very high doses of uv-A on human skin were studied. Following single uv-a applications the minimal tanning dose uv-A (MTD) and the immediate pigment darkening (IPD) dose of uv-A were established. The calculated IPD threshold time was 1.8 min at 0.2 m. Repeated exposure to this uv-A delivering system yields long lasting dark brown skin pigmentation without any clinical or histological signs of sunburn (uv-B) damage, epidermal hyperplasia or thickening of the stratum corneum. The instrument was also successfully used for photo-patch testing and reproduction of skin lesions of polymorphous light eruption. Minimal therapeutic results were seen in the phototherapy of vitiligo and inflammatory acne

  13. A monolithic active pixel sensor for ionizing radiation using a 180 nm HV-SOI process

    Energy Technology Data Exchange (ETDEWEB)

    Hemperek, Tomasz; Kishishita, Tetsuichi; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn, Bonn (Germany)

    2016-07-01

    An improved SOI-MAPS (Silicon On Insulator Monolithic Active Pixel Sensor) for ionizing radiation based on thick-180 nm High Voltage SOI technology (HV-SOI) has been developed. Similar to existing Fully Depleted SOI-based (FD-SOI) MAPS, a buried silicon oxide inter-dielectric (BOX) layer is used to separate the CMOS electronics from the handle wafer which is used as a depleted charge collection layer. Standard FD-SOI MAPS suffer from radiation damage such as transistor threshold voltage shifts due to trapped charge in the buried oxide layer and charged interface states created at the silicon oxide boundaries (back gate effect). The X-FAB 180 nm HV-SOI technology offers an additional isolation using a deep non-depleted implant between the BOX layer and the active circuitry which mitigates this problem. Therefore we see in this technology a high potential to implement radiation-tolerant MAPS with fast charge collection. The design and measurement results from first prototypes are presented including radiation tolerance to total ionizing dose and charge collection properties of neutron irradiated samples.

  14. Preparation and Characterization of Bragg Fibers for Delivery of Laser Radiation at 1064 nm

    Directory of Open Access Journals (Sweden)

    V. Matejec

    2013-04-01

    Full Text Available Bragg fibers offer new performance for transmission of high laser energies over long distances. In this paper theoretical modeling, preparation and characterization of Bragg fibers for delivery laser radiation at 1064 nm are presented. Investigated Bragg fibers consist of the fiber core with a refractive index equal to that of silica which is surrounded by three pairs of circular layers. Each pair is composed of one layer with a high and one layer with a low refractive index and characterized by a refractive-index difference around 0.03. Propagation constants and radiation losses of the fundamental mode in such a structure were calculated on the basis of waveguide optics. Preforms of the Bragg fibers were prepared by the MCVD method using germanium dioxide, phosphorous pentoxide and fluorine as silica dopants. The fibers with a diameter of 170 m were drawn from the preforms. Refractive-index profiles, angular distributions of the output power and optical losses of the prepared fibers were measured. Results of testing the fibers for delivery radiation of a pulse Nd:YAG laser at 1064 nm are also shown.

  15. Radiation tolerance study of a commercial 65 nm CMOS technology for high energy physics applications

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lili, E-mail: lili03.ding@gmail.com [Department of Information Engineering, Padova University, Via Gradenigo 6/B, 35131 Padova (Italy); INFN, Padova, Via Marzolo 8, 35131 Padova (Italy); State Key Laboratory of Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an (China); Gerardin, Simone [Department of Information Engineering, Padova University, Via Gradenigo 6/B, 35131 Padova (Italy); INFN, Padova, Via Marzolo 8, 35131 Padova (Italy); Bagatin, Marta [Department of Information Engineering, Padova University, Via Gradenigo 6/B, 35131 Padova (Italy); Bisello, Dario [Department of Physics and Astronomy, Padova University, Via Marzolo 8, 35131 Padova (Italy); INFN, Padova, Via Marzolo 8, 35131 Padova (Italy); Mattiazzo, Serena [Department of Physics and Astronomy, Padova University, Via Marzolo 8, 35131 Padova (Italy); Paccagnella, Alessandro [Department of Information Engineering, Padova University, Via Gradenigo 6/B, 35131 Padova (Italy); INFN, Padova, Via Marzolo 8, 35131 Padova (Italy)

    2016-09-21

    This paper reports the radiation tolerance study of a commercial 65 nm technology, which is a strong candidate for the Large Hadron Collider applications. After exposure to 3 MeV protons till 1 Grad dose, the 65 nm CMOS transistors, especially the pMOSFETs, showed severe long-term degradation mainly in the saturation drain currents. There were some differences between the degradation levels in the nMOSFETs and the pMOSFETs, which were likely attributed to the positive charges trapped in the gate spacers. After exposure to heavy ions till multiple strikes, the pMOSFETs did not show any sudden loss of drain currents, the degradations in the characteristics were negligible.

  16. Radiation hardness evaluation of the commercial 150 nm CMOS process using 60Co source

    International Nuclear Information System (INIS)

    Carna, M; Havranek, M; Hejtmanek, M; Janoska, Z; Marcisovsky, M; Neue, G; Tomasek, L; Vrba, V

    2014-01-01

    We present a study of radiation effects on MOSFET transistors irradiated with a 60 Co source to a total absorbed dose of 1.5 Mrad. The transistor test structures were manufactured using a commercial 150 nm CMOS process and are composed of transistors of different types (NMOS and PMOS), dimensions and insulation from the bulk material by means of deep n-wells. We have observed a degradation of electrical characteristics of both PMOS and NMOS transistors, namely a large increase of the leakage current of the NMOS transistors after irradiation

  17. Effects of ultraviolet-B radiation (UV-B) on growth and physiology of the dune grassland species Calamagrostis epigeios

    International Nuclear Information System (INIS)

    Tosserams, M.; Rozema, J.

    1995-01-01

    Seedlings of Calamagrostis epigeios were exposed to four levels of UV-B radiation (280-320 nm), simulating up to 44% reduction of stratospheric ozone concentration during summertime in The Netherlands, to determine the response of this plant species to UV-B irradiation. After six weeks of UV-B treatment, total biomass of all UV-B treated plants was higher, compared to plants that had received no UV-B radiation. The increase of biomass did not appear to be the result of a stimulation of net photosynthesis. Also, transpiration rate and water use efficiency were not altered by UV-B at any exposure level. Pigment analysis of leaf extracts showed no effect of enhanced UV-B radiation on chlorophyll content and accumulation of UV absorbing pigments. UV-B irradiance, however, did reduce the transmittance of visible light (400-700 nm) of intact attached leaves, suggesting a change in anatomical characteristics of the leaves. Additionally, the importance of including an ambient UV-B treatment in indoor experiments is discussed

  18. Comparison of UV action spectra for lethality and mutation in Salmonella typhimurium using a broad band source and monochromatic radiations

    International Nuclear Information System (INIS)

    Calkins, John; Selby, Christopher; Enoch, H.G.

    1987-01-01

    The UV-B region (280-320 nm) is thought to be primarily responsible for the mutagenic, lethal, and carcinogenic effects of solar radiation. We have conducted UV-B action spectroscopy for mutagenesis and survival of Ames' Salmonella typhimurium strain TA98 (uvrB, pKM101) using both monochromatic radiation from a dye laser and broader bandwidth radiation emitted from FS-20 sunlamps. A series of optical filters having different transmission cut-offs together with the sunlamp source provided bandwidths having successively less short wavelength components from which a ''broad band'' action spectrum was deduced. The two sets of action spectra differed both qualitatively and quantitatively: in comparison to the monochromatic action spectra, the ''broad band'' spectra showed up to a 200-fold reduced efficiency for both mutation induction and lethality by UV-B wavelengths. These results suggest a large protective effect of the background UV-A and/or visible radiations which were present during the broad spectrum irradiations and which are also present in solar radiation. Additional experiments show that to the extent tested this protective effect is not due to photo-reactivation or irradiance (dose rate) effects. (author)

  19. Effects of lanthanum(III) on nitrogen metabolism of soybean seedlings under elevated UV-B radiation.

    Science.gov (United States)

    Cao, Rui; Huang, Xiao-hua; Zhou, Qing; Cheng, Xiao-ying

    2007-01-01

    The hydroponic culture experiments of soybean bean seedlings were conducted to investigate the effect of lanthanum (La) on nitrogen metabolism under two different levels of elevated UV-B radiation (UV-B, 280-320 nm). The whole process of nitrogen metabolism involves uptake and transport of nitrate, nitrate assimilation, ammonium assimilation, amino acid biosynthesis, and protein synthesis. Compared with the control, UV-B radiation with the intensity of low level 0.15 W/m2 and high level 0.45 W/m2 significantly affected the whole nitrogen metabolism in soybean seedlings (p nitrogen-metabolism-related enzymes, such as: nitrate reductase (NR) to the nitrate reduction, glutamine systhetase (GS) and glutamine synthase (GOGAT) to the ammonia assimilation, while it increased the content of free amino acids and decreased that of soluble protein as well. The damage effect of high level of UV-B radiation on nitrogen metabolism was greater than that of low level. And UV-B radiation promoted the activity of the anti-adversity enzyme glutamate dehydrogenase (GDH), which reduced the toxicity of excess ammonia in plant. After pretreatment with the optimum concentration of La (20 mg/L), La could increase the activity of NR, GS, GOGAT, and GDH, and ammonia assimilation, but decrease nitrate and ammonia accumulation. In conclusion, La could relieve the damage effect of UV-B radiation on plant by regulating nitrogen metabolism process, and its alleviating effect under low level was better than that under the high one.

  20. Absolute cross sections for emission of 284.7-nm (Hg II) and 479.7-nm (Hg III) radiation in electron--mercury-ion collisions

    International Nuclear Information System (INIS)

    Phaneuf, R.A.; Taylor, P.O.; Dunn, G.H.

    1976-01-01

    Crossed beams of electrons and Hg + ions have been used to measure absolute cross sections for emission of 284.7-nm radiation, resulting from excitation of a predominantly ground-state Hg + target to the 7s 2 S 1 / 2 state. Values range from 3 x 10 -17 cm 2 near threshold, where the cross section is strongly peaked, to 1.3 x 10 -18 cm 2 at 280 eV. Also reported are some measurements of emission of 479.7-nm (Hg III) radiation, resulting from electron impact on both Hg + and Hg ++ targets. Cross sections range from approximately 5 x 10 -19 to 5 x 10 -20 cm 2 , and in the case of electron-Hg ++ collisions, are more than an order of magnitude smaller than predicted by an available semiclassical binary-encounter calculation

  1. Forecasting noise and radiation hardness of CMOS front-end electronics beyond the 100 nm frontier

    International Nuclear Information System (INIS)

    Re, V.; Gaioni, L.; Manghisoni, M.; Ratti, L.; Traversi, G.

    2010-01-01

    The progress of industrial microelectronic technologies has already overtaken the 130 nm CMOS generation that is currently the focus of IC designers for new front-end chips in LHC upgrades and other detector applications. In a broader time span, sub-100 nm CMOS processes may become appealing for the design of very compact front-end systems with advanced integrated functionalities. This is especially true in the case of pixel detectors, both for monolithic devices (MAPS) and for hybrid implementations where a high resistivity sensor is connected to a CMOS readout chip. Technologies beyond the 100 nm frontier have peculiar features, such as the evolution of the device gate material to reduce tunneling currents through the thin dielectric. These new physical device parameters may impact on functional properties such as noise and radiation hardness. On the basis of experimental data relevant to commercial devices, this work studies potential advantages and challenges associated to the design of low-noise and rad-hard analog circuits in these aggressively scaled technologies.

  2. Development of Radiation-hard Bandgap Reference and Temperature Sensor in CMOS 130 nm Technology

    CERN Document Server

    Kuczynska, Marika; Bugiel, Szymon; Firlej, Miroslaw; Fiutowski, Tomasz; Idzik, Marek; Michelis, Stefano; Moron, Jakub; Przyborowski, Dominik; Swientek, Krzysztof

    2015-01-01

    A stable reference voltage (or current) source is a standard component of today's microelectronics systems. In particle physics experiments such reference is needed in spite of harsh ionizing radiation conditions, i.e. doses exceeding 100 Mrads and fluences above 1e15 n/cm2. After such radiation load a bandgap reference using standard p-n junction of bipolar transistor does not work properly. Instead of using standard p-n junctions, two enclosed layout transistor (ELTMOS) structures are used to create radiation-hard diodes: the ELT bulk diode and the diode obtained using the ELTMOS as dynamic threshold transistor (DTMOS). In this paper we have described several sub-1V references based on ELTMOS bulk diode and DTMOS based diode, using CMOS 130 nm process. Voltage references the structures with additional PTAT (Proportional To Absolute Temperature) output for temperature measurements were also designed. We present and compare post-layout simulations of the developed bandgap references and temperature sensors, w...

  3. Nitrogen capillary plasma as a source of intense monochromatic radiation at 2.88 nm

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, P., E-mail: vrbovmir@fbmi.cvut.cz [Institute of Plasma Physics, Academy of Sciences, Za Slovankou 3, Prague 8 (Czech Republic); Vrbova, M. [Faculty of Biomedical Engineering, CTU in Prague, Sitna 3105, Kladno 2 (Czech Republic); Zakharov, S.V. [EPPRA sas, Villebon/Yvette (France); Zakharov, V.S. [EPPRA sas, Villebon/Yvette (France); KIAM RAS, Moscow (Russian Federation); Jancarek, A.; Nevrkla, M. [Faculty of Nuclear Science and Physical Engineering, CTU in Prague, Brehova 7, Prague 1 (Czech Republic)

    2014-10-15

    Highlights: • Pinching capillary discharge is studied as a source of monochromatic SXR. • Modeling of the laboratory device was performed by RMHD Z* code. • Results of computer and laboratory experiments are presented. - Abstract: Capillary discharge plasma related to our laboratory device is modeled and the results are compared with experimental data. Time dependences of selected plasma quantities (e.g. plasma mass density, electron temperature and density and emission intensities) evaluated by 2D Radiation-Magneto-Hydro-Dynamic code Z* describe plasma evolution. The highest output pulse energy at 2.88 nm wavelength is achieved for nitrogen filling pressure ∼100 Pa. The estimated output energy of monochromatic radiation 5.5 mJ sr{sup −1} (∼10{sup 14} photons sr{sup −1}) corresponds properly to observe experimental value ∼3 × 10{sup 13} photons sr{sup −1}. Ray tracing inspection along the capillary axis proves an influence of radiation self-absorption for the investigated wavelength. The spectra, evaluated using the FLY code, agree to the measured ones.

  4. A Monolithic Active Pixel Sensor for ionizing radiation using a 180 nm HV-SOI process

    Energy Technology Data Exchange (ETDEWEB)

    Hemperek, Tomasz, E-mail: hemperek@uni-bonn.de; Kishishita, Tetsuichi; Krüger, Hans; Wermes, Norbert

    2015-10-01

    An improved SOI-MAPS (Silicon On Insulator Monolithic Active Pixel Sensor) for ionizing radiation based on thick-film High Voltage SOI technology (HV-SOI) has been developed. Similar to existing Fully Depleted SOI-based (FD-SOI) MAPS, a buried silicon oxide inter-dielectric (BOX) layer is used to separate the CMOS electronics from the handle wafer which is used as a depleted charge collection layer. FD-SOI MAPS suffers from radiation damage such as transistor threshold voltage shifts due to charge traps in the oxide layers and charge states created at the silicon oxide boundaries (back gate effect). The X-FAB 180-nm HV-SOI technology offers an additional isolation by deep non-depleted implant between the BOX layer and the active circuitry which mitigates this problem. Therefore we see in this technology a high potential to implement radiation-tolerant MAPS with fast charge collection property. The design and measurement results from a first prototype are presented including charge collection in neutron irradiated samples.

  5. Sunlight suppressing rejection of 280- to 320-nm UV-radiation-induced skin tumors in mice

    International Nuclear Information System (INIS)

    Morison, W.L.; Kelley, S.P.

    1985-01-01

    Repeated exposure of female C3H/HeNCR- mice to sunlight prevented the normal immunologic rejection of a UV-induced tumor. This systemic immunologic alteration was transferred to syngeneic lethally X-irradiated animals with lymphoid cells from mice exposed to sunlight. The lymphoid cells also were able to suppress the capacity of lymphoid cells from normal animals to reject a UV-induced tumor. The 295- to 320-nm wave band appeared to be responsible for this immunosuppressive effect of sunlight because suppression was prevented by filtration of the radiation through Mylar and by application of a sunscreen containing para-aminobenzoic acid. These observations may have importance in understanding the pathogenesis of sunlight-induced skin cancer in humans

  6. Photosensitized inactivation of DNA by monochromatic 334-nm radiation in the presence of 2-thiouracil: genetic activity and backbone breaks

    International Nuclear Information System (INIS)

    Peak, M.J.; Ito, A.; Peak, J.G.; Foote, C.S.

    1988-01-01

    Monochromatic 334-nm radiation delivered under aerobic conditions inactivates the genetic activity (ability to transform auxotrophic recipient cells to nutritional prototrophy) of isolated transforming Bacillus subtilis DNA. The presence of superoxide dismutase (SOD), catalase, and mannitol reduces the 334-nm inactivation. The rate of inactivation of the genetic activity by 334-nm radiation is enhanced fivefold by the sensitizer 2-thiouracil (s 2 Ura). This enhancement is substantially reversed when the irradiations are performed in the presence of mannitol, and, to a lesser extent, SOD. Catalase slightly reduces the s 2 Ura enhancement of 334-nm inactivation of transforming activity. Backbone breaks induced in the same DNA by aerobic 334-nm radiation were also enhanced markedly by the presence of s 2 Ura; this enhancement was reversed by the presence of mannitol and, to a lesser extent, SOD during irradiation. Catalase had no effect upon s 2 Ura-enhanced, 334-nm-induced SSBs. Whereas DNA breakage may be responsible for a portion of the inactivation of the DNA by the photosensitized reaction between s 2 Ura and 334-nm radiation, it is not the only inactivating lesion, because the yield of SSBs per lethal hit per unit length of DNA is not constant for all the irradiation conditions studied. (author)

  7. Physical, biochemical and physiological effects of ultraviolet radiation on Brassica napus and Phaseolus vulgaris

    International Nuclear Information System (INIS)

    Cen Yan-Ping.

    1993-01-01

    In order to follow some of the changes induced by ultraviolet-B (UV-B, 280-320 nm) radiation in Phaseolus vulgaris and Brassica napus, experiments were designed to localize sites of changes in leaves and to correlate some of the physiological and biochemical changes with penetration of UV-B radiation. B.napus was exposed to 8.9 kJ m -2 day -1 biologically effective UV-B radiation (UV-B BE ). The penetration of UV-B radiation into the leaf was followed using a quartz fibre optic microprobe. Monochromatic radiation at 310 nm was decreased by ca 50 and 34% in the adaxial and abaxial epidermis, respectively, in plants not exposed to UV-B, whereas the radiation was decreased by ca 70 and 42%, respectively, in the same region in UV-treated plants. Polychromatic radiation showed a wavelength dependent change mainly for the collimated radiation. The results correlated with the distribution of phenolic compounds analysed from 40 μm paradermal leaf sections. The first adaxial section (40μm) contained 35% of the whole leaf sample flavonoid glycosides in control plants, and 66% in UV-treated plants. Hydroxycinnamic acid derivatives increased by 26% in UV-treated plants relative to controls. The ratio of quercetin to kaempferol derivatives increased from 0.11 in controls to 0.91 in leaves of UV-treated plants. The leaf epidermis protected the inner leaf tissue where most of the photosynthetic apparatus is located. P. vulgaris was subjected to 6.17 kJ m -2 day -1 UV-B BE with different levels of visible light. The largest UV-induced changes in photosynthesis, chlorophyll, carotenoids, UV-screening pigments, and surface leaf reflectance occurred under growth conditions of low levels of visible light together with UV radiation

  8. Physical, biochemical and physiological effects of ultraviolet radiation on Brassica napus and Phaseolus vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Cen Yan-Ping

    1993-12-31

    In order to follow some of the changes induced by ultraviolet-B (UV-B, 280-320 nm) radiation in Phaseolus vulgaris and Brassica napus, experiments were designed to localize sites of changes in leaves and to correlate some of the physiological and biochemical changes with penetration of UV-B radiation. B.napus was exposed to 8.9 kJ m{sup -2} day{sup -1} biologically effective UV-B radiation (UV-B{sub BE}). The penetration of UV-B radiation into the leaf was followed using a quartz fibre optic microprobe. Monochromatic radiation at 310 nm was decreased by ca 50 and 34% in the adaxial and abaxial epidermis, respectively, in plants not exposed to UV-B, whereas the radiation was decreased by ca 70 and 42%, respectively, in the same region in UV-treated plants. Polychromatic radiation showed a wavelength dependent change mainly for the collimated radiation. The results correlated with the distribution of phenolic compounds analysed from 40 {mu}m paradermal leaf sections. The first adaxial section (40{mu}m) contained 35% of the whole leaf sample flavonoid glycosides in control plants, and 66% in UV-treated plants. Hydroxycinnamic acid derivatives increased by 26% in UV-treated plants relative to controls. The ratio of quercetin to kaempferol derivatives increased from 0.11 in controls to 0.91 in leaves of UV-treated plants. The leaf epidermis protected the inner leaf tissue where most of the photosynthetic apparatus is located. P. vulgaris was subjected to 6.17 kJ m{sup -2} day{sup -1} UV-B{sub BE} with different levels of visible light. The largest UV-induced changes in photosynthesis, chlorophyll, carotenoids, UV-screening pigments, and surface leaf reflectance occurred under growth conditions of low levels of visible light together with UV radiation.

  9. Animal model for evaluation of topical photoprotection against ultraviolet A (320-380 nm) radiation

    International Nuclear Information System (INIS)

    Chew, S.; DeLeo, V.A.; Harber, L.C.

    1987-01-01

    Recent studies reporting UVA (ultraviolet A radiation 320-380 nm) as an integral part of the cumulative sun-induced damage in human skin have prompted an interest in developing effective UVA photoprotective agents. The development of such compounds has been impeded by the absence of a clinically relevant animal model for evaluating their efficacy. This report describes the development and use of such a laboratory animal system. Selected concentrations of oxybenzone (2-hydroxy-4-methoxybenzophenone) in vehicle (0.1% to 6%) or vehicle alone were applied to the depilated dorsal skin of 30 Hartley strain female albino guinea pigs. The skin was irradiated with solar simulated UVA from a xenon light source. Acute radiation-induced damage was assayed by erythema grading and inhibition of [ 3 H]thymidine incorporation into epidermal DNA. Data from erythema grading studies indicated that a significant degree of photoprotection was achieved with 6%, 3%, and 1% solutions of benzophenone compared with the control vehicle; the 6% solution was significantly more photoprotective than the 3% and 1% solutions. A 6% solution afforded significant photoprotection when assayed by [ 3 H]thymidine incorporation

  10. Effects of solar UVB radiation on growth, flowering and yield of central and southern European maize cultivars (Zea mays L.)

    International Nuclear Information System (INIS)

    Mark, U.; Saile-Mark, M.; Tevini, M.

    1996-01-01

    Different cultivars of maize (Zea mays L.) originating from Central and South Europe were grown from June to September 1994 for 16 weeks in two greenhouses covered with different UVB-absorbing (280-320 nm) plastic foils. Using the ambient UVB radiation level of a southern location (Portugal, 38.7 o N) in one of the greenhouses as an enhanced radiation compared to the reduced radiation in the second greenhouse, an increase of about 12% of UVB was simulated. Six of the eight cultivars examined showed significant reductions in height of up to 18.9% at all developmental stages under increased UVB. In contrast to this, the fresh and dry weight as well as the leaf area was reduced under UVB only at early developmental stages, but with ongoing development the UVB stressed plants caught up. The total content of absorbing compounds of the maize cultivars was completely unaffected by UVB. A flowering delay up to a maximum of 5 days was observed under higher UVB in several cultivars. Probably due to this delay in the cob development the yield decreased to 27.7% under higher UVB at the first harvest after 12 and 14 weeks, whereas at the second harvest after 14 and 16 weeks yield reduction levelled off. (Author)

  11. Lanthanum (III) regulates the nitrogen assimilation in soybean seedlings under ultraviolet-B radiation.

    Science.gov (United States)

    Huang, Guangrong; Wang, Lihong; Zhou, Qing

    2013-01-01

    Ultraviolet-B (UV-B, 280-320 nm) radiation has seriously affected the growth of plants. Finding the technology/method to alleviate the damage of UV-B radiation has become a frontal topic in the field of environmental science. The pretreatment with rare earth elements (REEs) is an effective method, but the regulation mechanism of REEs is unknown. Here, the regulation effects of lanthanum (La(III)) on nitrogen assimilation in soybean seedlings (Glycine max L.) under ultraviolet-B radiation were investigated to elucidate the regulation mechanism of REEs on plants under UV-B radiation. UV-B radiation led to the inhibition in the activities of the key enzymes (nitrate reductase, glutamine synthetase, glutamate synthase) in the nitrogen assimilation, the decrease in the contents of nitrate and soluble proteins, as well as the increase in the content of amino acid in soybean seedlings. The change degree of UV-B radiation at the high level (0.45 W m(-2)) was higher than that of UV-B radiation at the low level (0.15 W m(-2)). The pretreatment with 20 mg L(-1) La(III) could alleviate the effects of UV-B radiation on the activities of nitrate reductase, glutamine synthetase, glutamate synthase, and glutamate dehydrogenase, promoting amino acid conversion and protein synthesis in soybean seedlings. The regulation effect of La(III) under UV-B radiation at the low level was better than that of UV-B radiation at the high level. The results indicated that the pretreatment with 20 mg L(-1) La(III) could alleviate the inhibition of UV-B radiation on nitrogen assimilation in soybean seedlings.

  12. [The influence of pulsed low-intensity laser radiation of the red (635 nm) and infrared (904 nm) spectra on the human mesenchymal stem cells in vitro].

    Science.gov (United States)

    Moskvin, S V; Kliuchnikov, D Iu; Antipov, E V; Volchkov, S E; Kiseleva, O N

    2014-01-01

    Mesenchymal stem cells (MSC) have for a long time been an object of investigation with a view to elucidating the prospects for their application in clinical medicine and cosmetology. One of the approaches to the non-specific regulation of the activity of these cells at the stage of preliminary in vitro combination is the treatment with low-intensity laser radiation (LILR). The objective of the present study was to evaluate the possibility of using pulsed LILR of the infrared and red spectra for this purpose. We used the 4th passage adhesive MSC cultures based at the umbilical tissue of a donor who gave the informed consent to participate in the study. The source of illumination was a Lazmik-VLOK laser therapeutic apparatus (RU No RZN 2014/1410 dated 06.02.2014) with the matrix laser infrared radiation heads (wavelength 904 nm, light pulse length 108 ns, frequency 1500 Hz). The apparatus was operated either in the multi-frequency Lazmik regime [Moskvin S.V., 2014] with mean power density 0.05 and 0.14 mW/cm2 and the red spectrum (wavelength 635 nm, light pulse length 144 ns, frequency 1500 Hz) or in the multi-frequency Lazmik regime [Moskvin S.V., 2014] with mean power density 0.03 and 0.12. The exposition was 5 min in both regimes. The study has demonstrated that neither the morphological structure nor the viability of mesenchymal stem cells changed under the influence of energy and time parameters used in experiments. The number of cells was shown to slightly increase in comparison with control. The most pronounced effect was documented after illumination with pulse infrared (904 nm) LILR in the multi-frequency Lazmik regime. The maximum effect was observed during a period between days 1 and 3 of cultivation.

  13. Mutagenicity of monoadducts and cross-links induced in Aspergillus nidulans by 8-methoxypsoralen plus 365 nm radiation

    International Nuclear Information System (INIS)

    Scott, B.R.; Maley, M.A.

    1981-01-01

    8-Methoxypsoralen plus 365 nm radiation induces mutation at the methionine supressor loci of Aspergillus inhibitor-deficient conidia at low doses of near-UV radiation with one-hit kinetics and at higher near-UV radiation doses with two-hit kinetics. These results and others suggest that both monoadducts and cross-links, formed by 8-methoxypsoralen and DNA upon exposure to UV radiation, are capable of inducing mutation. Evidence is also presented that induced furocoumarin cross-links are responsible for the inactivation of the Aspergillus conidium. (author)

  14. Mutagenic interactions between near-ultraviolet (365 nm) radiation and alkylating agents in Escherichia coli

    International Nuclear Information System (INIS)

    Moraes, E.C. de; Tyrell, R.M.

    1981-01-01

    The mutagenic interaction between near-ultrviolet (365 nm) radiation and the alkylting agents ehtyl methanesulponate (EMS) and methyl methanesulphonate (MMS) was studied in a repair-component and an excision-deficient stram of Escherichia coli. Near-UV raditation modified the metabolic response of of exposure to these chemicals and either reduced or increased their mutagenic efficiency. Based on these results, an experimental model was formulated to explain the mutagenic interactions that occur between near-UV and various agents that induce prototrophic reverants cia error-prone repair of DNA. According to this model, low doses of near-UV provoke conditions for mutation frequency decline (MFI) and lead to a mutagenic antagonism. With increasing near-Uv doses, damage to constitutive error-free repairs system increases, favouring the error-prone system and inhibiting the MFD. Under these conditions there will be a progressive decrease in antagonism until at high doses an enhancement of mutation frequency (positive interaction) will occur. (orig.)

  15. The in vitro photolysis of whole rat lenses using focused 290nm laser radiation

    International Nuclear Information System (INIS)

    Hibbard, L.B.; Kirk, N.J.; Borkman, R.F.

    1985-01-01

    Whole rat lenses have been irradiated with a UV laser at 290 or 298 nm focused to a 0.08 mm diameter spot. The irradiated spot was analyzed using fluorescence spectroscopy and it was observed that the intensity of fluorescence fell as the irradiation proceeded. These observations were interpreted in terms of a model which postulates photolysis of tryptophan, primarily present as residues in lens proteins, and formation of photoproducts which absorb the UV laser radiation to an ever-increasing extent as the irradiation proceeds. Evidence is also presented which indicates that an observed fast component of the tryptophan fluorescence decay results from local heating of the lens tissues due to energy dissipation by the laser. Tryptophan residues can be photolyzed by UV light in the whole lens, in vitro, in a fashion entirely analogous to that reported previously only for lens protein solutions. The photochemical behavior of lens protein solutions is relevant to whole lens photolysis and no special protective mechanism appears to be operative in the intact organ. (author)

  16. Fabrication of biosynthetic vascular prostheses by 193-nm excimer laser radiation

    Science.gov (United States)

    Husinsky, Wolfgang; Csek, Ch.; Bartel, A.; Grabenwoeger, M.; Fitzal, F.; Wolner, Ernst

    1998-05-01

    This study was undertaken to investigate the feasibility of transmural capillary ingrowth into the inner surface of biosynthetic vascular prostheses (OmniflowTM) through perforations created by an excimer-laser, thus inducing an endothelial cell coverage. The biosynthetic vascular prostheses (10 cm length, 6 mm (phi) ) were perforated with an excimer laser ((phi) of the holes 50 - 100 micrometer, distance 4 mm) and implanted into the carotid arteries of 8 sheep. The laser tissue interaction process of 193 nm radiation ensures minimal thermal damage to the prostheses. They were compared to untreated OmniflowTM prostheses implanted at the contralateral side. Three months after implantation the prostheses were explanted and evaluated by gross morphology, histological examination and scanning electron microscopy. Scanning electron microscopy showed endothelial cells in the midgraft portion of all perforated prostheses, whereas collagen fibers, fibrin meshwork and activated platelets formed the inner layer in 6 out of 8 untreated OmniflowTM prostheses. It can be concluded, that spontaneous endothelialization of biosynthetic vascular prostheses can be achieved by transmural capillary ingrowth through perforations in the wall of the prostheses in an experimental sheep model.

  17. Course for monitored education at distance: 'Introduction to basic aspects of radiation physics in NM'

    International Nuclear Information System (INIS)

    Lopez, Adlin; Palau, Aley; Petrirena, Gregorio; Cardenas, Ana Ivis

    2008-01-01

    Full text: Nuclear Medicine became a multimodality speciality, related with a lot of personnel not specialized in NM techniques: who have not training in radiation aspects. These projects try to evaluate the use of specialized multimedia product for a monitored education at distance of personnel who start to be related with Nuclear Medicine Techniques like nurses, surgeons, rheumatologists, etc. The multimedia product included two items: Introduction to Nuclear Medicine Techniques and Basic aspects of radiation physics. Each item contents an audio-visual conference (Power Point) and a charter (PDF): with theoretic aspects, understand verification questions and self-evaluation activities. The product need only a PC compatible with window 98 (or more advanced version), and 130MBy of memory spaced for archive. In order to verify the effectiveness of the distance course, we tested it in 10 students: 1 nurse, 1 radio-pharmacist, 1 cardiologist, 1 neurologist, 6 technologists. After consult and clarify their doubts, a final test was applied in order to check the knowledge acquired. With 100 point of maximum store and 60 point minimum to pass, the test contented 2 types of questions: true or false choice (with 50 aspects to verify 1.5 point/ correct answer) and many correct choices (5 questions, 5 point/correct answer). The average result was 85.6 points/ students: 6 -Excellent (90-100 points) , 3 -Very good (80-89 points) and 1 -Good (70-79 points). The course was polled about the quality of the material and their comprehension degree, asking the student to make suggestions if were needed. The average evaluation was 94 points (91-95 points). The suggestions made were: increase the number of examples and practical sequences, the understand verification questions and include monitored practical exercise. Conclusion: the product can be useful for a monitored education at distance of personnel who start to be related with Nuclear Medicine Techniques. Recommendation: The

  18. Increase of the photosensitivity of undoped poly(methylmethacrylate) under UV radiation at 325 nm

    DEFF Research Database (Denmark)

    Sáez-Rodríguez, D.; Nielsen, Kristian; Bang, Ole

    2014-01-01

    in undoped PMMA mPOFs with a hexagonal structure of three rings in the inner cladding. Two sets of FBGs were inscribed at two different resonant wavelengths (827 nm and 1562 nm) at different strains using an UV He-Cd laser at 325 nm focused by a lens and scanned over the fibre. We observed an increase...

  19. Biostimulation effects on wheat seeds (Triticum Aestivum L) caused by low level red laser radiation with λ = 660 nm

    International Nuclear Information System (INIS)

    Hernandez, M.; Michtchenko, A.

    2009-01-01

    The principal objective is to study the biostimulation effects caused by a semiconductor low level laser radiation with ? = 660 nm on wheat seeds (Triticum Aestivum L). Seeds were treated before sowing with this laser light source. An increase in the growth of the stem of 12% with respect to control seeds was registered for seeds radiated by an intensity of 15mW/cm 2 and an irradiation time of 60 seconds. (Author)

  20. Gold-coated copper cone detector as a new standard detector for F2 laser radiation at 157 nm

    International Nuclear Information System (INIS)

    Kueck, Stefan; Brandt, Friedhelm; Taddeo, Mario

    2005-01-01

    A new standard detector for high-accuracy measurements of F2 laser radiation at 157 nm is presented. This gold-coated copper cone detector permits the measurement of average powers up to 2 W with an uncertainty of ∼1%. To the best of our knowledge, this is the first highly accurate standard detector for F2 laser radiation for this power level. It is fully characterized according to Guide to the Expression of Uncertainty in Measurement of the International Organization for Standardization and is connected to the calibration chain for laser radiation established by the German National Metrology Institute

  1. Impact of UV Radiation on Genome Stability and Human Health.

    Science.gov (United States)

    Roy, Sujit

    2017-01-01

    Gradual depletion of the atmospheric ozone layer during the past few years has increased the incidence of solar UV radiation specifically the UV-C on earth's surface is one of the major environmental concerns because of the harmful effects of this radiation in all forms of life. The solar UV radiation including the harmful wavelength range of UV-B (280-320 nm) represents a significant climatic stress for both animals and plants, causing damage to the fundamental biomolecules such as DNA, proteins and lipids, thus activating genotoxic stress and induces genome instability. When DNA absorbs UV-B light, energy from the photon causes covalent linkages to form between adjacent pyrimidine bases, creating photoproducts, primarily cyclobutane pyrimidine dimers (CPDs) and pyrimidine-6,4-pyrimidinone photoproduct (6,4PPs). Pyrimidine dimers create distortions in the DNA strands and therefore can inhibit DNA replication as well transcription. Lack of efficient repair of UV-induced DNA damage may induce the formation of DNA double stand breaks (DSBs), one of the serious forms of damage in DNA double helix, as well as oxidative damage. Unrepaired DSBs in the actively dividing somatic cells severely affect cell growth and development, finally results in loss of cell viability and development of various diseases, such as cancer in man.This chapter mainly highlights the incidence of solar UV-radiation on earth's surface along with the formation of major types of UV-induced DNA damage and the associated repair mechanisms as well as methods of detecting DNA damage and finally our present understanding on the impact on solar UV radiation on human health.

  2. Solar Ultraviolet-B Radiation Increases Phenolic Content and Ferric Reducing Antioxidant Power in Avena sativa

    Directory of Open Access Journals (Sweden)

    Christopher T. Ruhland

    2007-06-01

    Full Text Available We examined the influence of solar ultraviolet-B radiation (UV-B; 280-320 nm on the maximum photochemical efficiency of photosystem II (Fv/Fm, bulk-soluble phenolic concentrations, ferric-reducing antioxidant power (FRAP and growth of Avena sativa. Treatments involved placing filters on frames over potted plants that reduced levels of biologically effective UV-B by either 71% (reduced UV-B or by 19% (near-ambient UV-B over the 52 day experiment (04 July - 25 August 2002. Plants growing under near-ambient UV-B had 38% less total biomass than those under reduced UV-B. The reduction in biomass was mainly the result of a 24% lower leaf elongation rate, resulting in shorter leaves and less total leaf area than plants under reduced UV-B. In addition, plants growing under near-ambient UV-B had up to 17% lower Fv/Fm values early in the experiment, and this effect declined with plant age. Concentrations of bulk-soluble phenolics and FRAP values were 17 and 24% higher under near-ambient UV-B than under reduced UV-B, respectively. There was a positive relationship between bulk-soluble phenolic concentrations and FRAP values. There were no UV-B effects on concentrations of carotenoids (carotenes + xanthophylls.

  3. Photosensitivity of the Er/Yb-Codoped Schott IOG1 Phosphate Glass Using 248 nm, Femtosecond, and Picosecond Laser Radiation

    International Nuclear Information System (INIS)

    Pissadakis, S.; Michelakaki, I.

    2009-01-01

    The effect of 248 nm laser radiation, with pulse duration of 5 picoseconds, 500 femtosecond, and 120 femtosecond, on the optical properties and the Knoop hardness of a commercial Er/Yb-codoped phosphate glass is presented here. Refractive index changes of the order of few parts of 10-4 are correlated with optical absorption centers induced in the glass volume, using Kramers-Kroning relationship. Accordingly, substantially lower refractive index changes are measured in volume Bragg gratings inscribed in the glass, indicating that, in addition to the optical density changes, volume dilation changes of negative sign may also be associated with the 248 nm ultrafast irradiation. The Knoop hardness experimental results reveal that the glass matrix undergoes an observable initial hardening and then a reversing softening and volume dilation process for modest accumulated energy doses, where the Knoop hardness follows a nonmonotonic trend. Comparative results on the Knoop hardness trend are also presented for the case of 193 nm excimer laser radiation. The above findings denote that the positive or negative evolution of refractive index changes induced by the 248 0nm ultrafast radiation in the glass is dominated by the counteraction of the color center formation and the volume modification effects.

  4. Generation of 99-mW continuous-wave 285-nm radiation for magneto-optical trapping of Mg atoms

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Yu, Ping; Balslev, Søren

    2002-01-01

    We have developed a tunable intense narrow-band 285 nm light source based on frequency doubling of 570 nm light in BBO. At input powers of 840 mW (including 130 mW used for locking purposes) we generate 99 mW UV radiation with an intensity profile suitable for laser-cooling experiments. The light...... is used for laser cooling of neutral magnesium atoms in a magneto-optical trap (MOT). We capture about 5 x 10(6) atoms directly from a thermal beam and find that the major loss mechanism of the magnesium MOT is a near-resonant two-photon ionization process....

  5. Acute cataract in the rat after exposure to radiation in the 300 nm wavelength region

    International Nuclear Information System (INIS)

    Soederberg, P.G.

    1988-01-01

    Experimental and epidemiological data indicate a correlation between exposure to UV radiation and cataract morbidity. UV radiation induced cataract is thought to be evoked by photochemical mechanisms. The present investigation resolves the macroscopical events in the rat lens after a one dose exposure to spectrally and radiometrically well defined UV radiation, as revealed in light- and dark-field illumination. The macroscopic sequence of events is related to the morphology as revealed by light- and electron microscopy. The radiation was found to alter the chromation pattern and to induce morphological changes indicating a disturbance of the cellular water balance. The latter is assumed to cause the acute UV radiation induced opacification of the lens. It is suggested that future investigations of the toxic effects of UV radiation in the lens should focus on how UV radiation effects the chromatin and the cellular water balance. (author)

  6. Phase-shifted Bragg grating inscription in PMMA microstructured POF using 248 nm UV radiation

    OpenAIRE

    Pereira, L.; Pospori, A.; Antunes, Paulo; Domingues, Maria Fatima; Marques, S.; Bang, Ole; Webb, David J.; Marques, Carlos A.F.

    2017-01-01

    In this work we experimentally validate and characterize the first phase-shifted polymer optical fiber Bragg gratings (PS-POFBGs) produced using a single pulse from a 248 nm krypton fluoride laser. A single-mode poly (methyl methacrylate) optical fiber with a core doped with benzyl dimethyl ketal for photosensitivity improvement was used. A uniform phase mask customized for 850 nm grating inscription was used to inscribe these Bragg structures. The phase shift defect was created directly duri...

  7. Effects of UV-B radiation on wax biosynthesis

    International Nuclear Information System (INIS)

    Barnes, J.; Paul, N.; Percy, K.; Broadbent, P.; McLaughlin, C.; Mullineaux, P.; Creissen, G.; Wellburn, A.

    1994-01-01

    Two genotypes of tobacco (Nicotiana tabacum L.) were exposed in controlled environment chambers to three levels of biologically effective ultraviolet-B radiation (UV-B BE ; 280-320nm): 0, 4.54 (ambient) and 5.66 (∼ 25% enhancement) kJ m -2 d -1 . After 28 days, the quantity of wax deposited on leaf surfaces was determined gravimetrically; epicuticular wax chemical composition was determined by capillary gas chromatography with homologue assignments confirmed by gas chromatography-mass spectrometry. Leaf wettability was assessed by measuring the contact angle of water droplets placed on leaf surfaces. Tobacco wax consisted of three major hydrocarbon classes: Straight-chain alkanes (C 27 -C 33 ) which comprised ∼ 59% of the hydrocarbon fraction, containing a predominance of odd-chain alkanes with C 31 as the most abundant homologue; branched-chain alkanes (C 25 -C 32 ) which comprised ∼38% of the hydrocarbon fraction with anteiso 3-methyltriacontane (C 30 ) as the predominant homologue; and fatty acids (C 14 -C 18 ) which comprised ∼ 3% of the wax. Exposure to enhanced UV-B radiation reduced the quantity of wax on the adaxial surface of the transgenic mutant, and resulted in marked changes in the chemical composition of the wax on the exposed leaf surface. Enhanced UV-B decreased the quantity of straight-chain alkanes, increased the quantity of branched-chain alkanes and fatty acids, and resulted in shifts toward shorter straight-chain lengths. Furthermore, UV-B-induced changes in wax composition were associated with increased wettability of tobacco leaf surfaces. Overall, the data are consistent with the view that UV-B radiation has a direct and fundamental effect on wax biosynthesis. Relationships between the physico-chemical nature of the leaf surface and sensitivity to UV-B radiation are discussed. (orig.)

  8. Influence of water mixing and food web status on the response of planktonic communities to enhanced ultraviolet-B radiation

    Science.gov (United States)

    Mostajir, B.; Uvbr Team

    2003-04-01

    Two series of mesocosm experiments were carried out in 1996 and 1997 using the natural planktonic assemblage, ultraviolet-B radiation (UVBR: 280-320 nm) at the community level. The water used in the first experiment was rich in nitrate (ca. 8-10 μM) and phytoplankton biomass (5 μg Chlorophyll a L-1: Chl a), conditions typical of an eutrophic coastal zone with herbivorous food web characteristics. In contrast, the water used in the second experiment was poor in nitrate (food web. Furthermore, to understand the influence of vertical mixing on the effects of UVBR on the planktonic community, two mixing regimes (fast and slow) were tested during the mesocosm experiments of 1997. The results showed that the mixing regime can moderate the effects of UVBR on the planktonic community and can also modify completely the species composition in the mesocosms much more than the UVBR. Comparison between the impact of UVBR on the planktonic community presented in these two experiments suggested that regenerated production-based systems (e.g. microbial food webs) tolerate the effects of UVBR more efficiently than do new production-based systems (herbivorous food webs). Results regarding the potential effects of UVBR in different marine systems, coastal versus oceanic, where different physical systems dominate, fast versus slow mixing, and consequently the development of different food webs are favored, herbivorous versus microbial, will be discussed.

  9. Phase-shifted Bragg grating inscription in PMMA microstructured POF using 248 nm UV radiation

    DEFF Research Database (Denmark)

    Pereira, L.; Pospori, A.; Antunes, Paulo

    2017-01-01

    In this work we experimentally validate and characterize the first phase-shifted polymer optical fiber Bragg gratings (PS-POFBGs) produced using a single pulse from a 248 nm krypton fluoride laser. A single-mode poly (methyl methacrylate) optical fiber with a core doped with benzyl dimethyl ketal...... for photosensitivity improvement was used. A uniform phase mask customized for 850 nm grating inscription was used to inscribe these Bragg structures. The phase shift defect was created directly during the grating inscription process by placing a narrow blocking aperture in the center of the UV beam. The produced high...

  10. CW frequency doubling of 1029 nm radiation using single pass bulk and waveguide PPLN crystals

    Czech Academy of Sciences Publication Activity Database

    Chiodo, N.; Du Burck, F.; Hrabina, Jan; Candela, Y.; Wallerand, J. P.; Acef, O.

    2013-01-01

    Roč. 311, 15 January (2013), s. 239-244 ISSN 0030-4018 R&D Projects: GA ČR GPP102/11/P820 Institutional support: RVO:68081731 Keywords : IR laser * second harmonic generation * waveguide and bulk crystals * periodically poled lithium niobate * 1029 nm wavelength Subject RIV: BH - Optics , Masers, Lasers Impact factor: 1.542, year: 2013

  11. The effect of UV radiation on photosynthesis in an Antarctic diatom (Thalassiosira sp.): does vertical mixing matter?

    International Nuclear Information System (INIS)

    Hernando, Marcelo P.; Ferreyra, Gustavo A.

    2004-01-01

    Full text: The reduction of the Antarctic stratospheric ozone resulted in significant increases in ultraviolet B radiation (UVBR, 280-320 nm) reaching the surface of the ocean. A series of laboratory and field experiments were conducted at Potter Cove (25 de Mayo Is., South Shetland Is., Antarctica) to study the effects of UVBR on photosynthesis of a typical Antarctic bloom forming diatom (Thalassiosira sp.) in fixed and moving incubations. There were three irradiance treatments: PART (with only photosynthetic active radiation, PAR, 400- 700 nm), UVAT (with PAR and ultraviolet A radiation, UVAR, 320-400 nm) and UVBT (with PAR, UVAR and UVBR). The three treatments were incubated in the field and laboratory with a solar simulator (SOLSI) in fixed frames at 0.5 and 5 m depth (S fix and B fix , respectively), while for the moving incubations were done within 6 h cycles (Mix). Considering the field and laboratory pooled data, results suggest an overall 45-50 % photosynthesis inhibition of S fix incubations in relation with Mix ones. During SOLSI experiments no significant differences were found between irradiance treatments under normal and medium ozone concentrations. Under low ozone conditions, a 40 % reduction in photosynthesis was observed in the UVBT for S fix . In contrast, no significant differences were observed between the irradiance treatments for Mix. Field experiment showed results similar to the laboratory ones, but in this case not only S fix but Mix incubations presented a significant reduction in photosynthesis under low ozone. The differences between laboratory and field experiments are discussed in terms of the relative significance of UVBR dose and dose rate on both types of experiments. (author)

  12. Radiation from an equilibrium CO2-N2 plasma in the [250-850 nm] spectral region: II. Spectral modelling

    International Nuclear Information System (INIS)

    Silva, M Lino da; Vacher, D; Andre, P; Faure, G; Dudeck, M

    2008-01-01

    In the first part of this work, described in a previous paper, the thermodynamic conditions in an atmospheric pressure inductively coupled CO 2 -N 2 plasma have been determined, and the radiation emission spectrum has been measured and calibrated in the [250-850 nm] spectral region. In the second part of this work, a synthetic radiation spectrum is obtained taking into account (a) the geometry of the plasma torch and (b) the local thermodynamic conditions of the plasma. This synthetic spectrum has then been compared against the measured spectrum. The good agreement between the two spectra allows validating the spectral database of the line-by-line code SPARTAN for the simulation of the radiative emission of CO 2 -N 2 plasmas from the near-UV to the near-IR spectral region.

  13. Responses of phylloplane yeasts to UV-B (290-320 nm) radiation: interspecific differences in sensitivity

    International Nuclear Information System (INIS)

    Gunasekera, T.S.; Paul, N.D.; Ayres, P.G.

    1997-01-01

    The sensitivity to UV-B (290–320 nm) radiation of common phylloplane yeasts from two contrasting UV-B environments was compared in the laboratory using mixtures of white light (PAR: 400–700 nm) and UV-B radiation from artificial lamp sources. Sporidiobolus salmonicolor, Rhodotorula mucilaginosa and Cryptococcus sp., the dominant yeasts on leaves of tea (Camellia sinensis), were isolated in Sri Lanka (SL), while Sporidiobolus sp. and Bullera alba, dominant on faba bean (Vicia faba), were isolated in the U.K. Dose responses were determined separately for each yeast. UV-B reduced colony forming units (due to cell mortality or inactivation) and colony size (due to reduced multiplication) of all yeasts. The LD 50 values and doses causing 50% reduction of cells per colony were higher for SL isolates than U.K. isolates. Results indicated that each yeast is somewhat vulnerable to UV-B doses representative of its natural habitat. The relative insensitivity of SL isolates was shown when SL and U.K. isolates were irradiated simultaneously with the same dose of UV-B. Of the two U.K. yeasts, B. alba was significantly more sensitive than Sporidiobolus sp. to UV-B. Except for R. mucilaginosa from SL, all yeasts demonstrated some photorepair in the presence of white light. White light provided relatively little protection for the U.K. isolate of Sporidiobolus sp. although it allowed increased colony size. The spectral responses of Sporidiobolus sp. (U.K.) and of B. alba (U.K.) were broadly similar. Wavelengths longer than 320 nm had no measurable effect on colony forming units. However, colony survival was significantly reduced at 310 nm and all shorter wavebands. No colonies were counted at 290 nm or below. (author)

  14. Researchers lack data on trends in UV radiation at Earth's surface

    International Nuclear Information System (INIS)

    Zurer, P.S.

    1993-01-01

    Current anxiety about depletion of stratospheric ozone stems from the expected resulting increase in biologically damaging ultraviolet (UV) radiation at Earth's surface. Atmospheric ozone absorbs sunlight with wavelengths shorter than 320 nm--the highest-energy UV-B wavelengths (280-320 nm) that can damage DNA in living systems. But surprisingly, despite firm evidence the ozone layer is being eroded by chlorine and bromine from man-made compounds, very little information exists on how UV light intensity is changing. Solid data from Antarctica reveal that UV radiation soars under the ozone hole, where fully half of the atmospheric ozone is destroyed each spring. But elsewhere on the globe, where ozone has been thinning at a rate of a few percent per decade, the corresponding trends in UV intensity are not at all clear. In the late 1970s and early 1980s the problem of ozone depletion seemed solved. The US had banned the use of chlorofluorocarbons (CFCs) in aerosols. Model calculations were predicting CFCs would cause only a small loss of ozone by the second half of the 21st century. Costly monitoring of UV radiation commanded little attention. Attitudes began to change with the 1985 discovery of the Antarctic ozone hole. The National Science Foundation (NSF) established UV monitoring stations in the Antarctic in 1988, adding an Alaskan station in 1990. Both the Department of Agriculture (USDA) and the Environmental Protection Agency (EPA) have programs in the works that will eventually place monitoring stations across the US, but it will be many years before researchers have access to the kind of extensive database necessary to reliably evaluation long-term trends in UV intensity

  15. Evidence for Radiative Recombination of O+ Ions as a Significant Source of O 844.6 nm Emission Excitation

    Science.gov (United States)

    Waldrop, L.; Kerr, R. B.; Huang, Y.

    2018-04-01

    Photoelectron (PE) impact on ground-state O(3P) atoms is well known as a major source of twilight 844.6 nm emission in the midlatitude thermosphere. Knowledge of the PE flux can be used to infer thermospheric oxygen density, [O], from photometric measurements of 844.6 nm airglow, provided that PE impact is the dominant process generating the observed emission. During several spring observational campaigns at Arecibo Observatory, however, we have observed significant 844.6 nm emission throughout the night, which is unlikely to arise from PE impact excitation which requires solar illumination of either the local or geomagnetically conjugate thermosphere. Here we show that radiative recombination (RR) of O+ ions is likely responsible for the observed nighttime emission, based on model predictions of electron and O+ ion density and temperature by the Incoherent Scatter Radar Ionosphere Model. The calculated emission brightness produced by O + RR exhibits good agreement with the airglow data, in that both decay approximately monotonically throughout the night at similar rates. We conclude that the conventional assumption of a pure PE impact source is most likely to be invalid during dusk twilight, when RR-generated emission is most significant. Estimation of [O] from measurements of 844.6 nm emission demands isolation of the PE impact source via coincident estimation of the RR source, and the effective cross section for RR-generated emission is found here to be consistent with optically thin conditions.

  16. Effect of variable doses of ultraviolet radiation (253.7 nm) on thermoluminescence NaCl:Ca(T) material

    International Nuclear Information System (INIS)

    Nehate, A.K.; Joshi, T.R.; Kathuria, S.P.; Joshi, R.V.

    1986-01-01

    This paper studies the thermoluminescence (TL) glow curves of NaCl:Ca(T) phosphors to various doses of 253.7-nm ultraviolet (UV) radiation at room temperature. TLD grade NaCl:Ca(T) material was obtained by crystallization from solution and was subsequently annealed at 750 degrees C for 2 h, followed by sudden quenching. We undertook measurement of the effect of variable UV radiation doses (10(2) to 10(6) J m-2) on the TL behaviour of NaCl:Ca(T) phosphors. It was observed that the phosphor exhibits a dominant peak around 167 degrees C along with a weak peak at lower temperature. The high-temperature peak (Peak II) is found to grow linearly with the increase in UV dose in the range of 10(2) to 10(6) J m-2. Since the nature of the glow curves under the influence of different doses remains more or less identical, it is believed that the phosphor does not undergo radiation damage and displays high intrinsic TL around Peak II. Examination of the system for fundamental dosimetry requirements shows that it can be used in dosimetry work at 253.7 nm

  17. Comparison of Mg-based multilayers for solar He II radiation at 30.4 nm wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Jingtao; Zhou Sika; Li Haochuan; Huang Qiushi; Wang Zhanshan; Le Guen, Karine; Hu, Min-Hui; Andre, Jean-Michel; Jonnard, Philippe

    2010-07-10

    Mg-based multilayers, including SiC/Mg, Co/Mg, B4C/Mg, and Si/Mg, are investigated for solar imaging and a He II calibration lamp at a 30.4 nm wavelength. These multilayers were fabricated by a magnetron sputtering method and characterized by x-ray reflection. The reflectivities of these multilayers were measured by synchrotron radiation. Near-normal-incidence reflectivities of Co/Mg and SiC/Mg multilayer mirrors are as high as 40.3% and 44.6%, respectively, while those of B4C/Mg and Si/Mg mirrors are too low for application. The measured results suggest that SiC/Mg, Co/Mg multilayers are promising for a 30.4 nm wavelength.

  18. Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit

    DEFF Research Database (Denmark)

    Sáez-Rodríguez, D.; Nielsen, Kristian; Bang, Ole

    2014-01-01

    that increasing strain during photo-inscription leads to an increased photosensitivity, which is evidence of photodegradation. Likewise, refractive index change in the fiber was measured to be positive, which provides evidence for further polymerization of the material. Finally, we relate the data obtained......In this Letter, we provide evidence suggesting that the main photosensitive mechanism of an undoped poly(methyl methacrylate)-based microstructured optical fiber under UV radiation at 325 nm is a competitive process of both photodegradation and polymerization. We found experimentally...

  19. Radiation-Induced Short Channel (RISCE) and Narrow Channel (RINCE) Effects in 65 and 130 nm MOSFETs

    CERN Document Server

    Faccio, F; Cornale, D; Paccagnella, A; Gerardin, S

    2015-01-01

    The behavior of transistors in commercial-grade complementary metal-oxide semiconductor technologies in the 65 and 130 nm nodes has been explored up to a total ionizing dose of 1 Grad. The large dose tolerance of the thin gate oxide is confirmed, but defects in the spacer and STI oxides have a strong effect on the performance of the transistors. A radiation-induced short channel effect is traced to charge trapping in the spacers used for drain engineering, while a radiation-induced narrow channel effect is due to defect generation in the lateral isolation oxide (STI). These strongly degrade the electrical characteristics of short and narrow channel transistors at high doses, and their magnitude depends on the applied bias and temperature during irradiation in a complex way.

  20. Breaks in plasmid DNA strand induced by laser radiation at a wavelength of 193 nm

    International Nuclear Information System (INIS)

    Gurzadyan, G.G.; Shul'te Frolinde, D.

    1996-01-01

    DNA of plasmid pB322 irradiated with laser at a wavelength of 193 nm was treated with an extract containing proteins from E.coli K12 AB1157 (wild-type). The enzymes were found to produce single- and double-strand DNA breaks, which was interpreted as a transformation of a portion of cyclobutane pyrimidine dimers and (6-4) photoproducts into nonrepairable single-strand DNA breaks. The products resulted from ionization of DNA, in particular, single-strand breaks, transform to double-strand breaks. A comparison of these data with the data on survival of plasmid upon transformation of E.coli K12 AB1157 enables one to assess the biological significance of single- and double-strand breaks. The inactivation of the plasmid is mainly determined by the number of directly formed laser-induced single-strand breaks. 26 refs.; 2 figs

  1. Interaction of pulse laser radiation of 532 nm with model coloration layers for medieval stone artefacts

    Energy Technology Data Exchange (ETDEWEB)

    Colson, J. [University of Vienna, Department of Physical Chemistry, A-1090 Vienna (Austria); Nimmrichter, J. [Austrian Federal Office for the Care of Monuments, Department for Conservation and Restoration, Arsenal, Objekt 15, Tor 4, A-1030 Vienna (Austria); Kautek, W., E-mail: wolfgang.kautek@univie.ac.at [University of Vienna, Department of Physical Chemistry, A-1090 Vienna (Austria)

    2014-05-01

    Multilayer polychrome coatings on medieval and Renaissance stone artefacts represent substantial challenges in laser cleaning. Therefore, polychromic models with classical pigments, minium (Pb{sub 2}{sup 2+}Pb{sup 4+}O{sub 4}), zinc white (ZnO), and lead white ((PbCO{sub 3}){sub 2}·Pb(OH){sub 2}) in an acrylic binder, were irradiated with a Q-switched Nd:YAG laser emitting at 532 nm. The studied medieval pigments exhibit strongly varying incubation behaviours directly correlated to their band gap energies. Higher band gaps beyond the laser photon energy of 2.3 eV require more incubative generation of defects for resonant transitions. A matching of the modification thresholds after more than four laser pulses was observed. Laser cleaning with multiple pulsing should not exceed ca. 0.05 J/cm{sup 2} when these pigments coexist in close spatial proximity.

  2. Radiation hard pixel sensors using high-resistive wafers in a 150 nm CMOS processing line

    Science.gov (United States)

    Pohl, D.-L.; Hemperek, T.; Caicedo, I.; Gonella, L.; Hügging, F.; Janssen, J.; Krüger, H.; Macchiolo, A.; Owtscharenko, N.; Vigani, L.; Wermes, N.

    2017-06-01

    Pixel sensors using 8'' CMOS processing technology have been designed and characterized offering the benefits of industrial sensor fabrication, including large wafers, high throughput and yield, as well as low cost. The pixel sensors are produced using a 150 nm CMOS technology offered by LFoundry in Avezzano. The technology provides multiple metal and polysilicon layers, as well as metal-insulator-metal capacitors that can be employed for AC-coupling and redistribution layers. Several prototypes were fabricated and are characterized with minimum ionizing particles before and after irradiation to fluences up to 1.1 × 1015 neq cm-2. The CMOS-fabricated sensors perform equally well as standard pixel sensors in terms of noise and hit detection efficiency. AC-coupled sensors even reach 100% hit efficiency in a 3.2 GeV electron beam before irradiation.

  3. Nitrogen capillary plasma as a source of intense monochromatic radiation at 2.88 nm

    Czech Academy of Sciences Publication Activity Database

    Vrba, Pavel; Vrbová, M.; Zakharov, S.V.; Zakharov, V.S.; Jančárek, A.; Nevrkla, M.

    2014-01-01

    Roč. 196, October (2014), s. 24-30 ISSN 0368-2048 R&D Projects: GA ČR GAP102/12/2043; GA MŠk(CZ) LG13029 Grant - others:GA MŠk(CZ) CZ.1.07/2.3.00/20.0092 Institutional support: RVO:61389021 Keywords : Capillary Z-pinch * Water window radiation source * RHMD Code Z* Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.436, year: 2014 http://dx.doi.org/10.1016/j.elspec.2013.12.015

  4. Evaluating Ultraviolet Radiation Exposures Determined from TOMS Satellite Data at Sites of Amphibian Declines in Central and South America

    Science.gov (United States)

    Middleton, Elizabeth M.; Smith, David E. (Technical Monitor)

    2000-01-01

    Many amphibian species have experienced substantial population declines, or have disappeared altogether, during the last several decades at a number of amphibian census sites in Central and South America. This study addresses the use of satellite-derived trends in solar ultraviolet-B (UV-B; 280-320 nm) radiation exposures at these sites over the last two decades, and is intended to demonstrate a role for satellite observations in determining whether UV-B radiation is a contributing factor in amphibian declines. UV-B radiation levels at the Earth's surface were derived from the Total Ozone Mapping Spectrometer (TOMS) satellite data, typically acquired daily since 1979. These data were used to calculate the daily erythemal (sunburning) UV-B, or UV-B(sub ery), exposures at the latitude, longitude, and elevation of each of 20 census sites. The annually averaged UV-B(sub ery) dose, as well as the maximum values, have been increasing in both Central and South America, with higher levels received at the Central American sites. The annually averaged UV-B(sub ery) exposures increased significantly from 1979-1998 at all 11 Central American sites examined (r(exp 2) = 0.60 - 0.79; P= 6750 J/sq m*d) to the annual UV-B(sub ery) total has increased from approx. 5% to approx. 15% in Central America over the 19 year period, but actual daily exposures for each species are unknown. Synergy among UV-B radiation and other factors, especially those associated with alterations of water chemistry (e.g., acidification) in aqueous habitats is discussed. These findings justify further research concerning whether UV-B(sub ery) radiation plays a role in amphibian population declines and extinctions.

