WorldWideScience

Sample records for radiated power spectrum

  1. INFLUENCE OF THE ORTHOGONALLY POLARIZED BACK REFLECTIONS ON THE POWER AND RADIATION SPECTRUM OF SUPERLUMINESCENT DIODES

    Directory of Open Access Journals (Sweden)

    A. B. Mukhtubayev

    2015-01-01

    Full Text Available We have investigated the back reflections influence on the spectrum for optical radiation source of superluminescent diode type and have provided optimal operating conditions of the radiation source. The feature of the research method is the usage of a fiber polarization controller and an optical mirror coated on the end of an optical fiber. The studies were conducted with two sources of optical radiation: ThorLabs superluminescent diode series S5FC1005SXL and LED module ELED-1550-1-E-9-SM1-FA-CW. It was revealed that at the value of back reflections equal to -13 dB relative to the output power source, a negative impact on power and spectral characteristics of the source with an optical power of 2.3 µW is beginning to appear. It was also confirmed that at the increase of the radiation power by increasing the source pumping current, back reflection influence is exhibiting at a lower level of back reflections. The results obtained need to be considered when designing fiber optic sensors in order to eliminate the effect of back reflections on the sources of optical radiation having been studied in this paper.

  2. The cosmic microwave background radiation power spectrum as a random bit generator for symmetric- and asymmetric-key cryptography.

    Science.gov (United States)

    Lee, Jeffrey S; Cleaver, Gerald B

    2017-10-01

    In this note, the Cosmic Microwave Background (CMB) Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n × n) random key matrix for a Vernam cipher is established.

  3. Power Difference in Spectrum of Sound Radiation before and after Break of Phantom by Piezoelectric Extracorporeal Shock Wave Lithotriptor

    Science.gov (United States)

    Kanai, Hiroshi; Jang, Yun-Seok; Chubachi, Noriyoshi; Tanahashi, Yoshikatsu

    1994-05-01

    This paper investigates the difference in the spectrum of sound radiated before and after the break of a phantom at a focal point of the piezoelectric extracorporeal shock wave lithotriptor (ESWL) in order to identify the break time or to examine whether a calculus exists exactly at the focal point or not. From the preliminary experiments using a piece of chalk as a phantom of a calculus to measure the sound radiated when impact is applied to the chalk by an impact hammer, it is found that the bending vibration component of the vibration is exhibited in the spectrum of sound. However, for small-sized chalk shorter than 3 cm, the peak frequency of the bending vibration is higher than 20 kHz. From the experiments using a piezoeletric ESWL, it is found that there is clear difference in the power spectra among the sound radiated before the break, that radiated just after the break in the breaking process, and that radiated when the chalk does not exist at the focal point of the ESWL. These characteristics will be effective for the examination of the existence of the calculus at the focal point.

  4. The cosmic microwave background radiation power spectrum as a random bit generator for symmetric- and asymmetric-key cryptography

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Lee

    2017-10-01

    Full Text Available In this note, the Cosmic Microwave Background (CMB Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n × n random key matrix for a Vernam cipher is established. Keywords: Particle physics, Computer science, Mathematics, Astrophysics

  5. Probing reionization with the cross-power spectrum of 21 cm and near-infrared radiation backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Xiao-Chun, E-mail: xcmao@bao.ac.cn [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-08-01

    The cross-correlation between the 21 cm emission from the high-redshift intergalactic medium and the near-infrared (NIR) background light from high-redshift galaxies promises to be a powerful probe of cosmic reionization. In this paper, we investigate the cross-power spectrum during the epoch of reionization. We employ an improved halo approach to derive the distribution of the density field and consider two stellar populations in the star formation model: metal-free stars and metal-poor stars. The reionization history is further generated to be consistent with the electron-scattering optical depth from cosmic microwave background measurements. Then, the intensity of the NIR background is estimated by collecting emission from stars in first-light galaxies. On large scales, we find that the 21 cm and NIR radiation backgrounds are positively correlated during the very early stages of reionization. However, these two radiation backgrounds quickly become anti-correlated as reionization proceeds. The maximum absolute value of the cross-power spectrum is |Δ{sub 21,NIR}{sup 2}|∼10{sup −4} mK nW m{sup –2} sr{sup –1}, reached at ℓ ∼ 1000 when the mean fraction of ionized hydrogen is x-bar{sub i}∼0.9. We find that Square Kilometer Array can measure the 21 cm-NIR cross-power spectrum in conjunction with mild extensions to the existing CIBER survey, provided that the integration time independently adds up to 1000 and 1 hr for 21 cm and NIR observations, and that the sky coverage fraction of the CIBER survey is extended from 4 × 10{sup –4} to 0.1. Measuring the cross-correlation signal as a function of redshift provides valuable information on reionization and helps confirm the origin of the 'missing' NIR background.

  6. Comparison of noise power spectrum methodologies in measurements by using various electronic portal imaging devices in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Son, Soon Yong [Dept. of Radiological Technology, Wonkwang Health Science University, Iksan (Korea, Republic of); Choi, Kwan Woo [Dept. of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Jeong, Hoi Woun [Dept. of Radiological Technology, Baekseok Culture University College, Cheonan (Korea, Republic of); Kwon, Kyung Tae [Dep. of Radiological Technology, Dongnam Health University, Suwon (Korea, Republic of); Kim, Ki Won [Dept. of Radiology, Kyung Hee University Hospital at Gang-dong, Seoul (Korea, Republic of); Lee, Young Ah; Son, Jin Hyun; Min, Jung Whan [Shingu University College, Sungnam (Korea, Republic of)

    2016-03-15

    The noise power spectrum (NPS) is one of the most general methods for measuring the noise amplitude and the quality of an image acquired from a uniform radiation field. The purpose of this study was to compare different NPS methodologies by using megavoltage X-ray energies. The NPS evaluation methods in diagnostic radiation were applied to therapy using the International Electro-technical Commission standard (IEC 62220-1). Various radiation therapy (RT) devices such as TrueBeamTM(Varian), BEAMVIEWPLUS(Siemens), iViewGT(Elekta) and ClinacR iX (Varian) were used. In order to measure the region of interest (ROI) of the NPS, we used the following four factors: the overlapping impact, the non-overlapping impact, the flatness and penumbra. As for NPS results, iViewGT(Elekta) had the higher amplitude of noise, compared to BEAMVIEWPLUS (Siemens), TrueBeamTM(Varian) flattening filter, ClinacRiXaS1000(Varian) and TrueBeamTM(Varian) flattening filter free. The present study revealed that various factors could be employed to produce megavoltage imaging (MVI) of the NPS and as a baseline standard for NPS methodologies control in MVI.

  7. Analysis of the phase control of the ITER ICRH antenna array. Influence on the load resilience and radiated power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Messiaen, A., E-mail: a.messiaen@fz-juelich.de; Ongena, J.; Vervier, M. [Laboratory for Plasma Physics, ERM-KMS, TEC partner, Cycle, B1000-Brussels (Belgium); Swain, D. [US ITER Team, ORNL (United States)

    2015-12-10

    The paper analyses how the phasing of the ITER ICRH 24 strap array evolves from the power sources up to the strap currents of the antenna. The study of the phasing control and coherence through the feeding circuits with prematching and automatic matching and decoupling network is made by modeling starting from the TOPICA matrix of the antenna array for a low coupling plasma profile and for current drive phasing (worst case for mutual coupling effects). The main results of the analysis are: (i) the strap current amplitude is well controlled by the antinode V{sub max} amplitude of the feeding lines, (ii) the best toroidal phasing control is done by the adjustment of the mean phase of V{sub max} of each poloidal straps column, (iii) with well adjusted system the largest strap current phasing error is ±20°, (iv) the effect on load resilience remains well below the maximum affordable VSWR of the generators, (v) the effect on the radiated power spectrum versus k{sub //} computed by means of the coupling code ANTITER II remains small for the considered cases.

  8. Supernovae anisotropy power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Ghodsi, Hoda; Baghram, Shant [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Habibi, Farhang, E-mail: h.ghodsi@mehr.sharif.ir, E-mail: baghram@sharif.edu, E-mail: habibi@lal.in2p3.fr [LAL-IN2P3/CNRS, BP 34, 91898 Orsay Cedex (France)

    2017-10-01

    We contribute another anisotropy study to this field of research using Type Ia supernovae (SNe Ia). In this work, we utilise the power spectrum calculation method and apply it to both the current SNe Ia data and simulation. Using the Union2.1 data set at all redshifts, we compare the spectrum of the residuals of the observed distance moduli to that expected from an isotropic universe affected by the Union2.1 observational uncertainties at low multipoles. Through this comparison we find a dipolar anisotropy with tension of less that 2σ towards l = 171° ± 21° and b = −26° ± 28° which is mainly induced by anisotropic spatial distribution of the SNe with z > 0.2 rather than being a cosmic effect. Furthermore, we find a tension of ∼ 4σ at ℓ = 4 between the two spectra. Our simulations are constructed with the characteristics of the upcoming surveys like the Large Synoptic Survey Telescope (LSST), which shall bring us the largest SNe Ia collection to date. We make predictions for the amplitude of a possible dipolar anisotropy that would be detectable by future SNe Ia surveys.

  9. Primordial power spectrum features and consequences

    Science.gov (United States)

    Goswami, G.

    2014-03-01

    The present Cosmic Microwave Background (CMB) temperature and polarization anisotropy data is consistent with not only a power law scalar primordial power spectrum (PPS) with a small running but also with the scalar PPS having very sharp features. This has motivated inflationary models with such sharp features. Recently, even the possibility of having nulls in the power spectrum (at certain scales) has been considered. The existence of these nulls has been shown in linear perturbation theory. What shall be the effect of higher order corrections on such nulls? Inspired by this question, we have attempted to calculate quantum radiative corrections to the Fourier transform of the 2-point function in a toy field theory and address the issue of how these corrections to the power spectrum behave in models in which the tree-level power spectrum has a sharp dip (but not a null). In particular, we have considered the possibility of the relative enhancement of radiative corrections in a model in which the tree-level spectrum goes through a dip in power at a certain scale. The mode functions of the field (whose power spectrum is to be evaluated) are chosen such that they undergo the kind of dynamics that leads to a sharp dip in the tree level power spectrum. Next, we have considered the situation in which this field has quartic self interactions, and found one loop correction in a suitably chosen renormalization scheme. Thus, we have attempted to answer the following key question in the context of this toy model (which is as important in the realistic case): In the chosen renormalization scheme, can quantum radiative corrections be enhanced relative to tree-level power spectrum at scales, at which sharp dips appear in the tree-level spectrum?

  10. Modelling the TSZ power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Suman [Los Alamos National Laboratory; Shaw, Laurie D [YALE; Nagai, Daisuke [YALE

    2010-01-01

    The structure formation in university is a hierarchical process. As universe evolves, tiny density fluctuations that existed in the early universe grows under gravitational instability to form massive large scale structures. The galaxy clusters are the massive viralized objects that forms by accreting smaller clumps of mass until they collapse under their self-gravity. As such galaxy clusters are the youngest objects in the universe which makes their abundance as a function of mass and redshift, very sensitive to dark energy. Galaxy clusters can be detected by measuring the richness in optical waveband, by measuring the X-ray flux, and in the microwave sky using Sunyaev-Zel'dovich (SZ) effect. The Sunyaev-Zel'dovich (SZ) effect has long been recognized as a powerful tool for detecting clusters and probing the physics of the intra-cluster medium. Ongoing and future experiments like Atacama Cosmology Telescope, the South Pole Telescope and Planck survey are currently surveying the microwave sky to develop large catalogs of galaxy clusters that are uniformly selected by the SZ flux. However one major systematic uncertainties that cluster abundance is prone to is the connection between the cluster mass and the SZ flux. As shown by several simulation studies, the scatter and bias in the SZ flux-mass relation can be a potential source of systematic error to using clusters as a cosmology probe. In this study they take a semi-analytic approach for modeling the intra-cluster medium in order to predict the tSZ power spectrum. The advantage of this approach is, being analytic, one can vary the parameters describing gas physics and cosmology simultaneously. The model can be calibrated against X-ray observations of massive, low-z clusters, and using the SZ power spectrum which is sourced by high-z lower mass galaxy groups. This approach allows us to include the uncertainty in gas physics, as dictated by the current observational uncertainties, while measuring the

  11. Comparison of horizontal and vertical noise power spectrum in measurements by using various electronic portal imaging devices in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Won [Dept. of Radiology, Kyung Hee University Hospital at Gang-dong, Seoul (Korea, Republic of); Choi, Kwan Woo [Dept. of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Jeong, Hoi Woun [Dept. of Radiological Technology, Baekseok Culture University, Cheonan (Korea, Republic of); Jang, Seo Goo [Dept. of Medical Science, Soonchunhyang University, Asan (Korea, Republic of); Kwon, Kyung Tae [Dept. of Radiological Technology, Dongnam Health University, Suwon (Korea, Republic of); Son, Soon Yong [Dept. of Radiological Technology, Wonkwang Health Science University, Iksan (Korea, Republic of); Son, Jin Hyun; Min, Jung Whan [Dept. of Radiological Technology, Shingu University, Sungnam (Korea, Republic of)

    2016-06-15

    The quality assurance (QA) is very important for diagnostic field and radiation therapy field to evaluate the characteristic of devices. The purpose of this study was to compare different NPS methodologies results which are measuring NPS with regard to horizontal and vertical directions by using megavoltage X-ray energies. The NPS evaluation methods were applied to the International Electro-technical Commission standard (IEC 62220-1). The electronic portal imaging devices (EPID) devices such as Siemens BEAMVIEWPLUS, Elekta iViewGT and Varian ClinacR iX aS1000 were used. NPS data were expressed by corresponding each frequency about average of noise value corresponding the each frequency, and NPS were evaluated quantitatively by totaling up the noise values of average frequency which are on horizontal and vertical directions. In NPS results for Elekta iViewGT, NPS of horizontal and vertical by using 4 methods were indicated the difference of 3-5% between horizontal and vertical direction. In the results of Siemens BEAMVIEWPLUS and Varian ClinacR iX aS1000, the NPS of horizontal and vertical direction were indicated the difference of 15% when averaging the whole values. This study were evaluated the NPS of each devices by totaling up the noise values of average frequency which are on horizontal and vertical directions suggesting the quantitative evaluation method using the data.

  12. Transformation of the angular power spectrum of the Cosmic Microwave Background (CMB) radiation into reciprocal spaces and consequences of this approach

    Czech Academy of Sciences Publication Activity Database

    Červinka, Ladislav

    2011-01-01

    Roč. 2, č. 11 (2011), s. 1331-1347 ISSN 2153-120X Institutional research plan: CEZ:AV0Z10100521 Keywords : CMB radiation * analysis of CMB spectrum * radial distribution function of objects * early universe cluster structure * density of ordinary matter Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  13. Concise expression of a classical radiation spectrum

    International Nuclear Information System (INIS)

    Wang, C.

    1993-01-01

    In this paper we present a concise expression of the classical electromagnetic radiation spectrum of a moving charge. It is shown to be equivalent to the often used and much more complicated form derived from the Lienard-Wiechert potentials when the observation distance R satisfies the condition R much-gt γλ. The expression reveals a relationship between the radiation spectrum and the motion of the radiation source. It also forms the basis of an efficient computing approach, which is of practical value in numerical calculations of the spectral output of accelerated charges. The advantages of this approach for analytical and numerical applications are discussed and the bending-magnet synchrotron radiation spectrum is calculated according to the approach

  14. Concept of quasi-periodic undulator - control of radiation spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Shigemi [Japan Atomic Energy Research Institute, Ibaraki (Japan)

    1995-02-01

    A new type of undulator, the quasi-periodic undulator (QPU) is considered which generates the irrational harmonics in the radiation spectrum. This undulator consists of the arrays of magnet blocks aligned in a quasi-periodic order, and consequentially lead to a quasi-periodic motion of electron. A combination of the QPU and a conventional crystal/grating monochromator provides pure monochromatic photon beam for synchrotron radiation users because the irrational harmonics do not be diffracted in the same direction by a monochromator. The radiation power and width of each radiation peak emitted from this undulator are expected to be comparable with those of the conventional periodic undulator.

  15. Subsampling for graph power spectrum estimation

    KAUST Repository

    Chepuri, Sundeep Prabhakar; Leus, Geert

    2016-01-01

    In this paper we focus on subsampling stationary random signals that reside on the vertices of undirected graphs. Second-order stationary graph signals are obtained by filtering white noise and they admit a well-defined power spectrum. Estimating the graph power spectrum forms a central component of stationary graph signal processing and related inference tasks. We show that by sampling a significantly smaller subset of vertices and using simple least squares, we can reconstruct the power spectrum of the graph signal from the subsampled observations, without any spectral priors. In addition, a near-optimal greedy algorithm is developed to design the subsampling scheme.

  16. Subsampling for graph power spectrum estimation

    KAUST Repository

    Chepuri, Sundeep Prabhakar

    2016-10-06

    In this paper we focus on subsampling stationary random signals that reside on the vertices of undirected graphs. Second-order stationary graph signals are obtained by filtering white noise and they admit a well-defined power spectrum. Estimating the graph power spectrum forms a central component of stationary graph signal processing and related inference tasks. We show that by sampling a significantly smaller subset of vertices and using simple least squares, we can reconstruct the power spectrum of the graph signal from the subsampled observations, without any spectral priors. In addition, a near-optimal greedy algorithm is developed to design the subsampling scheme.

  17. The Spectrum of Wind Power Fluctuations

    Science.gov (United States)

    Bandi, Mahesh

    2016-11-01

    Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.

  18. Normalized noise power spectrum of full field digital mammography system

    International Nuclear Information System (INIS)

    Norriza Mohd Isa; Wan Muhamad Saridan Wan Hassan

    2009-01-01

    A method to measure noise power spectrum of a full field digital mammography system is presented. The effect of X-ray radiation dose, size and configuration of region of interest on normalized noise power spectrum (NNPS) was investigated. Flat field images were acquired using RQA-M2 beam quality technique (Mo/Mo anode-filter, 28 kV, 2 mm Al) with different clinical radiation doses. The images were cropped at about 4 cm from the edge of the breast wall and then divided into different size of non-overlapping or overlapping segments. NNPS was determined through detrending, 2-D fast Fourier transformation and normalization. Our measurement shows that high radiation dose gave lower NNPS at a specific beam quality. (Author)

  19. Normalized Noise Power Spectrum of Full Field Digital Mammography System

    International Nuclear Information System (INIS)

    Isa, Norriza Mohd; Wan Hassan, Wan Muhamad Saridan

    2010-01-01

    A method to measure noise power spectrum of a full field digital mammography system is presented. The effect of X-ray radiation dose, size and configuration of region of interest on normalized noise power spectrum (NNPS) was investigated. Flat field images were acquired using RQA-M2 beam quality technique (Mo/Mo anode-filter, 28 kV, 2 mm Al) with different clinical radiation doses. The images were cropped at about 4 cm from the edge of the breast wall and then divided into different size of non-overlapping or overlapping segments. NNPS was determined through detrending, 2-D fast Fourier transformation and normalization. Our measurement shows that high radiation dose gave lower NNPS at a specific beam quality.

  20. Effective spectrum width of the synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V. G., E-mail: bagrov@phys.tsu.ru [Department of Physics, Tomsk State University, Tomsk (Russian Federation); Institute of High Current Electronics, SB RAS, Tomsk (Russian Federation); Gitman, D. M., E-mail: gitman@if.usp.br [Department of Physics, Tomsk State University, Tomsk (Russian Federation); Institute of Physics, University of São Paulo, São Paulo (Brazil); P.N.Lebedev Physical Institute, Moscow (Russian Federation); Levin, A. D., E-mail: alevin@if.usp.br [Institute of Physics, University of São Paulo, São Paulo (Brazil); Loginov, A. S.; Saprykin, A. D. [Department of Physics, Tomsk State University, Tomsk (Russian Federation)

    2015-11-25

    For an exact quantitative description of spectral properties of synchrotron radiation (SR), the concept of effective width of the spectrum is introduced. In the most interesting case, which corresponds to the ultrarelativistic limit of SR, the effective width of the spectrum is calculated for the polarization components, and new physically important quantitative information on the structure of spectral distributions is obtained. For the first time, the spectral distribution for the circular polarization component of the SR for the upper half-space is obtained within classical theory.

  1. Effective spectrum width of the synchrotron radiation

    International Nuclear Information System (INIS)

    Bagrov, V. G.; Gitman, D. M.; Levin, A. D.; Loginov, A. S.; Saprykin, A. D.

    2015-01-01

    For an exact quantitative description of spectral properties of synchrotron radiation (SR), the concept of effective width of the spectrum is introduced. In the most interesting case, which corresponds to the ultrarelativistic limit of SR, the effective width of the spectrum is calculated for the polarization components, and new physically important quantitative information on the structure of spectral distributions is obtained. For the first time, the spectral distribution for the circular polarization component of the SR for the upper half-space is obtained within classical theory

  2. Effective spectrum width of the synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); SB RAS, Institute of High Current Electronics, Tomsk (Russian Federation); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); P.N. Lebedev Physical Institute, Moscow (Russian Federation); Levin, A.D. [University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Loginov, A.S.; Saprykin, A.D. [Tomsk State University, Department of Physics, Tomsk (Russian Federation)

    2015-11-15

    For an exact quantitative description of spectral properties of synchrotron radiation (SR), the concept of effective width of the spectrum is introduced. In the most interesting case, which corresponds to the ultrarelativistic limit of SR, the effective width of the spectrum is calculated for the polarization components, and new physically important quantitative information on the structure of spectral distributions is obtained. For the first time, the spectral distribution for the circular polarization component of the SR for the upper half-space is obtained within classical theory. (orig.)

  3. Shape of power spectrum of intermittent chaos

    International Nuclear Information System (INIS)

    So, B.C.; Mori, H.

    1984-01-01

    Power spectra of intermittent chaos are calculated analytically. It is found that the power spectrum near onset point consists of a large number of Lorentzian lines with two peaks around frequencies ω = 0 and ω = ω 0 , where ω 0 is a fundamental frequency of a periodic orbit before the onset point, and furthermore the envelope of lines around ω = 0 obeys the power law 1/ + ω +2 , whereas the envelope around ω 0 obeys 1/ + ω-ω 0 +4 . The universality of these power law dependence in a certain class of intermittent chaos are clarified from a phenomenological view point. (author)

  4. Orientation identification of the power spectrum

    NARCIS (Netherlands)

    Rudnaya, M.; Mattheij, R.M.M.; Maubach, J.M.L.

    2010-01-01

    The image Fourier transform is widely used for defocus and astigmatism correction in electron microscopy. The shape of a power spectrum (the square of a modulus of image Fourier transform) is directly related to the three microscope’s controls, namely defocus and two-fold (two-parameter)

  5. Self-powered radiation detectors

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1982-01-01

    A self-powered nuclear radiation detector has an emitter electrode of an alloy of a first major constituent metal having a desired high radiation response, and a second minor constituent which imparts to the alloy a desired thermal or mechanical characteristic without diminishing the desired high radiation response. A gamma responsive self-powered detector is detailed which has an emitter with lead as the major constituent, with the minor constituent selected from aluminum, copper, nickel, platinum, or zinc. (author)

  6. Self-powered radiation detector

    International Nuclear Information System (INIS)

    Playfoot, K.C.; Bauer, R.F.; Goldstein, N.P.

    1980-01-01

    This invention relates to a self powered radiation detector requiring no excitation potential to generate a signal indicating a radiation flux. Such detectors comprise two electrically insulated electrodes, at a distance from each other. These electrodes are made of conducting materials having a different response for neutron and/or gamma ray radiation flux levels, as in nuclear power stations. This elongated detector generates an electric signal in terms of an incident flux of radiations cooperating with coaxial conductors insulated from each other and with different radiation reaction characteristics. The conductor with the greatest reaction to the radiations forms the central emitting electrode and the conductor with the least reaction to the radiations forms a tubular coaxial collecting electrode. The rhodium or cobalt tubular emitting electrode contains a ductile central conducting cable placed along the longitudinal axis of the detector. The latter is in high nickel steel with a low reaction to radiation [fr

  7. Charting the Parameter Space of the 21-cm Power Spectrum

    Science.gov (United States)

    Cohen, Aviad; Fialkov, Anastasia; Barkana, Rennan

    2018-05-01

    The high-redshift 21-cm signal of neutral hydrogen is expected to be observed within the next decade and will reveal epochs of cosmic evolution that have been previously inaccessible. Due to the lack of observations, many of the astrophysical processes that took place at early times are poorly constrained. In recent work we explored the astrophysical parameter space and the resulting large variety of possible global (sky-averaged) 21-cm signals. Here we extend our analysis to the fluctuations in the 21-cm signal, accounting for those introduced by density and velocity, Lyα radiation, X-ray heating, and ionization. While the radiation sources are usually highlighted, we find that in many cases the density fluctuations play a significant role at intermediate redshifts. Using both the power spectrum and its slope, we show that properties of high-redshift sources can be extracted from the observable features of the fluctuation pattern. For instance, the peak amplitude of ionization fluctuations can be used to estimate whether heating occurred early or late and, in the early case, to also deduce the cosmic mean ionized fraction at that time. The slope of the power spectrum has a more universal redshift evolution than the power spectrum itself and can thus be used more easily as a tracer of high-redshift astrophysics. Its peaks can be used, for example, to estimate the redshift of the Lyα coupling transition and the redshift of the heating transition (and the mean gas temperature at that time). We also show that a tight correlation is predicted between features of the power spectrum and of the global signal, potentially yielding important consistency checks.

  8. The power spectrum of inflationary attractors

    International Nuclear Information System (INIS)

    Broy, Benedict J.; Westphal, Alexander; Roest, Diederik

    2014-08-01

    Inflationary attractors predict the spectral index and tensor-to-scalar ratio to take specific values that are consistent with Planck. An example is the universal attractor for models with a generalised non-minimal coupling, leading to Starobinsky inflation. In this letter we demonstrate that it also predicts a specific relation between the amplitude of the power spectrum and the number of e-folds. The length and height of the inflationary plateau are related via the non-minimal coupling: in a wide variety of examples, the observed power normalisation leads to at least 55 flat e-foldings. Prior to this phase, the inflationary predictions vary and can account for the observational indications of power loss at large angular scales.

  9. Testing Rastall's theory using matter power spectrum

    International Nuclear Information System (INIS)

    Batista, C.E.M.; Fabris, J.C.; Daouda, M.H.

    2010-01-01

    Rastall's theory is a modification of the General Relativity theory leading to a different expression for the conservation law in the matter sector compared with the usual one. It has been argued recently that such a theory may have applications to the dark energy problem, since a pressureless fluid may lead to an accelerated universe. In the present work we confront Rastall's theory with the power spectrum data. The results indicate a configuration that essentially reduces Rastall's theory to General Relativity, unless the non-usual conservation law refers to a scalar field, situation where other configurations are eventually possible.

  10. Self-powered radiation detector

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1979-01-01

    Self-powered gamma radiation detector composed of a conducting emitter surrounded by an insulating medium and a conducting tubular collector, the emitter being a hollow tube containing an electrical insulator [fr

  11. Power spectrum analysis for defect screening in integrated circuit devices

    Science.gov (United States)

    Tangyunyong, Paiboon; Cole Jr., Edward I.; Stein, David J.

    2011-12-01

    A device sample is screened for defects using its power spectrum in response to a dynamic stimulus. The device sample receives a time-varying electrical signal. The power spectrum of the device sample is measured at one of the pins of the device sample. A defect in the device sample can be identified based on results of comparing the power spectrum with one or more power spectra of the device that have a known defect status.

  12. SLC energy spectrum monitor using synchrotron radiation

    International Nuclear Information System (INIS)

    Seeman, J.; Brunk, W.; Early, R.; Ross, M.; Tillmann, E.; Walz, D.

    1986-01-01

    The SLAC linac is being upgraded for the use in the SLAC Linear Collider (SLC). The improved linac must accelerate electron and positron bunches from 1.2 GeV to 50 GeV while producing output energy spectra of about 0.2%. The energy spectra must be maintained during operation to provide for good beam transmission and to minimize chromatic effects in the SLC ARCs and Final Focus. The energy spectra of these beams are determined by the bunch length and intensity, the RF phase and waveform and the intra-bunch longitudinal wakefields. A non-destructive energy spectrum monitor has been designed using a vertical wiggler magnet located downstream of the horizontal beam splitter at the end of the SLC linac. It produces synchrotron radiation which is viewed in an off-axis x-ray position sensitive detector. The expected resolution is 0.08 %. The design considerations of this monitor are presented. A pair of these monitors is under construction with an installation data set for late summer 1986

  13. SLC energy spectrum monitor using synchrotron radiation

    International Nuclear Information System (INIS)

    Seeman, J.; Brunk, W.; Early, R.; Ross, M.; Tillmann, E.; Walz, D.

    1986-04-01

    The SLAC Linac is being upgraded for the use in the SLAC Linear Collider (SLC). The improved Linac must accelerate electron and positron bunches from 1.2 GeV to 50 GeV while producing output energy spectra of about 0.2%. The energy spectra must be maintained during operation to provide for good beam transmission and to minimize chromatic effects in the SLC ARCs and Final Focus. the energy spectra of these beams are determined by the bunch length and intensity, the RF phase and waveform and the intra-bunch longitudinal wakefields. A non-destructive energy spectrum monitor has been designed using a vertical wiggler magnet located downstream of the horizontal beam splitter at the end of the SLC Linac. It produces synchrotron radiation which is viewed in an off-axis x-ray position sensitive detector. The expected resolution is 0.08%. The design considerations of this monitor are presented in this paper. A pair of these monitors is under construction with an installation date set for late summer 1986. 5 refs., 6 figs

  14. Contribution of domain wall networks to the CMB power spectrum

    International Nuclear Information System (INIS)

    Lazanu, A.; Martins, C.J.A.P.; Shellard, E.P.S.

    2015-01-01

    We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined

  15. Contribution of domain wall networks to the CMB power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Lazanu, A., E-mail: A.Lazanu@damtp.cam.ac.uk [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Shellard, E.P.S., E-mail: E.P.S.Shellard@damtp.cam.ac.uk [Centre for Theoretical Cosmology, Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2015-07-30

    We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.