  5. Different (direct and indirect) mechanisms for the induction of DNA-protein crosslinks in human cells by far- and near-ultraviolet radiations (290 and 405 nm)

    International Nuclear Information System (INIS)

    Peak, M.J.; Peak, J.G.; Jones, C.A.

    1985-01-01

    Apparent DNA-protein crosslinking induced by monochromatic 290 and 405 nm radiations was measured in cultured human P3 teratocarcinoma cells with DNA alkaline elution techniques. The rates of the induction of crosslinks by 290 nm radiation were the same when the cells were irradiated either aerobically or anaerobically or when the cells were in an H 2 O or D 2 O aqueous environment. With 405 nm radiation, anaerobic irradiation reduced the induction of the crosslinks (dose modifying factor is about 0.2), and about twice as many crosslinks were observed when the cells were irradiated in an environment of D 2 O rather than H 2 O. The results are consistent with the hypothesis that far-UV radiation induces DNA-protein crosslinks by a direct mechanism, whereas near-UV radiation induces crosslinks via indirect photodynamic photosensitizations in which unidentified cellular endogenous photosensitizers and reactive species of oxygen are used. (author)

  6. Near ultraviolet radiation (280-400 nm): Direct and indirect effects on microbial pathogens

    International Nuclear Information System (INIS)

    Asthana, A.

    1993-01-01

    Responses of pigmented pathogenic fungi and E. coli strains differing in DNA repair and catalase proficiency to direct and indirect effects of ultraviolet radiation were evaluated. Pigments in the four fungal pathogens of Citrus differed in their ability to protect against direct UV and damage by UV-A -mediated phototoxins of both host and non-host origin. UV-A and UV-B did not inactivate the fungal species. Differential protection in wild type strains of the two Fusarium spp. and in the wild type strains of the two Penicilium spp. against UV-C was observed. Wild type and mutants with altered coloration in Penicilium spp. protected to varying extent against both α-T and 8-MOP in the presence of UV-A. UV-B irradiation of E. coli resulted in inactivation of strains deficient in DNA excision repair. Plasmid DNA damaged in vitro by UV-B from lamp systems as well as by sunlight, and transformed in vivo into bacterial cells lacking specific nucleases showed reduced transformation in DNA excision repair strains. UV-B enriched wavelengths isolated from a solar simulator affected plasmid DNA in a similar manner as UV-B from lamp systems. Sunlight, however affected the membrane of whole cells. Concentration of foliar furanocoumarins of Citrus jambhiri decreased with UV-B irradiation. Phototoxicity to Fusarium spp. was accounted for, in part, by furanocoumarins, psoralen and bergapten (5-MOP) and others. Pure psoralen and 5-MOP affected both Fusarium spp. similarly and carotenoids protected only partially in the wild type strains. Citrus targetted the cell membrane in Fusarium spp.l and in E. coli strains; carotenoids in both of which protected against such damage. Loss in structural integrity of plasmid DNA when treated with citral and UV-A correlated with loss in transforming activity. Biological damage to membrane and DNA was due to the production of hydrogen peroxide. Fruit-rot pathogens Penicilium spp. were not affected by either furanocoumarins or citrals

  7. Generation of continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling of a Ti:sapphire laser.

    Science.gov (United States)

    Cha, Yong-Ho; Ko, Kwang-Hoon; Lim, Gwon; Han, Jae-Min; Park, Hyun-Min; Kim, Taek-Soo; Jeong, Do-Young

    2010-03-20

    We have generated continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling a high-power Ti:sapphire laser in an external enhancement cavity. An LBO crystal that is Brewster-cut and antireflection coated on both ends is used for a long-term stable frequency doubling. By optimizing the input coupler's reflectivity, we could generate 1.5 W 378 nm radiation from a 5 W 756 nm Ti:sapphire laser. According to our knowledge, this is the highest CW frequency-doubled power of a Ti:sapphire laser.

  8. Photodissociation of acrylonitrile at 193 nm: A photofragment translational spectroscopy study using synchrotron radiation for product photoionization

    International Nuclear Information System (INIS)

    Blank, D.A.; Suits, A.G.; Lee, Y.T.; North, S.W.; Hall, G.E.

    1998-01-01

    We have investigated the photodissociation of acrylonitrile (H 2 CCHCN) at 193 nm using the technique of photofragment translational spectroscopy. The experiments were performed at the Chemical Dynamics Beamline at the Advanced Light Source and used tunable vacuum ultraviolet synchrotron radiation for product photoionization. We have identified four primary dissociation channels including atomic and molecular hydrogen elimination, HCN elimination, and CN elimination. There is significant evidence that all of the dissociation channels occur on the ground electronic surface following internal conversion from the initially optically prepared state. The product translational energy distributions reflect near statistical simple bond rupture for the radical dissociation channels, while substantial recombination barriers mediate the translational energy release for the two molecular elimination channels. Photoionization onsets have provided additional insight into the chemical identities of the products and their internal energy content. copyright 1998 American Institute of Physics

  9. First studies of 500-nm Cherenkov radiation from 255-MeV electrons in a diamond crystal

    Energy Technology Data Exchange (ETDEWEB)

    Takabayashi, Y., E-mail: takabayashi@saga-ls.jp [SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005 (Japan); Fiks, E.I. [National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); Pivovarov, Yu.L. [National Research Tomsk Polytechnic University, 634050 Tomsk (Russian Federation); National Research Tomsk State University, 634050 Tomsk (Russian Federation)

    2015-06-12

    The first experiment on Cherenkov light from 255-MeV electrons passing through a 50-μm-thick diamond crystal in a special geometry allowing extraction of 500-nm Cherenkov light at a right angle with respect to the electron beam direction has been performed at the injector linac of SAGA Light Source accelerator facility. The dependence of 500-nm Cherenkov light intensity (separated by a band-pass filter) on the crystal rotation angle was measured by a CCD detector. The experimentally obtained rocking curve with an intense maximum is theoretically explained as the projector effect of Cherenkov light deflected by the exit surface of the crystal. The width of the rocking curve is explained by the convolution of the standard Tamm–Frank angular distribution of Cherenkov radiation with chromatic aberration, the multiple scattering of electrons in a crystal, and initial electron beam angular divergence. In addition, it is found that the Cherenkov light intensity did not change under the (220) planar channeling condition, which is consistent with a recent theory. - Highlights: • Cherenkov light from 255-MeV electrons in a diamond crystal has been investigated. • The Cherenkov light from channeled electrons has been observed for the first time. • The experimental results are in good agreement with theory.

  10. 1090 nm infrared radiation at close to threshold dose induces cataract with a time delay.

    Science.gov (United States)

    Yu, Zhaohua; Schulmeister, Karl; Talebizadeh, Nooshin; Kronschläger, Martin; Söderberg, Per G

    2015-03-01

    To investigate whether infrared radiation (IRR)-induced cataract is instant or is associated with a time delay between the exposure and the onset of lens light scattering after an exposure to just above threshold dose. Six-weeks-old albino Sprague-Dawley female rats were unilaterally exposed to 197 W/cm2 IRR at 1090 nm within the dilated pupil. In the first experiment, the animals were exposed with four exposure times of 5, 8, 13 and 20 second, respectively. At 24 hr after exposure, the light scattering in both exposed and contralateral not exposed lenses was measured. Based on the first experiment, four postexposure time groups were exposed unilaterally to 1090 nm IRR of 197 W/cm2 for 8 second. At 6, 18, 55 and 168 hr after exposure, the light scattering in both lenses was measured. A 197 W/cm2 IRR-induced light scattering in the lens with exposures of at least 8 second. Further, after exposure to IRR of 197 W/cm2 for 8 second, the light-scattering increase in the lens was delayed approximately 16 hr after the exposure. There is a time delay between the exposure and the onset of cataract after exposure to close to threshold dose implicating that either near IRR cataract is photochemical or there is a time delay in the biological expression of thermally induced damage. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  11. Lyman-alpha detector designed for rocket measurements of the direct solar radiation at 121.5 nm

    International Nuclear Information System (INIS)

    Guineva, V.; Tashev, V.; Witt, G.; Gumbel, J.; Khaplanov, M.

    2007-01-01

    Rocket measurements of the direct Lyman-alpha radiation penetrating in the atmosphere were planned during the HotPay I rocket experiment, June 2006, Project ASLAF (Attenuation of the Solar Lyman-Alpha Flux), Andoya Rocket Range (ARR), Norway. The basic goal of ASLAF project was the study of the processes in the summer mesosphere and thermosphere (up to 110 km), at high latitudes using the Lyman-alpha measurements. The resonance transition 2 P- 2 S of the atomic hydrogen (Lyman-alpha emission) is the strongest and most conspicuous feature in the solar EUV spectrum. Due to the favourable circumstance, that the Lyman-alpha wavelength (121.5 nm) coincides with a minimum of the O 2 absorption spectrum, the direct Lyman-alpha radiation penetrates well in the mesosphere. The Lyman-alpha radiation is the basic agent of the NO molecules ionization, thus generating the ionospheric D-layer, and of the water vapour photolysis, being one of the main H 2 O loss processes. The Lyman-alpha radiation transfer depends on the resonance scattering from the hydrogen atoms in the atmosphere and on the O 2 absorption. Since the Lyman-alpha extinction in the atmosphere is a measure for the column density of the oxygen molecules, the atmospheric temperature profile can be calculated thereof. The detector of solar Lyman-alpha radiation was manufactured in the Stara Zagora Department of the Solar-Terrestrial Influences Laboratory (STIL). Its basic part is an ionization chamber, filled in with NO. A 60 V power supply is applied to the chamber. The produced photoelectric current from the sensor is fed to a 2-channels amplifier, providing an analogue signal. The characteristics of the Lyman-alpha detector were studied. It passed successfully all tests and the results showed that the instrument could be used in rocket experiments to measure the Lyman-alpha flux. From the measurements of the detector, the Lyman-alpha vertical profile can be obtained. The forthcoming scientific data analysis will

  12. Ionizing Radiation Effects on the Noise of 65 nm CMOS Transistors for Pixel Sensor Readout at Extreme Total Dose Levels

    CERN Document Server

    Re, V.; Manghisoni, M.; Riceputi, E.; Traversi, G.; Ratti, L.

    2018-01-01

    This paper is focused on the study of the noise performance of 65 nm CMOS transistors at extremely high total ionizing dose (TID) levels of the order of several hundreds of Mrad(SiO2). Noise measurements are reported and discussed, analyzing radiation effects on 1/ f noise and channel thermal noise. In nMOSFETs, up to 10 Mrad(SiO2), the experimental behavior is consistent with a damage mechanism mainly associ- ated with lateral isolation oxides, and can be modeled by parasitic transistors turning on after irradiation and contributing to the total noise of the device. At very high dose, these parasitic transistors tend to be turned off by negative charge accumulating in interface states and compensating radiation-induced positive charge building up inside thick isolation oxides. Effects associated with ionization and hydrogen transport in spacer oxides may become dominant at 600 Mrad(SiO2) and may explain the observed noise behavior at extremely high TID. The results of this analysis provide an understanding o...

  13. Impact of ultraviolet-B radiation on planktonic fish larvae: Alteration of the osmoregulatory function

    Energy Technology Data Exchange (ETDEWEB)

    Sucre, Elliott, E-mail: elliott.sucre@univ-montp2.fr [AEO Team (Adaptation Ecophysiologique et Ontogenese), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc092, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France); Vidussi, Francesca [RESEAUX Team (Reseaux Planctoniques et Changement Environnemental), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc093, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France); Mostajir, Behzad [RESEAUX Team (Reseaux Planctoniques et Changement Environnemental), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc093, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France); Centre d' ecologie marine experimentale MEDIMEER (Mediterranean centre for Marine Ecosystem Experimental Research), Universite Montpellier 2-CNRS (UMS 3301), Station Mediterraneenne de l' Environnement Littoral, MEDIMEER, 2 Rue des Chantiers, 34200 Sete (France); Charmantier, Guy; Lorin-Nebel, Catherine [AEO Team (Adaptation Ecophysiologique et Ontogenese), UMR 5119 Ecosym UM2, CNRS, IRD, Ifremer, UM1, Universite Montpellier 2, cc092, Pl. Eugene Bataillon, 34095 Montpellier, Cx 05 (France)

    2012-03-15

    Coastal marine ecosystems are submitted to variations of several abiotic and biotic parameters, some of them related to global change. Among them the ultraviolet-B (UV-B) radiation (UVBR: 280-320 nm) may strongly impact planktonic fish larvae. The consequences of an increase of UVBR on the osmoregulatory function of Dicentrarchus labrax larvae have been investigated in this study. In young larvae of D. labrax, as in other teleosts, osmoregulation depends on tegumentary ion transporting cells, or ionocytes, mainly located on the skin of the trunk and of the yolk sac. As early D. labrax larvae passively drift in the top water column, ionocytes are exposed to solar radiation. The effect of UVBR on larval osmoregulation in seawater was evaluated through nanoosmometric measurements of the blood osmolality after exposure to different UV-B treatments. A loss of osmoregulatory capability occured in larvae after 2 days of low (50 {mu}W cm{sup -2}: 4 h L/20 h D) and medium (80 {mu}W cm{sup -2}: 4 h L/20 h D) UVBR exposure. Compared to control larvae kept in the darkness, a significant increase in blood osmolality, abnormal behavior and high mortalities were detected in larvae exposed to UVBR from 2 days on. At the cellular level, an important decrease in abundance of tegumentary ionocytes and mucous cells was observed after 2 days of exposure to UVBR. In the ionocytes, two major osmoeffectors were immunolocalized, the Na{sup +}/K{sup +}-ATPase and the Na{sup +}/K{sup +}/2Cl{sup -} cotransporter. Compared to controls, the fluorescent immunostaining was lower in UVBR-exposed larvae. We hypothesize that the impaired osmoregulation in UVBR-exposed larvae originates from the lower number of tegumentary ionocytes and mucous cells. This alteration of the osmoregulatory function could negatively impact the survival of young larvae at the surface water exposed to UVBR.

  14. Soft errors in 10-nm-scale magnetic tunnel junctions exposed to high-energy heavy-ion radiation

    Science.gov (United States)

    Kobayashi, Daisuke; Hirose, Kazuyuki; Makino, Takahiro; Onoda, Shinobu; Ohshima, Takeshi; Ikeda, Shoji; Sato, Hideo; Inocencio Enobio, Eli Christopher; Endoh, Tetsuo; Ohno, Hideo

    2017-08-01

    The influences of various types of high-energy heavy-ion radiation on 10-nm-scale CoFeB-MgO magnetic tunnel junctions with a perpendicular easy axis have been investigated. In addition to possible latent damage, which has already been pointed out in previous studies, high-energy heavy-ion bombardments demonstrated that the magnetic tunnel junctions may exhibit clear flips between their high- and low-resistance states designed for a digital bit 1 or 0. It was also demonstrated that flipped magnetic tunnel junctions still may provide proper memory functions such as read, write, and hold capabilities. These two findings proved that high-energy heavy ions can produce recoverable bit flips in magnetic tunnel junctions, i.e., soft errors. Data analyses suggested that the resistance flips stem from magnetization reversals of the ferromagnetic layers and that each of them is caused by a single strike of heavy ions. It was concurrently found that an ion strike does not always result in a flip, suggesting a stochastic process behind the flip. Experimental data also showed that the flip phenomenon is dependent on the device and heavy-ion characteristics. Among them, the diameter of the device and the linear energy transfer of the heavy ions were revealed as the key parameters. From their dependences, the physical mechanism behind the flip was discussed. It is likely that a 10-nm-scale ferromagnetic disk loses its magnetization due to a local temperature increase induced by a single strike of heavy ions; this demagnetization is followed by a cooling period associated with a possible stochastic recovery process. On the basis of this hypothesis, a simple analytical model was developed, and it was found that the model accounts for the results reasonably well. This model also predicted that magnetic tunnel junctions provide sufficiently high soft-error reliability for use in space, highlighting their advantage over their counterpart conventional semiconductor memories.

  15. Mutation induction by 365-nm radiation and far-ultraviolet light in Escherichia coli differing in near- and far-ultraviolet light sensitivity

    International Nuclear Information System (INIS)

    Leonardo, J.M.; Reynolds, P.R.; Tuveson, R.W.

    1984-01-01

    The his-4 locus derived from Escherichia coli strain AB1157 has been transduced into 4 E. coli strains that exhibit all 4 possible combinations of genes controlling sensitivity to near-ultraviolet light (nur versus nur + ) and far-ultraviolet light (uvrA6 versus uvrA + ). The 4 strains exhibited the predicted sensitivity to 254-nm radiation based on the sensitivity of the parent strains from which they were derived and the frequency of his + mutations predicted from experiments with AB1157 from which the his-4 locus was derived. When the 4 strains were treated with 365-nm radiation, they exhibited the predicted sensitivity based on the near-ultraviolet light sensitivity of the strains from which they were derived while his + mutations were undetectable with the 4 strains as well as with strain AB1157. When treated with 365-nm radiation, cells of a WP2sub(s) strain (a derivative of B/r transduced to his-4) plated on semi-enriched medium prepared with casamino acids did not yield induced mutations, whereas plating on semi-enriched medium prepared with nutrient broth did yield mutants at both the his-4 and trp loci at frequencies at least an order of magnitude lower than that observed with far-ultraviolet light. The induction of nutritionally independent mutants by 365-nm radiation is strongly dependent on the supplement used for semi-enrichment. When compared at equivalent survival levels, mutant frequencies are significantly less following 365-nm radiation when compared with far-ultraviolet radiation. (Auth.)

  16. Visible optical radiation generates bactericidal effect applicable for inactivation of health care associated germs demonstrated by inactivation of E. coli and B. subtilis using 405-nm and 460-nm light emitting diodes

    Science.gov (United States)

    Hönes, Katharina; Stangl, Felix; Sift, Michael; Hessling, Martin

    2015-07-01

    The Ulm University of Applied Sciences is investigating a technique using visible optical radiation (405 nm and 460 nm) to inactivate health-hazardous bacteria in water. A conceivable application could be point-of-use disinfection implementations in developing countries for safe drinking water supply. Another possible application field could be to provide sterile water in medical institutions like hospitals or dental surgeries where contaminated pipework or long-term disuse often results in higher germ concentrations. Optical radiation for disinfection is presently mostly used in UV wavelength ranges but the possibility of bacterial inactivation with visible light was so far generally disregarded. One of the advantages of visible light is, that instead of mercury arc lamps, light emitting diodes could be used, which are commercially available and therefore cost-efficient concerning the visible light spectrum. Furthermore they inherit a considerable longer life span than UV-C LEDs and are non-hazardous in contrast to mercury arc lamps. Above all there are specific germs, like Bacillus subtilis, which show an inactivation resistance to UV-C wavelengths. Due to the totally different deactivation mechanism even higher disinfection rates are reached, compared to Escherichia coli as a standard laboratory germ. By 460 nm a reduction of three log-levels appeared with Bacillus subtilis and a half log-level with Escherichia coli both at a dose of about 300 J/cm². By the more efficient wavelength of 405 nm four and a half log-levels are reached with Bacillus subtilis and one and a half log-level with Escherichia coli also both at a dose of about 300 J/cm². In addition the employed optical setup, which delivered a homogeneous illumination and skirts the need of a stirring technique to compensate irregularities, was an important improvement compared to previous published setups. Evaluated by optical simulation in ZEMAX® the designed optical element provided proven

  17. The effect of the operation modes of a gas discharge low-pressure amalgam lamp on the intensity of generation of 185 nm UV vacuum radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru [Russian Academy of Sciences, Joint Institute of High Temperatures (Russian Federation); Drozdov, L. A., E-mail: lit@npo.lit.ru; Kostyuchenko, S. V.; Sokolov, D. V. [ZAO LIT (Russian Federation); Kudryavtsev, N. N.; Sobur, D. A., E-mail: soburda@gmail.com [Moscow Institute for Physics and Technology (Russian Federation)

    2011-12-15

    The effect of the discharge current, mercury vapor pressure, and the inert gas pressure on the intensity and efficiency of the 185 nm line generation are considered. The spectra of the UV radiation (vacuum ultraviolet) transmission by protective coatings from the oxides of rare earth metals and aluminum are investigated.

  18. Mathematical simulation of the amplification of 1790-nm laser radiation in a nuclear-excited He - Ar plasma containing nanoclusters of uranium compounds

    Science.gov (United States)

    Kosarev, V. A.; Kuznetsova, E. E.

    2014-02-01

    The possibility of applying dusty active media in nuclearpumped lasers has been considered. The amplification of 1790-nm radiation in a nuclear-excited dusty He - Ar plasma is studied by mathematical simulation. The influence of nanoclusters on the component composition of the medium and the kinetics of the processes occurring in it is analysed using a specially developed kinetic model, including 72 components and more than 400 reactions. An analysis of the results indicates that amplification can in principle be implemented in an active laser He - Ar medium containing 10-nm nanoclusters of metallic uranium and uranium dioxide.

  19. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA High-power EUV (13.5 nm) light source

    Science.gov (United States)

    Borisov, Vladimir M.; Borisova, Galina N.; Vinokhodov, Aleksandr Yu; Zakharov, S. V.; Ivanov, Aleksandr S.; Kiryukhin, Yurii B.; Mishchenko, Valentin A.; Prokof'ev, Aleksandr V.; Khristoforov, Oleg B.

    2010-10-01

    Characteristics of a discharge-produced plasma (DPP) light source in the spectral band 13.5±0.135 nm, developed for Extreme Ultra Violet (EUV) lithography, are presented. EUV light is generated by DPP in tin vapour formed between rotating disk electrodes. The discharge is ignited by a focused laser beam. The EUV power 1000 W/(2π sr) in the spectral band 13.5±0.135 nm was achieved with input power about of ~63 kW to the plasma at a pulse repetition rate ~7 kHz . The results of numerical simulation are compared with the experimental data.

  20. Effects of ultraviolet radiation on the lower levels of the planktonic food web in Antarctica

    International Nuclear Information System (INIS)

    Ferreyra, Gustavo A.; Schloss, Irene; Tosonotto, Gabriela; Calvino, Eduardo; Rodriguez, Silvia; Cantoni, Leonardo; Gonzalez, Oscar; Ulrich, Alejandro; Hernando, Marcelo; Hernandez, Edgardo; Oyarbide, Fabricio

    2004-01-01

    Full text: Most of the studies that investigated the effects of ultraviolet radiation (UVR, 280-400 NM) on the first levels of the marine food web used experimental approaches (in situ incubations, micro and mesocosms). However, research on the responses to UVR of the micro community in their natural environment is scarce. A time series study including most of the oceanographic parameters described as controlling bacteria and phytoplankton dynamics was carried out (PAR, tidal mixing, turbulent mixing by winds and currents, nutrient stress). In this case, however, the effects of ultraviolet A and B (UVB, 280-320 nm and UVA, 320-400 nm, respectively) were added as forcing parameters. Fieldwork was done in the vicinity of Melchior Station (64 degrees 20' S, 62 degrees 59' W, Observatory Island). It involved the automated measurement of physical variables (currents, tides and meteorological data), as well as discrete sampling of physical (salinity, temperature), chemical (macro nutrients) and biological variables (bacterial and phytoplankton abundance and production, PSI I system, photo protective compounds). Sub-surface sampling (0.5 m depth) was conducted with 5 L Niskin bottles at a fixed station (sampling every 6/12 h centered at local noon during the whole study period), and vertical profiles at 6 fixed depths (0, 5, 10, 20, 30 and 50 m) were done every four days. The whole study lasted for one month, from February 11 to March 12 2002. Average upper mixed layer (UML) was around 20 m and the depth of the euphotic zone (1% of incident radiation) for UVB and UVA was respectively 17 and 32 m, suggesting a strong influence of UVR on cells within the UML. PSII activity showed a significant inverse correlation with UVB, phased with irradiance oscillations. Bacterio plankton and phytoplankton biomass and production of both presented a similar response, but minimum values were lagged by 4-6 h from UVR maxima. Mycosporin like aminoacids (MAA's) were also phased and directly

  1. Susceptibilidad a la radiación ultravioleta_B del dinoflagelado Alexandrium catenella Kofoid Balech y de la diatomea Phaeodactylum tricornutum Bohlin Susceptibility to ultraviolet-B radiation of the dinoflagellate Alexandrium catenella Kofoid Balech, and the diatom Phaeodactylum tricornutum Bohlin

    Directory of Open Access Journals (Sweden)

    GINGER MARTINEZ

    2000-06-01

    Full Text Available La susceptibilidad diferencial de microalgas a la radiación UV-B (RUV-B, 280 - 320 nm genera patrones de predominio numérico dentro de los ensambles del fitoplancton. Sin embargo, a pesar que algunos eventos de floraciones algales nocivas (FAN del dinoflagelado Alexandrium catenella han sido coincidentes con episodios de alta RUV-B en el extremo sur de Chile, se desconoce alguna relación de causalidad entre estos procesos. A través de los parámetros poblacionales tasa intrínseca de crecimiento (µ y capacidad de carga (K, se determinó el efecto de la RUV-B sobre la dinámica poblacional de cultivos de A. catenella, la que fue comparada con la respuesta demográfica de cultivos de una diatomea susceptible a la RUV-B, Phaeodactylum tricornutum. Los resultados mostraron que ambas especies presentaron una disminución significativa de µ frente a un incremento de RUV-B. Sin embargo, mientras que la respuesta de A. catenella mostró una dosis umbral para el crecimiento, bajo la cual se obtuvo una disminución de µ hasta 0,03 d-1, P. tricornutum presentó un decrecimiento proporcional, hasta un mínimo de 0,34 d-1. A pesar que el parámetro K en ambas especies presentó un decrecimiento similar frente a un gradiente de RUV-B, A. catenella mostró una significativa inhibición a partir de 2,9 KJ m-2 d-1, a diferencia de P. tricornutum, donde K se afectó a dosis iguales o mayores a 4,1 KJ m-2 d-1. Contrario a la predicción, los resultados indican una mayor susceptibilidad en A. catenella que en P. tricornutum al aumento de dosis de RUV-B, lo cual otorga una débil causalidad a este factor en la determinación del patrón de predominio numérico presentado por A. catenella durante los eventos de FANDifferential susceptibility to ultraviolet B (UV-B, 280 - 320 nm radiation among microalgae generates patterns of dominance in phytoplankton assemblages. However, despite some events of harmful algal blooms (HAB's of the dinoflagellate Alexandrium

  2. The action of NIR (808nm) laser radiation and gold nanorods labeled with IgA and IgG human antibodies on methicillin-resistant and methicillin sensitive strains of Staphylococcus aureus

    Science.gov (United States)

    Tuchina, Elena S.; Petrov, Pavel O.; Ratto, Fulvio; Centi, Sonia; Pini, Roberto; Tuchin, Valery V.

    2015-03-01

    The effect of NIR laser radiation (808 nm) on methicillin-sensitive and methicillin resistant strains of Staphylococcus aureus incubated with gold nanorods is studied. Nanorods having length of 44 (± 4) nm and diameter of 10 (± 3) nm with the absorption maximum in the NIR (800 nm), functionalized with human immunoglobulins IgA and IgG, were synthesized and used in the studies. The killing ability up to 97% of the microorganism populations by using this nanotechnology was shown.

  3. Preliminary Radiation Testing of a State-of-the-Art Commercial 14nm CMOS Processor/System-on-a-Chip

    Science.gov (United States)

    Szabo, Carl M., Jr.; Duncan, Adam; LaBel, Kenneth A.; Kay, Matt; Bruner, Pat; Krzesniak, Mike; Dong, Lei

    2015-01-01

    Hardness assurance test results of Intel state-of-the-art 14nm “Broadwell” U-series processor / System-on-a-Chip (SoC) for total ionizing dose (TID) are presented, along with exploratory results from trials at a medical proton facility. Test method builds upon previous efforts [1] by utilizing commercial laptop motherboards and software stress applications as opposed to more traditional automated test equipment (ATE).

  4. Preliminary Radiation Testing of a State-of-the-Art Commercial 14nm CMOS Processor - System-on-a-Chip

    Science.gov (United States)

    Szabo, Carl M., Jr.; Duncan, Adam; LaBel, Kenneth A.; Kay, Matt; Bruner, Pat; Krzesniak, Mike; Dong, Lei

    2015-01-01

    Hardness assurance test results of Intel state-of-the-art 14nm Broadwell U-series processor System-on-a-Chip (SoC) for total dose are presented, along with first-look exploratory results from trials at a medical proton facility. Test method builds upon previous efforts by utilizing commercial laptop motherboards and software stress applications as opposed to more traditional automated test equipment (ATE).

  5. Comparison of theory with atomic oxygen 130.4 nm radiation data from the Bow Shock ultraviolet 2 rocket flight

    Science.gov (United States)

    Levin, Deborah A.; Candler, Graham V.; Collins, Robert J.; Howlett, Carl L.; Espy, Patrick; Whiting, Ellis; Park, Chul

    1993-01-01

    Comparison is made between the results obtained from a state-of-the-art flow and radiative model and bow shock vacuum ultraviolet (VUV) data obtained the recent Bow Shock 2 Flight Experiment. An extensive data set was obtained from onboard rocket measurements at a reentry speed of 5 km/sec between the altitudes of approximately 65-85 km. A description of the NO photoionization cell used, the data, and the interpretation of the data will be presented. The primary purpose of the analyses is to assess the utility of the data and to propose a radiation model appropriate to the flight conditions of Bow Shock 2. Theoretical predictions based on flow modeling discussed in earlier work and a new radiation model are compared with data.

  6. Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair.

    Directory of Open Access Journals (Sweden)

    Chiew-Yen Wong

    Full Text Available Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR, have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237, temperate (Chlorella vulgaris UMACC 248 and tropical (Chlorella vulgaris UMACC 001 environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400-700 nm, PAR plus ultraviolet-A (320-400 nm radiation (PAR + UV-A and PAR plus UV-A and ultraviolet-B (280-320 nm radiation (PAR + UV-A + UV-B for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek and light harvesting efficiency (α were determined from rapid light curves. The damage (k and repair (r rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain

  7. Theoretical search for optimal pump parameters for observing spontaneous radiation amplification on the λ=41.8-nm transition of Xe IX in plasma

    International Nuclear Information System (INIS)

    Ivanova, E P; Ivanov, Arkadii L

    2004-01-01

    Based on a collisional-radiative model, an atomic-kinetic calculation of the gains on the 41.8-nm transitions of Pd-like xenon was performed for the plasma produced due to the interaction of a femtosecond laser pulse with gaseous xenon. The gains g(z,τ) averaged over the spatial and temporal coordinates were compared with the known gains which had been measured experimentally in Xe 8+ . The amplification was shown to occur under the conditions of ionisation of the working ions, and the time of output radiation saturation depends on the time of Xe 8+ transformation to higher-ionised ions. Our theoretical investigation enables determining the optimal pump parameters, at which the product of the gain g by the active medium length L is about 20, which exceeds the experimental gL value. (active media)

  8. Lethal effect of short-wave (254 nm) UV-radiation on cells of Chlamidomonas reinhardii strains with different carotenoid content

    International Nuclear Information System (INIS)

    Kamchatova, I.E.; Chunaev, A.S.; Bronnikov, V.A.

    1987-01-01

    In experiments on related Chlamidomonas reinhardii strains of similar mating type a study was made of sensitivity of cells with different carotenoid content to UV-radiation of 254 nm. Mutants having a lower, as opposed to the wild type strain, content of carotenoids exhibited an increased radiosensitivity. A carotenoid-free mutant was found to possess a higher sensitivity to UV-radiation which was typical of the strain with the impaired excision repair system. The studied subclone of the UV-radiosensitive strain CC-888 was unable to photoreactivate the UV-induced damages which was typical of the wild-type strain. The content of carotenoids in cells of this subnuclone exceeded that in cells of mutants with the reduced pigmentation

  9. Effects of ultraviolet radiation on Hibiscus rosa-sinensis, Beta vulgaris and Helianthus annuus

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulos, I.

    1992-12-31

    It is believed that increased levels of ultraviolet B-radiation (UV-B;280-320 nm) will result in serious threat to plant. In the present study the effects of UV (particularly UV-B) were studied on chlorophyll fluorescence, ultraweak luminescence (UL) and plant growth. Parameters related to light emission were determined, and the effects of UV-B on hypocotyl elongation and levels of free IAA were examined. The plants were grown in greenhouse or in growth chambers and exposed to short or long term UV-B simulating different levels of ozone depletion. Short exposure of Hibiscus leaves to UV resulted in a gradual increase in both UL and peroxidase activity followed by a decline after 72 h and a decrease in variable chlorophyll fluorescence. The action of UV-B on sugar beet plants depended on light quality and irradiance and infection by Cercospora beticola Sacc. The interaction between UV-B and the disease resulted in a large reduction of dry weight and enhanced UL. The lowest Chl a and growth was found in plants grown under low irradiance and exposed to UV-B supplemented with UV-A (320-400 nm). UVB also inhibited photosystem II, increased UL and peroxidase activity. Under relatively high PAR, UV-B increased dry weight of laminae and UL but no effect on Chl content. Sugar beet plants grown with light depleted in the 320-400 nm region of the spectrum and exposed to UV-B died. Low levels of UV-B did neither affected hypocotyl elongation nor amounts of free IAA in sunflower plants grown under low (LL; 143 {mu}mol m{sup -2}s{sup -1}) or high PAR (HL; 800 {mu}mol m{sup -2}s{sup -1}). Three times more daily UV-B increased the amount of free IAA, but inhibited hypocotyl elongation. Higher F{sub v}/F{sub max} and F690/F735, Chl a and carotenoids were found in plants exposed to low UV-B. Indeed, UV-B can be harmful but may also have enhancing effects on plants. (au) (114 refs.).

  10. Effects of ultraviolet radiation on Hibiscus rosa-sinensis, Beta vulgaris and Helianthus annuus

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulos, I.

    1992-01-01

    It is believed that increased levels of ultraviolet B-radiation (UV-B;280-320 nm) will result in serious threat to plant. In the present study the effects of UV (particularly UV-B) were studied on chlorophyll fluorescence, ultraweak luminescence (UL) and plant growth. Parameters related to light emission were determined, and the effects of UV-B on hypocotyl elongation and levels of free IAA were examined. The plants were grown in greenhouse or in growth chambers and exposed to short or long term UV-B simulating different levels of ozone depletion. Short exposure of Hibiscus leaves to UV resulted in a gradual increase in both UL and peroxidase activity followed by a decline after 72 h and a decrease in variable chlorophyll fluorescence. The action of UV-B on sugar beet plants depended on light quality and irradiance and infection by Cercospora beticola Sacc. The interaction between UV-B and the disease resulted in a large reduction of dry weight and enhanced UL. The lowest Chl a and growth was found in plants grown under low irradiance and exposed to UV-B supplemented with UV-A (320-400 nm). UVB also inhibited photosystem II, increased UL and peroxidase activity. Under relatively high PAR, UV-B increased dry weight of laminae and UL but no effect on Chl content. Sugar beet plants grown with light depleted in the 320-400 nm region of the spectrum and exposed to UV-B died. Low levels of UV-B did neither affected hypocotyl elongation nor amounts of free IAA in sunflower plants grown under low (LL; 143 [mu]mol m[sup -2]s[sup -1]) or high PAR (HL; 800 [mu]mol m[sup -2]s[sup -1]). Three times more daily UV-B increased the amount of free IAA, but inhibited hypocotyl elongation. Higher F[sub v]/F[sub max] and F690/F735, Chl a and carotenoids were found in plants exposed to low UV-B. Indeed, UV-B can be harmful but may also have enhancing effects on plants. (au) (114 refs.).

  11. Effects of ultraviolet radiation on Hibiscus rosa-sinensis, Beta vulgaris and Helianthus annuus

    International Nuclear Information System (INIS)

    Panagopoulos, I.

    1992-01-01

    It is believed that increased levels of ultraviolet B-radiation (UV-B;280-320 nm) will result in serious threat to plant. In the present study the effects of UV (particularly UV-B) were studied on chlorophyll fluorescence, ultraweak luminescence (UL) and plant growth. Parameters related to light emission were determined, and the effects of UV-B on hypocotyl elongation and levels of free IAA were examined. The plants were grown in greenhouse or in growth chambers and exposed to short or long term UV-B simulating different levels of ozone depletion. Short exposure of Hibiscus leaves to UV resulted in a gradual increase in both UL and peroxidase activity followed by a decline after 72 h and a decrease in variable chlorophyll fluorescence. The action of UV-B on sugar beet plants depended on light quality and irradiance and infection by Cercospora beticola Sacc. The interaction between UV-B and the disease resulted in a large reduction of dry weight and enhanced UL. The lowest Chl a and growth was found in plants grown under low irradiance and exposed to UV-B supplemented with UV-A (320-400 nm). UVB also inhibited photosystem II, increased UL and peroxidase activity. Under relatively high PAR, UV-B increased dry weight of laminae and UL but no effect on Chl content. Sugar beet plants grown with light depleted in the 320-400 nm region of the spectrum and exposed to UV-B died. Low levels of UV-B did neither affected hypocotyl elongation nor amounts of free IAA in sunflower plants grown under low (LL; 143 μmol m -2 s -1 ) or high PAR (HL; 800 μmol m -2 s -1 ). Three times more daily UV-B increased the amount of free IAA, but inhibited hypocotyl elongation. Higher F v /F max and F690/F735, Chl a and carotenoids were found in plants exposed to low UV-B. Indeed, UV-B can be harmful but may also have enhancing effects on plants. (au) (114 refs.)

  12. Combined radiation damage, annealing, and ageing studies of InGaAsP /InP 1310 nm lasers for the CMS tracker optical links

    CERN Document Server

    Gill, K; Troska, Jan K; Vasey, F

    2002-01-01

    A summary is presented of the combined effects of radiation damage, accelerated annealing and accelerated ageing in 1310 nm InGaAsP/InP multi-quantum-well lasers, the type chosen for use in the CMS Tracker optical links. The radiation damage effects are compared for a variety of radiation sources: /sup 60/Co-gamma, 0.8 MeV (average energy) neutrons, 20 MeV (average energy) neutrons and 300 MeV/c pions that represent important parts of the spectrum of particles that will be encountered in the CMS Tracker. The relative damage factors of the various sources are calculated by comparing the laser threshold current increase due to radiation damage giving approximately=0 : 0.12 : 0.53 : 1 for /sup 60/Co-gamma, approximately =0.8 MeV neutrons, approximately=20 MeV neutrons with respect to 300 MeV/c pions. The effects of bias current and temperature on the annealing were measured and, in all cases, the annealing is proportional to log(annealing time). A bias current of 60 mA increases the annealing, in terms of the ti...

  13. Effects of ultraviolet radiation on microtubule organisation and morphogenesis in plants

    International Nuclear Information System (INIS)

    Staxen, I.

    1994-09-01

    The involvement of the cytoskeleton in the development of somatic embryos was studied in Larix x eurolepis. Protoplasts were isolated from both somatic embryo-regenerating and non-generating cultures and fractionated on a discontinuous Percoll density gradient, whereby a highly embryogenic protoplast fraction could be enriched. Protoplasts of two cell lines of Larix eurolepis, one with regenerating potential and one lacking this potential, were compared. In contrast to the non-regenerating line were a protoplast-like organisation of the cortical microtubules was maintained, re-organisation of this microtubular network occurred in the regenerable line after only three days of culture, indicating that organised growth was occurring. However, this early organisation of cortical microtubules may not always be a valid marker for regenerable and non-regenerable material. In order to investigate the effect of ultraviolet-B (UV-B, 280-320 nm) radiation on the microtubule cytoskeleton, protoplasts were isolated from leaves of Petunia hybrida and subjected to four different doses of UV-B radiation. The organisation of the microtubules and the progression of the cells through the cell cycle was observed at 0, 24, 48 and 72 h after irradiation. UV-B induced breaks in the cortical microtubules resulting in shorter fragments with increasing amounts of radiation. Also, the division of the protoplasts was delayed, which was related to the absence of an microtubule network. Whole Petunia plants were grown in growth chambers in the presence and absence of UV-B. The plants responded to UV-B with increased rates of CO 2 assimilation, a 60% increase in UV-screening compounds and the changes in the morphology of the leaves that were reflected in a 70-100% increase in leaf area and 20% decrease in leaf thickness. The microtubules of the epidermal cells was not affected by UV-B, nor was the number of epidermal cells (per unit area). The increase in leaf area in the UV-treated plants

  14. Effects of ultraviolet radiation on microtubule organisation and morphogenesis in plants

    Energy Technology Data Exchange (ETDEWEB)

    Staxen, I.

    1994-09-01

    The involvement of the cytoskeleton in the development of somatic embryos was studied in Larix x eurolepis. Protoplasts were isolated from both somatic embryo-regenerating and non-generating cultures and fractionated on a discontinuous Percoll density gradient. Protoplasts of two cell lines of Larix eurolepis, one with regenerating potential and one lacking this potential, were compared. In contrast to the non-regenerating line were a protoplast-like organisation of the cortical microtubules was maintained, re-organisation of this microtubular network occurred in the regenerable line after only three days of culture, indicating that organised growth was occurring. However, this early organisation of cortical microtubules may not always be a valid marker for regenerable and non-regenerable material. In order to investigate the effect of ultraviolet-B (UV-B, 280-320 nm) radiation on the microtubule cytoskeleton, protoplasts were isolated from leaves of Petunia hybrida and subjected to four different doses of UV-B radiation. The organisation of the microtubules and the progression of the cells through the cell cycle was observed at 0, 24, 48 and 72 h after irradiation. UV-B induced breaks in the cortical microtubules resulting in shorter fragments with increasing amounts of radiation. Also, the division of the protoplasts was delayed. Whole Petunia plants were grown in growth chambers in the presence and absence of UV-B. The plants responded to UV-B with increased rates of CO{sub 2} assimilation, a 60% increase in UV-screening compounds and the changes in the morphology of the leaves that were reflected in a 70-100% increase in leaf area and 20% decrease in leaf thickness. The microtubules of the epidermal cells was not affected by UV-B, nor was the number of epidermal cells (per unit area). The increase in leaf area in the UV-treated plants appeared due to stimulation of cell division in the leaf meristems. 111 refs, 5 figs, 2 tabs.

  15. Autonomous portable solar ultraviolet spectroradiometer (APSUS) - a new CCD spectrometer system for localized, real-time solar ultraviolet (280-400 nm) radiation measurement.

    Science.gov (United States)

    Hooke, Rebecca; Pearson, Andy; O'Hagan, John

    2014-01-01

    Terrestrial solar ultraviolet (UV) radiation has significant implications for human health and increasing levels are a key concern regarding the impact of climate change. Monitoring solar UV radiation at the earth's surface is therefore of increasing importance. A new prototype portable CCD (charge-coupled device) spectrometer-based system has been developed that monitors UV radiation (280-400 nm) levels at the earth's surface. It has the ability to deliver this information to the public in real time. Since the instrument can operate autonomously, it is called the Autonomous Portable Solar Ultraviolet Spectroradiometer (APSUS). This instrument incorporates an Ocean Optics QE65000 spectrometer which is contained within a robust environmental housing. The APSUS system can gather reliable solar UV spectral data from approximately April to October inclusive (depending on ambient temperature) in the UK. In this study the new APSUS unit and APSUS system are presented. Example solar UV spectra and diurnal UV Index values as measured by the APSUS system in London and Weymouth in the UK in summer 2012 are shown. © 2014 Crown copyright. Photochemistry and Photobiology © 2014 The American Society of Photobiology. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland and Public Health England.

  16. Penetration of UV-B radiation in foliage: evidence that the epidermis behaves as a non-uniform filter

    International Nuclear Information System (INIS)

    Day, T.A.; Martin, G.; Vogelmann, T.C.

    1993-01-01

    In some plants, particularly herbaceous species, a considerable proportion of incident ultraviolet-B radiation (UV-B, 280-320 nm) penetrates into the leaf mesophyll where it is potentially damaging to nucleic acids and the photosynthetic machinery. We used optical techniques to look at the spatial variation in UV-B penetration through the epidermis of foliage of two herbaceous species (Chenopodium album and Smilacina stellata) and a conifer (Picea pungens). Measurements of UV-B penetration in intact foliage with a fibre-optic microprobe revealed that 300 nm radiation reached 161±36μm (mean±SD) into leaves of C. album, 154±40μm in S. stellata and 17±2μm in P. pungens, with epidermal transmittance being 39±14%, 55±19% and 0%, respectively. A thin polymer film was developed which fluoresced blue when irradiated by UV-B. Fresh epidermal leaf peels were placed over the film and irradiated with UV-B, and microscopic examination of the film from below allowed us to determine the spatial pattern of UV-B penetration through the epidermis. In herbaceous species, film fluorescence below cell walls, but not epidermal and guard cell protoplasts indicated that UV-B transmittance was much greater through anticlinal cell wall regions than protoplasts. Ultraviolet-B transmittance through large areas of epidermal cells could be induced by plasmolysis. Epidermal transmittance was also relatively high through stomal pores (and what appear to be nuclei in Smilacina), but relatively low through stomatal guard cells. Results from the fluorescing film technique were substantiated by direct measurements of UV-B transmittance through epidermal peels with a fibre-optic microprobe run paradermally along the bottom or inner side of irradiated peels. In Smilacina, we estimate that UV-B epidermal transmittance was up to 90% through anticlinal cell wall regions, but <10% through protoplast areas. In contrast to herbaceous species, we did not detect any UV-B transmittance through the

  17. F2 excimer laser (157 nm) radiation modification and surface ablation of PHEMA hydrogels and the effects on bioactivity: Surface attachment and proliferation of human corneal epithelial cells

    International Nuclear Information System (INIS)

    Zainuddin; Chirila, Traian V.; Barnard, Zeke; Watson, Gregory S.; Toh, Chiong; Blakey, Idriss; Whittaker, Andrew K.; Hill, David J.T.

    2011-01-01

    Physical and chemical changes at the surface of poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels modified by ablation with an F 2 excimer laser were investigated experimentally. An important observation was that only the outer exposed surface layers of the hydrogel were affected by the exposure to 157 nm radiation. The effect of the surface changes on the tendency of cells to adhere to the PHEMA was also investigated. A 0.5 cm 2 area of the hydrogel surfaces was exposed to laser irradiation at 157 nm to fluences of 0.8 and 4 J cm -2 . The changes in surface topography were analysed by light microscopy and atomic force microscopy, while the surface chemistry was characterized by attenuated total reflection infrared and X-ray photoelectron spectroscopies. Cell-interfacial interactions were examined based on the proliferation of human corneal limbal epithelial (HLE) cells cultured on the laser-modified hydrogels, and on the unexposed hydrogels and tissue culture plastic for comparison. It was observed that the surface topography of laser-exposed hydrogels showed rippled patterns with a surface roughness increasing at the higher exposure dose. The changes in surface chemistry were affected not only by an indirect effect of hydrogen and hydroxyl radicals, formed by water photolysis, on the PHEMA, but also by the direct action of laser radiation on PHEMA if the surface layers of the gel become depleted of water. The laser treatment led to a change in the surface characteristics, with a lower concentration of ester side-chains and the formation of new oxygenated species at the surface. The surface also became more hydrophobic. Most importantly, the surface chemistry and the newly created surface topographical features were able to improve the attachment, spreading and growth of HLE cells.

  18. Solar Electromagnetic Radiation Study for Solar Cycle 22: Solar Ultraviolet Irradiance, 120 to 300 NM: Report of Working Groups 2 and 3 of SOLERS 22

    Science.gov (United States)

    Rottman, G. J.; Cebula, R. P.; Gillotay, D.; Simon, P. A.

    1996-01-01

    This report summarizes the activities of Working Group 2 and Working Group 3 of the SOLax Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22) Program. The international (SOLERS22) is Project 1.2 of the Solar-Terrestrial Energy Program (STEP) sponsored by SCOSTEP, a committee of the International Council of Scientific Unions). SOLERS22 is comprised of five Working Groups, each concentrating on a specific wave-length range: WG-1 - visible and infrared, WG-2 - mid-ultraviolet (200 < A < 300 nm), WG-3 - Far-ultraviolet (lambda greater than 100 and lambda less than 200 nanometers), WG-4 - extreme-ultraviolet (lambda greater than 10 and lambda less than 100 nm), and WG-5 - X-ray (lambda greater than 1 and lambda less than 10 nano meters). The overarching goals of SOLERS22 are to: 1) establish daily solar irradiance values in the specified wavelength ranges, 2) consider the evolving solar structures as the cause of temporal variations, and 3) understand the underlying physical processes driving these changes.

  19. Does a leaf absorb radiation in the near infrared (780-900 nm) region? A new approach to quantifying optical reflection, absorption and transmission of leaves.

    Science.gov (United States)

    Merzlyak, Mark N; Chivkunova, Olga B; Melø, T B; Naqvi, K Razi

    2002-01-01

    The following question is addressed here: do healthy leaves absorb, as the spectra published over the last 50 years indicate, some 5-20% of incident radiation in the 780-900 nm region? The answer is found to be negative, and previous findings result from incomplete collection of the transmitted light by the detection system (even when the leaf is placed next to, but outside, the entrance port of an integrating sphere). A simple remedy for this inherent flaw in the experimental arrangement is applied successfully to leaves (of 10 unrelated species) differing in thickness, age and pigment content. The study has shown that, from an optical standpoint, a leaf tissue is a highly scattering material, and the infinite reflectance of a leaf is exceedingly sensitive to trace amounts of absorbing components. It is shown that water contributes, in a thick leaf (Kalanchoe blossfeldiana), an easily detectable signal even in the 780-900 nm region. The practical benefits resulting from improved measurements of leaf spectra are pointed out.

  20. Effects of UV radiation on phytoplankton

    Science.gov (United States)

    Smith, Raymond C.; Cullen, John J.

    1995-07-01

    It is now widely documented that reduced ozone will result in increased levels of ultraviolet (UV) radiation, especially UV-B (280-320nm), incident at the surface of the earth [Watson, 1988; Anderson et al., 1991; Schoeberl and Hartmann, 1991; Frederick and Alberts, 1991; WMO, 1991; Madronich, 1993; Kerr and McElroy, 1993], and there is considerable and increasing evidence that these higher levels of UV-B radiation may be detrimental to various forms of marine life in the upper layers of the ocean. With respect to aquatic ecosystems, we also know that this biologically- damaging mid-ultraviolet radiation can penetrate to ecologically- significant depths in marine and freshwater systems [Jerlov, 1950; Lenoble, 1956; Smith and Baker, 1979; Smith and Baker, 1980; Smith and Baker, 1981; Kirk et al., 1994]. This knowledge, plus the dramatic decline in stratospheric ozone over the Antarctic continent each spring, now known to be caused by anthropogenically released chemicals [Solomon, 1990; Booth et al., 1994], has resulted in increased UV-environmental research and a number of summary reports. The United Nations Environmental Program (UNEP) has provided recent updates with respect to the effects of ozone depletion on aquatic ecosystems (Hader, Worrest, Kumar in UNEP 1989, 1991, Hader, Worrest, Kumar and Smith UNEP 1994) and the Scientific Committee on Problems of the Environment (SCOPE) has provided [SCOPE, 1992] a summary of the effects of increased UV radiation on biological systems. SCOPE has also reported [SCOPE, 1993] on the effects of increased UV on the biosphere. In addition, several books have recently been published reviewing various aspects of environmental UV photobiology [Young et al., 1993], UV effects on humans, animals and plants [Tevini, 1993], the biological effects of UV radiation in Antarctica [Weiler and Penhale, 1994], and UV research in freshwater ecosystems [Williamson and Zagarese, 1994]. Several other reviews are relevant [NAS, 1984; Caldwell

  1. Photo-removal of sulfamethoxazole (SMX) by photolytic and photocatalytic processes in a batch reactor under UV-C radiation ({lambda}{sub max} = 254 nm)

    Energy Technology Data Exchange (ETDEWEB)

    Nasuhoglu, Deniz; Yargeau, Viviane [Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 2B2 (Canada); Berk, Dimitrios, E-mail: dimitrios.berk@mcgill.ca [Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 2B2 (Canada)

    2011-02-15

    In this study, photolytic and photocatalytic removal of the antibiotic sulfamethoxazole (SMX) under UVC radiation ({lambda} = 254 nm) was investigated. The light intensity distribution inside the batch photoreactor was characterized by azoxybenzene actinometry. The intensity of incident radiation was found to be a strong function of position inside the reactor. 12 mg L{sup -1} of SMX was completely removed within 10 min of irradiation under UVC photolysis, compared to 30 min under TiO{sub 2} photocatalysis. COD measurement was used as an indication of the mineralization efficiency of both processes and higher COD removal with photocatalysis was shown. After 6 h of reaction with photolysis and photocatalysis, 24% and 87% removal of COD was observed, respectively. Two of the intermediate photo-products were identified as sulfanilic acid and 3-amino-5-methylisoxazole by direct comparison of the HPLC chromatograms of standards to those of treated solutions. Ecotoxicity of treated and untreated solutions of SMX towards Daphnia magna was also investigated. It was found that a 3:1 ratio of sample to standard freshwater and a high initial concentration of 60 mg L{sup -1} of SMX were used to obtain reliable and reproducible results. The photo-products formed during photocatalytic and photolytic processes were shown to be generally more toxic than the parent compound.

  2. Photo-removal of sulfamethoxazole (SMX) by photolytic and photocatalytic processes in a batch reactor under UV-C radiation (λmax = 254 nm)

    International Nuclear Information System (INIS)

    Nasuhoglu, Deniz; Yargeau, Viviane; Berk, Dimitrios

    2011-01-01

    In this study, photolytic and photocatalytic removal of the antibiotic sulfamethoxazole (SMX) under UVC radiation (λ = 254 nm) was investigated. The light intensity distribution inside the batch photoreactor was characterized by azoxybenzene actinometry. The intensity of incident radiation was found to be a strong function of position inside the reactor. 12 mg L -1 of SMX was completely removed within 10 min of irradiation under UVC photolysis, compared to 30 min under TiO 2 photocatalysis. COD measurement was used as an indication of the mineralization efficiency of both processes and higher COD removal with photocatalysis was shown. After 6 h of reaction with photolysis and photocatalysis, 24% and 87% removal of COD was observed, respectively. Two of the intermediate photo-products were identified as sulfanilic acid and 3-amino-5-methylisoxazole by direct comparison of the HPLC chromatograms of standards to those of treated solutions. Ecotoxicity of treated and untreated solutions of SMX towards Daphnia magna was also investigated. It was found that a 3:1 ratio of sample to standard freshwater and a high initial concentration of 60 mg L -1 of SMX were used to obtain reliable and reproducible results. The photo-products formed during photocatalytic and photolytic processes were shown to be generally more toxic than the parent compound.

  3. Time-resolved x-ray diffraction studies on the intensity changes of the 5.9 and 5.1 nm actin layer lines from frog skeletal muscle during an isometric tetanus using synchrotron radiation

    International Nuclear Information System (INIS)

    Wakabayashi, K.; Tanaka, H.; Amemiya, Y.; Fujishima, A.; Kobayashi, T.; Hamanaka, T.; Sugi, H.; Mitsui, T.

    1985-01-01

    Time-resolved x-ray diffraction studies have been made on the 5.9- and 5.1-nm actin layer lines from frog skeletal muscles during an isometric tetanus at 6 degrees C, using synchrotron radiation. The integrated intensities of these actin layer lines were found to increase during a tetanus by 30-50% for the 5.9-nm reflection and approximately 70% for the 5.1-nm reflection of the resting values. The intensity increase of both reflections was greater than that taking place in the transition from rest to rigor state. The intensity change of the 5.9-nm reflection preceded those of the myosin 42.9-nm off-meridional reflection and of the equatorial reflections, as well as the isometric tension development. The intensity profile of the 5.9-nm layer line during contraction was found to be different from that observed in the rigor state

  4. Generation of 14  W at 589  nm by frequency doubling of high-power CW linearly polarized Raman fiber laser radiation in MgO:sPPLT crystal.

    Science.gov (United States)

    Surin, A A; Borisenko, T E; Larin, S V

    2016-06-01

    We introduce an efficient, single-mode, linearly polarized continuous wave (CW) Raman fiber laser (RFL), operating at 1178 nm, with 65 W maximum output power and a narrow linewidth of 0.1 nm. Single-pass second-harmonic generation was demonstrated using a 20 mm long MgO-doped stoichiometric periodically polled lithium tantalate (MgO:sPPLT) crystal pumped by RFL radiation. Output power of 14 W at 589 nm with 22% conversion efficiency was achieved. The possibility of further power scaling is considered, as no crystal degradation was observed at these power levels.

  5. TBT toxicity on a natural planktonic assemblage exposed to enhanced ultraviolet-B radiation.

    Science.gov (United States)

    Sargian, Peggy; Pelletier, Emilien; Mostajir, Behzad; Ferreyra, Gustavo A; Demers, Serge

    2005-07-01

    A microcosm approach was designed to study the combined effects of tributyltin (TBT) from antifouling paints and ultraviolet-B radiation (UVBR: 280-320 nm), on a natural planktonic assemblage (TBT (120 ng l -1) and enhanced UVBR (giving a biologically weighted UVBR 2.15-fold higher than natural light condition) were monitored in the samples coming from following treatments: (i) NUVBR light condition without TBT (NUVBR), (ii) NUVBR light condition with TBT-added (NUVBR+TBT), (iii) HUVBR light condition without TBT (HUVBR) and (iv) HUVBR light condition with TBT-added (HUVBR+TBT). Each treatment was conducted in triplicate microcosms. Different parameters were then measured during 5 days, including TBT analysis, bacterial abundance and productivity, phytoplankton abundance, cellular characteristics and growth rates, as well as in vivo chlorophyll a (Chl a) fluorescence. Following TBT addition (NUVBR+TBT treatment), Chl a concentrations never exceeded 1 microg l-1 whereas final values as high as 54 microg l-1 were observed in TBT-free treatments (NUVBR and HUVBR). TBT addition resulted also in the lost of fluorescence signal of the maximum efficiency of the photosystem II in phytoplankton assemblage. TBT toxicity caused on phytoplankton TBT resulted in a final abundance of phytoplankton TBT relative to NUVBR treatment (i.e., 31,846+/-312 cells ml-1). Moreover, when cells were submitted to TBT under enhanced UVBR (HUVBR+TBT treatment), final abundance of phytoplankton TBT and UVBR during the last 2 days of the experiment. The same type of interaction was also observed for bacterial abundance in NUVBR+TBT and HUVBR+TBT with stimulation of 226 and of 403%, respectively due to TBT addition relative to NUVBR treatment. When considering bacterial productivity, TBT addition resulted in an inhibition of 32%, and this inhibition was significantly more pronounced under dual stresses (i.e., 77% in HUVBR+TBT). These results clearly demonstrate that the combination of TBT and UVBR

  6. TBT toxicity on a natural planktonic assemblage exposed to enhanced ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Sargian, Peggy; Pelletier, Emilien; Mostajir, Behzad; Ferreyra, Gustavo A.; Demers, Serge

    2005-01-01

    A microcosm approach was designed to study the combined effects of tributyltin (TBT) from antifouling paints and ultraviolet-B radiation (UVBR: 280-320 nm), on a natural planktonic assemblage ( -1 ) and enhanced UVBR (giving a biologically weighted UVBR 2.15-fold higher than natural light condition) were monitored in the samples coming from following treatments: (i) NUVBR light condition without TBT (NUVBR) (ii) NUVBR light condition with TBT-added (NUVBR + TBT) (iii) HUVBR light condition without TBT (HUVBR) and (iv) HUVBR light condition with TBT-added (HUVBR + TBT). Each treatment was conducted in triplicate microcosms. Different parameters were then measured during 5 days, including TBT analysis, bacterial abundance and productivity, phytoplankton abundance, cellular characteristics and growth rates, as well as in vivo chlorophyll a (Chl a) fluorescence. Following TBT addition (NUVBR + TBT treatment), Chl a concentrations never exceeded 1 μg l -1 whereas final values as high as 54 μg l -1 were observed in TBT-free treatments (NUVBR and HUVBR). TBT addition resulted also in the lost of fluorescence signal of the maximum efficiency of the photosystem II in phytoplankton assemblage. TBT toxicity caused on phytoplankton -1 in NUVBR + TBT relative to NUVBR treatment (i.e., 31,846 ± 312 cells ml -1 ). Moreover, when cells were submitted to TBT under enhanced UVBR (HUVBR + TBT treatment), final abundance of phytoplankton -1 , with a significant interaction between TBT and UVBR during the last 2 days of the experiment. The same type of interaction was also observed for bacterial abundance in NUVBR + TBT and HUVBR + TBT with stimulation of 226 and of 403%, respectively due to TBT addition relative to NUVBR treatment. When considering bacterial productivity, TBT addition resulted in an inhibition of 32%, and this inhibition was significantly more pronounced under dual stresses (i.e., 77% in HUVBR + TBT). These results clearly demonstrate that the combination of TBT

  7. Correlation between cell survival and DNA single-strand break repair proficiency in the Chinese hamster ovary cell lines AA8 and EM9 irradiated with 365-nm ultraviolet-A radiation

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, M.E.; Peak, J.G.; Peak, M.J. (Argonne National Lab., IL (USA))

    1991-02-01

    Cell survival parameters and the induction and repair of DNA single-strand breaks were measured in two Chinese hamster ovary cell lines after irradiation with monochromatic UVA radiation of wavelength 365 nm. The radiosensitive mutant cell line EM9 is known to repair ionizing-radiation-induced single-strand breaks (SSB) more slowly than the parent line AA8. EM9 was determined to be 1.7-fold more sensitive to killing by 365-nm radiation than AA8 at the 10% survival level, and EM9 had a smaller shoulder region on the survival curve ({alpha} = 1.76) than AA8 ({alpha} = 0.62). No significant differences were found between the cell lines in the initial yields of SSB induced either by {gamma}-radiation (as determined by alkaline sucrose gradient sedimentation) or by 365-nm UVA (as determined by alkaline elution). For measurement of initial SSB, cells were irradiated at 0.5{sup o}C to minimize DNA repair processes. Rejoining of 365-nm induced SSB was measured by irradiating cells at 0.5{sup o}C, allowing them to repair at 37{sup o}C in full culture medium, and then quantitating the remaining SSB by alkaline elution. The repair of these breaks followed biphasic kinetics in both cell lines. EM9 repaired the breaks more slowly (T{sub 1/2} values of 1.3 and 61.3 min) than did AA8 (T{sub 1/2} values of 0.9 and 53.3 min), and EM9 also left more breaks unrepaired 90 min after irradiation (24% vs 8% for AA8). Thus, the sensitivity of EM9 to 365-nm radiation correlated with its deficiency in repairing DNA lesions revealed as SSB in alkaline elution. These results suggest that DNA may be a critical target in 365-nm induced cellular lethality and that the ability of AA8 and EM9 cells to repair DNA strand breaks may be related to their ability to survive 365-nm radiation. (author).

  8. Effect of enhanced UV-B radiation on pollen quantity, quality, and seed yield in Brassica rapa (Brassicaceae)

    International Nuclear Information System (INIS)

    Demchik, S.M.; Day, T.A.