  16. Contribution of domain wall networks to the CMB power spectrum

    Directory of Open Access Journals (Sweden)

    A. Lazanu

    2015-07-01

    Full Text Available We use three domain wall simulations from the radiation era to the late-time dark energy domination era based on the PRS algorithm to calculate the energy–momentum tensor components of domain wall networks in an expanding universe. Unequal time correlators in the radiation, matter and cosmological constant epochs are calculated using the scaling regime of each of the simulations. The CMB power spectrum of a network of domain walls is determined. The first ever quantitative constraint for the domain wall surface tension is obtained using a Markov chain Monte Carlo method; an energy scale of domain walls of 0.93 MeV, which is close but below the Zel'dovich bound, is determined.

  17. Efficient power combiner for THz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Seidfaraji, Hamide, E-mail: hsfaraji@unm.edu; Fuks, Mikhail I.; Christodoulou, Christos; Schamiloglu, Edl [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131-0001 (United States)

    2016-08-15

    Most dangerous explosive materials, both toxic and radioactive, contain nitrogen salts with resonant absorption lines in the frequency range 0.3-10 THz. Therefore, there has been growing interest in remotely detecting such materials by observing the spectrum of reflected signals when the suspicious material is interrogated by THz radiation. Practical portable THz sources available today generate only 20–40 mW output power. This power level is too low to interrogate suspicious material from a safe distance, especially if the material is concealed. Hence, there is a need for sources that can provide greater power in the THz spectrum. Generating and extracting high output power from THz sources is complicated and inefficient. The efficiency of vacuum electronic microwave sources is very low when scaled to the THz range and THz sources based on scaling down semiconductor laser sources have low efficiency as well, resulting in the well known “THz gap.” The reason for such low efficiencies for both source types is material losses in the THz band. In this article an efficient power combiner is described that is based on scaling to higher frequencies a microwave combiner that increases the output power in the THz range of interest in simulation studies. The proposed power combiner not only combines the THz power output from several sources, but can also form a Gaussian wavebeam output. A minimum conversion efficiency of 89% with cophased inputs in a lossy copper power combiner and maximum efficiency of 100% in a Perfect Electric Conductor (PEC)-made power combiner were achieved in simulations. Also, it is shown that the TE{sub 01} output mode is a reasonable option for THz applications due to the fact that conductive loss decreases for this mode as frequency increases.

  18. Efficient power combiner for THz radiation

    Directory of Open Access Journals (Sweden)

    Hamide Seidfaraji

    2016-08-01

    Full Text Available Most dangerous explosive materials, both toxic and radioactive, contain nitrogen salts with resonant absorption lines in the frequency range 0.3-10 THz. Therefore, there has been growing interest in remotely detecting such materials by observing the spectrum of reflected signals when the suspicious material is interrogated by THz radiation. Practical portable THz sources available today generate only 20–40 mW output power. This power level is too low to interrogate suspicious material from a safe distance, especially if the material is concealed. Hence, there is a need for sources that can provide greater power in the THz spectrum. Generating and extracting high output power from THz sources is complicated and inefficient. The efficiency of vacuum electronic microwave sources is very low when scaled to the THz range and THz sources based on scaling down semiconductor laser sources have low efficiency as well, resulting in the well known “THz gap.” The reason for such low efficiencies for both source types is material losses in the THz band. In this article an efficient power combiner is described that is based on scaling to higher frequencies a microwave combiner that increases the output power in the THz range of interest in simulation studies. The proposed power combiner not only combines the THz power output from several sources, but can also form a Gaussian wavebeam output. A minimum conversion efficiency of 89% with cophased inputs in a lossy copper power combiner and maximum efficiency of 100% in a Perfect Electric Conductor (PEC-made power combiner were achieved in simulations. Also, it is shown that the TE01 output mode is a reasonable option for THz applications due to the fact that conductive loss decreases for this mode as frequency increases.

  19. Spectra processing at tooth enamel dosimetry: Analytical description of EPR spectrum at different microwave power

    International Nuclear Information System (INIS)

    Tieliewuhan, E.; Ivannikov, A.; Zhumadilov, K.; Nalapko, M.; Tikunov, D.; Skvortsov, V.; Stepanenko, V.; Toyoda, S.; Tanaka, K.; Endo, S.; Hoshi, M.

    2006-01-01

    Variation of the electron paramagnetic resonance (EPR) spectrum of the human tooth enamel recorded at different microwave power is investigated. The analytical models describing the native and the radiation-induced signals in the enamel are proposed, which fit the experimental spectra in wide range of microwave power. These models are designed to use for processing the spectra of irradiated enamel at determination of the absorbed dose from the intensity of the radiation-induced signal

  20. Wind speed power spectrum analysis for Bushland, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Eggleston, E.D. [USDA-Agricultural Research Service, Bushland, TX (United States)

    1996-12-31

    Numerous papers and publications on wind turbulence have referenced the wind speed spectrum presented by Isaac Van der Hoven in his article entitled Power Spectrum of Horizontal Wind Speed Spectrum in the Frequency Range from 0.0007 to 900 Cycles per Hour. Van der Hoven used data measured at different heights between 91 and 125 meters above the ground, and represented the high frequency end of the spectrum with data from the peak hour of hurricane Connie. These facts suggest we should question the use of his power spectrum in the wind industry. During the USDA - Agricultural Research Service`s investigation of wind/diesel system power storage, using the appropriate wind speed power spectrum became a significant issue. We developed a power spectrum from 13 years of hourly average data, 1 year of 5 minute average data, and 2 particularly gusty day`s 1 second average data all collected at a height of 10 meters. While the general shape is similar to the Van der Hoven spectrum, few of his peaks were found in the Bushland spectrum. While higher average wind speeds tend to suggest higher amplitudes in the high frequency end of the spectrum, this is not always true. Also, the high frequency end of the spectrum is not accurately described by simple wind statistics such as standard deviation and turbulence intensity. 2 refs., 5 figs., 1 tab.

  1. Survivable pulse power space radiator

    Science.gov (United States)

    Mims, James; Buden, David; Williams, Kenneth

    1989-01-01

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometeorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length.

  2. Probing dark energy using convergence power spectrum and bi-spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Dinda, Bikash R., E-mail: bikash@ctp-jamia.res.in [Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi-110025 (India)

    2017-09-01

    Weak lensing convergence statistics is a powerful tool to probe dark energy. Dark energy plays an important role to the structure formation and the effects can be detected through the convergence power spectrum, bi-spectrum etc. One of the most promising and simplest dark energy model is the ΛCDM . However, it is worth investigating different dark energy models with evolving equation of state of the dark energy. In this work, detectability of different dark energy models from ΛCDM model has been explored through convergence power spectrum and bi-spectrum.

  3. Radiation tolerant power converter controls

    CERN Document Server

    Todd, B; King, Q; Uznanski, S

    2012-01-01

    The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) is the world's most powerful particle collider. The LHC has several thousand magnets, both warm and super-conducting, which are supplied with current by power converters. Each converter is controlled by a purpose-built electronic module called a Function Generator Controller (FGC). The FGC allows remote control of the power converter and forms the central part of a closed-loop control system where the power converter voltage is set, based on the converter output current and magnet-circuit characteristics. Some power converters and FGCs are located in areas which are exposed to beam-induced radiation. There are numerous radiation induced effects, some of which lead to a loss of control of the power converter, having a direct impact upon the accelerator's availability. Following the first long shut down (LS1), the LHC will be able to run with higher intensity beams and higher beam energy. This is expected to lead to signifi...

  4. Estimating the Crustal Power Spectrum From Vector Magsat Data: Crustal Power Spectrum

    Science.gov (United States)

    Lowe, David A. J.; Parker, Robert L.; Purucker, Michael E.; Constable, Catherine G.

    2000-01-01

    The Earth's magnetic field can be subdivided into core and crustal components and we seek to characterize the crustal part through its spatial power spectrum (R(sub l)). We process vector Magsat data to isolate the crustal field and then invert power spectral densities of flight-local components along-track for R(sub l) following O'Brien et al. [1999]. Our model (LPPC) is accurate up to approximately degree 45 (lambda=900 km) - this is the resolution limit of our data and suggests that global crustal anomaly maps constructed from vector Magsat data should not contain features with wavelengths less than 900 km. We find continental power spectra to be greater than oceanic ones and attribute this to the relative thicknesses of continental and oceanic crust.

  5. Just enough inflation. Power spectrum modifications at large scales

    International Nuclear Information System (INIS)

    Cicoli, Michele; Downes, Sean

    2014-07-01

    We show that models of 'just enough' inflation, where the slow-roll evolution lasted only 50-60 e-foldings, feature modifications of the CMB power spectrum at large angular scales. We perform a systematic and model-independent analysis of any possible non-slow-roll background evolution prior to the final stage of slow-roll inflation. We find a high degree of universality since most common backgrounds like fast-roll evolution, matter or radiation-dominance give rise to a power loss at large angular scales and a peak together with an oscillatory behaviour at scales around the value of the Hubble parameter at the beginning of slow-roll inflation. Depending on the value of the equation of state parameter, different pre-inflationary epochs lead instead to an enhancement of power at low-l, and so seem disfavoured by recent observational hints for a lack of CMB power at l< or similar 40. We also comment on the importance of initial conditions and the possibility to have multiple pre-inflationary stages.

  6. Radiated EMI from power converters

    Directory of Open Access Journals (Sweden)

    Arnautovski-Toševa Vesna

    2005-01-01

    Full Text Available With the continuous increase of switching frequency together with the ongoing trend to higher complexity and functionality, power converters as a part of electronic systems have raised more and more electromagnetic energy pollution to the local system environment. In the same time, stringent demands are imposed on the designers of new circuits that electromagnetic interference (EMI has to be suppressed at its source before it is allowed to propagate into other circuits and systems. In this paper, the authors present a full-wave numerical method for calculation and simulation of electromagnetic field radiated by power converter circuitry. The main objective is to analyze the layout geometry in order to obtain competitive PCB layout that will enable suitably attenuated level of the radiated electric field to safe level. By this it would be possible to ensure reliable operation of the sensitive electronic components in the proximity.

  7. On the omnipresent background gamma radiation of the continuous spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Banjanac, R.; Maletić, D.; Joković, D., E-mail: yokovic@ipb.ac.rs; Veselinović, N.; Dragić, A.; Udovičić, V.; Aničin, I.

    2014-05-01

    The background spectrum of a germanium detector, shielded from the radiations arriving from the lower and open for the radiations arriving from the upper hemisphere, is studied by means of absorption measurements, both in a ground level and in an underground laboratory. The low-energy continuous portion of this background spectrum that peaks at around 100 keV, which is its most intense component, is found to be of very similar shape at the two locations. It is established that it is mostly due to the radiations of the real continuous spectrum, which is quite similar to the instrumental one. The intensity of this radiation is in our cases estimated to about 8000 photons/(m{sup 2}s·2π·srad) in the ground level laboratory, and to about 5000 photons/(m{sup 2}s·2π·srad) in the underground laboratory, at the depth of 25 m.w.e. Simulations by GEANT4 and CORSIKA demonstrate that this radiation is predominantly of terrestrial origin, due to environmental gamma radiations scattered off the materials that surround the detector (the “skyshine radiation”), and to a far less extent to cosmic rays of degraded energy. - Highlights: • We studied the low-energy part of continuous background spectra of germanium detectors. • The study was performed at the ground level and at the shallow underground sites. • The instrumental spectrum is due to radiations of the similar continuous spectrum. • The low-energy radiation is of both terrestrial and cosmic-ray origin. • In our study, we find that this radiation is of predominantly terrestrial origin.

  8. THE MURCHISON WIDEFIELD ARRAY 21 cm POWER SPECTRUM ANALYSIS METHODOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Daniel C.; Beardsley, A. P.; Bowman, Judd D. [Arizona State University, School of Earth and Space Exploration, Tempe, AZ 85287 (United States); Hazelton, B. J.; Sullivan, I. S.; Barry, N.; Carroll, P. [University of Washington, Department of Physics, Seattle, WA 98195 (United States); Trott, C. M.; Pindor, B.; Briggs, F.; Gaensler, B. M. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Dillon, Joshua S.; Oliveira-Costa, A. de; Ewall-Wice, A.; Feng, L. [MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA 02139 (United States); Pober, J. C. [Brown University, Department of Physics, Providence, RI 02912 (United States); Bernardi, G. [Department of Physics and Electronics, Rhodes University, Grahamstown 6140 (South Africa); Cappallo, R. J.; Corey, B. E. [MIT Haystack Observatory, Westford, MA 01886 (United States); Emrich, D., E-mail: daniel.c.jacobs@asu.edu [International Centre for Radio Astronomy Research, Curtin University, Perth, WA 6845 (Australia); and others

    2016-07-10

    We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple independent data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction, and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed, accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregrounds.

  9. The spectrum of radiation enteritis: surgical considerations

    International Nuclear Information System (INIS)

    Haddad, G.K.; Grodsinsky, C.; Allen, H.

    1983-01-01

    Radiation therapy, often used to treat gynecologic and urologic pelvic malignancies, has varying, adverse effects on the bowel. Radiation enteritis may occur from one month to 20 years after irradiation, and disabling symptoms may require surgery in 10 to 20 per cent of patients. From our experience with 20 patients who required surgery for radiation enteritis and who were followed for up to 20 years, we were able to identify three clinical groups. Patients in the first group need only medical treatment for their symptoms, and observation, whereas patients in the second group may present with acute, debilitating, life-threatening symptoms that may require emergency surgery. Patients in the third group have a long-standing history of intermittent bowel obstruction and/or enteric fistulas that are best treated with adequate nutritional support followed by timely surgical intervention

  10. Application of real time spectrum measurement to radiation monitors

    International Nuclear Information System (INIS)

    Matsuno, K.; Watanabe, M.; Sakamaki, T.

    1996-01-01

    A multichannel analyzer (MCA) and two realtime spectrum monitoring methods have been developed for use in radiation monitors. The new MCA was designed to be installed at a local site as a component of a radiation monitor. The MCA repeats spectrum measurement at short intervals (Δt) and, after each measurement, transmits a spectrum datum to the operation console. The authors applied two methods to process Δt spectrum counts for each channel for longer time interval. One method of processing counts is the 'running average (RA) method'. The other method is the 'exponential smoothing (ES) method', which simulates RC rate meters by subtracting a fraction corresponding to the accumulated counts. Relative standard deviations for each channel can be made the same by selecting an appropriate value. The response with the 'ES' method is initially faster than that with the 'RA' method, but the 'RA' method allows a full response to be reached at a predictable time. (author)

  11. Imprint of spatial curvature on inflation power spectrum

    International Nuclear Information System (INIS)

    Masso, Eduard; Zsembinszki, Gabriel; Mohanty, Subhendra; Nautiyal, Akhilesh

    2008-01-01

    If the Universe had a large curvature before inflation there is a deviation from the scale invariant perturbations of the inflaton at the beginning of inflation. This may have some effect on the cosmic microwave background anisotropy at large angular scales. We calculate the density perturbations for both open and closed universe cases using the Bunch-Davies vacuum condition on the initial state. We use our power spectrum to calculate the temperature anisotropy spectrum and compare the results with the Wilkinson microwave anisotropy map five year data. We find that our power spectrum gives a lower quadrupole anisotropy when Ω-1>0, but matches the temperature anisotropy calculated from the standard Ratra-Peebles power spectrum at large l. The determination of spatial curvature from temperature anisotropy data is not much affected by the different power spectra which arise from the choice of different boundary conditions for the inflaton perturbation.

  12. Personnel radiation safety in nuclear power plants

    International Nuclear Information System (INIS)

    Elkert, J.

    1979-05-01

    The principal contributions to the radiation doses of the Swedish power reactor personnel are identified. The possi bilities to reduce these doses are examined. The radiation doses are analyzed according to different personnel categories, specific maintenance operations or inspections and to different radiation activities. Suggestions are given for reducing the radiation doses. (L.E.)

  13. Normalized noise power spectrum of full field digital mammography detector system

    International Nuclear Information System (INIS)

    Norriza Mohd Isa; Wan Muhamad Saridan Wan Hassan

    2009-01-01

    Full text: A method to measure noise power spectrum of a full field digital mammography system is presented. The effect of X-ray radiation dose, size and configuration of region of interest on normalized noise power spectrum (NNPS) was investigated. Flat field images were acquired using RQA-M2 beam quality technique (Mo/Mo anode-filter, 28 kV, 2 mm Al) with different clinical radiation doses. The images were cropped at about 4 cm from the edge of the breast wall and then divided into different size of non-overlapping or overlapping segments. NNPS was determined through de trending, 2-D fast Fourier transformation and normalization. Our measurement shows that high radiation dose gave lower NNPS at a specific beam quality. (author)

  14. Power spectrum of dark matter substructure in strong gravitational lenses

    Science.gov (United States)

    Diaz Rivero, Ana; Cyr-Racine, Francis-Yan; Dvorkin, Cora

    2018-01-01

    Studying the smallest self-bound dark matter structure in our Universe can yield important clues about the fundamental particle nature of dark matter. Galaxy-scale strong gravitational lensing provides a unique way to detect and characterize dark matter substructures at cosmological distances from the Milky Way. Within the cold dark matter (CDM) paradigm, the number of low-mass subhalos within lens galaxies is expected to be large, implying that their contribution to the lensing convergence field is approximately Gaussian and could thus be described by their power spectrum. We develop here a general formalism to compute from first principles the substructure convergence power spectrum for different populations of dark matter subhalos. As an example, we apply our framework to two distinct subhalo populations: a truncated Navarro-Frenk-White subhalo population motivated by standard CDM, and a truncated cored subhalo population motivated by self-interacting dark matter (SIDM). We study in detail how the subhalo abundance, mass function, internal density profile, and concentration affect the amplitude and shape of the substructure power spectrum. We determine that the power spectrum is mostly sensitive to a specific combination of the subhalo abundance and moments of the mass function, as well as to the average tidal truncation scale of the largest subhalos included in the analysis. Interestingly, we show that the asymptotic slope of the substructure power spectrum at large wave number reflects the internal density profile of the subhalos. In particular, the SIDM power spectrum exhibits a characteristic steepening at large wave number absent in the CDM power spectrum, opening the possibility of using this observable, if at all measurable, to discern between these two scenarios.

  15. 1/f noise in music and speech. [Power spectrum studies

    Energy Technology Data Exchange (ETDEWEB)

    Voss, R.F.; Clarke, J.

    1975-11-27

    The power spectrum, S(f), of many fluctuating physical variables, V(t), is approximately ''1/f-like.'' Loudness fluctuations in music and speech and pitch (melody) fluctuations in music were found to exhibit 1/f power spectra. This observation has implications for stochastic music composition. 3 figures. (RWR)

  16. Power/response spectrum transformations in equipment qualification

    International Nuclear Information System (INIS)

    Unruh, J.F.; Kana, D.D.

    1985-01-01

    Since its introduction a few years ago the use of the power/response spectrum transformation has gained considerable interest and acceptance, and a number of new applications of the transformation have been developed in the equipment qualification area. A brief review of the power/response spectrum transformation is given with a discussion of the input/output relationships for linear systems required for elevated power spectrum generation. Frequency content of earthquakelike signals is discussed with emphasis on the resolution given by the PSD. The problem of excessive ZPA due to inconsistent spectra enveloping and mechanical nonlinearities is also discussed. The PSD/RS transformation is applied to the problems of combining various dynamic load events, developing bounding spectra, and developing damping consistent test spectra. Development of elevated component spectra corrected for base overtest and generation from in-situ measurements is reviewed

  17. Spectrum and isotropy of the submillimeter background radiation

    International Nuclear Information System (INIS)

    Muehlner, D.

    1977-01-01

    Two great astronomical discoveries have most shaped our present concept of the Big Bang universe. Like the Hubble recession of the galaxies, the discovery of the 3 0 K background radiation by Penzias and Wilson in 1965 has given rise to a line of research which is still very active today. Penzias and Wilson's universal microwave background at 7 cm was immediately interpreted by R.H. Dicke's group at Princeton as coming from the primordial fireball of incandescent plasma which filled the universe for the million years or so after its explosive birth. This interpretation gives rise to two crucial predictions as to the nature of the background radiation. Its spectrum should be thermal even after having been red shifted by a factor of approximately 1000 by the expansion of the universe, and the radiation should be isotropic - assuming that the universe itself is isotropic. If the background radiation is indeed from the primordial fireball it affords us the only direct view at the very young universe. This paper deals with the spectrum and then the isotropy of the background radiation, with emphasis on high frequency or submillimeter measurements. Prospects for the future are discussed briefly. (Auth.)

  18. Coherent radiation spectrum measurements at KEK LUCX facility

    Energy Technology Data Exchange (ETDEWEB)

    Shevelev, M., E-mail: mishe@post.kek.jp [KEK: High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Aryshev, A., E-mail: alar@post.kek.jp [KEK: High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Araki, S.; Fukuda, M. [KEK: High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Karataev, P. [John Adams Institute at Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom); Terunuma, N.; Urakawa, J. [KEK: High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2015-01-21

    This paper demonstrates the detailed design concept, alignment, and initial testing of a Michelson interferometer for the THz spectral range. We present the first results on the measurement of a coherent transition radiation spectrum and describe the performance of a pair of ultra-fast broadband room temperature Schottky barrier diode detectors. We discuss the main criteria of interferometer beam splitter optimization, the alignment technique, the high-precision calibration and linearity check of the motion system.

  19. A measurement of the low frequency spectrum of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Levin, S.M.

    1987-04-01

    As part of a larger effort to measure the spectrum of the Cosmic Background Radiation (CBR) at low frequencies, the intensity of the CBR has been measured at a frequency of 1.410 GHz. The measurement was made by comparing the power received from the sky with the power received from a specially designed cooled calibration target with known properties. Sources of radiation other than the CBR were then identified and subtracted to calculate the antenna temperature of the CBR at 1.410 GHz. The instrument used to measure the CBR was a total-power microwave radiometer with a 25 MHz bandwidth centered at 1.410 GHz. The radiometer had a noise temperature of 80 K, and sufficient data were taken that radiometer noise did not contribute significantly to the total measurement error. The sources of error were predominantly systematic in nature, and the largest error was due to uncertainty in the reflection characteristics of the cold-load calibrator. Identification and subtraction of signals from the Galaxy (0.7 K) and the Earth's atmosphere (0.8 K) were also significant parts of the data reduction and error analysis. The brightness temperature of the Cosmic Background Radiation at 1.410 GHz is 222. +- 0.55 Kelvin. The spectrum of the CBR, as determined by this measurement and other published results, is consistent with a blackbody spectrum of temperature 2.741 +- 0.016. Constraints on the amount by which the CBR spectrum deviates from Planck spectrum are used to place limits on energy releases early in the history of the universe. 55 refs., 25 figs., 8 tabs

  20. Weak lensing of the cosmic microwave background: Power spectrum covariance

    International Nuclear Information System (INIS)

    Cooray, Asantha

    2002-01-01

    We discuss the non-Gaussian contribution to the power spectrum covariance of cosmic microwave background (CMB) anisotropies resulting through weak gravitational lensing angular deflections and the correlation of deflections with secondary sources of temperature fluctuations generated by the large scale structure, such as the integrated Sachs-Wolfe effect and the Sunyaev-Zel'dovich effect. This additional contribution to the covariance of binned angular power spectrum, beyond the well known cosmic variance and any associated instrumental noise, results from a trispectrum, or a four point correlation function, in temperature anisotropy data. With substantially wide bins in multipole space, the resulting non-Gaussian contribution from lensing to the binned power spectrum variance is insignificant out to multipoles of a few thousand and is not likely to affect the cosmological parameter estimation with acoustic peaks and the damping tail. The non-Gaussian contribution to covariance, however, should be considered when interpreting binned CMB power spectrum measurements at multipoles of a few thousand corresponding to angular scales of few arcminutes and less

  1. COSMIC EMULATION: FAST PREDICTIONS FOR THE GALAXY POWER SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Juliana; Heitmann, Katrin; Habib, Salman; Frontiere, Nicholas; Pope, Adrian [High Energy Physics Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Padmanabhan, Nikhil [Department of Physics, Yale University, 260 Whitney Ave., New Haven, CT 06520 (United States); Lawrence, Earl [Statistical Sciences, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Finkel, Hal [Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, IL 60439 (United States)

    2015-09-01

    The halo occupation distribution (HOD) approach has proven to be an effective method for modeling galaxy clustering and bias. In this approach, galaxies of a given type are probabilistically assigned to individual halos in N-body simulations. In this paper, we present a fast emulator for predicting the fully nonlinear galaxy–galaxy auto and galaxy–dark matter cross power spectrum and correlation function over a range of freely specifiable HOD modeling parameters. The emulator is constructed using results from 100 HOD models run on a large ΛCDM N-body simulation, with Gaussian Process interpolation applied to a PCA-based representation of the galaxy power spectrum. The total error is currently ∼1% in the auto correlations and ∼2% in the cross correlations from z = 1 to z = 0, over the considered parameter range. We use the emulator to investigate the accuracy of various analytic prescriptions for the galaxy power spectrum, parametric dependencies in the HOD model, and the behavior of galaxy bias as a function of HOD parameters. Additionally, we obtain fully nonlinear predictions for tangential shear correlations induced by galaxy–galaxy lensing from our galaxy–dark matter cross power spectrum emulator. All emulation products are publicly available at http://www.hep.anl.gov/cosmology/CosmicEmu/emu.html.

  2. A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems

    International Nuclear Information System (INIS)

    Qi Pei-Han; Li Zan; Si Jiang-Bo; Gao Rui

    2014-01-01

    Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds. (interdisciplinary physics and related areas of science and technology)

  3. A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems

    Science.gov (United States)

    Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Gao, Rui

    2014-12-01

    Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds.

  4. A spectrum of power plant simulators for effective training

    International Nuclear Information System (INIS)

    Foulke, L.R.

    1987-01-01

    This paper discusses the subject of training simulator fidelity and describes a spectrum of fidelity levels of power plant simulators to optimize training effectiveness. The body of knowledge about the relationship between power plant simulator fidelity and training effectiveness is reviewed, and a number of conjectures about this relationship are made based on the perspective of over 20 simulator-years of experience in training nuclear power plant operators. Developments are described for a new class of emerging simulator which utilize high resolution graphics to emphasize the visualization step of effective training

  5. Nonlinear evolution of f(R) cosmologies. II. Power spectrum

    International Nuclear Information System (INIS)

    Oyaizu, Hiroaki; Hu, Wayne; Lima, Marcos

    2008-01-01

    We carry out a suite of cosmological simulations of modified action f(R) models where cosmic acceleration arises from an alteration of gravity instead of dark energy. These models introduce an extra scalar degree of freedom which enhances the force of gravity below the inverse mass or Compton scale of the scalar. The simulations exhibit the so-called chameleon mechanism, necessary for satisfying local constraints on gravity, where this scale depends on environment, in particular, the depth of the local gravitational potential. We find that the chameleon mechanism can substantially suppress the enhancement of power spectrum in the nonlinear regime if the background field value is comparable to or smaller than the depth of the gravitational potentials of typical structures. Nonetheless power spectrum enhancements at intermediate scales remain at a measurable level for models even when the expansion history is indistinguishable from a cosmological constant, cold dark matter model. Simple scaling relations that take the linear power spectrum into a nonlinear spectrum fail to capture the modifications of f(R) due to the change in collapsed structures, the chameleon mechanism, and the time evolution of the modifications.

  6. Constraining the primordial power spectrum from SNIa lensing dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dayan, Ido [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kalaydzhyan, Tigran [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics and Astronomy

    2013-09-15

    The (absence of detecting) lensing dispersion of Supernovae type Ia (SNIa) can be used as a novel and extremely efficient probe of cosmology. In this preliminary example we analyze its consequences for the primordial power spectrum. The main setback is the knowledge of the power spectrum in the non-linear regime, 1 Mpc{sup -1}power spectrum. The probe extends our handle on the spectrum to a total of 12-15 inflation e-folds. These constraints are so strong that they are already ruling out a large portion of the parameter space allowed by PLANCK for running {alpha}{identical_to}dn{sub s}/d ln k and running of running {beta}{identical_to}d{sup 2}n{sub s}/d ln k{sup 2}. The bounds follow a linear relation to a very good accuracy. A conservative bound disfavours any enhancement above the line {beta}(k{sub 0})=0.032-0.41{alpha}(k{sub 0}) and a realistic estimate disfavours any enhancement above the line {beta}(k{sub 0})=0.019-0.45{alpha}(k{sub 0}).

  7. Multifractal signal reconstruction based on singularity power spectrum

    International Nuclear Information System (INIS)

    Xiong, Gang; Yu, Wenxian; Xia, Wenxiang; Zhang, Shuning

    2016-01-01

    Highlights: • We propose a novel multifractal reconstruction method based on singularity power spectrum analysis (MFR-SPS). • The proposed MFR-SPS method has better power characteristic than the algorithm in Fraclab. • Further, the SPS-ISE algorithm performs better than the SPS-MFS algorithm. • Based on the proposed MFR-SPS method, we can restructure singularity white fractal noise (SWFN) and linear singularity modulation (LSM) multifractal signal, in equivalent sense, similar with the linear frequency modulation(LFM) signal and WGN in the Fourier domain. - Abstract: Fractal reconstruction (FR) and multifractal reconstruction (MFR) can be considered as the inverse problem of singularity spectrum analysis, and it is challenging to reconstruct fractal signal in accord with multifractal spectrum (MFS). Due to the multiple solutions of fractal reconstruction, the traditional methods of FR/MFR, such as FBM based method, wavelet based method, random wavelet series, fail to reconstruct fractal signal deterministically, and besides, those methods neglect the power spectral distribution in the singular domain. In this paper, we propose a novel MFR method based singularity power spectrum (SPS). Supposing the consistent uniform covering of multifractal measurement, we control the traditional power law of each scale of wavelet coefficients based on the instantaneous singularity exponents (ISE) or MFS, simultaneously control the singularity power law based on the SPS, and deduce the principle and algorithm of MFR based on SPS. Reconstruction simulation and error analysis of estimated ISE, MFS and SPS show the effectiveness and the improvement of the proposed methods compared to those obtained by the Fraclab package.