    1996-01-01

    Three experiments examined the influence of ultraviolet-B radiation (UV-B; 280-320 nm) exposure on reproduction in Brassica rapa (Brassicacaeae). Plants were grown in a greenhouse under three biologically effective UV-B levels that stimulated either an ambient stratospheric ozone level (control), 16% (open-quotes low enhancedclose quotes), or 32% (open-quotes high enhancedclose quotes) ozone depletion levels at Morgantown, WV, USA in mid-March. In the first experiment,pollen production and viability per flower were reduced by ∼50% under both enhanced UV-B levels relative to ambient controls. While plants under high-enhanced UV-B produced over 40% more flowers than plants under the two lower UV-B treatments, whole-plant production of viable pollen was reduced under low-enhanced UV-B to 34% of ambient controls. In the second experiment, the influence of source-plant UV-B exposure on in vitro pollen from plants was examined and whether source-plant UV-B exposure influenced in vitro pollen germination and viability. Pollen from plants under both enhanced-UV-B was reduced from 65 to 18%. Viability of the pollen from plants grown under both enhanced UV-B treatments was reduced to a much lesser extent: only from ∼43 to 22%. Thus, ambient source-plant pollen was more sensitive to enhanced UV-B levels to fertilize plants growing under ambient-UV-B levels, and assessed subsequent seed production and germination. Seed abortion rates were higher in plants pollinated with pollen from the enhanced UV-B treatments, than from ambient UV-B. Despite this, seed yield (number and mass) per plant was similar, regardless of the UV-B exposure of their pollen source. Our findings demonstrate that enhanced UV-B levels associated with springtime ozone depletion events have the capacity to substantially reduce viable pollen production, and could ultimately reduce reproductive success of B. rapa. 37 refs., 4 figs., 2 tabs

  9. Sensitivity of winter phytoplankton communities from Andean lakes to artificial ultraviolet-B radiation Sensibilidad de comunidades fitoplanctónicas invernales de lagos andinos a la radiación ultravioleta-B artificial

    Directory of Open Access Journals (Sweden)

    E. WALTER HELBLING

    2001-06-01

    Full Text Available During July of 1999 sampling was carried out in five Andean lakes to determine the sensitivity of winter phytoplankton communities to ultraviolet-B radiation (UV-B, 280-320 nm. The studied lakes, Moreno, El Trébol, Nahuel Huapi, Gutiérrez, and Morenito, located in the Patagonia region (41° S, 71° W, 800 m of altitude, had attenuation coefficients for UV-B that ranged from 0.36 m-1 (Lake Moreno to 2.8 m-1 (Lake Morenito. The samples were inoculated with labeled carbon (NaH14CO3 and incubated in an illuminated chamber (UV-B = 0.35 W m-2, UV-A [320-400 nm] = 1.1 W m-2, and PAR [400-700 nm] = 10.8 W m-2 at 10 °C. The phytoplankton cells were exposed to UV radiation (280-400 nm + PAR (quartz tubes, and to UV-A + PAR (quartz tubes covered with Mylar-D. The total duration of the experiments was 4 h and two samples were taken from each treatment every hour. In lakes Moreno, El Trébol, Nahuel Huapi and Gutiérrez, the photosynthetic inhibition increased linearly with UV-B doses, while in Lake Morenito just a slight relationship was observed. After receiving a dose of 1.25 kJ m-2 (UV-B, phytoplankton from Lake Morenito had the highest cumulative photosynthetic inhibition (44 %, whereas in Lakes Moreno, El Trébol, Nahuel Huapi and Gutiérrez the inhibition was of 22, 11, 5, and 1 %, respectively. However, at the end of incubation period and after receiving doses of 5 kJ m-2, the most inhibited phytoplankton cells were from Lake Moreno (70 % and the most resistant (27 % was that from Lake Gutiérrez. The kinetics of inhibition was different in each lake, and transparent lakes, with higher proportion of large cells, had higher inhibition rates. The results suggest that an increase in UV-B radiation (e.g., produced by a decrease in stratospheric ozone would have a greater impact on microplankton from clear lakes, while pico- and nanoplankton from less transparent lakes will be less affectedDurante julio de 1999 se realizaron muestreos en cinco lagos

  10. Photosynthesis, growth, and ultraviolet irradiance absorbance of Cucurbita pepo L. leaves exposed to ultraviolet-B radiation (280 to 315 nm)

    International Nuclear Information System (INIS)

    Sisson, W.B.

    1981-01-01

    Net photosynthesis, growth, and ultraviolet (uv) radiation absorbance were determined for the first leaf of Cucurbita pepo L. exposed to two levels of uv-B irradiation and a uv-B radiation-free control treatment. Absorbance by extracted flavonoid pigments and other uv-B radiation-absorbing compounds from the first leaves increased with time and level of uv-B radiation impinging on leaf surfaces. Although absorbance of uv-B radiation by extracted pigments increased substantially, uv-B radiation attenuation apparently was insufficient to protect completely the photosynthetic apparatus or leaf growth processes. Leaf expansion was repressed by daily exposure to 1365 Joules per meter per day of biologically effective uv-B radiation by not by exposure to 660 Joules per meter per day. Photosynthesis measured through ontogenesis of the first leaf was depressed by both uv-B radiation treatments. Repression of photosynthesis by uv-B radiation was especially evident during the ontogenetic period of maximum photosynthetic activity

  11. YNK1, the yeast homolog of human metastasis suppressor NM23, is required for repair of UV radiation- and etoposide-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Yang Mengmeng; Jarrett, Stuart G.; Craven, Rolf [Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 (United States); Kaetzel, David M. [Department of Molecular and Biomedical Pharmacology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298 (United States)], E-mail: dmkaetz@uky.edu

    2009-01-15

    In humans, NM23-H1 is a metastasis suppressor whose expression is reduced in metastatic melanoma and breast carcinoma cells, and which possesses the ability to inhibit metastatic growth without significant impact on the transformed phenotype. NM23-H1 exhibits three enzymatic activities in vitro, each with potential to maintain genomic stability, a 3'-5' exonuclease and two kinases, nucleoside diphosphate kinase (NDPK), and protein histidine kinase. Herein we have investigated the potential contributions of NM23 proteins to DNA repair in the yeast, Saccharomyces cerevisiae, which contains a single NM23 homolog, YNK1. Ablation of YNK1 delayed repair of UV- and etoposide-induced nuclear DNA damage by 3-6 h. However, YNK1 had no impact upon the kinetics of MMS-induced DNA repair. Furthermore, YNK1 was not required for repair of mitochondrial DNA damage. To determine whether the nuclear DNA repair deficit manifested as an increase in mutation frequency, the CAN1 forward assay was employed. An YNK1 deletion was associated with increased mutation rates following treatment with either UV (2.6x) or MMS (1.6x). Mutation spectral analysis further revealed significantly increased rates of base substitution and frameshift mutations following UV treatment in the ynk1{delta} strain. This study indicates a novel role for YNK1 in DNA repair in yeast, and suggests an anti-mutator function that may contribute to the metastasis suppressor function of NM23-H1 in humans.

  12. YNK1, the yeast homolog of human metastasis suppressor NM23, is required for repair of UV radiation- and etoposide-induced DNA damage

    International Nuclear Information System (INIS)

    Yang Mengmeng; Jarrett, Stuart G.; Craven, Rolf; Kaetzel, David M.

    2009-01-01

    In humans, NM23-H1 is a metastasis suppressor whose expression is reduced in metastatic melanoma and breast carcinoma cells, and which possesses the ability to inhibit metastatic growth without significant impact on the transformed phenotype. NM23-H1 exhibits three enzymatic activities in vitro, each with potential to maintain genomic stability, a 3'-5' exonuclease and two kinases, nucleoside diphosphate kinase (NDPK), and protein histidine kinase. Herein we have investigated the potential contributions of NM23 proteins to DNA repair in the yeast, Saccharomyces cerevisiae, which contains a single NM23 homolog, YNK1. Ablation of YNK1 delayed repair of UV- and etoposide-induced nuclear DNA damage by 3-6 h. However, YNK1 had no impact upon the kinetics of MMS-induced DNA repair. Furthermore, YNK1 was not required for repair of mitochondrial DNA damage. To determine whether the nuclear DNA repair deficit manifested as an increase in mutation frequency, the CAN1 forward assay was employed. An YNK1 deletion was associated with increased mutation rates following treatment with either UV (2.6x) or MMS (1.6x). Mutation spectral analysis further revealed significantly increased rates of base substitution and frameshift mutations following UV treatment in the ynk1Δ strain. This study indicates a novel role for YNK1 in DNA repair in yeast, and suggests an anti-mutator function that may contribute to the metastasis suppressor function of NM23-H1 in humans

  13. Comparative study of the application of microcurrent and AsGa 904 nm laser radiation in the process of repair after calvaria bone excision in rats

    International Nuclear Information System (INIS)

    Mendonça, J S; Neves, L M G; Esquisatto, M A M; Mendonça, F A S; Santos, G M T

    2013-01-01

    This study evaluated the effects of microcurrent stimulation (10 μA/5 min) and 904 nm GaAs laser irradiation (3 J cm −2 for 69 s/day) on excisional lesions created in the calvaria bone of Wistar rats. The results showed significant responses in the reduction of inflammatory cells and an increase in the number of new blood vessels, number of fibroblasts and deposition of birefringent collagen fibers when these data were compared with those of samples of the untreated lesions. Both applications, microcurrent and laser at 904 nm, favored tissue repair in the region of bone excisions during the study period and these techniques can be used as coadjuvantes in the repair of bone tissue. (paper)

  14. Experimental investigation of dissociation pathways of cooled HeH+ following valence electron excitation at 32 nm by intense free-electron-laser radiation

    International Nuclear Information System (INIS)

    Pedersen, H. B.; Lammich, L.; Domesle, C.; Jordon-Thaden, B.; Ullrich, J.; Wolf, A.; Heber, O.; Treusch, R.; Guerassimova, N.

    2010-01-01

    The dissociation pathways of HeH + have been investigated below the first ionization continuum by photoabsorption at 32 nm, using fragment momentum imaging in a crossed-beams experiment at the free-electron laser in Hamburg (FLASH). Investigations were done both for ions with several vibrational levels excited in the ion source and for ions vibrationally cooled in an electrostatic ion trap prior to the irradiation. The product channels He + (1s)+H(nl) and He(1snl)+H + were separated and the He(1snl)+H + channel was particularly studied by coincidence detection of the He and H + fragments on two separate fragment detectors. At 32 nm excitation, the branching ratio between the product channels was found to be σ He + +H /σ He+H + =0.96±0.11 for vibrationally hot and 1.70±0.48 for vibrationally cold ions. The spectra of kinetic energy releases for both channels revealed that photodissociation at 32 nm leads to high Rydberg states (n > or approx. 3-4) of the emerging atomic fragments irrespective of the initial vibrational excitation of HeH + . The fragment angular distributions showed that dissociation into the He+H + channel mostly (∼70%) proceeds through 1 Π states, while for the He + +H channel 1 Σ and 1 Π states are of about equal importance.

  15. The Cd 5 3P0 state in the cadmium-photosensitized reaction and the quenching of the resonance radiation at 326.1 nm by nitrogen, carbon monoxide, and carbon dioxide

    International Nuclear Information System (INIS)

    Yamamoto, Shunzo; Takaoka, Motoaki; Tsunashima, Shigeru; Sato, Shin

    1975-01-01

    The emission of the resonance line at 326.1 nm (5 3 P 1 →5 1 S 0 ) and the absorptions of Cd ( 3 P 0 ) at 340.4 nm (5 3 P 0 →5 3 D 1 ) and of Cd ( 3 P 1 ) at 346.6 nm (5 3 P 1 →5 3 D 2 ) have been measured as functions of the pressure of foreign gases at 250 0 C. At the pressures higher than 1 Torr of any rare gas, an equilibrium was established between 5 3 P 1 and 5 3 P 0 states. The efficiency of nitrogen in producing the 5 3 P 0 state from the 5 3 P 1 state was found to be more than 10 3 times those of rare gases. The quenching efficiencies of nitrogen, carbon monoxide, and carbon dioxide for the resonance radiation at 326.1 nm were also measured by using argon as the diluent gas. The half-quenching pressures obtained were 73+-3, 0.47+-0.01, and 0.096+-0.003 Torr for nitrogen, carbon monoxide, and carbon dioxide respectively. (auth.)

  16. LD50 and inviably dose of gamma radiation for Musca domestica L., 1758 (diptera: muscidae) pupae aged 1, 2, 3 and 4 days

    International Nuclear Information System (INIS)

    Itepan, Natanael M.; Itepan, Sara E.D.Z.

    2013-01-01

    This experiment was carried out in Biological Control of Domestic Fly 'Eduardo Hiroshi Mizumoto' Laboratory at Entomology and Acarology Department (LEA/ESALQ/USP) and in Food Irradiation and Radioentomology Laboratory (LIARE/CENA/USP). The gamma radiation source that was used is a Co-60 irradiator model Gammabeam-650 of the Atomic Energy of Canada Ltd. whose activity in the beginning of the experiments was 9.8x10 13 Bq. (2,644 Ci). The lots of pupae of Musca domestica had been kept in acclimatized room with 25 ± 2 deg C of temperature and 70 ± 5% of relative humidity, until reaching the desired ages. Lots of pupae of M. domestica that had been used, gotten by the flotation process. They had been irradiated with the ages of 1, 2, 3 and 4 days. The used doses for 1 day pupae was 0 (control) 2.5, 5, 7.5, 10, 12.5, 15, 17.5 20, 22.5, 25, 27.5 and 30 Gy; for 2 days pupae: 0 (control), 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280 and 300 Gy; for 3 days pupae: 0 (control), 0, 40, 80, 120, 160, 200, 240, 280, 320 and 360 Gy; and for 4 days pupae: 0 (control), 40; 80; 120; 160, 200, 240, 280, 320, 360, 400 480 and 520 Gy. The dose rate was about 1,500Gy/hr. At these age intervals, the dose to prevent adult emergence was 25, 220, 360 and 520 Gy and the LD50 was 14.28, 128.04, 243.09 e 353.57 Gy, respectively. (author)

  17. LD50 and inviably dose of gamma radiation for Musca domestica L., 1758 (diptera: muscidae) pupae aged 1, 2, 3 and 4 days

    Energy Technology Data Exchange (ETDEWEB)

    Itepan, Natanael M., E-mail: nmitepan@ifsp.edu.br [Instituto Federal de Sao Paulo (IFSP), Piracicaba, SP (Brazil); Itepan, Sara E.D.Z., E-mail: sarazenitepan@ig.com.br [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia Ciencias e Letras; Arthur, Valter, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2013-07-01

    This experiment was carried out in Biological Control of Domestic Fly 'Eduardo Hiroshi Mizumoto' Laboratory at Entomology and Acarology Department (LEA/ESALQ/USP) and in Food Irradiation and Radioentomology Laboratory (LIARE/CENA/USP). The gamma radiation source that was used is a Co-60 irradiator model Gammabeam-650 of the Atomic Energy of Canada Ltd. whose activity in the beginning of the experiments was 9.8x10{sup 13} Bq. (2,644 Ci). The lots of pupae of Musca domestica had been kept in acclimatized room with 25 ± 2 deg C of temperature and 70 ± 5% of relative humidity, until reaching the desired ages. Lots of pupae of M. domestica that had been used, gotten by the flotation process. They had been irradiated with the ages of 1, 2, 3 and 4 days. The used doses for 1 day pupae was 0 (control) 2.5, 5, 7.5, 10, 12.5, 15, 17.5 20, 22.5, 25, 27.5 and 30 Gy; for 2 days pupae: 0 (control), 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280 and 300 Gy; for 3 days pupae: 0 (control), 0, 40, 80, 120, 160, 200, 240, 280, 320 and 360 Gy; and for 4 days pupae: 0 (control), 40; 80; 120; 160, 200, 240, 280, 320, 360, 400 480 and 520 Gy. The dose rate was about 1,500Gy/hr. At these age intervals, the dose to prevent adult emergence was 25, 220, 360 and 520 Gy and the LD50 was 14.28, 128.04, 243.09 e 353.57 Gy, respectively. (author)

  18. Mitotic effects of monochromatic ultraviolet radiation at 225, 265, and 280 nm on eleven stages of the cell cycle of the grasshopper neuroblast in culture. I. Overall retardation from the stage irradiated to nuclear membrane breakdown

    International Nuclear Information System (INIS)

    Carlson, J.G.

    1976-01-01

    Neuroblasts of Chortophaga viridifasciata (DeGeer) in culture were exposed to different doses of 225, 265, or 280 nm ultraviolet radiations at 11 different stages and substages of the mitotic cycle and individually selected cells were timed to breakdown of the nuclear membrane. Comparisons of the effectiveness of different wavelengths on the different stages were based on the dose that reduced the cell progression rate to 67 percent of normal (D 67 ) and the slope of the regression line, i.e., the control to treated time (C/T) ratio change/erg/mm 2 at the D 67 level. Cells of the prereplication period (metaphase + anaphase + early telophase) and the S phase (middle and late telophase + interphase + very early prophase) are equally sensitive to uv and contrast sharply with the much lower sensitivity of those in the postreplication period (early and middle prophase). This can best be interpreted if chromosomal DNA is the chromophore for uv-induced mitotic retardation. Cells in the prereplication period at exposure show no wavelength effect. In the S phase all stages except middle telophase and all stages combined are significantly more sensitive to 265 and 280 nm than to 225 nm. Of the postreplication stages, early prophase is retarded significantly more by 280 than by 225 or 265 nm. The C/T ratio/erg/mm 2 is greater after exposure to 265 nm at all prereplication and replication stages, but exhibits no consistent wavelength pattern during the postreplication period. Evidence based on the orientation of the neuroblast with respect to the uv-source suggests that the chromophore for mitotic retardation does not reside within the centrosome and related structures, but may be present, at least partly, in the nucleolus

  19. Solar Electromagnetic Radiation Study for Solar Cycle 22: Solar Ultraviolet Irradiance, 120 to 300 NM: Report of Working Groups 2 and 3 of SOLERS 22

    Science.gov (United States)

    Rottman, G. J.; Cebula, R. P.; Gillotay, D.; Simon, P. A.

    1996-01-01

    This report summarizes the activities of Working Group 2 and Working Group 3 of the SOLax Electromagnetic Radiation Study for Solar Cycle 22 (SOLERS22) Program. The international (SOLERS22) is Project 1.2 of the Solar-Terrestrial Energy Program (STEP) sponsored by SCOSTEP, a committee of the International Council of Scientific Unions). SOLERS22 is comprised of five Working Groups, each concentrating on a specific wave-length range: WG-1 - visible and infrared, WG-2 - mid-ultraviolet (200 solar irradiance values in the specified wavelength ranges, 2) consider the evolving solar structures as the cause of temporal variations, and 3) understand the underlying physical processes driving these changes.

  20. Effects of low-intensity GaAlAs laser radiation (λ=660 nm) on dentine-pulp interface after class I cavity preparation

    International Nuclear Information System (INIS)

    Godoy, Bruno Miranda

    2003-01-01

    The aim of this study was to investigate the effects of low-intensity irradiation with GaAlAs laser (red emission) on the ultrastructure of dentine-pulp interface after conventionally prepared class I cavity preparation. Two patients with 8 premolars for extraction indicated for orthodontic reasons. Class I cavities were prepared in these teeth that were then divided into two groups. The first group received a treatment with laser with continuous emission, λ=660 nm, with maximum power output of 30 mW. The dosimetry applied was of approximately 2J/cm 2 , directly and perpendicularly into the cavity in only one section. After the irradiation, the cavities were filled with composite resin. The second group received the same treatment, except by the laser therapy. Twenty-eight days after the preparation, the teeth were extracted and were processed for transmission electron microscopy analysis. Two sound teeth, without any preparation, were also studied. The irradiated group presented odontoblastic processes in higher contact with the extracellular matrix and the collagen fibers appeared more aggregated and organized than those of control group. These results were also observed in the healthy-teeth. Thus, we suggest that laser irradiation accelerates the recovery of the dental structures involved in the cavity preparation at the pre-dentine level. (author)

  1. Effects of near-ultraviolet and violet radiations (313-405 NM) on DNA, RNA, and protein synthesis in E. coli B/r

    International Nuclear Information System (INIS)

    Ramabhadran, T.V.

    1975-01-01

    Fluences (21 to 32 kJ/m 2 ) of near-ultraviolet radiation that induced about a 1 hour growth delay in continuously growing cultures of E.coli B/r were found to produce complete cessation of net RNA synthesis, while the effects on protein and DNA synthesis were considerably milder. The near-UV action spectrum for this inhibition of RNA synthesis was similar to the action spectrum for growth decay in E.coli B and to the absorption spectrum of E.coli valyl transfer RNA. In addition, the fluences required for inhibition of RNA synthesis and growth delay were similar to those reported for formation of 4-thiouridine-cytidine adducts in transfer RNA. These findings suggest that the chromophore and target for near-UV-induced inhibition of both net RNA synthesis and growth in E.coli may be 4-thiouridine in transfer RNA. (author)

  2. Effects of near-ultraviolet and violet radiations (313-405 NM) on DNA, RNA, and protein synthesis in E. coli B/r. Implications for growth delay

    Energy Technology Data Exchange (ETDEWEB)

    Ramabhadran, T V [Texas Univ., Dallas (USA). Inst. for Molecular Biology

    1975-09-01

    Fluences (21 to 32 kJ/m/sup 2/) of near-ultraviolet radiation that induced about a 1 hour growth delay in continuously growing cultures of E.coli B/r were found to produce complete cessation of net RNA synthesis, while the effects on protein and DNA synthesis were considerably milder. The near-UV action spectrum for this inhibition of RNA synthesis was similar to the action spectrum for growth decay in E.coli B and to the absorption spectrum of E.coli valyl transfer RNA. In addition, the fluences required for inhibition of RNA synthesis and growth delay were similar to those reported for formation of 4-thiouridine-cytidine adducts in transfer RNA. These findings suggest that the chromophore and target for near-UV-induced inhibition of both net RNA synthesis and growth in E.coli may be 4-thiouridine in transfer RNA.

  3. SOLAR RADIATION AND INDUCTION OF DNA DAMAGE, MUTATIONS AND SKIN CANCERS.

    Energy Technology Data Exchange (ETDEWEB)

    SETLOW,R.B.

    2007-05-10

    An understanding of the effects of sunlight on human skin begins with the effects on DNA and extends to cells, animals and humans. The major DNA photoproducts arising from UVB (280-320 nm) exposures are cyclobutane pyrimidine dimers. If unrepaired, they may kill or mutate cells and result in basal and squamous cell carcinomas. Although UVA (320-400 nm) and visible wavelengths are poorly absorbed by DNA, the existing data indicate clearly that exposures to these wavelengths are responsible, in an animal model, for {approx}95 % of the incidence of cutaneous malignant melanoma (CMM). Six lines of evidence, to be discussed in detail, support the photosensitizing role of melanin in the induction of this cancer. They are: (1) Melanomas induced in backcross hybrids of small tropical fish of the genus Xiphophorus, exposed to wavelengths from 302-547 nm, indicate that {approx}95% of the cancers induced by exposure to sunlight would arise from UVA + visible wavelengths; (2) The action spectrum for inducing melanin-photosensitized oxidant production is very similar to the spectrum for inducing melanoma; (3) Albino whites and blacks, although very sensitive to sunburn and the sunlight induction of non-CMM, have very low incidences of CMM; (4) The incidence of CMM as a function of latitude is very similar to that of UVA, but not UVB; (5) Use of UVA-exposing sun-tanning parlors by the young increases the incidence rate of CMM and (6) Major mutations observed in CMM are not UVB-induced.

  4. Radiative and magnetic properties of solar active regions. II. Spatially resolved analysis of O V 62.97 nm transition region emission

    Science.gov (United States)

    Fludra, A.; Warren, H.

    2010-11-01

    Context. Global relationships between the photospheric magnetic flux and the extreme ultraviolet emission integrated over active region area have been studied in a previous paper by Fludra & Ireland (2008, A&A, 483, 609). Spatially integrated EUV line intensities are tightly correlated with the total unsigned magnetic flux, and yet these global power laws have been shown to be insufficient for accurately determining the coronal heating mechanism owing to the mathematical ill-conditioning of the inverse problem. Aims: Our aim is to establish a relationship between the EUV line intensities and the photospheric magnetic flux density on small spatial scales in active regions and investigate whether it provides a way of identifying the process that heats the coronal loops. Methods: We compare spatially resolved EUV transition region emission and the photospheric magnetic flux density. This analysis is based on the O V 62.97 nm line recorded by the SOHO Coronal Diagnostic Spectrometer (CDS) and SOHO MDI magnetograms for six solar active regions. The magnetic flux density ϕ is converted to a simulated O V intensity using a model relationship I(ϕ, L) = Cϕδ Lλ, where the loop length L is obtained from potential magnetic field extrapolations. This simulated spatial distribution of O V intensities is convolved with the CDS instrument's point spread function and compared pixel by pixel with the observed O V line intensity. Parameters δ and λ are derived to give the best fit for the observed and simulated intensities. Results: Spatially-resolved analysis of the transition region emission reveals the complex nature of the heating processes in active regions. In some active regions, particularly large, local intensity enhancements up to a factor of five are present. When areas with O V intensities above 3000 erg cm-2 s-1 sr-1 are ignored, a power law has been fitted to the relationship between the local O V line intensity and the photospheric magnetic flux density in each

  5. Repair of near-UV (365nm or 313 nm) induced DNA strand breaks

    International Nuclear Information System (INIS)

    Miguel, A.G.

    1981-01-01

    The action of near-UV (365 nm or 313 nm) radiation in cellular inactivaton (biological measurements) and induction and repair of breaks (physical measurements) is studied in repair proficient strain and in pol A, rec A and uvr A deficient strains of Escherichia coli K-12. (M.A.C.) [pt

  6. Global atmospheric change and herbivory: Effects of elevated levels of UV-B radiation, atmospheric CO2 and temperature on boreal woody plants and their herbivores

    International Nuclear Information System (INIS)

    Veteli, T.

    2003-01-01

    The aim of this study was to assess the effects of elevated ultraviolet-B radiation (UV-B, 280- 320 nm), atmospheric CO 2 , temperature and soil nitrogen level on the growth and chemical quality of boreal deciduous woody plants and on performance of the herbivorous insects feeding on them. Eggs and larvae of Operophtera brumata (L.) (Lepidoptera, Geometridae) were subjected to elevated UV-B radiation in the laboratory. Two willow species, Salix phylicifolia L. (Salicaceae) and S. myrsinifolia Salisb., were grown in an UV-B irradiation field where the responses of both plants and their herbivorous insects were monitored. S. myrsinifolia, Betula pendula Ehrh. (Betulaceae) and B. pubescens Roth. were subjected to elevated CO 2 and temperature and different fertilisation levels in closed-top climatic chambers. To assess the indirect effects of the different treatments, the leaves of experimental willows and birches were fed to larvae of Phratora vitellinae (L.) (Coleoptera, Chrysomelidae) and adults of Agellastica alni L. in the laboratory. Elevated UV-B radiation significantly decreased the survival and performance of eggs and larvae of O. brumata. It also increased concentrations of some flavonoids and phenolic acids in S. myrsinifolia and S. phylicifolia, while the low-UV-B- absorbing phenolics, e. g. condensed tannins, gallic acid derivatives and salicylates, either decreased or remained unaffected. Both the height growth and biomass of one S. phylicifolia clone was sensitive to elevated levels of UV-B radiation. Abundance of adults and larvae of a willow- feeding leaf beetle, P. vitellinae, was increased under elevated UV-B; but this did not lead to increased leaf damage on the host plants. There were no significant differences in performance of the larvae feeding on differentially treated willow leaves, but adult A. alni preferred UV-B-treated leaves to ambient control leaves. Elevated CO 2 and temperature significantly increased the height growth of S

  7. Radiation

    International Nuclear Information System (INIS)

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  8. TBT toxicity on a natural planktonic assemblage exposed to enhanced ultraviolet-B radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sargian, Peggy [Institut des Sciences de la Mer de Rimouski (ISMER), Universite du Quebec a Rimouski, 310, Allee des Ursulines, Rimouski, Que., G5L 3A1 (Canada)]. E-mail: peggy_sargian@uqar.qc.ca; Pelletier, Emilien [Institut des Sciences de la Mer de Rimouski (ISMER), Universite du Quebec a Rimouski, 310, Allee des Ursulines, Rimouski, Que., G5L 3A1 (Canada); Mostajir, Behzad [Reseaux trophiques pelagiques (GDR 2476) et Ecologie Microbienne des milieux Aquatiques, UMR 5119 Ecosystemes lagunaires, CNRS-Universite Montpellier II, Case 093, 34095 Montpellier Cedex 5 (France); Ferreyra, Gustavo A. [Institut des Sciences de la Mer de Rimouski (ISMER), Universite du Quebec a Rimouski, 310, Allee des Ursulines, Rimouski, Que., G5L 3A1 (Canada); Instituto Antartico Argentino (IAA), Cerrito 1248 (C1010AAZ), Buenos Aires (Argentina); Demers, Serge [Institut des Sciences de la Mer de Rimouski (ISMER), Universite du Quebec a Rimouski, 310, Allee des Ursulines, Rimouski, Que., G5L 3A1 (Canada)

    2005-07-01

    A microcosm approach was designed to study the combined effects of tributyltin (TBT) from antifouling paints and ultraviolet-B radiation (UVBR: 280-320 nm), on a natural planktonic assemblage (<150 {mu}m) isolated from the St. Lawrence Estuary at the end of the springtime. Microcosms (9 l, cylindrical Teflon[reg] bags, 75 cm height x 25 cm width) were immersed in the water column of mesocosms (1800 l, polyethylene bags, 2.3 m depth) and exposed to two different UVBR regimes: natural ambient UVBR (NUVBR), and enhanced level of UVBR (HUVBR). During consecutive 5 days, effects of TBT (120 ng l{sup -1}) and enhanced UVBR (giving a biologically weighted UVBR 2.15-fold higher than natural light condition) were monitored in the samples coming from following treatments: (i) NUVBR light condition without TBT (NUVBR) (ii) NUVBR light condition with TBT-added (NUVBR + TBT) (iii) HUVBR light condition without TBT (HUVBR) and (iv) HUVBR light condition with TBT-added (HUVBR + TBT). Each treatment was conducted in triplicate microcosms. Different parameters were then measured during 5 days, including TBT analysis, bacterial abundance and productivity, phytoplankton abundance, cellular characteristics and growth rates, as well as in vivo chlorophyll a (Chl a) fluorescence. Following TBT addition (NUVBR + TBT treatment), Chl a concentrations never exceeded 1 {mu}g l{sup -1} whereas final values as high as 54 {mu}g l{sup -1} were observed in TBT-free treatments (NUVBR and HUVBR). TBT addition resulted also in the lost of fluorescence signal of the maximum efficiency of the photosystem II in phytoplankton assemblage. TBT toxicity caused on phytoplankton <20 {mu}m an increase of mean cell size and changes in shape reflected a drastic disturbance of the cell cycle leading to an inhibition of the apparent growth rate. These negative effects of TBT resulted in a final abundance of phytoplankton <20 {mu}m of 591 {+-} 35 cells ml{sup -1} in NUVBR + TBT relative to NUVBR treatment (i

  9. Physiological bases for detecting and predicting photoinhibition of aquatic photosynthesis by PAR and UV radiation

    International Nuclear Information System (INIS)

    Neale, P.J.; Cullen, J.J.; Lesser, M.P.; Melis, A.

    1993-01-01

    Phytoplankton photosynthesis is the basis of almost all aquatic primary production in the world's oceans, estuaries and lakes. Oceanic primary production is a major portion of the global carbon budget (see other contributions this volume). Currently, we are unable to account for all the CO 2 that is leaving the atmosphere and debate continues whether the ''missing carbon'' is going into either terrestrial and oceanic sinks (7). In this context, it is important to improve our knowledge of how phytoplankton photosynthesis responds to the aquatic environment. The aquatic light environment is primary among several factors governing aquatic photosynthesis. To understand phytoplankton response to aquatic irradiance, we must consider how light propagates underwater, variations in light spectral quality as well as intensity. Also important is how these optical characteristics relate to processes of light absorption and utilization by phytoplankton cells. Considerable progress has been made on answering many of these questions (e.g. 27). One topic, phytoplankton responses to irradiance stress induced by photosynthetically available radiation (PAR2) and UJV, has become increasingly important. The primary consequence in both cases is a time-dependent loss of photosynthetic activity (photo inhibition). Concern over the effects of solar UV irradiance has recently intensified with the advent of stratospheric ozone depletion, which allows for an increase of the mid-ultraviolet (UVB 280-320 nm)irradiance, especially in the Antarctic. The sensitivity of phytoplankton photosynthesis to irradiance stress can be readily demonstrated (36), however,showing whether this stress actually occurs in the aquatic environment remains difficult. The essential problem is that phytoplankton are in suspension. Their irradiance exposure will be determined by mixing processes that transport cells over a vertical gradient in light availability. The response to irradiance

  10. 308nm Excimer Laser in Dermatology

    Science.gov (United States)

    Mehraban, Shadi

    2014-01-01

    308nm xenon-chloride excimer laser, a novel mode of phototherapy, is an ultraviolet B radiation system consisting of a noble gas and halide. The aim of this systematic review was to investigate the literature and summarize all the experiments, clinical trials and case reports on 308-nm excimer laser in dermatological disorders. 308-nm excimer laser has currently a verified efficacy in treating skin conditions such as vitiligo, psoriasis, atopic dermatitis, alopecia areata, allergic rhinitis, folliculitis, granuloma annulare, lichen planus, mycosis fungoides, palmoplantar pustulosis, pityriasis alba, CD30+ lympho proliferative disorder, leukoderma, prurigo nodularis, localized scleroderma and genital lichen sclerosus. Although the 308-nm excimer laser appears to act as a promising treatment modality in dermatology, further large-scale studies should be undertaken in order to fully affirm its safety profile considering the potential risk, however minimal, of malignancy, it may impose. PMID:25606333

  11. Detection of UVR-induced DNA damage in mouse epidermis in vivo using alkaline elution

    International Nuclear Information System (INIS)

    Kinley, J.S.; Moan, J.; Brunborg, G.

    1995-01-01

    Alkaline elution has been used to detect ultraviolet radiation (UVR)-induced DNA damage in the epidermis of C3H/Tif hr/hr mice. This technique detects DNA damage in the form of single-strand breaks and alkali-labile sites (SSB) formed directly by UVA (320-400 nm) or indirectly by UVB (280-320 nm). The latter induces DNA damage such as cyclobutane pyrimidine dimers and pyrimidine-pyrimidone (6-4)-photoproducts, which are then converted into transient SSB by cellular endonucleases, during nucleotide excision repair (NER). (Author)

  12. Super ACO FEL oscillation at 300 nm

    CERN Document Server

    Nutarelli, D; Renault, E; Nahon, L; Couprie, Marie Emmanuelle

    2000-01-01

    Some recent improvements, involving both the optical cavity mirrors and the positron beam dynamics in the storage ring, have allowed us to achieve a laser oscillation at 300 nm on the Super ACO Storage Ring FEL. The Super ACO storage ring is operated at 800 MeV which is the nominal energy for the usual synchrotron radiation users, and the highest energy for a storage ring FEL. The lasing at 300 nm could be kept during 2 h per injection, with a stored current ranging between 30 and 60 mA. The FEL characteristics are presented here. The longitudinal stability and the FEL optics behaviour are also discussed.

  13. Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Barnes, P.W.; Flint, S.D.; Caldwell, M.M.

    1990-01-01

    The influence of ultraviolet-B (UV-B) radiation (280-320 nanometers) on the morphology of 12 common dicot and monocot crop or weed species was examined to determine whether any common responses could be found that might, in turn, be useful in predicting possible changes in competitive balance under solar UV-B enhancement. Under glasshouse conditions, UV-B exposure (simulating a 20% reduction in stratospheric ozone at Logan, Utah) was found to reduce leaf blade and internode lengths and increase leaf and axillary shoot production in several species. Overall, the directions of these trends were similar in the majority of species that exhibited a significant response. These morphological changes occurred without any significant reduction in total shoot dry matter production. There was no clear distinction in the response of crops and weeds, though monocots were found to be generally more responsive than dicots. Previous work in dense canopies has shown that the photomorphogenetic effects of UV-B alter leaf placement and thereby influence competition for light. Our results suggest that, under these conditions, changes in competitive balance resulting from increased UV-B might be expected more frequently when monocots are involved in mixtures, rather than mixtures of only dicots

  14. Effect of long-wave UV radiation on mouse melanoma: An in vitro and in vivo study

    Energy Technology Data Exchange (ETDEWEB)

    Pastila, R.

    2006-04-15

    The skin cancer incidence has increased substantially over the past decades and the role of ultraviolet (UV) radiation in the etiology of skin cancer is well established. Ultraviolet B radiation (280-320 nm) is commonly considered as the more harmful part of the UV-spectrum due to its DNA-damaging potential and well-known carcinogenic effects. Ultraviolet A radiation (320-400 nm) is still regarded as a relatively low health hazard. However, UVA radiation is the predominant component in sunlight, constituting more than 90% of the environmentally relevant solar ultraviolet radiation. In the light of the recent scientific evidence, UVA has been shown to have genotoxic and immunologic effects, and it has been proposed that UVA plays a significant role in the development of skin cancer. Due to the popularity of skin tanning lamps, which emit high intensity UVA radiation and because of the prolonged sun tanning periods with the help of effective UVB blockers, the potential deleterious effects of UVA has emerged as a source of concern for public health. The possibility that UV radiation may affect melanoma metastasis has not been addressed before. UVA radiation can modulate various cellular processes, some of which might affect the metastatic potential of melanoma cells. The aim of the present study was to investigate the possible role of UVA irradiation on the metastatic capacity of mouse melanoma both in vitro and in vivo. The in vitro part of the study dealt with the enhancement of the intercellular interactions occurring either between tumor cells or between tumor cells and endothelial cells after UVA irradiation. The use of the mouse melanoma/endothelium in vitro model showed that a single-dose of UVA to melanoma cells causes an increase in melanoma cell adhesiveness to non-irradiated endothelium after 24-h irradiation. Multiple-dose irradiation of melanoma cells already increased adhesion at a 1-h time-point, which suggests the possible cumulative effect of multiple

  15. Effect of long-wave UV radiation on mouse melanoma: An in vitro and in vivo study

    International Nuclear Information System (INIS)

    Pastila, R.

    2006-04-01

    The skin cancer incidence has increased substantially over the past decades and the role of ultraviolet (UV) radiation in the etiology of skin cancer is well established. Ultraviolet B radiation (280-320 nm) is commonly considered as the more harmful part of the UV-spectrum due to its DNA-damaging potential and well-known carcinogenic effects. Ultraviolet A radiation (320-400 nm) is still regarded as a relatively low health hazard. However, UVA radiation is the predominant component in sunlight, constituting more than 90% of the environmentally relevant solar ultraviolet radiation. In the light of the recent scientific evidence, UVA has been shown to have genotoxic and immunologic effects, and it has been proposed that UVA plays a significant role in the development of skin cancer. Due to the popularity of skin tanning lamps, which emit high intensity UVA radiation and because of the prolonged sun tanning periods with the help of effective UVB blockers, the potential deleterious effects of UVA has emerged as a source of concern for public health. The possibility that UV radiation may affect melanoma metastasis has not been addressed before. UVA radiation can modulate various cellular processes, some of which might affect the metastatic potential of melanoma cells. The aim of the present study was to investigate the possible role of UVA irradiation on the metastatic capacity of mouse melanoma both in vitro and in vivo. The in vitro part of the study dealt with the enhancement of the intercellular interactions occurring either between tumor cells or between tumor cells and endothelial cells after UVA irradiation. The use of the mouse melanoma/endothelium in vitro model showed that a single-dose of UVA to melanoma cells causes an increase in melanoma cell adhesiveness to non-irradiated endothelium after 24-h irradiation. Multiple-dose irradiation of melanoma cells already increased adhesion at a 1-h time-point, which suggests the possible cumulative effect of multiple

  16. Radiations

    International Nuclear Information System (INIS)

    Pujol Mora, J.

    1999-01-01

    The exposition to ionizing radiations is a constant fact in the life of the human being and its utilization as diagnostic and therapeutic method is generalized. However, it is notorious how as years go on, the fear to the ionizing radiation seems to persist too, and this fact is not limited to the common individual, but to the technical personnel and professional personnel that labors with them same. (S. Grainger) [es

  17. Radiation

    International Nuclear Information System (INIS)

    Davidson, J.H.

    1986-01-01

    The basic facts about radiation are explained, along with some simple and natural ways of combating its ill-effects, based on ancient healing wisdom as well as the latest biochemical and technological research. Details are also given of the diet that saved thousands of lives in Nagasaki after the Atomic bomb attack. Special comment is made on the use of radiation for food processing. (U.K.)

  18. Radiation

    International Nuclear Information System (INIS)

    Winther, J.F.; Ulbak, K.; Dreyer, L.; Pukkala, E.; Oesterlind, A.

    1997-01-01

    Exposure to solar and ionizing radiation increases the risk for cancer in humans. Some 5% of solar radiation is within the ultraviolet spectrum and may cause both malignant melanoma and non-melanocytic skin cancer; the latter is regarded as a benign disease and is accordingly not included in our estimation of avoidable cancers. Under the assumption that the rate of occurrence of malignant melanoma of the buttocks of both men and women and of the scalp of women would apply to all parts of the body in people completely unexposed to solar radiation, it was estimated that approximately 95% of all malignant melanomas arising in the Nordic populations around the year 2000 will be due to exposure to natural ultraviolet radiation, equivalent to an annual number of about 4700 cases, with 2100 in men and 2600 in women, or some 4% of all cancers notified. Exposure to ionizing radiation in the Nordic countries occurs at an average effective dose per capita per year of about 3 mSv (Iceland, 1.1 mSv) from natural sources, and about 1 mSv from man-made sources. While the natural sources are primarily radon in indoor air, natural radionuclides in food, cosmic radiation and gamma radiation from soil and building materials, the man-made sources are dominated by the diagnostic and therapeutic use of ionizing radiation. On the basis of measured levels of radon in Nordic dwellings and associated risk estimates for lung cancer derived from well-conducted epidemiological studies, we estimated that about 180 cases of lung cancer (1% of all lung cancer cases) per year could be avoided in the Nordic countries around the year 2000 if indoor exposure to radon were eliminated, and that an additional 720 cases (6%) could be avoided annually if either radon or tobacco smoking were eliminated. Similarly, it was estimated that the exposure of the Nordic populations to natural sources of ionizing radiation other than radon and to medical sources will each give rise to an annual total of 2120

  19. Effects of low-intensity GaAlAs laser radiation ({lambda}=660 nm) on dentine-pulp interface after class I cavity preparation; Efeitos da radiacao laser GaAlAs ({lambda}=660 nm) em baixa intensidade na interface dentina-polpa pos-preparo cavitario classe 1

    Energy Technology Data Exchange (ETDEWEB)

    Godoy, Bruno Miranda

    2003-07-01

    The aim of this study was to investigate the effects of low-intensity irradiation with GaAlAs laser (red emission) on the ultrastructure of dentine-pulp interface after conventionally prepared class I cavity preparation. Two patients with 8 premolars for extraction indicated for orthodontic reasons. Class I cavities were prepared in these teeth that were then divided into two groups. The first group received a treatment with laser with continuous emission, {lambda}=660 nm, with maximum power output of 30 mW. The dosimetry applied was of approximately 2J/cm{sup 2}, directly and perpendicularly into the cavity in only one section. After the irradiation, the cavities were filled with composite resin. The second group received the same treatment, except by the laser therapy. Twenty-eight days after the preparation, the teeth were extracted and were processed for transmission electron microscopy analysis. Two sound teeth, without any preparation, were also studied. The irradiated group presented odontoblastic processes in higher contact with the extracellular matrix and the collagen fibers appeared more aggregated and organized than those of control group. These results were also observed in the healthy-teeth. Thus, we suggest that laser irradiation accelerates the recovery of the dental structures involved in the cavity preparation at the pre-dentine level. (author)

  20. Prototyping the HPDP Chip on STM 65 NM Process

    Science.gov (United States)

    Papadas, C.; Dramitinos, G.; Syed, M.; Helfers, T.; Dedes, G.; Schoellkopf, J.-P.; Dugoujon, L.

    2011-08-01

    Currently Astrium GmbH is involved in the of the High Performance Data Processor (HPDP) development programme for telecommunication applications under a DLR contract. The HPDP project targets the implementation of the commercially available reconfigurable array processor IP (XPP from the company PACT XPP Technologies) in a radiation hardened technology.In the current complementary development phase funded under the Greek Industry Incentive scheme, it is planned to prototype the HPDP chip in commercial STM 65 nm technology. In addition it is also planned to utilise the preliminary radiation hardened components of this library wherever possible.This abstract gives an overview of the HPDP chip architecture, the basic details of the STM 65 nm process and the design flow foreseen for the prototyping. The paper will discuss the development and integration issues involved in using the STM 65 nm process (also including the available preliminary radiation hardened components) for designs targeted to be used in space applications.

  1. Impact of UV-B (290-320 nm) radiation on photosynthesis-mediated uptake of 15N-ammonia and 15N-nitrate of several marine diatoms

    International Nuclear Information System (INIS)

    Doehler, G.; Stolter, H.

    1986-01-01

    The marine diatoms Ditylum brigthwellii, Lithodesmium variabile, Odontella sinensis, Synedra planctonica and Thalassiosira rotula grown at 18 0 C under normal air conditions (0.035 vol.% CO 2 ) were exposed to different levels (439 and 717 J m -2 d -1 , weighted) of UV-B radiation for 2 d (5 h/d). Pigmentation, protein and total nitrogen content were reduced linearly to the dose of UV-B radiation. Photosynthesis-mediated uptake of 15 N-ammonia was more affected by UV-B irradiance in all tested diatoms than that of 15 N-nitrate. A species-dependent behavior in the assimilation of inorganic nitrogenous compounds has been observed: Synedra was a very sensitive species to UV-B radiation whereas the same UV-B doses had no effect on the assimilation rate of ammonia and nitrate of the Lithodesmium cells. The results were discussed with reference to the inhibition of the enzymes of the nitrogen metabolism. (author)

  2. Irradiation of amelanotic melanoma cells with 532 nm high peak power pulsed laser radiation in the presence of the photothermal sensitizer Cu(II)-hematoporphyrin: a new approach to cell photoinactivation.

    Science.gov (United States)

    Soncin, M; Busetti, A; Fusi, F; Jori, G; Rodgers, M A

    1999-06-01

    Cu(II)-hematoporphyrin (CuHp) was efficiently accumulated by B78H1 amelanotic melanoma cells upon incubation with porphyrin concentrations up to 52 microM. When the cells incubated for 18 h with 13 microM CuHp were irradiated with 532 nm light from a Q-switched Nd: YAG laser operated in a pulsed mode (10 ns pulses, 10 Hz) a significant decrease in cell survival was observed. The cell photoinactivation was not the consequence of a photodynamic process, as CuHp gave no detectable triplet signal upon laser flash photolysis excitation and no decrease in cell survival was observed upon continuous wave irradiation. Thus, it is likely that CuHp sensitization takes place by photothermal pathways. The efficiency of the photoprocess was modulated by different parameters; thus, while varying the amount of added CuHp in the 3.25-26 microM range had little effect, pulse energies larger than 50 mJ and irradiation times of at least 120 s were necessary to induce a cell inactivation of about 50%. The porphyrin-cell incubation time prior to irradiation had a major influence on cell survival, suggesting that the nature of the CuHp microenvironment can control the efficiency of photothermal sensitization.

  3. Repair of 313-nm induced lesions and photoprotection in yeast Candida guilliermondii

    International Nuclear Information System (INIS)

    Fraikin, G.Y.; Pospelov, M.E.; Rubin, L.B.

    1977-01-01

    The present communication is concerned with the effects of near-UV radiation (300-380 nm) on yeast Candida guilliermondii. It was found that certain doses of 313 nm irradiation caused inactivation of the yeast which was exhibited in a way different from the lethal action of far-UV radiation. It was also found that the cells inactivated by 313 nm are capable of recovering vitality, if incubated for some time in a non-nutrient medium. The yeast inactivated by far-UV radiation also proved to be capable of recovering, though to a lesser degree. Both 334 nm radiation and non-lethal doses at 313 nm induced the photoprotective effect against far-UV damage. The effect was exhibited if there was a certain time interval (2-4 h) between the exposures to photoprotective light and subsequent far-UV radiation. Within this time interval the extent of photoprotection was dependent on temperature. (author)

  4. PILOT STUDY: Report on the CCPR Pilot Comparison: Spectral Responsivity 10 nm to 20 nm

    Science.gov (United States)

    Scholze, Frank; Vest, Robert; Saito, Terubumi

    2010-01-01

    The CCPR Pilot Comparison on spectral responsivity in the 10 nm to 20 nm spectral range was carried out within the framework of the CIPM Mutual Recognition Arrangement by three laboratories: PTB (Germany), NIST (USA), and NMIJ/AIST (Japan) with PTB acting as the central and reporting laboratory. All participating laboratories used monochromatized synchrotron radiation. PTB and NIST used a cryogenic radiometer as the primary standard detector and NMIJ, an ionization chamber with extrapolation by a wavelength-independent detector. The aim of the pilot comparison was to check the accuracy of the radiometric scale of spectral responsivity in the short wavelength EUV spectral range which has recently gained in technological importance. The wavelengths of measurement were from 11.5 nm to 20 nm in 0.5 nm steps and additionally 12.2 nm. The comparison was carried out through the calibration of a group of transfer standard detectors. Two sets of three diodes of types AXUV and SXUV from International Radiation Detectors, Inc. were used for the comparison. The comparison had the form of a star comparison: Pilot-lab A-pilot-lab B-pilot, PTB acting as the pilot laboratory. All results were communicated directly to the pilot laboratory. The report describes in detail the measurements made at PTB and summarizes the reports submitted by the participants. Measurements carried out by the pilot laboratory before and after the circulation of the detectors proved that the stability of the detectors was sufficient for the comparison. For the type AXUV detectors, however, changes in their responsivity contributed to the uncertainty of the comparison. Measurement results from participants and their associated uncertainties were analyzed in this report according to the Guidelines for CCPR Comparison Report Preparation. The uncertainty contributions were separated, as to whether they are wavelength dependent or not. All bilateral DoE are well within the respective k = 2 expanded uncertainty

  5. Generation of continuous-wave 194 nm laser for mercury ion optical frequency standard

    Science.gov (United States)

    Zou, Hongxin; Wu, Yue; Chen, Guozhu; Shen, Yong; Liu, Qu; Precision measurement; atomic clock Team

    2015-05-01

    194 nm continuous-wave (CW) laser is an essential part in mercury ion optical frequency standard. The continuous-wave tunable radiation sources in the deep ultraviolet (DUV) region of the spectrum is also serviceable in high-resolution spectroscopy with many atomic and molecular lines. We introduce a scheme to generate continuous-wave 194 nm radiation with SFM in a Beta Barium Borate (BBO) crystal here. The two source beams are at 718 nm and 266 nm, respectively. Due to the property of BBO, critical phase matching (CPM) is implemented. One bow-tie cavity is used to resonantly enhance the 718 nm beam while the 266 nm makes a single pass, which makes the configuration easy to implement. Considering the walk-off effect in CPM, the cavity mode is designed to be elliptical so that the conversion efficiency can be promoted. Since the 266 nm radiation is generated by a 532 nm laser through SHG in a BBO crystal with a large walk-off angle, the output mode is quite non-Gaussian. To improve mode matching, we shaped the 266 nm beam into Gaussian modes with a cylindrical lens and iris diaphragm. As a result, 2.05 mW 194 nm radiation can be generated. As we know, this is the highest power for 194 nm CW laser using SFM in BBO with just single resonance. The work is supported by the National Natural Science Foundation of China (Grant No. 91436103 and No. 11204374).

  6. Dosimetry in Phototherapy

    Energy Technology Data Exchange (ETDEWEB)

    Huurto, L. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland); Snellman, E. [Department of Dermatology, Central Hospital of Paeijaet-Haeme, Lahti (Finland)

    2003-06-01

    Artificial ultraviolet radiation (UVR) is used in phototherapy, the medical treatment of various skin diseases like psoriasis and atopic eczema. Both solar and artificial UVR exposure have also carcinogenic effects. Long term phototherapy with high cumulative UVR doses is shown to be risk for squamous cell carcinoma. Various biological effects are strongly dependent of the wavelength of the UVR. UV-B-radiation with short wavelength (280 - 320 nm) is more effective to cause sunburn of the skin than UV-A - radiation with longer wavelength (320 - 400 nm). The correlation between wavelength of UVR and the tissue sensitivity is described by action spectra. An action spectrum is a mathematical model describing the efficiency of UVR of different wavelength for producing a certain biological phenomena. Specific action spectra have been determined for the most important health effects like erythema and skin cancers as regard squamous cell carcinomas and basal cell carcinomas. (orig.)

  7. Histogenesis and progression of ultraviolet light-induced tumors in hairless mice

    International Nuclear Information System (INIS)

    Kligman, L.H.; Kligman, A.M.

    1981-01-01

    Tumor histogenesis and progression were studied in UV-irradiated albino (Skh:hairless-1) and lightly pigmented (Skh:hairless-2) hairless mice. A strongly carcinogenic dose of UV light was used, producing 100% tumor incidence by 35 weeks. The light source emitted mainly UV radiation in the range of 280-320 nm and the less energetic UV radiation up to 400 nm. The resulting epidermal changes and neoplasms resembled those seen in the actinically damaged skin of humans. Microscopic lesions included benign hyperplasia, actinic keratoses, and squamous cell carcinoma in situ and with microinvasion. Clinical tumors were epithelial papillomas, fibropapillomas, keratoacanthomas, cystic keratomas, benign pigmented macules, cutaneous hornlike growths, exophytic and endophytic squamous cell carcinomas of several cytologic types, and fibrosarcomas. Even with this high dose of UV radiation, not all of the small tumors progressed to cancer. Many regressed, including some keratoacanthomas, whereas others remained small and benign for the lifetime of the mouse

  8. Dosimetry in Phototherapy

    International Nuclear Information System (INIS)

    Huurto, L.; Snellman, E.

    2003-01-01

    Artificial ultraviolet radiation (UVR) is used in phototherapy, the medical treatment of various skin diseases like psoriasis and atopic eczema. Both solar and artificial UVR exposure have also carcinogenic effects. Long term phototherapy with high cumulative UVR doses is shown to be risk for squamous cell carcinoma. Various biological effects are strongly dependent of the wavelength of the UVR. UV-B-radiation with short wavelength (280 - 320 nm) is more effective to cause sunburn of the skin than UV-A - radiation with longer wavelength (320 - 400 nm). The correlation between wavelength of UVR and the tissue sensitivity is described by action spectra. An action spectrum is a mathematical model describing the efficiency of UVR of different wavelength for producing a certain biological phenomena. Specific action spectra have been determined for the most important health effects like erythema and skin cancers as regard squamous cell carcinomas and basal cell carcinomas. (orig.)

  9. UV radiation and primary production in the Antarctic waters

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Krishnakumari, L.; Bhattathiri, P.M.A.; Chandramohan, D.

    at 683 nm), scalar irradiance (photosynthetically active radiation (PAR), computed primary production (pp), diffuse attenuation coefficient, and UVB (308 and 320 nm) and UVA (340 and 380 nm) radiation and ocean temperature all measured as a function...

  10. Mechanistic comparison of pulse laser induced phase separation of particulates from cellulose paper at 213 nm and 532 nm

    Energy Technology Data Exchange (ETDEWEB)

    Arif, S.; Forster, M.; Kautek, W. [University of Vienna, Department of Physical Chemistry, Wien (Austria); Bushuk, S.; Kouzmouk, A.; Tatur, H.; Batishche, S. [National Academy of Sciences of the Republic of Belarus, Institute of Physics, Minsk (Belarus)

    2013-02-15

    The laser-induced phase separation of charcoal particles on additive-free cotton linters cellulose paper was investigated by electron and optical microscopy, colorimetry, and diffuse reflectance FT-IR. The fibre bundles were vaporised in depth of several 10 {mu}m above destruction fluence thresholds using visible 532 nm radiation. This is in contrast to mid-ultraviolet 213 nm radiation, where only the top fibre bundles were modified and partially evaporated. The colorimetric lightness results generally represented the cleaning status, whereas the colorimetric yellowing data represented irreversible chemical and/or photochemical changes. Charcoal-contaminated paper treated with visible and mid-ultraviolet radiation exhibited yellowing, whereas uncontaminated did not. This suggests that the electron-rich plasma generated by the evaporation of the particles heats the adjacent substrate and also excludes oxygen. Mid-ultraviolet, in contrast to visible radiation, shows particle removal always accompanied by paper destruction. IR spectroscopy results suggest cross-linking by ether bonds near the destruction threshold, but do not prove the formation of oxidation products and double bonds as the basis of the yellowing. A ''cleaning window'' between the cleaning threshold (0.1 J/cm{sup 2}) and the paper destruction threshold (2.9 J/cm{sup 2}) with a pulse number of 2 is provided by visible 532 nm laser treatment. (orig.)

  11. Mechanistic comparison of pulse laser induced phase separation of particulates from cellulose paper at 213 nm and 532 nm

    International Nuclear Information System (INIS)

    Arif, S.; Forster, M.; Kautek, W.; Bushuk, S.; Kouzmouk, A.; Tatur, H.; Batishche, S.

    2013-01-01

    The laser-induced phase separation of charcoal particles on additive-free cotton linters cellulose paper was investigated by electron and optical microscopy, colorimetry, and diffuse reflectance FT-IR. The fibre bundles were vaporised in depth of several 10 μm above destruction fluence thresholds using visible 532 nm radiation. This is in contrast to mid-ultraviolet 213 nm radiation, where only the top fibre bundles were modified and partially evaporated. The colorimetric lightness results generally represented the cleaning status, whereas the colorimetric yellowing data represented irreversible chemical and/or photochemical changes. Charcoal-contaminated paper treated with visible and mid-ultraviolet radiation exhibited yellowing, whereas uncontaminated did not. This suggests that the electron-rich plasma generated by the evaporation of the particles heats the adjacent substrate and also excludes oxygen. Mid-ultraviolet, in contrast to visible radiation, shows particle removal always accompanied by paper destruction. IR spectroscopy results suggest cross-linking by ether bonds near the destruction threshold, but do not prove the formation of oxidation products and double bonds as the basis of the yellowing. A ''cleaning window'' between the cleaning threshold (0.1 J/cm 2 ) and the paper destruction threshold (2.9 J/cm 2 ) with a pulse number of 2 is provided by visible 532 nm laser treatment. (orig.)

  12. 355-nm hypersensitization of optical fibers

    NARCIS (Netherlands)

    Canagasabey, A.; Canning, J.; Groothoff, N.

    2003-01-01

    A study is presented on 355-nm hypersensitization of optical fibers. It is found that the intrinsic 244-nm photosensitivity of boron-codoped germanosilicate optical fibers is enhanced by 355-nm hypersensitization. Hypersensitization through standard polymer coating is also demonstrated.

  13. Self-planarized quantum-disks nanowires ultraviolet-B emitter utilizing pendeo-epitaxy

    KAUST Repository

    Janjua, Bilal; Sun, Haiding; Zhao, Chao; Anjum, Dalaver H.; Wu, Feng; Alhamoud, Abdullah; Li, Xiaohang; Albadri, Abdulrahman M; Alyamani, Ahmed Y; El-Desouki , Munir M; Ng, Tien Khee; Ooi, Boon S.

    2017-01-01

    materials. UV-B (280-320 nm) light-emitting diodes (LEDs), which emit at ~303 nm with a narrow full width at half maximum (FWHM) (~20 nm) of the emission spectrum, are demonstrated using a large active region (“active region/NW length-ratio” ~ 50%) embedded

  14. Absorption spectrum of DNA for wavelengths greater than 300 nm

    International Nuclear Information System (INIS)

    Sutherland, J.C.; Griffin, K.P.

    1981-01-01

    Although DNA absorption at wavelengths greater than 300 nm is much weaker than that at shorter wavelengths, this absorption seems to be responsible for much of the biological damage caused by solar radiation of wavelengths less than 320 nm. Accurate measurement of the absorption spectrum of DNA above 300 nm is complicated by turbidity characteristic of concentrated solutions of DNA. We have measured the absorption spectra of DNA from calf thymus, Clostridium perfringens, Escherichia coli, Micrococcus luteus, salmon testis, and human placenta using procedures which separate optical density due to true absorption from that due to turbidity. Above 300 nm, the relative absorption of DNA increases as a function of guanine-cytosine content, presumably because the absorption of guanine is much greater than the absorption of adenine at these wavelengths. This result suggests that the photophysical processes which follow absorption of a long-wavelength photon may, on the average, differ from those induced by shorter-wavelength photons. It may also explain the lower quantum yield for the killing of cells by wavelengths above 300 nm compared to that by shorter wavelengths

  15. Magnetic Nature of Light Transmission through a 5-nm Gap.

    Science.gov (United States)

    Yang, Hyosim; Kim, Dai-Sik; Kim, Richard H Joon-Yeon; Ahn, Jae Sung; Kang, Taehee; Jeong, Jeeyoon; Lee, Dukhyung

    2018-02-09

    Slot antennas have been exploited as important building blocks of optical magnetism because their radiations are invoked by the magnetic fields along the axes, as vectorial Babinet principle predicts. However, optical magnetism of a few-nanometer-width slit, for which fascinating applications are found due to the colossal field enhancement but Babinet principle fails due to the nonnegligible thickness, has not been investigated. In this paper, we demonstrated that the magnetic field plays a dominant role in light transmission through a 5-nm slit on a 150-nm-thick gold film. The 5-nm slit was fabricated by atomic layer lithography, and the transmission was investigated for various incident angles by experiment and simulation at 785-nm wavelength. We found that, due to the deep subwavelength gap width, the transmission has the same incident angle dependence as the tangential magnetic field on the metal surface and this magnetic nature of a nanogap holds up to ~100-nm width. Our analysis establishes conditions for nanogap optical magnetism and suggests new possibilities in realizing magnetic-field-driven optical nonlinearities.

  16. Comparative analysis of the effect of the GaAlAs laser irradiation in 780 nm and 660 nm in the hypersensitive dentin

    International Nuclear Information System (INIS)

    Yuan, Sun Chien

    2003-01-01

    This study was to evaluate and compare the effects of the low intensity in laser radiation among GaAlAs 780 nm and GaAlAs 660 nm. The main proposal is to verify if there is any difference of the effects or results in low intensity laser application treatment of hypersensitive dentin, keeping the same parameters, only differing in wavelength. The samples were distributed in two groups. Group A 90 cases, treated with GaAlAs 780 nm and group B irradiated with GaAlAs 660 nm with a total of 76 cases analyzed. The results of application with GaAlAs 660 nm and GaAlAs 780 nm do not differ statistically. Which means using any one of the irradiation gives the same results. However can be noted that the response of reduction of hypersensitivity is faster with the radiation of GaAlAs 780 nm, but the results after three applications is the same for both types of radiation. (author)

  17. Quasi-three level Nd:YLF fundamental and Raman laser operating under 872-nm and 880-nm direct diode pumping

    Science.gov (United States)

    Wetter, Niklaus U.; Bereczki, Allan; Paes, João. Pedro Fonseca

    2018-02-01

    Nd:YLiF4 is the gain material of choice whenever outstanding beam quality or a birefringent gain material is necessary such as in certain applications for terahertz radiation or dual-frequency mode-locking. However, for high power CW applications the material is hampered by a low thermal fracture threshold. This problem can be mitigated by special 2D pump set-ups or by keeping the quantum defect to a minimum. Direct pumping into the upper laser level of Nd:YLiF4 is usually performed at 880 nm. For quasi-three level laser emission at 908 nm, direct pumping at this wavelength provides a high quantum defect of 0.97, which allows for very high CW pump powers. Although the direct pumping transition to the upper laser state at 872 nm has a slightly smaller quantum defect of 0.96, its pump absorption cross section along the c-axis is 50% higher than at 880 nm, leading to a higher absorption efficiency. In this work we explore, for the first time to our knowledge, 908 nm lasing under 872 nm diode pumping and compare the results with 880 nm pumping for quasicw and cw operation. By inserting a KGW crystal in the cavity, Raman lines at 990 nm and 972 nm were obtained for the first time from a directly pumped 908 nm Nd:YLF fundamental laser for both quasi-cw and cw conditions.