  8. Power spectrum of an injection-locked Josephson oscillator

    International Nuclear Information System (INIS)

    Stancampiano, C.V.; Shapiro, S.

    1975-01-01

    Experiments have shown that a Josephson oscillator, exposed to a weak narrow-band input signal, exhibits behavior characteristic of an injection-locked oscillator. When in lock, Adler's theory of injection locking describes the experimental observations reasonably well. The range of applicability of the theory is extended to the out-of-lock regime where a spectrum of output frequencies is observed. Obtaining the theoretical output power spectrum requires solving a differential equation having the same form as the equation describing the resistively shunted junction model of Stewart and of McCumber. Experimental measurements of the output spectrum of a nearly locked Josephson oscillator are shown to be in reasonable agreement with the theory. Additional results discussed briefly include the observation of a frequency dependence of the locked Josephson oscillator output and experiments in which a Josephson oscillator-mixer was injection locked by a weak signal at the rf

  9. Matter power spectrum and the challenge of percent accuracy

    OpenAIRE

    Schneider, Aurel; Teyssier, Romain; Potter, Doug; Stadel, Joachim; Onions, Julian; Reed, Darren S.; Smith, Robert E.; Springel, Volker; Pearce, Frazer R.; Scoccimarro, Roman

    2015-01-01

    Future galaxy surveys require one percent precision in the theoretical knowledge of the power spectrum over a large range including very nonlinear scales. While this level of accuracy is easily obtained in the linear regime with perturbation theory, it represents a serious challenge for small scales where numerical simulations are required. In this paper we quantify the precision of present-day $N$-body methods, identifying main potential error sources from the set-up of initial conditions to...

  10. Dark Energy Constraints from the Thermal Sunyaev Zeldovich Power Spectrum

    Science.gov (United States)

    Bolliet, Boris; Comis, Barbara; Komatsu, Eiichiro; Macías-Pérez, Juan Francisco

    2018-03-01

    We constrain the dark energy equation of state parameter, w, using the power spectrum of the thermal Sunyaev-Zeldovich (tSZ) effect. We improve upon previous analyses by taking into account the trispectrum in the covariance matrix and marginalising over the foreground parameters, the correlated noise, the mass bias B in the Planck universal pressure profile, and all the relevant cosmological parameters (i.e., not just Ωm and σ8). We find that the amplitude of the tSZ power spectrum at ℓ ≲ 103 depends primarily on F ≡ σ8(Ωm/B)0.40h-0.21, where B is related to more commonly used variable b by B = (1 - b)-1. We measure this parameter with 2.6% precision, F = 0.460 ± 0.012 (68% CL). By fixing the bias to B = 1.25 and adding the local determination of the Hubble constant H0 and the amplitude of the primordial power spectrum constrained by the Planck Cosmic Microwave Background (CMB) data, we find w = -1.10 ± 0.12, σ8 = 0.802 ± 0.037, and Ωm = 0.265 ± 0.022 (68% CL). Our limit on w is consistent with and is as tight as that from the distance-alone constraint from the CMB and H0. Finally, by combining the tSZ power spectrum and the CMB data we find, in the Λ Cold Dark Matter (CDM) model, the mass bias of B = 1.71 ± 0.17, i.e., 1 - b = 0.58 ± 0.06 (68% CL).

  11. Power components behavior under nuclear radiations

    International Nuclear Information System (INIS)

    Jaureguy, J.C.; Azais, B.

    1989-01-01

    Many apparatus, either fixed or on-board of vehicles, use power converters. The most common scheme includes chopper with bipolar transistors. In case of nuclear radiations, these equipments may be severely damaged. Depending on the disturbance level, the need for changes in power transistor technology has to be considered or not [fr

  12. Practical applications of radiative wireless power transfer

    NARCIS (Netherlands)

    Pflug, H.; Visser, H.J.; Keyrouz, S.

    2015-01-01

    For practical use of radiative wireless power transfer (WPT), it is necessary to design a system which is able to supply circuits with a dynamic loading characteristic. In this paper we present a practical way to obtain efficiency and dc output power characteristics of a WPT system. An Avago

  13. Self-powered radiation detectors

    International Nuclear Information System (INIS)

    Gillies, Wallace.

    1980-01-01

    This invention aims to create a self fed radiation detector comprising a long central emitter-conductor absorbing the neutrons, wrapped in an insulating material, and a thin collector-conductor placed coaxially around the emitter and the insulation, the emitter being constructed of several stranded cables in a given conducting material so that the detector is flexible enough [fr

  14. Nuclear power and low level radiation hazards

    International Nuclear Information System (INIS)

    Myers, D.K.; Newcombe, H.B.

    1979-03-01

    Even in the future, nuclear power is expected to contribute less than 1/10th of the present total population exposure to man-made radiation. By the best estimates available, the current health risks of nuclear power generation appear to be much less than those associated with the major alternative sources of energy, with the exception of natural gas which is about equally safe. Uncertainties concerning the radiation risks from nuclear power, from medical x-rays and from the effects of reduced ventillation to conserve heat appear to be less than those associated with estimates of risks from the use of coal and various other sources of energy. This is in part because of the large amount of effort devoted to studies of radiation effects. The benefits in terms of current life expectancy associated with any of the conventional or unconventional methods of power production appear to greatly outweigh the associated current health hazards. (author)

  15. Some lemma on spectrum of eigen value regarding power method

    Science.gov (United States)

    Jamali, A. R. M. Jalal Uddin; Alam, Md. Sah

    2017-04-01

    Eigen value problems arise in almost all science and engineering fields. There exist some smart methods in literature in which most of them are able to find only Eigen values but could not find corresponding Eigen vectors. There exist many engineering as well as scientific fields in which both largest as well as smallest Eigen pairs are required. Power method is very simple but a powerful tool for finding largest Eigen value and corresponding Eigen vector (Eigen-pair). Again Inverse Power method is applied to find out smallest Eigen-pair and/or desire Eigen-pairs. But it is known that Inverse Power method is computationally very costly. On the other hand by using shifting property, Power method can find further Eigen-pairs. But the position of this Eigen value in the set of spectrum of the Eigen values is not identified. In this regard we proposed four lemma associate with Modified Power method. Each Lemma is proved ornately. The Modified Power method is implemented and illustrates an example for the verification of the Lemma. By using lemma the modified power algorithm is able to find out both largest and smallest Eigen-pairs successfully and efficiently in some cases. Moreover by the help of the Lemma, algorithm is able to detect the nature (positive and negative) of the Eigen values.

  16. LOFAR insights into the epoch of reionization from the cross-power spectrum of 21 cm emission and galaxies

    NARCIS (Netherlands)

    Wiersma, R. P. C.; Ciardi, B.; Thomas, R. M.; Harker, G. J. A.; Zaroubi, S.; Bernardi, G.; Brentjens, M.; de Bruyn, A. G.; Daiboo, S.; Jelic, V.; Kazemi, S.; Koopmans, L. V. E.; Labropoulos, P.; Martinez, O.; Offringa, A.; Pandey, V. N.; Schaye, J.; Veligatla, V.; Vedantham, H.; Yatawatta, S.; Mellema, G.

    2013-01-01

    Using a combination of N-body simulations, semi-analytic models and radiative transfer calculations, we have estimated the theoretical cross-power spectrum between galaxies and the 21 cm emission from neutral hydrogen during the epoch of reionization. In accordance with previous studies, we find

  17. Radiation effects on power cables for nuclear power plants

    International Nuclear Information System (INIS)

    Arora, R.; Munshi, P.; Badshah, M.G.Q.

    1988-01-01

    A large number of power and control cables, insulated with organic/polymeric materials, are installed quite near the reactor in nuclear power plants. The reliability of electrical equipment, receiving power through these cables, is critically important for the design and safety of the power stations. The radiation intensity inside the containment varies significantly from one location to another. The extent of material degradation is associated with the local radiation intensity. The cables used in the nuclear environment require several unique properties, the most obvious of these being radiation resistance, fire resistance, and the ability to withstand the loss-of-coolant accident in a nuclear power plant as specified in Institute of Electrical and Electronics Engineers (IEEE) Standard 383. In this study, four specific electrical power cable samples insulated with polyethylene, polyvinyl chloride, ethylene propylene rubber, and silicone rubber were chosen to investigate the effect of radiation in reactor environments on the electrical properties of the samples. Voltage breakdown tests and dielectric loss factor (tan δ) and conductor resistance measurements were carried out on each sample before and after irradiating them to near lifetime doses at ambient temperatures in atmospheric conditions

  18. Power spectrum model of visual masking: simulations and empirical data.

    Science.gov (United States)

    Serrano-Pedraza, Ignacio; Sierra-Vázquez, Vicente; Derrington, Andrew M

    2013-06-01

    In the study of the spatial characteristics of the visual channels, the power spectrum model of visual masking is one of the most widely used. When the task is to detect a signal masked by visual noise, this classical model assumes that the signal and the noise are previously processed by a bank of linear channels and that the power of the signal at threshold is proportional to the power of the noise passing through the visual channel that mediates detection. The model also assumes that this visual channel will have the highest ratio of signal power to noise power at its output. According to this, there are masking conditions where the highest signal-to-noise ratio (SNR) occurs in a channel centered in a spatial frequency different from the spatial frequency of the signal (off-frequency looking). Under these conditions the channel mediating detection could vary with the type of noise used in the masking experiment and this could affect the estimation of the shape and the bandwidth of the visual channels. It is generally believed that notched noise, white noise and double bandpass noise prevent off-frequency looking, and high-pass, low-pass and bandpass noises can promote it independently of the channel's shape. In this study, by means of a procedure that finds the channel that maximizes the SNR at its output, we performed numerical simulations using the power spectrum model to study the characteristics of masking caused by six types of one-dimensional noise (white, high-pass, low-pass, bandpass, notched, and double bandpass) for two types of channel's shape (symmetric and asymmetric). Our simulations confirm that (1) high-pass, low-pass, and bandpass noises do not prevent the off-frequency looking, (2) white noise satisfactorily prevents the off-frequency looking independently of the shape and bandwidth of the visual channel, and interestingly we proved for the first time that (3) notched and double bandpass noises prevent off-frequency looking only when the noise

  19. Galactic densities, substructure and the initial power spectrum

    International Nuclear Information System (INIS)

    Bullock, J.S.; Zentner, A.R.

    2003-01-01

    Although the currently favored cold dark matter plus cosmological constant model for structure formation assumes an n = 1 scale-invariant initial power spectrum, most inflation models produce at least mild deviations from n = 1. Because the lever arm from the CMB normalization to galaxy scales is long, even a small 'tilt' can have important implications for galactic observations. Here we calculate the COBS-normalized power spectra for several well-motivated models of inflation and compute implications for the substructure content and central densities of galaxy halos. Using an analytic model, normalized against N-body simulations, we show that while halos in the standard (n = 1) model are overdense by a factor of ∼ 6 compared to observations, several of our example inflation+LCDM models predict halo densities well within the range of observations, which prefer models with n ∼ 0.85. We go on to use a semi-analytic model (also normalized against N-body simulations) to follow the merger histories of galaxy-sized halos and track the orbital decay, disruption, and evolution of the merging substructure. Models with n ∼ 0.85 predict a factor of ∼ 3 fewer subhalos at a fixed circular velocity than the standard n 1 case. Although this level of reduction does not resolve the 'dwarf satellite problem', it does imply that the level of feedback required to match the observed number of dwarfs is sensitive to the initial power spectrum. Finally, the fraction of galaxy-halo mass that is bound up in substructure is consistent with limits imposed by multiply imaged quasars for all models considered: f sat > 0.01 even for an effective tilt of n ∼ 0.8. We conclude that, at their current level, lensing constraints of this kind do not provide an interesting probe of the primordial power spectrum

  20. Measurement of Radiated Power Loss on EAST

    International Nuclear Information System (INIS)

    Duan Yanmin; Hu Liqun; Mao Songtao; Xu Ping; Chen Kaiyun; Lin Shiyao; Zhong Guoqiang; Zhang Jizong; Zhang Ling; Wang Liang

    2011-01-01

    A type of silicon detector known as AXUV (absolute extreme ultraviolet) photodiodes is successfully used to measure the radiated power in EAST. The detector is characterized by compact structure, fast temporal response (<0.5 s) and flat spectral sensitivity in the range from ultra-violet to X-ray. Two 16-channel AXUV arrays are installed in EAST to view the whole poloidal cross-section of plasma. Based on the diagnostic system, typical radiation distributions for both limiter and divertor plasma are obtained and compared. As divertor detachment occurs, the radiation distribution in X-point region is observed to vary distinctly. The total radiation power losses in discharges with different plasma parameters are briefly analyzed.

  1. Radiation streaming in power reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Lahti, G.P.; Lee, R.R.; Courtney, J.C. (eds.)

    1979-02-01

    Separate abstracts are included for each of the 14 papers given at a special session on Radiation Streaming in Power Reactors held on November 15 at the American Nuclear Society 1978 Winter Meeting in Washington, D.C. The papers describe the methods of calculation, the engineering of shields, and the measurement of radiation environments within the containments of light water power reactors. Comparisons of measured and calculated data are used to determine the accuracy of computer predictions of the radiation environment. Specific computational and measurement techniques are described and evaluated. Emphasis is on radiation streaming in the annular region between the reactor vesel and the primary shield and its resultant environment within the primary containment.

  2. Compact high-power terahertz radiation source

    Directory of Open Access Journals (Sweden)

    G. A. Krafft

    2004-06-01

    Full Text Available In this paper a new type of THz radiation source, based on recirculating an electron beam through a high gradient superconducting radio frequency cavity, and using this beam to drive a standard electromagnetic undulator on the return leg, is discussed. Because the beam is recirculated and not stored, short bunches may be produced that radiate coherently in the undulator, yielding exceptionally high average THz power for relatively low average beam power. Deceleration from the coherent emission, and the detuning it causes, limits the charge-per-bunch possible in such a device.

  3. Matter power spectrum and the challenge of percent accuracy

    International Nuclear Information System (INIS)

    Schneider, Aurel; Teyssier, Romain; Potter, Doug; Stadel, Joachim; Reed, Darren S.; Onions, Julian; Pearce, Frazer R.; Smith, Robert E.; Springel, Volker; Scoccimarro, Roman

    2016-01-01

    Future galaxy surveys require one percent precision in the theoretical knowledge of the power spectrum over a large range including very nonlinear scales. While this level of accuracy is easily obtained in the linear regime with perturbation theory, it represents a serious challenge for small scales where numerical simulations are required. In this paper we quantify the precision of present-day N -body methods, identifying main potential error sources from the set-up of initial conditions to the measurement of the final power spectrum. We directly compare three widely used N -body codes, Ramses, Pkdgrav3, and Gadget3 which represent three main discretisation techniques: the particle-mesh method, the tree method, and a hybrid combination of the two. For standard run parameters, the codes agree to within one percent at k ≤1 h Mpc −1 and to within three percent at k ≤10 h Mpc −1 . We also consider the bispectrum and show that the reduced bispectra agree at the sub-percent level for k ≤ 2 h Mpc −1 . In a second step, we quantify potential errors due to initial conditions, box size, and resolution using an extended suite of simulations performed with our fastest code Pkdgrav3. We demonstrate that the simulation box size should not be smaller than L =0.5 h −1 Gpc to avoid systematic finite-volume effects (while much larger boxes are required to beat down the statistical sample variance). Furthermore, a maximum particle mass of M p =10 9 h −1 M ⊙ is required to conservatively obtain one percent precision of the matter power spectrum. As a consequence, numerical simulations covering large survey volumes of upcoming missions such as DES, LSST, and Euclid will need more than a trillion particles to reproduce clustering properties at the targeted accuracy.

  4. Matter power spectrum and the challenge of percent accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Aurel; Teyssier, Romain; Potter, Doug; Stadel, Joachim; Reed, Darren S. [Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Onions, Julian; Pearce, Frazer R. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Smith, Robert E. [Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH (United Kingdom); Springel, Volker [Heidelberger Institut für Theoretische Studien, 69118 Heidelberg (Germany); Scoccimarro, Roman, E-mail: aurel@physik.uzh.ch, E-mail: teyssier@physik.uzh.ch, E-mail: dpotter@physik.uzh.ch, E-mail: stadel@physik.uzh.ch, E-mail: julian.onions@nottingham.ac.uk, E-mail: reed@physik.uzh.ch, E-mail: r.e.smith@sussex.ac.uk, E-mail: volker.springel@h-its.org, E-mail: Frazer.Pearce@nottingham.ac.uk, E-mail: rs123@nyu.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, NY 10003, New York (United States)

    2016-04-01

    Future galaxy surveys require one percent precision in the theoretical knowledge of the power spectrum over a large range including very nonlinear scales. While this level of accuracy is easily obtained in the linear regime with perturbation theory, it represents a serious challenge for small scales where numerical simulations are required. In this paper we quantify the precision of present-day N -body methods, identifying main potential error sources from the set-up of initial conditions to the measurement of the final power spectrum. We directly compare three widely used N -body codes, Ramses, Pkdgrav3, and Gadget3 which represent three main discretisation techniques: the particle-mesh method, the tree method, and a hybrid combination of the two. For standard run parameters, the codes agree to within one percent at k ≤1 h Mpc{sup −1} and to within three percent at k ≤10 h Mpc{sup −1}. We also consider the bispectrum and show that the reduced bispectra agree at the sub-percent level for k ≤ 2 h Mpc{sup −1}. In a second step, we quantify potential errors due to initial conditions, box size, and resolution using an extended suite of simulations performed with our fastest code Pkdgrav3. We demonstrate that the simulation box size should not be smaller than L =0.5 h {sup −1}Gpc to avoid systematic finite-volume effects (while much larger boxes are required to beat down the statistical sample variance). Furthermore, a maximum particle mass of M {sub p}=10{sup 9} h {sup −1}M{sub ⊙} is required to conservatively obtain one percent precision of the matter power spectrum. As a consequence, numerical simulations covering large survey volumes of upcoming missions such as DES, LSST, and Euclid will need more than a trillion particles to reproduce clustering properties at the targeted accuracy.

  5. Ecological radiation protection criteria for nuclear power

    International Nuclear Information System (INIS)

    Kryshev, I.I.

    1993-01-01

    By now a large quantity of radioactive hazards of all sizes and shapes has accumulated in Russia. They include RBMK, VVER, and BN (fast-neutron) nuclear power plants, nuclear fuel processing plants, radioactive waste dumps, ships with nuclear power units, etc. In order to evaluate the radioecological situation correctly, the characteristics of the radioactive contamination must be compiled in these areas with some system of criteria which will provide an acceptable level of ecological safety. Currently health criteria for radiation protection are, which are oriented to man's radiation protection, predominate. Here the concept of a thresholdless linear dose-response dependence, which has been confirmed experimentally only at rather high doses (above 1 Gy), is taken as the theoretical basis for evaluating and normalizing radiation effects. According to one opinion, protecting people against radiation is sufficient to protect other types of organisms, although they are not necessarily of the same species. However, from the viewpoint of ecology, this approach is incorrect, because it does not consider radiation dose differences between man and other living organisms. The article discusses dose-response dependences for various organisms, biological effects of ionizing radiation, and appropriate radiation protection criteria

  6. Measurement of Gamma Spectrum at domestic Nuclear Power Plant with CZT Semiconductor Detector

    Energy Technology Data Exchange (ETDEWEB)

    Kon, Kang Seo; Yoon, Kang Hwa; Lee, Byoung Il; Kim, Jeong In [KHNP, Radiation Health Research Institute, Seoul (Korea, Republic of)

    2013-10-15

    In this study we monitored gamma spectrum for young S/G to see difference of the detected nuclides between old and young S/G. The detected source terms were the same for all measurement points. There is not comparison of quantity among the nuclides. The program which analyzes gamma spectrum to calculate activity and dose rate is under developing. We expect it will be done by end of this year. In this study we could see the difference of detected nuclides between old and new S/G for the first time whereas last measurement has significant meaning in that the measurement was taken for the first time all over country. Monitoring sources terms at Nuclear Power Plant(NPP) is important to aggressive ALARA activities and evaluation of exposure of workers. EDF (Electricite de France) and AEP (American Electric Power) conduct monitoring source terms using by CZT semiconductor detector. CZT is different from HPGe in that it does not need any cooling system at room temperature, it has good energy resolution and it can be made portable type easily. For these reason CZT is used in various fields commercially to measure gamma ray and therefore KHNP(Korea Hydro and Nuclear Power Co., LTD) RHRI(Radiation Health Research Institute) has been measuring gamma spectrum at domestic NPP last spring. We had have presented the first result through the last Transactions of the Korean Nuclear Society Spring Meeting for old S/G(Steam Generator)

  7. Nuclear Power and Radiation in Public Acceptance

    International Nuclear Information System (INIS)

    Vastchenko, S. V.

    2002-01-01

    The special knowledge deficiency does not give the possibility to the majority of people to pattern their behaviour in a correct way on radiation problems and to estimate faithfully the possible damage rate to the health of a human being from the different radiation sources effects. Studying of the public opinion in Belarus has shown that one of the results of the Chernobyl NPP accident consequences is inseparability of nuclear and radiation danger in public consciousness. The anonymous questionnaire of the inhabitants living in various Belarus regions has been carried out aiming at definition of a general radiation erudition, as well as revealing the knowledge of the population about the effect of power stations (nuclear and thermal) on the environment and the human being health. Answers on questions connected with power have shown a very poor erudition of population about ecological advantages and drawbacks inherent in thermal and nuclear power plants. The majority of the respondents (about 80%) does not know about the absence of CO 2 discharge and oxygen preservation in the air. The questionnaire analysis shows that people are exclusively frightened with radiation from NPPs, but the rest sources of radiation effect do not cause so anxiety and apprehension. People in Belarus have learnt well that the reason of the majority of the diseases is radiation, so it can be frequently heard not only from mass media, but also at scientific conferences and seminars. Most of medical workers are sure that all diseases are caused by radiation. The deficiency of special knowledge on nuclear technologies in the people majority and availability of a great amount of contradictory and untrue information supplied by mass media result in overestimation of danger from energy objects and underestimation of the increased radiation dose from other sources consequences, for example, under roentgen medical examination and treatment. The investigations carried out will help to arrange

  8. Testing for new physics: neutrinos and the primordial power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Canac, Nicolas; Abazajian, Kevork N. [Department of Physics, University of California at Irvine, Irvine, CA 92697 (United States); Aslanyan, Grigor [Berkeley Center for Cosmological Physics, University of California, Berkeley, CA 94720 (United States); Easther, Richard [Department of Physics, University of Auckland, Private Bag 92019, Auckland (New Zealand); Price, Layne C., E-mail: ncanac@uci.edu, E-mail: aslanyan@berkeley.edu, E-mail: kevork@uci.edu, E-mail: r.easther@auckland.ac.nz, E-mail: laynep@andrew.cmu.edu [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States)

    2016-09-01

    We test the sensitivity of neutrino parameter constraints from combinations of CMB and LSS data sets to the assumed form of the primordial power spectrum (PPS) using Bayesian model selection. Significantly, none of the tested combinations, including recent high-precision local measurements of H{sub 0} and cluster abundances, indicate a signal for massive neutrinos or extra relativistic degrees of freedom. For PPS models with a large, but fixed number of degrees of freedom, neutrino parameter constraints do not change significantly if the location of any features in the PPS are allowed to vary, although neutrino constraints are more sensitive to PPS features if they are known a priori to exist at fixed intervals in log k . Although there is no support for a non-standard neutrino sector from constraints on both neutrino mass and relativistic energy density, we see surprisingly strong evidence for features in the PPS when it is constrained with data from Planck 2015, SZ cluster counts, and recent high-precision local measurements of H{sub 0}. Conversely combining Planck with matter power spectrum and BAO measurements yields a much weaker constraint. Given that this result is sensitive to the choice of data this tension between SZ cluster counts, Planck and H{sub 0} measurements is likely an indication of unmodeled systematic bias that mimics PPS features, rather than new physics in the PPS or neutrino sector.

  9. Unbiased contaminant removal for 3D galaxy power spectrum measurements

    Science.gov (United States)

    Kalus, B.; Percival, W. J.; Bacon, D. J.; Samushia, L.

    2016-11-01

    We assess and develop techniques to remove contaminants when calculating the 3D galaxy power spectrum. We separate the process into three separate stages: (I) removing the contaminant signal, (II) estimating the uncontaminated cosmological power spectrum and (III) debiasing the resulting estimates. For (I), we show that removing the best-fitting contaminant (mode subtraction) and setting the contaminated components of the covariance to be infinite (mode deprojection) are mathematically equivalent. For (II), performing a quadratic maximum likelihood (QML) estimate after mode deprojection gives an optimal unbiased solution, although it requires the manipulation of large N_mode^2 matrices (Nmode being the total number of modes), which is unfeasible for recent 3D galaxy surveys. Measuring a binned average of the modes for (II) as proposed by Feldman, Kaiser & Peacock (FKP) is faster and simpler, but is sub-optimal and gives rise to a biased solution. We present a method to debias the resulting FKP measurements that does not require any large matrix calculations. We argue that the sub-optimality of the FKP estimator compared with the QML estimator, caused by contaminants, is less severe than that commonly ignored due to the survey window.

  10. Observational constraints on the primordial curvature power spectrum

    Science.gov (United States)

    Emami, Razieh; Smoot, George F.

    2018-01-01

    CMB temperature fluctuation observations provide a precise measurement of the primordial power spectrum on large scales, corresponding to wavenumbers 10‑3 Mpc‑1 lesssim k lesssim 0.1 Mpc‑1, [1-7, 11]. Luminous red galaxies and galaxy clusters probe the matter power spectrum on overlapping scales (0.02 Mpc‑1 lesssim k lesssim 0.7 Mpc‑1 [10, 12-20]), while the Lyman-alpha forest reaches slightly smaller scales (0.3 Mpc‑1 lesssim k lesssim 3 Mpc‑1 [22]). These observations indicate that the primordial power spectrum is nearly scale-invariant with an amplitude close to 2 × 10‑9, [5, 23-28]. These observations strongly support Inflation and motivate us to obtain observations and constraints reaching to smaller scales on the primordial curvature power spectrum and by implication on Inflation. We are able to obtain limits to much higher values of k lesssim 105 Mpc‑1 and with less sensitivity even higher k lesssim 1019‑ 1023 Mpc‑1 using limits from CMB spectral distortions and other limits on ultracompact minihalo objects (UCMHs) and Primordial Black Holes (PBHs). PBHs are one of the known candidates for the Dark Matter (DM). Due to their very early formation, they could give us valuable information about the primordial curvature perturbations. These are complementary to other cosmological bounds on the amplitude of the primordial fluctuations. In this paper, we revisit and collect all the published constraints on both PBHs and UCMHs. We show that unless one uses the CMB spectral distortion, PBHs give us a very relaxed bounds on the primordial curvature perturbations. UCMHs, on the other hand, are very informative over a reasonable k range (3 lesssim k lesssim 106 Mpc‑1) and lead to significant upper-bounds on the curvature spectrum. We review the conditions under which the tighter constraints on the UCMHs could imply extremely strong bounds on the fraction of DM that could be PBHs in reasonable models. Failure to satisfy these conditions would

  11. Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential

    Science.gov (United States)

    Huang, Qing-Guo; Pi, Shi

    2018-04-01

    The effects of heavy fields modulate the scalar power spectrum during inflation. We analytically calculate the modulations of the scalar power spectrum from a heavy field with a separable monomial potential, i.e. V(phi)~ phin. In general the modulation is characterized by a power-law oscillation which is reduced to the logarithmic oscillation in the case of n=2.

  12. Derivation of the blackbody radiation spectrum from the equivalence principle in classical physics with classical electromagnetic zero-point radiation

    International Nuclear Information System (INIS)

    Boyer, T.H.

    1984-01-01

    A derivation of Planck's spectrum including zero-point radiation is given within classical physics from recent results involving the thermal effects of acceleration through classical electromagnetic zero-point radiation. A harmonic electric-dipole oscillator undergoing a uniform acceleration a through classical electromagnetic zero-point radiation responds as would the same oscillator in an inertial frame when not in zero-point radiation but in a different spectrum of random classical radiation. Since the equivalence principle tells us that the oscillator supported in a gravitational field g = -a will respond in the same way, we see that in a gravitational field we can construct a perpetual-motion machine based on this different spectrum unless the different spectrum corresponds to that of thermal equilibrium at a finite temperature. Therefore, assuming the absence of perpetual-motion machines of the first kind in a gravitational field, we conclude that the response of an oscillator accelerating through classical zero-point radiation must be that of a thermal system. This then determines the blackbody radiation spectrum in an inertial frame which turns out to be exactly Planck's spectrum including zero-point radiation

  13. Angular power spectrum in publically released ALICE events

    Science.gov (United States)

    Llanes-Estrada, Felipe J.; Muñoz Martinez, Jose L.

    2018-02-01

    We study the particles emitted in the fireball following a Relativistic Heavy Ion Collision with the traditional angular analysis employed in cosmology and earth sciences, producing Mollweide plots of the number and pt distribution of a few actual, publically released ALICE-collaboration events and calculating their angular power spectrum. We also examine the angular spectrum of a simple two-particle correlation. While this may not be the optimal way of analyzing heavy ion data, our intention is to provide a one to one comparison to analysis in cosmology. With the limited statistics at hand, we do not find evidence for acoustic peaks but a decrease of Cl that is reminiscent of viscous attenuation, but subject to a strong effect from the rapidity acceptance which probably dominates (so we also subtract the m = 0 component). As an exercise, we still extract a characteristic Silk damping length (proportional to the square root of the viscosity over entropy density ratio) to illustrate the method. The absence of acoustic-like peaks is also compatible with a crossover from the QGP to the hadron gas (because a surface tension at domain boundaries would effect a restoring force that could have driven acoustic oscillations). Presently we do not understand a depression of the l = 6 multipole strength; perhaps ALICE could reexamine it with full statistics.