  18. Mitotic effects of monochromatic ultraviolet radiation at 225, 265, and 280 nm on eleven stages of the cell cycle of the grasshopper neuroblast in culture. II. Changes in progression rate and cell sequence between the stage irradiated and nuclear membrane breakdown

    International Nuclear Information System (INIS)

    Carlson, J.G.

    1976-01-01

    Portions of embryos of the grasshopper, Chortophaga viridifasciata (DeGeer), were cultured in hanging drops under quartz cover slips. Immediately after exposure to 225, 265, or 280 nm radiation, microscope observations at 38 0 C were begun. The morphologically identified stage and the time after treatment of selected neuroblasts were recorded at short-time intervals until prometaphase was reached. Mitotic retardation induced by irradiation of prereplication stages (metaphase, anaphase, or early telophase) or S phase (middle or late telophase, interphase, or very early prophase) is greatest in postreplication stages (early, middle, and late prophase) and absent or minimal in stages morphologically identified as parts of S phase. Ultraviolet irradiation superimposes on the normal diversity of progression rates an additional variation factor, so that cells do not necessarily reach prometaphase in the order of their sequence at the time of treatment. This suggests the need for caution in ascribing particular radiosensitivities to substages of limited duration on the basis of the order in which they attain a subsequent stage

  19. Advances in 750 nm VECSELs (Conference Presentation)

    Science.gov (United States)

    Saarinen, Esa J.; Ranta, Sanna; Lyytikäinen, Jari; Saarela, Antti; Sirbu, Alexei; Iakovlev, Vladimir; Kapon, Eli; Guina, Mircea

    2017-03-01

    Lasers operating in the transmission window of tissue at wavelengths between 700 and 800 nm are needed in numerous medical and biomedical applications, including photodynamic therapy and fluorescence microscopy. However, the performance of diode lasers in this spectral range is limited by the lack of appropriate compound semiconductors. Here, we review our recent research on 750 nm VECSELs. Two approaches to reaching the 750 nm wavelength will be discussed. The first approach relies on intra-cavity frequency doubling a wafer-fused 1500 nm VECSEL. The VECSEL gain chip comprises a GaAs-based DBR and an InP-based gain section, which allows for optical pumping with low-cost commercial diodes at 980 nm. With this scheme we have achieved watt-level output powers and tuning of the laser wavelength over a 40 nm band at around 750 nm. The second approach is direct emission at 750 nm using the AlGaAs/GaAs material system. In this approach visible wavelengths are required for optical pumping. However, the consequent higher costs compared to pumping at 980 nm are mitigated by the more compact laser setup and prospects of doubling the frequency to the ultraviolet range.

  20. Hypersensitisation using 266nm Laser Light

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, John; Kristensen, Martin

    UV-hypersensitisation using 266nm VW-light on hydrogenated Ge-doped fibre is reported. The optimum fluence to be between 5 to 10 kJ/cm2, coinciding with results obtained using 355nm light, indicating same end-process in both reactions.......UV-hypersensitisation using 266nm VW-light on hydrogenated Ge-doped fibre is reported. The optimum fluence to be between 5 to 10 kJ/cm2, coinciding with results obtained using 355nm light, indicating same end-process in both reactions....

  1. Dust Explosion Characteristics of Agglomerated 35 nm and 100 nm Aluminum Particles

    Directory of Open Access Journals (Sweden)

    Hong-Chun Wu

    2010-01-01

    Full Text Available In the experiment, nanoparticles of 35 nm Al and 100 nm Al powders, respectively, formed particles with average sizes of 161 nm and 167 nm in agglomeration. The characteristics of dust cloud explosions with the two powder sizes, 35 nm and 100 nm, revealed considerable differences, as shown here: (dp/dtmax-35 nm = 1254 bar/s, (dp/dtmax-100 nm = 1105 bar/s; Pmax-35 nm = 7.5 bar, Pmax-100 nm = 12.3 bar, and MEC-35 nm = 40 g/m3, MEC-100 nm = 50 g/m3. The reason of Pmax-35 nm value is smaller than Pmax-100 nm may be due to agglomeration. From an analysis of the explosive residue, the study found that nanoparticles of 35 nm Al powder became filamentous strands after an explosion, where most of 100 nm Al nanoparticles maintained a spherical structure, This may be because the initial melting temperature of 35 nm Al is 435.71°C, while that for 100 nm Al is 523.58°C, higher by 87.87°C. This study discovered that explosive property between the 35 nm Al and 100 nm Al powders after agglomeration were different.

  2. Building blocks for future detectors: Silicon test masses and 1550 nm laser light

    International Nuclear Information System (INIS)

    Schnabel, R; Britzger, M; Burmeister, O; Danzmann, K; Duck, J; Eberle, T; Friedrich, D; Luck, H; Mehmet, M; Steinlechner, S; Willke, B; Brueckner, F; Nawrodt, R

    2010-01-01

    Current interferometric gravitational wave detectors use the combination of quasi-monochromatic, continuous-wave laser light at 1064 nm and fused silica test masses at room temperature. Detectors of the third generation, such as the Einstein-Telescope, will involve a considerable sensitivity increase. The combination of 1550 nm laser radiation and crystalline silicon test masses at low temperatures might be important ingredients in order to achieve the sensitivity goal. Here we compare some properties of the fused silica and silicon test mass materials relevant for decreasing the thermal noise in future detectors as well as the recent technology achievements in the preparation of laser radiation at 1064 nm and 1550 nm relevant for decreasing the quantum noise. We conclude that silicon test masses and 1550 nm laser light have the potential to form the future building blocks of gravitational wave detection.

  3. Laser hypersensitisation using 266nm light

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, J.; Kristensen, Martin

    2005-01-01

    UV hypersensitisation using CW 266 nm light on hydrogenated Ge-doped fibre is reported. The optimum sensitisation fluence is found to be in the range of 5 to 10 kJ/cm2, coinciding with previous results obtained using 355 nm light, indicating the same end-process used in the photochemical reaction...

  4. 308-nm excimer laser for the treatment of alopecia areata.

    Science.gov (United States)

    Al-Mutairi, Nawaf

    2007-12-01

    Alopecia areata is loss of hair from localized or diffuse areas of hair-bearing area of the skin. Recently there are reports of efficacy of the 308-nm excimer radiation for this condition. To study the effect of the 308-nm excimer laser in the treatment of alopecia areata. Eighteen patients with 42 recalcitrant patches (including 1 adult with alopecia totalis) were enrolled in this study. The lesions were treated with the 308-nm excimer laser twice a week for a period of 12 weeks; one lesion on each patient was left as a control for comparison. There were 7 males and 11 females in this study. Regrowth of hair was observed in 17 (41.5%) patches. Thirteen of the 18 lesions in scalp showed a complete regrowth of hair. The extremity regions failed to show a response. Atopic diatheses had an unfavorable effect on the outcome in our patients. The 308-nm excimer laser is an effective therapeutic option for patchy alopecia areata of the scalp and for some cases with patchy alopecia areata of the beard area. It does not work for patchy alopecia areata of the extremities.

  5. Capillary Condensation in 8 nm Deep Channels.

    Science.gov (United States)

    Zhong, Junjie; Riordon, Jason; Zandavi, Seyed Hadi; Xu, Yi; Persad, Aaron H; Mostowfi, Farshid; Sinton, David

    2018-02-01

    Condensation on the nanoscale is essential to understand many natural and synthetic systems relevant to water, air, and energy. Despite its importance, the underlying physics of condensation initiation and propagation remain largely unknown at sub-10 nm, mainly due to the challenges of controlling and probing such small systems. Here we study the condensation of n-propane down to 8 nm confinement in a nanofluidic system, distinct from previous studies at ∼100 nm. The condensation initiates significantly earlier in the 8 nm channels, and it initiates from the entrance, in contrast to channels just 10 times larger. The condensate propagation is observed to be governed by two liquid-vapor interfaces with an interplay between film and bridging effects. We model the experimental results using classical theories and find good agreement, demonstrating that this 8 nm nonpolar fluid system can be treated as a continuum from a thermodynamic perspective, despite having only 10-20 molecular layers.

  6. Changes in ultraviolet-B and visible optical properties and absorbing pigment concentrations in pecan leaves during a growing season

    Science.gov (United States)

    Yadong Qi; Shuju Bai; Gordon M. Heisler

    2003-01-01

    UV-B (280-320 nm) and visible (400-760 nm) spectral reflectance, transmittance, and absorptance; chlorophyll content; UV-B absorbing compound concentration; and leaf thickness were measured for pecan (Carya illinoensis) leaves over a growing season (April-October). Leaf samples were collected monthly from a pecan plantation located on the Southern...

  7. Studies on nanosecond 532nm and 355nm and ultrafast 515nm and 532nm laser cutting super-hard materials

    Science.gov (United States)

    Zhang, Jie; Tao, Sha; Wang, Brian; Zhao, Jay

    2017-02-01

    In this paper, micro-processing of three kinds of super-hard materials of poly-crystal diamond (PCD)/tungsten-carbide (WC), CVD-diamond and cubic boron nitride (CNB) has been systematically studied using nanosecond laser (532nm and 355nm), and ultrafast laser (532nm and 515nm). Our purpose is to investigate a full laser micro-cutting solution to achieve a ready-to-use cutting tool insert (CTI). The results show a clean cut with little burns and recasting at edge. The cutting speed of 2-10mm/min depending on thickness was obtained. The laser ablation process was also studied by varying laser parameters (wavelength, pulse width, pulse energy, repetition rate) and tool path to improve cutting speed. Also, studies on material removal efficiency (MRE) of PCD/WC with 355nm-ns and 515nm-fs laser as a function of laser fluence show that 355nm-ns laser is able to achieve higher MRE for PCD and WC. Thus, ultrafast laser is not necessarily used for superhard material cutting. Instead, post-polishing with ultrafast laser can be used to clean cutting surface and improve smoothness.

  8. Thin film and multilayer optics for XUV spectral domain (1 nm to 60 nm)

    International Nuclear Information System (INIS)

    Delmotte, Franck

    2010-02-01

    The XUV spectral domain (1-60 nm wavelength range) has experienced rapid growth in recent years. On one side, the sources (synchrotron radiation, harmonic generation, x-ray laser, free-electron laser...) require ever more efficient optics, on the other hand, applications (diagnostics of hot plasma, solar physics, x-ray microscopy, EUV lithography, x-ray analysis...) provide new constraints on the design of multilayer stacks. The multilayer mirrors are the only way to achieve efficient optics operating at non-grazing incidence angles in this spectral range. Our work within the team XUV Optics at Laboratoire Charles Fabry de l'Institut d'Optique focuses on the study of materials in thin layers correlated to the study of optical properties of multilayers. The objective is to achieve new multilayer components previously unavailable in the XUV domain, through a better understanding of physical phenomena in these nano-layer stacks. We show through several examples of how we have managed both to improve the performance of multilayer mirrors in a broad spectral range, and secondly, to develop new optical functions: beam splitters, broadband mirrors, dual-band mirrors or phase compensation mirrors. (author)

  9. Comparative analysis of the effect of the GaAlAs laser irradiation in 780 nm and 660 nm in the hypersensitive dentin; Analise comparativa do efeito da irradiacao do laser de GaAlAs em 780 nm e 660 nm na hipersensibilidade dentinaria

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Sun Chien

    2003-07-01

    This study was to evaluate and compare the effects of the low intensity in laser radiation among GaAlAs 780 nm and GaAlAs 660 nm. The main proposal is to verify if there is any difference of the effects or results in low intensity laser application treatment of hypersensitive dentin, keeping the same parameters, only differing in wavelength. The samples were distributed in two groups. Group A 90 cases, treated with GaAlAs 780 nm and group B irradiated with GaAlAs 660 nm with a total of 76 cases analyzed. The results of application with GaAlAs 660 nm and GaAlAs 780 nm do not differ statistically. Which means using any one of the irradiation gives the same results. However can be noted that the response of reduction of hypersensitivity is faster with the radiation of GaAlAs 780 nm, but the results after three applications is the same for both types of radiation. (author)

  10. Pixel front-end development in 65 nm CMOS technology

    International Nuclear Information System (INIS)

    Havránek, M; Hemperek, T; Kishishita, T; Krüger, H; Wermes, N

    2014-01-01

    Luminosity upgrade of the LHC (HL-LHC) imposes severe constraints on the detector tracking systems in terms of radiation hardness and capability to cope with higher hit rates. One possible way of keeping track with increasing luminosity is the usage of more advanced technologies. Ultra deep sub-micron CMOS technologies allow a design of complex and high speed electronics with high integration density. In addition, these technologies are inherently radiation hard. We present a prototype of analog pixel front-end integrated circuit designed in 65 nm CMOS technology with applications oriented towards the ATLAS Pixel Detector upgrade. The aspects of ultra deep sub-micron design and performance of the analog pixel front-end circuits will be discussed

  11. PM Raman fiber laser at 1679 nm

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2012-01-01

    We demonstrate a PM Raman fiber laser emitting light at 1679 nm. The laser has an slope efficiency of 67 % and an output power of more than 275mWwith a 27 pm linewidth.......We demonstrate a PM Raman fiber laser emitting light at 1679 nm. The laser has an slope efficiency of 67 % and an output power of more than 275mWwith a 27 pm linewidth....

  12. 130-nm tunable grating-mirror VCSEL

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2014-01-01

    configuration instead of the extended cavity configuration can bring 130-nm tuning range around 1330-nm wavelength. The air-coupled cavity is known to reduce the quantum confinement factor in VCSELs, increasing threshold. In our air-coupled cavity HCG VCSEL case, the very short power penetration length...... in the HCG minimizes this reduction of the quantum confinement factor, not as significant as in the air-coupled cavity DBR VCSEL....

  13. Nucleotide sequence of a soybean chalcone synthase gene with a possible role in ultraviolet-B sensitivity, Gmchs6

    International Nuclear Information System (INIS)

    Akada, S.; Kung, S.; Dube, S.K.

    1993-01-01

    Recent trends in stratospheric ozone depletion and projected increases in solar UV-B radiation (280-320 nm) have intensified studies of the ecological and physiological effects of increased levels of UV-B on higher plants (Caldwell, 1981; Worrest and Caldwell, 1986). Soybean (Glycine max L. Merr) is among the most extensively studied plants because it is a key crop of worldwide importance and because its potential susceptibility to increased levels of solar UV-B has been amply documented (Teramura et al., 1990, and refs. therein). From such studies, a pair of cultivars of contrasting sensitivity to UV-B has been identified. Williams is tolerant to supplemental UV-B fluences simulating a 25% ozone depletion, whereas Essex is sensitive to the same fluences, resulting in reduction of seed yield by 20 to 25%. The possibility that this may be due to differences in UV-B-absorbing compounds has also been noted

  14. Diode laser (980nm) cartilage reshaping

    Science.gov (United States)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  15. Liquid Carbon Reflectivity at 19 nm

    Directory of Open Access Journals (Sweden)

    Riccardo Mincigrucci

    2015-01-01

    Full Text Available We hereby report on a pump-probe reflectivity experiment conducted on amorphous carbon, using a 780 nm laser as a pump and a 19 nm FEL emission as probe. Measurements were performed at 50 degrees with respect to the surface normal to have an un-pumped reflectivity higher than 0.5%. A sub-10 fs time synchronization error could be obtained exploiting the nearly jitter-free capabilities of FERMI. EUV FEL-based experiments open the way to study the behaviour of a liquid carbon phase being unaffected by plasma screening.

  16. Design of an 1800nm Raman amplifier

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2013-01-01

    We present the experimental results for a Raman amplifier that operates at 1810 nm and is pumped by a Raman fiber laser at 1680 nm. Both the pump laser and the Raman amplifier is polarization maintaining. A challenge when scaling Raman amplifiers to longer wavelengths is the increase...... in transmission loss, but also the reduction in the Raman gain coefficient as the amplifier wavelength is increased. Both polarization components of the Raman gain is characterized, initially for linearly co-polarized signal and pump, subsequently linearly polarized orthogonal signal and pump. The noise...

  17. CALIPSO lidar calibration at 532 nm: version 4 nighttime algorithm

    Science.gov (United States)

    Kar, Jayanta; Vaughan, Mark A.; Lee, Kam-Pui; Tackett, Jason L.; Avery, Melody A.; Garnier, Anne; Getzewich, Brian J.; Hunt, William H.; Josset, Damien; Liu, Zhaoyan; Lucker, Patricia L.; Magill, Brian; Omar, Ali H.; Pelon, Jacques; Rogers, Raymond R.; Toth, Travis D.; Trepte, Charles R.; Vernier, Jean-Paul; Winker, David M.; Young, Stuart A.

    2018-03-01

    Data products from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) were recently updated following the implementation of new (version 4) calibration algorithms for all of the Level 1 attenuated backscatter measurements. In this work we present the motivation for and the implementation of the version 4 nighttime 532 nm parallel channel calibration. The nighttime 532 nm calibration is the most fundamental calibration of CALIOP data, since all of CALIOP's other radiometric calibration procedures - i.e., the 532 nm daytime calibration and the 1064 nm calibrations during both nighttime and daytime - depend either directly or indirectly on the 532 nm nighttime calibration. The accuracy of the 532 nm nighttime calibration has been significantly improved by raising the molecular normalization altitude from 30-34 km to the upper possible signal acquisition range of 36-39 km to substantially reduce stratospheric aerosol contamination. Due to the greatly reduced molecular number density and consequently reduced signal-to-noise ratio (SNR) at these higher altitudes, the signal is now averaged over a larger number of samples using data from multiple adjacent granules. Additionally, an enhanced strategy for filtering the radiation-induced noise from high-energy particles was adopted. Further, the meteorological model used in the earlier versions has been replaced by the improved Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), model. An aerosol scattering ratio of 1.01 ± 0.01 is now explicitly used for the calibration altitude. These modifications lead to globally revised calibration coefficients which are, on average, 2-3 % lower than in previous data releases. Further, the new calibration procedure is shown to eliminate biases at high altitudes that were present in earlier versions and consequently leads to an improved representation of

  18. Organic antireflective coatings for 193-nm lithography

    Science.gov (United States)

    Trefonas, Peter, III; Blacksmith, Robert F.; Szmanda, Charles R.; Kavanagh, Robert J.; Adams, Timothy G.; Taylor, Gary N.; Coley, Suzanne; Pohlers, Gerd

    1999-06-01

    Organic anti-reflective coatings (ARCs) continue to play an important role in semiconductor manufacturing. These materials provide a convenient means of greatly reducing the resist photospeed swing and reflective notching. In this paper, we describe a novel class of ARC materials optimized for lithographic applications using 193 nm exposure tools. These ARCs are based upon polymers containing hydroxyl-alkyl methacrylate monomers for crosslinkable sites, styrene for a chromophore at 193 nm, and additional alkyl-methacrylate monomers as property modifiers. A glycouril crosslinker and a thermally-activated acidic catalyst provide a route to forming an impervious crosslinked film activate data high bake temperatures. ARC compositions can be adjusted to optimize the film's real and imaginary refractive indices. Selection of optimal target indices for 193 nm lithographic processing through simulations is described. Potential chromophores for 193 nm were explored using ZNDO modeling. We show how these theoretical studies were combined with material selection criteria to yield a versatile organic anti-reflectant film, Shipley 193 G0 ARC. Lithographic process data indicates the materials is capable of supporting high resolution patterning, with the line features displaying a sharp resist/ARC interface with low line edge roughness. The resist Eo swing is successfully reduced from 43 percent to 6 percent.

  19. Alveolar macrophage accumulation rates, for 28 nm and 250 nm PSL, are mediated by separate mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Moss, O R; Wong, V A, E-mail: moss@thehamner.or [Hamner Institutes for Health Sciences, Research Triangle Park, NC 27509-2137 (United States)

    2009-02-01

    When macrophages accumulate 28 nm and 250 nm diameter polystyrene latex (PSL) beads, the accumulation rates should reflect differences in molecular and cellular function. We used a confocal microscope to measure the accumulation rates of nanoparticles by F344-rat-alveolar macrophages (approx25,000 cells adhered to a 0.7 cm{sup 2} surface). Over the cells were layered 0.1 ml of media, and 0.1 ml of media-with-beads. Fresh cells were introduced for each exposure scenario. The maximum possible individual macrophage exposures were as follows: 8x10{sup 6}, 8x10{sup 5}, and 8x10{sup 4} 28 nm beads per macrophage; and 8x10{sup 4} and 1.12x10{sup 4} 250 nm beads per macrophage. Accumulation rates were estimated over 23 minutes. The increase in bead accumulation-rate matched changes in bead-availability: 7x increase for 250 nm beads; 100x increase for 28 nm beads; and 700x increase for all bead availabilities. The maximum sustained 28 nm bead accumulation rate was > 30,000 /min (for 5 min). Increases in bead accumulation could be explained by two mechanisms: bead-diffusion; and, for the macrophage, macropinocytosis. Also for the highest concentrations of 28 nm beads, we saw a colligative threshold - possibly due to beads masking the cell surface or obstructing cellular mechanisms.

  20. Role of DNA damage in ultraviolet (313 nm) inactivation of yeasts Saccharomyces cerevisial

    International Nuclear Information System (INIS)

    Pospelov, M.E.; Ivanova, Eh.V.; Frajkin, G.Ya.

    1984-01-01

    Relative contribution of photoinhibition of cell respiration and DNA damage to lethal effect, caused by ultraviolet (UV) radiation of 313 m in certain yeast strains Saccharomyces cerevisiae, has been studied. It is shown that cell inactivation is mainly conditioned by DNA photodamage. When studying photoreactivation it has been established, that dimers of pyrimidine bases are the main lethal photoproducts, formed in DNA Under the effect of UV-radiation of 313 nm

  1. Photochemistry of acrylates at 222 nm

    International Nuclear Information System (INIS)

    Knolle, Wolfgang; Naumov, Sergej; Madani, Mohamed; Sonntag, Clemens von

    2005-01-01

    Excimer lamps as monochromatic UV sources with an intense short-wavelength emission (especially KrCl * , 222 nm) allow a photoinitiator-free initiation of the acrylate polymerisation. Laser photolysis (KrCl * excimer laser, pulse width 20 ns, up to 5 mJ per pulse) gives rise to similar transient spectra (λ max ∼ 280 nm) for all acrylates studied. As the rather unspecific spectra do not allow conclusions as to the main reaction channel, a product study has been performed by GC-MS following steady-state photolysis of acrylate solutions in acetonitrile, methanol and n-hexane. Somewhat unexpected, α-cleavage seems to be a main reaction channel, and quantum chemical calculations show that such a reaction can occur from either the excited singlet state or the unrelaxed triplet state, but not from the relaxed triplet state that is observed spectroscopically. A reaction scheme accounting for the observed products is presented

  2. Design of Polymer Wavelength Splitter 1310 nm/1550 nm Based on Multimode Interferences

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2010-12-01

    Full Text Available We report about design of 1x2 1310/1550 nm optical wavelength division multiplexer based on polymer waveguides. The polymer splitter was designed by using RSoft software based on beam propagation method. Epoxy novolak resin polymer was used as core waveguides layer, silicon substrate with silica layer was used as buffer layer and polymethylmethacrylate was used as protection cover layer. The simulation shows that the output energy for the fundamental mode is 67.1 % for 1310 nm and 67.8 % for 1550 nm wavelength.

  3. Frequency control of a 1163 nm singly resonant OPO based on MgO:PPLN

    NARCIS (Netherlands)

    Gross, P.; Lindsay, I.D.; Lee, Christopher James; Nittmann, M.; Bauer, T.; Bartschke, J.; Warring, U.; Fischer, A.; Kellenbauer, A.; Boller, Klaus J.

    2010-01-01

    We report the realization of a singly resonant optical parametric oscillator (SRO) that is designed to provide narrow-bandwidth, continuously tunable radiation at a wavelength of 1163 nm for optical cooling of osmium ions. The SRO is based on periodically poled, magnesium-oxide-doped lithium niobate

  4. Passively mode-locked Nd:YVO4 laser operating at 1073 nm and 1085 nm

    Science.gov (United States)

    Waritanant, Tanant; Major, Arkady

    2018-02-01

    A passively mode-locked Nd:YVO4 laser operating at 1073 nm and 1085 nm was demonstrated with an intracavity birefringent filter as the wavelength selecting element. The average output powers achieved were 2.17 W and 2.18 W with optical-to-optical efficiency of 19.6% and 19.7%, respectively. The slope efficiencies were more than 31% at both output wavelengths. The pulse durations at the highest average output power were 10.3 ps and 8.4 ps, respectively. We believe that this is the first report of mode locking of a Nd:YVO4 laser operating at 1073 nm or 1085 nm lines.

  5. Status and initial commissioning of a high gain 800 nm SASE FEL

    CERN Document Server

    Tremaine, Aaron M; Murokh, A; Musumeci, P; Pellegrini, C; Rosenzweig, J; Babzien, M; Ben-Zvi, I; Johnson, E; Malone, R; Rakowsky, G; Skaritka, J; Wang, X J; Yu, L H; Van Bibber, K A; Hill, J M; Le Sage, G P; Carr, R; Cornacchia, M; Nuhn, H D; Ruland, R; Nguyen, D C

    2000-01-01

    We describe the status and initial commissioning of the Visible to Infrared SASE Amplifier (VISA) experiment. VISA uses a strong focusing 4 m undulator, the Brookhaven National Laboratory ATF linac with an energy of 72 MeV, and a photoinjector electron source. The VISA fundamental radiation wavelength is near 800 nm and the power expected at saturation is near 60 MW. Power, angular and spectral measurements are planned for the VISA radiation and these results will be analyzed and compared with SASE FEL theory and computer simulation. In addition, the induced electron beam micro-bunching will be measured using coherent transition radiation.

  6. Status and initial commissioning of a high gain 800 nm SASE FEL

    International Nuclear Information System (INIS)

    Tremaine, A.; Frigola, P.; Murokh, A.; Musumeci, P.; Pellegrini, C.; Rosenzweig, J.; Babzien, M.; Ben-Zvi, I.; Johnson, E.; Malone, R.; Rakowsky, G.; Skaritka, J.; Wang, X.J.; Yu, L.H.; Van Bibber, K.A.; Hill, J.M.; Le Sage, G.P.; Carr, R.; Cornacchia, M.; Nuhn, H.-D.; Ruland, R.; Nguyen, D.C.

    2000-01-01

    We describe the status and initial commissioning of the Visible to Infrared SASE Amplifier (VISA) experiment. VISA uses a strong focusing 4 m undulator, the Brookhaven National Laboratory ATF linac with an energy of 72 MeV, and a photoinjector electron source. The VISA fundamental radiation wavelength is near 800 nm and the power expected at saturation is near 60 MW. Power, angular and spectral measurements are planned for the VISA radiation and these results will be analyzed and compared with SASE FEL theory and computer simulation. In addition, the induced electron beam micro-bunching will be measured using coherent transition radiation

  7. Harmonic Inverse FEL Interaction at 800nm

    CERN Document Server

    Sears, C M S; Siemann, R; Spencer, J E

    2005-01-01

    The inverse Free Electron Laser (IFEL) interaction has recently been proposed and demonstrated as a premodulator for High Gain Harmonic Generation (HGHG) experiments. These experiments utilized the fundamental of the interaction between the laser field and electron bunch. In the current experiment, we explore the higher order resonances of the IFEL interaction from a 3 period, 1.8 centimeter wavelength undulator with a picosecond, 0.25 mJ/pulse laser at 800nm. The resonances are observed by adjusting the gap of the undulator while keeping the beam energy constant. The harmonic IFEL can add flexibility to HGHG FEL design.

  8. Laser–fibre vibrometry at 1550 nm

    International Nuclear Information System (INIS)

    Waz, A T; Kaczmarek, P R; Abramski, K M

    2009-01-01

    This paper presents new solutions for laser vibrometry, which are based on fibre vibrometry in the third telecommunication window. The scattered laser beam from a vibrating object is guided by a fibre collimator and coherently detected through heterodyning it with an acousto-optical frequency-shifted reference beam. The concept of measuring vibration parameters from many points of the vibrating object has been inspired by wavelength division multiplexing (WDM) in fibre telecommunications. The N-independent WDM separated 15XX nm fibre-coupled laser diodes (used for optical fibre telecommunications) form a system of sources for multipoint vibration measurement according to the rule 'one wavelength–one point'

  9. High power diode lasers emitting from 639 nm to 690 nm

    Science.gov (United States)

    Bao, L.; Grimshaw, M.; DeVito, M.; Kanskar, M.; Dong, W.; Guan, X.; Zhang, S.; Patterson, J.; Dickerson, P.; Kennedy, K.; Li, S.; Haden, J.; Martinsen, R.

    2014-03-01

    There is increasing market demand for high power reliable red lasers for display and cinema applications. Due to the fundamental material system limit at this wavelength range, red diode lasers have lower efficiency and are more temperature sensitive, compared to 790-980 nm diode lasers. In terms of reliability, red lasers are also more sensitive to catastrophic optical mirror damage (COMD) due to the higher photon energy. Thus developing higher power-reliable red lasers is very challenging. This paper will present nLIGHT's released red products from 639 nm to 690nm, with established high performance and long-term reliability. These single emitter diode lasers can work as stand-alone singleemitter units or efficiently integrate into our compact, passively-cooled Pearl™ fiber-coupled module architectures for higher output power and improved reliability. In order to further improve power and reliability, new chip optimizations have been focused on improving epitaxial design/growth, chip configuration/processing and optical facet passivation. Initial optimization has demonstrated promising results for 639 nm diode lasers to be reliably rated at 1.5 W and 690nm diode lasers to be reliably rated at 4.0 W. Accelerated life-test has started and further design optimization are underway.

  10. Compact corner-pumped Nd:YAG/YAG composite slab 1319 nm/1338 nm laser

    International Nuclear Information System (INIS)

    Liu, H; Gong, M; Wushouer, X; Gao, S

    2010-01-01

    A corner-pumped type is a new pumping type in the diode-pumped solid-state lasers, which has the advantages of high pump efficiency and favorable pump uniformity. A corner-pumped Nd:YAG/YAG composite slab continuous-wave 1319 nm/1338 nm dual-wavelength laser is first demonstrated in this paper. When the cavity length is 25 mm, the maximal output power is up to 7.62 W with a slope efficiency of 16.6% and an optical-to-optical conversion efficiency of 17%. The corresponding spectral line widths of 1319 nm laser and 1338 nm laser are 0.11 and 0.1 nm, respectively. The short-term instability of the output power is better than 1% when the pumping power is 39.5 W. The experimental results show that a corner-pumped type is a kind of feasible schedules in the design of diode-pumped solid-state 1.3 μm lasers with low or medium output powers

  11. Comparison of 193 nm and 308 nm laser liquid printing by shadowgraphy imaging

    Energy Technology Data Exchange (ETDEWEB)

    Palla-Papavlu, A., E-mail: apalla@nipne.ro [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, Magurele, RO-077125 Bucharest (Romania); Shaw-Stewart, J. [EMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Functional Polymers, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Paul Scherrer Institute, General Energy Research Department, 5232 Villigen PSI (Switzerland); Mattle, T. [Paul Scherrer Institute, General Energy Research Department, 5232 Villigen PSI (Switzerland); Dinca, V. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, Magurele, RO-077125 Bucharest (Romania); Lippert, T.; Wokaun, A. [Paul Scherrer Institute, General Energy Research Department, 5232 Villigen PSI (Switzerland); Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, Magurele, RO-077125 Bucharest (Romania)

    2013-08-01

    Over the last years laser-induced forward transfer has emerged as a versatile and powerful tool for engineering surfaces with active compounds. Soft, easily damageable materials can be transferred using a triazene polymer as a sacrificial layer which acts as a pressure generator and at the same time protects the material from direct laser irradiation. To understand and optimize the transfer process of biomolecules in liquid solution by using an intermediate triazene polymer photosensitive layer, shadowgraphy imaging is carried out. Two laser systems i.e. an ArF laser operating at 193 nm and a XeCl laser operating at 308 nm are applied for the transfer. Solutions with 50% v/v glycerol concentration are prepared and the influence of the triazene polymer sacrificial layer thickness (60 nm) on the deposits is studied. The shadowgraphy images reveal a pronounced difference between laser-induced forward transfer using 193 nm or 308 nm, i.e. very different shapes of the ejected liquid.

  12. Read-through transcript from NM23-H1 into the neighboring NM23-H2 gene encodes a novel protein, NM23-LV

    NARCIS (Netherlands)

    Valentijn, Linda J.; Koster, Jan; Versteeg, Rogier

    2006-01-01

    NM23-H1 and NM23-H2 are neighboring genes on chromosome 17q. They encode nucleoside diphosphate kinases that have additional roles in signal transduction, transcription, and apoptosis. NM23-H1 expression is a strong marker for prognosis and metastatic behavior in many tumor types. A new

  13. 308-nm excimer laser in endodontics

    Science.gov (United States)

    Liesenhoff, Tim

    1992-06-01

    Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.

  14. Absolute frequency atlas from 915 nm to 985 nm based on laser absorption spectroscopy of iodine

    Science.gov (United States)

    Nölleke, Christian; Raab, Christoph; Neuhaus, Rudolf; Falke, Stephan

    2018-04-01

    This article reports on laser absorption spectroscopy of iodine gas between 915 nm and 985 nm. This wavelength range is scanned utilizing a narrow linewidth and mode-hop-free tunable diode-laser whose frequency is actively controlled using a calibrated wavelength meter. This allows us to provide an iodine atlas that contains almost 10,000 experimentally observed reference lines with an uncertainty of 50 MHz. For common lines, good agreement is found with a publication by Gerstenkorn and Luc (1978). The new rich dataset allows existing models of the iodine molecule to be refined and can serve as a reference for laser frequency calibration and stabilization.

  15. Diode-pumped quasi-three-level Nd:GdV O4–Nd:YAG sum-frequency laser at 464 nm

    International Nuclear Information System (INIS)

    Lu, Jie

    2014-01-01

    We report a laser architecture to obtain continuous-wave (cw) blue radiation at 464 nm. A 808 nm diode pumped a Nd:GdV O 4 crystal emitting at 912 nm. A part of the pump power was then absorbed by the Nd:GdV O 4 crystal. The remainder was used to pump a Nd:YAG crystal emitting at 946 nm. Intracavity sum-frequency mixing at 912 and 946 nm was then realized in a LiB 3 O 5 (LBO) crystal to produce blue radiation. We obtained a cw output power of 1.52 W at 464 nm with a pump laser diode emitting 18.4 W at 808 nm. (letter)

  16. All-fiber femtosecond Cherenkov radiation source

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Møller, Uffe

    2012-01-01

    -conversion medium, we demonstrate milliwatt-level, stable, and tunable Cherenkov radiation at visible wavelengths 580–630 nm, with pulse duration of sub-160-fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such an all-fiber Cherenkov radiation source is promising for practical applications in biophotonics...

  17. The development needs of nuclear medicine (NM) in Finland in 1980-84

    International Nuclear Information System (INIS)

    Vauramo, E.; Ahonen, A.; Korkola, O.; Liewendahl, K.; Laensimies, E.; Nyyssoenen, O.; Pietilae, P.; Tervo-Pellikka, R.; Wendelin, H.

    1980-01-01

    In autumn 1978, a task group was set up by the Finnish Hospital League to investigate the development needs of nuclear medicine (NM) in Finland. Clinical chemistry, clinical physiology, diagnostic radiology and hospital physics were represented on the working group. The National Board of Health, the Institute of Radiation Protection and the Finnish Hospital League were also represented. The views of other fields were considered by asking for statements from hospitals, research institutes and medical associations. This report deals with NM procedures on patients. Sample studies (in vitro) belong to the clinical laboratory and they were dealt with only to a minor extent. (orig.) [de

  18. Absorption coefficients for water vapor at 193 nm from 300 to 1073 K

    Science.gov (United States)

    Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.

    1993-01-01

    Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.

  19. 375-nm ultraviolet-laser based non-line-of-sight underwater optical communication

    KAUST Repository

    Sun, Xiaobin

    2018-05-04

    For circumventing the alignment requirement of line-of-sight (LOS) underwater wireless optical communication (UWOC), we demonstrated a non-line-of-sight (NLOS) UWOC link adequately enhanced using ultraviolet (UV) 375-nm laser. Path loss was chosen as a figure-of-merit for link performance in this investigation, which considers the effects of geometries, water turbidity, and transmission wavelength. The experiments suggest that path loss decreases with smaller azimuth angles, higher water turbidity, and shorter wavelength due in part to enhanced scattering utilizing 375-nm radiation. We highlighted that it is feasible to extend the current findings for long distance NLOS UWOC link in turbid water, such as harbor water.

  20. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    Science.gov (United States)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  1. Lasing at 300 nm and below: Optical challenges and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Garzella, D. [Universite de Paris-Sud, Orsay (France); Couprie, M.E. [Universite de Paris-Sud, Orsay (France)]|[CEA DSM DRECAM SPAM, Gif Sur Yvette (France); Billardon, M. [ESPCI, Paris (France)

    1995-12-31

    The FEL experiment in the visible and near UV on the Super ACO storage ring has given, since 1989, important informations on the SRFEL dynamics and, furthermore, a very good beam stability has been achieved. In addition, the operation at 350 nm with this good stability and a long beam lifetime allowed us to perform the first user experiment in biology and to start with a campaign for using the laser as photons source for experiments in other domains, coupling FEL light and the Synchrotron Radiation. For this, FEL starts to be very competitive with respect to the other conventional laser sources, provided that it could oscillate further in the UV, say at 300 nm and below. So, the real challenge is now given by the lasing at shorter wavelengths and, for this, by the optical technology existing nowadays. Since 1992 the efforts have been concentrating to look for every kind of solution allowing us to overcome the problem of having a very low gain. From an optical point of view, in the range of wavelengths explored, there is a lack of transparents dielectric materials for substrates and coatings. Substrates are required at the same time to be relatively not absorbing (a few tens 10{sup -6}), to have a very good surface quality (RMS roughness below 10 {Angstrom}) because of scattering losses dramatically increasing in this spectral range and, due to the thermal load of the undulator emission, to have adequate thermal characteristics. In order to fulfill all these requirements, a good characterisation and modelisation of the substrates is needed, especially to correlate thermal loading and mechanical deformations from one hand, and roughness and scattering losses from the other hand. Coatings must be not absorbing too and, above all, the most amorphous as possible (this could be obtained with IBS deposition technique), in order to insure a good reproduction of the substrate roughness at the interfaces and on the top layer and an higher resistance to the XUV photons load.

  2. Laser Shock Processing of 6061-T6 Al alloy with 1064 nm and 532 nm wavelengths

    International Nuclear Information System (INIS)

    Gomez-Rosas, G.; Rubio-Gonzalez, C.; Ocana, J.L.; Molpeceres, C.; Porro, J.A.; Morales, M.; Casillas, F.J.

    2010-01-01

    Laser Shock Processing (LSP) has been proposed as a competitive alternative technology to classical treatments for improving fatigue and wear resistance of metals. We present a configuration and results in the LSP concept for metal surface treatments in underwater laser irradiation at 532 nm and 1064 nm. The purpose of the work is to compare the effect of both wavelengths on the same material. A convergent lens is used to deliver 1.2 J/pulse (1064 nm) and 0.9 J/pulse (532 nm) in a 8 ns laser FWHM pulse produced by 10 Hz Q-switched Nd:YAG laser with spots of a 1.5 mm in diameter moving forward along the work piece. A LSP configuration with experimental results using a pulse density of 2500 pulses/cm 2 and 5000 pulses/cm 2 in 6061-T6 aluminum samples are presented. High level compressive residual stresses are produced using both wavelengths. It has been shown that surface residual stress level is comparable to that achieved by conventional shot peening, but with greater depths. This method can be applied to surface treatment of final metal products.

  3. Characterization of LANDSAT Panels Using the NIST BRDF Scale from 1100 nm to 2500 nm

    Science.gov (United States)

    Markham, Brian; Tsai, Benjamin K.; Allen, David W.; Cooksey, Catherine; Yoon, Howard; Hanssen, Leonard; Zeng, Jinan; Fulton, Linda; Biggar, Stuart; Markham, Brian

    2010-01-01

    Many earth observing sensors depend on white diffuse reflectance standards to derive scales of radiance traceable to the St Despite the large number of Earth observing sensors that operate in the reflective solar region of the spectrum, there has been no direct method to provide NIST traceable BRDF measurements out to 2500 rim. Recent developments in detector technology have allowed the NIST reflectance measurement facility to expand the operating range to cover the 250 nm to 2500 nm range. The facility has been modified with and additional detector using a cooled extended range indium gallium arsenide (Extended InGaAs) detector. Measurements were made for two PTFE white diffuse reflectance standards over the 1100 nm to 2500 nm region at a 0' incident and 45' observation angle. These two panels will be used to support the OLI calibration activities. An independent means of verification was established using a NIST radiance transfer facility based on spectral irradiance, radiance standards and a diffuse reflectance plaque. An analysis on the results and associated uncertainties will be discussed.

  4. The cause of spatial structure in solar He I 1083 nm multiplet images

    Science.gov (United States)

    Leenaarts, Jorrit; Golding, Thomas; Carlsson, Mats; Libbrecht, Tine; Joshi, Jayant

    2016-10-01

    Context. The He I 1083 nm is a powerful diagnostic for inferring properties of the upper solar chromosphere, in particular for the magnetic field. The basic formation of the line in one-dimensional models is well understood, but the influence of the complex three-dimensional structure of the chromosphere and corona has however never been investigated. This structure must play an essential role because images taken in He I 1083 nm show structures with widths down to 100 km. Aims: We aim to understand the effect of the three-dimensional temperature and density structure in the solar atmosphere on the formation of the He I 1083 nm line. Methods: We solved the non-LTE radiative transfer problem assuming statistical equilibrium for a simple nine-level helium atom that nevertheless captures all essential physics. As a model atmosphere we used a snapshot from a 3D radiation-MHD simulation computed with the Bifrost code. Ionising radiation from the corona was self-consistently taken into account. Results: The emergent intensity in the He I 1083 nm is set by the source function and the opacity in the upper chromosphere. The former is dominated by scattering of photospheric radiation and does not vary much with spatial location. The latter is determined by the photonionisation rate in the He I ground state continuum, as well as the electron density in the chromosphere. The spatial variation of the flux of ionising radiation is caused by the spatially-structured emissivity of the ionising photons from material at T ≈ 100 kK in the transition region. The hotter coronal material produces more ionising photons, but the resulting radiation field is smooth and does not lead to small-scale variation of the UV flux. The corrugation of the transition region further increases the spatial variation of the amount of UV radiation in the chromosphere. Finally we find that variations in the chromospheric electron density also cause strong variation in He I 1083 nm opacity. We compare our

  5. A monolithic 180 nm CMOS dosimeter for wireless In Vivo Dosimetry

    International Nuclear Information System (INIS)

    Villani, E.G.; Crepaldi, M.; DeMarchi, D.; Gabrielli, A.; Khan, A.; Pikhay, E.; Roizin, Y.; Rosenfeld, A.; Zhang, Z.

    2016-01-01

    The design, fabrication and testing of a novel monolithic system-on-chip dosimeter fabricated in a standard 180 nm CMOS technology is described. The device, implementing a radiation sensor and an RF transmitter, is proposed to address the need for real-time In Vivo Dosimetry (IVD) of radiation during Linac radiotherapy sessions. Owing to its small size, of approximately 1 mm"3, such solution could be made in-body implantable and, as such, provide a much-enhanced high-resolution, real-time dose measurement to improve Quality Assurance (QA) in radiation therapy. The device transmits the related information on dose of radiation wirelessly to a remote receiver operating in the Medical Implant Communication Service (MICS) band. Comprehensive description of the various phases of this project, including the development of the radiation sensors and integrated RF transmitter to perform the readout, along with the final test results using a radiation beam, will be given. - Highlights: • A Monolithic Dosimeter for real time dosimetry during radiotherapy is proposed. • The proposed device is 1 mm3 in size and could potentially be body implantable. • The device includes a radiation sensor and RF readout, operating in the MICS band. • Detailed tests have been performed under radiation beam in a clinical environment. • Reported sensitivity is 1 cGy over 50 Gy, with an accuracy of better than 3%.

  6. Does ultraviolet radiation affect the xanthophyll cycle in marine phytoplankton?

    NARCIS (Netherlands)

    van de Poll, W.H.; Buma, A.G.J.

    2009-01-01

    This Perspective summarizes the state of knowledge of the impact of ultraviolet radiation on the photoprotective xanthophyll cycle in marine phytoplankton. Excess photosynthetically active radiation (PAR; 400-700 nm) and ultraviolet radiation (UVR; 280-400 nm) affect various cellular processes and

  7. Magnetic Susceptibility of liquid Gd-NM (NM = Cu, Ga, Ge alloys

    Directory of Open Access Journals (Sweden)

    Shimakura Hironori

    2017-01-01

    Full Text Available For rare earth alloys, the indirect interaction of RKKY is at work between rare-earth atoms. Therefore, the magnetism of them depends on the number of conduction electrons and the distance between rare-earth metals. In this work, to reveal the relationship between the number of conduction electrons and magnetic property of rare earth metal alloys, magnetic susceptibility measurements for liquid Gd-NM (NM = Cu, Ga, Ge was performed by Faraday method. As the results, it was observed that the sign of paramagnetic Curie temperature of Cu-Gd alloys are positive at all composition, while Ga-Gd and Ge-Gd alloys show negative paramagnetic Curie temperature at certain composition. Moreover, it was indicated when the alloy at certain composition shows highest melting temperature, it has the lowest paramagnetic Curie temperature.

  8. A monolithic 180 nm CMOS dosimeter for In Vivo Dosimetry medical application

    International Nuclear Information System (INIS)

    Villani, E.G.; Crepaldi, M.; DeMarchi, D.; Gabrielli, A.; Khan, A.; Pikhay, E.; Roizin, Y.; Rosenfeld, A.; Zhang, Z.

    2014-01-01

    The design and development of a monolithic system-on-chip dosimeter fabricated in a standard 180 nm CMOS technology is described. The device is intended for real time In Vivo measurement of dose of radiation during radiotherapy sessions. Owing to its proposed small size, of approximately 1 mm 3 , such solution could be made in-body implantable and, as such, provide a much-enhanced high-resolution, real-time dose measurement for quality assurance in radiation therapy. The device transmits the related information on dose of radiation wirelessly to an external receiver operating in the MICS band. The various phases of this two years project, started in 2011, including the design and development of radiation sensors and integrated RF to perform the readout, will be described. - Highlights: • A novel monolithic CMOS dosimeter of size of 1 mm 3 has been proposed. • Three different fabrications using a CMOS 180 nm technology have been carried out. • Radiation tests results showed a sensitivity of 1 cGy with accuracy better than 3%. • Preliminary RF tests showed that an RF signal is detectable in free air

  9. TUNABLE DIODE LASER MEASUREMENTS OF NO2 NEAR 670 NM AND 395 NM. (R823933)

    Science.gov (United States)

    Two single-mode diode lasers were used to record high-resolution absorption spectra of NO2 (dilute in Ar) near 670.2 and 394.5 nm over a range of temperatures (296 to 774 K) and total pressures (2.4 x 10(-2) to 1 atm). A commercial InGaAsP laser was tuned 1.3 cm(-1) at a repetiti...

  10. Creation and investigation of powerful EUV sources (λ ∼ 13.5 nm)

    International Nuclear Information System (INIS)

    Borisov, V. M.; Borisova, G. N.; Vinokhodov, A. Yu.; Ivanov, A. S.; Kiryukhin, Yu. B.; Mishchenko, V. A.; Prokofiev, A. V.; Khristoforov, O. B.

    2010-01-01

    Results are presented from experimental studies of repetitively pulsed EUV (λ = 13.5 ± 0.135 nm) sources based on a laser-initiated discharge in tin vapor between rotating disk electrodes. Radiative characteristics of two sources with different systems of tin supply onto the electrode surface and different types of power supply have been compared. A number of new effects have been revealed at pulse repetition rates as high as ∼4000 Hz. A mean radiation power of 520 W into the 2π solid angle has been achieved in the spectral band 13.5 ± 0.135 nm at a deposited electrical power of 24 kW.

  11. Creation and investigation of powerful EUV sources (λ ≈ 13.5 nm)

    Science.gov (United States)

    Borisov, V. M.; Borisova, G. N.; Vinokhodov, A. Yu.; Ivanov, A. S.; Kiryukhin, Yu. B.; Mishchenko, V. A.; Prokofiev, A. V.; Khristoforov, O. B.

    2010-03-01

    Results are presented from experimental studies of repetitively pulsed EUV (λ = 13.5 ± 0.135 nm) sources based on a laser-initiated discharge in tin vapor between rotating disk electrodes. Radiative characteristics of two sources with different systems of tin supply onto the electrode surface and different types of power supply have been compared. A number of new effects have been revealed at pulse repetition rates as high as ˜4000 Hz. A mean radiation power of 520 W into the 2π solid angle has been achieved in the spectral band 13.5 ± 0.135 nm at a deposited electrical power of 24 kW.

  12. Monolithic PM Raman fiber laser at 1679 nm for Raman amplification at 1810 nm

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2013-01-01

    Stimulated Raman scattering (SRS) has been subject to much attention within the field of fiber lasers and amplifiers as it provides an extended wavelength coverage in comparison to rare-earth based devices. Motivated by the projected capacity crunch [1], different approaches are being explored...... demonstrate a monolithic RM Raman fiber laser (RFL), which acts as a pump for a Raman amplifier (RA) at 1810 nm. The lasing wavelength of a RFL, thus also for a RA, can in principle be designed arbitrarily within the entire wavelength range from the Erbium band up to the Thulium/Holmium band...... of OFS PM Raman fiber, with an estimated propagation loss of 0.42/0.46/1.3 dB/km at 1564/1679/1810 nm. The Raman gain coefficient was measured to be gR=2.66/2.35 W-1km-1 at 1679/1810 nm. The laser curve of the RFL is depicted in Fig. 1b, with a slope efficiency of 67 %. The high slope efficiency...

  13. Sub-500  nm hard x ray focusing by compound long kinoform lenses.

    Science.gov (United States)

    Liao, Keliang; Liu, Jing; Liang, Hao; Wu, Xuehui; Zhang, Kai; Yuan, Qingxi; Yi, Futing; Sheng, Weifan

    2016-01-01

    The focusing performance of polymethyl methacrylate compound long kinoform lenses with 70 μm aperture and 19.5 mm focal length was characterized with 8 keV x rays using the knife-edge scan method at the 4W1A transmission x-ray microscope beamline of Beijing Synchrotron Radiation Facility. The experiment result shows a best FWHM focus size of 440 nm with 31% diffraction efficiency.

  14. Methods For Electron Bunch Measurement With Resolution Of The Order Of 1 Fs And 1 Nm

    CERN Document Server

    Tron, A M

    2004-01-01

    Methods for bunch length and shape monitoring with femtosecond resolution by means of time converting photochronography of the bunch radiation in the range of visible light using photoelectron camera of new principle of its operation, and for monitoring the transverse bunch size, based on new beam cross section wire scanner technique where the depth of electron escapement being not more than 1 nm is used, are described. Main limitation, caused by space charge effect, is considered.

  15. Optical breakdown threshold investigation of 1064 nm laser induced air plasmas

    International Nuclear Information System (INIS)

    Thiyagarajan, Magesh; Thompson, Shane

    2012-01-01

    We present the theoretical and experimental measurements and analysis of the optical breakdown threshold for dry air by 1064 nm infrared laser radiation and the significance of the multiphoton and collisional cascade ionization process on the breakdown threshold measurements over pressures range from 10 to 2000 Torr. Theoretical estimates of the breakdown threshold laser intensities and electric fields are obtained using two distinct theories namely multiphoton and collisional cascade ionization theories. The theoretical estimates are validated by experimental measurements and analysis of laser induced breakdown processes in dry air at a wavelength of 1064 nm by focusing 450 mJ max, 6 ns, 75 MW max high-power 1064 nm IR laser radiation onto a 20 μm radius spot size that produces laser intensities up to 3 - 6 TW/cm 2 , sufficient for air ionization over the pressures of interest ranging from 10 to 2000 Torr. Analysis of the measured breakdown threshold laser intensities and electric fields are carried out in relation with classical and quantum theoretical ionization processes, operating pressures. Comparative analysis of the laser air breakdown results at 1064 nm with corresponding results of a shorter laser wavelength (193 nm) [M. Thiyagarajan and J. E. Scharer, IEEE Trans. Plasma Sci. 36, 2512 (2008)] and a longer microwave wavelength (10 8 nm) [A. D. MacDonald, Microwave Breakdown in Gases (Wiley, New York, 1966)]. A universal scaling analysis of the breakdown threshold measurements provided a direct comparison of breakdown threshold values over a wide range of frequencies ranging from microwave to ultraviolet frequencies. Comparison of 1064 nm laser induced effective field intensities for air breakdown measurements with data calculated based on the collisional cascade and multiphoton breakdown theories is used successfully to determine the scaled collisional microwave portion. The measured breakdown threshold of 1064 nm laser intensities are then scaled to

  16. Radiation chemistry

    International Nuclear Information System (INIS)

    Rodgers, F.; Rodgers, M.A.

    1987-01-01

    The contents of this book include: Interaction of ionizing radiation with matter; Primary products in radiation chemistry; Theoretical aspects of radiation chemistry; Theories of the solvated electron; The radiation chemistry of gases; Radiation chemistry of colloidal aggregates; Radiation chemistry of the alkali halides; Radiation chemistry of polymers; Radiation chemistry of biopolymers; Radiation processing and sterilization; and Compound index

  17. Stimulation of DNA synthesis by 340nm/ 351nm UV laser irradiation

    International Nuclear Information System (INIS)

    Meldrum, R.A.; Wharton, C.W.

    1991-01-01

    During preliminary experiments designed to test the feasibility of using a 'caged' DNA break trapping agent, the authors observed a stimulation of incorporation of 3 H-thymidine into DNA when cells were irradiated with low doses (100-1000J/m 2 ) of 351nm UV laser irradiation. This wavelength is used to photolyse 'caged' dideoxynucleotides in our fast time course measurements of DNA repair in mammalian cells. The dose at which this stimulation was observed is well below that at which measurable damage is detected. (author)

  18. Infrared Radiative Properties of Food Materials

    Science.gov (United States)

    Precisely, infrared radiation is electromagnetic radiation whose wavelength is longer than that of visible light, but shorter than that of terahertz radiation and microwaves. The infrared portion of the electromagnetic spectrum spans roughly three orders of magnitude (750 nm to 100 µm) and has been...

  19. Radiation and radiation protection

    International Nuclear Information System (INIS)

    Landfermann, H.H.; Solbach, C.

    1992-11-01

    The brochure explains the major types of radiation, the radiation sources, effects, uses, and risks, as well as the regulatory system adopted by the government in order to keep the risks as low as possible. (orig./DG) [de

  20. CW light sources at the 589 nm sodium D2 line by sum-frequency mixing of diode pumped neodymium lasers

    International Nuclear Information System (INIS)

    Lü, Y F; Lu, J; Xu, L J; Sun, G C; Zhao, Z M; Gao, X; Lin, J Q

    2010-01-01

    We present a laser architecture to obtain continuous-wave (CW) light sources at the 589 nm sodium D2 line. A 808 nm diode-pumped a Nd:YLiF 4 (Nd:YLF) crystal emitting at 1053 nm. A part of the pump power was then absorbed by the Nd:YLF crystal. The remaining was used to pump a Nd:YAG crystal emitting at 1338 nm. Intracavity sum-frequency mixing at 1053 and 1338 nm was then realized in a LiB 3 O 5 (LBO) crystal to reach the yellow-orange radiation. We obtained a CW output power of 235 mW at 589 nm with a pump laser diode emitting 17.8 W at 808 nm

  1. Radiation measurement

    International Nuclear Information System (INIS)

    Go, Sung Jin; Kim, Seung Guk; No, Gyeong Seok; Park, Myeong Hwan; Ann, Bong Seon

    1998-03-01

    This book explains technical terms about radiation measurement, which are radiation, radiation quantity and unit such as prefix of international unit, unit for defence purposes of radiation, coefficient of radiation and interaction, kinds and principles of radiation detector, ionization chamber, G-M counter, G-M tube, proportional counter, scintillation detector, semiconductor radiation detector, thermoluminescence dosimeter, PLD, others detector, radiation monitor, neutron detector, calibration of radiation detector, statistics of counting value, activation analysis and electronics circuit of radiation detector.

  2. First principles study on the interfacial properties of NM/graphdiyne (NM = Pd, Pt, Rh and Ir): The implications for NM growing

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Zhansheng; Li, Shuo; Lv, Peng [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China); He, Chaozheng, E-mail: hecz2013@nynu.edu.cn [College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061 (China); Ma, Dongwei [School of Physics, Anyang Normal University, Anyang 455000 (China); Yang, Zongxian, E-mail: yzx@henannu.edu.cn [College of Physics and Electronic Engineering, Henan Normal University, Xinxiang 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Kaifeng (China)

    2016-01-01

    Graphical abstract: - Highlights: • The NM adatoms belong to embedded adsorption in 18C-hexagon of GDY. • The Rh and Ir/GDY can be applied to single metal catalysts or sensors. • A simple linear relationship between E{sub e-ads} and E{sub b} is presented. • The linear relationship can be used in the noble metal modified GDY. - Abstract: Based on the dispersion-corrected density functional calculations (DFT-D), we systematically studied the adsorption of noble metals (NM), Pd, Pt, Rh and Ir, on graphdiyne (GDY). We present a systematic study on the geometry, embedded adsorption energy and electronic structure of four different adatoms adsorbed on the GDY. The strong interaction between the NM adatoms and the GDY substrate is found with the NM embedded in the 18C-hexagon of the GDY. We investigated the mobility of the NM adatoms on the GDY, and found that the mobility barrier energy increases along with the increasing of the embedded adsorption energy. We present the NM adatoms growth of high concentrations on the GDY. Upon the analysis of the electronic structure and the frontier molecular orbitals, Rh and Ir adatoms of low concentrations (about 1.37 at%) on the GDY have the potential to be applied as single metal catalysts or gas molecule sensors.

  3. [Influence of cold spot temperature on 253.7 nm resonance spectra line of electrodeless discharge lamps].

    Science.gov (United States)

    Dong, Jin-yang; Zhang, Gui-xin; Wang, Chang-quan

    2012-01-01

    As a kind of new electric light source, electrodeless discharge lamps are of long life, low mercury and non-stroboscopic light. The lighting effect of electrodeless discharge lamps depends on the radiation efficiency of 253.7 nm resonance spectra line to a large extent. The influence of cold temperature on 253.7 nm resonance spectra line has been studied experimentally by atomic emission spectral analysis. It was found that the radiation efficiency of 253.7 nm resonance spectra line is distributed in a nearly normal fashion with the variation of cold spot temperature, in other words, there is an optimum cold spot temperature for an electrodeless discharge lamp. At last, the results of experiments were analyzed through gas discharge theory, which offers guidance to the improvement of lighting effect for electrodeless discharge lamps.

  4. CORRECTION OF THE TEMPERATURE EFFECT IN 1020 NM BAND OF SUN-SKY RADIOMETER

    Directory of Open Access Journals (Sweden)

    K. Li

    2018-04-01

    Full Text Available Aerosol is an important part of the earth-atmosphere system. It can directly and indirectly influence solar radiation and then affect the energy balance of earth-atmosphere system. AERONET, as the largest ground-based observation network, provides multi-parameters of aerosol from more than 600 hundred sites using sun-sky radiometer, which contains 9 channels from 340 nm to 1640 nm. Among which, 1020 nm channel is greatly influenced by the temperature. In this paper, a new correction method of 1020 nm band is introduced. The new method transfers the temperature correction coefficient of the master radiometer to the comparative one. The filed calibration experiment shown that the temperature correction coefficient obtained by this method is close to the result from the temperature controlled chamber, and the difference is about 2.1 %. This new method is easy-to-use, and its accuracy is comparable to the standard one. It is more applicable for large-scale instrument calibration. In principle, this method is applicable to all bands of the sun-sky radiometer.

  5. High-brightness high-order harmonic generation at 13 nm with a long gas jet

    International Nuclear Information System (INIS)

    Kim, Hyung Taek; Kim, I Jong; Lee, Dong Gun; Park, Jong Ju; Hong, Kyung Han; Nam, Chang Hee

    2002-01-01

    The generation of high-order harmonics is well-known method producing coherent extreme-ultraviolet radiation with pulse duration in the femtosecond regime. High-order harmonics have attracted much attention due to their unique features such as coherence, ultrashort pulse duration, and table-top scale system. Due to these unique properties, high-order harmonics have many applications of atomic and molecular spectroscopy, plasma diagnostics and solid-state physics. Bright generation of high-order harmonics is important for actual applications. Especially, the generation of strong well-collimated harmonics at 13 nm can be useful for the metrology of EUV lithography optics because of the high reflectivity of Mo-Si mirrors at this wavelength. The generation of bright high-order harmonics is rather difficult in the wavelength region below 15nm. Though argon and xenon gases have large conversion efficiency, harmonic generation from these gases is restricted to wavelengths over 20 nm due to low ionization potential. Hence, we choose neon for the harmonic generation around 13 nm; it has larger conversion efficiency than helium and higher ionization potential than argon. In this experiment, we have observed enhanced harmonic generation efficiency and low beam divergence of high-order harmonics from a elongated neon gas jet by the enhancement of laser propagation in an elongated gas jet. A uniform plasma column was produced when the gas jet was exposed to converging laser pulses.

  6. Correction of the Temperature Effect in 1020 NM Band of Sun-Sky Radiometer

    Science.gov (United States)

    Li, K.; Li, Z.; Li, D.; Xie, Y.; Xu, H.

    2018-04-01

    Aerosol is an important part of the earth-atmosphere system. It can directly and indirectly influence solar radiation and then affect the energy balance of earth-atmosphere system. AERONET, as the largest ground-based observation network, provides multi-parameters of aerosol from more than 600 hundred sites using sun-sky radiometer, which contains 9 channels from 340 nm to 1640 nm. Among which, 1020 nm channel is greatly influenced by the temperature. In this paper, a new correction method of 1020 nm band is introduced. The new method transfers the temperature correction coefficient of the master radiometer to the comparative one. The filed calibration experiment shown that the temperature correction coefficient obtained by this method is close to the result from the temperature controlled chamber, and the difference is about 2.1 %. This new method is easy-to-use, and its accuracy is comparable to the standard one. It is more applicable for large-scale instrument calibration. In principle, this method is applicable to all bands of the sun-sky radiometer.

  7. High-efficency stable 213-nm generation for LASIK application

    Science.gov (United States)

    Wang, Zhenglin; Alameh, Kamal; Zheng, Rong

    2005-01-01

    213nm Solid-state laser technology provides an alternative method to replace toxic excimer laser in LASIK system. In this paper, we report a compact fifth harmonic generation system to generate high pulse energy 213nm laser from Q-switched Nd:YAG laser for LASIK application based on three stages harmonic generation procedures. A novel crystal housing was specifically designed to hold the three crystals with each crystal has independent, precise angular adjustment structure and automatic tuning control. The crystal temperature is well maintained at ~130°C to improve harmonic generation stability and crystal operation lifetime. An output pulse energy 35mJ is obtained at 213nm, corresponding to total conversion efficiency ~10% from 1064nm pump laser. In system verification tests, the 213nm output power drops less than 5% after 5 millions pulse shots and no significant damage appears in the crystals.

  8. Radiation protection

    International Nuclear Information System (INIS)

    Koelzer, W.

    1975-01-01

    Physical and radiological terms, quantities, and units. Basic principles of radiation protection (ICRP, IAEA, EURATOM, FRG). Biological effects of ionizing radiation. Objectives of practical radiation protection. (HP) [de

  9. Sub-100 nm hard X-ray microbeam generation with Fresnel zone plate optics

    CERN Document Server

    Takano, H; Takeuchi, A

    2003-01-01

    A hard X-ray focusing test of a Fresnel zone plate has been performed with a synchrotron radiation source at the undulator beamline 20XU of SPring-8. Fresnel zone plate with a radius of 150 mu m, and an outermost zone width of 100 nm was used for the X-ray focusing device. The 248-m-long beamline provides fully coherent illumination for the focusing device. The focused beam evaluated by the knife-edge-scan method and scanning microscope test using test charts. Nearly diffraction- limited focusing with a size of 120 nm was achieved for the first-order diffraction at 10 keV X-ray. Evaluation for the third order diffraction was also performed at 8 keV X-ray, and a focal size of 50 m has been obtained. (author)

  10. DICE based flip-flop with SET pulse discriminator on a 90 nm bulk CMOS process

    International Nuclear Information System (INIS)

    Maru, A.; Kuboyama, S.; Shindou, H.; Ebihara, T.; Tamura, T.; Makihara, A.; Hirao, Toshio

    2010-01-01

    In recent years, due to the demand for increased integration and device scaling, integrated circuits have been designed with the design rule less than 100 nm. In such integrated circuits, SEUs and SETs are serious problems because their supply voltage and the threshold voltage of the transistors are decreased. A DICE-based flip-flop with a SET pulse discriminator circuit on a 90-nm bulk CMOS was designed and fabricated. Its improved performance was demonstrated through radiation testing and discussion. SEU sensitivity for the angled irradiation was measured and discussed in this study. The test of edge-on irradiation was performed for the first time. The importance of the angled irradiation for the memory cells that have redundant memory nodes was demonstrated. (author)

  11. Hard X-ray Microscopy with sub 30 nm Spatial Resolution

    International Nuclear Information System (INIS)

    Tang, M.-T.; Song, Y.-F.; Yin, G.-C.; Chen, J.-H.; Chen, Y.-M.; Liang, Keng S.; Chen, F.-R.; Duewer, F.; Yun Wenbing

    2007-01-01

    A transmission X-ray microscope (TXM) has been installed at the BL01B beamline at National Synchrotron Radiation Research Center in Taiwan. This state-of-the-art TXM operational in a range 8-11 keV provides 2D images and 3D tomography with spatial resolution 60 nm, and with the Zernike-phase contrast mode for imaging light materials such as biological specimens. A spatial resolution of the TXM better than 30 nm, apparently the best result in hard X-ray microscopy, has been achieved by employing the third diffraction order of the objective zone plate. The TXM has been applied in diverse research fields, including analysis of failure mechanisms in microelectronic devices, tomographic structures of naturally grown photonic specimens, and the internal structure of fault zone gouges from an earthquake core. Here we discuss the scope and prospects of the project, and the progress of the TXM in NSRRC

  12. Laser-plasma source parameters for Kr, Gd, and Tb ions at 6.6 nm

    Energy Technology Data Exchange (ETDEWEB)

    Masnavi, Majid; Szilagyi, John; Parchamy, Homaira; Richardson, Martin C. [The Townes Laser Institute, College of Optics and Photonics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 (United States)

    2013-04-22

    There is increasing interest in extreme-ultraviolet (EUV) laser-based lamps for sub-10-nm lithography operating in the region of 6.6 nm. A collisional-radiative model is developed as a post-processor of a hydrodynamic code to investigate emission from resonance lines in Kr, Gd, and Tb ions under conditions typical for mass-limited EUV sources. The analysis reveals that maximum conversion efficiencies of Kr occur at 5 Multiplication-Sign 10{sup 10}W/cm{sup 2}, while for Gd and Tb it was Asymptotically-Equal-To 0.9%/2{pi}sr for laser intensities of (2-5) Multiplication-Sign 10{sup 12}W/cm{sup 2}.

  13. Development of 2-channel (532 nm and 355 nm) mobile LIDAR for mapping particulate matter in the atmosphere

    CSIR Research Space (South Africa)

    Sivakumar, V

    2010-09-01

    Full Text Available In this paper, the authors describe the developmentof 2-Channel (532 nm and 355 nm) mobile LIDAR system for studying atmospheric particulate matter. The system is currently tested in house at the Council for Scientific and Industrial Research...

  14. Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cahoon, Erica M.; Almirall, Jose R.

    2010-05-01

    Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser-glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and the mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser-glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.

  15. Wavelength dependence on the forensic analysis of glass by nanosecond 266 nm and 1064 nm laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Cahoon, Erica M.; Almirall, Jose R.

    2010-01-01

    Laser induced breakdown spectroscopy can be used for the chemical characterization of glass to provide evidence of an association between a fragment found at a crime scene to a source of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse configurations and lens-to-sample-distance settings were optimized to yield the best laser-glass coupling. Laser energy and acquisition timing delays were also optimized to result in the highest signal-to-noise ratio corresponding to the highest precision and accuracy. The crater morphology was examined and the mass removed was calculated for both the 266 nm and 1064 nm irradiations. The analytical figures of merit suggest that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic chemical characterization of glass. The results presented here suggest that the 266 nm laser produces a better laser-glass matrix coupling, resulting in a better stoichiometric representation of the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and comparison of glass samples.

  16. Lead extraction by selective operation of a nanosecond-pulsed 355nm laser

    Science.gov (United States)

    Herzog, Amir; Bogdan, Stefan; Glikson, Michael; Ishaaya, Amiel A.; Love, Charles

    2016-03-01

    Lead extraction (LE) is necessary for patients who are suffering from a related infection, or in opening venous occlusions that prevent the insertion of additional lead. In severe cases of fibrous encapsulation of the lead within a vein, laser-based cardiac LE has become one of the foremost methods of removal. In cases where the laser radiation (typically at 308 nm wavelength) interacts with the vein wall rather than with the fibrotic lesion, severe injury and subsequent bleeding may occur. Selective tissue ablation was previously demonstrated by a laser operating in the UV regime; however, it requires the use of sensitizers (e.g.: tetracycline). In this study, we present a preliminary examination of efficacy and safety aspects in the use of a nanosecond-pulsed solid-state laser radiation, at 355 nm wavelength, guided in a catheter consisting of optical fibers, in LE. Specifically, we demonstrate a correlation between the tissue elasticity and the catheter advancement rate, in ex-vivo experiments. Our results indicate a selectivity property for specific parameters of the laser radiation and catheter design. The selectivity is attributed to differences in the mechanical properties of the fibrotic tissue and a normal vein wall, leading to a different photomechanical response of the tissue's extracellular matrix. Furthermore, we performed successful in-vivo animal trials, providing a basic proof of concept for using the suggested scheme in LE. Selective operation using a 355 nm laser may reduce the risk of blood vessel perforation as well as the incidence of major adverse events.

  17. Histologic evaluation of laser lipolysis: pulsed 1064-nm Nd:YAG laser versus cw 980-nm diode laser.

    Science.gov (United States)

    Mordon, Serge; Eymard-Maurin, Anne Françoise; Wassmer, Benjamin; Ringot, Jean

    2007-01-01

    The use of the laser as an auxiliary tool has refined the traditional technique for lipoplasty. During laser lipolysis, the interaction between the laser and the fat produced direct cellular destruction before the suction, reduced bleeding, and promoted skin tightening. This study sought to perform a comparative histologic evaluation of laser lipolysis with the pulsed 1064-nm Nd:YAG laser versus a continuous 980-nm diode laser. A pulsed 1064-nm Nd:YAG (Smart-Lipo; Deka, Italy) and a CW 980-nm diode laser (Pharaon, Osyris, France) were evaluated at different energy settings for lipolysis on the thighs of a fresh cadaver. The lasers were coupled to a 600-microm optical fiber inserted in a 1-mm diameter cannula. Biopsy specimens were taken on irradiated and non-irradiated areas. Hematoxylin-erythrosin-safran staining and immunostaining (anti-PS100 polyclonal antibody) were performed to identify fat tissue damage. In the absence of laser exposures (control specimens), cavities created by cannulation were seen; adipocytes were round in appearance and not deflated. At low energy settings, tumescent adipocytes were observed. At higher energy settings, cytoplasmic retraction, disruption of membranes, and heat-coagulated collagen fibers were noted; coagulated blood cells were also present. For the highest energy settings, carbonization of fat tissue involving fibers and membranes was clearly seen. For equivalent energy settings, 1064-nm and 980-nm wavelengths gave similar histologic results. Laser lipolysis is a relatively new technique that is still under development. Our histologic findings suggest several positive benefits of the laser, including skin retraction and a reduction in intraoperative bleeding. The interaction of the laser with the tissue is similar at 980 nm and 1064 nm with the same energy settings. Because higher volumes of fat are removed with higher total energy, a high-power 980-nm diode laser could offer an interesting alternative to the 1064-nm Nd

  18. Human exposure to ultraviolet radiation

    International Nuclear Information System (INIS)

    Bernhardt, J.H.; Matthes, R.

    1987-01-01

    Ultraviolet radiation is that part of the electromagnetic spectrum located between the softest ionizing radiation and visible radiation. The lower limit of 100 nm is equivalent to photon energies of 12.4 eV, which corresponds approximately to the limit for the production of ionization in biologically important materials. A historical subdividing of the UV-region takes some of the biological effects into account. In this arrangement the range 400-315 nm, the so-called black light region, is called UV-A. In this wavelength region, fluorescence can be induced in many substances. UV-B covers the range 315-280 nm (the skin erythemal region). Most of the biologically active and potentially harmful UV from the sun reaching the surface of the earth is part of this spectral region. UV-C includes the radiation of wavelengths less than 280 nm (the germicidal region). It should be noted that this classification is somewhat arbitrary, and today it is more usual to evaluate the biological effectiveness of the whole UV-range from 200 to 400 nm

  19. Tapered diode laser pumped 946 nm Nd:YAG laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2009-01-01

    We successfully implemented a 946 nm Nd:YAG laser based on a 808 nm tapered diode pump laser. The tapered diode is developed at the Ferdinand-Braun-Institute fur Hochstfrequenztechnik in Germany. Figure 2 shows the experimental setup and results of each pump source coupled into a 1.5 mm crystal...... laser, we show that tapered diode laser pumping potentially increase the power of 946 nm lasers by a factor of two and reduce the threshold by a factor of three....

  20. Stacked optical antennas for plasmon propagation in a 5 nm-confined cavity

    KAUST Repository

    Saeed, A.; Panaro, S.; Zaccaria, R. Proietti; Raja, W.; Liberale, Carlo; Dipalo, M.; Messina, G. C.; Wang, H.; De Angelis, F.; Toma, A.

    2015-01-01

    The sub-wavelength concentration and propagation of electromagnetic energy are two complementary aspects of plasmonics that are not necessarily co-present in a single nanosystem. Here we exploit the strong nanofocusing properties of stacked optical antennas in order to highly concentrate the electromagnetic energy into a 5nm metal-insulator-metal (MIM) cavity and convert free radiation into guided modes. The proposed nano-architecture combines the concentration properties of optical nanoantennas with the propagation capability of MIM systems, paving the way to highly miniaturized on-chip plasmonic waveguiding. © 2015, Nature Publishing Group. All rights reserved.

  1. Stacked optical antennas for plasmon propagation in a 5 nm-confined cavity

    KAUST Repository

    Saeed, A.

    2015-06-09

    The sub-wavelength concentration and propagation of electromagnetic energy are two complementary aspects of plasmonics that are not necessarily co-present in a single nanosystem. Here we exploit the strong nanofocusing properties of stacked optical antennas in order to highly concentrate the electromagnetic energy into a 5nm metal-insulator-metal (MIM) cavity and convert free radiation into guided modes. The proposed nano-architecture combines the concentration properties of optical nanoantennas with the propagation capability of MIM systems, paving the way to highly miniaturized on-chip plasmonic waveguiding. © 2015, Nature Publishing Group. All rights reserved.

  2. Role of Academician N.M. Sissakian in space biomedicine formation

    International Nuclear Information System (INIS)

    Gazenko, O.G.; Gyurdzhian, A.A.

    1997-01-01

    Role of Academician N.M. Sissakian in space biomedicine formation is discussed dedicated to the 90th anniversary from his birthday. It is shown that Sissakian layers the foundation of new branch of science - space biomedicine. He participated in the programs of preparing man to space flight, paid attention to the problems of exobiology, gravitation, ontogenesis in mammals under weightlessness conditions, radiation safety in space flight, life support under space flight conditions, social-psychological activities of astronauts. Academician introduced the achievements of cosmic investigations into earth science practice, paid great attention to the international cooperation

  3. Monolithic pixel development in 180 nm CMOS for the outer pixel layers in the ATLAS experiment

    CERN Document Server

    Kugathasan, Thanushan; Buttar, Craig; Berdalovic, Ivan; Blochet, Bastien; Cardella, Roberto Calogero; Dalla, Marco; Egidos Plaja, Nuria; Hemperek, Tomasz; Van Hoorne, Jacobus Willem; Maneuski, Dima; Marin Tobon, Cesar Augusto; Moustakas, Konstantinos; Mugnier, Herve; Musa, Luciano; Pernegger, Heinz; Riedler, Petra; Riegel, Christian; Rousset, Jerome; Sbarra, Carla; Schaefer, Douglas Michael; Schioppa, Enrico Junior; Sharma, Abhishek; Snoeys, Walter; Solans Sanchez, Carlos; Wang, Tianyang; Wermes, Norbert

    2017-01-01

    The ATLAS experiment at CERN plans to upgrade its Inner Tracking System for the High-Luminosity LHC in 2026. After the ALPIDE monolithic sensor for the ALICE ITS was successfully implemented in a 180 nm CMOS Imaging Sensor technology, the process was modified to combine full sensor depletion with a low sensor capacitance (≈ 2.5fF), for increased radiation tolerance and low analog power consumption. Efficiency and charge collection time were measured with comparisons before and after irradiation. This paper summarises the measurements and the ATLAS-specific development towards full-reticle size CMOS sensors and modules in this modified technology.

  4. High-power diode-side-pumped intracavity-frequency-doubled continuous wave 532 nm laser

    International Nuclear Information System (INIS)

    Zhang Yuping; Zhang Huiyun; Zhong Kai; Li Xifu; Wang Peng; Yao Jianquan

    2007-01-01

    An efficient and high-power diode-side-pumped cw 532 nm green laser based on a V-shaped cavity geometry, and capable of generating 22.7 W green radiation with optical conversion efficiency of 8.31%, has been demonstrated. The laser is operated with rms noise amplitude of less than 1% and with M 2 -parameter of about 6.45 at the top of the output power. This laser has the potential for scaling to much higher output power. (authors)

  5. Silicon radiation detector

    International Nuclear Information System (INIS)

    Benc, I.; Kerhart, J.; Kopecky, J.; Krca, P.; Veverka, V.; Weidner, M.; Weinova, H.

    1992-01-01

    The silicon radiation detector, which is designed for the detection of electrons with energies above 500 eV and of radiation within the region of 200 to 1100 nm, comprises a PIN or PNN + type photodiode. The active acceptor photodiode is formed by a detector surface of shallow acceptor diffusion surrounded by a collector band of deep acceptor diffusion. The detector surface of shallow P-type diffusion with an acceptor concentration of 10 15 to 10 17 atoms/cm 3 reaches a depth of 40 to 100 nm. One sixth to one eighth of the collector band width is overlapped by the P + collector band at a width of 150 to 300 μm with an acceptor concentration of 10 20 to 10 21 atoms/cm 3 down a depth of 0.5 to 3 μm. This band is covered with a conductive layer, of NiCr for instance. (Z.S.)

  6. Northern Edge Navajo Casino, Fruitland, NM: NN0030343

    Science.gov (United States)

    NPDES Permit and Fact Sheet explaining EPA's action under the Clean Water Act to issue NPDES Permit No. NN0030343) to the Navajo Tribal Utility Authority Northern Edge Navajo Casino Wastewater Treatment Facility, 2752 Indian Service Road 36, Fruitland, NM.

  7. Compact 2050 nm Semiconductor Diode Laser Master Oscillator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I effort seeks to develop DFB laser master oscillators at the novel wavelength of 12050 nm. Two prototypes will be built, tested, and delivered ....

  8. Transcanalicular laser dacryocystorhinostomy using low energy 810 nm diode laser

    Directory of Open Access Journals (Sweden)

    Sanjiv K Gupta

    2012-01-01

    Conclusions: Transcanalicular Laser DCR can be safely performed using a low power 810 nm diode laser. The surgery is elegant, minimally invasive, allows fast rehabilitation, and has an excellent success rate.

  9. Photorefractive effect at 775 nm in doped lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nava, G.; Minzioni, P.; Cristiani, I.; Degiorgio, V. [Department of Electrical, Computer, and Biomedical Engineering, and CNISM, University of Pavia, 27100 Pavia (Italy); Argiolas, N.; Bazzan, M.; Ciampolillo, M. V.; Pozza, G.; Sada, C. [Physics and Astronomy Departement, University of Padova, 35131 Padova (Italy)

    2013-07-15

    The photorefractive effect induced by 775-nm laser light on doped lithium niobate crystals is investigated by the direct observation in the far field of the transmitted-beam distortion as a function of time. Measurements performed at various Zr-doping concentrations and different light intensities show that the 775-nm light beam induces a steady-state photorefractive effect comparable to that of 532-nm light, but the observed build-up time of the photovoltaic field is longer by three-orders of magnitude. The 775-nm photorefractivity of lithium niobate crystals doped with 3 mol. % ZrO{sub 2} or with 5.5 mol. % MgO is found to be negligible.

  10. Removing foxing stains from old paper at 157 nm

    International Nuclear Information System (INIS)

    Sarantopoulou, E.; Samardzija, Z.; Kobe, S.; Kollia, Z.; Cefalas, A.C.

    2003-01-01

    Using a molecular fluorine laser at 157 nm foxing stains were removed successfully from a 16th century old paper. Laser cleaning of stains and foxing from old paper manuscripts is far more effective at 157 nm in comparison to different wavelengths without leaving any yellowish after-effect on the paper. This is because at 157 nm illumination of old paper, complete bond breaking of all the organic molecules of the paper is taking place. Mass spectroscopy at 157 nm and for moderate laser intensities up to 1 mJ/cm 2 of old paper suffering from foxing indicate organic matter disintegration to small photofragments atomic, diatomic or triatomic, which are flying apart with supersonic speed. In addition high spatial resolution energy dispersive X-ray system (EDXS) analysis over the effected areas indicate the presence of iron, suggesting that biological activity is taking place preferentially in paper areas containing iron

  11. Investigations of a Dual Seeded 1178 nm Raman Laser System

    Science.gov (United States)

    2016-01-14

    was obtained by Raman amplification of a distributed feedback diode laser in a variably strained polarization- maintaining fiber with a record-high...Calia, D.B., “50W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fiber amplifiers...AFRL-RD-PS- TP-2016-0009 AFRL-RD-PS- TP-2016-0009 INVESTIGATIONS OF A DUAL SEEDED 1178 NM RAMAN LASER SYSTEM Leanne Henry, et al. 14 January

  12. Fresnel zone-plate based X-ray microscopy in Zernike phase contrast with sub-50 nm resolution at NSRL

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jie; Li Wenjie; Tian Jinping; Liu Longhua; Xiong Ying; Liu Gang; Wu Ziyu; Tian Yangchao [National Synchrotron Radiation Laboratory (China); Liu Yijin [School of Physics (China); Yue Zhengbo; Yu Hanqing [Laboratory of Environmental Engineering, School of Chemistry, University of Science and Technology of China, Hefei Anhui 230029 (China); Wang Chunru, E-mail: ychtian@ustc.edu.c [Institute of Chemistry, Chinese Academy of Sciences, Beijing 10060 (China)

    2009-09-01

    A transmission X-ray microscope using Fresnel zone-plates (FZPs) has been installed at U7A beamline of National Synchrotron Radiation Laboratory (NSRL). The objective FZP with 45 nm outermost zone width delivers a sub-50 nm resolution. A gold phase ring with 2.5 {mu}m thickness and 4 {mu}m width was placed at the focal plane of the objective FZP at 8 keV to produce a negative Zernike phase contrast. A series of samples were used to test the performance of the Zernike phase contrast X-ray microscopy.

  13. Fresnel zone-plate based X-ray microscopy in Zernike phase contrast with sub-50 nm resolution at NSRL

    International Nuclear Information System (INIS)

    Chen Jie; Li Wenjie; Tian Jinping; Liu Longhua; Xiong Ying; Liu Gang; Wu Ziyu; Tian Yangchao; Liu Yijin; Yue Zhengbo; Yu Hanqing; Wang Chunru

    2009-01-01

    A transmission X-ray microscope using Fresnel zone-plates (FZPs) has been installed at U7A beamline of National Synchrotron Radiation Laboratory (NSRL). The objective FZP with 45 nm outermost zone width delivers a sub-50 nm resolution. A gold phase ring with 2.5 μm thickness and 4 μm width was placed at the focal plane of the objective FZP at 8 keV to produce a negative Zernike phase contrast. A series of samples were used to test the performance of the Zernike phase contrast X-ray microscopy.

  14. Clock Gating Based Energy Efficient and Thermal Aware Design for Vedic Equation Solver on 28nm and 40nm FPGA

    DEFF Research Database (Denmark)

    Pandey, Bishwajeet; Pandey, Sujeet; Sharma, Shivani

    2016-01-01

    In this paper, we are integrating clock gating in design of energy efficient equation solver circuits based on Vedic mathematics. Clock gating is one of the best energy efficient techniques. The Sutra 'SunyamSamyasamuccaye' says thatif sum of numerator and sum of denominator is same then we can e......, 94.54% for 1800MHz, and 94.02% for 2.2GHz, when we use gated clock instead of un gated one on 40nm FPGA and temperature is 329.85K. Power consumption in 28nm FPGA is less than 40nm FPGA....

  15. Power scaling of laser diode pumped Pr3+:LiYF4 cw lasers: efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm.

    Science.gov (United States)

    Gün, Teoman; Metz, Philip; Huber, Günter

    2011-03-15

    We report efficient cw laser operation of laser diode pumped Pr(3+)-doped LiYF4 crystals in the visible spectral region. Using two InGaN laser diodes emitting at λ(P)=443.9 nm with maximum output power of 1 W each and a 2.9-mm-long crystal with a doping concentration of 0.5%, output powers of 938 mW, 418 mW, 384 mW, and 773 mW were achieved for the laser wavelengths 639.5 nm, 607.2 nm, 545.9 nm, and 522.6 nm, respectively. The maximum absorbed pump powers were approximately 1.5 W, resulting in slope efficiencies of 63.6%, 32.0%, 52.1%, and 61.5%, as well as electro-optical efficiencies of 9.4%, 4.2%, 3.8%, and 7.7%, respectively. Within these experiments, laser diode-pumped laser action at 545.9 nm was demonstrated for what is believed to be the first time.

  16. Trends in nanosecond melanosome microcavitation up to 1540 nm

    Science.gov (United States)

    Schmidt, Morgan S.; Kennedy, Paul K.; Noojin, Gary D.; Vincelette, Rebecca L.; Thomas, Robert J.; Rockwell, Benjamin A.

    2015-09-01

    Thresholds for microcavitation of bovine and porcine melanosomes were previously reported, using single nanosecond (ns) laser pulses in the visible (532 nm) and the near-infrared (NIR) from 1000 to 1319 nm. Here, we report average radiant exposure thresholds for bovine melanosome microcavitation at additional NIR wavelengths up to 1540 nm, which range from ˜0.159 J/cm2 at 800 nm to 4.5 J/cm2 at 1540 nm. Melanosome absorption coefficients were also estimated, and decreased with increasing wavelength. These values were compared to retinal pigment epithelium coefficients, and to water absorption, over the same wavelength range. Corneal total intraocular energy retinal damage threshold values were estimated and compared to the previous (2007) and recently changed (2014) maximum permissible exposure (MPE) safe levels. Results provide additional data that support the recent changes to the MPE levels, as well as the first microcavitation data at 1540 nm, a wavelength for which melanosome microcavitation may be an ns-pulse skin damage mechanism.

  17. Efficient continuous-wave 1112 nm Nd:YAG laser operation under direct diode pumping at 885 nm

    International Nuclear Information System (INIS)

    Gao, J; Dai, X J; Zhang, L; Wu, X D

    2013-01-01

    We report compact diode-end-pumped continuous-wave laser operation at 1112 nm under 885 nm diode-direct pumping for the first time. On the basis of the R 2 →Y 6 transition in a conventional Nd:YAG (yttrium aluminum garnet) single crystal, the maximum output power of 12.5 W is achieved, with an optical to optical efficiency of 46.6% and a slope efficiency of 52.9%. To the best of our knowledge, this represents the highest output at 1112 nm generated by a diode-end-pumped Nd:YAG laser. Furthermore, it is the highest optical to optical efficiency ever reported for 1112 nm Nd:YAG lasers. The short term power stability is ∼0.32% at 12.0 W output. (letter)

  18. Novel photoinducible protective system in the Candida Guilliermondii under mid-ultraviolet radiation effect

    International Nuclear Information System (INIS)

    Frajkin, G.Ya.; Pinyaskina, E.V.; Strakhovskaya, M.G.

    1995-01-01

    Resistance of the Candida guilliermondii cells to ultraviolet radiation (290-320 nm, 400-750 nm) is studied. Presence of previously unknown photoinducible protective mechanism in yeasts, providing for increase in cell stability to mid-ultraviolet radiation, biologically most active in the solar radiation spectrum, is revealed. 9 refs.; 3 figs

  19. Experimental Studies of Simultaneous 351 nm and 527 nm Laser Beam Interactions in a Long Scalelength Plasma

    International Nuclear Information System (INIS)

    Moody, J D; Divol, L; Glenzer, S H; MacKinnon, A J; Froula, D H; Gregori, G; Kruer, W L; Suter, L J; Williams, E A; Bahr, R; Seka, W

    2003-01-01

    We describe experiments investigating the simultaneous backscattering from 351 nm (3w) and 527 nm (2w) interaction beams in a long scalelength laser-produced plasma for intensities (le) 1 x 10 15 W/cm 2 . Measurements show comparable scattering fractions for both color probe beams. Time resolved spectra of stimulated Raman and Brillouin scattering (SRS and SBS) indicate the effects of laser intensity and smoothing as well as plasma composition and parameters on the scattering levels

  20. Ionizing radiation, radiation sources, radiation exposure, radiation effects. Pt. 2

    International Nuclear Information System (INIS)

    Schultz, E.

    1985-01-01

    Part 2 deals with radiation exposure due to artificial radiation sources. The article describes X-ray diagnosis complete with an analysis of major methods, nuclear-medical diagnosis, percutaneous radiation therapy, isotope therapy, radiation from industrial generation of nucler energy and other sources of ionizing radiation. In conclusion, the authors attempt to asses total dose, genetically significant dose and various hazards of total radiation exposure by means of a summation of all radiation impacts. (orig./WU) [de

  1. Row orientation effect on UV-B, UV-A and PAR solar irradiation components in vineyards at Tuscany, Italy

    Science.gov (United States)

    Grifoni, D.; Carreras, G.; Zipoli, G.; Sabatini, F.; Dalla Marta, A.; Orlandini, S.

    2008-11-01

    Besides playing an essential role in plant photosynthesis, solar radiation is also involved in many other important biological processes. In particular, it has been demonstrated that ultraviolet (UV) solar radiation plays a relevant role in grapevines ( Vitis vinifera) in the production of certain important chemical compounds directly responsible for yield and wine quality. Moreover, the exposure to UV-B radiation (280-320 nm) can affect plant-disease interaction by influencing the behaviour of both pathogen and host. The main objective of this research was to characterise the solar radiative regime of a vineyard, in terms of photosynthetically active radiation (PAR) and UV components. In this analysis, solar spectral UV irradiance components, broadband UV (280-400 nm), spectral UV-B and UV-A (320-400 nm), the biological effective UVBE, as well as the PAR (400-700 nm) component, were all considered. The diurnal patterns of these quantities and the UV-B/PAR and UV-B/UV-A ratios were analysed to investigate the effect of row orientation of the vineyard in combination with solar azimuth and elevation angles. The distribution of PAR and UV irradiance at various heights of the vertical sides of the rows was also studied. The results showed that the highest portion of plants received higher levels of daily radiation, especially the UV-B component. Row orientation of the vines had a pronounced effect on the global PAR received by the two sides of the rows and, to a lesser extent, UV-A and UV-B. When only the diffused component was considered, this geometrical effect was greatly attenuated. UV-B/PAR and UV-A/PAR ratios were also affected, with potential consequences on physiological processes. Because of the high diffusive capacity of the UV-B radiation, the UV-B/PAR ratio was significantly lower on the plant portions exposed to full sunlight than on those in the shade.

  2. Effect of vertical mixing on short-term mycosporine-like amino acid synthesis in the Antarctic diatom, Thalasiossira sp.

    Directory of Open Access Journals (Sweden)

    Marcelo Pablo Hernando

    2011-12-01

    Full Text Available One of the adaptations whereby phytoplankton can alleviate damage induced by ultraviolet radiation (280-400 nm is the synthesis of mycosporine-like amino acids (MAAs. The synthesis of MAAs was studied after exposure of the Antarctic diatom Thalassiosira sp. isolated from Potter Cove (South Shetland Is., Antarctica to 2 treatments with a solar simulator: surface (Sfix and vertical mixing (Mix irradiance conditions. Light exposure was simulated in daily cycles with maximum irradiance at noon. Only 2 MAAs, Porphyra-334 (82-85% and Shinorine (15-18%, were identified. The concentration of the two compounds increased during experimental light exposure (50-55% and declined in the dark (10-15%. During the light period the synthesis rate of MAAs per unit of chlorophyll a was higher in the Sfix treatment (µ=0.17 h-1 than in the Mix treatment (µ=0.05 h-1. In spite of the higher MAA levels, low cell numbers were observed in the Sfix treatment, suggesting that the algae synthesized photoprotective compounds at the expense of growth. Our results document overlapping effects of both daily light cycles and vertical mixing affecting the synthesis of MAAs. This, and the high thermal dissipation of the ultraviolet B radiation energy (280-320 nm absorbed by these substances, suggest a rapid photoadaptive response of Thalasiossira sp. upon exposure to elevated irradiance in a stratified water column, as well as the complementary role of vertical mixing in photo-protection.

  3. Inhibition of antigen-presenting activity of dendritic cells resulting from UV irradiation of murine skin is restored by in vitro photorepair of cyclobutane pyrimidine dimers

    International Nuclear Information System (INIS)

    Vink, A.A.; Roza, L.; Moodycliffe, A.M.; Shreedhar, V.

    1997-01-01

    Exposing skin to UVB (280-320 nm) radiation suppresses contact hypersensitivity by a mechanism that involves an alteration in the activity of cutaneous antigen-presenting cells (APC). UV-induced DNA damage appears to be an important molecular trigger for this effect. The specific target cells in the skin that sustain DNA damage relevant to the immunosuppressive effect have yet to be identified. We tested the hypothesis that UV-induced DNA damage in the cutaneous APC was responsible for their impaired ability to present antigen after in vivo UV irradiation. Cutaneous APC were collected from the draining lymph nodes of UVB-irradiated, hapten-sensitized mice and incubated in vitro with liposomes containing a photolyase, which, upon absorption of photoreactivating light, splits UV-induced cyclobutane pyrimidine dimers. Photosome treatment followed by photoreactivating light reduced the number of dimer-containing APC, restored the in vivo antigen-presenting activity of the draining lymph node cells, and blocked the induction of suppressor T cells. Neither Photosomes nor photoreactivating light alone, nor photoreactivating light given before Photosomes, restored APC activity, and Photosomes treatment did not reverse the impairment of APC function when isopsoralen plus UVA (320-400 nm) radiation was used instead of UVB. These controls indicate that the restoration of APC function matched the requirements of Photosome-mediated DNA repair for dimers and post-treatment photoreactivating light. These results provide compelling evidence that it is UV-induced DNA damage in cutaneous APC that leads to reduced immune function

  4. 403 nm cavity ring-down measurements of brown carbon aerosol

    Science.gov (United States)

    Kwon, D.; Grassian, V. H.; Kleiber, P.; Young, M. A.

    2017-12-01

    Atmospheric aerosol influences Earth's climate by absorbing and scattering incoming solar radiation and outgoing terrestrial radiation. One class of secondary organic aerosol (SOA), called brown carbon (BrC), has attracted attention for its wavelength dependent light absorbing properties with absorption coefficients that generally increase from the visible (Vis) to ultraviolet (UV) regions. Here we report results from our investigation of the optical properties of BrC aerosol products from the aqueous phase reaction of ammonium sulfate (AS) with methylglyoxal (MG) using cavity ring-down spectroscopy (CRDS) at 403 nm wavelength. We have measured the optical constants of BrC SOA from the AS/MG reaction as a function of reaction time. Under dry flow conditions, we observed no apparent variation in the BrC refractive index with aging over the course of 22 days. The retrieved BrC optical constants are similar to those of AS with n = 1.52 for the real component. Despite significant UV absorption observed from the bulk BrC solution, the imaginary index value at 403 nm is below our minimum detection limit which puts an upper bound of k as 0.03. These observations are in agreement with results from our recent studies of the light scattering properties of this BrC aerosol.

  5. A Compact "Water Window" Microscope with 60 nm Spatial Resolution for Applications in Biology and Nanotechnology.

    Science.gov (United States)

    Wachulak, Przemyslaw; Torrisi, Alfio; Nawaz, Muhammad F; Bartnik, Andrzej; Adjei, Daniel; Vondrová, Šárka; Turňová, Jana; Jančarek, Alexandr; Limpouch, Jiří; Vrbová, Miroslava; Fiedorowicz, Henryk

    2015-10-01

    Short illumination wavelength allows an extension of the diffraction limit toward nanometer scale; thus, improving spatial resolution in optical systems. Soft X-ray (SXR) radiation, from "water window" spectral range, λ=2.3-4.4 nm wavelength, which is particularly suitable for biological imaging due to natural optical contrast provides better spatial resolution than one obtained with visible light microscopes. The high contrast in the "water window" is obtained because of selective radiation absorption by carbon and water, which are constituents of the biological samples. The development of SXR microscopes permits the visualization of features on the nanometer scale, but often with a tradeoff, which can be seen between the exposure time and the size and complexity of the microscopes. Thus, herein, we present a desk-top system, which overcomes the already mentioned limitations and is capable of resolving 60 nm features with very short exposure time. Even though the system is in its initial stage of development, we present different applications of the system for biology and nanotechnology. Construction of the microscope with recently acquired images of various samples will be presented and discussed. Such a high resolution imaging system represents an interesting solution for biomedical, material science, and nanotechnology applications.

  6. Atoms, radiation, and radiation protection

    International Nuclear Information System (INIS)

    Turner, J.E.

    1986-01-01

    This book describes basic atomic and nuclear structure, the physical processes that result in the emission of ionizing radiations, and external and internal radiation protection criteria, standards, and practices from the standpoint of their underlying physical and biological basis. The sources and properties of ionizing radiation-charged particles, photons, and neutrons-and their interactions with matter are discussed in detail. The underlying physical principles of radiation detection and systems for radiation dosimetry are presented. Topics considered include atomic physics and radiation; atomic structure and radiation; the nucleus and nuclear radiation; interaction of heavy charged particles with matter; interaction of beta particles with matter; phenomena associated with charged-particle tracks; interaction of photons with matter; neutrons, fission and criticality; methods of radiation detection; radiation dosimetry; chemical and biological effects of radiation; radiation protection criteria and standards; external radiation protection; and internal dosimetry and radiation protection

  7. 100-nm gate lithography for double-gate transistors

    Science.gov (United States)

    Krasnoperova, Azalia A.; Zhang, Ying; Babich, Inna V.; Treichler, John; Yoon, Jung H.; Guarini, Kathryn; Solomon, Paul M.

    2001-09-01

    The double gate field effect transistor (FET) is an exploratory device that promises certain performance advantages compared to traditional CMOS FETs. It can be scaled down further than the traditional devices because of the greater electrostatic control by the gates on the channel (about twice as short a channel length for the same gate oxide thickness), has steeper sub-threshold slope and about double the current for the same width. This paper presents lithographic results for double gate FET's developed at IBM's T. J. Watson Research Center. The device is built on bonded wafers with top and bottom gates self-aligned to each other. The channel is sandwiched between the top and bottom polysilicon gates and the gate length is defined using DUV lithography. An alternating phase shift mask was used to pattern gates with critical dimensions of 75 nm, 100 nm and 125 nm in photoresist. 50 nm gates in photoresist have also been patterned by 20% over-exposure of nominal 100 nm lines. No trim mask was needed because of a specific way the device was laid out. UV110 photoresist from Shipley on AR-3 antireflective layer were used. Process windows, developed and etched patterns are presented.

  8. Ablation of organic polymers by 46.9-nm-laser radiation

    Czech Academy of Sciences Publication Activity Database

    Juha, Libor; Bittner, Michal; Chvostová, Dagmar; Krása, Josef; Präg R., Ansgar; Ullschmied, Jiří; Pientka, Zbyněk; Krzywinski, J.; Wawro, A.; Grisham, M. E.; Menoni, C.S.; Rocca, J.J.; Otčenášek, Zdeněk; Pelka, B.; Vaschenko, G. O.

    2005-01-01

    Roč. 86, č. 3 (2005), 034109/1-034109/3 ISSN 0003-6951 R&D Projects: GA MŠk(CZ) 1P04LA235; GA MŠk(CZ) LN00A100 Institutional research plan: CEZ:AV0Z10100523 Keywords : ablation * XUV laser * capillary discharge laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 4.127, year: 2005

  9. Preparation and characterization of bragg fibers for delivery of laser radiation at 1064 nm

    Czech Academy of Sciences Publication Activity Database

    Matějec, Vlastimil; Kašík, Ivan; Podrazký, Ondřej; Aubrecht, Jan; Frank, M.; Jelínek, M.; Kubeček, V.

    2013-01-01

    Roč. 22, č. 1 (2013), s. 346-351 ISSN 1210-2512 R&D Projects: GA ČR GAP102/12/2361 Institutional support: RVO:67985882 Keywords : Bragg fiber s * High-index contrast * MCVD method Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.796, year: 2013

  10. Versatile spectrometer for experiments using synchrotron radiation at wavelengths greater than 100 nm

    International Nuclear Information System (INIS)

    Sutherland, J.C.; Desmond, E.J.; Takacs, P.Z.

    1979-01-01

    The design of the SUPERB spectrometer places great emphasis on flexibility. Optics, electronics and the attendant computer system are of modular design and can be rapidly configured to perform a variety of tasks. This flexibility will permit SUPERB to perform the various experiments described above. Equally important, it should facilitate adaption of SUPERB to perform experiments the nature of which we are presently unaware

  11. Evaluation of a 345 nm Femtosecond Laser for Corneal Surgery with Respect to Intraocular Radiation Hazard.

    Directory of Open Access Journals (Sweden)

    Johannes Menzel-Severing

    Full Text Available We report our findings from a preclinical safety study designed to assess potential side effects of corneal ultraviolet femtosecond laser treatment on lens and retina.Refractive lenticules (-5 dpt with a diameter of 6 mm were created in the right cornea of eight Dutch Belted rabbits. Radiant exposure was 0.5 J/cm² in two animals and 18 J/cm² in six animals. The presence of lens opacities was assessed prior to and up to six months following laser application using Scheimpflug images (Pentacam, Oculus and backscatter analysis (Opacity Lensmeter 702, Interzeag. Ganzfeld flash and flicker electroretinogram (ERG recordings were obtained from both eyes prior to and up to six weeks following laser application. At the study endpoint, retinas were examined by light microscopy.Independent of energy dose applied, no cataract formation could be observed clinically or with either of the two objective methods used. No changes in ERG recordings over time and no difference between treated and untreated eye were detected. Histologically, retinal morphology was preserved and retinal pigment epithelium as well as photoreceptor inner and outer segments appeared undamaged. Quantitative digital image analysis did not reveal cell loss in inner or outer nuclear layers.Our analysis confirms theoretical considerations suggesting that ultraviolet femtosecond laser treatment of the cornea is safe for intraocular tissues. Transmitted light including stray light induces no photochemical effects in lens or retina at energy levels much higher than required for the clinical purpose. These conclusions cannot be applied to eyes with pre-existing retinal damage, as these may be more vulnerable to light.

  12. Natural radiation

    International Nuclear Information System (INIS)

    Feliciano, Vanusa Maria Delage

    2016-01-01

    Cosmic radiation, as well as cosmogenic radiation, terrestrial radiation, radon and thorium are introduced in this chapter 3. The distribution of natural radiation sources is treated, where the percentage distribution of the contribution relative to exposure to radiation from natural and artificial sources is also included

  13. Ocular exposure to ultraviolet and visible radiation from light sources

    International Nuclear Information System (INIS)

    Hietanen, M.

    1992-01-01

    Exposure of the eyes to UV radiation and blue light of artificial light sources and the sun was evaluated. A spectroradiometer was used to determine the spectral irradiance at 1 nm intervals from 250 to 800 nm. Various groups of workers are at risk of ocular over-exposure to optical radiation, outdoor workers maintenance personnel of bright light source as and wear eye-protectors with effective filtering of UV radiation and blue light. (author)

  14. Future directions in 980-nm pump lasers: submarine deployment to low-cost watt-class terrestrial pumps

    Science.gov (United States)

    Gulgazov, Vadim N.; Jackson, Gordon S.; Lascola, Kevin M.; Major, Jo S.; Parke, Ross; Richard, Tim; Rossin, Victor V.; Zhang, Kai

    1999-09-01

    The demands of global bandwidth and distribution are rising rapidly as Internet usage grows. This fundamentally means that more photons are flowing within optical cables. While transmitting sources launches some optical power, the majority of the optical power that is present within modern telecommunication systems originates from optical amplifiers. In addition, modern optical amplifiers offer flat optical gain over broad wavelength bands, thus making possible dense wavelength de-multiplexing (DWDM) systems. Optical amplifier performance, and by extension the performance of the laser pumps that drive them, is central to the future growth of both optical transmission and distribution systems. Erbium-doped amplifiers currently dominate optical amplifier usage. These amplifiers absorb pump light at 980 nm and/or 1480 nm, and achieve gain at wavelengths around 1550 nm. 980 nm pumps achieve better noise figures and are therefore used for the amplification of small signals. Due to the quantum defect, 1480 nm lasers deliver more signal photon per incident photon. In addition, 1480 nm lasers are less expensive than 980 nm lasers. Thus, 1480 nm pump lasers are used for amplification in situations where noise is not critical. The combination of these traits leads to the situation where many amplifiers contain 980 nm lasers to pump the input section of the Er- doped fiber with 1480 nm lasers being used to pump the latter section of Er fiber. This can be thought of as using 980 nm lasers to power an optical pre-amplifier with the power amplification function being pump with 1480 nm radiation. This paper will focus on 980 nm pump lasers and the impact that advances in 980 nm pump technology will have on optical amplification systems. Currently, 980 nm technology is rapidly advancing in two areas, power and reliability. Improving reliability is becoming increasingly important as amplifiers move towards employing more pump lasers and using these pump lasers without redundancy

  15. Chip development in 65 nm CMOS technology for the high luminosity upgrade of the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Germic, Leonard; Hemperek, Tomasz; Kishishita, Testsuichi; Krueger, Hans; Rymaszewski, Piotr; Wermes, Norbert [University of Bonn, Bonn (Germany); Havranek, Miroslav [University of Bonn, Bonn (Germany); Institute of Physics of the Academy of Sciences, Prague (Czech Republic)

    2015-07-01

    The LHC High Luminosity upgrade will result in a significant change of environment in which particle detectors are going to operate, especially for devices very close to the interaction point like pixel detector electronics. Challenges coming from the higher hit rate will have to be solved by designing faster and more complex circuits, while at the same time keeping in mind very high radiation hardness requirements. Therefore matching the specification set by the high luminosity upgrade requires a large R and D effort. Our group is participating in such a joint development * namely the RD53 collaboration * which goal is to design a new pixel chip using an advanced 65 nm CMOS technology. During this presentation motivations and benefits of using this very deep-submicron technology will be shown together with a comparison with older technologies (130 nm, 250 nm). Most of the talk is allocated to presenting some of the circuits designed by our group, along with their performance measurement results.

  16. Broadband superluminescent diodes with bell-shaped spectra emitting in the range from 800 to 900 nm

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, E V; Il' ichenko, S N; Kostin, Yu O; Lapin, P I [Superlum Diodes Ltd., Moscow (Russian Federation); Ladugin, M A; Marmalyuk, A A [Open Joint-Stock Company ' M.F. Stel' makh Polyus Research and Development Institute' , Moscow (Russian Federation); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2013-08-31

    Quantum-well superluminescent diodes (SLD) with extremely thin active (AlGa)As and (InGa)As layers and centre wavelengths about 810, 840, 860 and 880 nm are experimentally studied. Their emission spectrum possesses the shape close to Gaussian, its FWHM being 30 – 60 nm depending on the length of the active channel and the level of pumping. Under cw injection, the output power of light-emitting modules based on such SLDs can amount to 1.0 – 25 mW at the output of a single-mode fibre. It is demonstrated that the operation lifetime of these devices exceeds 30000 hours. Based on the light-emitting modules the prototypes of combined BroadLighter series light sources are implemented having a bell-shaped spectrum with the width up to 100 nm. (optical radiation sources)

  17. Harmonic Content of the BESSY FEL Radiation

    CERN Document Server

    Meseck, Atoosa

    2005-01-01

    BESSY proposes a linac-based cascaded High-Gain Harmonic-Generation (HGHG) free electron laser (FEL) multi-user facility. The BESSY soft X-ray FEL will consist of three undulator lines. The associated tunable lasers will cover the spectral range of 230nm to 460nm. Two to four HGHG stages reduce the seed wavelength to the desired radiation range of 1.24nm < λ < 51nm. The harmonic content of the high-intensity radiator output can be used to reduce the number of necessary HGHG stages. Moreover the higher harmonic content of the final output extends the offered spectral range and thus is of high interest for the user community. In this paper, the higher harmonic content of the final output as well as of the output of several radiators are investigated. The main parameters such as output power, pulse duration and bandwidth as well as their suitability for seeding are discussed.

  18. Large-scale lithography for sub-500nm features

    International Nuclear Information System (INIS)

    Pelzer, R L; Steininger, T; Belier, Benoit; Julie, Gwenaelle

    2006-01-01

    The interest in micro- and nanotechnologies has grown rapidly in the last years. The applications are versatile and different techniques found its way into several research domains as optics, electronics, magnetism, fluidics, etc. In all of these fields integration of more and more functions on steadily decreasing device dimensions lead to an increase in structural density and feature size. Expensive and slow processes utilizing projection steppers or e-beam direct writer equipment are used to fabricate nm features today. A high throughput and cost effective method adapted on a standard mask aligner will be demonstrated, making features of below 300nm available on wafer-level. We will demonstrate results of 4 different resists exposed on a DUV proximity aligner and plasma etched for optical and biological applications in the sub-300nm range

  19. Large-scale lithography for sub-500nm features

    Energy Technology Data Exchange (ETDEWEB)

    Pelzer, R L [Technology group, EV Group, DI Erich Thallner Str. 1, A-4780 Schaerding (Austria); Steininger, T [Technology group, EV Group, DI Erich Thallner Str. 1, A-4780 Schaerding (Austria); Belier, Benoit [CNRS, Institut d' Electronique Fondamentale, Universite Paris-Sud Bat 220, F- 91405 Orsay Cedex (France); Julie, Gwenaelle [CNRS, Institut d' Electronique Fondamentale, Universite Paris-Sud Bat 220, F- 91405 Orsay Cedex (France)

    2006-04-01

    The interest in micro- and nanotechnologies has grown rapidly in the last years. The applications are versatile and different techniques found its way into several research domains as optics, electronics, magnetism, fluidics, etc. In all of these fields integration of more and more functions on steadily decreasing device dimensions lead to an increase in structural density and feature size. Expensive and slow processes utilizing projection steppers or e-beam direct writer equipment are used to fabricate nm features today. A high throughput and cost effective method adapted on a standard mask aligner will be demonstrated, making features of below 300nm available on wafer-level. We will demonstrate results of 4 different resists exposed on a DUV proximity aligner and plasma etched for optical and biological applications in the sub-300nm range.

  20. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation.

    Science.gov (United States)

    Sharma, Shiv K; Misra, Anupam K; Lucey, Paul G; Lentz, Rachel C F

    2009-08-01

    The authors have developed an integrated remote Raman and laser-induced breakdown spectroscopy (LIBS) system for measuring both the Raman and LIBS spectra of minerals with a single 532 nm laser line of 35 mJ/pulse and 20 Hz. The instrument has been used for analyzing both Raman and LIBS spectra of carbonates, sulfates, hydrous and anhydrous silicates, and iron oxide minerals in air. These experiments demonstrate that by focusing a frequency-doubled 532 nm Nd:YAG pulsed laser beam with a 10x beam expander to a 529-microm diameter spot on a mineral surface located at 9 m, it is possible to measure simultaneously both the remote Raman and LIBS spectra of calcite, gypsum and olivine by adjusting the laser power electronically. The spectra of calcite, gypsum, and olivine contain fingerprint Raman lines; however, it was not possible to measure the remote Raman spectra of magnetite and hematite at 9 m because of strong absorption of 532 nm laser radiation and low intensities of Raman lines from these minerals. The remote LIBS spectra of both magnetite and hematite contain common iron emission lines but show difference in the minor amount of Li present in these two minerals. Remote Raman and LIBS spectra of a number of carbonates, sulfates, feldspars and phyllosilicates at a distance of 9 m were measured with a 532-nm laser operating at 35 mJ/pulse and by changing photon flux density at the sample by varying the spot diameter from 10 mm for Raman to 530 microm for LIBS measurements. The complementary nature of these spectra is highlighted and discussed. The combined Raman and LIBS system can also be re-configured to perform micro-Raman and micro-LIBS analyses, which have applications in trace/residue analysis and analysis of very small samples in the nano-gram range.

  1. CALIPSO lidar calibration at 532 nm: version 4 nighttime algorithm

    Directory of Open Access Journals (Sweden)

    J. Kar

    2018-03-01

    Full Text Available Data products from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP on board Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO were recently updated following the implementation of new (version 4 calibration algorithms for all of the Level 1 attenuated backscatter measurements. In this work we present the motivation for and the implementation of the version 4 nighttime 532 nm parallel channel calibration. The nighttime 532 nm calibration is the most fundamental calibration of CALIOP data, since all of CALIOP's other radiometric calibration procedures – i.e., the 532 nm daytime calibration and the 1064 nm calibrations during both nighttime and daytime – depend either directly or indirectly on the 532 nm nighttime calibration. The accuracy of the 532 nm nighttime calibration has been significantly improved by raising the molecular normalization altitude from 30–34 km to the upper possible signal acquisition range of 36–39 km to substantially reduce stratospheric aerosol contamination. Due to the greatly reduced molecular number density and consequently reduced signal-to-noise ratio (SNR at these higher altitudes, the signal is now averaged over a larger number of samples using data from multiple adjacent granules. Additionally, an enhanced strategy for filtering the radiation-induced noise from high-energy particles was adopted. Further, the meteorological model used in the earlier versions has been replaced by the improved Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2, model. An aerosol scattering ratio of 1.01 ± 0.01 is now explicitly used for the calibration altitude. These modifications lead to globally revised calibration coefficients which are, on average, 2–3 % lower than in previous data releases. Further, the new calibration procedure is shown to eliminate biases at high altitudes that were present in earlier versions and

  2. Radiation enteritis

    International Nuclear Information System (INIS)

    Ochsner, S.F.; Head, L.H.

    1973-01-01

    A comprehensive review of radiation enteritis is presented. Experience in clinical radiation therapy has indicated that the small bowel is the segment of the alimentary tract that is most susceptible to radiation damage. (U.S.)

  3. Radiation monitor

    International Nuclear Information System (INIS)

    Pao, C.T.; Green, W.K.

    1978-01-01

    A system for indicating radiation from a radioactive fluid such as a gas wherein simultaneous indications of the activity concentration of radioactivity of the gas, the radiation dose rate and average energy of the radiation are provided

  4. Radiation protection

    International Nuclear Information System (INIS)

    Ures Pantazi, M.

    1994-01-01

    This work define procedures and controls about ionizing radiations. Between some definitions it found the following topics: radiation dose, risk, biological effects, international radioprotection bodies, workers exposure, accidental exposure, emergencies and radiation protection

  5. Radiation sickness

    Science.gov (United States)

    ... exposure to ionizing radiation. There are two main types of radiation: nonionizing and ionizing. Nonionizing radiation comes in the form of light, radio waves, microwaves and radar. These forms usually don't cause tissue damage. ...

  6. Extreme Ultraviolet Process Optimization for Contact Layer of 14 nm Node Logic and 16 nm Half Pitch Memory Devices

    Science.gov (United States)

    Tseng, Shih-En; Chen, Alek

    2012-06-01

    Extreme ultraviolet (EUV) lithography is considered the most promising single exposure technology at the 27 nm half-pitch node and beyond. The imaging performance of ASML TWINSCAN NXE:3100 has been demonstrated to be able to resolve 26 nm Flash gate layer and 16 nm static random access memory (SRAM) metal layer with a 0.25 numerical aperture (NA) and conventional illumination. Targeting for high volume manufacturing, ASML TWINSCAN NXE:3300B, featuring a 0.33 NA lens with off-axis illumination, will generate a higher contrast aerial image due to improved diffraction order collection efficiency and is expected to reduce target dose via mask biasing. This work performed a simulation to determine how EUV high NA imaging benefits the mask rule check trade-offs required to achieve viable lithography solutions in two device application scenarios: a 14 nm node 6T-SRAM contact layer and a 16 nm half-pitch NAND Flash staggered contact layer. In each application, the three-dimensional mask effects versus Kirchhoff mask were also investigated.

  7. Ionizing radiation

    International Nuclear Information System (INIS)

    Kruger, J.

    1989-01-01

    Ionizing radiation results in biological damage that differs from other hazardous substances and is highly dangerous to man. Ionizing radiation cannot be perceived by man's sense organs and the biological damage cannot be detected immediately afterwards (except in very high doses). Every human being is exposed to low doses of radiation. The structure of the atom; sources of ionizing radiation; radiation units; biological effects; norms for radiation protection; and the national control in South Africa are discussed. 1 fig., 5 refs

  8. UV-absorbing compounds in subarctic herbarium bryophytes

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, S. [Botany Division, Department of Biology, P.O. Box 3000, FIN-90 014 University of Oulu (Finland)]. E-mail: satu.huttunen@oulu.fi; Lappalainen, N.M. [Botany Division, Department of Biology, P.O. Box 3000, FIN-90 014 University of Oulu (Finland); Turunen, J. [Botany Division, Department of Biology, P.O. Box 3000, FIN-90 014 University of Oulu (Finland)

    2005-01-01

    The UV-B-absorbing compounds of herbarium specimens of 10 subarctic bryophyte species collected during the years 1926-1996 and available at the Botanical Museum, University of Oulu, were studied. We studied whether herbarium specimens reflect changes in the past radiation climate through their methanol-extractable compounds. The order of gametophytes based on the average amount of total compounds (sum of A{sub 280-320nm}) per mass from the lowest to the highest was Polytrichum commune, Pleurozium schreberi, Hylocomium splendens, Sphagnum angustifolium, Dicranum scoparium, Funaria hygrometrica, Sphagnum fuscum, Sphagnum warnstorfii, Sphagnum capillifolium and Polytrichastrum alpinum, and the amount of UV-B-absorbing compounds per specific surface area correlated with the summertime daily global radiation and latitude. P. alpinum, F. hygrometrica and three Sphagnum species seem to be good indicators for further studies. The amount of UV-B-absorbing compounds revealed no significant trends from the 1920s till the 1990s, with the exception of S. capillifolium, which showed a significant decreasing trend. - UV-B-absorbing compounds in subarctic herbarium bryophytes indicate the radiation climate of the collecting site and time.

  9. UV-absorbing compounds in subarctic herbarium bryophytes

    International Nuclear Information System (INIS)

    Huttunen, S.; Lappalainen, N.M.; Turunen, J.

    2005-01-01

    The UV-B-absorbing compounds of herbarium specimens of 10 subarctic bryophyte species collected during the years 1926-1996 and available at the Botanical Museum, University of Oulu, were studied. We studied whether herbarium specimens reflect changes in the past radiation climate through their methanol-extractable compounds. The order of gametophytes based on the average amount of total compounds (sum of A 280-320nm ) per mass from the lowest to the highest was Polytrichum commune, Pleurozium schreberi, Hylocomium splendens, Sphagnum angustifolium, Dicranum scoparium, Funaria hygrometrica, Sphagnum fuscum, Sphagnum warnstorfii, Sphagnum capillifolium and Polytrichastrum alpinum, and the amount of UV-B-absorbing compounds per specific surface area correlated with the summertime daily global radiation and latitude. P. alpinum, F. hygrometrica and three Sphagnum species seem to be good indicators for further studies. The amount of UV-B-absorbing compounds revealed no significant trends from the 1920s till the 1990s, with the exception of S. capillifolium, which showed a significant decreasing trend. - UV-B-absorbing compounds in subarctic herbarium bryophytes indicate the radiation climate of the collecting site and time

  10. On-chip measurements of Brownian relaxation of magnetic beads with diameters from 10 nm to 250 nm

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Hansen, Mikkel Fougt

    2013-01-01

    We demonstrate the use of planar Hall effect magnetoresistive sensors for AC susceptibility measurements of magnetic beads with frequencies ranging from DC to 1 MHz. This wide frequency range allows for measuring Brownian relaxation of magnetic beads with diameters ranging from 10 nm to 250 nm....... Brownian relaxation is measured for six different magnetic bead types and their hydrodynamic diameters are determined. The hydrodynamic diameters are found to be within 40% of the nominal bead diameters. We discuss the applicability of the different bead types for volume-based biosensing with respect...... to sedimentation, magnetic trapping, and signal per bead. Among the investigated beads, we conclude that the beads with a nominal diameter of 80 nm are best suited for future on-chip volume-based biosensing experiments using planar Hall effect sensors....

  11. UVR-induced photosynthetic inhibition dominates over DNA damage in marine dinoflagellates exposed to fluctuating solar radiation regimes

    NARCIS (Netherlands)

    Helbling, E. Walter; Buma, Anita G. J.; van de Poll, Willem; Fernandez Zenoff, M. Veronica; Villafane, Virginia E.

    2008-01-01

    The combined effect of solar radiation (UV-B (280-315 nm), UWA (315-400 nm) and PAR (400-700 nm)) and vertical mixing (i.e., fluctuating radiation regimes) on the marine dinoflagellates Gymnodinium chlorophorum, Heterocapsa triquetra and Prorocentrum micans was investigated during the austral spring

  12. FDML swept source at 1060 nm using a tapered amplifier

    DEFF Research Database (Denmark)

    Marschall, Sebastian; Klein, Thomas; Wieser, Wolfgang

    2010-01-01

    We present a novel frequency-swept light source working at 1060nm that utilizes a tapered amplifier as gain medium. These devices feature significantly higher saturation power than conventional semiconductor optical amplifiers and can thus improve the limited output power of swept sources in this...... an axial resolution of 15 µm in air (~11µm in tissue) for OCT applications can be achieved....

  13. A novel double patterning approach for 30nm dense holes

    Science.gov (United States)

    Hsu, Dennis Shu-Hao; Wang, Walter; Hsieh, Wei-Hsien; Huang, Chun-Yen; Wu, Wen-Bin; Shih, Chiang-Lin; Shih, Steven

    2011-04-01

    Double Patterning Technology (DPT) was commonly accepted as the major workhorse beyond water immersion lithography for sub-38nm half-pitch line patterning before the EUV production. For dense hole patterning, classical DPT employs self-aligned spacer deposition and uses the intersection of horizontal and vertical lines to define the desired hole patterns. However, the increase in manufacturing cost and process complexity is tremendous. Several innovative approaches have been proposed and experimented to address the manufacturing and technical challenges. A novel process of double patterned pillars combined image reverse will be proposed for the realization of low cost dense holes in 30nm node DRAM. The nature of pillar formation lithography provides much better optical contrast compared to the counterpart hole patterning with similar CD requirements. By the utilization of a reliable freezing process, double patterned pillars can be readily implemented. A novel image reverse process at the last stage defines the hole patterns with high fidelity. In this paper, several freezing processes for the construction of the double patterned pillars were tested and compared, and 30nm double patterning pillars were demonstrated successfully. A variety of different image reverse processes will be investigated and discussed for their pros and cons. An economic approach with the optimized lithography performance will be proposed for the application of 30nm DRAM node.

  14. 650 nm Laser stimulated dating from Side Antique Theatre, Turkey

    International Nuclear Information System (INIS)

    Doğan, M.; Meriç, N.

    2014-01-01

    Samples were taken from the archeological excavation site, which was at the backs of the Side Antique Theatre. Samples were taken from under the base rock in this area. Polymineral fine grains were examined to determine the ages of the sediments. Samples gathered from the Side Antique Theatre were investigated through using the SAR method. Firstly, one part of the samples were evaluated by using conventional IRSL reading head model of (ELSEC-9010) which is infrared (880±80 nm) stimulation source with Schott BG39 filter. The IRSL age dating with feldspar minerals, gives a number of overestimated or underestimated age values as a result. A new reading head was proposed with the following configuration attachments for overestimation of equivalent dose rates. Measurements were done with this newly designed red laser stimulating reading head which works with Elsec 9010 OSL age dating system. SAR measurements were performed by (650±10 nm) red laser light source with two Schott BG3 filters. With usage of the new designed reading head; closer results were obtained in comparision with the Antique Theatre′s expected age range. Fading rates were taken into consideration and these corrections were also handled for true age results. - Highlights: • Polymineral fine grain feldspar minerals were used for dating. • Two different reading heads were used to determine equivalent doses. • IR stimulated (880 nm) and laser stimulated (650 nm) dating results were compared

  15. Isolation and genomic characterization of Escherichia coli O157:NM ...

    African Journals Online (AJOL)

    Human diseases caused by Escherichia coli O157:NM and E. coli O157:H7 strains have been reported throughout the world. In developed countries, serotype O157:H7 represents the major cause of human diseases; however, there have been increasing reports of non-O157 Shiga toxin (Stx)-producing E. coli strains ...