  14. CMB power spectrum at l=30-200 from QMASK

    International Nuclear Information System (INIS)

    Xu Yongzhong; Tegmark, Max; de Oliveira-Costa, Angelica

    2002-01-01

    We measure the cosmic microwave background power spectrum on angular scales l∼30-200 (1 deg. -6 deg.) from the QMASK map, which combines the data from the QMAP and Saskatoon experiments. Since the accuracy of recent measurements leftward of the first acoustic peak is limited by sample variance, the large area of the QMASK map (648 square degrees) allows us to place among the sharpest constraints to date in this range, in good agreement with BOOMERanG and (on the largest scales) COBE-DMR. By band-pass filtering the QMAP and Saskatoon maps, we are able to spatially compare them scale by scale to check for beam- and pointing-related systematic errors

  15. New generation low power radiation survey instruments

    International Nuclear Information System (INIS)

    Waechter, D.A.; Bjarke, G.O.; Trujillo, F.; Umbarger, C.J.; Wolf, M.A.

    1984-01-01

    A number of new, ultra-low-powered radiation instruments have recently been developed at Los Alamos. Among these are two instruments which use a novel power source to eliminate costly batteries. The newly developed gamma detecting radiac, nicknamed the Firefly, and the alpha particle detecting instrument, called the Simple Cordless Alpha Monitor, both use recent advances in miniaturization and powersaving electronics to yield devices which are small, rugged, and very power-frugal. The two instruments consume so little power that the need for batteries to run them is eliminated. They are, instead, powered by a charged capacitor which will operate the instruments for an hour or more. Use of a capacitor as a power source eliminates many problems commonly associated with battery-operated instruments, such as having to open the case to change batteries, battery storage life, availability of batteries in the field, and some savings in weight. Both line power and mechanical sources are used to charge the storage capacitors which power the instruments

  16. Radiation exposure in German nuclear power plants

    International Nuclear Information System (INIS)

    Mueller, W.

    1981-01-01

    The individual and collective doses in German nuclear power stations have decreased remarkably since the beginning of the commercial nuclear power production. The paper discusses the influencing factors, that have caused this development and points out areas where improvements are possible in the future. Moreover the interaction between radiation protection practice and the relevant legal regulations is considered. Usually the recording of job related doses is regarded as the most direct access to possible improvements. Concluding, it is therefore demonstrated by some examples how the evaluation of such information has taken effect in practice. (orig.) [de

  17. Radiation control system of nuclear power plants

    International Nuclear Information System (INIS)

    Kapisovsky, V.; Kosa, M.; Melichar, Z.; Moravek, J.; Jancik, O.

    1977-01-01

    The SYRAK system is being developed for in-service radiation control of the V-1 nuclear power plant. Its basic components are an EC 1010 computer, a CAMAC system and communication means. The in-service release of radionuclides is measured by fuel can failure detection, by monitoring rare gases in the coolant, by gamma spectrometric coolant monitoring and by iodine isotopes monitoring in stack disposal. (O.K.)

  18. Radiation emergency preparedness in nuclear power plants

    International Nuclear Information System (INIS)

    Geetha, P.V.; Ramamirtham, B.; Khot, P.

    2008-01-01

    The purpose of planning for radiation emergency response is to ensure adequate preparedness for protection of the plant personnel and members of the public from significant radiation exposures in the unlikely event of an accident. With a number of safety features in the reactor design and sound operating procedures, the probability of a major accident resulting in the releases of large quantities of radioactivity is extremely small. However, as an abundant cautious approach a comprehensive radiation emergency response preparedness is in place in all the nuclear power plants (NPPs). Radiation Emergency in NPPs is broadly categorized into three types; plant emergency, site emergency and off-site emergency. During off site emergency conditions, based on levels of radiation in the environment, Civil Authorities may impose several counter measures such as sheltering, administering prophylaxis (stable iodine for thyroid blocking) and evacuation of people from the affected area. Environmental Survey Laboratory (ESL) carries out environmental survey extensively in the affected sector identified by the meteorological survey laboratory. To handle emergency situations, Emergency Control Centre with all communication facility and Emergency Equipment Centre having radiation measuring instruments and protective equipment are functional at all NPPs. AERB stipulates certain periodicity for conducting the exercises on plant, site and off site emergency. These exercises are conducted and deficiencies corrected for strengthening the emergency preparedness system. In the case of off site emergency exercise, observers are invited from AERB and Crisis Management Group of Department of Atomic Energy (DAE). The emergency exercises conducted by Nuclear Power Plant Sites have been very satisfactory. (author)

  19. Computing the spectrum of black hole radiation in the presence of high frequency dispersion: an analytical approach

    OpenAIRE

    Corley, Steven

    1997-01-01

    We present a method for computing the spectrum of black hole radiation of a scalar field satisfying a wave equation with high frequency dispersion. The method involves a combination of Laplace transform and WKB techniques for finding approximate solutions to ordinary differential equations. The modified wave equation is obtained by adding a higher order derivative term suppressed by powers of a fundamental momentum scale $k_0$ to the ordinary wave equation. Depending on the sign of this new t...

  20. The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectrum

    Science.gov (United States)

    Dunkley, J.; Hlozek, R.; Sievers, J.; Acquaviva, V.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Battistelli, E. S.; hide

    2011-01-01

    We present cosmological parameters derived from the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz over 296 deg(exp 2) with the Atacama Cosmology Telescope (ACT) during its 2008 season. ACT measures fluctuations at scales 500 cosmological parameters from the less contaminated 148 GHz spectrum, marginalizing over SZ and source power. The ACDM cosmological model is a good fit to the data (chi square/dof = 29/46), and ACDM parameters estimated from ACT+Wilkinson Microwave Anisotropy Probe (WMAP) are consistent with the seven-year WMAP limits, with scale invariant n(sub s) = 1 excluded at 99.7% confidence level (CL) (3 sigma). A model with no CMB lensing is disfavored at 2.8 sigma. By measuring the third to seventh acoustic peaks, and probing the Silk damping regime, the ACT data improve limits on cosmological parameters that affect the small-scale CMB power. The ACT data combined with WMAP give a 6 sigma detection of primordial helium, with Y(sub p) = 0.313 +/- 0.044, and a 4 sigma detection of relativistic species, assumed to be neutrinos, with N(sub eff) = 5.3 +/- 1.3 (4.6 +/- 0.8 with BAO+H(sub 0) data). From the CMB alone the running of the spectral index is constrained to be d(sub s) / d ln k = -0,034 +/- 0,018, the limit on the tensor-to-scalar ratio is r < 0,25 (95% CL), and the possible contribution of Nambu cosmic strings to the power spectrum is constrained to string tension G(sub mu) < 1.6 x 10(exp -7) (95% CL),

  1. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to these seen in free space. For a well designed shield, the additional mass required to be brought fro earth should be less than 1000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  2. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    Houts, M.G.; Lee, S.K.

    1994-01-01

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to those seen in free space. For a well designed shield, the additional mass required to be brought from earth should be less than 1,000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  3. Implementation of 252Cf-source-driven power spectrum density measurement system

    International Nuclear Information System (INIS)

    Ren Yong; Wei Biao; Feng Peng; Li Jiansheng; Ye Cenming

    2012-01-01

    The principle of 252 Cf-source-driven power spectrum density measurement method is introduced. A measurement system and platform is realized accordingly, which is a combination of hardware and software, for measuring nuclear parameters. The detection method of neutron pulses based on an ultra-high-speed data acquisition card (three channels, 1 GHz sampling rate, 1 ns synchronization) is described, and the data processing process and the power spectrum density algorithm on PC are designed. This 252 Cf-source-driven power spectrum density measurement system can effectively obtain the nuclear tag parameters of nuclear random processes, such as correlation function and power spectrum density. (authors)

  4. REJUVENATING THE MATTER POWER SPECTRUM: RESTORING INFORMATION WITH A LOGARITHMIC DENSITY MAPPING

    International Nuclear Information System (INIS)

    Neyrinck, Mark C.; Szalay, Alexander S.; Szapudi, Istvan

    2009-01-01

    We find that nonlinearities in the dark matter power spectrum are dramatically smaller if the density field first undergoes a logarithmic mapping. In the Millennium simulation, this procedure gives a power spectrum with a shape hardly departing from the linear power spectrum for k ∼ -1 at all redshifts. Also, this procedure unveils pristine Fisher information on a range of scales reaching a factor of 2-3 smaller than in the standard power spectrum, yielding 10 times more cumulative signal to noise at z = 0.

  5. Angular power spectrum of galaxies in the 2MASS Redshift Survey

    Science.gov (United States)

    Ando, Shin'ichiro; Benoit-Lévy, Aurélien; Komatsu, Eiichiro

    2018-02-01

    We present the measurement and interpretation of the angular power spectrum of nearby galaxies in the 2MASS Redshift Survey catalogue with spectroscopic redshifts up to z ≈ 0.1. We detect the angular power spectrum up to a multipole of ℓ ≈ 1000. We find that the measured power spectrum is dominated by galaxies living inside nearby galaxy clusters and groups. We use the halo occupation distribution (HOD) formalism to model the power spectrum, obtaining a fit with reasonable parameters. These HOD parameters are in agreement with the 2MASS galaxy distribution we measure towards the known nearby galaxy clusters, confirming validity of our analysis.

  6. Time-dependent spectrum analysis of high power gyrotrons

    International Nuclear Information System (INIS)

    Schlaich, Andreas

    2015-01-01

    In this work, an investigation of vacuum electronic oscillators capable of generating multi-megawatt continuous wave output power in the millimeter-wave range (so-called gyrotrons) through spectral measurements is presented. The centerpiece is the development of a measurement system with a high dynamic range (50-60 dB) for time-dependent spectrum analysis, covering the frequency range 100-170 GHz with instantaneous bandwidths of 6-12 GHz. Despite relying on heterodyne reception through harmonic mixers, the Pulse Spectrum Analysis (PSA) system maintains RF unambiguity in the spectrogram output through the application of a novel RF reconstruction technique. Using the new possibilities, a wide range of spectral phenomena in gyrotrons has been investigated, such as cavity mode jumps, lowfrequency modulation, frequency tuning in long pulses and the spectral behavior during the presence of an RF window arc. A dedicated investigation on parasitic RF oscillations in W7-X gyrotrons combining several analysis techniques led to the conclusion that after-cavity oscillations can be physical reality in high power gyrotrons, and are the probable cause for the undesired signals observed. Apart from systematic parameter sweeps using the PSA system, an analytical dispersion analysis in the Brillouin diagram was applied, and numerical gyrotron interaction simulations of unprecedented extent were conducted. Furthermore, the improved frequency measurement capabilities were employed to analyze the frequency tuning through thermal expansion and electrostatic neutralization caused by ionization inside the tube in long-pulse operation. By macroscopically modeling the gas dynamics and ionization processes in combination with a fitting process, the time dependences of the two processes could be investigated. In doing so, indication was found that the neutralization in W7-X gyrotrons amounts to only 60% of the electrostatic depression voltage, instead of 100% as widely believed for

  7. Time-dependent spectrum analysis of high power gyrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Schlaich, Andreas

    2015-07-01

    In this work, an investigation of vacuum electronic oscillators capable of generating multi-megawatt continuous wave output power in the millimeter-wave range (so-called gyrotrons) through spectral measurements is presented. The centerpiece is the development of a measurement system with a high dynamic range (50-60 dB) for time-dependent spectrum analysis, covering the frequency range 100-170 GHz with instantaneous bandwidths of 6-12 GHz. Despite relying on heterodyne reception through harmonic mixers, the Pulse Spectrum Analysis (PSA) system maintains RF unambiguity in the spectrogram output through the application of a novel RF reconstruction technique. Using the new possibilities, a wide range of spectral phenomena in gyrotrons has been investigated, such as cavity mode jumps, lowfrequency modulation, frequency tuning in long pulses and the spectral behavior during the presence of an RF window arc. A dedicated investigation on parasitic RF oscillations in W7-X gyrotrons combining several analysis techniques led to the conclusion that after-cavity oscillations can be physical reality in high power gyrotrons, and are the probable cause for the undesired signals observed. Apart from systematic parameter sweeps using the PSA system, an analytical dispersion analysis in the Brillouin diagram was applied, and numerical gyrotron interaction simulations of unprecedented extent were conducted. Furthermore, the improved frequency measurement capabilities were employed to analyze the frequency tuning through thermal expansion and electrostatic neutralization caused by ionization inside the tube in long-pulse operation. By macroscopically modeling the gas dynamics and ionization processes in combination with a fitting process, the time dependences of the two processes could be investigated. In doing so, indication was found that the neutralization in W7-X gyrotrons amounts to only 60% of the electrostatic depression voltage, instead of 100% as widely believed for

  8. Radiation monitor system for nuclear power plants

    International Nuclear Information System (INIS)

    Wu Bingzhe; Guo Shusheng

    1990-12-01

    The system has 8 kinds of radiation monitors and 2 stage microcomputers designed for processing the data from each monitor, storaging the information, printing out and displaying on the colour CRT. The function of the system includes high-value alarm, warm alarm and failure alarm, so called t hree-level alarms . Two functions of the alarms are the threshold alarm and the tendency alarm, so that this system is an intelligency system. This system has high reliability and very wide range when LOCA accident takes place. It is aseismic and immune to industrial interference. The system can meet IEC-761-1 standard and is of nuclear safety 3rd class. Also the following monitors were designed: 133 Xe monitor, 131 I monitor, low-level liquid monitor and high radiation γ area monitor. The system can meet the requirements of nuclear power plants

  9. Radiation monitoring instrumentation for nuclear power plants

    International Nuclear Information System (INIS)

    Bharath Kumar, M.

    2013-01-01

    Measurement of nucleonic signals is required to control and operate the reactor in a safe and reliable manner. To achieve this, parameters like Neutron flux, other radiation fields, contamination levels, source strength, release thru stack etc. are required to be monitored and controlled. The above are required to be monitored throughout the life of the reactor whether it is operational or in shutdown condition. In addition such monitoring is also required during decommissioning phase of the reactor as needed. To measure these parameters a large number of instruments are used in Nuclear Power Plants (NPP) which includes sensors and electronics for detecting alpha, beta, gamma and neutron radiation with qualification to withstand harsh environment

  10. An optimal FFT-based anisotropic power spectrum estimator

    Energy Technology Data Exchange (ETDEWEB)

    Hand, Nick; Seljak, Uroš [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Li, Yin; Slepian, Zachary, E-mail: nhand@berkeley.edu, E-mail: yin.li@berkeley.edu, E-mail: zslepian@lbl.gov, E-mail: useljak@berkeley.edu [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2017-07-01

    Measurements of line-of-sight dependent clustering via the galaxy power spectrum's multipole moments constitute a powerful tool for testing theoretical models in large-scale structure. Recent work shows that this measurement, including a moving line-of-sight, can be accelerated using Fast Fourier Transforms (FFTs) by decomposing the Legendre polynomials into products of Cartesian vectors. Here, we present a faster, optimal means of using FFTs for this measurement. We avoid redundancy present in the Cartesian decomposition by using a spherical harmonic decomposition of the Legendre polynomials. With this method, a given multipole of order ℓ requires only 2ℓ+1 FFTs rather than the (ℓ+1)(ℓ+2)/2 FFTs of the Cartesian approach. For the hexadecapole (ℓ = 4), this translates to 40% fewer FFTs, with increased savings for higher ℓ. The reduction in wall-clock time enables the calculation of finely-binned wedges in P ( k ,μ), obtained by computing multipoles up to a large ℓ{sub max} and combining them. This transformation has a number of advantages. We demonstrate that by using non-uniform bins in μ, we can isolate plane-of-sky (angular) systematics to a narrow bin at 0μ ≅ while eliminating the contamination from all other bins. We also show that the covariance matrix of clustering wedges binned uniformly in μ becomes ill-conditioned when combining multipoles up to large values of ℓ{sub max}, but that the problem can be avoided with non-uniform binning. As an example, we present results using ℓ{sub max}=16, for which our procedure requires a factor of 3.4 fewer FFTs than the Cartesian method, while removing the first μ bin leads only to a 7% increase in statistical error on f σ{sub 8}, as compared to a 54% increase with ℓ{sub max}=4.

  11. An optimal FFT-based anisotropic power spectrum estimator

    Science.gov (United States)

    Hand, Nick; Li, Yin; Slepian, Zachary; Seljak, Uroš

    2017-07-01

    Measurements of line-of-sight dependent clustering via the galaxy power spectrum's multipole moments constitute a powerful tool for testing theoretical models in large-scale structure. Recent work shows that this measurement, including a moving line-of-sight, can be accelerated using Fast Fourier Transforms (FFTs) by decomposing the Legendre polynomials into products of Cartesian vectors. Here, we present a faster, optimal means of using FFTs for this measurement. We avoid redundancy present in the Cartesian decomposition by using a spherical harmonic decomposition of the Legendre polynomials. With this method, a given multipole of order l requires only 2l+1 FFTs rather than the (l+1)(l+2)/2 FFTs of the Cartesian approach. For the hexadecapole (l = 4), this translates to 40% fewer FFTs, with increased savings for higher l. The reduction in wall-clock time enables the calculation of finely-binned wedges in P(k,μ), obtained by computing multipoles up to a large lmax and combining them. This transformation has a number of advantages. We demonstrate that by using non-uniform bins in μ, we can isolate plane-of-sky (angular) systematics to a narrow bin at 0μ simeq while eliminating the contamination from all other bins. We also show that the covariance matrix of clustering wedges binned uniformly in μ becomes ill-conditioned when combining multipoles up to large values of lmax, but that the problem can be avoided with non-uniform binning. As an example, we present results using lmax=16, for which our procedure requires a factor of 3.4 fewer FFTs than the Cartesian method, while removing the first μ bin leads only to a 7% increase in statistical error on f σ8, as compared to a 54% increase with lmax=4.

  12. On minimally parametric primordial power spectrum reconstruction and the evidence for a red tilt

    International Nuclear Information System (INIS)

    Verde, Licia; Peiris, Hiranya

    2008-01-01

    The latest cosmological data seem to indicate a significant deviation from scale invariance of the primordial power spectrum when parameterized either by a power law or by a spectral index with non-zero 'running'. This deviation, by itself, serves as a powerful tool for discriminating among theories for the origin of cosmological structures such as inflationary models. Here, we use a minimally parametric smoothing spline technique to reconstruct the shape of the primordial power spectrum. This technique is well suited to searching for smooth features in the primordial power spectrum such as deviations from scale invariance or a running spectral index, although it would recover sharp features of high statistical significance. We use the WMAP three-year results in combination with data from a suite of higher resolution cosmic microwave background experiments (including the latest ACBAR 2008 release), as well as large-scale structure data from SDSS and 2dFGRS. We employ cross-validation to assess, using the data themselves, the optimal amount of smoothness in the primordial power spectrum consistent with the data. This minimally parametric reconstruction supports the evidence for a power law primordial power spectrum with a red tilt, but not for deviations from a power law power spectrum. Smooth variations in the primordial power spectrum are not significantly degenerate with the other cosmological parameters

  13. The Mira-Titan Universe. II. Matter Power Spectrum Emulation

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Earl; Heitmann, Katrin; Kwan, Juliana; Upadhye, Amol; Bingham, Derek; Habib, Salman; Higdon, David; Pope, Adrian; Finkel, Hal; Frontiere, Nicholas

    2017-09-20

    We introduce a new cosmic emulator for the matter power spectrum covering eight cosmological parameters. Targeted at optical surveys, the emulator provides accurate predictions out to a wavenumber k similar to 5 Mpc(-1) and redshift z <= 2. In addition to covering the standard set of Lambda CDM parameters, massive neutrinos and a dynamical dark energy of state are included. The emulator is built on a sample set of 36 cosmological models, carefully chosen to provide accurate predictions over the wide and large parameter space. For each model, we have performed a high-resolution simulation, augmented with 16 medium-resolution simulations and TimeRG perturbation theory results to provide accurate coverage over a wide k-range; the data set generated as part of this project is more than 1.2Pbytes. With the current set of simulated models, we achieve an accuracy of approximately 4%. Because the sampling approach used here has established convergence and error-control properties, follow-up results with more than a hundred cosmological models will soon achieve similar to 1% accuracy. We compare our approach with other prediction schemes that are based on halo model ideas and remapping approaches.

  14. Distortions in the Rayleigh-Jeans region of the cosmic background radiation spectrum

    International Nuclear Information System (INIS)

    De Zotti, G.

    1982-01-01

    The theory of the origin and evolution of distortions in the Rayleigh-Jeans region of the cosmic background radiation spectrum is reviewed. Some proposed experiments, designed to substantially improve our knowledge of that portion of the spectrum, are briefly described. (author)

  15. INCA project for investigation of primary cosmic radiation spectrum

    International Nuclear Information System (INIS)

    Aleksandrov, K.V.; Erlykin, A.D.; Zhdanov, G.B.

    2002-01-01

    The scientific purposes of the INCA project and application of the ionization-neutron calorimeter for direct measurements of the cosmic rays spectrum and composition in the knee area and the primary electrons spectrum by 10 14 - 10 13 eV are discussed. The new effective method for the primary electrons and protons separation with the complex rejection coefficient of 10 -5 - 10 -6 is proposed for studying the primary electrons spectrum by E e > 1 TeV. The experimental and calculation data are in good agreement [ru

  16. The Atacama Cosmology Telescope: A Measurement of the Primordial Power Spectrum

    Science.gov (United States)

    Hlozek, Renee; Dunkley, Joanna; Addison, Graeme; Appel, John William; Bond, J. Richard; Carvalho, C. Sofia; Das, Sudeep; Devlin, Mark J.; Duenner, Rolando; Essinger-Hileman, Thomas; hide

    2011-01-01

    We present constraints on the primordial power spectrum of adiabatic fluctuations using data from the 2008 Southern Survey of the Atacama Cosmology Telescope (ACT). The angular resolution of ACT provides sensitivity to scales beyond l = 1000 for resolution of multiple peaks in the primordial temperature power spectrum, which enables us to probe the primordial power spectrum of adiabatic scalar perturbations with wavenumbers up to k approx. = 0.2 Mp/c. We find no evidence for deviation from power-law fluctuations over two decades in scale. Matter fluctuations inferred from the primordial temperature power spectrum evolve over cosmic time and can be used to predict the matter power spectrum at late times; we illustrate the overlap of the matter power inferred from CMB measurements (which probe the power spectrum in thc linear regime) with existing probes of galaxy clustering, cluster abundances and weak lensing constraints on the primordial power. This highlights the range of scales probed by current measurement.s of the matter power spectrum.

  17. THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE PRIMORDIAL POWER SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Hlozek, Renee; Dunkley, Joanna; Addison, Graeme [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Appel, John William; Das, Sudeep; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Hincks, Adam D. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Bond, J. Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Carvalho, C. Sofia [IPFN, IST, Av. RoviscoPais, 1049-001Lisboa, Portugal and RCAAM, Academy of Athens, Soranou Efessiou 4, 11-527 Athens (Greece); Devlin, Mark J.; Klein, Jeff [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Duenner, Rolando; Gallardo, Patricio [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Halpern, Mark; Hasselfield, Matthew [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hilton, Matt [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Hughes, John P. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8019 (United States); Irwin, Kent D. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); and others

    2012-04-10

    We present constraints on the primordial power spectrum of adiabatic fluctuations using data from the 2008 Southern Survey of the Atacama Cosmology Telescope (ACT) in combination with measurements from the Wilkinson Microwave Anisotropy Probe and a prior on the Hubble constant. The angular resolution of ACT provides sensitivity to scales beyond l = 1000 for resolution of multiple peaks in the primordial temperature power spectrum, which enables us to probe the primordial power spectrum of adiabatic scalar perturbations with wavenumbers up to k {approx_equal} 0.2 Mpc{sup -1}. We find no evidence for deviation from power-law fluctuations over two decades in scale. Matter fluctuations inferred from the primordial temperature power spectrum evolve over cosmic time and can be used to predict the matter power spectrum at late times; we illustrate the overlap of the matter power inferred from cosmic microwave background measurements (which probe the power spectrum in the linear regime) with existing probes of galaxy clustering, cluster abundances, and weak-lensing constraints on the primordial power. This highlights the range of scales probed by current measurements of the matter power spectrum.

  18. [Restoration filtering based on projection power spectrum for single-photon emission computed tomography].

    Science.gov (United States)

    Kubo, N

    1995-04-01

    To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical "least squares filter" theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the "Butterworth" filtering method (cut-off frequency of 0.15 cycles/pixel), and "Wiener" filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99mTc filled cylinder, were used. NMSE of the "Butterworth" filter, "Wiener" filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images.

  19. Restoration filtering based on projection power spectrum for single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Kubo, Naoki

    1995-01-01

    To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical 'least squares filter' theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the 'Butterworth' filtering method (cut-off frequency of 0.15 cycles/pixel), and 'Wiener' filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99m Tc filled cylinder, were used. NMSE of the 'Butterworth' filter, 'Wiener' filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images. (author)

  20. Power spectrum scale invariance identifies prefrontal dysregulation in paranoid schizophrenia.

    Science.gov (United States)

    Radulescu, Anca R; Rubin, Denis; Strey, Helmut H; Mujica-Parodi, Lilianne R

    2012-07-01

    Theory and experimental evidence suggest that complex living systems function close to the boundary of chaos, with erroneous organization to an improper dynamical range (too stiff or chaotic) underlying system-wide dysregulation and disease. We hypothesized that erroneous organization might therefore also characterize paranoid schizophrenia, via optimization abnormalities in the prefrontal-limbic circuit regulating emotion. To test this, we acquired fMRI scans from 35 subjects (N = 9 patients with paranoid schizophrenia and N = 26 healthy controls), while they viewed affect-valent stimuli. To quantify dynamic regulation, we analyzed the power spectrum scale invariance (PSSI) of fMRI time-courses and computed the geometry of time-delay (Poincaré) maps, a measure of variability. Patients and controls showed distinct PSSI in two clusters (k(1) : Z = 4.3215, P = 0.00002 and k(2) : Z = 3.9441, P = 0.00008), localized to the orbitofrontal/medial prefrontal cortex (Brodmann Area 10), represented by β close to white noise in patients (β ≈ 0) and in the pink noise range in controls (β ≈ -1). Interpreting the meaning of PSSI differences, the Poincaré maps indicated less variability in patients than controls (Z = -1.9437, P = 0.05 for k(1) ; Z = -2.5099, P = 0.01 for k(2) ). That the dynamics identified Brodmann Area 10 is consistent with previous schizophrenia research, which implicates this area in deficits of working memory, executive functioning, emotional regulation and underlying biological abnormalities in synaptic (glutamatergic) transmission. Our results additionally cohere with a large body of work finding pink noise to be the normal range of central function at the synaptic, cellular, and small network levels, and suggest that patients show less supple responsivity of this region. Copyright © 2011 Wiley-Liss, Inc.

  1. Reheating effects in the matter power spectrum and implications for substructure

    International Nuclear Information System (INIS)

    Erickcek, Adrienne L.; Sigurdson, Kris

    2011-01-01

    The thermal and expansion history of the Universe before big bang nucleosynthesis is unknown. We investigate the evolution of cosmological perturbations through the transition from an early matter era to radiation domination. We treat reheating as the perturbative decay of an oscillating scalar field into relativistic plasma and cold dark matter. After reheating, we find that subhorizon perturbations in the decay-produced dark matter density are significantly enhanced, while subhorizon radiation perturbations are instead suppressed. If dark matter originates in the radiation bath after reheating, this suppression may be the primary cutoff in the matter power spectrum. Conversely, for dark matter produced nonthermally from scalar decay, enhanced perturbations can drive structure formation during the cosmic dark ages and dramatically increase the abundance of compact substructures. For low reheat temperatures, we find that as much as 50% of all dark matter is in microhalos with M > or approx. 0.1M + at z≅100, compared to a fraction of ∼10 -10 in the standard case. In this scenario, ultradense substructures may constitute a large fraction of dark matter in galaxies today.

  2. Radiation safety and protection on the nuclear power plants

    International Nuclear Information System (INIS)

    Nosovskij, A.V.; Bogorad, V.I.; Vasil'chenko, V.N.; Klyuchnikov, A.A.; Litvinskaya, T.V.; Slepchenko, A.Yu.

    2008-01-01

    The main issues of the radiation safety and protection provision on the nuclear power plants are considered in this monograph. The description of the basic sources of the radiation danger on NPPs, the principles, the methods and the means of the safety and radiation monitoring provision are shown. The special attention is paid to the issues of the ionizing radiation regulation

  3. Dynamics of globular molecules: moisture effect on the Rayleigh scattering spectrum of the Moessbauer radiation

    International Nuclear Information System (INIS)

    Chesskaya, T.Yu.

    1998-01-01

    The Rayleigh scattering spectrum of the Moessbauer radiation is plotted on the model simulating globular macromolecules. The modeling results are compared with experimental data on the spectra of the Rayleigh scattering of the Moessbauer radiation for various moisture content and hydratation dependence of the elastic scattering portion

  4. Maximum power flux of auroral kilometric radiation

    International Nuclear Information System (INIS)

    Benson, R.F.; Fainberg, J.