  16. 78 FR 72141 - New Mexico Disaster Number NM-00037

    Science.gov (United States)

    2013-12-02

    ... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 13787 and 13788] New Mexico Disaster Number NM... Mexico (FEMA-4148-DR), dated 09/30/2013. Incident: Severe Storms and Flooding Incident Period: 07/23/2013... INFORMATION: The notice of the President's major disaster declaration for Private Non-Profit organizations in...

  17. 76 FR 2431 - New Mexico Disaster #NM-00016

    Science.gov (United States)

    2011-01-13

    ... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 12320 and 12321] New Mexico Disaster NM-00016... Presidential declaration of a major disaster for Public Assistance Only for the State of New Mexico (FEMA-1936... INFORMATION: The notice of the President's major disaster declaration for Private Non-Profit organizations in...

  18. 78 FR 73581 - New Mexico Disaster Number NM-00035

    Science.gov (United States)

    2013-12-06

    ... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 13809 and 13810] New Mexico Disaster Number NM... Mexico (FEMA-4152-DR), dated 10/29/2013. Incident: Severe Storms, Flooding, and Mudslides. Incident... 20416. SUPPLEMENTARY INFORMATION: The notice of the President's major disaster declaration for Private...

  19. 77 FR 63409 - New Mexico Disaster Number NM-00029

    Science.gov (United States)

    2012-10-16

    ... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 13252 and 13253] New Mexico Disaster Number NM... Mexico (FEMA-4079-DR), dated 08/24/2012. Incident: Flooding. Incident Period: 06/22/2012 through 07/12... the President's major disaster declaration for Private Non-Profit organizations in the State of NEW...

  20. 78 FR 66982 - New Mexico Disaster #NM-00035

    Science.gov (United States)

    2013-11-07

    ... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 13809 and 13810] New Mexico Disaster NM-00035... declaration of a major disaster for Public Assistance Only for the State of New Mexico (FEMA- 4152-DR), dated... INFORMATION: Notice is hereby given that as a result of the President's major disaster declaration on 10/29...

  1. 76 FR 81553 - New Mexico Disaster Number NM-00024

    Science.gov (United States)

    2011-12-28

    ... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 12940 and 12941] New Mexico Disaster Number NM... Mexico (FEMA-4047-DR), dated 11/23/2011. Incident: Flooding. Incident Period: 08/19/2011 through 08/24... INFORMATION: The notice of the President's major disaster declaration for Private Non-Profit organizations in...

  2. EST Table: NM_001043366 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001043366 Sap-r 10/09/29 98 %/961 aa ref|NP_001036831.1| saposin-related [Bombyx... gnl|Amel|GB16561-PA 10/09/10 42 %/808 aa gi|91077504|ref|XP_966852.1| PREDICTED: similar to saposin isoform 1 [Tribolium castaneum] FS791050 ...

  3. Spectral narrowing of a 980 nm tapered diode laser bar

    Science.gov (United States)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Lucas Leclin, Ga"lle; Petersen, Paul Michael; Thestrup, Birgitte

    2011-03-01

    High power diode laser bars are interesting in many applications such as solid state laser pumping, material processing, laser trapping, laser cooling and second harmonic generation. Often, the free running laser bars emit a broad spectrum of the order of several nanometres which limit their scope in wavelength specific applications and hence, it is vital to stabilize the emission spectrum of these devices. In our experiment, we describe the wavelength narrowing of a 12 element 980 nm tapered diode laser bar using a simple Littman configuration. The tapered laser bar which suffered from a big smile has been "smile corrected" using individual phase masks for each emitter. The external cavity consists of the laser bar, both fast and slow axis micro collimators, smile correcting phase mask, 6.5x beam expanding lens combination, a 1200 lines/mm reflecting grating with 85% efficiency in the first order, a slow axis focusing cylindrical lens of 40 mm focal length and an output coupler which is 10% reflective. In the free running mode, the laser emission spectrum was 5.5 nm wide at an operating current of 30A. The output power was measured to be in excess of 12W. Under the external cavity operation, the wavelength spread of the laser could be limited to 0.04 nm with an output power in excess of 8 W at an operating current of 30A. The spectrum was found to be tuneable in a range of 16 nm.

  4. Conjugated 12 nm long oligomers as molecular wires in nanoelectronics

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Strobel, Sebastian; Bundgaard, Eva

    2009-01-01

    We demonstrate a generic synthetic approach to oligophenylenevinylene (OPV) derivative molecules with a molecular length of up to 12 nm and a relatively free choice of end group that can attach to different electrodes such as metallic gold or potentially transition metal oxide semiconductors. OPV...

  5. Magneto-optical trap for metastable helium at 389 nm

    NARCIS (Netherlands)

    Koelemeij, J.C.J.; Stas, R.J.W.; Hogervorst, W.; Vassen, W.

    2003-01-01

    We have constructed a magneto-optical trap (MOT) for metastable triplet helium atoms utilizing the 2 S-3(1)-->3 P-3(2) line at 389 nm as the trapping and cooling transition. The far-red-detuned MOT (detuning Delta=-41 MHz) typically contains few times 10(7) atoms at a relatively high (similar

  6. Radiation carcinogenesis

    International Nuclear Information System (INIS)

    1978-01-01

    The Cancergram deals with all aspects of radiation carcinogenesis. The term radiation here includes U-V radiation and the entire electromagnetic spectrum, electron and other charged particle beams, neutrons, and alpha and beta radiation from radioactive substances. Abstracts included concern relationships between radiation and carcinogenesis in humans, experimental induction of tumors in animals by irradiation, studies on the mechanism of radiation carcinogenesis at the cellular level, studies of RBE, dose response or dose threshold in relation to radiation carcinogenesis, and methods and policies for control of radiation exposure in the general population. In general, this Cancergram excludes abstracts on radio-therapy, radiologic diagnosis, radiation pathology, and radiation biology, where these articles have no bearing on radiation carcinogenesis

  7. ILT optimization of EUV masks for sub-7nm lithography

    Science.gov (United States)

    Hooker, Kevin; Kuechler, Bernd; Kazarian, Aram; Xiao, Guangming; Lucas, Kevin

    2017-06-01

    The 5nm and 7nm technology nodes will continue recent scaling trends and will deliver significantly smaller minimum features, standard cell areas and SRAM cell areas vs. the 10nm node. There are tremendous economic pressures to shrink each subsequent technology, though in a cost-effective and performance enhancing manner. IC manufacturers are eagerly awaiting EUV so that they can more aggressively shrink their technology than they could by using complicated MPT. The current 0.33NA EUV tools and processes also have their patterning limitations. EUV scanner lenses, scanner sources, masks and resists are all relatively immature compared to the current lithography manufacturing baseline of 193i. For example, lens aberrations are currently several times larger (as a function of wavelength) in EUV scanners than for 193i scanners. Robustly patterning 16nm L/S fully random logic metal patterns and 40nm pitch random logic rectangular contacts with 0.33NA EUV are tough challenges that will benefit from advanced OPC/RET. For example, if an IC manufacturer can push single exposure device layer resolution 10% tighter using improved ILT to avoid using DPT, there will be a significant cost and process complexity benefit to doing so. ILT is well known to have considerable benefits in finding flexible 193i mask pattern solutions to improve process window, improve 2D CD control, improve resolution in low K1 lithography regime and help to delay the introduction of DPT. However, ILT has not previously been applied to EUV lithography. In this paper, we report on new developments which extend ILT method to EUV lithography and we characterize the benefits seen vs. traditional EUV OPC/RET methods.

  8. Treatment of oral lichen planus using 308-nm excimer laser.

    Science.gov (United States)

    Liu, Wei-Bing; Sun, Li-Wei; Yang, Hua; Wang, Yan-Fei

    2017-09-01

    Oral lichen planus (OLP) is a chronic inflammatory disease, has prolonged courses, repeated attacks and resistance to treatment. The traditional narrow spectrum UVB treatment has an established efficacy on skin lichen planus, and high safety. However, most of ultraviolet phototherapy devices have a huge volume, thereby cannot be used in the treatment of OLP. Lymphocytic infiltration is evident in the lesions of lichen planus, and the direct irradiation of 308-nm excimer laser can induce apoptosis of the T lymphocytes in skin lesions, thereby has a unique therapeutic effect on the diseases involving T lymphocytes. This study aims to investigate the efficacy of 308-nm excimer laser in the treatment of OLP. A total of six OLP patients were enrolled into this study, and further pathological diagnosis was conducted, then 308-nm excimer laser was used in the treatment. The efficacy of 308-nm excimer laser in the treatment of OLP was satisfactory. The clinical symptoms of five patients were significantly improved. In two patients, the erosion surface based on congestion and the surrounding white spots completely disappeared, and clinical recovery was achieved. Three patients achieved partial remission, that is, the erosion surface healed, congestion and white spot area shrunk by more than 1/2 of the primary skin lesions. In the remaining one patient, the erosion surface had not completely healed after treatment, and congestion and white spot area shrunk by less than 1/2 of the primary skin lesions. Only one patients had developed mild pain during the treatment, and this symptom alleviated by itself. The 308-nm excimer laser therapy can serve as a safe and effective treatment for OLP. © 2017 Wiley Periodicals, Inc.

  9. Cyclotron resonant gas breakdown with a 1.22-nm 13CH3F laser

    International Nuclear Information System (INIS)

    Hacker, M.P.; Lax, B.; Metz, R.N.; Temkin, R.J.

    1979-01-01

    Cyclotron-resonant laser-induced gas breakdown has been studied for the first time in the transverse geometry, using 1.222-nm 13 CH 3 F laser radiation propagating perpendicular to the magnetic field axis. The line shape of absorbed laser radiation versus magnetic field near electron cyclotron resonance (87.75 kG) indicates a strong dependence of the line shape on the focused laser intensity. This dependence is not predicted by the standard equilibrium theory of high-frequency gas breakdown in a magnetic field. We have developed an analytic theory to explain the observed line shapes. The theory takes into account the laser propagation characteristics, in particular that there is nonuniform ionization due to strong resonant absorption of the laser radiation in a length comparable to or shorter than that of the laser focal volume. The transverse geometry simplifies the theoretical analysis because the observed line shapes are not significantly affected by Doppler broadening. Extensive data have been obtained on the fraction of laser pulse energy absorbed in the gas breakdown volume as a function of magnetic field, helium gas pressure, and incident laser pulse energy. Good quantitative agreement is obtained between the observed laser pulse absorption line shapes and the nonuniform ionization theory

  10. Diffraction-limited 577 nm true-yellow laser by frequency doubling of a tapered diode laser

    Science.gov (United States)

    Christensen, Mathias; Vilera, Mariafernanda; Noordegraaf, Danny; Hansen, Anders K.; Buß, Thomas; Jensen, Ole B.; Skovgaard, Peter M. W.

    2018-02-01

    A wide range of laser medical treatments are based on coagulation of blood by absorption of the laser radiation. It has, therefore, always been a goal of these treatments to maximize the ratio of absorption in the blood to that in the surrounding tissue. For this purpose lasers at 577 nm are ideal since this wavelength is at the peak of the absorption in oxygenated hemoglobin. Furthermore, 577 nm has a lower absorption in melanin when compared to green wavelengths (515 - 532 nm), giving it an advantage when treating at greater penetration depth. Here we present a laser system based on frequency doubling of an 1154 nm Distributed Bragg Reflector (DBR) tapered diode laser, emitting 1.1 W of single frequency and diffraction limited yellow light at 577 nm, corresponding to a conversion efficiency of 30.5%. The frequency doubling is performed in a single pass configuration using a cascade of two bulk non-linear crystals. The system is power stabilized over 10 hours with a standard deviation of 0.13% and the relative intensity noise is measured to be 0.064 % rms.

  11. Study of drain-extended NMOS under electrostatic discharge stress in 28 nm and 40 nm CMOS process

    Science.gov (United States)

    Wang, Weihuai; Jin, Hao; Dong, Shurong; Zhong, Lei; Han, Yan

    2016-02-01

    Researches on the electrostatic discharge (ESD) performance of drain-extended NMOS (DeNMOS) under the state-of-the-art 28 nm and 40 nm bulk CMOS process are performed in this paper. Three distinguishing phases of avalanche breakdown stage, depletion region push-out stage and parasitic NPN turn on stage of the gate-grounded DeNMOS (GG-DeNMOS) fabricated under 28 nm CMOS process measured with transmission line pulsing (TLP) test are analyzed through TCAD simulations and tape-out silicon verification detailedly. Damage mechanisms and failure spots of GG-DeNMOS under both CMOS processes are thermal breakdown of drain junction. Improvements based on the basic structure adjustments can increase the GG-DeNMOS robustness from original 2.87 mA/μm to the highest 5.41 mA/μm. Under 40 nm process, parameter adjustments based on the basic structure have no significant benefits on the robustness improvements. By inserting P+ segments in the N+ implantation of drain or an entire P+ strip between the N+ implantation of drain and polysilicon gate to form the typical DeMOS-SCR (silicon-controlled rectifier) structure, the ESD robustness can be enhanced from 1.83 mA/μm to 8.79 mA/μm and 29.78 mA/μm, respectively.

  12. Cryogenic Lifetime Studies of 130 nm and 65 nm CMOS Technologies for High-Energy Physics Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, James R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Deptuch, G. W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Wu, Guoying [Southern Methodist Univ., Dallas, TX (United States); Gui, Ping [Southern Methodist Univ., Dallas, TX (United States)

    2015-06-04

    The Long Baseline Neutrino Facility intends to use unprecedented volumes of liquid argon to fill a time projection chamber in an underground facility. Research is under way to place the electronics inside the cryostat. For reasons of efficiency and economics, the lifetimes of these circuits must be well in excess of 20 years. The principle mechanism for lifetime degradation of MOSFET devices and circuits operating at cryogenic temperatures is hot carrier degradation. Choosing a process technology that is, as much as possible, immune to such degradation and developing design techniques to avoid exposure to such damage are the goals. This, then, requires careful investigation and a basic understanding of the mechanisms that underlie hot carrier degradation and the secondary effects they cause in circuits. In this work, commercially available 130 nm and 65 nm nMOS transistors operating at cryogenic temperatures are investigated. Our results show that both technologies achieve the lifetimes required by the experiment. Minimal design changes are necessary in the case of the 130 nm process and no changes whatsoever are necessary for the 65 nm process.

  13. Modification of genetic effects of gamma radiation by laser radiation

    International Nuclear Information System (INIS)

    Khotyljova, L.V.; Khokhlova, S.A.; Khokhlov, I.V.

    1988-01-01

    Full text: Mutants obtained by means of ionizing radiation and chemical mutagens often show low viability and productivity that makes their use in plant breeding difficult. Methods reducing the destructive mutagen action on important functions of plant organism and increasing quality and practical value of induced mutants would be interesting. We believe that one method for increasing efficiency of experimental mutagenesis in plants is the application of laser radiation as a modificator of genetic effects of ionizing radiation and chemical mutagens. Combined exposure of wheat seedlings to a gamma radiation dose of 2 kR and to laser radiation with the wave length of 632.8 nm (power density - 20 mVt/cm 2 , exposure - 30 min.) resulted in reducing the chromosomal aberration percentage from 30.5% in the gamma version to 16.3% in the combined treatment version. A radiosensibilizing effect was observed at additional exposure of gamma irradiated wheat seeds to laser light with the wave length of 441.6 nm where chromosomal aberration percentage increased from 22% in the gamma-irradiation version to 31% in the combined treatment version. By laser radiation it is also possible to normalize mitotic cell activity suppressed by gamma irradiation. Additional seedling irradiation with the light of helium-neon laser (632.8 nm) resulted in recovery of mitotic cell activity from 21% to 62% and increasing the average content of DNA per nucleus by 10%. The influence of only laser radiation on plant variability was also studied and it was shown that irradiation of wheat seeds and seedlings with pulsed and continuous laser light of visible spectrum resulted in phenotypically altered forms in M 2 . Their frequencies was dependent upon power density, dose and radiation wave length. Number of altered forms increased in going from long-wave to short-wave spectrum region. In comparing efficiency of different laser types of pulsed and continuous exposure (dose - 180 J/cm 2 ) 2% of altered

  14. Chemical vapour deposition of freestanding sub-60 nm graphene gyroids

    Science.gov (United States)

    Cebo, Tomasz; Aria, Adrianus I.; Dolan, James A.; Weatherup, Robert S.; Nakanishi, Kenichi; Kidambi, Piran R.; Divitini, Giorgio; Ducati, Caterina; Steiner, Ullrich; Hofmann, Stephan

    2017-12-01

    The direct chemical vapour deposition of freestanding graphene gyroids with controlled sub-60 nm unit cell sizes is demonstrated. Three-dimensional (3D) nickel templates were fabricated through electrodeposition into a selectively voided triblock terpolymer. The high temperature instability of sub-micron unit cell structures was effectively addressed through the early introduction of the carbon precursor, which stabilizes the metallized gyroidal templates. The as-grown graphene gyroids are self-supporting and can be transferred onto a variety of substrates. Furthermore, they represent the smallest free standing periodic graphene 3D structures yet produced with a pore size of tens of nm, as analysed by electron microscopy and optical spectroscopy. We discuss generality of our methodology for the synthesis of other types of nanoscale, 3D graphene assemblies, and the transferability of this approach to other 2D materials.

  15. Single, composite, and ceramic Nd:YAG 946-nm lasers

    Science.gov (United States)

    Lan, Rui-Jun; Yang, Guang; Zheng-Ping, Wang

    2015-06-01

    Single, composite crystal and ceramic continuous wave (CW) 946-nm Nd:YAG lasers are demonstrated, respectively. The ceramic laser behaves better than the crystal laser. With 5-mm long ceramic, a CW output power of 1.46 W is generated with an optical conversion efficiency of 13.9%, while the slope efficiency is 17.9%. The optimal ceramic length for a 946-nm laser is also calculated. Project supported by the National Natural Science Foundation of China (Grant No. 61405171), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ014), and the Science and Technology Program of the Shandong Higher Education Institutions of China (Grant No. J13LJ05).

  16. Blue laser diode (450 nm) systems for welding copper

    Science.gov (United States)

    Silva Sa, M.; Finuf, M.; Fritz, R.; Tucker, J.; Pelaprat, J.-M.; Zediker, M. S.

    2018-02-01

    This paper will discuss the development of high power blue laser systems for industrial applications. The key development enabling high power blue laser systems is the emergence of high power, high brightness laser diodes at 450 nm. These devices have a high individual brightness rivaling their IR counterparts and they have the potential to exceed their performance and price barriers. They also have a very high To resulting in a 0.04 nm/°C wavelength shift. They have a very stable lateral far-field profile which can be combined with other diodes to achieve a superior brightness. This paper will report on the characteristics of the blue laser diodes, their integration into a modular laser system suitable for scaling the output power to the 1 kW level and beyond. Test results will be presented for welding of copper with power levels ranging from 150 Watts to 600 Watts

  17. Photodissociation of the OD radical at 226 and 243 nm

    International Nuclear Information System (INIS)

    Radenovic, Dragana C.; Roij, Andre J.A. van; Chestakov, Dmitri A.; Eppink, Andre T.J.B.; Meulen, J.J. ter; Parker, David H.; Loo, Mark P.J. van der; Groenenboom, Gerrit C.; Greenslade, Margaret E.; Lester, Marsha I.

    2003-01-01

    The photodissociation dynamics of state selected OD radicals has been examined at 243 and 226 nm using velocity map imaging to probe the angle-speed distributions of the D( 2 S) and O( 3 P 2 ) products. Both experiment and complementary first principle calculations demonstrate that photodissociation occurs by promotion of OD from high vibrational levels of the ground X 2 Π state to the repulsive 1 2 Σ - state

  18. An efficient continuous-wave 591 nm light source based on sum-frequency mixing of a diode pumped Nd:GdVO4–Nd:CNGG laser

    International Nuclear Information System (INIS)

    Zhao, Y D; Liu, J H

    2013-01-01

    We report a laser architecture to obtain continuous-wave (CW) yellow-orange light sources at the 591 nm wavelength. An 808 nm diode pumped a Nd:GdVO 4 crystal emitting at 1063 nm. A part of the pump power was then absorbed by the Nd:CNGG crystal. The remaining pump power was used to pump a Nd:CNGG crystal emitting at 1329 nm. Intracavity sum-frequency mixing at 1063 and 1329 nm was then realized in a LiB 3 O 5 (LBO) crystal to reach the yellow-orange radiation. We obtained a CW output power of 494 mW at 591 nm with a pump laser diode emitting 17.8 W at 808 nm. (paper)

  19. Quantum efficiency of cesium iodide photocathodes in the 120-220 nm spectral range traceable to a primary detector standard

    CERN Document Server

    Rabus, H; Richter, M; Ulm, G; Friese, J; Gernhäuser, R; Kastenmüller, A; Maier-Komor, P; Zeitelhack, K

    1999-01-01

    Differently prepared CsI samples have been investigated in the 120-220 nm spectral range for their quantum efficiency, spatial uniformity and the effect of radiation aging. The experiments were performed at the PTB radiometry laboratory at the Berlin synchrotron radiation facility BESSY. A calibrated GaAsP Schottky photodiode was used as transfer detector standard to establish traceability to the primary detector standard, because this type of photodiode - unlike silicon p-on-n photodiodes - proved to be of sufficiently stable response when exposed to vacuum ultraviolet radiation. The paper reviews the experimental procedures that were employed to characterize and calibrate the GaAsP photodiode and reports the results that were obtained on the investigated CsI photocathodes.

  20. Writable and erasable PPV medium by irradiation at 365 nm

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroyuki [Photonics Research Institutes, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)], E-mail: h-mochizuki@aist.go.jp; Mizokuro, Toshiko; Tanigaki, Nobutaka; Hiraga, Takashi [Photonics Research Institutes, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2008-03-03

    Dopings of vaporized cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl) ethane (CMTE) into poly(methyl methacrylate) (PMMA), polystyrene, and polycarbonate were performed by a vacuum process, and the doping behaviors of CMTE were evaluated. Among the matrix polymers, PMMA was dispersed CMTE densely in its surface region. By using the CMTE-doped PMMA, we could fabricate a novel rewritable medium: a multi-layered film was prepared from over-coating of CMTE-doped PMMA onto poly(p-phenylene vinylene) (PPV) film, which set on a transparent substrate. Image storage could be performed upon irradiation at 365 nm at the side of CMTE/PMMA layer: color of the irradiated area changed a light yellow to a red due to photo-isomerization of CMTE. Next, upon irradiation at 365 nm at the side of the transparent substrate, PPV emitted a green fluorescence at around 530 nm, and the CMTE absorbed the emission from PPV causing image-erasure based on back-isomerization of CMTE.

  1. Advanced CMOS device technologies for 45 nm node and below

    Directory of Open Access Journals (Sweden)

    A. Veloso, T. Hoffmann, A. Lauwers, H. Yu, S. Severi, E. Augendre, S. Kubicek, P. Verheyen, N. Collaert, P. Absil, M. Jurczak and S. Biesemans

    2007-01-01

    Full Text Available We review and discuss the latest developments and technology options for 45 nm node and below, with scaled planar bulk MOSFETs and MuGFETs as emerging devices. One of the main metal gate (MG candidates for scaled CMOS technologies are fully silicided (FUSI gates. In this work, by means of a selective and controlled poly etch-back integration process, dual work-function Ni-based FUSI/HfSiON CMOS circuits with record ring oscillator performance (high-VT are reported (17 ps at VDD=1.1 V and 20 pA/μm Ioff, meeting the ITRS 45 nm node requirement for low-power (LP CMOS. Compatibility of FUSI and other MG with known stress boosters like stressed CESL (contact-etch-stop-layer with high intrinsic stress or embedded SiGe in the pMOS S/D regions is validated. To obtain MuGFET devices that are competitive, as compared to conventional planar bulk devices, and that meet the stringent drive and leakage current requirements for the 32 nm node and beyond, higher channel mobilities are required. Results obtained by several strain engineering methods are presented here.

  2. Water line positions in the 782–840 nm region

    International Nuclear Information System (INIS)

    Hu, S.-M.; Chen, B.; Tan, Y.; Wang, J.; Cheng, C.-F.; Liu, A.-W.

    2015-01-01

    A set of water transitions in the 782–840 nm region, including 38 H 2 16 O lines, 12 HD 16 O lines, and 30 D 2 16 O lines, were recorded with a cavity ring-down spectrometer calibrated using precise atomic lines. Absolute frequencies of the lines were determined with an accuracy of about 5 MHz. Systematic shifts were found in the line positions given in the HITRAN database and the upper energy levels given in recent MARVEL studies. - Highlights: • Cavity ring-down spectra of H 2 16 O, HD 16 O, and D 2 16 O lines in the 782–840 nm region were measured. • Absolute line positions of 80 water lines were determined with an accuracy of about 5 MHz. • The H 2 16 O positions given in HITRAN have a systematic shift of 0.001 cm −1 in the 796–840 nm region. • MARVEL D 2 16 O energies have a systematic deviation of about −0.008 cm −1

  3. Cultured Human Fibroblast Biostimulation Using a 940 nm Diode Laser

    Science.gov (United States)

    Illescas-Montes, Rebeca; Melguizo-Rodríguez, Lucía; Manzano-Moreno, Francisco Javier; García-Martínez, Olga; Ruiz, Concepción

    2017-01-01

    Background: Fibroblasts are the main cells involved in regeneration during wound healing. The objective was to determine the effect of 940 nm diode laser on cultured human fibroblasts using different irradiation regimens. Methods: The CCD-1064Sk human epithelial fibroblast cell line was treated with a 940 nm diode laser at different energy doses (power: 0.2–1 W and energy density: 1–7 J/cm2) using different transmission modes (continuous or pulsed). The effect on cell growth at 24 and 72 h post-treatment was examined by measuring the proliferative capacity, the impact on the cell cycle, and the effect on cell differentiation. Results: fibroblast proliferative capacity was increased at 24 and 72 h post-treatment as a function of the energy dose. The greatest increase was observed with a power of 0.2 or 0.5 W and energy density between 1 and 4 J/cm2; no difference was observed between continuous and pulsed modes. There were no significant differences in cell cycle between treated groups and controls. α-actin expression was increased by treatment, indicating enhanced cell differentiation. Conclusion: The 940 nm diode laser has biostimulating effects on fibroblasts, stimulating proliferative capacity and cell differentiation without altering the cell cycle. Further researches are necessary to explore its potential clinical usefulness in wound healing. PMID:28773152

  4. Photoacoustic imaging at 1064nm wavelength with exogenous contrast agents

    Science.gov (United States)

    Upputuri, Paul Kumar; Jiang, Yuyan; Pu, Kanyi; Pramanik, Manojit

    2018-02-01

    Photoacoustic (PA) imaging is a promising imaging modality for both preclinical research and clinical practices. Laser wavelengths in the first near infrared window (NIR-I, 650-950 nm) have been widely used for photoacoustic imaging. As compared with NIR-I window, scattering of photons by biological tissues is largely reduced in the second NIR (NIR-II) window, leading to enhanced imaging fidelity. However, the lack of biocompatible NIR-II absorbing exogenous agents prevented the use of this window for in vivo imaging. In recent years, few studies have been reported on photoacoustic imaging in NIR-II window using exogenous contrast agents. In this work, we discuss the recent work on PA imaging using 1064 nm wavelength, the fundamental of Nd:YAG laser, as an excitation wavelength. The PA imaging at 1064 nm is advantageous because of the low and homogeneous signal from tissue background, enabling high contrast in PA imaging when NIR-II absorbing contrast agents are employed.

  5. Ion transport in sub-5-nm graphene nanopores

    International Nuclear Information System (INIS)

    Suk, Myung E.; Aluru, N. R.

    2014-01-01

    Graphene nanopore is a promising device for single molecule sensing, including DNA bases, as its single atom thickness provides high spatial resolution. To attain high sensitivity, the size of the molecule should be comparable to the pore diameter. However, when the pore diameter approaches the size of the molecule, ion properties and dynamics may deviate from the bulk values and continuum analysis may not be accurate. In this paper, we investigate the static and dynamic properties of ions with and without an external voltage drop in sub-5-nm graphene nanopores using molecular dynamics simulations. Ion concentration in graphene nanopores sharply drops from the bulk concentration when the pore radius is smaller than 0.9 nm. Ion mobility in the pore is also smaller than bulk ion mobility due to the layered liquid structure in the pore-axial direction. Our results show that a continuum analysis can be appropriate when the pore radius is larger than 0.9 nm if pore conductivity is properly defined. Since many applications of graphene nanopores, such as DNA and protein sensing, involve ion transport, the results presented here will be useful not only in understanding the behavior of ion transport but also in designing bio-molecular sensors

  6. Advances in 193 nm excimer lasers for mass spectrometry applications

    Science.gov (United States)

    Delmdahl, Ralph; Esser, Hans-Gerd; Bonati, Guido

    2016-03-01

    Ongoing progress in mass analysis applications such as laser ablation inductively coupled mass spectrometry of solid samples and ultraviolet photoionization mediated sequencing of peptides and proteins is to a large extent driven by ultrashort wavelength excimer lasers at 193 nm. This paper will introduce the latest improvements achieved in the development of compact high repetition rate excimer lasers and elaborate on the impact on mass spectrometry instrumentation. Various performance and lifetime measurements obtained in a long-term endurance test over the course of 18 months will be shown and discussed in view of the laser source requirements of different mass spectrometry tasks. These sampling type applications are served by excimer lasers delivering pulsed 193 nm output of several mJ as well as fast repetition rates which are already approaching one Kilohertz. In order to open up the pathway from the laboratory to broader market industrial use, sufficient component lifetimes and long-term stable performance behavior have to be ensured. The obtained long-term results which will be presented are based on diverse 193 nm excimer laser tube improvements aiming at e.g. optimizing the gas flow dynamics and have extended the operational life the laser tube for the first time over several billion pulses even under high duty-cycle conditions.

  7. Photoelectron Emission Studies in CsBr at 257 nm

    International Nuclear Information System (INIS)

    Maldonado, Juan R.; Liu, Zhi; Sun, Yun; Pianetta, Piero A.; Pease, Fabian W.

    2006-01-01

    CsBr/Cr photocathodes were found [1,2] to meet the requirements of a multi-electron beam lithography system operating with a light energy of 4.8 eV (257nm). The fact that photoemission was observed with a light energy below the reported 7.3 eV band gap for CsBr was not understood. This paper presents experimental results on the presence of intra-band gap absorption sites (IBAS) in CsBr thin film photo electron emitters, and presents a model based on IBAS to explain the observed photoelectron emission behavior at energies below band gap. A fluorescence band centered at 330 nm with a FWHM of about 0.34 eV was observed in CsBr/Cr samples under 257 nm laser illumination which can be attributed to IBAS and agrees well with previously obtained synchrotron photoelectron spectra[1] from the valence band of CsBr films

  8. Cultured Human Fibroblast Biostimulation Using a 940 nm Diode Laser

    Directory of Open Access Journals (Sweden)

    Rebeca Illescas-Montes

    2017-07-01

    Full Text Available Background: Fibroblasts are the main cells involved in regeneration during wound healing. The objective was to determine the effect of 940 nm diode laser on cultured human fibroblasts using different irradiation regimens. Methods: The CCD-1064Sk human epithelial fibroblast cell line was treated with a 940 nm diode laser at different energy doses (power: 0.2–1 W and energy density: 1–7 J/cm2 using different transmission modes (continuous or pulsed. The effect on cell growth at 24 and 72 h post-treatment was examined by measuring the proliferative capacity, the impact on the cell cycle, and the effect on cell differentiation. Results: fibroblast proliferative capacity was increased at 24 and 72 h post-treatment as a function of the energy dose. The greatest increase was observed with a power of 0.2 or 0.5 W and energy density between 1 and 4 J/cm2; no difference was observed between continuous and pulsed modes. There were no significant differences in cell cycle between treated groups and controls. α-actin expression was increased by treatment, indicating enhanced cell differentiation. Conclusion: The 940 nm diode laser has biostimulating effects on fibroblasts, stimulating proliferative capacity and cell differentiation without altering the cell cycle. Further researches are necessary to explore its potential clinical usefulness in wound healing.

  9. Radiation practices and radiation measurements

    International Nuclear Information System (INIS)

    2008-03-01

    The guide presents the principal requirements on accuracy of radiation measurements and on the approval, calibration and operating condition inspections of radiation meters, together with requirements for dosimetric services measuring the individual radiation doses of workers engaged in radiation work (approved dosimetric services). The Guide also sets out the definitions of quantities and units used in radiation measurements. The radiation protection quantities used for assessing the harmful effects of radiation and for expressing the maximum values for radiation exposure (equivalent dose and effective dose) are set out in Guide ST 7.2. This Guide concerns measurements of ionizing radiation involved in radiation practices, the results of which are used for determining the radiation exposure of workers engaged in radiation work and members of the public, and of patients subject to the use of radiation in health services, or upon the basis of which compliance with safety requirements of appliances currently in use and of their premises of use or of the workplaces of workers is ensured. The Guide also concerns measurements of the radon concentration of inhaled air in both workplaces and dwellings. The Guide does not apply to determining the radiation exposure of aircrews, determination of exposure caused by internal radiation, or measurements made to protect the public in the event of, or in preparation for abnormal radiation conditions

  10. Analysis of bias effects on the total ionizing dose response in a 180 nm technology

    International Nuclear Information System (INIS)

    Liu Zhangli; Hu Zhiyuan; Zhang, Zhengxuan; Shao Hua; Chen Ming; Bi Dawei; Ning Bingxu; Zou Shichang

    2011-01-01

    The effects of gamma ray irradiation on the shallow trench isolation (STI) leakage current in a 180 nm technology are investigated. The radiation response is strongly influenced by the bias modes, gate bias during irradiation, substrate bias during irradiation and operating substrate bias after irradiation. We found that the worst case occurs under the ON bias condition for the ON, OFF and PASS bias mode. A positive gate bias during irradiation significantly enhances the STI leakage current, indicating the electric field influence on the charge buildup process during radiation. Also, a negative substrate bias during irradiation enhances the STI leakage current. However a negative operating substrate bias effectively suppresses the STI leakage current, and can be used to eliminate the leakage current produced by the charge trapped in the deep STI oxide. Appropriate substrate bias should be introduced to alleviate the total ionizing dose (TID) response, and lead to acceptable threshold voltage shift and subthreshold hump effect. Depending on the simulation results, we believe that the electric field distribution in the STI oxide is the key parameter influencing bias effects on the radiation response of transistor. - Highlights: → ON bias is the worst bias condition for the ON, PASS and OFF bias modes. → Larger gate bias during irradiation leads to more pronounced characteristic degradation. → TID induced STI leakage can be suppressed by negative operating substrate bias voltage. → Negative substrate bias during irradiation leads to larger increase of off-state leakage. → Electric field in the STI oxide greatly influences the device's radiation effect.

  11. CMOS sensors in 90 nm fabricated on high resistivity wafers: Design concept and irradiation results

    International Nuclear Information System (INIS)

    Rivetti, A.; Battaglia, M.; Bisello, D.; Caselle, M.; Chalmet, P.; Costa, M.; Demaria, N.; Giubilato, P.; Ikemoto, Y.; Kloukinas, K.; Mansuy, C.; Marchioro, A.; Mugnier, H.; Pantano, D.; Potenza, A.; Rousset, J.; Silvestrin, L.; Wyss, J.

    2013-01-01

    The LePix project aims at improving the radiation hardness and the readout speed of monolithic CMOS sensors through the use of standard CMOS technologies fabricated on high resistivity substrates. In this context, high resistivity means beyond 400Ωcm, which is at least one order of magnitude greater than the typical value (1–10Ωcm) adopted for integrated circuit production. The possibility of employing these lightly doped substrates was offered by one foundry for an otherwise standard 90 nm CMOS process. In the paper, the case for such a development is first discussed. The sensor design is then described, along with the key challenges encountered in fabricating the detecting element in a very deep submicron process. Finally, irradiation results obtained on test matrices are reported

  12. A 223-nm KrCl excimer laser on a He-Kr-HCl mixture

    International Nuclear Information System (INIS)

    Razhev, A M; Zhupikov, A A; Kargapol'tsev, E S

    2004-01-01

    The results of experimental studies of the parameters of a 223-nm electric-discharge KrCl excimer laser on a He-Kr-HCl mixture depending on the excitation conditions and the composition of the active gaseous medium are presented. To achieve the maximum values of the output energy and the efficiency of the KrCl laser on mixtures with buffer gaseous helium, an excitation system was used that included a circuit with an LC inverter with a high-voltage switch based on an RU-65 spark gap. An output energy of 320 mJ with an efficiency of 0.5% relative to the energy stored in the capacitors is obtained in a KrCl laser with an active medium based on the buffer He gas at a charging voltage of 30 kV. Radiation pulses with a duration of 22±1 ns and a pulse power of 15 MW are obtained. (lasers)

  13. New semiconductor laser technology for gas sensing applications in the 1650nm range

    Science.gov (United States)

    Morrison, Gordon B.; Sherman, Jes; Estrella, Steven; Moreira, Renan L.; Leisher, Paul O.; Mashanovitch, Milan L.; Stephen, Mark; Numata, Kenji; Wu, Stewart; Riris, Haris

    2017-08-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. CH4 also contributes to pollution in the lower atmosphere through chemical reactions leading to ozone production. Recent developments of LIDAR measurement technology for CH4 have been previously reported by Goddard Space Flight Center (GSFC). In this paper, we report on a novel, high-performance tunable semiconductor laser technology developed by Freedom Photonics for the 1650nm wavelength range operation, and for LIDAR detection of CH4. Devices described are monolithic, with simple control, and compatible with low-cost fabrication techniques. We present 3 different types of tunable lasers implemented for this application.

  14. Empirical Relationships Between Optical Properties and Equivalent Diameters of Fractal Soot Aggregates at 550 Nm Wavelength.

    Science.gov (United States)

    Pandey, Apoorva; Chakrabarty, Rajan K.; Liu, Li; Mishchenko, Michael I.

    2015-01-01

    Soot aggregates (SAs)-fractal clusters of small, spherical carbonaceous monomers-modulate the incoming visible solar radiation and contribute significantly to climate forcing. Experimentalists and climate modelers typically assume a spherical morphology for SAs when computing their optical properties, causing significant errors. Here, we calculate the optical properties of freshly-generated (fractal dimension Df = 1.8) and aged (Df = 2.6) SAs at 550 nm wavelength using the numericallyexact superposition T-Matrix method. These properties were expressed as functions of equivalent aerosol diameters as measured by contemporary aerosol instruments. This work improves upon previous efforts wherein SA optical properties were computed as a function of monomer number, rendering them unusable in practical applications. Future research will address the sensitivity of variation in refractive index, fractal prefactor, and monomer overlap of SAs on the reported empirical relationships.

  15. Icecolors '93: Beginnings of an antarctic phytoplankton and bacterial DNA library from southern ocean natural communities exposed to ultraviolet-B

    International Nuclear Information System (INIS)

    Jovine, R.V.M.; Prezelin, B.

    1994-01-01

    Springtime ozone depletion and the resultant increase in ultraviolet-B (UV-B) radiation [280-320 nanometers (nm)] have deleterious effects on primary productivity. To assess damage to cellular components other than the photosynthetic apparatus, we isolated total community DNA from samples in the field before, during, and after the 1993 springtime depletion in stratospheric ozone. The effort was motivated by the concern that the ozone-dependent increases in UV-B radiation may increase DNA damage within primary producers. This increase in damage could result in changes of species composition as well as hereditary changes within species that can influence the competitiveness of these organisms in their natural community. Previous studies have focused on DNA damage in isolated cultures of antarctic phytoplankton that were irradiated with UV-B under lab conditions. These studies clearly indicate variable species sensitivities to the increase in UV-B flux. These studies, however, did not resolve the question of whether such damage occurred in field samples collected from actively mixing, polyphyletic phytoplankton communities. Potential species composition changes and the resultant changes in the trophic dynamics cannot be interpreted in terms of DNA damage unless this damage can be documented in samples isolated under these dynamic natural conditions. 7 refs., 2 figs

  16. Diversity in UV sensitivity and recovery potential among bacterioneuston and bacterioplankton isolates.

    Science.gov (United States)

    Santos, A L; Lopes, S; Baptista, I; Henriques, I; Gomes, N C M; Almeida, A; Correia, A; Cunha, A

    2011-04-01

    To assess the variability in UV-B (280-320 nm) sensitivity of selected bacterial isolates from the surface microlayer and underlying water of the Ria de Aveiro (Portugal) estuary and their ability to recover from previous UV-induced stress. Bacterial suspensions were exposed to UV-B radiation (3·3 W m⁻²). Effects on culturability and activity were assessed from colony counts and (3) H-leucine incorporation rates, respectively. Among the tested isolates, wide variability in UV-B-induced inhibition of culturability (37·4-99·3%) and activity (36·0-98·0%) was observed. Incubation of UV-B-irradiated suspensions under reactivating regimes (UV-A, 3·65 W m⁻²; photosynthetic active radiation, 40 W m⁻²; dark) also revealed diversity in the extent of recovery from UV-B stress. Trends of enhanced resistance of culturability (up to 15·0%) and enhanced recovery in activity (up to 52·0%) were observed in bacterioneuston isolates. Bacterioneuston isolates were less sensitive and recovered more rapidly from UV-B stress than bacterioplankton isolates, showing enhanced reduction in their metabolism during the irradiation period and decreased culturability during the recovery process compared to bacterioplankton. UV exposure can affect the diversity and activity of microbial communities by selecting UV-resistant strains and alter their metabolic activity towards protective strategies. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  17. Infrared Radiation and Blackbody Radiation

    OpenAIRE

    2005-01-01

    tut present graph Tutorial Presentation Graph Interactive Media Element This interactive tutorial covers the following: How infrared radiation was discovered., The regions of infrared radiation and their relations to temperature., The nature of blackbody radiation and Planck's radiation law., The relationship between temperature and the power emitted by radiation.The interactions in this tutorial include clicking to reveal new information, and questions that help students...

  18. Limestone: some observations on luminescence in the region of 360 nm

    International Nuclear Information System (INIS)

    Galloway, R.B.

    2003-01-01

    An empirical study of luminescence around 360 nm from limestone is presented. Thermoluminescence glow curves from natural limestone show broad peaks at 440 deg. C, 350 deg. C, 530 deg. C and 286 deg. C in order of decreasing amplitude in contrast to the usual observation, for luminescence around 535 nm, of a sharp peak at 286 deg. C with a broader less intense peak at 350 deg. C. Recuperation occurs around 350 deg. C and 525 deg. C, which has a time dependence consistent with quantum tunnelling. Dependent on the history of heating and light exposure of the sample, sharp peaks at about 325 deg. C and 425 deg. C can be observed. Laboratory irradiated limestone shows a peak at 140 deg. C. The stimulation of luminescence by light of 470 nm with preheating at 145 deg. C for 300 s, shows an increasing signal for successive cycles of measurement associated with the heating, light exposure having little influence. Beta irradiation of a sample, with the same measurement conditions, gives a signal which increases in proportion to radiation dose but which does not survive storage for 17 h. Time resolved luminescence spectra, with no preheating, show a luminescence lifetime between stimulation and emission of less than a few μs for natural limestone, and an exponential increase in signal with increase in temperature (over the rang 20-167 deg. C) during stimulation. A signal proportional to laboratory applied beta dose is measurable at room temperature, with lifetime between stimulation and emission of this signal of 35 μs, but it does not survive heating to 100 deg. C

  19. Utilization of Nd-YAG (1064 nm) laser for female hair removal

    International Nuclear Information System (INIS)

    Ahmed, Ahlam Hassan

    2013-05-01

    The Cutera. Inc, cool Glide system laser is along pulsed Nd-YAG 1064 nm, of energy density 25 to 30 J/cm 2 and pulse duration 25 ms in all individual sessions.This study was held in Medical Arms Service Hospital. The period of study taken was three month. The study sample consisted of five patients base line photographs were taken before treatments and also after treatments. Photos show the satisfactory results of the laser treatment. In this study the hair removal treat went was conducted for female middle age group of 25-40 years. The Nd-YAG (1064 nm) laser was found to more effective in treatment of the hair removal, and complications can be minimized by using anesthesia and anti bio tics. The Nd-YAG laser therapy should be considered as a good and dependable alternative to other treatment radiation techniques. And effectiveness of treatment can be increased by using optimum power and duration.(Author)

  20. A possible upgrade of FLASH for harmonic lasing down to 1.3 nm

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Yurkov, M.V.

    2012-10-15

    We propose the 3rd harmonic lasing in a new FLASH undulator as a way to produce intense, narrow-band, and stable SASE radiation down to 1.3 nm with the present accelerator energy of 1.25 GeV. To provide optimal conditions for harmonic lasing, we suggest to suppress the fundamental with the help of a special set of phase shifters. We rely on the standard technology of gap-tunable planar hybrid undulators, and choose the period of 2.3 cm and the minimum gap of 0.9 cm; total length of the undulator system is 34.5 m. With the help of numerical simulations we demonstrate that the 3rd harmonic lasing at 1.3 nm provides peak power at a gigawatt level and the narrow intrinsic bandwidth, 0.1% (FWHM). Pulse duration can be controlled in the range of a few tens of femtoseconds, and the peak brilliance reaches the value of 10{sup 31} photons/(s mrad{sup 2} mm{sup 2} 0.1% BW). With the given undulator design, a standard option of lasing at the fundamental wavelength to saturation is possible through the entire water window and at longer wavelengths. In this paper we briefly consider additional options such as polarization control, bandwidth reduction, self-seeding, X-ray pulse compression, and two-color operation. We also discuss possible technical issues and backup solutions.

  1. Compact 13.5-nm free-electron laser for extreme ultraviolet lithography

    Directory of Open Access Journals (Sweden)

    Y. Socol

    2011-04-01

    Full Text Available Optical lithography has been actively used over the past decades to produce more and more dense integrated circuits. To keep with the pace of the miniaturization, light of shorter and shorter wavelength was used with time. The capabilities of the present 193-nm UV photolithography were expanded time after time, but it is now believed that further progress will require deployment of extreme ultraviolet (EUV lithography based on the use of 13.5-nm radiation. However, presently no light source exists with sufficient average power to enable high-volume manufacturing. We report here the results of a study that shows the feasibility of a free-electron laser EUV source driven by a multiturn superconducting energy-recovery linac (ERL. The proposed 40×20  m^{2} facility, using MW-scale consumption from the power grid, is estimated to provide about 5 kW of average EUV power. We elaborate the self-amplified spontaneous emission (SASE option, which is presently technically feasible. A regenerative-amplifier option is also discussed. The proposed design is based on a short-period (2–3 cm undulator. The corresponding electron beam energy is about 0.5–1.0 GeV. The proposed accelerator consists of a photoinjector, a booster, and a multiturn ERL.

  2. A possible upgrade of FLASH for harmonic lasing down to 1.3 nm

    International Nuclear Information System (INIS)

    Schneidmiller, E.A.; Yurkov, M.V.

    2012-10-01

    We propose the 3rd harmonic lasing in a new FLASH undulator as a way to produce intense, narrow-band, and stable SASE radiation down to 1.3 nm with the present accelerator energy of 1.25 GeV. To provide optimal conditions for harmonic lasing, we suggest to suppress the fundamental with the help of a special set of phase shifters. We rely on the standard technology of gap-tunable planar hybrid undulators, and choose the period of 2.3 cm and the minimum gap of 0.9 cm; total length of the undulator system is 34.5 m. With the help of numerical simulations we demonstrate that the 3rd harmonic lasing at 1.3 nm provides peak power at a gigawatt level and the narrow intrinsic bandwidth, 0.1% (FWHM). Pulse duration can be controlled in the range of a few tens of femtoseconds, and the peak brilliance reaches the value of 10 31 photons/(s mrad 2 mm 2 0.1% BW). With the given undulator design, a standard option of lasing at the fundamental wavelength to saturation is possible through the entire water window and at longer wavelengths. In this paper we briefly consider additional options such as polarization control, bandwidth reduction, self-seeding, X-ray pulse compression, and two-color operation. We also discuss possible technical issues and backup solutions.

  3. A reflectivity profilometer for the optical characterisation of graded reflectivity mirrors in the 250 nm - 1100 nm spectral region

    International Nuclear Information System (INIS)

    Colucci, Alessandro; Nichelatti, Enrico

    1998-04-01

    It's developed the prototype of an instrument that can be used for the optical characterisation of graded reflectivity mirrors at any wavelength in the spectral region from 250 nm to 1100 nm. The instrument utilises a high-pressure Xe arc lamp as light source. Light is spectrally filtered by means of a grating monochromator. The sample is illuminated with an image of the monochromator exit slit. After reflection from the sample, this image is projected onto a 1024-elements charge-coupled device linear array driven by a digital frame board and interfaced with a personal computer. It's tested the instrument accuracy by comparing measurement results with the corresponding ones obtained by means of a laser scanning technique. Measurement Rms repeatability has been estimated to be approximately of 0.8% [it

  4. Combined fractional resurfacing (10600 nm/1540 nm): Tridimensional imaging evaluation of a new device for skin rejuvenation.

    Science.gov (United States)

    Mezzana, Paolo; Valeriani, Maurizio; Valeriani, Roberto

    2016-11-01

    In this study were described the results, by tridimensional imaging evaluation, of the new "Combined Fractional Resurfacing" technique with the first fractional laser that overtakes the limits of traditional ablative, nonablative fractional resurfacing by combining CO 2 ablative and GaAs nonablative lasers. These two wavelengths can work separately or in a mixed modality to give the best treatment choice to all the patients. In this study, it is demonstrated that the simultaneous combination of the CO 2 wavelength (10600 nm) and GaAs wavelength (1540 nm) reduced the downtime, reduced pain during the treatment, and produced better results on fine wrinkles reduction and almost the same results on pigmentation as seen with 3D analysis by Antera (Miravex).

  5. A reflectivity profilometer for the optical characterisation of grade reflectivity mirrors in the 250 nm - 1100 nm spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, Alessandro; Nichelatti, Enrico [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione

    1998-04-01

    It`s developed the prototype of an instrument that can be used for the optical characterisation of graded reflectivity mirrors at any wavelength in the spectral region from 250 nm to 1100 nm. The instrument utilises a high-pressure Xe arc lamp as light source. Light is spectrally filtered by means of a grating monochromator. The sample is illuminated with an image of the monochromator exit slit. After reflection from the sample, this image is projected onto a 1024-elements charge-coupled device linear array driven by a digital frame board and interfaced with a personal computer. It`s tested the instrument accuracy by comparing measurement results with the corresponding ones obtained by means of a laser scanning technique. Measurement Rms repeatability has been estimated to be approximately of 0.8%. [Italiano] E` stato sviluppato il prototipo di uno strumento per la catatterizzazione ottica di specchi a riflettivita` variabile, operante a qualsiasi lunghezza d`onda nell`intervallo spettrale da 250 nm a 1100 nm. La sorgente dello strumento e` una lampada ad arco allo Xenon ad alta pressione. La luce e` filtrata spettralmente per mezzo di un monocromatore a reticolo. Il campione viene illuminato da un`immagine della fenditura d`uscita del monocromatore. Dopo essere stata riflessa dal campione, questa immagine viene proiettata su un array CCD lineare a 1024 elementi, connesso elettronicamente a una scheda digitale e interfacciato a un personal computer. L`accuratezza dello strumento e` stata verificata confrontando alcune misure con le corrispondenti misure ottenute mediante una tecnica a scansione laser. La ripetibilita` RMS delle misure e` stata stimata essere circa dello 0.8%.

  6. Intra-cavity upconversion to 631 nm of images illuminated by an eye-safe ASE source at 1550 nm.

    Science.gov (United States)

    Torregrosa, A J; Maestre, H; Capmany, J

    2015-11-15

    We report an image wavelength upconversion system. The system mixes an incoming image at around 1550 nm (eye-safe region) illuminated by an amplified spontaneous emission (ASE) fiber source with a Gaussian beam at 1064 nm generated in a continuous-wave diode-pumped Nd(3+):GdVO(4) laser. Mixing takes place in a periodically poled lithium niobate (PPLN) crystal placed intra-cavity. The upconverted image obtained by sum-frequency mixing falls around the 631 nm red spectral region, well within the spectral response of standard silicon focal plane array bi-dimensional sensors, commonly used in charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) video cameras, and of most image intensifiers. The use of ASE illumination benefits from a noticeable increase in the field of view (FOV) that can be upconverted with regard to using coherent laser illumination. The upconverted power allows us to capture real-time video in a standard nonintensified CCD camera.

  7. 5.5nm wavelength-tunable high-power MOPA diode laser system at 971 nm

    Science.gov (United States)

    Tawfieq, Mahmoud; Müller, André; Fricke, Jörg; Della Casa, Pietro; Ressel, Peter; Ginolas, Arnim; Feise, David; Sumpf, Bernd; Tränkle, Günther

    2018-02-01

    In this work, a widely tunable hybrid master oscillator power amplifier (MOPA) diode laser with 6.2 W of output power at 971.8 nm will be presented. The MO is a DBR laser, with a micro heater embedded on top of the DBR grating for wavelength tunability. The emitted light of the MO is collimated and coupled into a tapered amplifier using micro cylindrical lenses, all constructed on a compact 25 mm × 25 mm conduction cooled laser package. The MOPA system emits light with a measured spectral width smaller than 17 pm, limited by the spectrometer, and with a beam propagation factor of M2 1/e2 = 1.3 in the slow axis. The emission is thus nearly diffraction limited with 79% of the total power within the central lobe (4.9 W diffraction limited). The electrically controlled micro-heater provides up to 5.5 nm of wavelength tunability, up to a wavelength of 977.3 nm, while maintaining an output power variation of only +/- 0.16 % for the entire tuning range.

  8. Demonstration of pattern transfer into sub-100 nm polysilicon line/space features patterned with extreme ultraviolet lithography

    International Nuclear Information System (INIS)

    Cardinale, G. F.; Henderson, C. C.; Goldsmith, J. E. M.; Mangat, P. J. S.; Cobb, J.; Hector, S. D.

    1999-01-01

    In two separate experiments, we have successfully demonstrated the transfer of dense- and loose-pitch line/space (L/S) photoresist features, patterned with extreme ultraviolet (EUV) lithography, into an underlying hard mask material. In both experiments, a deep-UV photoresist (∼90 nm thick) was spin cast in bilayer format onto a hard mask (50-90 nm thick) and was subsequently exposed to EUV radiation using a 10x reduction EUV exposure system. The EUV reticle was fabricated at Motorola (Tempe, AZ) using a subtractive process with Ta-based absorbers on Mo/Si multilayer mask blanks. In the first set of experiments, following the EUV exposures, the L/S patterns were transferred first into a SiO 2 hard mask (60 nm thick) using a reactive ion etch (RIE), and then into polysilicon (350 nm thick) using a triode-coupled plasma RIE etcher at the University of California, Berkeley, microfabrication facilities. The latter etch process, which produced steep (>85 degree sign ) sidewalls, employed a HBr/Cl chemistry with a large (>10:1) etch selectivity of polysilicon to silicon dioxide. In the second set of experiments, hard mask films of SiON (50 nm thick) and SiO 2 (87 nm thick) were used. A RIE was performed at Motorola using a halogen gas chemistry that resulted in a hard mask-to-photoresist etch selectivity >3:1 and sidewall profile angles ≥85 degree sign . Line edge roughness (LER) and linewidth critical dimension (CD) measurements were performed using Sandia's GORA(c) CD digital image analysis software. Low LER values (6-9 nm, 3σ, one side) and good CD linearity (better than 10%) were demonstrated for the final pattern-transferred dense polysilicon L/S features from 80 to 175 nm. In addition, pattern transfer (into polysilicon) of loose-pitch (1:2) L/S features with CDs≥60 nm was demonstrated. (c) 1999 American Vacuum Society

  9. Spectral emissivity of tungsten: analytic expressions for the 340-nm to 2.6-μm spectral region

    International Nuclear Information System (INIS)

    Pon, R.M.; Hessler, J.P.

    1984-01-01

    To correct emission spectra a standard radiance source is often used to determine the spectral responsivity of the detection system. In the near-UV, visible, and near-IR spectral regions the most common radiance standard is a tungsten strip lamp calibrated by a standards laboratory. For day-to-day experiments where slightly less accuracy is acceptable, a less expensive uncalibrated lamp is useful. In this case, the radiant temperature T/sub r/ of the lamp is measured with an optical pyrometer, generally at a single wavelength such as 650 nm, and the source spectral radiance L(λ) is calculated from L(λ) = tau(λ)epsilon(λ,T)L/sub B/(λ,T). The transmittance of the source is tau(λ), the spectral emissivity is epsilon(λ,T), and L/sub B/(λ,T) is the spectral distribution of blackbody radiation, Planck's radiation law. To obtain the true temperature T, Wien's approximation is employed. To conveniently calibrate a system, especially one which utilizes a microcomputer, it is advantageous to have analytic expressions for the spectral emissivity of tungsten. Although Larrabee has published such expressions, they are limited to the 450-800-nm spectral region. To obtain analytic expressions from 340 nm to 2.6 μm they have used the measurements of DeVos. Although DeVos's results differ by 2% from those of Larrabee, this difference is assumed to be acceptable

  10. Novel 755-nm diode laser vs. conventional 755-nm scanned alexandrite laser: Side-by-side comparison pilot study for thorax and axillary hair removal.

    Science.gov (United States)

    Paasch, Uwe; Wagner, Justinus A; Paasch, Hartmut W

    2015-01-01

    Alexandrite (755 nm) and diode lasers (800-810 nm) are commonly used for hair removal. The alexandrite laser technology is somewhat cumbersome whereas new diode lasers are more robust. Recently, alexandrite-like 755 nm wavelength diodes became available. To compare the efficacy, tolerability, and subject satisfaction of a 755 nm diode laser operated in conventional (HR) and non-conventional in-motion (SHR) modes with a conventional scanned alexandrite 755 nm laser for chest and axillary hair removal. A prospective, single-center, proof of principle study was designed to evaluate the safety, efficacy and handling of a 755 nm diode laser system in comparison to a standard alexandrite 755 nm scanning hair removal laser. The new 755 nm diode is suitable to be used in SHR and HR mode and has been tested for its safety, efficacy and handling in a volunteer with success. Overall, both systems showed a high efficacy in hair reduction (88.8% 755 nm diode laser vs. 77.7% 755 nm alexandrite laser). Also, during the study period, no severe adverse effects were reported. The new 755 nm diode laser is as effective and safe as the traditional 755 nm alexandrite laser. Additionally, treatment with the 755 nm diode laser with HR and SHR modes was found to be less painful.

  11. Radiation safety

    International Nuclear Information System (INIS)

    Jain, Priyanka

    2014-01-01

    The use of radiation sources is a privilege; in order to retain the privilege, all persons who use sources of radiation must follow policies and procedures for their safe and legal use. The purpose of this poster is to describe the policies and procedures of the Radiation Protection Program. Specific conditions of radiation safety require the establishment of peer committees to evaluate proposals for the use of radionuclides, the appointment of a radiation safety officer, and the implementation of a radiation safety program. In addition, the University and Medical Centre administrations have determined that the use of radiation producing machines and non-ionizing radiation sources shall be included in the radiation safety program. These Radiation Safety policies are intended to ensure that such use is in accordance with applicable State and Federal regulations and accepted standards as directed towards the protection of health and the minimization of hazard to life or property. It is the policy that all activities involving ionizing radiation or radiation emitting devices be conducted so as to keep hazards from radiation to a minimum. Persons involved in these activities are expected to comply fully with the Canadian Nuclear Safety Act and all it. The risk of prosecution by the Department of Health and Community Services exists if compliance with all applicable legislation is not fulfilled. (author)

  12. Radiation biophysics in space

    International Nuclear Information System (INIS)

    Buecker, H.; Horneck, G.

    1983-01-01

    In a demonstration experiment bacterium sporules have been exposed to the space vacuum and to the solar radiation field at 254 nm, with the following results: 1) a short vacuum exposition of 1.3 h does not affect the vitality of the sporules, 2) the survival rate of humid sporules after UV-irradiation is consistent with terrestrial control samples, 3) after a simultaneous exposition to vacuum and solar UV-radiation the effect on the sporules is enhanced by a factor of ten as compared to the situation without vaccum exposition. Additional studies in biophysical simulation systems revealed, that the enhanced UV sensitivity is caused by the dehydration of the sporules. By this process the structure of the essential macromolecules in cell, such as DNA and proteins, is modified such that new photo-products can be formed. For these products the cells have no effective repair systems. (AJ) [de

  13. Reduced nonlinearities in 100-nm high SOI waveguides

    Science.gov (United States)

    Lacava, C.; Marchetti, R.; Vitali, V.; Cristiani, I.; Giuliani, G.; Fournier, M.; Bernabe, S.; Minzioni, P.

    2016-03-01

    Here we show the results of an experimental analysis dedicated to investigate the impact of optical non linear effects, such as two-photon absorption (TPA), free-carrier absorption (FCA) and free-carrier dispersion (FCD), on the performance of integrated micro-resonator based filters for application in WDM telecommunication systems. The filters were fabricated using SOI (Silicon-on-Insulator) technology by CEA-Leti, in the frame of the FP7 Fabulous Project, which aims to develop low-cost and high-performance integrated optical devices to be used in new generation passive optical- networks (NG-PON2). Different designs were tested, including both ring-based structures and racetrack-based structures, with single-, double- or triple- resonator configuration, and using different waveguide cross-sections (from 500 x 200 nm to 825 x 100 nm). Measurements were carried out using an external cavity tunable laser source operating in the extended telecom bandwidth, using both continuous wave signals and 10 Gbit/s modulated signals. Results show that the use 100-nm high waveguide allows reducing the impact of non-linear losses, with respect to the standard waveguides, thus increasing by more than 3 dB the maximum amount of optical power that can be injected into the devices before causing significant non-linear effects. Measurements with OOK-modulated signals at 10 Gbit/s showed that TPA and FCA don't affect the back-to-back BER of the signal, even when long pseudo-random-bit-sequences (PRBS) are used, as the FCD-induced filter-detuning increases filter losses but "prevents" excessive signal degradation.

  14. All-dry resist processes for 193-nm lithography

    Science.gov (United States)

    Horn, Mark W.; Maxwell, Brian E.; Kunz, Roderick R.; Hibbs, Michael S.; Eriksen, Lynn M.; Palmateer, Susan C.; Forte, Anthony R.