    1991-01-01

    The maximum auroral kilometric radiation (AKR) power flux observed by distant satellites has been increased by more than a factor of 10 from previously reported values. This increase has been achieved by a new data selection criterion and a new analysis of antenna spin modulated signals received by the radio astronomy instrument on ISEE 3. The method relies on selecting AKR events containing signals in the highest-frequency channel (1980, kHz), followed by a careful analysis that effectively increased the instrumental dynamic range by more than 20 dB by making use of the spacecraft antenna gain diagram during a spacecraft rotation. This analysis has allowed the separation of real signals from those created in the receiver by overloading. Many signals having the appearance of AKR harmonic signals were shown to be of spurious origin. During one event, however, real second harmonic AKR signals were detected even though the spacecraft was at a great distance (17 R E ) from Earth. During another event, when the spacecraft was at the orbital distance of the Moon and on the morning side of Earth, the power flux of fundamental AKR was greater than 3 x 10 -13 W m -2 Hz -1 at 360 kHz normalized to a radial distance r of 25 R E assuming the power falls off as r -2 . A comparison of these intense signal levels with the most intense source region values (obtained by ISIS 1 and Viking) suggests that multiple sources were observed by ISEE 3

  5. Radiation protection organization in Guangdong Nuclear Power Station (GNPS)

    International Nuclear Information System (INIS)

    Yang Maochun

    1993-01-01

    The French way of radiation protection management has been adopted by Guangdong Nuclear Power Station (GNPS) but there are some differences. In this paper author describes radiation protection organization in GNPS, special measures having been taken and the present status

  6. Influence of filling pattern structure on synchrotron radiation and beam spectrum at ANKA

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, Johannes; Brosi, Miriam; Bruendermann, Erik; Caselle, Michele; Blomley, Edmund; Hiller, Nicole; Kehrer, Benjamin; Mueller, Anke-Susanne; Schoenfeldt, Patrik; Schuh, Marcel; Schwarz, Markus; Siegel, Michael [Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2016-07-01

    We present the effects of the filling pattern structure in multi-bunch mode on the beam spectrum. This effects can be seen by all detectors whose resolution is better than the RF frequency, ranging from stripline and Schottky measurements to high resolution synchrotron radiation measurements. Our heterodyne measurements of the emitted coherent synchrotron radiation at 270 GHz reveal the discrete frequency harmonics around the 100'000 revolution harmonic of ANKA, the synchrotron radiation facility in Karlsruhe, Germany. Significant effects of bunch spacing, gaps between bunch trains and variations in individual bunch currents on the emitted CSR spectrum are described by theory and supported by observations.

  7. Oscillations in the spectrum of nonlinear Thomson-backscattered radiation

    Directory of Open Access Journals (Sweden)

    C. A. Brau

    2004-02-01

    Full Text Available When an electron beam collides with a high-intensity laser beam, the spectrum of the nonlinear Thomson scattering in the backward direction shows strong oscillations like those in the spectrum of an optical klystron. Laser gain on the backward Thomson scattering is estimated using the Madey theorem, and the results suggest that Thomson-backscatter free-electron lasers are possible at wavelengths extending to the far uv using a terawatt laser beam from a chirped-pulse amplifier and a high-brightness electron beam from a needle cathode.

  8. On the continuous spectrum electromagnetic radiation in electron-fullerene collision

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1995-01-01

    It is demonstrated that the electromagnetic radiation spectrum in electron-fullerene collisions is dominated by a huge maximum of multielectron nature, similar to that already predicted and observed in photoabsorption. Due to coherence, the intensity of this radiation is much stronger than the sum of the intensities of isolated atoms. Experimental detection of such radiation would be of great importance for understanding the mechanism of its formation and for investigating fullerene structures. A paper describing these results was published

  9. Spectrum

    DEFF Research Database (Denmark)

    Høgfeldt Hansen, Leif

    2016-01-01

    The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum.......The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum....

  10. Application of power spectrum, cepstrum, higher order spectrum and neural network analyses for induction motor fault diagnosis

    Science.gov (United States)

    Liang, B.; Iwnicki, S. D.; Zhao, Y.

    2013-08-01

    The power spectrum is defined as the square of the magnitude of the Fourier transform (FT) of a signal. The advantage of FT analysis is that it allows the decomposition of a signal into individual periodic frequency components and establishes the relative intensity of each component. It is the most commonly used signal processing technique today. If the same principle is applied for the detection of periodicity components in a Fourier spectrum, the process is called the cepstrum analysis. Cepstrum analysis is a very useful tool for detection families of harmonics with uniform spacing or the families of sidebands commonly found in gearbox, bearing and engine vibration fault spectra. Higher order spectra (HOS) (also known as polyspectra) consist of higher order moment of spectra which are able to detect non-linear interactions between frequency components. For HOS, the most commonly used is the bispectrum. The bispectrum is the third-order frequency domain measure, which contains information that standard power spectral analysis techniques cannot provide. It is well known that neural networks can represent complex non-linear relationships, and therefore they are extremely useful for fault identification and classification. This paper presents an application of power spectrum, cepstrum, bispectrum and neural network for fault pattern extraction of induction motors. The potential for using the power spectrum, cepstrum, bispectrum and neural network as a means for differentiating between healthy and faulty induction motor operation is examined. A series of experiments is done and the advantages and disadvantages between them are discussed. It has been found that a combination of power spectrum, cepstrum and bispectrum plus neural network analyses could be a very useful tool for condition monitoring and fault diagnosis of induction motors.

  11. Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey

    Science.gov (United States)

    Park, Changbom; Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1994-01-01

    We describe and apply a method for directly computing the power spectrum for the galaxy distribution in the extension of the Center for Astrophysics Redshift Survey. Tests show that our technique accurately reproduces the true power spectrum for k greater than 0.03 h Mpc(exp -1). The dense sampling and large spatial coverage of this survey allow accurate measurement of the redshift-space power spectrum on scales from 5 to approximately 200 h(exp -1) Mpc. The power spectrum has slope n approximately equal -2.1 on small scales (lambda less than or equal 25 h(exp -1) Mpc) and n approximately -1.1 on scales 30 less than lambda less than 120 h(exp -1) Mpc. On larger scales the power spectrum flattens somewhat, but we do not detect a turnover. Comparison with N-body simulations of cosmological models shows that an unbiased, open universe CDM model (OMEGA h = 0.2) and a nonzero cosmological constant (CDM) model (OMEGA h = 0.24, lambda(sub zero) = 0.6, b = 1.3) match the CfA power spectrum over the wavelength range we explore. The standard biased CDM model (OMEGA h = 0.5, b = 1.5) fails (99% significance level) because it has insufficient power on scales lambda greater than 30 h(exp -1) Mpc. Biased CDM with a normalization that matches the Cosmic Microwave Background (CMB) anisotropy (OMEGA h = 0.5, b = 1.4, sigma(sub 8) (mass) = 1) has too much power on small scales to match the observed galaxy power spectrum. This model with b = 1 matches both Cosmic Background Explorer Satellite (COBE) and the small-scale power spect rum but has insufficient power on scales lambda approximately 100 h(exp -1) Mpc. We derive a formula for the effect of small-scale peculiar velocities on the power spectrum and combine this formula with the linear-regime amplification described by Kaiser to compute an estimate of the real-space power spectrum. Two tests reveal luminosity bias in the galaxy distribution: First, the amplitude of the pwer spectrum is approximately 40% larger for the brightest

  12. PROBING THE INFLATON: SMALL-SCALE POWER SPECTRUM CONSTRAINTS FROM MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND ENERGY SPECTRUM

    International Nuclear Information System (INIS)

    Chluba, Jens; Erickcek, Adrienne L.; Ben-Dayan, Ido

    2012-01-01

    In the early universe, energy stored in small-scale density perturbations is quickly dissipated by Silk damping, a process that inevitably generates μ- and y-type spectral distortions of the cosmic microwave background (CMB). These spectral distortions depend on the shape and amplitude of the primordial power spectrum at wavenumbers k ∼ 4 Mpc –1 . Here, we study constraints on the primordial power spectrum derived from COBE/FIRAS and forecasted for PIXIE. We show that measurements of μ and y impose strong bounds on the integrated small-scale power, and we demonstrate how to compute these constraints using k-space window functions that account for the effects of thermalization and dissipation physics. We show that COBE/FIRAS places a robust upper limit on the amplitude of the small-scale power spectrum. This limit is about three orders of magnitude stronger than the one derived from primordial black holes in the same scale range. Furthermore, this limit could be improved by another three orders of magnitude with PIXIE, potentially opening up a new window to early universe physics. To illustrate the power of these constraints, we consider several generic models for the small-scale power spectrum predicted by different inflation scenarios, including running-mass inflation models and inflation scenarios with episodes of particle production. PIXIE could place very tight constraints on these scenarios, potentially even ruling out running-mass inflation models if no distortion is detected. We also show that inflation models with sub-Planckian field excursion that generate detectable tensor perturbations should simultaneously produce a large CMB spectral distortion, a link that could potentially be established with PIXIE.

  13. Spectrum of relativistic radiation from electric charges and dipoles as they fall freely into a black hole

    Energy Technology Data Exchange (ETDEWEB)

    Shatskiy, A. A., E-mail: shatskiy@asc.rssi.ru; Novikov, I. D.; Lipatova, L. N. [Russian Academy of Sciences, Astrospace Center, Lebedev Physical Institute (Russian Federation)

    2013-06-15

    The motion of electric charges and dipoles falling radially and freely into a Schwarzschild black hole is considered. The inverse effect of the electromagnetic fields on the black hole is neglected. Since the dipole is assumed to be a point particle, the deformation due to the action of tidal forces on it is neglected. According to the theorem stating that 'black holes have no hair', the multipole electromagnetic fields should be completely radiated as a multipole falls into a black hole. The electromagnetic radiation power spectrum for these multipoles (a monopole and a dipole) has been found. Differences have been found in the spectra for different orientations of the falling dipole. A general method has been developed to find the radiated multipole electromagnetic fields for multipoles (including higher-order multipoles-quadrupoles, etc.) falling freely into a black hole. The calculated electromagnetic spectra can be compared with observational data from stellar-mass and smaller black holes.

  14. Classical and modern power spectrum estimation for tune measurement in CSNS RCS

    International Nuclear Information System (INIS)

    Yang Xiaoyu; Xu Taoguang; Fu Shinian; Zeng Lei; Bian Xiaojuan

    2013-01-01

    Precise measurement of betatron tune is required for good operating condition of CSNS RCS. The fractional part of betatron tune is important and it can be measured by analyzing the signals of beam position from the appointed BPM. Usually these signals are contaminated during the acquisition process, therefore several power spectrum methods are used to improve the frequency resolution. In this article classical and modern power spectrum methods are used. In order to compare their performance, the results of simulation data and IQT data from J-PARC RCS are discussed. It is shown that modern power spectrum estimation has better performance than the classical ones, though the calculation is more complex. (authors)

  15. Parametric variation of radiated power in Aditya Tokamak

    International Nuclear Information System (INIS)

    Tahiliani, Kumudni; Chowdhuri, M.B.; Manchanda, R.

    2017-01-01

    We report the study of parametric variation of radiated power in Aditya Tokamak for ohmic discharges. The radiated power was measured using AXUV diodes that are responsive to radiation in the range 1 eV to 4 keV and are insensitive to the neutral particles (<0.5 keV). Hence only the radiation power loss is measured and charge exchange losses are excluded. The measured radiated power was also used for the estimation of the effective ion charge, Z eff based on the scaling obtained by the regression analysis of the data from multiple Tokamaks. The estimated values were compared with the experimental Z eff values obtained from the visible continuum measurement. We also tested the scaling for modelled radiation power loss. (author)

  16. FEL radiation power available in electron storage rings

    International Nuclear Information System (INIS)

    Miyahara, Yoshikazu

    1994-01-01

    FEL radiation power available in electron storage rings was studied in the small signal regime in considering the increase of the energy spread of the electron beam caused by the FEL interaction and the decrease of the FEL gain with the increase of the energy spread in addition to the radiation damping and the quantum excitation. All these effects were considered separately, and combined with FEL power equations. The radiation power available was expressed explicitly with the parameters of the storage ring, the wiggler and the mirrors. The transient process of FEL lasing is simulated with the power equations. A rough estimation is made of the radiation power available by the FEL at different beam energies, and optimization of FEL parameters for a higher radiation power is discussed. ((orig.))

  17. Increased power of resting-state gamma oscillations in autism spectrum disorder detected by routine electroencephalography

    NARCIS (Netherlands)

    van Diessen, Eric; Senders, Joeky; Jansen, Floor E.; Boersma, Maria; Bruining, Hilgo

    2015-01-01

    Experimental studies suggest that increased resting-state power of gamma oscillations is associated with autism spectrum disorder (ASD). To extend the clinical applicability of this finding, we retrospectively investigated routine electroencephalography (EEG) recordings of 19 patients with ASD and

  18. Spatial correlation in 3D MIMO channels using fourier coefficients of power spectrums

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain; Kammoun, Abla; Debbah, Mé rouane; Alouini, Mohamed-Slim

    2015-01-01

    for arbitrary angular distributions and antenna patterns. The resulting expression depends on the underlying angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty

  19. Adiabatic regularization of the power spectrum in nonminimally coupled general single-field inflation

    Science.gov (United States)

    Alinea, Allan L.; Kubota, Takahiro

    2018-03-01

    We perform adiabatic regularization of power spectrum in nonminimally coupled general single-field inflation with varying speed of sound. The subtraction is performed within the framework of earlier study by Urakawa and Starobinsky dealing with the canonical inflation. Inspired by Fakir and Unruh's model on nonminimally coupled chaotic inflation, we find upon imposing near scale-invariant condition, that the subtraction term exponentially decays with the number of e -folds. As in the result for the canonical inflation, the regularized power spectrum tends to the "bare" power spectrum as the Universe expands during (and even after) inflation. This work justifies the use of the "bare" power spectrum in standard calculation in the most general context of slow-roll single-field inflation involving nonminimal coupling and varying speed of sound.

  20. Wind tunnel study of the power output spectrum in a micro wind farm

    International Nuclear Information System (INIS)

    Bossuyt, Juliaan; Meyers, Johan; Howland, Michael F.; Meneveau, Charles

    2016-01-01

    Instrumented small-scale porous disk models are used to study the spectrum of a surrogate for the power output in a micro wind farm with 100 models of wind turbines. The power spectra of individual porous disk models in the first row of the wind farm show the expected -5/3 power law at higher frequencies. Downstream models measure an increased variance due to wake effects. Conversely, the power spectrum of the sum of the power over the entire wind farm shows a peak at the turbine-to-turbine travel frequency between the model turbines, and a near -5/3 power law region at a much wider range of lower frequencies, confirming previous LES results. Comparison with the spectrum that would result when assuming that the signals are uncorrelated, highlights the strong effects of correlations and anti-correlations in the fluctuations at various frequencies. (paper)

  1. 47 CFR 22.913 - Effective radiated power limits.

    Science.gov (United States)

    2010-10-01

    ... radiated power (ERP) of transmitters in the Cellular Radiotelephone Service must not exceed the limits in this section. (a) Maximum ERP. In general, the effective radiated power (ERP) of base transmitters and... areas, as those areas are defined in § 22.949, the ERP of base transmitters and cellular repeaters of...

  2. Exploration of a radiation hardening stabilized voltage power supply

    International Nuclear Information System (INIS)

    Xie Zeyuan; Xu Xianguo

    2014-01-01

    This paper mainly introduces the design method of radiation hardening stabilized voltage power supply that makes use of commercial radiation resistant electronic devices and the test results of radiation performance of the power supply and devices are presented in detail. The experiment results show that the hardened power supply can normally work until 1000 Gy (Si) total dose and 1 × 10 14 n/cm 2 neutron radiation, and it doesn't latchup at about 1 × l0 9 Gy (Si)/s gamma transient dose rate. (authors)

  3. Environmental radiation exposure in case of power plant accidents

    International Nuclear Information System (INIS)

    Eder, K.

    1977-01-01

    The paper tries to overcome prejudices concerning radiation effects due to power plant accidents as well as to show the radiation exposure that may be expected near the the patient and to indicate ways and means to avoid or reduce this radiation exposure and to avoid contamination. It is a contribution to better information on radiation accidents and radiolesions in nuclear power plants with the aim of close cooperation between power plants, physicians, and hospitals and of helping to overcome erroneous popular assumptions. (orig./HP) [de

  4. Radiation Monitoring - A Key Element in a Nuclear Power Program

    International Nuclear Information System (INIS)

    Hussein, A.S.; El-dally, T.A.

    2008-01-01

    For a nuclear power plant, radiation is especially of great concern to the public and the environment. Therefore, a radiation monitoring program is becoming a critical importance. This program covers all phases of the nuclear plant including preoperational, normal operation, accident and decommissioning. The fundamental objective of radiation monitoring program is to ensure that the health and safety of public inside and around the plant and to confirm the radiation doses are below the dose limits for workers and the public. This paper summarizes the environmental radiation monitoring program for a nuclear power plant

  5. Guideline on radiation protection requirements for ionizing radiation shielding in nuclear power plants

    International Nuclear Information System (INIS)

    1988-01-01

    The guideline which entered into force on 1 May 1988 stipulates the radiation protection requirements for shielding against ionizing radiation to be met in the design, construction, commissioning, operation, and decommissioning of nuclear power plants

  6. The spectrum of mutation produced by low dose radiation

    International Nuclear Information System (INIS)

    Morley, Alexander A.; Turner, David R.

    2004-01-01

    Inherited mutations are the basis of evolution and acquired mutations in humans are important in ageing, cancer and possibly various forms of tissue degeneration. Mutations are responsible for many of the long-term effects of radiation. However, sensitive direct detection of mutations in humans has been difficult. The aims of the project were to develop methods for the sensitive enumeration of mutations in DNA, to measure mutation frequencies in a wide variety of tissue types and to quantify the mutational effect of direct oxidative damage produced by radiation, at both high and low doses. The project was successful in developing a sensitive method which could detect mutations directly in the genetic material, DNA at a sensitivity of 1 mutated molecule in 1000000000 unmutated molecules. However a number of methodological problems had to be overcome and lack of ongoing funding made it impossible to fulfill all of the aims of the project

  7. Spectrum of rectal radiation lesions in cases of cancer cervix

    International Nuclear Information System (INIS)

    Srivastava, V.K.; Rohatgi, V.K.; Gupta, J.C.

    1978-01-01

    The study was carried out in 70 cases of carcinoma cervix uteri, showing varying degree of proctitis following radiotherapy treatment for cervical cancer. Grossly, the rectal mucosa showed oedema, congestion, granular proctitis, ulceration, and microscopically stromal connective tissue as well as epithelial changes. The stromal changes have been emphasised as useful diagnostic criteria of radiation reaction. The familarity of these changes is considered necessary because it is imperative to know categorically that a given lesion is entirely or in part due to radiation or due to extension of adjacent tumour in the cervix. Further, this issue is very important in management of cases of cancer cervix. The criteria of distinguishing the lesions in the rectal tissue have been laid down. (auth.)

  8. Radiation exposure due to nuclear power

    International Nuclear Information System (INIS)

    This information brochure contains 12 earlier papers of leading experts on the radiation hazard the population incurs during normal operation of nuclear facilities and the radiation-biological fundamentals of the effects of ionizing radio humans. (HP) [de

  9. All-sky analysis of the general relativistic galaxy power spectrum

    Science.gov (United States)

    Yoo, Jaiyul; Desjacques, Vincent

    2013-07-01

    We perform an all-sky analysis of the general relativistic galaxy power spectrum using the well-developed spherical Fourier decomposition. Spherical Fourier analysis expresses the observed galaxy fluctuation in terms of the spherical harmonics and spherical Bessel functions that are angular and radial eigenfunctions of the Helmholtz equation, providing a natural orthogonal basis for all-sky analysis of the large-scale mode measurements. Accounting for all the relativistic effects in galaxy clustering, we compute the spherical power spectrum and its covariance matrix and compare it to the standard three-dimensional power spectrum to establish a connection. The spherical power spectrum recovers the three-dimensional power spectrum at each wave number k with its angular dependence μk encoded in angular multipole l, and the contributions of the line-of-sight projection to galaxy clustering such as the gravitational lensing effect can be readily accommodated in the spherical Fourier analysis. A complete list of formulas for computing the relativistic spherical galaxy power spectrum is also presented.

  10. Basic radiation effects in nuclear power electronics technology

    International Nuclear Information System (INIS)

    Gover, J.E.; Srour, J.R.

    1985-05-01

    An overview is presented of the effects of radiation in microelectronics technology. The approach taken throughout these notes is to review microscopic phenomena associated with radiation effects and to show how these lead to macroscopic effects in semiconductor devices and integrated circuits. Bipolar integrated circuits technology is reviewed in Appendix A. Appendix B gives present and future applications of radiation-tolerant microelectronics in nuclear power applications as well as the radiation tolerance requirements of these applications

  11. Simulating of spectrum and polarization characteristics of ultrarelativistic - electron coherent radiation in a diamond crystal

    International Nuclear Information System (INIS)

    Truten', V.I.

    2000-01-01

    On the base of the computer simulation method it is shown that new maxima of ultrarelativistic electron radiation spectrum in aligned crystals may appear in a low-frequency region together with the ordinary coherent maxima. The appearance of these maxima is the result of the high-index-crystal-plane effect. These maxima manifest themselves in spectral as well as in polarization features of radiation [ru

  12. The shape of the primordial power spectrum: A last stand before Planck data

    International Nuclear Information System (INIS)

    Peiris, Hiranya V.; Verde, Licia

    2010-01-01

    We present a minimally parametric reconstruction of the primordial power spectrum using the most recent cosmic microwave background and large-scale structure data sets. Our goal is to constrain the shape of the power spectrum while simultaneously avoiding strong theoretical priors and over-fitting of the data. We find no evidence for any departure from a power-law spectral index. We also find that an exact scale-invariant power spectrum is disfavored by the data, but this conclusion is weaker than the corresponding result assuming a theoretically-motivated power-law spectral index prior. The reconstruction shows that better data are crucial to justify the adoption of such a strong theoretical prior observationally. These results can be used to determine the robustness of our present knowledge when compared with forthcoming precision data from Planck.

  13. Contribution of Strong Discontinuities to the Power Spectrum of the Solar Wind

    International Nuclear Information System (INIS)

    Borovsky, Joseph E.

    2010-01-01

    Eight and a half years of magnetic field measurements (2 22 samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the ''inertial subrange'' with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this ''inertial subrange.'' Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.

  14. An automatic method to determine cutoff frequency based on image power spectrum

    International Nuclear Information System (INIS)

    Beis, J.S.; Vancouver Hospital and Health Sciences Center, British Columbia; Celler, A.; Barney, J.S.

    1995-01-01

    The authors present an algorithm for automatically choosing filter cutoff frequency (F c ) using the power spectrum of the projections. The method is based on the assumption that the expectation of the image power spectrum is the sum of the expectation of the blurred object power spectrum (dominant at low frequencies) plus a constant value due to Poisson noise. By considering the discrete components of the noise-dominated high-frequency spectrum as a Gaussian distribution N(μ,σ), the Student t-test determines F c as the highest frequency for which the image frequency components are unlikely to be drawn from N (μ,σ). The method is general and can be applied to any filter. In this work, the authors tested the approach using the Metz restoration filter on simulated, phantom, and patient data with good results. Quantitative performance of the technique was evaluated by plotting recovery coefficient (RC) versus NMSE of reconstructed images

  15. Features in the primordial power spectrum of double D-term inflation

    International Nuclear Information System (INIS)

    Lesgourgues, Julien

    2000-01-01

    Recently, there has been some interest for building supersymmetric models of double inflation. These models, realistic from a particle physics point of view, predict a broken-scale-invariant power spectrum of primordial cosmological perturbations, that may explain eventual nontrivial features in the present matter power spectrum. In previous works, the primordial spectrum was calculated using analytic slow-roll approximations. However, these models involve a fast second-order phase transition during inflation, with a stage of spinodal instability, and an interruption of slow-roll. For our previous model of double D-term inflation, we simulate numerically the evolution of quantum fluctuations, taking into account the spinodal modes, and we show that the semiclassical approximation can be employed even during the transition, due to the presence of a second inflaton field. The primordial power spectrum possesses a rich structure, and possibly, a non-Gaussian spike on observable scales

  16. Siemens's spectrum of deliveries and services for nuclear power plants

    International Nuclear Information System (INIS)

    2011-01-01

    In 2001, Siemens and Framatome merged their nuclear activities in the present Areva NP joint venture. Siemens has since focused on the construction and further development of conventional power plants and on the so-called conventional island (CI), the non-nuclear part of a nuclear power plant, i.e. the steam turbine, generator, and plant I and C systems, and also on service for the conventional part of nuclear power plants. Its role as a minority shareholder in Areva NP constrained Siemens. For this reason, the company in January 2009 decided to terminate its interest in Areva NP effective January 30, 2012. By January 2012 at the latest, Siemens will transfer to the majority shareholder Areva, holding 66 percent of the shares, its interest in the joint venture. For the time being, the joint venture still entails certain limitations to Siemens's activities in the nuclear field. Its delivery of the conventional island for the Olkiluoto 3 (OL3) nuclear power plant in Finland confirms the company's know-how in power plant construction. When commissioned, its 1,720 MW power will make OL3 the world's largest nuclear generating unit. The turbo-generator of the CI comprises a double-flow HP turbine and a 6-flow LP turbine. The driven 4-pole generator with a power of up to 2,200 MVA consists of a water-cooled stator and a hydrogen-cooled rotor. (orig.)

  17. Studying The Effect of Window type On Power Spectrum Based On MATLAB

    Directory of Open Access Journals (Sweden)

    Soad T. Abed

    2012-06-01

    Full Text Available The representation that describes signal’s frequency behavior can be divided into two categories: linear representation such as the Fourier-transform and quadratic representation such as power spectrum. Power spectrum characterizes the signal’s energy distribution in the frequency domain, and can answer whether most of the power of the signal resides at low or high frequencies. By performing spectral analysis, some important features of signals can be discovered that are not obvious in the time waveform of the signal. One problem with spectrum analysis is that the duration of the signals is finite, although adjustable. Applying the FFT method to finite duration sequences can produce inadequate results because of “spectral leakage”, to reduce the spectral leakage FFT window function is applied. Power spectrum parameters are window size, window type, window over lap and number of FFT. The aim of this work is to demonstrate the effect of varying window type on the power spectrum using Mat Lab software. Five windows have been compared to study their effect on the spectrum of a typical data.

  18. Spectrum and power allocation in cognitive multi-beam satellite communications with flexible satellite payloads

    Science.gov (United States)

    Liu, Zhihui; Wang, Haitao; Dong, Tao; Yin, Jie; Zhang, Tingting; Guo, Hui; Li, Dequan

    2018-02-01

    In this paper, the cognitive multi-beam satellite system, i.e., two satellite networks coexist through underlay spectrum sharing, is studied, and the power and spectrum allocation method is employed for interference control and throughput maximization. Specifically, the multi-beam satellite with flexible payload reuses the authorized spectrum of the primary satellite, adjusting its transmission band as well as power for each beam to limit its interference on the primary satellite below the prescribed threshold and maximize its own achievable rate. This power and spectrum allocation problem is formulated as a mixed nonconvex programming. For effective solving, we first introduce the concept of signal to leakage plus noise ratio (SLNR) to decouple multiple transmit power variables in the both objective and constraint, and then propose a heuristic algorithm to assign spectrum sub-bands. After that, a stepwise plus slice-wise algorithm is proposed to implement the discrete power allocation. Finally, simulation results show that adopting cognitive technology can improve spectrum efficiency of the satellite communication.

  19. Development of lightweight radiators for lunar based power systems

    International Nuclear Information System (INIS)

    Juhasz, A.J.; Bloomfield, H.S.

    1994-05-01

    This report discusses application of a new lightweight carbon-carbon (C-C) space radiator technology developed under the NASA Civil-Space Technology Initiative (CSTI) High Capacity Power Program to a 20 kWe lunar based power system. This system comprises a nuclear (SP-100 derivative) heat source, a Closed Brayton Cycle (CBC) power conversion unit with heat rejection by means of a plane radiator. The new radiator concept is based on a C-C composite heat pipe with integrally woven fins and a thin walled metallic liner for containment of the working fluid. Using measured areal specific mass values (1.5 kg/m2) for flat plate radiators, comparative CBC power system mass and performance calculations show significant advantages if conventional heat pipes for space radiators are replaced by the new C-C heat pipe technology

  20. Adaptive discrete rate and power transmission for spectrum sharing systems

    KAUST Repository

    Abdallah, Mohamed M.; Salem, Ahmed H.; Alouini, Mohamed-Slim; Qaraqe, Khalid A.

    2012-01-01

    channels available at the secondary transmitter. We consider the problem under the constraints of maximum average interference power levels at the primary receiver. We develop a sub-optimal computationally efficient iterative algorithm for finding

  1. Induction of DNA-protein crosslinks in human cells by ultraviolet and visible radiations: action spectrum

    International Nuclear Information System (INIS)

    Peak, J.G.; Peak, M.J.; Sikorski, R.S.; Jones, C.A.

    1985-01-01

    DNA-protein crosslinking was induced in cultured human P3 teratocarcinoma cells by irradiation with monochromatic radiation with wavelengths in the range 254-434 nm (far-UV, near-UV, and blue light). Wavelength 545 nm green light did not induce these crosslinks, using the method of alkaline elution of the DNA from membrane filters. The action spectrum for the formation of DNA-protein crosslinks revealed two maxima, one in the far-UV spectrum that closely coincided with the relative spectrum of DNA at 254 and 290 nm, and one in the visible light spectrum at 405 nm, which has no counterpart in the DNA spectrum. The primary events for the formation of DNA-protein crosslinks by such long-wavelength radiation probably involve photosensitizers. This dual mechanism for DNA-protein crosslink formation is in strong contrast to the single mechanism for pyrimidine dimer formation in DNA, which apparently has no component in the visible light spectrum

  2. Photocatalytic ROS production and phototoxicity of titanium dioxide nanoparticles is dependent on solar UV radiation spectrum

    Science.gov (United States)

    Generation of reactive oxygen species (ROS) by titanium dioxide nanoparticles (nano-TiO2) and its consequent phototoxicity to Daphnia magna were measured under different solar UV radiation spectrum by applying a series of optical filters in a solar simulator. Removing UVB (280-32...

  3. Molecular spectrum of laterally coupled quantum rings under intense terahertz radiation.

    Science.gov (United States)

    Baghramyan, Henrikh M; Barseghyan, Manuk G; Laroze, David

    2017-09-05

    We study the influence of intense THz laser radiation and electric field on molecular states of laterally coupled quantum rings. Laser radiation shows the capability to dissociate quantum ring molecule and add 2-fold degeneracy to the molecular states at the fixed value of the overlapping size between rings. It is shown that coupled to decoupled molecular states phase transition points form almost a straight line with a slope equal to two. In addition, the electric field direction dependent energy spectrum shows unexpected oscillations, demonstrating strong coupling between molecular states. Besides, intraband absorption is considered, showing both blue and redshifts in its spectrum. The obtained results can be useful for the controlling of degeneracy of the discrete energy spectrum of nanoscale structures and in the tunneling effects therein.