    1995-06-01

    We report on two different all-dry resist schemes for 193-nm lithography, one negative tone and one positive tone. Our negative tone resist is an extension of our initial work on all-dry photoresists. This scheme employs a bilayer in which the imaging layer is formed by plasma enhanced chemical vapor deposition (PECVD) from tetramethylsilane (TMS) and deposited onto PECVD carbon-based planarizing layers. Figure 1 shows SEMs of dark field and light field octagons patterned in projection on Lincoln Laboratory's 0.5-NA 193-nm Micrascan system. These 0.225-micrometers and 0.200-micrometers line and space features were obtained at a dose of approximately 58 mJ/cm2. Dry development of the exposed resist was accomplished using Cl2 chemistry in a helicon high-ion-density etching tool. Pattern transfer was performed in the helicon tool with oxygen-based chemistries. Recently, we have also developed an all-dry positive-tone silylation photoresist. This photoresist is a PECVD carbon-based polymer which is crosslinked by 193-nm exposure, enabling selective silylation similar to that initially reported by Hartney et al., with spin-applied polymers. In those polymers, for example polyvinylphenol, the silylation site concentration is fixed by the hydroxyl groups on the polymer precursors, thus limiting the silicon uptake per unit volume. With PECVD polymers, the total concentration of silylation sites and their depth can be tailored by varying plasma species as a function of time during the deposition. This affords the possibility of greater silicon uptake per unit volume and better depth control of the silylation profile. Figure 2 shows a SEM of 0.5-micrometers features patterned in plasma deposited silylation resist.

  15. Mutagenic action of non-ionizing radiations: its implication in radiation protection

    International Nuclear Information System (INIS)

    Madhvanath, U.; Subrahmanyam, P.; Sankaranarayanan, N.; Singh, D.R.

    1977-01-01

    Mutagenic effects of non-ionizing radiations except in the ultraviolet and near ultraviolet region are just not known. Results of the investigation carried out using a sensitive diploid yeast system, are presented. The arginine requiring mutant yeast strain BZ34 reverts to prototrophy following exposure to ionizing radiation. Reversion frequencies were determined following exposure to UV (254 nm), near ultraviolet (313, 353 nm) visible region (480 nm), neodymium laser (1.01 μm) and microwave (2450 MHz) radiations. An Aminco - Bowman Spectrophotofluorimeter was used to obtain wavelengths from UV to visible region. Yeast suspensions (concentration of 10 7 cells/ml) were irradiated to doses ranging from 10 7 to 10 9 erg/cm 3 as determined with potassium ferri-oxalate system. Exposure to laser pulses and microwave radiation ranged up to 45 J/cm 2 and 60 mW-h/cm 2 respectively. Results showed that the reversion induction efficiency decreased by six orders of magnitude from ionizing radiations to ultraviolet for the same absorbed dose and this efficiency has further decreased by a factor of fifteen when the wavelength is increased from 254 nm to 313 nm. Although killing could be effected with laser beams (45 J/cm 2 for 50% survival) no increase in the reversion was observed than the background level. It is concluded that radiation of wavelengths higher than 450 nm up to 12 cm studied is not mutagenic and with sufficient intensities of these radiations only killing of cells is possible due to thermal effects. This finding is compared with other known functional and morphological effects at cellular level due to low-level exposures of non-ionizing radiations

  16. Polishing Sapphire Substrates by 355 nm Ultraviolet Laser

    Directory of Open Access Journals (Sweden)

    X. Wei

    2012-01-01

    Full Text Available This paper tries to investigate a novel polishing technology with high efficiency and nice surface quality for sapphire crystal that has high hardness, wear resistance, and chemical stability. A Q-switched 355 nm ultraviolet laser with nanosecond pulses was set up and used to polish sapphire substrate in different conditions in this paper. Surface roughness Ra of polished sapphire was measured with surface profiler, and the surface topography was observed with scanning electronic microscope. The effects of processing parameters as laser energy, pulse repetition rate, scanning speed, incident angle, scanning patterns, and initial surface conditions on surface roughness were analyzed.

  17. High bit rate germanium single photon detectors for 1310nm

    Science.gov (United States)

    Seamons, J. A.; Carroll, M. S.

    2008-04-01

    There is increasing interest in development of high speed, low noise and readily fieldable near infrared (NIR) single photon detectors. InGaAs/InP Avalanche photodiodes (APD) operated in Geiger mode (GM) are a leading choice for NIR due to their preeminence in optical networking. After-pulsing is, however, a primary challenge to operating InGaAs/InP single photon detectors at high frequencies1. After-pulsing is the effect of charge being released from traps that trigger false ("dark") counts. To overcome this problem, hold-off times between detection windows are used to allow the traps to discharge to suppress after-pulsing. The hold-off time represents, however, an upper limit on detection frequency that shows degradation beginning at frequencies of ~100 kHz in InGaAs/InP. Alternatively, germanium (Ge) single photon avalanche photodiodes (SPAD) have been reported to have more than an order of magnitude smaller charge trap densities than InGaAs/InP SPADs2, which allowed them to be successfully operated with passive quenching2 (i.e., no gated hold off times necessary), which is not possible with InGaAs/InP SPADs, indicating a much weaker dark count dependence on hold-off time consistent with fewer charge traps. Despite these encouraging results suggesting a possible higher operating frequency limit for Ge SPADs, little has been reported on Ge SPAD performance at high frequencies presumably because previous work with Ge SPADs has been discouraged by a strong demand to work at 1550 nm. NIR SPADs require cooling, which in the case of Ge SPADs dramatically reduces the quantum efficiency of the Ge at 1550 nm. Recently, however, advantages to working at 1310 nm have been suggested which combined with a need to increase quantum bit rates for quantum key distribution (QKD) motivates examination of Ge detectors performance at very high detection rates where InGaAs/InP does not perform as well. Presented in this paper are measurements of a commercially available Ge APD

  18. Megasonic cleaning strategy for sub-10nm photomasks

    Science.gov (United States)

    Hsu, Jyh-Wei; Samayoa, Martin; Dress, Peter; Dietze, Uwe; Ma, Ai-Jay; Lin, Chia-Shih; Lai, Rick; Chang, Peter; Tuo, Laurent

    2016-10-01

    One of the main challenges in photomask cleaning is balancing particle removal efficiency (PRE) with pattern damage control. To overcome this challenge, a high frequency megasonic cleaning strategy is implemented. Apart from megasonic frequency and power, photomask surface conditioning also influences cleaning performance. With improved wettability, cleanliness is enhanced while pattern damage risk is simultaneously reduced. Therefore, a particle removal process based on higher megasonic frequencies, combined with proper surface pre-treatment, provides improved cleanliness without the unintended side effects of pattern damage, thus supporting the extension of megasonic cleaning technology into 10nm half pitch (hp) device node and beyond.

  19. 5 nm structures produced by direct laser writing

    International Nuclear Information System (INIS)

    Pavel, E; Jinga, S; Andronescu, E; Vasile, B S; Rotiu, E; Ionescu, L; Mazilu, C

    2011-01-01

    Here we present a new approach to overcome the optical diffraction limit by using novel materials. In the paper, we report experimental results obtained by high-resolution transmission electron microscopy (HRTEM) and optical absorption spectroscopy, for a fluorescent photosensitive glass-ceramic containing rare-earth ions such as samarium (Sm). Using a home built dynamic tester, with a low power laser, we recorded nanostructures having 5 nm line widths. In the line structure, measurements reveal the presence of silver nanocrystals with few nanometre sizes. HRTEM shows that there is a random orientation of the nanocrystals. A writing mechanism with three steps is proposed.

  20. Comparison of a novel high-power blue diode laser (λ=442 nm) with Ho:YAG (λ=2100 nm), Tm fiber (λ=1940 nm), and KTP (λ=532 nm) lasers for soft tissue ablation

    Science.gov (United States)

    Vinnichenko, Victoriya; Kovalenko, Anastasiya; Arkhipova, Valeriya; Yaroslavsky, Ilya; Altshuler, Gregory; Gapontsev, Valentin

    2018-02-01

    Three lasers were directly compared, including the Ho:YAG laser (λ = 2100 nm), Tm fiber laser (λ = 1940 nm) operating in 3 different modes (CW, regular pulse, and super pulse), and blue diode laser (λ = 442 nm) for vaporization and coagulation efficiency for treating blood-rich soft tissues, ex vivo, in a porcine kidney model at quasi-contact cutting in water. In addition, experimental results were compared with published data on performance of KTP laser (λ = 532 nm) at similar experimental settings (Power = 60 W and cutting speed = 2 mm/s). Tm fiber laser in pulsed mode and blue laser produced highest vaporization rates of 3.7 and 3.4 mm3/s, respectively. Tm fiber laser (in both CW and pulsed modes) also produced the largest coagulation zone among the laser sources tested. A carbonization zone was observed for Tm fiber laser in CW and pulsed modes, as well as for the blue diode laser. Tm fiber laser in super-pulse mode and Ho:YAG laser both resulted in irregular coagulation zones without carbonization. Comparison with known data for KTP laser revealed that tissue effects of the blue laser are similar to that of the KTP laser. These results suggest that the combination of the two lasers (Tm fiber and blue diode) in one system may achieve high cutting efficiency and optimal coagulation for hemostasis during surgical treatment. Ex vivo testing of the combined system revealed feasibility of this approach. The combination of the CW Tm fiber laser (120W) and the blue diode laser (60W) emitting through a combination tip were compared with CW 120 W Tm fiber laser alone and 120 W Ho:YAG laser. Vaporization rates measured 34, 28, and 6 mm3/s, and coagulation zones measured 0.6, 1.3, and 1.7 mm, respectively. A carbonization zone was only observed with CW Tm fiber laser. The vaporization rate of combined CW Tm fiber laser / blue diode laser was comparable to published data for KTP laser for equivalent total power. Thus, high-power blue diode laser, Tm fiber laser, and

  1. Diode laser spectroscopy of oxygen electronic band at 760 nm

    International Nuclear Information System (INIS)

    Lucchesini, A.; De Rosa, M.; Gozzini, S.

    1998-01-01

    Collisional broadening and shift coefficients have been obtained by analyzing the line shapes of oxygen absorptions in the 760 nm electronic band. By using a diode laser spectrometer with commercially available etherostructure Al x Ga 1-x As diode lasers operating in 'free-running mode', line shape parameters have been collected at room temperature by varying the gas pressure. A systematic study has been carried on seven absorption lines by scanning the diode laser emission wavelength around the gas resonances. The weak absorption lines have been detected by using the wavelength modulation (WM) spectroscopy technique with second-harmonic detection

  2. Printed sub-100 nm polymer-derived ceramic structures.

    Science.gov (United States)

    Duong, Binh; Gangopadhyay, Palash; Brent, Josh; Seraphin, Supapan; Loutfy, Raouf O; Peyghambarian, Nasser; Thomas, Jayan

    2013-05-01

    We proposed an unconventional fabrication technique called spin-on nanoprinting (SNAP) to generate and transfer sub-100 nm preceramic polymer patterns onto flexible and rigid substrates. The dimensions of printed nanostructures are almost the same as those of the mold, since the ceramic precursor used is a liquid. The printed patterns can be used as a replica for printing second-generation structures using other polymeric materials or they can be further converted to desirable ceramic structures, which are very attractive for high-temperature and harsh environment applications. SNAP is an inexpensive parallel process and requires no special equipment for operation.

  3. A 205GHz Amplifier in 90nm CMOS Technology

    Science.gov (United States)

    2017-03-01

    10.5dB power gain, Psat of -1.6dBm, and P1dB ≈ -5.8dBm in a standard 90nm CMOS process. Moreover, the design employs internal (layout-based) /external...other advantages, such as low- cost , reliability, and mixed-mode analog/digital chips, intensifying its usage in the mm-wave band [5]. CMOS has several... disadvantages at the higher frequency range with the worst case scenario happening when the device operates near its fmax. This is chiefly due to

  4. Spectroscopy of Pluto, 380-930 Nm at Six Longitudes

    Science.gov (United States)

    Cruikshank, D. P.; Pinilla-Alonso, N.; Lorenzi, V.; Grundy, William; Licandro, J.; Binzel, R. P.

    2014-01-01

    We have obtained spectra of the Pluto-Charon pair (unresolved) in the wavelength range 380-930 nm with resolution approx..450 at six roughly equally spaced longitudes. The data were taken in May and June, 2014, with the 4.2-m Isaac Newton Telescope at Roque de Los Muchachos Observatory in the Canary Islands, using the ACAM (auxiliary-port camera) in spectrometer mode, and using two solar analog stars. The new spectra clearly show absorption bands of solid CH4 at 620, 728, and 850-910 nm, which were known from earlier work. The 620-nm CH4 band is intrinsically very weak, and its appearance indicates a long optical path-length through the ice. This is especially true if it arises from CH4 dissolved in N2 ice. Earlier work (Owen et al. Science 261, 745, 1993) on the near-infrared spectrum of Pluto (1-2.5 microns) has shown that the CH4 bands are shifted to shorter wavelengths because the CH4 occurs as a solute in beta-phase crystalline N2. The optical path-length through the N2 crystals must be on the order of several cm to produce the N2 band observed at 2.15 microns. The new spectra exhibit a pronounced red slope across the entire wavelength range; the slope is variable with longitude, and differs in a small but significant way from that measured at comparable longitudes by Grundy & Fink (Icarus 124, 329, 1996) in their 15-year study of Pluto's spectrum (500-1000 nm). The new spectra will provide an independent means for calibrating the color filter bands on the Multispectral Visible Imaging Camera (MVIC) (Reuter et al. Space Sci. Rev. 140, 129, 2008) on the New Horizons spacecraft, which will encounter the Pluto-Charon system in mid-2015. They will also form the basis of modeling the spectrum of Pluto at different longitudes to help establish the nature of the non-ice component(s) of Pluto's surface. It is presumed that the non-ice component is the source of the yellow-red coloration of Pluto, which is known to be variable across the surface.

  5. Radiation safety

    International Nuclear Information System (INIS)

    Woods, D.A.

    1982-01-01

    Sections include: dose units, dose limits, dose rate, potential hazards of ionizing radiations, control of internal and external radiation exposure, personal dosemeters, monitoring programs and transport of radioactive material (packaging and shielding)

  6. Synchrotron radiation

    International Nuclear Information System (INIS)

    Hallmeier, K.H.; Meisel, A.; Ranft, J.

    1982-01-01

    The physical background and the properties of synchrotron radiation are described. The radiation offers many useful applications in the fields of spectroscopy and structural investigations. Some examples are given

  7. Diode-side-pumped intracavity frequency-doubled Nd:YAG/BaWO4 Raman laser generating average output power of 3.14 W at 590 nm.

    Science.gov (United States)

    Li, Shutao; Zhang, Xingyu; Wang, Qingpu; Zhang, Xiaolei; Cong, Zhenhua; Zhang, Huaijin; Wang, Jiyang

    2007-10-15

    We report a linear-cavity high-power all-solid-state Q-switched yellow laser. The laser source comprises a diode-side-pumped Nd:YAG module that produces 1064 nm fundamental radiation, an intracavity BaWO(4) Raman crystal that generates a first-Stokes laser at 1180 nm, and a KTP crystal that frequency doubles the first-Stokes laser to 590 nm. A convex-plane cavity is employed in this configuration to counteract some of the thermal effect caused by high pump power. An average output power of 3.14 W at 590 nm is obtained at a pulse repetition frequency of 10 kHz.

  8. Absorption of ultraviolet radiation by antarctic phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Vernet, M.; Mitchell, B.G. (Univ. of California-San Diego, La Jolla (United States))

    1990-01-09

    Antarctic phytoplankton contain UV-absorbing compounds that may block damaging radiation. Compounds that absorb from 320-340 nm were observed in spectral absorption of both particulates and in methanol extracts of the particulates. The decrease in the total concentration of these UV compounds with respect to chlorophyll a, as measured by the ratio of in vitro absorption at 335 nm to absorption at 665 nm is variable and decreases with depth. We observed up to 5-fold decrease in this ratio for samples within the physically mixes surface layer. The absorption of UV radiation in methanol extracts, which peaks from 320 to 340 nm, may be composed of several compounds. Shifts in peak absorption with depth (for example, from 331 nm at surface to 321 nm at 75 m), may be interpreted as a change in composition. Ratios of protective yellow xanthophylls (diadinoxanthin + diatoxanthin) to photosynthetic fucoxanthin-like pigments have highest values in surface waters. As these pigments also absorb in the near UV, their function might extend to protection as well as utilization of UV radiation for photosynthesis. We document strong absorption in the UV from 320-330 nm for Antarctic marine particulates. Below this region of the solar energy spectrum, absolute energy levels of incident radiation drop off dramatically. Only wavelengths shorter than about 320 nm will be significantly enhanced due to ozone depletion. If the absorption we observed serves a protective role for phytoplankton photosynthesis, it appears the peak band is in the region where solar energy increases rapidly, and not in the region where depletion would cause significant variations in absolute flux.

  9. Radiation monitoring

    International Nuclear Information System (INIS)

    Larsson, L.Eh.; B'yuli, D.K.; Karmikel, Dzh.Kh.E.

    1985-01-01

    Recommendations on radiation monitoring of personnel, used medical ionizing radiation source, are given. The necessity to carry out radiation monitoring of situation at medical personnel's positions and personnel dosimetry is marked. It is convenient to subdivide radiation monitoring into 3 types: usual, surgical and special. Usual monitoring is connected with current work; surgical monitoring is carried out to receive information during a concrete operation; special monitoring is used to detect possible deviation from standard conditions of work or when suspecting them

  10. Medical radiation

    International Nuclear Information System (INIS)

    1992-01-01

    This leaflet in the At-a-Glance Series describes the medical use of X-rays, how X-rays help in diagnosis, radiation protection of the patient, staff protection, how radioactive materials in nuclear medicine examinations help in diagnosis and the use of radiation in radiotherapy. Magnetic resonance imaging, a diagnostic technique involving no ionizing radiation, is also briefly examined. The role of the NRPB in the medical use of radiation is outlined. (UK)

  11. Induction of the SOS system in Escherichia coli after UVA (320 - 400 nm) irradiation

    International Nuclear Information System (INIS)

    Batbyamba, G.; Drasil, V.

    1988-01-01

    Induction of the SOS repair system in E. coli caused by broad-band (320 - 400 nm) UVA radiation and an oxygen effect in this induction were studied using the sfiA::lacZ operon fusion. Moreover, an oxygen effect on the broad-band UVA radiation-induced cell killing was studied. The experiments indicate that: (1) Broad-band UVA light can produce lethal damage to cells as well as DNA damage able to generate an SOS-inducing signal. This damage is O 2 -dependent to a significant extent: SOSIP (O 2 )/ SOSIP (Ar) = 1.61 and OER = 1.96; (2) After UVA irradiation the SOS induction factor increases monotonously in the time interval longer than 4 h indicating that the SOS-inducing DNA damage caused by UVA irradiation has a 'long-lived' character; (3) Oxic and hypoxic incubation following UVA irradiation carried out under aerobic and anaerobic conditions resulted in a strong oxygen effect: SOSIP(O 2 )/SOSIP(Ar) ∼ 5. On the basis of these results and literary data it was concluded that one of the main toxic photoproducts formed as a result of UVA irradiation of the cells in a culture medium might be hydrogen peroxide (H 2 O 2 ). H 2 O 2 decays gradually during post-irradiation incubation and yields reactive radical species, mainly OH radical, that result in a formation of SOS-inducing DNA damages and contribute to cell lethality, and prolonged SOS induction. (author)

  12. Superluminescence of cadmium sulfide crystals under pulse X-ray radiation

    International Nuclear Information System (INIS)

    Pavlovskaya, N.G.; Tarasov, M.D.; Balakin, V.A.; Varava, V.P.; Lobov, S.I.; Surskij, O.K.; Tsukerman, V.A.

    1977-01-01

    Studies were made to elucidate luminescence properties of CdS crystal radiated by short pulses of braking x-ray radiation. Such a radiation causes the appearance of superluminescence. The radiation was carried out at 295 and 170 K, the radiation dose being changed from 3600 to 1600 r/pulse. At the temperature of 295 K light luminescence was registered at the wave length of 528 nm and half-width of 15 nm. While the temperature lowers, the radiation shifts to the range of shorter wave lengths, and a decrease of the spectrum half-width is observed. With the increase of radiation dose the decrease of radiation spectrum half-width is observed. Approximate calculations show that to achieve the spectrum narrowing to 1 nm at room temperature it is necessary to increase radiation dose per pulse 5-6 times

  13. Ionizing radiation

    International Nuclear Information System (INIS)

    Dennis, J.A.

    1982-01-01

    The subject is discussed under the headings: characteristics of ionizing radiations; biological effects; comparison of radiation and other industrial risks; principles of protection; cost-benefit analysis; dose limits; the control and monitoring of radiation; reference levels; emergency reference levels. (U.K.)

  14. Radiation watchdog

    International Nuclear Information System (INIS)

    Manning, R.

    1984-01-01

    Designated by WHO as a Collaborating Centre, the Radiation Emergency Assistance Center/Training Site (REAC/TS) in Oak Ridge, Tennessee provides assistance to all countries of the Americas in radiation accidents including human contamination or overexposure. It also conducts courses in radiation emergency response for health professionals from throughout the world

  15. Radiation hazards

    International Nuclear Information System (INIS)

    Rausch, L.

    1979-01-01

    On a scientific basis and with the aid of realistic examples, the author gives a popular introduction to an understanding and judgment of the public discussion over radiation hazards: Uses and hazards of X-ray examinations, biological radiation effects, civilisation risks in comparison, origins and explanation of radiation protection regulations. (orig.) [de

  16. 240 nm UV LEDs for LISA test mass charge control

    Science.gov (United States)

    Olatunde, Taiwo; Shelley, Ryan; Chilton, Andrew; Serra, Paul; Ciani, Giacomo; Mueller, Guido; Conklin, John

    2015-05-01

    Test Masses inside the LISA Gravitational Reference Sensor must maintain almost pure geodesic motion for gravitational waves to be successfully detected. LISA requires residual test mass accelerations below 3 fm/s2/√Hz at all frequencies between 0.1 and 3 mHz. One of the well-known noise sources is associated with the charges on the test masses which couple to stray electrical potentials and external electromagnetic fields. LISA Pathfinder will use Hg-discharge lamps emitting mostly around 254 nm to discharge the test masses via photoemission in its 2015/16 flight. A future LISA mission launched around 2030 will likely replace the lamps with newer UV-LEDs. Presented here is a preliminary study of the effectiveness of charge control using latest generation UV-LEDs which produce light at 240 nm with energy above the work function of pure Au. Their lower mass, better power efficiency and small size make them an ideal replacement for Hg lamps.

  17. 240 nm UV LEDs for LISA test mass charge control

    International Nuclear Information System (INIS)

    Olatunde, Taiwo; Shelley, Ryan; Chilton, Andrew; Serra, Paul; Ciani, Giacomo; Mueller, Guido; Conklin, John

    2015-01-01

    Test Masses inside the LISA Gravitational Reference Sensor must maintain almost pure geodesic motion for gravitational waves to be successfully detected. LISA requires residual test mass accelerations below 3 fm/s 2 /√Hz at all frequencies between 0.1 and 3 mHz. One of the well-known noise sources is associated with the charges on the test masses which couple to stray electrical potentials and external electromagnetic fields. LISA Pathfinder will use Hg-discharge lamps emitting mostly around 254 nm to discharge the test masses via photoemission in its 2015/16 flight. A future LISA mission launched around 2030 will likely replace the lamps with newer UV-LEDs. Presented here is a preliminary study of the effectiveness of charge control using latest generation UV-LEDs which produce light at 240 nm with energy above the work function of pure Au. Their lower mass, better power efficiency and small size make them an ideal replacement for Hg lamps. (paper)

  18. Stress release during cyclic loading of 20 nm palladium films

    International Nuclear Information System (INIS)

    Lukáč, František; Vlček, Marián; Vlach, Martin; Wagner, Stefan; Uchida, Helmut; Pundt, Astrid; Bell, Anthony; Čížek, Jakub

    2015-01-01

    Highlights: • Repeated hydrogenation of 20 nm Pd films was investigated by in situ X-ray diffraction. • Hydride precipitates form coherent interfaces with matrix in nanocrystalline and epitaxial thin films. • Grain boundaries affect precipitation of the hydride phase in the nanocrystalline film. • Stress in epitaxial film is tensile due to different thermal expansion of Pd and sapphire. • After hydrogen absorption/desorption cycle the stress in both films becomes tensile. - Abstract: Gas phase loading of nanocrystalline and epitaxial 20 nm Pd films deposited on single crystalline sapphire substrates was studied in this work. The nanocrystalline film was deposited at room temperature and the epitaxial film deposited at 800 °C. The nanocrystalline film suffers from in-plane compressive stress imposed by atomic peening processes. The epitaxial film exhibits tensile stress caused by the different thermal expansion coefficients of Pd and sapphire substrate. Coherent phase transition into the hydride phase was observed both for the nanocrystalline and for the epitaxial film. For both films, the lattice parameters continuously increase during the phase transition to the hydride phase. Both films exhibit enhanced hydride formation pressure compared to bulk Pd. Misfit dislocations are formed at interface between Pd film and substrate during hydrogenation. This leads to irreversible change of stress state of the films subjected to sorption and desorption cycle with hydrogen

  19. Quality metric for accurate overlay control in <20nm nodes

    Science.gov (United States)

    Klein, Dana; Amit, Eran; Cohen, Guy; Amir, Nuriel; Har-Zvi, Michael; Huang, Chin-Chou Kevin; Karur-Shanmugam, Ramkumar; Pierson, Bill; Kato, Cindy; Kurita, Hiroyuki

    2013-04-01

    The semiconductor industry is moving toward 20nm nodes and below. As the Overlay (OVL) budget is getting tighter at these advanced nodes, the importance in the accuracy in each nanometer of OVL error is critical. When process owners select OVL targets and methods for their process, they must do it wisely; otherwise the reported OVL could be inaccurate, resulting in yield loss. The same problem can occur when the target sampling map is chosen incorrectly, consisting of asymmetric targets that will cause biased correctable terms and a corrupted wafer. Total measurement uncertainty (TMU) is the main parameter that process owners use when choosing an OVL target per layer. Going towards the 20nm nodes and below, TMU will not be enough for accurate OVL control. KLA-Tencor has introduced a quality score named `Qmerit' for its imaging based OVL (IBO) targets, which is obtained on the-fly for each OVL measurement point in X & Y. This Qmerit score will enable the process owners to select compatible targets which provide accurate OVL values for their process and thereby improve their yield. Together with K-T Analyzer's ability to detect the symmetric targets across the wafer and within the field, the Archer tools will continue to provide an independent, reliable measurement of OVL error into the next advanced nodes, enabling fabs to manufacture devices that meet their tight OVL error budgets.

  20. Scalability of Ferroelectric Tunnel Junctions to Sub-100 nm Dimensions

    Science.gov (United States)

    Abuwasib, Mohammad

    The ferroelectric tunnel junction (FTJ) is an emerging low-power device that has potential application as a non-volatile memory and logic element in beyond-CMOS circuits. As a beyond- CMOS device, it is necessary to investigate the device scaling limit of FTJs to sub-50 nm dimensions. In addition to the fabrication of scaled FTJs, the integration challenges and CMOS compatibility of the device needs to be addressed. FTJ device performance including ON/OFF ratio, memory retention time, switching endurance, write /read speed and power dissipation need to be characterized for benchmarking of this emerging device, compared to its charge-based counterparts such as DRAM, NAND/NOR flash, as well as to other emerging memory devices. In this dissertation, a detailed investigation of scaling of BaTiO3 (BTO) based FTJs was performed, from full-scale integration to electrical characterization. Two types of FTJs with La0.67Sr0.33MnO3 (LSMO) and SrRuO3 (SRO) bottom electrodes were investigated in this work namely; Co/BTO/LSMO and Co/BTO/SRO. A CMOS compatible fabrication process for integration of Co/BTO/LSMO FTJ devices ( 3x3 microm 2) was demonstrated for the first time using standard photolithography and self-aligned RIE technique. The fabricated FTJ device showed switching behavior, however, degradation of the LSMO contact was observed during the fabrication process. A detailed investigation of the contact properties of bottom electrode materials (LSMO, SRO) for BTO-based FTJs was performed. The process and thermal stability of different contact overlayers (Ti, Pt) was explained to understand the nature of the ohmic contacts for metal to SRO and LSMO layers. Noble metals-to-SRO was found to form the most stable contacts for FTJs. Based on this study, a systematic scalability study of Co/BTO/SRO FTJs was carried out from micron ( 3x3 microm2) to submicron ( 200x200 nm2) dimensions. Positive UP Negative Down (PUND) measurement confirms the ferroelectric properties of the BTO

  1. Safety and Efficacy of a 1550nm/1927nm Dual Wavelength Laser for the Treatment of Photodamaged Skin.

    Science.gov (United States)

    Narurkar, Vic A; Alster, Tina S; Bernstein, Eric F; Lin, Tina J; Loncaric, Anya

    2018-01-01

    BACKGROUND: Fractional photothermolysis (FP) is a popular treatment option for photodamaged skin and addresses shortcomings of ablative skin resurfacing and nonablative dermal remodeling. Previous studies have demonstrated that FP using the 1550nm wavelength has led to improvement of ultrastructural changes and clinical effects associated with photodamaged skin in the deeper dermal structures, while treatment with the 1927nm wavelength has shown clinical effects in the superficial dermis. Both wavelengths produce precise microscopic treatment zones (MTZs) in the skin. The two wavelengths used in combination may optimize the delivery of fractional nonablative resurfacing intended for dermal and epidermal coagulation of photodamage skin. OBJECTIVES: To evaluate the safety and efficacy of a 1550/1927 Laser System (Fraxel Dual, Solta), using both 1550nm and 1927nm wavelengths in combination for treatment of facial and non-facial photodamage. METHODS: Prospective, multi-center, post-market study in subjects with clinically identifiable photodamage (N=35) (Fitzpatrick skin types I-IV). Both 1550nm and 1927nm wavelengths were used at each treatment visit. Investigator assessment of the affected area(s) occurred at one week, one month and 3 months after a series of up to four treatments. Severity of adverse events (AEs) were assessed using a 4-point scale (where 0=none and 3=marked). Assessments included erythema, edema, hyperkeratosis, hyper- and hypo-pigmentation, scarring, itchiness, dryness, and flaking. Severity of photoaging, fine and coarse wrinkling, mottled hyperpigmentation, sallowness, and tactile roughness at baseline was assessed using the same scale. Investigators and subjects assessed overall appearance of photodamage and pigmentation based on a 5-point quartile improvement scale at all follow-up visits (where 0=no improvement and 4=very significant improvement [76%-100%]). RESULTS: There was a positive treatment effect at all study visits, with moderate

  2. Generation of femtosecond laser pulses at 396 nm in K3B6O10Cl crystal

    International Nuclear Information System (INIS)

    Zhang Ning-Hua; Huang Hang-Dong; Tian Wen-Long; Zhu Jiang-Feng; Teng Hao; Fang Shao-Bo; Wei Zhi-Yi; Wu Hong-Ping; Pan Shi-Lie

    2016-01-01

    K 3 B 6 O 10 Cl (KBOC), a new nonlinear optical crystal, shows potential advantages for the generation of deep ultraviolet (UV) light compared with other borate crystals. In this paper we study for the first time the second harmonic generation (SHG) of a femtosecond Ti:sapphire amplifier with this crystal. Laser power is obtained to be as high as 220 mW at the central wavelength of 396 nm with a 1-mm-long crystal, and the maximum SHG conversion efficiency reaches 39.3%. The typical pulse duration is 83 fs. The results show that second harmonic (SH) conversion efficiency has the room to be further improved and that the new nonlinear crystal is very suited to generate the high efficiency deep ultraviolet laser radiation below 266 nm. (paper)

  3. Investigating the effects of laser beams (532 and 660 nm) in annihilation of pistachio mould fungus using spectrophotometry analysis

    Science.gov (United States)

    Saghafi, S.; Penjweini, R.; Becker, K.; Kratky, K. W.; Dodt, H.-U.

    2010-09-01

    When moulds are illuminated by visible electromagnetic-EM radiations, several effects on nucleus materials and nucleotides can be detected. These effects have a significant influence on mould generation or destruction. This paper presents the effects and implications of a red diode laser beam (660 nm), a second-harmonics of a Nd:YAG laser emitting green beam (532 nm), or the combination of both, on the eradication of Pistachio mould fungus. Incident doses (ID) of both beams are kept identical throughout the experiment. The absorption spectrums of irradiated mouldy samples and the bright-greenish-yellow-fluorescence (BGYF) of fungus occurring in mould texture due to electronic excitation are investigated. We found that a combination of a green and a red laser beam with an ID of 0.5 J/cm2 provides the optimal effects on Pistachio mould fungus eradication.

  4. Induction of prophages in spores of Bacillus subtilis by ultraviolet irradiation from synchrotron orbital radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sadaie, Y.; Kada, T.; Ohta, Y. (National Inst. of Genetics, Mishima, Shizuoka (Japan)); Kobayashi, K.; Hieda, K.; Ito, T.

    1984-06-01

    Prophages were induced from Bacillus subtilis spores lysogenic with SP02 by ultraviolet (160 nm to 240 nm) irradiation from synchrotron orbital radiation (SR UV). SR UV at around 220 nm was most effective in the inactivation of spores and prophage induction from lysogenic spores, suggesting that the lesions are produced on the DNA molecule which eventually induces signals to inactivate the phage repressor.

  5. MULTI-LAYER MIRROR FOR RADIATION IN THE XUV WAVELENGHT RANGE AND METHOD FOR MANUFACTURE THEREOF

    NARCIS (Netherlands)

    Bijkerk, Frederik; Louis, Eric; Kessels, M.J.H.; Verhoeven, Jan; Den Hartog, Harmen Markus Johannes

    2002-01-01

    Multi-layer mirror for radiation with a wavelength in the wavelength range between 0.1 nm and 30 nm (the so-called XUV range), comprising a stack of thin films substantially comprising scattering particles which scatter the radiation, which thin films are separated by separating layers with a

  6. Spectral variations of UV-A and PAR solar radiation in estuarine waters of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Talaulikar, M.; Suresh, T.; Silveira, N.; Desa, E.; Matondkar, S; Lotlikar, A

    radiation (400 to 700 nm), PAR and ultraviolet radiation in the range 350-400 nm (UV-A) are presented here. The mean PAR values at the surface were 327 W/m sup(2) and reduced to 84 W/m sup(2) at first optical depth, Z sub(90) (m) in water. The first optical...

  7. Effects of UVA (320-400 nm) on the barrier characteristics of the skin

    International Nuclear Information System (INIS)

    McAuliffe, D.J.; Blank, I.H.

    1991-01-01

    The stratum corneum serves as the major barrier to the entrance of most molecules into the skin. In the studies presented here, the effects of UVA radiation (320-400 nm) on the barrier capacity of human stratum corneum were examined. Penetration of a homologous series of primary alcohols through unirradiated (control) and UVA-irradiated (test) human epidermis was determined in vitro. Permeability constants, kp, were calculated. Mean ratios of permeability constants for UVA-irradiated and unirradiated epidermis (mean kp test)/(mean kp control) ranged from 2.3 to 3.0 for methanol and from 2.2 to 2.5 for ethanol. These mean ratios were determined using different pieces of epidermis from the same piece of skin for test and control samples. When kp control and kp test were determined on the same piece of epidermis on successive days, the ratios (kp test/kp control) were similar to the mean ratios determined on different pieces of epidermis. For other primary alcohols, propanol, butanol, hexanol, and heptanol, UVA radiation did not alter their permeability constants significantly. Partition coefficients, Km, were determined for ethanol and heptanol using UVA-irradiated and unirradiated stratum corneum. For ethanol, irradiation resulted in a 1.5 to 2.6 times increase in Km. For heptanol, irradiation caused no change in Km. These results demonstrate that the barrier capacity of stratum corneum for small, polar, primary alcohols is diminished (permeability increases) and for higher molecular weight less polar alcohols, is unaffected by small doses of UVA radiation. This increased permeability of small polar alcohols through human skin may be due to enhanced partitioning into UVA-irradiated stratum corneum, which was not apparent for a higher molecular weight less polar alcohol

  8. Ionizing radiations

    International Nuclear Information System (INIS)

    Newton, W.

    1984-01-01

    The purpose of this article is to simplify some of the relevant points of legislation, biological effects and protection for the benefit of the occupational health nurse not familiar with the nuclear industries. The subject is dealt with under the following headings; Understanding atoms. What is meant by ionizing radiation. Types of ionizing radiation. Effects of radiation: long and short term somatic effects, genetic effects. Control of radiation: occupational exposure, women of reproductive age, medical aspects, principles of control. The occupational health nurse's role. Emergency arrangements: national arrangements for incidents involving radiation, action to be taken by the nurse. Decontamination procedures: external and internal contamination. (U.K.)

  9. Radiation imaging

    Energy Technology Data Exchange (ETDEWEB)

    Redmayne, I.

    1986-05-21

    A detector for the detection of radiation such as X-ray radiation comprises an array of scintillation elements embedded in a sheet of radiation absorbing material. The scintillation elements are monitored individually, for example by a corresponding array of photodiodes, to build up a picture of the incident radiation. The front face of the sheet and the inner walls of the bores may be coated with a reflective material. The detector finds particular application in weld radiography. The detector may be stepped relative to the radiation source, the signals produced by the rows of the detector as they pass a predetermined point being summed.

  10. Radiation imaging

    International Nuclear Information System (INIS)

    Redmayne, Ian.

    1986-01-01

    A detector for the detection of radiation such as X-ray radiation comprises an array of scintillation elements embedded in a sheet of radiation absorbing material. The scintillation elements are monitored individually, for example by a corresponding array of photodiodes, to build up a picture of the incident radiation. The front face of the sheet and the inner walls of the bores may be coated with a reflective material. The detector finds particular application in weld radiography. The detector may be stepped relative to the radiation source, the signals produced by the rows of the detector as they pass a predetermined point being summed. (author)

  11. Estimating Catchment-Scale Snowpack Variability in Complex Forested Terrain, Valles Caldera National Preserve, NM

    Science.gov (United States)

    Harpold, A. A.; Brooks, P. D.; Biederman, J. A.; Swetnam, T.

    2011-12-01

    Difficulty estimating snowpack variability across complex forested terrain currently hinders the prediction of water resources in the semi-arid Southwestern U.S. Catchment-scale estimates of snowpack variability are necessary for addressing ecological, hydrological, and water resources issues, but are often interpolated from a small number of point-scale observations. In this study, we used LiDAR-derived distributed datasets to investigate how elevation, aspect, topography, and vegetation interact to control catchment-scale snowpack variability. The study area is the Redondo massif in the Valles Caldera National Preserve, NM, a resurgent dome that varies from 2500 to 3430 m and drains from all aspects. Mean LiDAR-derived snow depths from four catchments (2.2 to 3.4 km^2) draining different aspects of the Redondo massif varied by 30%, despite similar mean elevations and mixed conifer forest cover. To better quantify this variability in snow depths we performed a multiple linear regression (MLR) at a 7.3 by 7.3 km study area (5 x 106 snow depth measurements) comprising the four catchments. The MLR showed that elevation explained 45% of the variability in snow depths across the study area, aspect explained 18% (dominated by N-S aspect), and vegetation 2% (canopy density and height). This linear relationship was not transferable to the catchment-scale however, where additional MLR analyses showed the influence of aspect and elevation differed between the catchments. The strong influence of North-South aspect in most catchments indicated that the solar radiation is an important control on snow depth variability. To explore the role of solar radiation, a model was used to generate winter solar forcing index (SFI) values based on the local and remote topography. The SFI was able to explain a large amount of snow depth variability in areas with similar elevation and aspect. Finally, the SFI was modified to include the effects of shading from vegetation (in and out of

  12. Atmospheric radiation monitor

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.A. Leigui de; Peixoto, C.J. Todero; Leao, M.S.A.B.; Luzio, V.P. [Universidade Federal do ABC (UFABC), SP (Brazil); Barbosa, A.F.; Lima Junior, H.P.; Vilar, A.B.; Gama, R.G.; Ferraz, V.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text: The Atmospheric Radiation Monitor (MonRAt) is a compact telescope designed to detect fluorescence photons generated in the atmosphere by ultra-high energy cosmic rays showers with energies in the interval between 10{sup 17} eV and 10{sup 18} eV. It is composite by a 64 pixels MultiAnodic PhotoMultiplier Tube (MAPMT) placed at the focus of a parabolic mirror mounted in a Newtonian telescope setup and the data acquisition system. In front of the MAPMT photocathode, filters will be positioned to select light with wavelength in the near ultraviolet region (300 nm < {lambda} < 450 nm) where the nitrogen fluorescent emissions occurs. The data acquisition system consists of a set of pre-amplifiers and FPGA-based boards able to record trigger times and waveforms from each channel and send the data to a computer by USB ports. MonRAt will be used to detect fluorescence photons under different atmospheric conditions (pressure, temperature, humidity, local geomagnetic field, etc) and will contribute with a detailed study of the fluorescence radiation yield. The assembly of the telescope is under way and we present in this work the status of the experiment and its first measurements in the laboratory. (author)

  13. Atmospheric radiation monitor

    International Nuclear Information System (INIS)

    Oliveira, M.A. Leigui de; Peixoto, C.J. Todero; Leao, M.S.A.B.; Luzio, V.P.; Barbosa, A.F.; Lima Junior, H.P.; Vilar, A.B.; Gama, R.G.; Ferraz, V.A.

    2011-01-01

    Full text: The Atmospheric Radiation Monitor (MonRAt) is a compact telescope designed to detect fluorescence photons generated in the atmosphere by ultra-high energy cosmic rays showers with energies in the interval between 10 17 eV and 10 18 eV. It is composite by a 64 pixels MultiAnodic PhotoMultiplier Tube (MAPMT) placed at the focus of a parabolic mirror mounted in a Newtonian telescope setup and the data acquisition system. In front of the MAPMT photocathode, filters will be positioned to select light with wavelength in the near ultraviolet region (300 nm < λ < 450 nm) where the nitrogen fluorescent emissions occurs. The data acquisition system consists of a set of pre-amplifiers and FPGA-based boards able to record trigger times and waveforms from each channel and send the data to a computer by USB ports. MonRAt will be used to detect fluorescence photons under different atmospheric conditions (pressure, temperature, humidity, local geomagnetic field, etc) and will contribute with a detailed study of the fluorescence radiation yield. The assembly of the telescope is under way and we present in this work the status of the experiment and its first measurements in the laboratory. (author)

  14. Radiation protection

    International Nuclear Information System (INIS)

    Jain, Aman; Sharma, Shivam; Parasher, Abhishek

    2014-01-01

    Radiation dose measurement, field of radiobiology, is considered to be critical factor for optimizing radiation protection to the health care practitioners, patients and the public. This lead to equipment that has dose - area product meters permanently installed. In many countries and even institution, the range of equipment is vast and with the opportunity for radiation protection and dose recording varies considerably. Practitioners must move with the changed demands of radiation protection but in many cases without assistance of modern advancements in technology Keeping the three basic safety measures Time, Dose and Shielding we can say 'Optimum dose is safe dose' instead of 'No dose is safe dose'. The purpose enclosed within the title 'Radiation Protection'. The use of radiation is expanding widely everyday around the world and crossing boundaries of medical imaging, diagnostic and. The way to get the ''As low as reasonably achievable' is only achievable by using methodology of radiation protection and to bring the concern of general public and practitioners over the hazards of un-necessary radiation dose. Three basic principles of radiation protection are time, distance and shielding. By minimizing the exposure time increasing the distance and including the shielding we can reduce the optimum range of dose. The ability of shielding material to attenuate radiation is generally given as half value layer. This is the thickness of the material which will reduce the amount of radiation by 50%. Lab coat and gloves must be worn when handling radioactive material or when working in a labeled radiation work area. Safety glasses or other appropriate splash shields should be used when handling radioactive material. 1. Reached to low dose level to occupational workers, public as per prescribed dose limit. 2. By mean of ALARA principle we achieved the protection from radiation besides us using the radiation for our benefit

  15. Deposition and characterization of ITO films produced by laser ablation at 355 nm

    DEFF Research Database (Denmark)

    Holmelund, E.; Thestrup Nielsen, Birgitte; Schou, Jørgen

    2002-01-01

    Indium tin oxide (ITO) films have been deposited by pulsed laser deposition (PLD) at 355 nm. Even though the absorption of laser light at the wavelength 355 nm is much smaller than that of the standard excimer lasers for PLD at 248 nm and 193 nm, high-quality films can be produced. At high fluence...

  16. Q-switched Nd:YAG/V:YAG microchip 1338 nm laser for laser-induced breakdown spectroscopy

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    Q-switched microchip laser emitting radiation at wavelength 1338nm was tested as a radiation source for laser induced breakdown spectroscopy (LIBS). This laser used sandwich crystal which combined in one piece the cooling part (undoped YAG crystal 4mm long), the active laser part (Nd:YAG crystal 12mm long), and the saturable absorber (V:YAG crystal 0.7mm long). The diameter of this crystal was 5 mm. The microchip resonator consisted of dielectric mirrors directly deposited on the monolith crystal surfaces. The pump mirror (HT @ 808 nm, HR @ 1.3 ¹m) was placed on the undoped YAG part. The output coupler (R = 90% @ 1338 nm) was placed on the V:YAG part. The fibre-coupled 808nm pumping laser diode was operating in pulsed regime (rep. rate 250 Hz, pulse width 300 ¹s, pulse energy 6 mJ). Using this pumping, stable and high reproducible Q-switched pulses were generated at wavelength 1338 nm. Pulse length was 6.2 ns (FWHM) and the mean output power was 33mW. The single pulse energy and peak power was 0.13mJ and 21kW, respectively. Laser was operating in fundamental TEM00 mode. The laser radiation was focused on a tested sample using single plano-convex lens (focal length 75 mm). The focal spot radius was 40 ¹m. The corresponding peak-power density was 0.83GW/cm2. The laser induced break-down was successfully reached and corresponding laser-induced plasma spectra were recorded for set of metallic elements (Cu, Ag, Au, In, Zn, Al, Fe, Ni, Cr) and alloys (Sn-Pb solder, duralumin, stainless-steel, brass). To record the spectra, StellarNet BLACK-Comet concave grating CCD-based spectrometer was used without any special collimation optics. Thanks to used laser wavelength far from the detector sensitivity, no special filtering was needed to overcome the CCD dazzling. The constructed laser could significantly improve repletion-rate of up-to-date LIBS devices.

  17. NM-Scale Anatomy of an Entire Stardust Carrot Track

    Science.gov (United States)

    Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Messenger, S.

    2009-01-01

    Comet Wild-2 samples collected by NASA s Stardust mission are extremely complex, heterogeneous, and have experienced wide ranges of alteration during the capture process. There are two major types of track morphologies: "carrot" and "bulbous," that reflect different structural/compositional properties of the impactors. Carrot type tracks are typically produced by compact or single mineral grains which survive essentially intact as a single large terminal particle. Bulbous tracks are likely produced by fine-grained or organic-rich impactors [1]. Owing to their challenging nature and especially high value of Stardust samples, we have invested considerable effort in developing both sample preparation and analytical techniques tailored for Stardust sample analyses. Our report focuses on our systematic disassembly and coordinated analysis of Stardust carrot track #112 from the mm to nm-scale.

  18. Pollution Prevention Opportunity Assessment for the SNL/NM cafeterias.

    Energy Technology Data Exchange (ETDEWEB)

    McCord, Samuel Adam

    2005-12-01

    This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the two Sandia National Laboratories/New Mexico cafeteria facilities between May and August 2005. The primary purpose of this PPOA is to assess waste and resource reduction opportunities and issue Pollution Prevention (P2) recommendations for Sandia's food service facilities. This PPOA contains recommendations for energy, water and resource reduction, as well as material substitution based upon environmentally preferable purchasing. Division 3000 has requested the PPOA report as part of the Division's compliance effort to implement the Environmental Management System (EMS) per DOE Order 450.1. This report contains a summary of the information collected and analyses performed with recommended options for implementation. The SNL/NM P2 Group will work with Division 3000 and the respective cafeteria facilities to implement these options.

  19. Extreme ultraviolet resist materials for sub-7 nm patterning

    KAUST Repository

    Li, Li; Liu, Xuan; Pal, Shyam; Wang, Shulan; Ober, Christopher K.; Giannelis, Emmanuel P.

    2017-01-01

    Continuous ongoing development of dense integrated circuits requires significant advancements in nanoscale patterning technology. As a key process in semiconductor high volume manufacturing (HVM), high resolution lithography is crucial in keeping with Moore's law. Currently, lithography technology for the sub-7 nm node and beyond has been actively investigated approaching atomic level patterning. EUV technology is now considered to be a potential alternative to HVM for replacing in some cases ArF immersion technology combined with multi-patterning. Development of innovative resist materials will be required to improve advanced fabrication strategies. In this article, advancements in novel resist materials are reviewed to identify design criteria for establishment of a next generation resist platform. Development strategies and the challenges in next generation resist materials are summarized and discussed.

  20. EST Table: NM_001111334 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available NM_001111334 Br-c 10/09/29 81 %/420 aa ref|NP_001104804.1| broad-complex isoform Z1... [Bombyx mori] dbj|BAD23978.1| broad-complex Z1-isoform [Bombyx mori] dbj|BAD23983.1| broad-complex Z1-isofo...rm [Bombyx mori] dbj|BAD24045.1| Broad-Complex isoform Z1 [Bombyx mori] dbj|BAD24046.1| Broad-Complex isofor...m Z1 [Bombyx mori] dbj|BAD46732.1| broad-complex A-Z1 isoform [Bombyx mori] dbj|BAD46739.1| broad...-complex B-Z1 isoform [Bombyx mori] dbj|BAF43564.1| Broad-Complex isoform Z1 [Bombyx mori] 1

  1. Database of average-power damage thresholds at 1064 nm

    International Nuclear Information System (INIS)

    Rainer, F.; Hildum, E.A.; Milam, D.

    1987-01-01

    We have completed a database of average-power, laser-induced, damage thresholds at 1064 nm on a variety of materials. Measurements were made with a newly constructed laser to provide design input for moderate and high average-power laser projects. The measurements were conducted with 16-ns pulses at pulse-repetition frequencies ranging from 6 to 120 Hz. Samples were typically irradiated for time ranging from a fraction of a second up to 5 minutes (36,000 shots). We tested seven categories of samples which included antireflective coatings, high reflectors, polarizers, single and multiple layers of the same material, bare and overcoated metal surfaces, bare polished surfaces, and bulk materials. The measured damage threshold ranged from 2 for some metals to > 46 J/cm 2 for a bare polished glass substrate. 4 refs., 7 figs., 1 tab

  2. Photooxidation of polystyrene: irradiation at 254 and 365 nm

    International Nuclear Information System (INIS)

    Otocka, E.P.; Curran, S.; Porter, R.S.

    1983-01-01

    Studies have been made of the near surface photooxidation of atactic polystyrene films prepared in the absence of air. The samples were photooxidized on exposure to air at two frequencies, 254 and 365 nm, using a calibrated mercury irradiation source with filters. Most studies were made at 40 0 C and as a function of irradiation time with the reactions characterized by changes in molecular weight and composition. The former was evaluated by gel permeation chromatography and the latter by transmission Fourier transform infrared ir spectroscopy and by multiple-internal-reflectance ir spectra using different angles and different crystals to evaluate compositions as a function of film depth. Species identified in photooxidation include the generation of hydroperoxides and the appearance of carbonyl bands with the latter identified by the spectral shift associated with the exposure of the photooxidized polystyrene surface to ammonia. These results suggest that principal products of near-surface oxidation of polystyrene are carboxylic acids. 6 figures, 1 table

  3. Extreme ultraviolet resist materials for sub-7 nm patterning.

    Science.gov (United States)

    Li, Li; Liu, Xuan; Pal, Shyam; Wang, Shulan; Ober, Christopher K; Giannelis, Emmanuel P

    2017-08-14

    Continuous ongoing development of dense integrated circuits requires significant advancements in nanoscale patterning technology. As a key process in semiconductor high volume manufacturing (HVM), high resolution lithography is crucial in keeping with Moore's law. Currently, lithography technology for the sub-7 nm node and beyond has been actively investigated approaching atomic level patterning. EUV technology is now considered to be a potential alternative to HVM for replacing in some cases ArF immersion technology combined with multi-patterning. Development of innovative resist materials will be required to improve advanced fabrication strategies. In this article, advancements in novel resist materials are reviewed to identify design criteria for establishment of a next generation resist platform. Development strategies and the challenges in next generation resist materials are summarized and discussed.

  4. Wide modulation bandwidth terahertz detection in 130 nm CMOS technology

    Science.gov (United States)

    Nahar, Shamsun; Shafee, Marwah; Blin, Stéphane; Pénarier, Annick; Nouvel, Philippe; Coquillat, Dominique; Safwa, Amr M. E.; Knap, Wojciech; Hella, Mona M.

    2016-11-01

    Design, manufacturing and measurements results for silicon plasma wave transistors based wireless communication wideband receivers operating at 300 GHz carrier frequency are presented. We show the possibility of Si-CMOS based integrated circuits, in which by: (i) specific physics based plasma wave transistor design allowing impedance matching to the antenna and the amplifier, (ii) engineering the shape of the patch antenna through a stacked resonator approach and (iii) applying bandwidth enhancement strategies to the design of integrated broadband amplifier, we achieve an integrated circuit of the 300 GHz carrier frequency receiver for wireless wideband operation up to/over 10 GHz. This is, to the best of our knowledge, the first demonstration of low cost 130 nm Si-CMOS technology, plasma wave transistors based fast/wideband integrated receiver operating at 300 GHz atmospheric window. These results pave the way towards future large scale (cost effective) silicon technology based terahertz wireless communication receivers.

  5. Extreme ultraviolet resist materials for sub-7 nm patterning

    KAUST Repository

    Li, Li

    2017-06-26

    Continuous ongoing development of dense integrated circuits requires significant advancements in nanoscale patterning technology. As a key process in semiconductor high volume manufacturing (HVM), high resolution lithography is crucial in keeping with Moore\\'s law. Currently, lithography technology for the sub-7 nm node and beyond has been actively investigated approaching atomic level patterning. EUV technology is now considered to be a potential alternative to HVM for replacing in some cases ArF immersion technology combined with multi-patterning. Development of innovative resist materials will be required to improve advanced fabrication strategies. In this article, advancements in novel resist materials are reviewed to identify design criteria for establishment of a next generation resist platform. Development strategies and the challenges in next generation resist materials are summarized and discussed.

  6. TMV Disk Scaffolds for Making sub-30 nm Silver Nanorings.

    Science.gov (United States)

    Bayram, Serene; Zahr, Omar; Del Re, Julia; Blum, Amy Szuchmacher

    2018-01-01

    Nanosized bioscaffolds can be utilized to tackle the challenge of size reduction of metallic rings owing to their miniature features as well as their well-known biomineralization capacity. The tobacco mosaic virus coat protein is used as a command surface to grow and assemble silver nanoparticles into sub-30 nm rings. The versatility of TMV allows the formation of both solid silver rings and rings consisting of discrete silver nanoparticles. The pH-dependent coulombic surface map along with the annular geometry of the protein aggregate allow the generation of rings with or without a central nanoparticle. Our silver rings are believed to be the smallest to date, and they can offer a test material for existing theories on metallic nanorings of this heretofore unreached size scale.

  7. Sub-10 nm patterning with DNA nanostructures: a short perspective

    Science.gov (United States)

    Du, Ke; Park, Myeongkee; Ding, Junjun; Hu, Huan; Zhang, Zheng

    2017-11-01

    DNA is the hereditary material that contains our unique genetic code. Since the first demonstration of two-dimensional (2D) nanopatterns by using designed DNA origami ˜10 years ago, DNA has evolved into a novel technique for 2D and 3D nanopatterning. It is now being used as a template for the creation of sub-10 nm structures via either ‘top-down’ or ‘bottom-up’ approaches for various applications spanning from nanoelectronics, plasmonic sensing, and nanophotonics. This perspective starts with an histroric overview and discusses the current state-of-the-art in DNA nanolithography. Emphasis is put on the challenges and prospects of DNA nanolithography as the next generation nanomanufacturing technique.

  8. Technology of focus detection for 193nm projection lithographic tool

    Science.gov (United States)

    Di, Chengliang; Yan, Wei; Hu, Song; Xu, Feng; Li, Jinglong

    2012-10-01

    With the shortening printing wavelength and increasing numerical aperture of lithographic tool, the depth of focus(DOF) sees a rapidly drop down trend, reach a scale of several hundred nanometers while the repeatable accuracy of focusing and leveling must be one-tenth of DOF, approximately several dozen nanometers. For this feature, this article first introduces several focusing technology, Obtained the advantages and disadvantages of various methods by comparing. Then get the accuracy of dual-grating focusing method through theoretical calculation. And the dual-grating focusing method based on photoelastic modulation is divided into coarse focusing and precise focusing method to analyze, establishing image processing model of coarse focusing and photoelastic modulation model of accurate focusing. Finally, focusing algorithm is simulated with MATLAB. In conclusion dual-grating focusing method shows high precision, high efficiency and non-contact measurement of the focal plane, meeting the demands of focusing in 193nm projection lithography.

  9. Spectral narrowing of a 980 nm tapered diode laser bar

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Lucas Leclin, Gaëlle

    2011-01-01

    High power diode laser bars are interesting in many applications such as solid state laser pumping, material processing, laser trapping, laser cooling and second harmonic generation. Often, the free running laser bars emit a broad spectrum of the order of several nanometres which limit their scope...... been "smile corrected" using individual phase masks for each emitter. The external cavity consists of the laser bar, both fast and slow axis micro collimators, smile correcting phase mask, 6.5x beam expanding lens combination, a 1200 lines/mm reflecting grating with 85% efficiency in the first order......, a slow axis focusing cylindrical lens of 40 mm focal length and an output coupler which is 10% reflective. In the free running mode, the laser emission spectrum was 5.5 nm wide at an operating current of 30A. The output power was measured to be in excess of 12W. Under the external cavity operation...

  10. Time-resolved photodissociation of oxygen at 162 nm

    International Nuclear Information System (INIS)

    Trushin, Sergei A; Schmid, Wolfram E; Fuss, Werner

    2011-01-01

    Oxygen was excited by 10 fs pulses in the Schumann-Runge continuum at 162 nm, which is by 0.57 eV above the dissociation limit. It was probed by high-intensity ionization at 810 nm with 10 14 W cm -2 , measuring the ion yields. The O 2 + signal decays in 4.3 fs, which is much shorter than the expected time for dissociation. It is ascribed to a rapid decay of the ionization probability. In a similar time, the ion in the second excited state (with excess energy taken over from the neutral) reaches the dissociation limit, whereas this time would be much longer from the two lower ion states. In fact, the O + signal rises to a (first) maximum at 6 fs. The preference for the higher ion state is rationalized by an intermediate resonance in the neutral molecule for which the polarization dependence also provides evidence. But the shape of the O + signal is very odd: it exhibits three maxima (at 6, 29 and 53 fs) of increasing intensity, before decaying rapidly (≤3.5 fs) to a pedestal. In contrast to the first maximum, the others appear at times when there is practically no interatomic force left in the excited state. We postulate a highly repulsive doubly excited state as a resonance for interpreting the second maximum, and for the third an ion-pair state lying further outside. Comparison is made with enhanced ionization, which has often been found at large interatomic distances on multiple ionization in strong laser fields. Consistent with this mechanism is the absence of similar observations at negative delay times, where five fundamental photons act as a pump and the fifth harmonic as a probe.

  11. Atoms, Radiation, and Radiation Protection

    CERN Document Server

    Turner, James E

    2007-01-01

    Atoms, Radiation, and Radiation Protection offers professionals and advanced students a comprehensive coverage of the major concepts that underlie the origins and transport of ionizing radiation in matter. Understanding atomic structure and the physical mechanisms of radiation interactions is the foundation on which much of the current practice of radiological health protection is based. The work covers the detection and measurement of radiation and the statistical interpretation of the data. The procedures that are used to protect man and the environment from the potential harmful effects of

  12. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with the design and measurement of physical parameters used in theory or to support biological experiments. The radiation biophysics program tests and uses the theoretical developments for experimental design, and provides information for further theoretical development through experiments on cellular systems

  13. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with design and measurement of those physical parameters used in the theory or to support biological experiments. The radiation biophysics program tests and makes use of the theoretical developments for experimental design. Also, this program provides information for further theoretical development through experiments on cellular systems

  14. The effects of exogenous catalase on broad-spectrum near-UV (300-400nm) treated Escherichia coli cells

    International Nuclear Information System (INIS)

    Sammartano, L.J.; Tuveson, R.W.

    1984-01-01

    Catalase incorporated into plating medium protects against inactivation and mutagenesis by broad-spectrum near-ultraviolet wavelength (300-400nm) (NUV) radiation in strains of Escherichia coli. Plating medium containing catalase does not provide protection against inactivation by wavelengths in the FUV region. Catalase added to the cell suspension during or added immediately after NUV exposure also protects against inactivation. The protection provided by catalase suggests a possible role for hydrogen peroxide in the processes of inactivation and mutagenesis by broad-spectrum NUV. (author)

  15. Surface reflectance of Antarctic bryophytes and protection from UV and visible light

    International Nuclear Information System (INIS)

    Robinson, S.A.; Wasley, J.; Turnbull, J.

    2000-01-01

    Full text: As well as determining the amount of solar radiation available for photosynthesis, the surface reflectance and absorptance characteristics of plants are their first defence against damaging effects of solar radiation. The solar spectrum can be damaging to plants in many ways. At shorter wavelengths, UV-B (280-320 nm) radiation can cause lesions in nucleic acid and proteins. Excess levels of visible radiation (400-750) can cause photoinhibition whilst high absorbtance of longer wavelengths (>750) leads to increases in temperature that can be detrimental in some environments. The adaptation of surface reflectance properties of vascular plants to particular environments are well known in some ecosystems. For example in desert ecosystems pubescent leaf surfaces that increase reflectance are common and have been demonstrated to be important to protection from photoinhibition. The epidermal characteristics of some plants are also known to change in absorptance, due to the accumulation of specific compounds. For example flavonoids which are effective screens against UV-B radiation, increase upon exposure to UV-B radiation. In this study we surveyed the natural variability in surface reflectance in mosses growing in continental Antarctica. Antarctica is experiencing large increases in incident UV-B radiation due to reductions in concentrations of stratospheric ozone. Additionally over the summer months (November January), when moss is exposed to direct sunlight, levels of visible solar radiation are also high, increasing the likelihood of photoinhibitory damage in moss. Our aim in this study is to describe the natural variability in the surface reflectance characteristics of moss, such that we have a baseline with which to assess future changes in response to changes in global climate, and imposed experimental treatments, and also to develop hypotheses with respect to how mosses have adapted to the cold and arid antarctic environment. Variability in surface

  16. Radiation protection in nuclear medicine

    International Nuclear Information System (INIS)

    Chougule, Arun

    2014-01-01

    The branch of medical science that utilizes the nuclear properties of the radioactivity and stable nuclides to make diagnostic evaluation of anatomical and/or physiological conditions of the body and provide therapy with unsealed radioactive sources is called Nuclear Medicine (NM). The use of unsealed radionuclides in medicine is increasing throughout the world for diagnosis and treatment. As per UNSCEAR report more than 6 million nuclear medicine procedures are conducted in a year. However we know that radiation is double edged sword and if not used carefully will be harmful to patient as well as staff and therefore a nuclear medicine procedure should be undertaken only after proper justification and optimization. Nuclear medicine procedures are different than the X-ray diagnostic procedures as in NM, radioisotope is administered to patient and patient becomes radioactive. The NM staff is involved in unpacking radioactive material, activity measurements, storage of sources, internal transports of sources, preparation of radiopharmaceuticals, administration of radiopharmaceutical, examination of the patient, care of the radioactive patient, handling of radioactive waste and therefore receives radiation dose. This talk will discuss the various steps for radiation safety of patient, staff and public during Nuclear Medicine procedures so as to implementing the ALARA concept. (author)

  17. SOLAR VARIABILITY FROM 240 TO 1750 nm IN TERMS OF FACULAE BRIGHTENING AND SUNSPOT DARKENING FROM SCIAMACHY

    International Nuclear Information System (INIS)

    Pagaran, J.; Weber, M.; Burrows, J.

    2009-01-01

    The change of spectral decomposition of the total radiative output on various timescales of solar magnetic activity is of large interest to terrestrial and solar-stellar atmosphere studies. Starting in 2002, SCIAMACHY was the first satellite instrument to observe daily solar spectral irradiance (SSI) continuously from 230 nm (UV) to 1750 nm (near-infrared; near-IR). In order to address the question of how much UV, visible (vis), and IR spectral regions change on 27 day and 11 year timescales, we parameterize short-term SSI variations in terms of faculae brightening (Mg II index) and sunspot darkening (photometric sunspot index) proxies. Although spectral variations above 300 nm are below 1% and, therefore, well below the accuracy of absolute radiometric calibration, relative accuracy for short-term changes is shown to be in the per mill range. This enables us to derive short-term spectral irradiance variations from the UV to the near-IR. During Halloween solar storm in 2003 with a record high sunspot area, we observe a reduction of 0.3% in the near-IR to 0.5% in the vis and near-UV. This is consistent with a 0.4% reduction in total solar irradiance (TSI). Over an entire 11 year solar cycle, SSI variability covering simultaneously the UV, vis, and IR spectral regions have not been directly observed so far. Using variations of solar proxies over solar cycle 23, solar cycle spectral variations have been estimated using scaling factors that best matched short-term variations of SCIAMACHY. In the 300-400 nm region, which strongly contributes to TSI solar cycle change, a contribution of 34% is derived from SCIAMACHY observations, which is lower than the reported values from SUSIM satellite data and the empirical SATIRE model. The total UV contribution (below 400 nm) to TSI solar cycle variations is estimated to be 55%.

  18. All-solid-state, synchronously pumped, ultrafast BaWO4 Raman laser with long and short Raman shifts generating at 1180, 1225, and 1323 nm

    Science.gov (United States)

    Frank, Milan; Jelínek, Michal; Kubeček, Václav; Ivleva, Lyudmila I.; Zverev, Petr G.; Smetanin, Sergei

    2017-12-01

    A lot of attention is currently focused on synchronously pumped, extra-cavity crystalline Raman lasers generating one or two Stokes Raman components in KGW or diamond Raman-active crystals, and also generating additional components of stimulated polariton scattering in lithium niobate crystal having both cubic and quadratic nonlinearities. In this contribution we report on generation of more than two Stokes components of stimulated Raman scattering with different Raman shifts in the all-solid-state, synchronously pumped, extra-cavity Raman laser based on the Raman-active a-cut BaWO4 crystal excited by a mode-locked, 220 nJ, 36 ps, 150 MHz diode sidepumped Nd:GdVO4 laser generating at the wavelength of 1063 nm. Excitation by the pumping radiation polarized along the BaWO4 crystal optical axis resulted in the Raman generation with not only usual (925cm - 1), but also additional (332cm - 1) Raman shift. Besides the 1180-nm first and 1323 nm second Stokes components with the Raman shift of 925cm - 1 from the 1063nm fundamental laser wavelength, we have achieved generation of the additional 1227 nm Raman component with different Raman shift of 332cm - 1 from the 1180nm component. At the 1227 nm component the strongest 12-times pulse shortening from 36ps down to 3ps was obtained due to shorter dephasing time of this additional Raman line (3ps for the 332-cm - 1 line instead of 6.5ps for the 925cm - 1 line). It has to be also noted that the 1225 nm generation is intracavity pumped by the 1179 nm first Stokes component resulting in the strongest pulse shortening close to the 332cm -1 line dephasing time (3ps). Slope efficiency of three Stokes components generation exceeded 20%.

  19. Spectral calibration of filters and detectors of solar EUV telescope for 13.2 nm for the TESIS experiment

    International Nuclear Information System (INIS)

    Kuzin, S.V.; Shestov, S.V.; Pertsov, A.A.; Reva, A.A.; Zuev, S.Yu.; Lopatin, A.Ya.; Luchin, V.I.; Zhou, Kh.; Khuo, T.

    2008-01-01

    The full-sun EUV telescope for 13.2 nm spectral band for the TESIS experiment is designed to produce images of hot coronal plasma (T ∼ 10 MK). Calibration process of optical elements is presented. Spectral transmission of multilayer Zr/Si filters, sensitivity and radiation tolerance of CCD detector have been measured. Peak transmission of EUV filters in working, spectral band reaches 40-50% (filters with 50 and 55 layers are used), spectral dependence of transmission is close to calculated one. Transmission of filters in white light is equal to (1-2)x10 -6 . Sensitivity of CCD ranges from 0.01 to 0.1 ADC units per photon, radiation tolerance is better than 10 9 rad [ru

  20. Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser

    Science.gov (United States)

    Chu, Zhiping; Wilkerson, Thomas D.; Singh, Upendra N.

    1993-01-01

    We report water-vapor absorption line measurements that are made by using the first Stokes radiation (930-982 nm) with HWHM 0.015/cm generated by a narrow-linewidth, tunable dye laser. Forty-five absorption line strengths are measured with an uncertainty of 6 percent and among them are fourteen strong lines that are compared with previous measurements for the assessment of spectral purity of the light source. Thirty air-broadened linewidths are measured with 8 percent uncertainty at ambient atmospheric pressure with an average of 0.101/cm. The lines are selected for the purpose of temperature-sensitive or temperature-insensitive lidar measurements. Results for these line strengths and linewidths are corrected for broadband radiation and finite laser linewidth broadening effects and compared with the high-resolution transmission molecular absorption.

  1. Radiation injury

    International Nuclear Information System (INIS)

    Hubner, K.F.

    1988-01-01

    Radiation accidents and incidents continue to be of great interest and concern to the public. Issues such as the threat of nuclear war, the Chernobyl reactor accident, or reports of sporadic incidences of accidental radiation exposure keep this interest up and maintain a high level of fear among the public. In this climate of real concern and radiation phobia, physicians should not only be prepared to answer questions about acute or late effects of ionizing radiation, but also be able to participate in the initial assessment and management of individuals who have been exposed to ionizing radiation or contaminated with radioactive material. Some of the key facts about radiation injury and its medical treatment are discussed by the author

  2. Cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Capdevielle, J N

    1984-01-01

    First, the different instruments and techniques of cosmic particle detection are presented. Then the passage of the cosmic particles through the atmosphere is studied: electrons, photons, muons. The collective behavior of the different categories is also studied, the electromagnetic cascade is distinguished from the hadron cascade. Through the principal physical properties of the radiation and the medium, the ''mean'' aspects of the radiation are then successively dealt with out of the atmosphere, at different altitudes until the sea level, then at great depths. A chapter is devoted to cosmic radiation of more than 10,000 GeV, studied separately. Then solar radiation in universe is studied through their propagation in solar system and their origin. At last, the cosmic radiation effects are studied in environment (cosmic biophysics) and some applications of cosmic radiation are presented.

  3. Radiation carcinogenesis

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1976-01-01

    The risk of iatrogenic tumors with radiation therapy is so outweighed by the benefit of cure that estimates of risk have not been considered necessary. However, with the introduction of chemotherapy, combined therapy, and particle radiation therapy, the comparative risks should be examined. In the case of radiation, total dose, fractionation, dose rate, dose distribution, and radiation quality should be considered in the estimation of risk. The biological factors that must be considered include incidence of tumors, latent period, degree of malignancy, and multiplicity of tumors. The risk of radiation induction of tumors is influenced by the genotype, sex, and age of the patient, the tissues that will be exposed, and previous therapy. With chemotherapy the number of cells at risk is usually markedly higher than with radiation therapy. Clearly the problem of the estimation of comparative risks is complex. This paper presents the current views on the comparative risks and the importance of the various factors that influence the estimation of risk

  4. Hawking radiation

    Science.gov (United States)

    Parentani, Renaud; Spindel, Philippe

    2011-12-01

    Hawking radiation is the thermal radiation predicted to be spontaneously emitted by black holes. It arises from the steady conversion of quantum vacuum fluctuations into pairs of particles, one of which escaping at infinity while the other is trapped inside the black hole horizon. It is named after the physicist Stephen Hawking who derived its existence in 1974. This radiation reduces the mass of black holes and is therefore also known as black hole evaporation.

  5. Radiation meter

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, P H

    1990-05-30

    Measuring means comprising first and second silicon PIN diode detectors both being covered with a thin layer of conducting material and the second detector being additionally covered with a relatively thick layer of material, the thickness being chosen such that beta radiation dose rate can be measured in beta radiation fields of high or medium energy, and in the presence of X and gamma radiation. (author). 2 figs.

  6. Radiation regulation

    International Nuclear Information System (INIS)

    Braithwaite, J.; Grabosky, P.

    1985-01-01

    The five main areas of radiation regulation considered are radiation exposure in the mining of uranium and other minerals, exposure in the use of uranium in nuclear reactors, risks in the transport of radioactive materials and hazards associated with the disposal of used materials. In Australia these problems are regulated by mines departments, the Australian Atomic Energy Commission and radiation control branches in state health departments. Each of these instutional areas of regulation is examined

  7. Radiation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1973-07-01

    Research progress is reported on radiation chemistry of heavy elements that includes the following topics: radiation chemistry of plutonium in nitric acid solutions (spectrophotometric analysis and gamma radiolysis of Pu(IV) and Pu(VI) in nitric acid solution); EPR studies of intermediates formed in radiolytic reactions with aqueous medium; two-phase radiolysis and its effect on the distribution coefficient of plutonium; and radiation chemistry of nitric acid. (DHM)

  8. Photoinitiated decomposition of substituted ethylenes: The photodissociation of vinyl chloride and acrylonitrile at 193 nm

    Energy Technology Data Exchange (ETDEWEB)

    Blank, D.A.; Suits, A.G.; Lee, Y.T. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Ethylene and its substituted analogues (H{sub 2}CCHX) are important molecules in hydrogen combustion. As the simplest {pi}-bonded hydrocarbons these molecules serve as prototypical systems for understanding the decomposition of this important class of compounds. The authors have used the technique of photofragment translational spectroscopy at beamline 9.0.2.1 to investigate the dissociation of vinyl chloride (X=Cl) and acrylonitrile (X=CN) following absorption at 193 nm. The technique uses a molecular beam of the reactant seeded in helium which is crossed at 90 degrees with the output of an excimer laser operating on the ArF transition, 193.3 nm. The neutral photoproducts which recoil out of the molecular beam travel 15.1 cm where they are photoionized by the VUV undulator radiation, mass selected, and counted as a function of time. The molecular beam source is rotatable about the axis of the dissociation laser. The authors have directly observed all four of the following dissociation channels for both systems: (1) H{sub 2}CCHX {r_arrow} H + C{sub 2}H{sub 2}X; (2) H{sub 2}CCHX {r_arrow} X + C{sub 2}H{sub 3}; (3) H{sub 2}CCHX {r_arrow} H{sub 2} + C{sub 2}HX; and (4) H{sub 2}CCHX {r_arrow} HX + C{sub 2}H{sub 2}. They measured translational energy distributions for all of the observed channels and measured the photoionization onset for many of the photoproducts which provided information about their chemical identity and internal energy content. In the case of acrylonitrile, selective product photoionization provided the ability to discriminate between channels 2 and 4 which result in the same product mass combination.

  9. Three-body dissociations: The photodissociation of dimethyl sulfoxide at 193 nm

    Energy Technology Data Exchange (ETDEWEB)

    Blank, D.A.; North, S.W.; Stranges, D. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    When a molecule with two equivalent chemical bonds is excited above the threshold for dissociation of both bonds, how the rupture of the two bonds is temporally coupled becomes a salient question. Following absorption at 193 nm dimethyl sulfoxide (CH{sub 3}SOCH{sub 3}) contains enough energy to rupture both C-S bonds. This can happen in a stepwise (reaction 1) or concerted (reaction 2) fashion where the authors use rotation of the SOCH{sub 3} intermediate prior to dissociation to define a stepwise dissociation: (1) CH{sub 3}SOCH{sub 3} {r_arrow} 2CH{sub 3} + SO; (2a) CH{sub 3}SOCH{sub 3} {r_arrow} CH{sub 3} + SOCH{sub 3}; and (2b) SOCH{sub 3} {r_arrow} SO + CH{sub 3}. Recently, the dissociation of dimethyl sulfoxide following absorption at 193 nm was suggested to involve simultaneous cleavage of both C-S bonds on an excited electronic surface. This conclusion was inferred from laser induced fluorescence (LIF) and resonant multiphoton ionization (2+1 REMPI) measurements of the internal energy content in the CH{sub 3} and SO photoproducts and a near unity quantum yield measured for SO. Since this type of concerted three body dissociation is very interesting and a rather rare event in photodissociation dynamics, the authors chose to investigate this system using the technique of photofragment translational spectroscopy at beamline 9.0.2.1. The soft photoionization provided by the VUV undulator radiation allowed the authors to probe the SOCH{sub 3} intermediate which had not been previously observed and provided good evidence that the dissociation of dimethyl sulfoxide primarily proceeds via a two step dissociation, reaction 2.

  10. Photoinitiated decomposition of substituted ethylenes: The photodissociation of vinyl chloride and acrylonitrile at 193 nm

    International Nuclear Information System (INIS)

    Blank, D.A.; Suits, A.G.; Lee, Y.T.

    1997-01-01

    Ethylene and its substituted analogues (H 2 CCHX) are important molecules in hydrogen combustion. As the simplest π-bonded hydrocarbons these molecules serve as prototypical systems for understanding the decomposition of this important class of compounds. The authors have used the technique of photofragment translational spectroscopy at beamline 9.0.2.1 to investigate the dissociation of vinyl chloride (X=Cl) and acrylonitrile (X=CN) following absorption at 193 nm. The technique uses a molecular beam of the reactant seeded in helium which is crossed at 90 degrees with the output of an excimer laser operating on the ArF transition, 193.3 nm. The neutral photoproducts which recoil out of the molecular beam travel 15.1 cm where they are photoionized by the VUV undulator radiation, mass selected, and counted as a function of time. The molecular beam source is rotatable about the axis of the dissociation laser. The authors have directly observed all four of the following dissociation channels for both systems: (1) H 2 CCHX → H + C 2 H 2 X; (2) H 2 CCHX → X + C 2 H 3 ; (3) H 2 CCHX → H 2 + C 2 HX; and (4) H 2 CCHX → HX + C 2 H 2 . They measured translational energy distributions for all of the observed channels and measured the photoionization onset for many of the photoproducts which provided information about their chemical identity and internal energy content. In the case of acrylonitrile, selective product photoionization provided the ability to discriminate between channels 2 and 4 which result in the same product mass combination

  11. Three-body dissociations: The photodissociation of dimethyl sulfoxide at 193 nm

    International Nuclear Information System (INIS)

    Blank, D.A.; North, S.W.; Stranges, D.

    1997-01-01

    When a molecule with two equivalent chemical bonds is excited above the threshold for dissociation of both bonds, how the rupture of the two bonds is temporally coupled becomes a salient question. Following absorption at 193 nm dimethyl sulfoxide (CH 3 SOCH 3 ) contains enough energy to rupture both C-S bonds. This can happen in a stepwise (reaction 1) or concerted (reaction 2) fashion where the authors use rotation of the SOCH 3 intermediate prior to dissociation to define a stepwise dissociation: (1) CH 3 SOCH 3 → 2CH 3 + SO; (2a) CH 3 SOCH 3 → CH 3 + SOCH 3 ; and (2b) SOCH 3 → SO + CH 3 . Recently, the dissociation of dimethyl sulfoxide following absorption at 193 nm was suggested to involve simultaneous cleavage of both C-S bonds on an excited electronic surface. This conclusion was inferred from laser induced fluorescence (LIF) and resonant multiphoton ionization (2+1 REMPI) measurements of the internal energy content in the CH 3 and SO photoproducts and a near unity quantum yield measured for SO. Since this type of concerted three body dissociation is very interesting and a rather rare event in photodissociation dynamics, the authors chose to investigate this system using the technique of photofragment translational spectroscopy at beamline 9.0.2.1. The soft photoionization provided by the VUV undulator radiation allowed the authors to probe the SOCH 3 intermediate which had not been previously observed and provided good evidence that the dissociation of dimethyl sulfoxide primarily proceeds via a two step dissociation, reaction 2

  12. Radiation protection

    International Nuclear Information System (INIS)

    1989-01-01

    A NRPB leaflet in the 'At-a-Glance' series explains in a simple but scientifically accurate way what radiation is, the biological effects and the relative sensitivity of different parts of the human body. The leaflet then discusses radiation protection principles, radiation protection in the UK and finally the effectiveness of this radiation protection as judged by a breakdown of the total dose received by an average person in the UK, a heavy consumer of Cumbrian seafood, an average nuclear industry worker and an average person in Cornwall. (UK)

  13. Radiation medicine

    International Nuclear Information System (INIS)

    1991-01-01

    This booklet has been produced by UKAEA and the Marie Curie Memorial Foundation to give some basic information about what radiation is and how it is used in day to day diagnosis and treatment. It will be of interest to people undergoing treatment, their relatives and friends, and anyone who wants to know more about this important area. After a brief historical introduction the booklet explains what radiation is, the natural and man-made sources of radiation, how it is produced and how X-rays are used in medical diagnosis and treatment. The radiation protection measures taken and safety standards followed are mentioned. (author)

  14. GRAVITATIONAL RADIATION

    Directory of Open Access Journals (Sweden)

    Metin SALTIK

    1996-03-01

    Full Text Available According to classical electromagnetic theory, an accelerated charge or system of charges radiates electromagnetic waves. In a radio transmitter antenna charges are accelerated along the antenna and release electromagnetic waves, which is radiated at the velocity of light in the surrounding medium. All of the radio transmitters work on this principle today. In this study an analogy is established between the principles by which accelerated charge systems markes radiation and the accelerated mass system, and the systems cousing gravitational radiation are investigated.

  15. Synchrotron radiation

    International Nuclear Information System (INIS)

    Farge, Y.

    1982-01-01

    Synchrotron radiation is produced by electrons accelerated near the velocity of light in storage rings, which are used for high energy Physics experiments. The radiation light exhibits a wide spread continuous spectrum ranging from 01 nanometre to radiofrequency. This radiation is characterized by high power (several kilowatts) and intense brightness. The paper recalls the emission laws and the distinctive properties of the radiation, and gives some of the numerous applications in research, such as molecular spectroscopy, X ray diffraction by heavy proteins and X ray microlithography in LVSI circuit making [fr

  16. Radiation and radiation protection; Strahlung und Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomaeus, Melanie (comp.)

    2017-04-15

    The publication of the Bundesamt fuer Strahlenschutz covers the following issues: (i) Human beings in natural and artificial radiation fields; (ii) ionizing radiation: radioactivity and radiation, radiation exposure and doses; measurement of ionizing radiation, natural radiation sources, artificial radiation sources, ionizing radiation effects on human beings, applied radiation protection, radiation exposure of the German population, radiation doses in comparison; (iii) non-ionizing radiation; low-frequency electric and magnetic fields, high-frequency electromagnetic fields, optical radiation; (iiii) glossary, (iv) units and conversion.

  17. Effects of ultraviolet laser radiation on Venezuelan equine encephalomyelitis virus

    International Nuclear Information System (INIS)

    Nikogosyan, D.N.; Kapituletz, S.P.; Smirnov, Y.A.

    1991-01-01

    The effects of usual low-intensity continuous (λ = 254 nm,I = 10 W/m 2 ) UV radiation and high-intensity laser nanosecond (λ = 266 nm, τ p = 10 ns, I = 10 9 W/m 2 ) or picosecond (λ = 266 nm, τ p = 23 ps, I = 10 12 W/m 2 ) UV radiation on Venezuelan equine encephalomyelitis virus (a member of the Togaviridae family) were compared. The quantum yields of infectivity inactivation, pyrimidine dimer formation and RNA-protein crosslinking were determined. (author)

  18. Leakage radiation spectroscopy of organic/dielectric/metal systems

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Kawalec, Tomasz; Kostiučenko, Oksana

    2014-01-01

    side of a hemisphere fused silica prism with an index matching liquid was illuminated under normal incidence by a He-Cd 325 nm laser. Two orthogonal linear polarizations were used both parallel and perpendicular to the detection plane. Spectrally resolved leakage radiation was observed on the opposite......Leakage radiation spectroscopy of organic para-Hexaphenylene (p-6P) molecules has been performed in the spectral range 420-675 nm which overlaps with the p-6P photoluminescence band. The p-6P was deposited on 40 nm silver (Ag) films on BK7 glass, covered with SiO2 layers. The SiO2 layer thickness...

  19. Ultraviolet radiation

    International Nuclear Information System (INIS)

    Faber, M.

    1982-01-01

    Penetration of the human body by shorter-wavelength UV is restricted to the epidermis. Penetration is somewhat deeper at longer wavelengths and in non-pigmented subjects, where there is some penetration into the dermis, especially at wavelengths greater than 300 nm. The same is true for the eye. Most of the UV will be absorbed by the cornea. The lens and the tissues in the anterior part of the eye may, however, be exposed to UV at wavelengths above 295 nm. The final absorption takes place in the lens, and the retina can be exposed only under special circumstances. The penetration of different wavelengths into the eye is given in Table 1. Some doubt exists, however as to the high transmission given for the vitreous humour at the longer wavelengths. The absorption of UV depends on the wavelength. The absorption spectrum describes this relationship. Proteins and nucleic acids are the most important biological absorbers. Nucleic acids have their main absorption peak close to 265 nm, due to the pyrimidine structure. The aromatic amino-acids are the absorbing sites in protein, with tyrosine at 275 nm and tryptophane at 280 nm

  20. Effect of ionizing radiation on aqueous solution of insulin. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kopoldova, J [Ceskoslovenska Akademie Ved, Prague. Isotopova Laborator Biologickych Ustavu; Nobilis, M [Vyzkumny Ustav pro Farmacii a Biochemii, Prague (Czechoslovakia)

    1977-02-01

    A 3.1x10/sup -4/ M aqueous solution of insulin was irradiated with /sup 60/Co in oxygenated, oxygen-limited, and oxygen-free atmosphere. The irradiated solutions were separated on a Sephadex G-75 column, and the eluates were determined spectrophotometrically at 280 nm. The decrease in the original content of insulin and the formation of radiation aggregates of insulin in dependence on radiation doses were studied. The total amount and molecular weights of radiation aggregates of insulin increased with increasing radiation dose while their biological activity and content of cys/2 residues decreased.

  1. Radiation myelopathy

    International Nuclear Information System (INIS)

    Berlit, P.

    1987-01-01

    After a review of the world literature, the case histories of 43 patients with radiation myelopathy are analyzed. In 1 patient there was a radiation injury of the medulla oblongata, in 2, cervical, in 28, thoracic, and in 12, lumbosacral. In the medulla oblongata lesion an alternans syndrome resulted. The patients with cervical and thoracic radiation myelopathies presented with a Brown-Sequard syndrome, a spinalis anterior syndrome or a transversal syndrome with pyramidal and spinothalamic tract involvement as the most prominent signs. For this group the term 'pyramidal-spinothalamic radiation myelopathy' is proposed. In lumbosacral radiation lesions a pure anterior horn syndrome may lead to spinothalamic tract involvement and the development of a cauda conus syndrome. The clinical presentation of these cases suggests that the location of the radiation lesion is most likely the region of the conus medullaris. The most frequent initial symptom was dysesthesia; the patients complained of burning pain or a feeling of coldness. Usually the neurological deficits were progressive, in pyramidal-spinothalamic radiation myelopathy over 12 months in average, in lumbosacral radiation lesions up to 10 years. The latent period between the finish of radiation therapy and the first neurological signs was 8 months (median) in cervical and thoracic myelopathy and 33 months in lumbosacral lesions. For the entire group of 43 patients there was an inverse relationship between the radiation dose (ret) and the latent period. A positive relation could be demonstrated between the age of patients at the time of radiation therapy and the latent period. Patients simultaneously receiving cytostatic drugs presented after a longer latent period than the remaining group. (orig./MG)

  2. Concepts of radiation protection

    International Nuclear Information System (INIS)

    2013-01-01

    This seventh chapter presents the concepts and principles of safety and radiation protection, emergency situations; NORM and TENORM; radiation protection care; radiation protection plan; activities of the radiation protection service; practical rules of radiation protection and the radiation symbol

  3. Application of a 222-nm krypton-chlorine excilamp to control foodborne pathogens on sliced cheese surfaces and characterization of the bactericidal mechanisms.

    Science.gov (United States)

    Ha, Jae-Won; Lee, Jae-Ik; Kang, Dong-Hyun

    2017-02-21

    This study was conducted to investigate the basic spectral properties of a 222-nm krypton-chlorine (KrCl) excilamp and its inactivation efficacy against major foodborne pathogens on solid media, as well as on sliced cheese compared to a conventional 254-nm low-pressure mercury (LP Hg) lamp. Selective media and sliced cheese inoculated with Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes were irradiated with a KrCl excilamp and a LP Hg lamp at the same dose. The KrCl excilamp showed full radiant intensity from the outset at a wide range of working temperatures, especially at low temperatures of around 0 to 10°C. Irradiation with 222nm UV-C showed significantly (P<0.05) higher inactivation capacity against all three pathogens than 254-nm radiation on both media and sliced cheese surfaces without generating many sublethally injured cells which potentially could recover. The underlying inactivation mechanisms of 222-nm KrCl excilamp treatment were evaluated by fluorescent staining methods and damage to cellular membranes and intracellular enzyme inactivation were the primary factors contributing to the enhanced bactericidal effect. The results of this study suggest that a 222-nm UV-C surface disinfecting system can be applied as an alternative to conventional LP Hg lamp treatment by the dairy industry. Copyright © 2016. Published by Elsevier B.V.

  4. Picosecond laser damage of fused silica at 355 nm

    International Nuclear Information System (INIS)

    Meng Xiangjie; Liu Hongjie; Wang Fang; Zhang Zhen; An Xinyou; Huang Jin; Jiang Xiaodong; Wu Weidong; Ren Weiyi

    2013-01-01

    This paper studies the initiated damage threshold, the damage morphology and the subsequent damage growth on fused silica's input-surface and exit-surface under picosecond laser irradiation at 355 nm. Defects induced fluorescence on surface of the optical component is observed. The results demonstrate a significant dependence of the initiated damage on pulse duration and surface defects, and that of the damage growth on self-focusing, sub-surface defects. The damage-threshold is 3.98 J/cm 2 of input surface and 2.91 J/cm 2 of exit surface. The damage morphologies are quite different between input surface and exit surface. Slow growth behavior appears for the diameter of exit-surface and linear growth one for the depth of exit-surface in the lateral side of damage site with the increase of shot number. Defects have changed obviously compared with nanosecond laser damage in the damage area. Several main reasons such as electric intensification and self-focusing for the observed initiated damage and damage growth behavior are discussed. (authors)

  5. Nantenna for Standard 1550 nm Optical Communication Systems

    Directory of Open Access Journals (Sweden)

    Waleed Tariq Sethi

    2016-01-01

    Full Text Available Nanoscale transmission and reception technologies will play a vital role and be part of the next generation communication networks. This applies for all application fields including imaging, health, biosensing, civilian, and military communications. The detection of light frequency using nanooptical antennas may possibly become a good competitor to the semiconductor based photodetector because of the simplicity of integration, cost, and inherent capability to detect the phase and amplitude instead of power only. In this paper, authors propose simulated design of a hexagonal dielectric loaded nantenna (HDLN and explore its potential benefits at the standard optical C-band (1550 nm. The proposed nantenna consists of “Ag-SiO2-Ag” structure, consisting of “Si” hexagonal dielectric with equal lengths fed by “Ag” nanostrip transmission line. The simulated nantenna achieves an impedance bandwidth of 3.7% (190.9 THz–198.1 THz and a directivity of 8.6 dBi, at a center frequency of 193.5 THz, covering most of the ITU-T standard optical transmission window (C-band. The hexagonal dielectric nantenna produces HE20δ modes and the wave propagation is found to be end-fire. The efficiency of the nantenna is proven via numerical expressions, thus making the proposed design viable for nanonetwork communications.

  6. Laser ablation of nanoscale particles with 193 nm light

    International Nuclear Information System (INIS)

    Choi, J H; Lucas, D; Koshland, C P

    2007-01-01

    Laser interaction with nanoscale particles is distinct and different from laser-bulk material interaction, where a hot plasma is normally created. Here, we review our studies on 193 nm laser ablation of various nanoscale particles including NaCl, soot, polystyrene, and gold. The 20 ns laser beam with fluences up to 0.3 J/cm 2 irradiates nanoparticles in a gas stream at laser repetition rates from 10 to 100 Hz. The particle size distributions before and after irradiation are measured with a scanning mobility particle sizer (SMPS), and particle morphology is examined with electron microscopy. All the nanomaterials studied exhibit a similar disintegration pattern and similar particle formation characteristics. No broadband emission associated with particle heating or optical breakdown is observed. The nanoparticles formed after irradiation have a smaller mean diameter and an order of magnitude higher number concentration with a more spherical shape compared to the original particles. We use the photon-atom ratio (PAR) to interpret the laser-particle interaction energetics

  7. Electrical control of antiferromagnetic metal up to 15 nm

    Science.gov (United States)

    Zhang, PengXiang; Yin, GuFan; Wang, YuYan; Cui, Bin; Pan, Feng; Song, Cheng

    2016-08-01

    Manipulation of antiferromagnetic (AFM) spins by electrical means is on great demand to develop the AFM spintronics with low power consumption. Here we report a reversible electrical control of antiferromagnetic moments of FeMn up to 15 nm, using an ionic liquid to exert a substantial electric-field effect. The manipulation is demonstrated by the modulation of exchange spring in [Co/Pt]/FeMn system, where AFM moments in FeMn pin the magnetization rotation of Co/Pt. By carrier injection or extraction, the magnetic anisotropy of the top layer in FeMn is modulated to influence the whole exchange spring and then passes its influence to the [Co/Pt]/FeMn interface, through a distance up to the length of exchange spring that fully screens electric field. Comparing FeMn to IrMn, despite the opposite dependence of exchange bias on gate voltages, the same correlation between carrier density and exchange spring stiffness is demonstrated. Besides the fundamental significance of modulating the spin structures in metallic AFM via all-electrical fashion, the present finding would advance the development of low-power-consumption AFM spintronics.

  8. High-speed stimulated Brillouin scattering spectroscopy at 780 nm

    Directory of Open Access Journals (Sweden)

    Itay Remer

    2016-09-01

    Full Text Available We demonstrate a high-speed stimulated Brillouin scattering (SBS spectroscopy system that is able to acquire stimulated Brillouin gain point-spectra in water samples and Intralipid tissue phantoms over 2 GHz within 10 ms and 100 ms, respectively, showing a 10-100 fold increase in acquisition rates over current frequency-domain SBS spectrometers. This improvement was accomplished by integrating an ultra-narrowband hot rubidium-85 vapor notch filter in a simplified frequency-domain SBS spectrometer comprising nearly counter-propagating continuous-wave pump-probe light at 780 nm and conventional single-modulation lock-in detection. The optical notch filter significantly suppressed stray pump light, enabling detection of stimulated Brillouin gain spectra with substantially improved acquisition times at adequate signal-to-noise ratios (∼25 dB in water samples and ∼15 dB in tissue phantoms. These results represent an important step towards the use of SBS spectroscopy for high-speed measurements of Brillouin gain resonances in scattering and non-scattering samples.

  9. Observations of thunderstorm-related 630 nm airglow depletions

    Science.gov (United States)

    Kendall, E. A.; Bhatt, A.

    2015-12-01

    The Midlatitude All-sky imaging Network for Geophysical Observations (MANGO) is an NSF-funded network of 630 nm all-sky imagers in the continental United States. MANGO will be used to observe the generation, propagation, and dissipation of medium and large-scale wave activity in the subauroral, mid and low-latitude thermosphere. This network is actively being deployed and will ultimately consist of nine all-sky imagers. These imagers form a network providing continuous coverage over the western United States, including California, Oregon, Washington, Utah, Arizona and Texas extending south into Mexico. This network sees high levels of both medium and large scale wave activity. Apart from the widely reported northeast to southwest propagating wave fronts resulting from the so called Perkins mechanism, this network observes wave fronts propagating to the west, north and northeast. At least three of these anomalous events have been associated with thunderstorm activity. Imager data has been correlated with both GPS data and data from the AIRS (Atmospheric Infrared Sounder) instrument on board NASA's Earth Observing System Aqua satellite. We will present a comprehensive analysis of these events and discuss the potential thunderstorm source mechanism.

  10. Radiation exposure and radiation protection

    International Nuclear Information System (INIS)

    Heuck, F.; Scherer, E.

    1985-01-01

    The present volume is devoted to the radiation hazards and the protective measures which can be taken. It describes the current state of knowledge on the changes which exposure to ionizing rays and other forms of physical energy can induce in organs and tissues, in the functional units and systems of the organism. Special attention is paid to general cellular radiation biology and radiation pathology and to general questions of the biological effects of densely ionizing particle radiation, in order to achieve a better all-round understanding of the effects of radiation on the living organism. Aside from the overviews dealing with the effects of radiation on the abdominal organs, urinary tract, lungs, cerebral and nervous tissue, bones, and skin, the discussion continues with the lymphatic system, the bone marrow as a bloodforming organ, and the various phases of reaction in the reproductive organs, including damage and subsequent regeneration. A special section deals with environmental radiation hazards, including exposure to natural radiation and the dangers of working with radioactive substances, and examines radiation catastrophes from the medical point of view. Not only reactor accidents are covered, but also nuclear explosions, with exhaustive discussion of possible damage and treatment. The state of knowledge on chemical protection against radiation is reviewed in detail. Finally, there is thorough treatment of the mechanism of the substances used for protection against radiation damage in man and of experience concerning this subject to date. In the final section of the book the problems of combined radiotherapy are discussed. The improvement in the efficacy of tumor radiotherapy by means of heavy particles is elucidated, and the significance of the efficacy of tumor therapy using electron-affinitive substances is explained. There is also discussion of the simultaneous use of radiation and pharmaceuticals in the treatment of tumors. (orig./MG) [de

  11. ROSY - Rossendorf synchrotron radiation source

    International Nuclear Information System (INIS)

    Einfeld, D.; Matz, W.

    1993-11-01

    The electron energy of the storage ring will be 3 GeV and the emitted synchrotron radiation is in the hard X-ray region with a critical energy of the spectrum of E c =8,4 keV (λ c =0,14 nm). With a natural emittance of 28 π nm rad ROSY emits high brilliance radiation. Besides the radiation from bending magnets there will be the possibility for using radiation from wigglers and undulators. For the insertion devices 8 places are foreseen four of which are located in non-dispersion-free regions. The storage ring is of fourfold symmetry, has a circumference of 148 m and is designed in a modified FODO structure. An upgrade of ROSY with superconducting bending magnets in order to shift the spectrum to higher energy can easily be done. Part I contains the scientific case and a description of the planned use of the beam lines. Part II describes the design of the storage ring and its components in more detail. (orig.) [de

  12. Diode-pumped continuous-wave eye-safe Nd:YAG laser at 1415 nm.

    Science.gov (United States)

    Lee, Hee Chul; Byeon, Sung Ug; Lukashev, Alexei

    2012-04-01

    We describe the output performance of the 1415 nm emission in Nd:YAG in a plane-concave cavity under traditional pumping into the 4F5/2 level (808 nm) and direct in-band pumping into the 4F3/2 level (885 nm). An end-pumped Nd:YAG laser yielded maximum cw output power of 6.3 W and 4.2 W at 885 nm and 808 nm laser diode (LD) pumping, respectively. To the best of our knowledge, this is the highest output power of a LD-pumped 1415 nm laser.

  13. Broadband light generation at ~1300 nm through spectrally recoiled solitons and dispersive waves

    DEFF Research Database (Denmark)

    Falk, Peter Andreas; Frosz, Michael Henoch; Bang, Ole

    2008-01-01

    We experimentally study the generation of broadband light at ~1300 nm from an 810 nm Ti:sapphire femtosecond pump laser. We use two photonic crystal fibers with a second infrared zero-dispersion wavelength (λZ2) and compare the efficiency of two schemes: in one fiber λZ2=1400 nm and the light...... at 1300 nm is composed of spectrally recoiled solitons; in the other fiber λZ2=1200 nm and the light at 1300 nm is composed of dispersive waves....

  14. A 300-nm compact mm-wave linac FEL design

    Energy Technology Data Exchange (ETDEWEB)

    Nassiri, A.; Kustom, R.L.; Kang, Y.W. [Argonne National Lab., IL (United States)

    1995-12-31

    Microfabrication technology offers an alternative method for fabricating precision, miniature-size components suitable for use in accelerator physics and commercial applications. The original R&D work at Argonne, in collaboration with the University of Illinois at Chicago, has produced encouraging results in the area of rf accelerating structure design, optical and x-ray masks production, deep x-ray lithography (LIGA exposures), and precision structural alignments. In this paper we will present a design study for a compact single pass mm-linac FEL to produce short wavelength radiation. This system will consists of a photocathode rf gun operated at 30 GHz, a 50-MeV superconducting constant gradient structure operated at 60 GHz, and a microundulator with 1-mm period. Initial experimental results on a scale model rf gun and microundulator will be presented.

  15. Radiation signatures

    International Nuclear Information System (INIS)

    McGlynn, S.P.; Varma, M.N.

    1992-01-01

    A new concept for modelling radiation risk is proposed. This concept is based on the proposal that the spectrum of molecular lesions, which we dub ''the radiation signature'', can be used to identify the quality of the causal radiation. If the proposal concerning radiation signatures can be established then, in principle, both prospective and retrospective risk determination can be assessed on an individual basis. A major goal of biophysical modelling is to relate physical events such as ionization, excitation, etc. to the production of radiation carcinogenesis. A description of the physical events is provided by track structure. The track structure is determined by radiation quality, and it can be considered to be the ''physical signature'' of the radiation. Unfortunately, the uniqueness characteristics of this signature are dissipated in biological systems in ∼10 -9 s. Nonetheless, it is our contention that this physical disturbance of the biological system eventuates later, at ∼10 0 s, in molecular lesion spectra which also characterize the causal radiation. (author)

  16. Background radiation

    International Nuclear Information System (INIS)

    Arnott, D.

    1985-01-01

    The effects of background radiation, whether natural or caused by man's activities, are discussed. The known biological effects of radiation in causing cancers or genetic mutations are explained. The statement that there is a threshold below which there is no risk is examined critically. (U.K.)

  17. Ionizing radiations

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    This is an update about the radiological monitoring in base nuclear installations. A departmental order of the 23. march 1999 (J.O.28. april, p.6309) determines the enabling rules by the Office of Protection against Ionizing Radiations of person having at one's disposal the results with names of individual exposure of workers put through ionizing radiations. (N.C.)

  18. Radiation hematology

    International Nuclear Information System (INIS)

    Zherbin, E.A.; Chukhlovin, A.B.

    1989-01-01

    State-of-the-Art ofl radiation hematology and review of the problems now facing this brauch of radiobiology and nuclear medicine are presented. Distortion of division and maturation of hemopoiesis parent cells is considered as main factor of radiopathology for hematopoetic system. Problems of radiation injury and functional variation of hematopoetic microenvironment cell populations are discussed. 176 figs.; 23 figs.; 18 tabs

  19. Radiation oncology

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The Radiation Oncology Division has had as its main objectives both to operate an academic training program and to carry out research on radiation therapy of cancer. Since fiscal year 1975, following a directive from ERDA, increased effort has been given to research. The research activities have been complemented by the training program, which has been oriented toward producing radiation oncologists, giving physicians short-term experience in radiation oncology, and teaching medical students about clinical cancer and its radiation therapy. The purpose of the research effort is to improve present modalities of radiation therapy of cancer. As in previous years, the Division has operated as the Radiation Oncology Program of the Department of Radiological Sciences of the University of Puerto Rico School of Medicine. It has provided radiation oncology support to patients at the University Hospital and to academic programs of the University of Puerto Rico Medical Sciences Campus. The patients, in turn, have provided the clinical basis for the educational and research projects of the Division. Funding has been primarily from PRNC (approx. 40%) and from National Cancer Institute grants channeled through the School of Medicine (approx. 60%). Special inter-institutional relationships with the San Juan Veterans Administration Hospital and the Metropolitan Hospital in San Juan have permitted inclusion of patients from these institutions in the Division's research projects. Medical physics and radiotherapy consultations have been provided to the Radiotherapy Department of the VA Hospital

  20. Synchrotron radiation

    International Nuclear Information System (INIS)

    Nave, C.; Quinn, P.; Blake, R.J.

    1988-01-01

    The paper on Synchrotron Radiation contains the appendix to the Daresbury Annual Report 1987/88. The appendix is mainly devoted to the scientific progress reports on the work at the Synchrotron Radiation Source in 1987/8. The parameters of the Experimental Stations and the index to the Scientific Reports are also included in the appendix. (U.K.)

  1. Radiation Protection

    International Nuclear Information System (INIS)

    Loos, M.

    2002-01-01

    Major achievements of SCK-CEN's Radiation Protection Department in 2001 are described. The main areas for R and D of the department are enviromnental remediation, emergency planning, radiation protection research, low-level radioactvity measurements, safeguards and physics measurements, decision strategy research and policy support and social sciences in nuclear research. Main achievements for 2001 in these areas are reported

  2. Ionizing radiation

    Science.gov (United States)

    Tobias, C. A.; Grigoryev, Y. G.

    1975-01-01

    The biological effects of ionizing radiation encountered in space are considered. Biological experiments conducted in space and some experiences of astronauts during space flight are described. The effects of various levels of radiation exposure and the determination of permissible dosages are discussed.

  3. Generation of polypeptide-templated gold nanoparticles using ionizing radiation.

    Science.gov (United States)

    Walker, Candace Rae; Pushpavanam, Karthik; Nair, Divya Geetha; Potta, Thrimoorthy; Sutiyoso, Caesario; Kodibagkar, Vikram D; Sapareto, Stephen; Chang, John; Rege, Kaushal

    2013-08-13

    Ionizing radiation, including γ rays and X-rays, are high-energy electromagnetic radiation with diverse applications in nuclear energy, astrophysics, and medicine. In this work, we describe the use of ionizing radiation and cysteine-containing elastin-like polypeptides (C(n)ELPs, where n = 2 or 12 cysteines in the polypeptide sequence) for the generation of gold nanoparticles. In the presence of C(n)ELPs, ionizing radiation doses higher than 175 Gy resulted in the formation of maroon-colored gold nanoparticle dispersions, with maximal absorbance at 520 nm, from colorless metal salts. Visible color changes were not observed in any of the control systems, indicating that ionizing radiation, gold salt solution, and C(n)ELPs were all required for nanoparticle formation. The hydrodynamic diameters of nanoparticles, determined using dynamic light scattering, were in the range of 80-150 nm, while TEM imaging indicated the formation of gold cores 10-20 nm in diameter. Interestingly, C2ELPs formed 1-2 nm diameter gold nanoparticles in the absence of radiation. Our results describe a facile method of nanoparticle formation in which nanoparticle size can be tailored based on radiation dose and C(n)ELP type. Further improvements in these polypeptide-based systems can lead to colorimetric detection of ionizing radiation in a variety of applications.

  4. Two transistor cluster DICE Cells with the minimum area for a hardened 28-nm CMOS and 65-nm SRAM layout design

    International Nuclear Information System (INIS)

    Stenin, V.Ya.; Stepanov, P.V.

    2015-01-01

    A hardened DICE cell layout design is based on the two spaced transistor clusters of the DICE cell each consisting of four transistors. The larger the distance between these two CMOS transistor clusters, the more robust the hardened DICE SRAM to Single Event Upsets. Some versions of the 28-nm and 65-nm DICE CMOS SRAM block composition have been suggested with minimum cluster distances of 2.27-2.32 mkm. The area of hardened 28-nm DICE CMOS cells is larger than the area of 28-nm 6T CMOS cells by a factor of 2.1 [ru

  5. Occupational radiation exposure in nuclear medicine department in Kuwait

    Science.gov (United States)

    Alnaaimi, M.; Alkhorayef, M.; Omar, M.; Abughaith, N.; Alduaij, M.; Salahudin, T.; Alkandri, F.; Sulieman, A.; Bradley, D. A.

    2017-11-01

    Ionizing radiation exposure is associated with eye lens opacities and cataracts. Radiation workers with heavy workloads and poor protection measures are at risk for vision impairment or cataracts if suitable protection measures are not implemented. The aim of this study was to measure and evaluate the occupational radiation exposure in a nuclear medicine (NM) department. The annual average effective doses (Hp[10] and Hp[0.07]) were measured using calibrated thermos-luminescent dosimeters (TLDs; MCP-N [LiF:Mg,Cu,P]). Five categories of staff (hot lab staff, PET physicians, NM physicians, technologists, and nurses) were included. The average annual eye dose (Hp[3]) for NM staff, based on measurements for a typical yearly workload of >7000 patients, was 4.5 mSv. The annual whole body radiation (Hp[10]) and skin doses (Hp[0.07]) were 4.0 and 120 mSv, respectively. The measured Hp(3), Hp(10), and Hp(0.07) doses for all NM staff categories were below the dose limits described in ICRP 2014 in light of the current practice. The results provide baseline data for staff exposure in NM in Kuwait. Radiation dose optimization measures are recommended to reduce NM staff exposure to its minimal value.

  6. TXRF versus conventional EDXRF using 150 nm AP1 sample support films

    International Nuclear Information System (INIS)

    Wobrauschek, P.; Buzanich, G.; Marosi, N.

    2000-01-01

    Total reflection x-ray fluorescence analysis (TXRF ) is a powerful analytical tool for trace element analysis in the ng/g concentration or pg absolute region for medium Z elements using commercial or own designed TXRF equipment. One of the goals of TXRF is the extreme small penetration depth of the primary radiation into the reflector - substrate of 3-4 run if an incidence angle of about 1 mrad is adjusted. Among others, this effect results in a drastically reduced background in the measured spectra. This is caused by the reduction of elastic and inelastic scattered primary radiation from the substrate. Since there are now thin film supports commercially available having a thickness of 150 nm it is interesting to compare experimental results using TXRF and sample support films in 45 o incident beam and 45 o fluorescence emission geometry. As this film is only about 50 times more in thickness than the penetration depth in a quartz reflector, tests were performed to compare the analytical results and detection limits achievable from the same samples analyzed in total reflection geometry on a quartz reflector and conventional EDRXS geometry on the AP1 film with a dimple in the center for easy placing of the droplet. A volume of 3-5 μl of a liquid sample were used in both cases, pipetted and vacuum dried to prepare the sample. A high power 3 kW Mo-anode X-ray tube was used, for TXRF the line focus and for the conventional geometry the point focus was chosen. As additional results measurements from the TRACOR TN 5000 spectrometer will be presented using an air cooled low power tube with Rh - anode in a compact commercially available unit. A comparison of the results will be given in terms of sensitivity and detection limits, and future aspects for improvements and applications will be discussed. (author)

  7. Radiation exposure

    International Nuclear Information System (INIS)

    Dalton, L.K.

    1991-01-01

    The book gives accounts of some social and environmental impacts of the developing radiation industries, including the experiences of affected communities and individuals. Its structure is based on a division which has been made between nuclear and non-nuclear radiation sources, because they create distinctly different problems for environmental protection and so for public health policy. The emissions from electronic and electrical installations - the non-nuclear radiations - are dealt with in Part I. Emissions from radioactive substances - the nuclear radiations - are dealt with in Part II. Part III is for readers who want more detailed information about scientific basis of radiation-related biological changes and their associated health effects. 75 refs., 9 tabs., 7 figs., ills

  8. Radiation carcinogenesis

    International Nuclear Information System (INIS)

    Adams, G.E.

    1987-01-01

    In this contribution about carcinogenesis induced by ionizing radiation some radiation dose-response relationships are discussed. Curves are shown of the relation between cell survival and resp. low and high LET radiation. The difference between both curves can be ascribed to endogenous repair mechanisms in the cell. The relation between single-gen mutation frequency and the surviving fractions of irradiated cells indicates that these repairing mechanisms are not error free. Some examples of reverse dose-response relationships are presented in which decreasing values of dose-rate (LET) correspond with increasing radiation induced cell transformation. Finally some molecular aspects of radiation carcinogenesis are discussed. (H.W.). 22 refs.; 4 figs

  9. Radiation sickness

    International Nuclear Information System (INIS)

    Endoh, Masaru; Ishida, Yusei; Saeki, Mitsuaki

    1983-01-01

    The frequency of radiation sickness in 1,060 patients treated at our Department was 12.8 percent. It was frequent in patients with brain cancer (12 percent), whole spine cancer (47 percent), uterus cancer (28 percent), lung cancer (22 percent) and esophagus cancer (12 percent). Radiation sickness following X-irradiation was studied in its relation to patient's age, size of radiation fields, dosis and white blood cell count. However, we could not find any definite clinical feature relevant to occurrence. There are many theories published concerning the mechanism of radiation sickness. Clinical experiences have shown that radiation sickness cannot be explained by one theory alone but by several theories such as those based on psychology, stress or histamine. (author)

  10. Induction of lethal and genetic damage by vacuum-ultraviolet (163 nm) irradiation of aqueous suspensions of yeast cells

    International Nuclear Information System (INIS)

    Ito, T.; Kobayashi, K.

    1976-01-01

    Yeast cells suspended in distilled water were irradiated with monochromatic 163 nm photons by immersing a specially designed discharge tube into the suspension. This was thought to be a useful means of investigating in vivo effects of radiation-induced water radicals on well cells in the complete absence of ionic species, since 163 nm photons can dissociate water only via excitation. These experiments showed that the water radicals (excluding e/sub aq/ - ) exerted both lethal and genetic (gene-conversion) effects quite potently, and the characteristic protection against these effects was observable when 2-mercaptoethanol or, in particular, p-aminobenzoic acid, a specific scavenger for OH radicals, was added to the medium prior to irradiation. Nearly complete protection from both lethal and genetic effects was observed in some cases with p-aminobenzoic acid. These results establish unequivocally that the OH radical, and not the hydrogen atom (H radical), possesses the damaging potency in the cell. Comparisons with γ-ray experiments revealed several differences between 163 nm photons and γ rays in the protective actions of radical scavengers, which may be attributable to reactive species other than OH radicals produced by the γ rays

  11. Nondestructive multispectral reflectoscopy between 800 and 1900 nm: An instrument for the investigation of the stratigraphy in paintings.

    Science.gov (United States)

    Karagiannis, G; Salpistis, Chr; Sergiadis, G; Chryssoulakis, Y

    2007-06-01

    In the present work, a powerful tool for the investigation of paintings is presented. This permits the tuneable multispectral real time imaging between 200 and 5000 nm and the simultaneous multispectral acquisition of spectroscopic data from the same region. We propose the term infrared reflectoscopy for tuneable infrared imaging in paintings (Chryssonlakis and Chassery, The Application of Physicochemical Methods of Analysis and Image Processing Techniques to Painted Works of Art, Erasmus Project ICP-88-006-6, Athens, June, 1989) for a technique that is effective especially when the spectroscopic data acquisition is performed between 800 and 1900 nm. Elements such as underdrawings, old damage that is not visible to the naked eye, later interventions or overpaintings, hidden signatures, nonvisible inscriptions, and authenticity features can thus be detected with the overlying paint layers becoming successively "transparent" due to the deep infrared penetration. The spectroscopic data are collected from each point of the studied area with a 5 nm step through grey level measurement, after adequate infrared reflectance (%R) and curve calibration. The detection limits of the infrared detector as well as the power distribution of the radiation coming out through the micrometer slit assembly of the monochromator in use are also taken into account. Inorganic pigments can thus be identified and their physicochemical properties directly compared to the corresponding infrared images at each wavelength within the optimum region. In order to check its effectiveness, this method was applied on an experimental portable icon of a known stratigraphy.

  12. Rejuvenation of the male scalp using 1,927 nm non-ablative fractional thulium fiber laser.

    Science.gov (United States)

    Boen, Monica; Wilson, Monique J Vanaman; Goldman, Mitchel P; Wu, Douglas C

    2017-07-01

    The male scalp undergoes extensive photodamage due to a high prevalence of androgenic alopecia and exposure to ultraviolet radiation. This photodamage presents as solar lentigines, fine rhytides, and keratosis, and can prematurely age a patient. In this study, we demonstrate the safety and efficacy of the fractionated 1,927 nm thulium fiber laser using high density and high energy settings to achieve rejuvenation of the male scalp after a single treatment session. Four male patients with Fitzpatrick skin types II-III and extensive photodamage on the scalp underwent one treatment with the fractional non-ablative 1,927 nm thulium fiber laser. The patients had a 60-90% improvement in dyspigmentation, lentigines, and keratosis. No adverse events were observed and the patients tolerated the procedure well. This case series is the first report in the literature demonstrating the successful rejuvenation of the scalp using the 1,927 nm thulium fiber laser. Lasers Surg. Med. 49:475-479, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Spectroscopic studies of xenon EUV emission in the 40-80 nm wavelength range using an absolutely calibrated monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Merabet, H [Mathematic and Sciences Unit, Dhofar University, Salalah 211, Sultanate of (Oman); Bista, R [Department of Physics, University of Nevada Reno, Reno, NV 89557 (United States); Bruch, R [Department of Physics, University of Nevada Reno, Reno, NV 89557 (United States); Fuelling, S [Department of Physics, University of Nevada Reno, Reno, NV 89557 (United States)

    2007-03-01

    We have measured and identified numerous Extreme UltraViolet (EUV) radiative line structures arising from xenon (Xe) ions in charge state q = 1 to 10 in the wavelength range 40-80 nm. To obtain reasonable intensities of different charged Xe ions, we have used a compact microwave plasma source which was designed and developed at the Lawrence Berkeley National Laboratory (LBNL). The EUV emission of the ECR plasma has been measured by a 1.5 m grazing incidence monochromator that was absolutely calibrated in the 10-80 nm wavelength range using well known and calibrated EUV light at the Advanced Light Source (ALS), LBNL. This calibration has enabled us to determine absolute intensities of previously measured EUV radiative lines in the wavelengths regions investigated for different ionization stages of Xe. In addition, emission spectra of xenon ions for corresponding measured lines have been calculated. The calculations have been carried out within the relativistic Hartree-Fock (HF) approximation. Results of calculations are found to be in good agreement with current and available experimental and theoretical data.

  14. Knowledge of medical imaging radiation dose and risk among doctors

    International Nuclear Information System (INIS)

    Brown, Nicholas; Jones, Lee

    2013-01-01

    The growth of computed tomography (CT) and nuclear medicine (NM) scans has revolutionised healthcare but also greatly increased population radiation doses. Overuse of diagnostic radiation is becoming a feature of medical practice, leading to possible unnecessary radiation exposures and lifetime-risks of developing cancer. Doctors across all medical specialties and experience levels were surveyed to determine their knowledge of radiation doses and potential risks associated with some diagnostic imaging. A survey relating to knowledge and understanding of medical imaging radiation was distributed to doctors at 14 major Queensland public hospitals, as well as fellows and trainees in radiology, emergency medicine and general practice. From 608 valid responses, only 17.3% correctly estimated the radiation dose from CT scans and almost 1 in 10 incorrectly believed that CT radiation is not associated with any increased lifetime risk of developing cancer. There is a strong inverse relationship between a clinician's experience and their knowledge of CT radiation dose and risks, even among radiologists. More than a third (35.7%) of doctors incorrectly believed that typical NM imaging either does not use ionising radiation or emits doses equal to or less than a standard chest radiograph. Knowledge of CT and NM radiation doses is poor across all specialties, and there is a significant inverse relationship between experience and awareness of CT dose and risk. Despite having a poor understanding of these concepts, most doctors claim to consider them prior to requesting scans and when discussing potential risks with patients.

  15. Lens transmission measurement for an absolute radiation thermometer

    International Nuclear Information System (INIS)

    Hao, X.; Yuan, Z.; Lu, X.

    2013-01-01

    The lens transmission for the National Institute of Metrology of China absolute radiation thermometer is measured by a hybrid method. The results of the lens transmission measurements are 99.002% and 86.792% for filter radiometers with center wavelengths 633 nm and 900 nm, respectively. These results, after correcting for diffraction factors and the size-of-source effect when the lens is incorporated within the radiometer, can be used for measurement of thermodynamic temperature. The expanded uncertainty of the lens transmission measurement system has been evaluated. It is 1.3×10 −3 at 633 nm and 900 nm, respectively

  16. Radiation safety

    International Nuclear Information System (INIS)

    Auxier, J.A.

    1977-01-01

    Data available on the biological effects of radiation on man are reviewed, with emphasis on dose response to low LET and high LET radiation sources, and the effects of dose rate. Existing guides for radiation protection were formulated largely on the basis of tumor induction in the bone of radium dial painters, but the ICRP/NCRP annual dose guides of 5 rem/yr are of the same general magnitude as the doses received in several parts of the world from the natural radiation environment. Because of the greater sensitivity of rapidly dividing cells and the assumption that radiation occupations would not begin before the age of eighteen, maximum exposure levels were set as 5 (N-18) rem/yr, where N is the exposed worker's age in years. However, in the case of the natural radiation environment, exposure commences, in a sense, with the exposure of the ovum of the individual's mother; and the ovum is formed during the fetal development of the mother. In occupational exposures, the professional health physicist has always practiced the as low as practical philosophy, and exposures have generally averaged far below the guidelines. The average annual exposure of the radiation worker in modern plants and laboratories is approximately equal to the average natural radiation environment exposure rate and far lower than the natural radiation environment in many parts of the world. There are numerous complications and uncertainties in quantifying radiation effects on humans, however, the greatest is that due to having to extrapolate from high dose levels at which effects have been measured and quantified, to low levels at which most exposures occur but at which no effects have been observed

  17. Radiation safety

    International Nuclear Information System (INIS)

    Van Riessen, A.

    2002-01-01

    Full text: Experience has shown that modem, fully enclosed, XRF and XRD units are generally safe. This experience may lead to complacency and ultimately a lowering of standards which may lead to accidents. Maintaining awareness of radiation safety issues is thus an important role for all radiation safety officers. With the ongoing progress in technology, a greater number of radiation workers are more likely to use a range of instruments/techniques - eg portable XRF, neutron beam analysis, and synchrotron radiation analysis. The source for each of these types of analyses is different and necessitates an understanding of the associated dangers as well as use of specific radiation badges. The trend of 'suitcase science' is resulting in scientists receiving doses from a range of instruments and facilities with no coordinated approach to obtain an integrated dose reading for an individual. This aspect of radiation safety needs urgent attention. Within Australia a divide is springing up between those who work on Commonwealth property and those who work on State property. For example a university staff member may operate irradiating equipment on a University campus and then go to a CSIRO laboratory to operate similar equipment. While at the University State regulations apply and while at CSIRO Commonwealth regulations apply. Does this individual require two badges? Is there a need to obtain two licences? The application of two sets of regulations causes unnecessary confusion and increases the workload of radiation safety officers. Radiation safety officers need to introduce risk management strategies to ensure that both existing and new procedures result in risk minimisation. A component of this strategy includes ongoing education and revising of regulations. AXAA may choose to contribute to both of these activities as a service to its members as well as raising the level of radiation safety for all radiation workers. Copyright (2002) Australian X-ray Analytical

  18. Novel EUV photoresist for sub-7nm node (Conference Presentation)

    Science.gov (United States)

    Furukawa, Tsuyoshi; Naruoka, Takehiko; Nakagawa, Hisashi; Miyata, Hiromu; Shiratani, Motohiro; Hori, Masafumi; Dei, Satoshi; Ayothi, Ramakrishnan; Hishiro, Yoshi; Nagai, Tomoki

    2017-04-01

    Extreme ultraviolet (EUV) lithography has been recognized as a promising candidate for the manufacturing of semiconductor devices as LS and CH pattern for 7nm node and beyond. EUV lithography is ready for high volume manufacturing stage. For the high volume manufacturing of semiconductor devices, significant improvement of sensitivity and line edge roughness (LWR) and Local CD Uniformity (LCDU) is required for EUV resist. It is well-known that the key challenge for EUV resist is the simultaneous requirement of ultrahigh resolution (R), low line edge roughness (L) and high sensitivity (S). Especially high sensitivity and good roughness is important for EUV lithography high volume manufacturing. We are trying to improve sensitivity and LWR/LCDU from many directions. From material side, we found that both sensitivity and LWR/LCDU are simultaneously improved by controlling acid diffusion length and efficiency of acid generation using novel resin and PAG. And optimizing EUV integration is one of the good solution to improve sensitivity and LWR/LCDU. We are challenging to develop new multi-layer materials to improve sensitivity and LWR/LCDU. Our new multi-layer materials are designed for best performance in EUV lithography system. From process side, we found that sensitivity was substantially improved maintaining LWR applying novel type of chemical amplified resist (CAR) and process. EUV lithography evaluation results obtained for new CAR EUV interference lithography. And also metal containing resist is one possibility to break through sensitivity and LWR trade off. In this paper, we will report the recent progress of sensitivity and LWR/LCDU improvement of JSR novel EUV resist and process.

  19. Simulation of 50-nm Gate Graphene Nanoribbon Transistors

    Directory of Open Access Journals (Sweden)

    Cedric Nanmeni Bondja

    2016-01-01

    Full Text Available An approach to simulate the steady-state and small-signal behavior of GNR MOSFETs (graphene nanoribbon metal-semiconductor-oxide field-effect transistor is presented. GNR material parameters and a method to account for the density of states of one-dimensional systems like GNRs are implemented in a commercial device simulator. This modified tool is used to calculate the current-voltage characteristics as well the cutoff frequency fT and the maximum frequency of oscillation fmax of GNR MOSFETs. Exemplarily, we consider 50-nm gate GNR MOSFETs with N = 7 armchair GNR channels and examine two transistor configurations. The first configuration is a simplified MOSFET structure with a single GNR channel as usually studied by other groups. Furthermore, and for the first time in the literature, we study in detail a transistor structure with multiple parallel GNR channels and interribbon gates. It is shown that the calculated fT of GNR MOSFETs is significantly lower than that of GFETs (FET with gapless large-area graphene channel with comparable gate length due to the mobility degradation in GNRs. On the other hand, GNR MOSFETs show much higher fmax compared to experimental GFETs due the semiconducting nature of the GNR channels and the resulting better saturation of the drain current. Finally, it is shown that the gate control in FETs with multiple parallel GNR channels is improved while the cutoff frequency is degraded compared to single-channel GNR MOSFETs due to parasitic capacitances of the interribbon gates.

  20. Radiative flux calculations at UV and visible wavelengths

    International Nuclear Information System (INIS)

    Grossman, A.S.; Grant, K.E.; Wuebbles, D.J.

    1993-10-01

    A radiative transfer model to calculate the short wavelength fluxes at altitudes between 0 and 80 km has been developed at LLNL. The wavelength range extends from 175--735 nm. This spectral range covers the UV-B wavelength region, 250--350 nm, with sufficient resolution to allow comparison of UV-B measurements with theoretical predictions. Validation studies for the model have been made for both UV-B ground radiation calculations and tropospheric solar radiative forcing calculations for various ozone distributions. These studies indicate that the model produces results which agree well with respect to existing UV calculations from other published models