  4. Solar radiation for Mars power systems

    Science.gov (United States)

    Appelbaum, Joseph; Landis, Geoffrey A.

    1991-01-01

    Detailed information about the solar radiation characteristics on Mars are necessary for effective design of future planned solar energy systems operating on the surface of Mars. A procedure and solar radiation related data from which the diurnally and daily variation of the global, direct (or beam), and diffuse insolation on Mars are calculated, are presented. The radiation data are based on measured optical depth of the Martian atmosphere derived from images taken of the Sun with a special diode on the Viking Lander cameras; and computation based on multiple wavelength and multiple scattering of the solar radiation.

  5. Model independent foreground power spectrum estimation using WMAP 5-year data

    International Nuclear Information System (INIS)

    Ghosh, Tuhin; Souradeep, Tarun; Saha, Rajib; Jain, Pankaj

    2009-01-01

    In this paper, we propose and implement on WMAP 5 yr data a model independent approach of foreground power spectrum estimation for multifrequency observations of the CMB experiments. Recently, a model independent approach of CMB power spectrum estimation was proposed by Saha et al. 2006. This methodology demonstrates that the CMB power spectrum can be reliably estimated solely from WMAP data without assuming any template models for the foreground components. In the current paper, we extend this work to estimate the galactic foreground power spectrum using the WMAP 5 yr maps following a self-contained analysis. We apply the model independent method in harmonic basis to estimate the foreground power spectrum and frequency dependence of combined foregrounds. We also study the behavior of synchrotron spectral index variation over different regions of the sky. We use the full sky Haslam map as an external template to increase the degrees of freedom, while computing the synchrotron spectral index over the frequency range from 408 MHz to 94 GHz. We compare our results with those obtained from maximum entropy method foreground maps, which are formed in pixel space. We find that relative to our model independent estimates maximum entropy method maps overestimate the foreground power close to galactic plane and underestimates it at high latitudes.

  6. The Coyote Universe II: Cosmological Models and Precision Emulation of the Nonlinear Matter Power Spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Heitmann, Katrin [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Higdon, David [Los Alamos National Laboratory; Williams, Brian J [Los Alamos National Laboratory; White, Martin [Los Alamos National Laboratory; Wagner, Christian [Los Alamos National Laboratory

    2008-01-01

    The power spectrum of density fluctuations is a foundational source of cosmological information. Precision cosmological probes targeted primarily at investigations of dark energy require accurate theoretical determinations of the power spectrum in the nonlinear regime. To exploit the observational power of future cosmological surveys, accuracy demands on the theory are at the one percent level or better. Numerical simulations are currently the only way to produce sufficiently error-controlled predictions for the power spectrum. The very high computational cost of (precision) N-body simulations is a major obstacle to obtaining predictions in the nonlinear regime, while scanning over cosmological parameters. Near-future observations, however, are likely to provide a meaningful constraint only on constant dark energy equation of state 'wCDM' cosmologies. In this paper we demonstrate that a limited set of only 37 cosmological models -- the 'Coyote Universe' suite -- can be used to predict the nonlinear matter power spectrum at the required accuracy over a prior parameter range set by cosmic microwave background observations. This paper is the second in a series of three, with the final aim to provide a high-accuracy prediction scheme for the nonlinear matter power spectrum for wCDM cosmologies.

  7. ON THE CLUSTER PHYSICS OF SUNYAEV-ZEL'DOVICH AND X-RAY SURVEYS. II. DECONSTRUCTING THE THERMAL SZ POWER SPECTRUM

    International Nuclear Information System (INIS)

    Battaglia, N.; Bond, J. R.; Pfrommer, C.; Sievers, J. L.

    2012-01-01

    Secondary anisotropies in the cosmic microwave background are a treasure-trove of cosmological information. Interpreting current experiments probing them are limited by theoretical uncertainties rather than by measurement errors. Here we focus on the secondary anisotropies resulting from the thermal Sunyaev-Zel'dovich (tSZ) effect; the amplitude of which depends critically on the average thermal pressure profile of galaxy groups and clusters. To this end, we use a suite of hydrodynamical TreePM-SPH simulations that include radiative cooling, star formation, supernova feedback, and energetic feedback from active galactic nuclei. We examine in detail how the pressure profile depends on cluster radius, mass, and redshift and provide an empirical fitting function. We employ three different approaches for calculating the tSZ power spectrum: an analytical approach that uses our pressure profile fit, a semianalytical method of pasting our pressure fit onto simulated clusters, and a direct numerical integration of our simulated volumes. We demonstrate that the detailed structure of the intracluster medium and cosmic web affect the tSZ power spectrum. In particular, the substructure and asphericity of clusters increase the tSZ power spectrum by 10%-20% at l ∼ 2000-8000, with most of the additional power being contributed by substructures. The contributions to the power spectrum from radii larger than R 500 is ∼20% at l = 3000, thus clusters interiors (r 500 ) dominate the power spectrum amplitude at these angular scales.

  8. ON THE CLUSTER PHYSICS OF SUNYAEV-ZEL'DOVICH AND X-RAY SURVEYS. II. DECONSTRUCTING THE THERMAL SZ POWER SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, N. [Department of Astronomy and Astrophysics, University of Toronto, 50 St George, Toronto, ON M5S 3H4 (Canada); Bond, J. R.; Pfrommer, C.; Sievers, J. L. [Canadian Institute for Theoretical Astrophysics, 60 St George, Toronto, ON M5S 3H8 (Canada)

    2012-10-20

    Secondary anisotropies in the cosmic microwave background are a treasure-trove of cosmological information. Interpreting current experiments probing them are limited by theoretical uncertainties rather than by measurement errors. Here we focus on the secondary anisotropies resulting from the thermal Sunyaev-Zel'dovich (tSZ) effect; the amplitude of which depends critically on the average thermal pressure profile of galaxy groups and clusters. To this end, we use a suite of hydrodynamical TreePM-SPH simulations that include radiative cooling, star formation, supernova feedback, and energetic feedback from active galactic nuclei. We examine in detail how the pressure profile depends on cluster radius, mass, and redshift and provide an empirical fitting function. We employ three different approaches for calculating the tSZ power spectrum: an analytical approach that uses our pressure profile fit, a semianalytical method of pasting our pressure fit onto simulated clusters, and a direct numerical integration of our simulated volumes. We demonstrate that the detailed structure of the intracluster medium and cosmic web affect the tSZ power spectrum. In particular, the substructure and asphericity of clusters increase the tSZ power spectrum by 10%-20% at l {approx} 2000-8000, with most of the additional power being contributed by substructures. The contributions to the power spectrum from radii larger than R {sub 500} is {approx}20% at l = 3000, thus clusters interiors (r < R {sub 500}) dominate the power spectrum amplitude at these angular scales.

  9. Prediction of speech intelligibility based on a correlation metric in the envelope power spectrum domain

    DEFF Research Database (Denmark)

    Relano-Iborra, Helia; May, Tobias; Zaar, Johannes

    A powerful tool to investigate speech perception is the use of speech intelligibility prediction models. Recently, a model was presented, termed correlation-based speechbased envelope power spectrum model (sEPSMcorr) [1], based on the auditory processing of the multi-resolution speech-based Envel...

  10. Power spectrum of electrical discharges seen on Earth and at Saturn

    International Nuclear Information System (INIS)

    Warwick, J.W.

    1989-01-01

    The author presents a method for deriving the radio spectrum of electrical discharges from the properties of the time series of charges crossing the discharge gap. This result is applied to the observed spectra of both terrestrial lightning and Saturn electrical discharge(s) (SED). SED occurrence and power density are shown to have subtle, yet important, differences from these observables as they have been described in the last 5 years. It is demonstrated that throughout the episode of Voyager 1's (V1) closest approach to Saturn, SED probably occurred continuously in frequency upward at least from the upper limit of Saturn kilometric radiation at about 800 kHz. This is so despite the fact that in the dynamic spectra a strip in time and frequency in which SED do not occur extends in frequency from 1.3 MHz up to the oft-discussed lower limit of SED in the leading edge of the episode of closest approach. The greater power in SED that occurred after V1 closest approach is emphasized: it is shown to be consistent with the lower frequency of the maximum in their power spectra. The variable gap length factor is also invoked to explain the variable frequency cutoff in the range 5-15 MHz of the episodes before closest approach. The SED source moved along a single arc defining both preencounter and postencounter events. The discharge gap lengths were a continuous function of position along this arc, with the shortest gaps lying about 5 degree west (as seen from the spacecraft) of the noon meridian of Saturn and the longest gaps lying on the nightside of the planet

  11. Nuclear power plant radiation: personnel safety aspects

    International Nuclear Information System (INIS)

    Roekmantara, Roestan

    1975-01-01

    Reactor using water as coolant, moderator, and heat transfer can produce a sufficiently great internal and external radiation caused by contamination. The process of contamination and actions that must be taken to avoid radiation workers from receiving more than the maximum permissible dose are presented. (author)

  12. Importance of the neutron spectrum for determination of radiation damage

    International Nuclear Information System (INIS)

    Hehn, G.; Stiller, P.; Mattes, M.

    1977-01-01

    Since the radiation effects of neutrons depend strongly on the neutron energy, the correlation between the induced damage and the fluence of the fast neutrons shows appreciable disadvantages. The measured values of changes in material properties resulted in large differences for the same fast neutron fluence, being partly due to different neutron spectra. The uncertainties in damage data led to strong overdesign of important structural components. Different neutron environment at surveillance sample position may give an underestimation of the embrittlement in the reactor pressure vessel, which has to be avoided. The application of damage functions combined with accurately calculated neutron spectra, promise to be a reasonable solution. The damage function has the advantage of a phenomenological quantity that all spectral effects are included. But the correlation quantity has to be determined of high experimental costs. Therefore approximations of its energy distributions are very important. For the keV energy region the kerma function is reasonably good. For the MeV energy region a higher effort is needed to calculate the displacement cross section. The same holds for the low energy part. In all three parts the formation of stable material property levels may vary, so that the final correlation can be determined only by measurements of material properties in different neutron spectra. In material samples the spectra distribution of the displacement production rate was determined at different local positions outside the reactor core of a PWR and a fast breeder showing the most important energy regions of both reactors. (orig.) [de

  13. Red, Straight, no bends: primordial power spectrum reconstruction from CMB and large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Ravenni, Andrea [Dipartimento di Fisica e Astronomia ' ' G. Galilei' ' , Università degli Studi di Padova, via Marzolo 8, I-35131, Padova (Italy); Verde, Licia; Cuesta, Antonio J., E-mail: andrea.ravenni@pd.infn.it, E-mail: liciaverde@icc.ub.edu, E-mail: ajcuesta@icc.ub.edu [Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (IEEC-UB), Martí i Franquès 1, E08028 Barcelona (Spain)

    2016-08-01

    We present a minimally parametric, model independent reconstruction of the shape of the primordial power spectrum. Our smoothing spline technique is well-suited to search for smooth features such as deviations from scale invariance, and deviations from a power law such as running of the spectral index or small-scale power suppression. We use a comprehensive set of the state-of the art cosmological data: Planck observations of the temperature and polarisation anisotropies of the cosmic microwave background, WiggleZ and Sloan Digital Sky Survey Data Release 7 galaxy power spectra and the Canada-France-Hawaii Lensing Survey correlation function. This reconstruction strongly supports the evidence for a power law primordial power spectrum with a red tilt and disfavours deviations from a power law power spectrum including small-scale power suppression such as that induced by significantly massive neutrinos. This offers a powerful confirmation of the inflationary paradigm, justifying the adoption of the inflationary prior in cosmological analyses.

  14. Spectrum Reorganization and Bundling for Power Efficient Mobile Networks

    DEFF Research Database (Denmark)

    Micallef, Gilbert; Mogensen, Preben; Scheck, Hans-Otto

    2012-01-01

    are still required for supporting legacy devices and providing wider network coverage. In order to facilitate and reduce the cost of rolling out a new network, mobile operators often reuse existing sites. Radio frequency modules in base station sites house power amplifiers, which are designed to operate...

  15. New Measurements of the Cosmic Background Radiation Spectrum

    Science.gov (United States)

    Smoot, G. F.; De Amici, G.; Levin, S.; Witebsky, C.

    The human genome project was borne of technology, grew into a science bureaucracy in the United States and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  16. Adaptive discrete rate and power transmission for spectrum sharing systems

    KAUST Repository

    Abdallah, Mohamed M.

    2012-04-01

    In this paper we develop a framework for optimizing the performance of the secondary link in terms of the average spectral efficiency assuming quantized channel state information (CSI) of the secondary and the secondary-to-primary interference channels available at the secondary transmitter. We consider the problem under the constraints of maximum average interference power levels at the primary receiver. We develop a sub-optimal computationally efficient iterative algorithm for finding the optimal CSI quantizers as well as the discrete power and rate employed at the cognitive transmitter for each quantized CSI level so as to maximize the average spectral efficiency. We show via analysis and simulations that the proposed algorithm converges for Rayleigh fading channels. Our numerical results give the number of bits required to sufficiently represent the CSI to achieve almost the maximum average spectral efficiency attained using full knowledge of the CSI. © 2012 IEEE.

  17. Quantum Corrected Non-Thermal Radiation Spectrum from the Tunnelling Mechanism

    Directory of Open Access Journals (Sweden)

    Subenoy Chakraborty

    2015-06-01

    Full Text Available The tunnelling mechanism is today considered a popular and widely used method in describing Hawking radiation. However, in relation to black hole (BH emission, this mechanism is mostly used to obtain the Hawking temperature by comparing the probability of emission of an outgoing particle with the Boltzmann factor. On the other hand, Banerjee and Majhi reformulated the tunnelling framework deriving a black body spectrum through the density matrix for the outgoing modes for both the Bose-Einstein distribution and the Fermi-Dirac distribution. In contrast, Parikh and Wilczek introduced a correction term performing an exact calculation of the action for a tunnelling spherically symmetric particle and, as a result, the probability of emission of an outgoing particle corresponds to a non-strictly thermal radiation spectrum. Recently, one of us (C. Corda introduced a BH effective state and was able to obtain a non-strictly black body spectrum from the tunnelling mechanism corresponding to the probability of emission of an outgoing particle found by Parikh and Wilczek. The present work introduces the quantum corrected effective temperature and the corresponding quantum corrected effective metric is written using Hawking’s periodicity arguments. Thus, we obtain further corrections to the non-strictly thermal BH radiation spectrum as the final distributions take into account both the BH dynamical geometry during the emission of the particle and the quantum corrections to the semiclassical Hawking temperature.

  18. Environmental radiation monitoring system in nuclear power station

    International Nuclear Information System (INIS)

    Matsuoka, Sadazumi; Tadachi, Katsuo; Endo, Mamoru; Yuya, Hiroshi

    1983-01-01

    At the time of the construction of nuclear power stations, prior to their start of operation, the state of environmental radiation must be grasped. After the start of the power stations, based on those data, the system of environmental radiation monitoring is established. Along with the construction of Kashiwazaki-Kariwa Nuclear Power Station, The Tokyo Electric Power Co., Inc. jointly with Fujitsu Ltd. has developed a high-reliability, environmental radiation monitoring system, and adopted ''optical data highways'' using optical fiber cables for communication. It consists of a central monitoring station and 11 telemeter observation points, for collecting both radiation and meteorological data. The data sent to the central station through the highways are then outputted on a monitoring panel. They are analyzed with a central processor, and the results are printed out. (Mori, K.)

  19. Organization of radiation protection in German nuclear power stations

    International Nuclear Information System (INIS)

    1989-01-01

    Using the operating handbooks of the nuclear power stations in West Germany, an examination was carried out of how far the existing organisational structure for radiation protection fulfils the requirements for protection and whether a standardisation of the organisation would provide improvements for the protection of the personnel and for the practicability of the radiation protection organisation. In particular, the parts 'Personnel operating organisation', 'Radiation protection order' and 'Maintenance order' of the operating handbook were evaluated and an audit was made of the radiation protection organisation. In general, the result of the assessment is that the organisation of radiation protection does not contradict the orders, guidelines and regulations in any of the nuclear power stations examined. Corresponding to the possibilities of regulating details of the radiation protection organisation within the undertaking, the target of 'protection of the personnel against radioactive irradiation' is achieved by the various organisation structures which are largely equal to the given example. (orig./HP) [de

  20. Radiator selection for Space Station Solar Dynamic Power Systems

    Science.gov (United States)

    Fleming, Mike; Hoehn, Frank

    A study was conducted to define the best radiator for heat rejection of the Space Station Solar Dynamic Power System. Included in the study were radiators for both the Organic Rankine Cycle and Closed Brayton Cycle heat engines. A number of potential approaches were considered for the Organic Rankine Cycle and a constructable radiator was chosen. Detailed optimizations of this concept were conducted resulting in a baseline for inclusion into the ORC Preliminary Design. A number of approaches were also considered for the CBC radiator. For this application a deployed pumped liquid radiator was selected which was also refined resulting in a baseline for the CBC preliminary design. This paper reports the results and methodology of these studies and describes the preliminary designs of the Space Station Solar Dynamic Power System radiators for both of the candidate heat engine cycles.

  1. Seismic analysis of a NPP reactor building using spectrum-compatible power spectral density functions

    International Nuclear Information System (INIS)

    Venancio Filho, F.; DeCarvalho Santos, S.H.; Joia, L.A.

    1987-01-01

    A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a NPP Reactor Building. The main results of this analysis are compared with the ones obtained by deterministic methods

  2. Seismic analysis of a NPP reactor building using spectrum-compatible power spectral density functions

    International Nuclear Information System (INIS)

    Venancio Filho, F.; Joia, L.A.

    1987-01-01

    A numerical methodology to obtain Power Spectral Density Functions (PSDF) of ground accelerations, compatible with a given design response spectrum is presented. The PSDF's are derived from the statistical analysis of the amplitudes of the frequency components in a set of artificially generated time-histories matching the given spectrum. A so obtained PSDF is then used in the stochastic analysis of a reactor building. The main results of this analysis are compared with the ones obtained by deterministic methods. (orig./HP)

  3. Tritium-Powered Radiation Sensor Network

    Science.gov (United States)

    2015-09-01

    Photomultiplier Tube, Scintillator, Geiger counter, Zigbee, Wireless Network, Radiation detector, Dirty Bomb 16. SECURITY CLASSIFICATION OF: 17...operational lifetime of 150 years. Persistent sensing of the environment with vibration and radiation (electromagnetic [ EM ], acoustic, gamma, etc.) in...Transportation E-field electric field EH electron-hole EM electromagnetic GaAs gallium arsenide GPS global positioning system InGaP indium gallium

  4. Measurement and analysis of noise power spectrum of computerized tomography in images

    International Nuclear Information System (INIS)

    Castro Tejero, P.; Garayoa Roca, J.

    2013-01-01

    This paper examines the implementation of the spectrum of powers of the noise, NPS, as metric to characterize the noise, both in magnitude and in texture, for CT scans. The NPS found show that you for convolution filters that assume a greater softening in the reconstructed image, spectrum is concentrated in the low frequencies, while for filters sharp, the spectrum extends to high frequencies. In the analyzed cases, there is a low frequency component, largely due to the structure-borne noise, which can be a potential negative effect on the detectability of injuries. (Author)

  5. The computerized radiation control system for the nuclear power plant

    International Nuclear Information System (INIS)

    Hunamoto, H.; Sato, T.; Taniguchi, K.

    1993-01-01

    Major works of Radiation control in nuclear power plant consist of occupational exposure control, radiation monitoring of working areas and surveillance of monitoring equipment, environmental monitoring and so on. Since a large amount of data will be generated from these works, therefore use of high performance computers will be indispensable. The systematization is presently being advanced in The Japan Atomic Power Company from this viewpoint and the project is being realized smoothly. The actual state is introduced

  6. Robustness of radiative mantle plasma power exhaust solutions for ITER

    International Nuclear Information System (INIS)

    Mandrekas, J.; Stacey, W.M.; Kelly, F.A.

    1997-01-01

    The robustness of impurity-seeded radiative mantle solutions for ITER to uncertainties in several physics and operating parameters is examined. The results indicate that ∼ 50--90% of the input power can be radiated from inside the separatrix with Ne, Ar and Kr injection, without significant detriment to the core power balance or collapse of the edge temperature profile, for a wide range of conditions on the impurity pinch velocity, edge temperature pedestal, and plasma density

  7. Methodical recommendations for power unit comprehensive engineering and radiation survey

    International Nuclear Information System (INIS)

    Nosovskij, A.V.

    2000-01-01

    The article describes power unit radiation survey methods developed and applied during conduction of Ch NPP unit I Comprehensive Engineering Radiation Survey. Special requirements for units under decommissioning, main survey principals, criteria for definition of volume and the order of survey for various systems of a NPP Unit are included

  8. Is natural background or radiation from nuclear power plants leukemogenic?

    International Nuclear Information System (INIS)

    Cronkite, E.P.

    1989-01-01

    The objective in this review is to provide some facts about normal hemopoietic cell proliferation relevant to leukemogenesis, physical, chemical, and biological facts about radiation effects with the hope that each person will be able to decide for themselves whether background radiation or emissions from nuclear power plants and facilities significantly add to the spontaneous leukemia incidence. 23 refs., 1 tab

  9. A radiation monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Iwai, Masaru; Nakamori, S.; Ikeda, H.; Oda, M.

    1974-01-01

    Safety with respect to radiation is vital factor, particularly in view of the increasing number of nuclear power plants. For this purpose, a radiation monitoring system is provided to perform constant supervision. This article describes the purpose, installation location, specifications and circuitry of a system which is divided into three units: the process monitor, area monitor and off-site monitor. (auth.)

  10. The new law on radiation and nuclear power

    International Nuclear Information System (INIS)

    Niittylae, A.

    1990-01-01

    The Law on Nuclear Energy, which entered into force in 1988, controls the use of nuclear power. The new Law on Radiation is under consideration in the Parliament. The internationally approved main principles on radiation protection are the basis of the law. In the article, these principles and the contents of the law are described

  11. Simulating the spectrum and the polarization characteristics of coherent radiation from ultrarelativistic electrons in a diamond crystal

    International Nuclear Information System (INIS)

    Truten', V.I.

    2000-01-01

    On the basis of a computer simulation, it is shown that, in the spectrum of radiation from ultrarelativistic electrons in oriented crystals, new maxima can appear in the low-frequency region in addition to ordinary coherent maxima. This effect is due to the influence of high-index planes on the radiation in question. The aforementioned new maxima manifest themselves not only in the spectrum but also in the polarization characteristics of the radiation

  12. On the dynamics of the power spectrum during lower hybrid current drive in Tokamaks

    International Nuclear Information System (INIS)

    Bizarro, J.P.

    1993-01-01

    An investigation is provided on the propagation and absorption of the power spectrum during lower hybrid current drive in Tokamaks. A combined ray tracing and Fokker-Planck code is utilized and stochastic effects induced by toroidicity are correctly taken into account by using a large number of rays. It is shown that when strong wave damping prevails the absorbed spectrum is very similar in shape to the launched one, although some broadening and shifting in parallel wave index generally occur, and power deposition is localized. If the wave damping is weak and stochastic effects are important, rays end up sweeping the entire plasma cross-section, power deposition turns out to be extended, and the absorbed spectrum is much broader than the launched one

  13. Spatial power spectrum of the geomagnetic field since 1945

    International Nuclear Information System (INIS)

    Senanayake, W.E.

    1987-04-01

    The Geomagnetic field for the period 1945-1990 has been analyzed in terms of Spatial Power Spectra of the Main Field and its Secular Variation. It is observed that for the above interval, the magnetic energy density at the core-mantle boundary is almost conserved. This supports the idea that an exchange of energy between different spherical harmonic constituents could occur. The distinctive behaviour of the first two terms (Dipole and Quadrupole), as seen from the spectra of the main field and secular variation, probably indicates somewhat different feature associated with the field origin. (author). 28 refs, 3 figs, 1 tab

  14. The infrared radiation spectrum of acupoint taiyuan (LU 9) in asthma patients.

    Science.gov (United States)

    Zhou, Yu; Shen, Xue-yong; Wang, Li-zhen; Wei, Jian-zi; Cheng, Ke

    2012-06-01

    To analyze the distinctive pathological characteristics in the spectrums of spontaneous infrared radiation at the Taiyuan (LU 9) acupoint in patients with asthma. A highly sensitive infrared spectrum detecting device was used to detect the spectrums of spontaneous infrared radiation at Taiyuan (LU 9) in 37 asthma patients and 34 healthy volunteers. Asthma patients had significantly lower infrared intensity than that of the healthy volunteers (P>0.01). Asthma patients had significantly lower overall infrared radiation intensity at the left Taiyuan (LU 9) than that of healthy volunteers (P > 0.05), but there was no significant difference between healthy volunteers and asthma patients at the right Taiyuan (LU 9) (P > 0.05). The infrared radiation intensity of 17 wavelength spots at the left Taiyuan (LU 9) and 4 wavelength spots at the right Taiyuan (LU 9) in asthma patients were significantly lower than those of healthy volunteers (P > 0.05). At 2 microm, the infrared radiation intensity of asthma patients was significantly stronger than that of healthy volunteers (P > 0.05). At 19 wavelength spots in the healthy volunteers and at 4 wave-length spots in the asthma patients, the left Taiyuan (LU 9) showed a significantly stronger intensity than that of the right Taiyuan (LU 9) (P > 0.05S). By Pearson's chi2 test, healthy volunteers had more wavelength spots that were significantly different between the left and right Taiyuan (LU 9) than the asthma patients (P > 0.01). Changes in the infrared spectrum at the Taiyuan (LU 9) acupoint in asthma patients may reflect distinct pathological changes. Certain acupuncture points may be related to specific organs.

  15. Dynamics of the spectrum of a self-modulated powerful laser pulse in an underdense plasma

    International Nuclear Information System (INIS)

    Andreev, N.E.; Kirsanov, V.I.; Sakharov, A.S.

    1997-01-01

    The evolution of the spectrum of a powerful laser pulse during its self-modulation in an underdense plasma is studied analytically and numerically. It is shown that, in the early stages of the self-modulation instability, the linear theory gives a qualitatively correct description of the dynamics of the pulse spectrum in most cases. Depending on the parameters of the laser pulse and of the plasma, this spectrum contains either Stocks satellites (downshifted from the fundamental frequency to a value equal to the plasma frequency), or both Stocks and anti-Stocks satellites of the fundamental frequency. When the three-dimensional mechanism for the instability is dominant and the pulse power is close to the critical power for relativistic self-focusing, the numerical calculations show that the intensity of the blue satellite exceeds the intensity of the red one. This specific feature of the spectrum, which does not arise when the instability is one-dimensional, cannot be explained in terms of the linear para-axial theory, and can be used to identify the three-dimensional mechanism for the instability in experiments on the self-modulation of powerful laser pulses. It is shown that the transition to the nonlinear stage of the instability is accompanied by the occurrence of cascades (at frequencies separated from the laser carrier frequency by intervals equal to an integer number of plasma frequencies) in the spectrum of the laser pulse

  16. The non-linear power spectrum of the Lyman alpha forest

    International Nuclear Information System (INIS)

    Arinyo-i-Prats, Andreu; Miralda-Escudé, Jordi; Viel, Matteo; Cen, Renyue

    2015-01-01

    The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at z∼ 2.3, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyα transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate the comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyα forest and provide a better physical interpretation of their values and redshift evolution. The dependence of these bias factors and the non-linear power on the amplitude and slope of the primordial fluctuations power spectrum, the temperature-density relation of the intergalactic medium, and the mean Lyα transmission, as well as the redshift evolution, is investigated and discussed in detail. A preliminary comparison to the observations shows that the predicted redshift distortion parameter is in good agreement with the recent determination of Blomqvist et al., but the density bias factor is lower than observed. We make all our results publicly available in the form of tables of the non-linear power spectrum that is directly obtained from all our simulations, and parameters of our fitting formula

  17. POWER SPECTRUM DENSITY (PSD ANALYSIS OF AUTOMOTIVE PEDAL-PAD

    Directory of Open Access Journals (Sweden)

    AHMED RITHAUDDEEN YUSOFF

    2016-04-01

    Full Text Available Vibration at the pedal-pad may contribute to discomfort of foot plantar fascia during driving. This is due to transmission of vibration to the mount, chassis, pedal, and then to the foot plantar fascia. This experimental study is conducted to determine the estimation of peak value using the power spectral density of the vertical vibration input at the foot. The power spectral density value is calculated based on the frequency range between 13 Hz to 18 Hz. This experiment was conducted using 12 subjects testing on three size of pedal-pads; small, medium and large. The result shows that peak value occurs at resonance frequency of 15 Hz. The PSD values at that resonance frequency are 0.251 (m/s2 2/Hz for small pedal-pad, followed by the medium pedal-pad is at 0.387 (m/s2 2/Hz and lastly for the large pedal-pad is at 0.483 (m/s22/Hz. The resultsindicate that during driving, the foot vibration when interact with the large pedal-pad contributed higher stimulus compared with the small and medium pedal-pad. The pedal-pad size plays an important role in the pedal element designs in terms of vibration-transfer from pedal-pads on the feet, particularly to provide comfort to the driver while driving.

  18. Extreme scenarios: the tightest possible constraints on the power spectrum due to primordial black holes

    Science.gov (United States)

    Cole, Philippa S.; Byrnes, Christian T.

    2018-02-01

    Observational constraints on the abundance of primordial black holes (PBHs) constrain the allowed amplitude of the primordial power spectrum on both the smallest and the largest ranges of scales, covering over 20 decades from 1‑1020/ Mpc. Despite tight constraints on the allowed fraction of PBHs at their time of formation near horizon entry in the early Universe, the corresponding constraints on the primordial power spectrum are quite weak, typically Script PRlesssim 10‑2 assuming Gaussian perturbations. Motivated by recent claims that the evaporation of just one PBH would destabilise the Higgs vacuum and collapse the Universe, we calculate the constraints which follow from assuming there are zero PBHs within the observable Universe. Even if evaporating PBHs do not collapse the Universe, this scenario represents the ultimate limit of observational constraints. Constraints can be extended on to smaller scales right down to the horizon scale at the end of inflation, but where power spectrum constraints already exist they do not tighten significantly, even though the constraint on PBH abundance can decrease by up to 46 orders of magnitude. This shows that no future improvement in observational constraints can ever lead to a significant tightening in constraints on inflation (via the power spectrum amplitude). The power spectrum constraints are weak because an order unity perturbation is required in order to overcome pressure forces. We therefore consider an early matter dominated era, during which exponentially more PBHs form for the same initial conditions. We show this leads to far tighter constraints, which approach Script PRlesssim10‑9, albeit over a smaller range of scales and are very sensitive to when the early matter dominated era ends. Finally, we show that an extended early matter era is incompatible with the argument that an evaporating PBH would destroy the Universe, unless the power spectrum amplitude decreases by up to ten orders of magnitude.

  19. Scaling-law for the energy dependence of anatomic power spectrum in dedicated breast CT

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, Srinivasan; Shi, Linxi; Glick, Stephen J.; Karellas, Andrew [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

    2013-01-15

    Purpose: To determine the x-ray photon energy dependence of the anatomic power spectrum of the breast when imaged with dedicated breast computed tomography (CT). Methods: A theoretical framework for scaling the empirically determined anatomic power spectrum at one x-ray photon energy to that at any given x-ray photon energy when imaged with dedicated breast CT was developed. Theory predicted that when the anatomic power spectrum is fitted with a power curve of the form k f{sup -{beta}}, where k and {beta} are fit coefficients and f is spatial frequency, the exponent {beta} would be independent of x-ray photon energy (E), and the amplitude k scales with the square of the difference in energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues. Twenty mastectomy specimens based numerical phantoms that were previously imaged with a benchtop flat-panel cone-beam CT system were converted to 3D distribution of glandular weight fraction (f{sub g}) and were used to verify the theoretical findings. The 3D power spectrum was computed in terms of f{sub g} and after converting to linear attenuation coefficients at monoenergetic x-ray photon energies of 20-80 keV in 5 keV intervals. The 1D power spectra along the axes were extracted and fitted with a power curve of the form k f{sup -{beta}}. The energy dependence of k and {beta} were analyzed. Results: For the 20 mastectomy specimen based numerical phantoms used in the study, the exponent {beta} was found to be in the range of 2.34-2.42, depending on the axis of measurement. Numerical simulations agreed with the theoretical predictions that for a power-law anatomic spectrum of the form k f{sup -{beta}}, {beta} was independent of E and k(E) =k{sub 1}[{mu}{sub g}(E) -{mu}{sub a}(E)]{sup 2}, where k{sub 1} is a constant, and {mu}{sub g}(E) and {mu}{sub a}(E) represent the energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues, respectively. Conclusions: Numerical

  20. Distributing radiation management system of nuclear power plants

    International Nuclear Information System (INIS)

    Mihoya, Eiichi; Akashi, Michio

    1999-01-01

    The importance of radiation management for nuclear facilities including nuclear power plants has increased as the general public understanding has progressed, and necessary information for management must be processed exactly and quickly. In nuclear power plants, radiation management is performed by each individual operation, and collected information is managed by the system of each operation. The distributing radiation management system has been developed aiming to use a general-purpose LAN and make quick and efficient use of information managed by individual operations. This paper describes the system configuration and functions. (author)

  1. Provision of operational radiation protection services at nuclear power plants

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of this publication is to provide practical guidance on establishing and maintaining a radiation protection programme for a nuclear power plant that is consistent with the optimization process recommended in the Basic Safety Standards. This publication is written with a view to providing guidance to every person associated with the radiation protection programme for a nuclear power plant and develops the theme that radiation protection requires the commitment of all plant staff, including higher levels of executive management. 12 refs, 2 figs

  2. Dependence of effective spectrum width of synchrotron radiation on particle energy

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Institute of High Current Electronics, Tomsk (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); P.N. Lebedev Physical Institute, Moscow (Russian Federation); Levin, A.D. [University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Loginov, A.S.; Saprykin, A.D. [Tomsk State University, Department of Physics, Tomsk (Russian Federation)

    2017-05-15

    In the classical theory of synchrotron radiation, for the exact quantitative characterization of spectral properties, the concept of effective spectral width is introduced. In the first part of our work, published in EJPC 75 (2015), the effective spectral width as a function of the energy E of the radiating particle was obtained only in the ultra-relativistic approximation. In this article, which can be considered as a natural continuation of this work, a complete investigation is presented of the dependence of the effective width of the synchrotron radiation spectrum on energy for any values of E and for all the polarization components of the radiation. Numerical calculations were carried out for an effective width not exceeding 100 harmonics. (orig.)

  3. Radiation losses and global power balance of JT-60 plasmas

    International Nuclear Information System (INIS)

    Nishitani, T.; Itami, K.; Nagashima, K.; Tsuji, S.; Hosogane, N.; Yoshida, H.; Ando, T.; Kubo, H.; Takeuchi, H.

    1990-01-01

    The radiation losses and the global power balance for Ohmic and neutral beam heated plasmas have been investigated in different JT-60 configurations. Discharges with a TiC coated molybdenum wall and with a graphite wall, with limiter, outer and lower X-point configurations have been studied by bolometric measurements, thermocouples and an infrared TV camera. In neutral beam heated outer X-point discharges with a TiC coated molybdenum first wall, the radiation loss of the main plasma was very low (10% of the absorbed power). The radiation loss due to oxygen was dominant in this case. On the contrary, in discharges with TiC coated molybdenum limiters the radiation loss was very high (>60% of the absorbed power). In the discharges with a graphite wall the radiated power from the main plasma was 20-25% for both limiter and lower X-point configurations. In lower X-point discharges the main contributor to the radiation loss was oxygen, whereas in limiter discharges the loss due to carbon was equal to the loss due to oxygen. The radiation loss from the lower X-point divertor increased with increasing electron density of the main plasma. (author). 33 refs, 14 figs, 1 tab

  4. Sound power radiated by sources in diffuse fields

    DEFF Research Database (Denmark)

    Polack, Jean-Dominique

    2000-01-01

    Sound power radiated by sources at low frequency notoriously depends on source position. We sampled the sound field of a rectangular room at 18 microphone and 4 source positions. Average power spectra were extrapolated from the reverberant field, taking into account the frequency dependent...

  5. The Atacama Cosmology Telescope: Temperature and Gravitational Lensing Power Spectrum Measurements from Three Seasons of Data

    Science.gov (United States)

    Das, Sudeep; Louis, Thibaut; Nolta, Michael R.; Addison, Graeme E.; Battisetti, Elia S.; Bond, J. Richard; Calabrese, Erminia; Crichton, Devin; Devlin, Mark J.; Dicker, Simon; hide

    2014-01-01

    We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ?CDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6s detection significance.

  6. The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data

    International Nuclear Information System (INIS)

    Das, Sudeep; Louis, Thibaut; Calabrese, Erminia; Dunkley, Joanna; Nolta, Michael R.; Bond, J Richard; Hajian, Amir; Hincks, Adam D.; Addison, Graeme E.; Halpern, Mark; Battistelli, Elia S.; Crichton, Devin; Gralla, Megan; Devlin, Mark J.; Dicker, Simon; Dünner, Rolando; Fowler, Joseph W.; Hasselfield, Matthew; Hlozek, Renée; Hilton, Matt

    2014-01-01

    We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ΛCDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6σ detection significance

  7. The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sudeep [Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439 (United States); Louis, Thibaut; Calabrese, Erminia; Dunkley, Joanna [Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Nolta, Michael R.; Bond, J Richard; Hajian, Amir; Hincks, Adam D. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, M5S 3H8 Canada (Canada); Addison, Graeme E.; Halpern, Mark [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada (Canada); Battistelli, Elia S. [Department of Physics, University of Rome ' ' La Sapienza' ' , Piazzale Aldo Moro 5, I-00185 Rome (Italy); Crichton, Devin; Gralla, Megan [Dept. of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Devlin, Mark J.; Dicker, Simon [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA, 19104 (United States); Dünner, Rolando [Departamento de Astronomía y Astrofísica, Facultad de Física, Pontificía Universidad Católica, Casilla 306, Santiago 22 (Chile); Fowler, Joseph W. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO, 80305 (United States); Hasselfield, Matthew; Hlozek, Renée [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Hilton, Matt, E-mail: sudeepphys@gmail.com [Centre for Astronomy and Particle Theory, School of Physics and Astronomy, University of Nottingham, NG7 2RD (United Kingdom); and others

    2014-04-01

    We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the ΛCDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6σ detection significance.

  8. Signature of short distance physics on inflation power spectrum and CMB anisotropy

    International Nuclear Information System (INIS)

    Das, Suratna; Mohanty, Subhendra

    2009-01-01

    The inflaton field responsible for inflation may not be a canonical fundamental scalar. It is possible that the inflaton is a composite of fermions or it may have a decay width. In these cases the standard procedure for calculating the power spectrum is not applicable and a new formalism needs to be developed to determine the effect of short range interactions of the inflaton on the power spectrum and the CMB anisotropy. We develop a general formalism for computing the power spectrum of curvature perturbations for such non-canonical cases by using the flat space Källén-Lehmann spectral function in curved quasi-de Sitter space assuming implicitly that the Bunch-Davis boundary conditions enforces the inflaton mode functions to be plane wave in the short wavelength limit and a complete set of mode functions exists in quasi-de Sitter space. It is observed that the inflaton with a decay width suppresses the power at large scale while a composite inflaton's power spectrum oscillates at large scales. These observations may be vindicated in the WMAP data and confirmed by future observations with PLANCK

  9. Variability of the Magnetic Field Power Spectrum in the Solar Wind at Electron Scales

    Science.gov (United States)

    Roberts, Owen Wyn; Alexandrova, O.; Kajdič, P.; Turc, L.; Perrone, D.; Escoubet, C. P.; Walsh, A.

    2017-12-01

    At electron scales, the power spectrum of solar-wind magnetic fluctuations can be highly variable and the dissipation mechanisms of the magnetic energy into the various particle species is under debate. In this paper, we investigate data from the Cluster mission’s STAFF Search Coil magnetometer when the level of turbulence is sufficiently high that the morphology of the power spectrum at electron scales can be investigated. The Cluster spacecraft sample a disturbed interval of plasma where two streams of solar wind interact. Meanwhile, several discontinuities (coherent structures) are seen in the large-scale magnetic field, while at small scales several intermittent bursts of wave activity (whistler waves) are present. Several different morphologies of the power spectrum can be identified: (1) two power laws separated by a break, (2) an exponential cutoff near the Taylor shifted electron scales, and (3) strong spectral knees at the Taylor shifted electron scales. These different morphologies are investigated by using wavelet coherence, showing that, in this interval, a clear break and strong spectral knees are features that are associated with sporadic quasi parallel propagating whistler waves, even for short times. On the other hand, when no signatures of whistler waves at ∼ 0.1{--}0.2{f}{ce} are present, a clear break is difficult to find and the spectrum is often more characteristic of a power law with an exponential cutoff.

  10. A new method to cluster genomes based on cumulative Fourier power spectrum.

    Science.gov (United States)

    Dong, Rui; Zhu, Ziyue; Yin, Changchuan; He, Rong L; Yau, Stephen S-T

    2018-06-20

    Analyzing phylogenetic relationships using mathematical methods has always been of importance in bioinformatics. Quantitative research may interpret the raw biological data in a precise way. Multiple Sequence Alignment (MSA) is used frequently to analyze biological evolutions, but is very time-consuming. When the scale of data is large, alignment methods cannot finish calculation in reasonable time. Therefore, we present a new method using moments of cumulative Fourier power spectrum in clustering the DNA sequences. Each sequence is translated into a vector in Euclidean space. Distances between the vectors can reflect the relationships between sequences. The mapping between the spectra and moment vector is one-to-one, which means that no information is lost in the power spectra during the calculation. We cluster and classify several datasets including Influenza A, primates, and human rhinovirus (HRV) datasets to build up the phylogenetic trees. Results show that the new proposed cumulative Fourier power spectrum is much faster and more accurately than MSA and another alignment-free method known as k-mer. The research provides us new insights in the study of phylogeny, evolution, and efficient DNA comparison algorithms for large genomes. The computer programs of the cumulative Fourier power spectrum are available at GitHub (https://github.com/YaulabTsinghua/cumulative-Fourier-power-spectrum). Copyright © 2018. Published by Elsevier B.V.

  11. Radiated power measurement with AXUV photodiodes in EAST tokamak

    International Nuclear Information System (INIS)

    Duan Yanmin; Hu Liqun; Du Wei; Mao Songtao; Chen Kaiyun; Zhang Jizhong

    2013-01-01

    The fast bolometer diagnostic system for absolute radiated power measurement on EAST tokamak is introduced, which is based on the absolute extreme ultraviolet (AXUV) photodiodes. The relative calibration of AXUV detectors is carried out using X-ray tube and standard luminance source in order to evaluate the sensitivity degradation caused by cumulative radiation damage during experiments. The calibration result shows a 23% sensitivity decrease in the X-ray range for the detector suffering ∼27000 discharges, but the sensitivity for the visible light changes little. The radiated power measured by AXUV photodiodes is compared with that measured by resistive bolometer. The total radiated power in main plasma deduced from AXUV detector is lower a factor of 1∼4 than that deduced from resistive bolometer. Some typical measurement results are also shown in this article. (author)

  12. Cerenkov light spectrum in an optical fiber exposed to a photon or electron radiation therapy beam

    International Nuclear Information System (INIS)

    Lambert, Jamil; Yin Yongbai; McKenzie, David R.; Law, Sue; Suchowerska, Natalka

    2009-01-01

    A Cerenkov signal is generated when energetic charged particles enter the core of an optical fiber. The Cerenkov intensity can be large enough to interfere with signals transmitted through the fiber. We determine the spectrum of the Cerenkov background signal generated in a poly(methyl methacrylate) optical fiber exposed to photon and electron therapeutic beams from a linear accelerator. This spectral measurement is relevant to discrimination of the signal from the background, as in scintillation dosimetry using optical fiber readouts. We find that the spectrum is approximated by the theoretical curve after correction for the wavelength dependent attenuation of the fiber. The spectrum does not depend significantly on the angle between the radiation beam and the axis of the fiber optic but is dependent on the depth in water at which the fiber is exposed to the beam.

  13. Collisional-radiative model for the visible spectrum of W{sup 26+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xiaobin, E-mail: dingxb@nwnu.edu.cn [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Liu, Jiaxin [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Koike, Fumihiro [Department of Physics, Sophia University, Tokyo, 102-8554 (Japan); Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Nakamura, Nobuyuki [Institute for Laser Science, The University of Electro-Communications, Chofu, Tokyo 182-8585 (Japan); Dong, Chenzhong [Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2016-02-22

    Plasma diagnostics in magnetic confinement fusion plasmas by using visible spectrum strongly depends on the knowledge of fundamental atomic properties. A detailed collisional-radiative model of W{sup 26+} ions has been constructed by considering radiative and electron excitation processes, in which the necessary atomic data had been calculated by relativistic configuration interaction method with the implementation of Flexible Atomic Code. The visible spectrum observed at an electron beam ion trap (EBIT) in Shanghai in the range of 332 nm to 392 nm was reproduced by present calculations. Some transition pairs of which the intensity ratio is sensitive to the electron density were selected as potential candidates of plasma diagnostics. Their electron density dependence is theoretically evaluated for the cases of EBIT plasmas and magnetic confinement fusion plasmas.

  14. Action spectrum for inhibition by ultraviolet radiation of photosystem 2 activity in spinach thylakoids

    International Nuclear Information System (INIS)

    Bornman, J.F.; Bjoern, L.O.; Aakerlund, H.-E.

    1984-01-01

    The effect of ultraviolet (UV) radiation (half-band width 10 nm) in the wavelength range 248-340 nm on chlorophyll fluorescence from a thin layer of spinach thylakoid suspension was investigated. It was found that the parameter most sensitive to UV radiation was the rise time of variable fluorescence. The increase in rise time was proportional to UV photon fluence and was used for the determination of an action spectrum. The action spectrum falls off from a maximum at ca. 275 nm towards longer wavelengths and rises from a minimum at 260 nm towards shorter wavelengths. The results also suggest that the UV inhibition is mainly on the PS 2 oxidizing side. Possibly damage is also inflicted to the PS 2 reaction center. (orig.)

  15. Concerning the electromagnetic radiation spectrum of a hot plasma with Langmuir turbulence in a magnetic field

    International Nuclear Information System (INIS)

    Tirsky, V.V.; Ledenev, V.G.; Tomozov, V.M.

    2001-01-01

    We consider the process of generation of electromagnetic waves as a consequence of the merging of two Langmuir plasmons. The case of a hot plasma in a magnetic field is investigated. It is shown that under such conditions the frequency of Langmuir plasmons can vary over the range from 0.8 to 1.1 of the Langmuir frequency of electrons. The spectrum and polarization of electromagnetic radiation are analyzed. It is shown that allowance for the thermal motion of plasma particles under the conditions involved permits electromagnetic waves in the range from 1.6 to 2.2 of the Langmuir frequency of electrons to be generated. The degree of circular polarization of the radiation can reach 50% even in the case of an isotropic spectrum of Langmuir turbulence. (orig.)

  16. Standalone, battery powered radiation monitors for accelerator electronics

    CERN Document Server

    Wijnands, T; Spiezia, G

    2009-01-01

    A technical description of the design of a new type of radiation monitors is given. The key point in the design is the low power consumption inferior to 17 mW in radiation sensing mode and inferior to 0.3 mW in standby mode. The radiation monitors can operate without any external power or signal cabling and measure and store radiation data for a maximum period of 800 days. To read the radiation data, a standard PC can be connected via a USB interface to the device at any time. Only a few seconds are required to read out a single monitor. This makes it possible to survey a large network of monitoring devices in a short period of time, for example during a stop of the accelerator.

  17. How to estimate the 3D power spectrum of the Lyman-α forest

    Science.gov (United States)

    Font-Ribera, Andreu; McDonald, Patrick; Slosar, Anže

    2018-01-01

    We derive and numerically implement an algorithm for estimating the 3D power spectrum of the Lyman-α (Lyα) forest flux fluctuations. The algorithm exploits the unique geometry of Lyα forest data to efficiently measure the cross-spectrum between lines of sight as a function of parallel wavenumber, transverse separation and redshift. We start by approximating the global covariance matrix as block-diagonal, where only pixels from the same spectrum are correlated. We then compute the eigenvectors of the derivative of the signal covariance with respect to cross-spectrum parameters, and project the inverse-covariance-weighted spectra onto them. This acts much like a radial Fourier transform over redshift windows. The resulting cross-spectrum inference is then converted into our final product, an approximation of the likelihood for the 3D power spectrum expressed as second order Taylor expansion around a fiducial model. We demonstrate the accuracy and scalability of the algorithm and comment on possible extensions. Our algorithm will allow efficient analysis of the upcoming Dark Energy Spectroscopic Instrument dataset.

  18. Natural radiation focused by power lines: new evidence

    Energy Technology Data Exchange (ETDEWEB)

    Hopwood, Anthony

    1992-11-01

    Scientists searching for a mechanism to explain increases in the incidence of cancer among those living in close proximity to power lines could have been looking in the wrong place. New evidence suggests that instead of trying to find an as yet unproven cellular reaction to the presence of the power-line's magnetic fields, researchers should investigate power lines as concentrators of potentially damaging natural sky radiation. If accepted, a clear link between a known biological cell damage mechanism and power lines will have been established, triggering a reassessment of the independent studies recording statistical increases in cancer incidence around power lines. The evidence stems from recordings showing concentrations of background solar radiation under power lines - a direction of enquiry prompted by a chance observation made during a British Astronomical Association experiment. (Author).

  19. Profiles of radiation power density in WEGA stellarator

    International Nuclear Information System (INIS)

    Zhang, D.; Otte, M.; Giannone, L.

    2005-01-01

    On the WEGA stellarator, a 12 channel bolometer camera has been used to measure the radiation power losses of the plasma, which is heated by ECR at 2.45 GHz with a maximum power of 26 kW. The typical electron temperatures achieved are around 10 eV. The bolometer is of the Au resistor type and is positioned on the mid-plane, viewing the plasma from the low-field side with a spatial resolution of about 6 cm. The viewing angle is opened to poloidally (±47 o ) and covers the whole cross-section. Angular profiles of radiation power density (emissivity) can be achieved using the measured fluxes to the channels, which are given by the integrals along the sight lines. Using Abel inversion with maximum entropy regularisation, radial profiles of emissivity could be obtained. It is found that the angular profile of emissivity depends on the magnetic configuration, the working gas (Ar, He) and the heating scenario. Peaked and hollow emissivity profiles have been obtained by using different types of heating antenna. By changing the magnetic configuration, strong edge radiation has been observed. The largest emissivity values are obtained in the upper SOL range of Ar-discharges. This edge radiation can be reduced by shifting the flux surfaces inwards or by changing their shape at the antenna. The reconstruction of the radial profile of the emissivity was carried out in the case of a peaked angular profile with minimum edge radiation. The total radiation power was estimated by linear extrapolation of the integrated radiation power in the viewing region to the torus volume. It is typically less than 30% of the ECRH input power, but depending on the ECRH input power, again the magnetic configuration, the working gas as well as the absolute field strength on the magnetic axis. Maximum radiation losses have been obtained around 0.6·B0, where B 0 =87.5 mT is the resonant field strength of the ECRH. No evidence for impurities was obtained from spectroscopic measurements, and thus the

  20. Constraints on models with a break in the primordial power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Li Hong, E-mail: hongli@mail.ihep.ac.c [Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-4, Beijing 100049 (China); Theoretical Physics Center for Science Facilities (TPCSF), Chinese Academy of Science (China); Kavli Institute for Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Xia Junqing [Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste (Italy); Brandenberger, Robert [Department of Physics, McGill University, 3600 University Street, Montreal, QC, H3A 2T8 (Canada); Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-4, Beijing 100049 (China); Theoretical Physics Center for Science Facilities (TPCSF), Chinese Academy of Science (China); Kavli Institute for Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Zhang Xinmin [Institute of High Energy Physics, Chinese Academy of Science, P.O. Box 918-4, Beijing 100049 (China); Theoretical Physics Center for Science Facilities (TPCSF), Chinese Academy of Science (China)

    2010-07-05

    One of the characteristics of the 'Matter Bounce' scenario, an alternative to cosmological inflation for producing a scale-invariant spectrum of primordial adiabatic fluctuations on large scales, is a break in the power spectrum at a characteristic scale, below which the spectral index changes from n{sub s}=1 to n{sub s}=3. We study the constraints which current cosmological data place on the location of such a break, and more generally on the position of the break and the slope at length scales smaller than the break. The observational data we use include the WMAP five-year data set (WMAP5), other CMB data from BOOMERanG, CBI, VSA, and ACBAR, large-scale structure data from the Sloan Digital Sky Survey (SDSS, their luminous red galaxies sample), Type Ia Supernovae data (the 'Union' compilation), and the Sloan Digital Sky Survey Lyman-{alpha} forest power spectrum (Ly{alpha}) data. We employ the Markov Chain Monte Carlo method to constrain the features in the primordial power spectrum which are motivated by the matter bounce model. We give an upper limit on the length scale where the break in the spectrum occurs.

  1. Constraints on models with a break in the primordial power spectrum

    International Nuclear Information System (INIS)

    Li Hong; Xia Junqing; Brandenberger, Robert; Zhang Xinmin

    2010-01-01

    One of the characteristics of the 'Matter Bounce' scenario, an alternative to cosmological inflation for producing a scale-invariant spectrum of primordial adiabatic fluctuations on large scales, is a break in the power spectrum at a characteristic scale, below which the spectral index changes from n s =1 to n s =3. We study the constraints which current cosmological data place on the location of such a break, and more generally on the position of the break and the slope at length scales smaller than the break. The observational data we use include the WMAP five-year data set (WMAP5), other CMB data from BOOMERanG, CBI, VSA, and ACBAR, large-scale structure data from the Sloan Digital Sky Survey (SDSS, their luminous red galaxies sample), Type Ia Supernovae data (the 'Union' compilation), and the Sloan Digital Sky Survey Lyman-α forest power spectrum (Lyα) data. We employ the Markov Chain Monte Carlo method to constrain the features in the primordial power spectrum which are motivated by the matter bounce model. We give an upper limit on the length scale where the break in the spectrum occurs.

  2. Anisotropic power spectrum of refractive-index fluctuation in hypersonic turbulence.

    Science.gov (United States)

    Li, Jiangting; Yang, Shaofei; Guo, Lixin; Cheng, Mingjian

    2016-11-10

    An anisotropic power spectrum of the refractive-index fluctuation in hypersonic turbulence was obtained by processing the experimental image of the hypersonic plasma sheath and transforming the generalized anisotropic von Kármán spectrum. The power spectrum suggested here can provide as good a fit to measured spectrum data for hypersonic turbulence as that recorded from the nano-planar laser scattering image. Based on the newfound anisotropic hypersonic turbulence power spectrum, Rytov approximation was employed to establish the wave structure function and the spatial coherence radius model of electromagnetic beam propagation in hypersonic turbulence. Enhancing the anisotropy characteristics of the hypersonic turbulence led to a significant improvement in the propagation performance of electromagnetic beams in hypersonic plasma sheath. The influence of hypersonic turbulence on electromagnetic beams increases with the increase of variance of the refractive-index fluctuation and the decrease of turbulence outer scale and anisotropy parameters. The spatial coherence radius was much smaller than that in atmospheric turbulence. These results are fundamental to understanding electromagnetic wave propagation in hypersonic turbulence.

  3. Distance Dependent Model for the Delay Power Spectrum of In-room Radio Channels

    DEFF Research Database (Denmark)

    Steinböck, Gerhard; Pedersen, Troels; Fleury, Bernard Henri

    2013-01-01

    A model based on experimental observations of the delay power spectrum in closed rooms is proposed. The model includes the distance between the transmitter and the receiver as a parameter which makes it suitable for range based radio localization. The experimental observations motivate the proposed...... model of the delay power spectrum with a primary (early) component and a reverberant component (tail). The primary component is modeled as a Dirac delta function weighted according to an inverse distance power law (d-n). The reverberant component is an exponentially decaying function with onset equal...... to the propagation time between transmitter and receiver. Its power decays exponentially with distance. The proposed model allows for the prediction of e.g. the path loss, mean delay, root mean squared (rms) delay spread, and kurtosis versus the distance. The model predictions are validated by measurements...

  4. Modeling transient radiation effects in power MOSFETS

    International Nuclear Information System (INIS)

    Hoffman, J.R.; Hall, W.E.; Dunn, D.E.

    1987-01-01

    Using standard device specifications and simple assumptions, the transient radiation response of VDMOS MOSFETs can be modeled in a standard circuit analysis program. The device model consists of a body diode, a parasitic bipolar transistor, and elements to simulate high-current reduced breakdown. The attached photocurrent model emulates response to any pulse shape and accounts for bias-dependent depletion regions. The model can be optimized to best fit available test data

  5. THE NuSTAR X-RAY SPECTRUM OF HERCULES X-1: A RADIATION-DOMINATED RADIATIVE SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Michael T.; Wood, Kent S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Becker, Peter A. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030-4444 (United States); Gottlieb, Amy M.; Marcu-Cheatham, Diana M.; Pottschmidt, Katja [Department of Physics and Center for Space Science and Technology, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Fürst, Felix [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Hemphill, Paul B. [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0424 (United States); Schwarm, Fritz-Walter; Wilms, Jörn [Dr. Karl-Remeis-Sternwarte and ECAP, Sternwartstr, 7, D-96049 Bamberg (Germany)

    2016-11-10

    We report on new spectral modeling of the accreting X-ray pulsar Hercules X-1. Our radiation-dominated radiative shock model is an implementation of the analytic work of Becker and Wolff on Comptonized accretion flows onto magnetic neutron stars. We obtain a good fit to the spin-phase-averaged 4–78 keV X-ray spectrum observed by the Nuclear Spectroscopic Telescope Array during a main-on phase of the Her X-1 35 day accretion disk precession period. This model allows us to estimate the accretion rate, the Comptonizing temperature of the radiating plasma, the radius of the magnetic polar cap, and the average scattering opacity parameters in the accretion column. This is in contrast to previous phenomenological models that characterized the shape of the X-ray spectrum, but could not determine the physical parameters of the accretion flow. We describe the spectral fitting details and discuss the interpretation of the accretion flow physical parameters.

  6. Visibility-based angular power spectrum estimation in low-frequency radio interferometric observations

    NARCIS (Netherlands)

    Choudhuri, Samir; Bharadwaj, Somnath; Ghosh, Abhik; Ali, Sk. Saiyad

    2014-01-01

    We present two estimators to quantify the angular power spectrum of the sky signal directly from the visibilities measured in radio interferometric observations. This is relevant for both the foregrounds and the cosmological 21-cm signal buried therein. The discussion here is restricted to the

  7. Exponential decay rate of the power spectrum for solutions of the Navier--Stokes equations

    International Nuclear Information System (INIS)

    Doering, C.R.; Titi, E.S.

    1995-01-01

    Using a method developed by Foias and Temam [J. Funct. Anal. 87, 359 (1989)], exponential decay of the spatial Fourier power spectrum for solutions of the incompressible Navier--Stokes equations is established and explicit rigorous lower bounds on a small length scale defined by the exponential decay rate are obtained

  8. Predicting speech intelligibility based on a correlation metric in the envelope power spectrum domain

    DEFF Research Database (Denmark)

    Relaño-Iborra, Helia; May, Tobias; Zaar, Johannes

    2016-01-01

    A speech intelligibility prediction model is proposed that combines the auditory processing front end of the multi-resolution speech-based envelope power spectrum model [mr-sEPSM; Jørgensen, Ewert, and Dau (2013). J. Acoust. Soc. Am. 134(1), 436–446] with a correlation back end inspired by the sh...

  9. The 3D Power Spectrum from Angular Clustering of Galaxies in Early SDSS Data

    CERN Document Server

    Dodelson, Scott; Tegmark, Max; Scranton, Ryan; Budavari, Tamas; Connolly, Andrew; Csabai, Istvan; Eisenstein, Daniel; Frieman, Joshua A.; Gunn, James E.; Hui, Lam; Jain, Bhuvnesh; Johnston, David; Kent, Stephen M.; Loveday, Jon; Nichol, Robert C.; O'Connell, Liam; Scoccimarro, Roman; Sheth, Ravi K.; Stebbins, Albert; Strauss, Michael A.; Szalay, Alexander S.; Szapudi, Istvan; Vogeley, Michael S.; Zehavi, Idit; Annis, James; Bahcall, Neta A.; Brinkman, Jon; Doi, Mamoru; Fukugita, Masataka; Hennessy, Greg; Ivezic, Zeljko; Knapp, Gillian R.; Kunszt, Peter; Lamb, Don Q.; Lee, Brian C.; Lupton, Robert H.; Munn, Jeffrey A.; Peoples, John; Pier, Jeffrey R.; Rockosi, Constance; Schlegel, David; Stoughton, Christopher; Tucker, Douglas L.; Yanny, Brian; York, Donald G.; Dodelson, Scott; Narayanan, Vijay K.; Tegmark, Max; Scranton, Ryan; Budavari, Tamas; Connolly, Andrew; Csabai, Istvan; Eisenstein, Daniel; Frieman, Joshua A.; Gunn, James E.; Hui, Lam; Jain, Bhuvnesh; Johnston, David; Kent, Stephen; Loveday, Jon; Nichol, Robert C.; Connell, Liam O'; Scoccimarro, Roman; Sheth, Ravi K.; Stebbins, Albert; Strauss, Michael A.; Szalay, Alexander S.; Szapudi, Istv\\'an; Vogeley, Michael S.; Zehavi, Idit

    2001-01-01

    Early photometric data from the Sloan Digital Sky Survey (SDSS) contain angular positions for 1.5 million galaxies. In companion papers, the angular correlation function $w(\\theta)$ and 2D power spectrum $C_l$ of these galaxies are presented. Here we invert Limber's equation to extract the 3D power spectrum from the angular results. We accomplish this using an estimate of $dn/dz$, the redshift distribution of galaxies in four different magnitude slices in the SDSS photometric catalog. The resulting 3D power spectrum estimates from $w(\\theta)$ and $C_l$ agree with each other and with previous estimates over a range in wavenumbers $0.03 < k/{\\rm h Mpc}^{-1} < 1$. The galaxies in the faintest magnitude bin ($21 < \\rstar < 22$, which have median redshift $z_m=0.43$) are less clustered than the galaxies in the brightest magnitude bin ($18 < \\rstar < 19$ with $z_m=0.17$), especially on scales where nonlinearities are important. The derived power spectrum agrees with that of Szalay et al. (2001) wh...

  10. The matter power spectrum from the Ly alpha forest : an optical depth estimate

    NARCIS (Netherlands)

    Zaroubi, S; Nusser, A; Haehnelt, M; Kim, TS; Viel, M.

    2006-01-01

    We measure the matter power spectrum from 31 Ly alpha spectra spanning the redshift range of 1.6-3.6. The optical depth, tau, for Ly alpha absorption of the intergalactic medium is obtained from the flux using the inversion method of Nusser & Haehnelt. The optical depth is converted to density by

  11. Low power wide spectrum optical transmitter using avalanche mode LEDs in SOI CMOS technology

    NARCIS (Netherlands)

    Agarwal, V.; Dutta, S; Annema, AJ; Hueting, RJE; Steeneken, P.G.; Nauta, B

    2017-01-01

    This paper presents a low power monolithically integrated optical transmitter with avalanche mode light emitting diodes in a 140 nm silicon-on-insulator CMOS technology. Avalanche mode LEDs in silicon exhibit wide-spectrum electroluminescence (400 nm < λ < 850 nm), which has a significant

  12. Planck 2013 results. XXI. All-sky Compton parameter power spectrum and high-order statistics

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Cardoso, J.F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Da Silva, A.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Genova-Santos, R.T.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marcos-Caballero, A.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Melin, J.B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    We have constructed the first all-sky map of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 100 to 857 GHz frequency channel maps from the Planck survey. These maps show an obvious galaxy cluster tSZ signal that is well matched with blindly detected clusters in the Planck SZ catalogue. To characterize the signal in the tSZ map we have computed its angular power spectrum. At large angular scales ($\\ell 500$) the clustered Cosmic Infrared Background (CIB) and residual point sources are the major contaminants. These foregrounds are carefully modelled and subtracted. We measure the tSZ power spectrum in angular scales, $0.17^{\\circ} \\lesssim \\theta \\lesssim 3.0^{\\circ}$, that were previously unexplored. The measured tSZ power spectrum is consistent with that expected from the Planck catalogue of SZ sources, with additional clear evidence of signal from unresolved clusters and, potentially, diffuse warm baryons. We use the tSZ power spectrum to ...

  13. Slow-roll inflation and BB-mode angular power spectrum of CMB

    Energy Technology Data Exchange (ETDEWEB)

    Malsawmtluangi, N.; Suresh, P.K. [University of Hyderabad, School of Physics, Hyderabad (India)

    2016-05-15

    The BB-mode correlation angular power spectrum of CMB is obtained by considering the primordial gravitational waves in the squeezed vacuum state for various inflationary models and results are compared with the joint analysis of the BICEP2/Keck Array and Planck 353 GHz data. The present results may constrain several models of inflation. (orig.)

  14. H-ATLAS: THE COSMIC ABUNDANCE OF DUST FROM THE FAR-INFRARED BACKGROUND POWER SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Thacker, Cameron; Cooray, Asantha; Smidt, Joseph; De Bernardis, Francesco; Mitchell-Wynne, K. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Amblard, A. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Auld, R.; Eales, S.; Pascale, E. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, CF24 3AA (United Kingdom); Baes, M.; Michalowski, M. J. [Sterrenkundig Observatorium, Universiteit Gent, KrijgslAAn 281 S9, B-9000 Gent (Belgium); Clements, D. L.; Dariush, A.; Hopwood, R. [Physics Department, Imperial College London, South Kensington campus, London, SW7 2AZ (United Kingdom); De Zotti, G. [INAF, Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Maddox, S. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Hoyos, C. [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Ibar, E. [UK Astronomy Technology Centre, The Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Jarvis, M. [Astrophysics, Department of Physics, Keble Road, Oxford, OX1 3RH (United Kingdom); and others

    2013-05-01

    We present a measurement of the angular power spectrum of the cosmic far-infrared background (CFIRB) anisotropies in one of the extragalactic fields of the Herschel Astrophysical Terahertz Large Area Survey at 250, 350, and 500 {mu}m bands. Consistent with recent measurements of the CFIRB power spectrum in Herschel-SPIRE maps, we confirm the existence of a clear one-halo term of galaxy clustering on arcminute angular scales with large-scale two-halo term of clustering at 30 arcmin to angular scales of a few degrees. The power spectrum at the largest angular scales, especially at 250 {mu}m, is contaminated by the Galactic cirrus. The angular power spectrum is modeled using a conditional luminosity function approach to describe the spatial distribution of unresolved galaxies that make up the bulk of the CFIRB. Integrating over the dusty galaxy population responsible for the background anisotropies, we find that the cosmic abundance of dust, relative to the critical density, to be between {Omega}{sub dust} = 10{sup -6} and 8 Multiplication-Sign 10{sup -6} in the redshift range z {approx} 0-3. This dust abundance is consistent with estimates of the dust content in the universe using quasar reddening and magnification measurements in the Sloan Digital Sky Survey.

  15. A new career path in radiation protection training. Certified power plant shift supervisor. Radiation protection

    International Nuclear Information System (INIS)

    Terbeek, Christoph

    2011-01-01

    Apart from theoretical knowledge, effective day-to-day radiation protection operations also require a certain measure of practical experience. Therefore, the professional degree of 'Certified Radiation Worker', issued by the Chamber of Industry and Commerce (CIC) Aachen, Germany, established at an early stage. In order to provide experienced radiation protection specialists with an attractive career path, POWERTECH TRAINING CENTER e.V., in co-operation with VGB PowerTech. e.V., the Paul Scherrer Institute (Switzerland) and the Swiss Atomic Energy Agency (ENSI), has devised a new power plant shift supervisor training course specialising in radiation protection. The vocational training degree called 'Certified Power Plant Shift Supervisor - Radiation Protection' is awarded after successful completion of the advanced training examination conducted by the CIC in Essen, Germany. (orig.)

  16. New-generation low-power radiation survey instruments

    International Nuclear Information System (INIS)

    Waechter, D.A.; Bjarke, G.O.; Wolf, M.A.; Trujillo, F.; Umbarger, C.J.

    1983-01-01

    A number of new, ultra-low-powered radiation instruments have recently been developed at Los Alamos. Among these are two instruments which use a novel power source to eliminate costly batteries. The newly developed gamma detecting radiac, nicknamed the Firefly, and the alpha particle detecting instrument, called the Simple Cordless Alpha Monitor, both use recent advances in miniaturization and power-saving electronics to yield devices which are small, rugged, and very power-frugal. The two instruments consume so little power that the need for batteries to run them is eliminated. They are, instead, powered by a charged capacitor which will operate the instruments for an hour or more. Both line power and mechanical sources are used to charge the storage capacitors which power the instruments

  17. Two dimensional radiated power diagnostics on Alcator C-Mod

    International Nuclear Information System (INIS)

    Reinke, M. L.; Hutchinson, I. H.

    2008-01-01

    The radiated power diagnostics for the Alcator C-Mod tokamak have been upgraded to measure two dimensional structure of the photon emissivity profile in order to investigate poloidal asymmetries in the core radiation. Commonly utilized unbiased absolute extreme ultraviolet (AXUV) diode arrays view the plasma along five different horizontal planes. The layout of the diagnostic set is shown and the results from calibrations and recent experiments are discussed. Data showing a significant, 30%-40%, inboard/outboard emissivity asymmetry during ELM-free H-mode are presented. The ability to use AXUV diode arrays to measure absolute radiated power is explored by comparing diode and resistive bolometer-based emissivity profiles for highly radiative L-mode plasmas seeded with argon. Emissivity profiles match in the core but disagree radially outward resulting in an underprediction of P rad of nearly 50% by the diodes compared to P rad determined using resistive bolometers.

  18. Two dimensional radiated power diagnostics on Alcator C-Moda)

    Science.gov (United States)

    Reinke, M. L.; Hutchinson, I. H.

    2008-10-01

    The radiated power diagnostics for the Alcator C-Mod tokamak have been upgraded to measure two dimensional structure of the photon emissivity profile in order to investigate poloidal asymmetries in the core radiation. Commonly utilized unbiased absolute extreme ultraviolet (AXUV) diode arrays view the plasma along five different horizontal planes. The layout of the diagnostic set is shown and the results from calibrations and recent experiments are discussed. Data showing a significant, 30%-40%, inboard/outboard emissivity asymmetry during ELM-free H-mode are presented. The ability to use AXUV diode arrays to measure absolute radiated power is explored by comparing diode and resistive bolometer-based emissivity profiles for highly radiative L-mode plasmas seeded with argon. Emissivity profiles match in the core but disagree radially outward resulting in an underprediction of Prad of nearly 50% by the diodes compared to Prad determined using resistive bolometers.

  19. Evolution of Xe spectrum and ion charge under sudden incoming radiation

    Science.gov (United States)

    Klapisch, Marcel; Busquet, Michel

    2012-06-01

    Experiments [1] and simulations of Xe at high temperature were recently reported, due to the possible scaling of astrophysical radiative shocks [2]. We used the newest version of HULLAC [3] to compute energy levels, radiative and collisional transition rates and level populations in a Coronal Radiative Model for the ions Xe9+ to Xe44+ (36263 configurations), at electron temperature of 100 eV and electron density of 10^19 -- 10^21 e/cm^3, in the presence of an external Planckian radiation field. Static and time dependent influence of the radiation on ion charge and spectrum is described. We show an effect of shell structure on relaxation of ion charge when the radiation field is suddenly turn on.[4pt] [1] Busquet, M., Thais, F., Gonzalez, M., et al., J. App. Phys. 107, 083302 (2010).[0pt] [2] Ryutov, D., Drake, R. P., Kane, J., et al., Astrophys. J. 518, 821 (1999).[0pt] [3] Klapisch, M. and Busquet, M., High Ener. Dens. Phys. 7, 98 (2011).

  20. Perspective on radiation from the nuclear power industry

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1990-01-01

    Methods for estimating the risk of radiation induced cancer mortality to members of the public are outlined for each element of the nuclear power industry - reactor accidents, routine releases from nuclear plants, transport, mining and milling of uranium, and escape of buried radioactive waste (high level and low level). The results are compared with mortality risks from the air pollution and chemical carcinogens released into the ground in generating the same amount of electricity by coal burning - the latter are thousands of times larger. Radiation from nuclear power is also 1,000 times smaller than that from radon in homes. The amount of money spent to avert a death from nuclear power radiation is in the billion dollar range, whereas lives could be saved from radon in homes for 0.00001 times that cost. Medical screening and highway safety programs can save lives for a similarly low cost

  1. Performance Enhancement of Power Transistors and Radiation effect

    International Nuclear Information System (INIS)

    Hassn, Th.A.A.

    2012-01-01

    The main objective of this scientific research is studying the characteristic of bipolar junction transistor device and its performance under radiation fields and temperature effect as a control element in many power circuits. In this work we present the results of experimental measurements and analytical simulation of gamma – radiation effects on the electrical characteristics and operation of power transistor types 2N3773, 2N3055(as complementary silicon power transistor are designed for general-purpose switching and amplifier applications), three samples of each type were irradiated by gamma radiation with doses, 1 K rad, 5 K rad, 10 K rad, 30 K rad, and 10 Mrad, the experimental data are utilized to establish an analytical relation between the total absorbed dose of gamma irradiation and corresponding to effective density of generated charge in the internal structure of transistor, the electrical parameters which can be measured to estimate the generated defects in the power transistor are current gain, collector current and collected emitter leakage current , these changes cause the circuit to case proper functioning. Collector current and transconductance of each device are calibrated as a function of irradiated dose. Also the threshold voltage and transistor gain can be affected and also calibrated as a function of dose. A silicon NPN power transistor type 2N3773 intended for general purpose applications, were used in this work. It was designed for medium current and high power circuits. Performance and characteristic were discusses under temperature and gamma radiation doses. Also the internal junction thermal system of the transistor represented in terms of a junction thermal resistance (Rjth). The thermal resistance changed by ΔRjth, due to the external intended, also due to the gamma doses intended. The final result from the model analysis reveals that the emitter-bias configuration is quite stable by resistance ratio RB/RE. Also the current

  2. Calibration of radiation monitors at nuclear power plants

    International Nuclear Information System (INIS)

    Boudreau, L.; Miller, A.D.; Naughton, M.D.

    1994-03-01

    This work was performed to provide guidance to the utilities in the primary and secondary calibration of the radiation monitoring systems (RMS) installed in nuclear power plants. These systems are installed in nuclear power plants to monitor ongoing processes, identify changing radiation fields, predict and limit personnel radiation exposures and measure and control discharge of radioactive materials to the environment. RMS are checked and calibrated on a continuing basis to ensure their precision and accuracy. This report discusses various approaches towards primary and secondary calibrations of the RMS equipment in light of accepted practices at typical power plants and recent interpretations of regulatory guidance. Detailed calibration techniques and overall system responses, trends, and practices are discussed. Industry, utility, and regulatory sources were contacted to create an overall consensus of the most reasonable approaches to optimizing the performance of this equipment

  3. High Power Radiation Tolerant CubeSat Power System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — No vendor has yet to provide a radiation tolerant, high efficiency, small Power Management and Distribution module for the SmallSat and CubeSat market yet. Let alone...

  4. Local region power spectrum-based unfocused ship detection method in synthetic aperture radar images

    Science.gov (United States)

    Wei, Xiangfei; Wang, Xiaoqing; Chong, Jinsong

    2018-01-01

    Ships on synthetic aperture radar (SAR) images will be severely defocused and their energy will disperse into numerous resolution cells under long SAR integration time. Therefore, the image intensity of ships is weak and sometimes even overwhelmed by sea clutter on SAR image. Consequently, it is hard to detect the ships from SAR intensity images. A ship detection method based on local region power spectrum of SAR complex image is proposed. Although the energies of the ships are dispersed on SAR intensity images, their spectral energies are rather concentrated or will cause the power spectra of local areas of SAR images to deviate from that of sea surface background. Therefore, the key idea of the proposed method is to detect ships via the power spectra distortion of local areas of SAR images. The local region power spectrum of a moving target on SAR image is analyzed and the way to obtain the detection threshold through the probability density function (pdf) of the power spectrum is illustrated. Numerical P- and L-band airborne SAR ocean data are utilized and the detection results are also illustrated. Results show that the proposed method can well detect the unfocused ships, with a detection rate of 93.6% and a false-alarm rate of 8.6%. Moreover, by comparing with some other algorithms, it indicates that the proposed method performs better under long SAR integration time. Finally, the applicability of the proposed method and the way of parameters selection are also discussed.

  5. Power Spectrum of a Noisy System Close to a Heteroclinic Orbit

    Science.gov (United States)

    Giner-Baldó, Jordi; Thomas, Peter J.; Lindner, Benjamin

    2017-07-01

    We consider a two-dimensional dynamical system that possesses a heteroclinic orbit connecting four saddle points. This system is not able to show self-sustained oscillations on its own. If endowed with white Gaussian noise it displays stochastic oscillations, the frequency and quality factor of which are controlled by the noise intensity. This stochastic oscillation of a nonlinear system with noise is conveniently characterized by the power spectrum of suitable observables. In this paper we explore different analytical and semianalytical ways to compute such power spectra. Besides a number of explicit expressions for the power spectrum, we find scaling relations for the frequency, spectral width, and quality factor of the stochastic heteroclinic oscillator in the limit of weak noise. In particular, the quality factor shows a slow logarithmic increase with decreasing noise of the form Q˜ [ln (1/D)]^2. Our results are compared to numerical simulations of the respective Langevin equations.

  6. Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe

    2012-01-01

    The noise properties of a supercontiuum can be significantly improved both in terms of coherence and intensity stability by modulating the input pulse with a seed. In this paper, we numerically investigate the influence of the seed wavelength, the pump power, and the modulation instability gain...... spectrum on the seeding process. The results can be clearly divided into a number of distinct dynamical regimes depending on the initial four-wave mixing process. We further demonstrate that seeding can be used to generate coherent and incoherent rogue waves, depending on the modulation instability gain...... spectrum. Finally, we show that the coherent pulse breakup afforded by seeding is washed out by turbulent solitonic dynamics when the pump power is increased to the kilowatt level. Thus our results show that seeding cannot improve the noise performance of a high power supercontinuum source....

  7. Tapering the sky response for angular power spectrum estimation from low-frequency radio-interferometric data.

    Science.gov (United States)

    Choudhuri, Samir; Bharadwaj, Somnath; Roy, Nirupam; Ghosh, Abhik; Ali, Sk Saiyad

    2016-06-11

    It is important to correctly subtract point sources from radio-interferometric data in order to measure the power spectrum of diffuse radiation like the Galactic synchrotron or the Epoch of Reionization 21-cm signal. It is computationally very expensive and challenging to image a very large area and accurately subtract all the point sources from the image. The problem is particularly severe at the sidelobes and the outer parts of the main lobe where the antenna response is highly frequency dependent and the calibration also differs from that of the phase centre. Here, we show that it is possible to overcome this problem by tapering the sky response. Using simulated 150 MHz observations, we demonstrate that it is possible to suppress the contribution due to point sources from the outer parts by using the Tapered Gridded Estimator to measure the angular power spectrum C ℓ of the sky signal. We also show from the simulation that this method can self-consistently compute the noise bias and accurately subtract it to provide an unbiased estimation of C ℓ .

  8. A computerized total-radiation management system for Shikoku Electric Power's Ikata nuclear-power plant

    International Nuclear Information System (INIS)

    Hirao, Toshiyuki; Sakakihara, Tetsuro; Tanabe, Shozo; Kano, Mamoru; Hoshi, Jun-ichi.

    1985-01-01

    This system allows on-line, real-time radiation management at nuclear-power plants. It increases management precision, decreases management workloads, and saves labor in operations that previously required specialized technicians to expend great amounts of time and effort on radiation management at facilities and their environments, environmental radiation evaluation, and control of radioactive waste. The article outlines the already installed system. (author)

  9. Effects of synchrotron radiation spectrum energy on polymethyl methacrylate photosensitivity to deep x-ray lithography

    International Nuclear Information System (INIS)

    Mekaru, Harutaka; Utsumi, Yuichi; Hattori, Tadashi

    2003-01-01

    Since X-ray lithography requires a high photon flux to achieve deep resist exposure, a synchrotron radiation beam, which is not monochromatized, is generally used as a light source. If the synchrotron radiation beam is monochromatized, photon flux will decrease rapidly. Because of this reason, the wavelength dependence of the resist sensitivity has not been investigated for deep X-ray lithography. Measuring the spectrum of a white beam with a Si solid-state detector (SSD) is difficult because a white beam has a high intensity and an SSD has a high sensitivity. We were able to measure the spectrum and the photocurrent of a white beam from a beam line used for deep X-ray lithography by keeping the ring current below 0.05 mA. We evaluated the characteristics of the output beam based on the measured spectrum and photocurrent, and used them to investigate the relationship between the total exposure energy and the dose-processing depth with polymethyl methacrylate (PMMA). We found that it is possible to guess the processing depth of PMMA from the total exposure energy in deep X-ray lithography. (author)

  10. [A Method to Reconstruct Surface Reflectance Spectrum from Multispectral Image Based on Canopy Radiation Transfer Model].

    Science.gov (United States)

    Zhao, Yong-guang; Ma, Ling-ling; Li, Chuan-rong; Zhu, Xiao-hua; Tang, Ling-li

    2015-07-01

    Due to the lack of enough spectral bands for multi-spectral sensor, it is difficult to reconstruct surface retlectance spectrum from finite spectral information acquired by multi-spectral instrument. Here, taking into full account of the heterogeneity of pixel from remote sensing image, a method is proposed to simulate hyperspectral data from multispectral data based on canopy radiation transfer model. This method first assumes the mixed pixels contain two types of land cover, i.e., vegetation and soil. The sensitive parameters of Soil-Leaf-Canopy (SLC) model and a soil ratio factor were retrieved from multi-spectral data based on Look-Up Table (LUT) technology. Then, by combined with a soil ratio factor, all the parameters were input into the SLC model to simulate the surface reflectance spectrum from 400 to 2 400 nm. Taking Landsat Enhanced Thematic Mapper Plus (ETM+) image as reference image, the surface reflectance spectrum was simulated. The simulated reflectance spectrum revealed different feature information of different surface types. To test the performance of this method, the simulated reflectance spectrum was convolved with the Landsat ETM + spectral response curves and Moderate Resolution Imaging Spectrometer (MODIS) spectral response curves to obtain the simulated Landsat ETM+ and MODIS image. Finally, the simulated Landsat ETM+ and MODIS images were compared with the observed Landsat ETM+ and MODIS images. The results generally showed high correction coefficients (Landsat: 0.90-0.99, MODIS: 0.74-0.85) between most simulated bands and observed bands and indicated that the simulated reflectance spectrum was well simulated and reliable.

  11. Physics contributions to radiation protection in nuclear power plants

    International Nuclear Information System (INIS)

    Krueger, F.W.

    1980-01-01

    Physical research and physical methods can essentially contribute to radiation protection in nuclear power plants. With their aid, properties of radiation sources can be determined, and calculations of radiation shields can be performed. In the present paper, such tasks are analyzed, the state of the art of their solution is evaluated, and trends of further work are shown. Focal points of the present study are the calculation of properties of radiation sources outside the reactor (fission products, activated corrosion products, decontamination facilities for contaminated media), exact and engineering methods for calculating radiation fields also in inhomogeneous shields, and classification of concretes for gamma-ray shielding. Objectives, possibilities, and problems of standardization of such activities are discussed. (author)

  12. Planck intermediate results LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters

    DEFF Research Database (Denmark)

    Aghanim, N.; Akrami, Y.; Ashdown, M.

    2017-01-01

    The six parameters of the standard ΛCDM model have best-fit values derived from the Planck temperature power spectrum that are shifted somewhat from the best-fit values derived from WMAP data. These shifts are driven by features in the Planck temperature power spectrum at angular scales that had ...

  13. Investigations on the relationship between power spectrum and signal-to-noise ratio of frequency-swept pulses

    International Nuclear Information System (INIS)

    Zhang Zhuhong; Fan Diayuan

    1993-01-01

    The criterion for obtaining compressed chirp pulses with high signal-to-noise ratio is the shape of the power spectrum, a chirp pulse of Gaussian shaped power spectrum without modulation is needed in CPA system to get the clean compressed pulses. 4 refs., 2 figs

  14. Radiation protection in the Czechoslovak nuclear power plants

    International Nuclear Information System (INIS)

    Singer, J.; Koc, J.; Hynek, J.; Trousil, J.

    1987-01-01

    The radiation monitoring by means of the central information system and of autonomous, portable and laboratory devices as well as a brief characteristic of the nuclear power plant radiation fields are described. The new personal dosimetric film and thermoluminescent badges and the method (including the block diagram) for personal dose evaluation are also introduced. Internal contamination monitoring is performed by means of a whole-body counter and excreta sample analysis. Monitoring the influence of effluents from nuclear power plants on environment in Czechoslovakia is based on significant radionuclide measurements in ventilation stacks and in the environment, also by means of the telemetric system, all in connection with mathematical models. (author)

  15. Design aspects of radiation protection for nuclear power plants

    International Nuclear Information System (INIS)

    1985-01-01

    This Safety Guide deals with the provisions to be made in the design of thermal neutron reactor power plants to protect site personnel and the public from undue exposure to ionizing radiation during operational states and accident conditions. The effective radiation protection is a combination of good design, high quality construction and proper operation. The document gives guidance on how to satisfy the objectives contained in Subsection 2.2 and Section 9 of the Code of Practice on Design for Safety of Nuclear Power Plants

  16. Computer simulation of ionizing radiation burnout in power MOSFETs

    International Nuclear Information System (INIS)

    Keshavarz, A.A.; Fischer, T.A.; Dawes, W.R. Jr.; Hawkins, C.F.

    1988-01-01

    The transient response of a power MOSFET device to ionizing radiation was examined using the BAMBI device simulator. The radiation rate threshold for burnout was determined for several different cases. The burnout mechanism was attributed to current-induced avalanche. The effects of the applied drain-source voltage and the base width of the parasitic bipolar device on the threshold level were modeled. It was found that the radiation rate threshold is lower at higher drain-source voltages or narrower bases. 8 refs., 17 figs

  17. Some problems concerning the radiation protection in nuclear power stations

    International Nuclear Information System (INIS)

    Bozoky, L.

    1977-01-01

    The appearance and fast spreading of the nuclear power stations raised new and difficult questions in connection with the theoretical bases of radiation protection. The new standpoint of the International Commission on Radiological Protection is that both the workers at a pile and the inhabitants take less risk because of ionizing radiation than they usually take in everyday life. The maximum dose which can be permitted remained 5 rem/year for those who professionally deal with ionizing radiation and 0.5 rem/year for the groups in special situation. (V.N.)

  18. Focusing of cosmic radiation near power lines. A theoretical approach

    International Nuclear Information System (INIS)

    Skedsmo, A.; Vistnes, A.I.

    1997-02-01

    The purpose of this work was to determine if, and to what extent, cosmic radiation can be focused by power lines. As an alternative to experimental measurements, a computer program was developed for simulation of particle trajectories. Starting from given initial values, the cosmic particles trajectories through the electromagnetic field surrounding power lines were simulated. Particular efforts have been made to choose initial values which represent the actual physical condition of the cosmic radiation at ground level. The results show an average decrease in the particle flux density in an area below a power line and a corresponding increased flux between 12 m and 45 m on either side of the centre of the power line. The average shift in flux density is, however, extremely small (less than 0.1%) and probably not measurable with existing detector technology. 11 refs., 4 figs., 2 tabs

  19. Program controlled system for measuring and monitoring the electron coherent radiation spectrum of Yerevan synchrotron

    International Nuclear Information System (INIS)

    Adamyan, F.V.; Vartapetyan, G.A.; Galumyan, P.I.

    1980-01-01

    An automatic system for measurement, processing and control of energy spectrum of polarized photons realized at the Yerevan electron synchrotron is described. For measuring energy spectra of intensive high energy photon beams a pair spectrometer is used which comprises an aluminium target-converter, an analizing magnet and 2 telescopes of scintillation counters for electron-positron pairs registration. the procedure of spectra measurement by the pair spectrometer is reduced to determining the converted e + e - pairs yield at certain values of the H field intensity of the analizing magnet. An algorithm of the data express-processing for operative monitoring of peak energy stability of electron coherent radiation spectrum is given. The spectra measurement results obtained under real experimental conditions are presented

  20. A power spectrum approach to tally convergence in Monte Carlo criticality calculation

    International Nuclear Information System (INIS)

    Ueki, Taro

    2017-01-01

    In Monte Carlo criticality calculation, confidence interval estimation is based on the central limit theorem (CLT) for a series of tallies from generations in equilibrium. A fundamental assertion resulting from CLT is the convergence in distribution (CID) of the interpolated standardized time series (ISTS) of tallies. In this work, the spectral analysis of ISTS has been conducted in order to assess the convergence of tallies in terms of CID. Numerical results obtained indicate that the power spectrum of ISTS is equal to the theoretically predicted power spectrum of Brownian motion for tallies of effective neutron multiplication factor; on the other hand, the power spectrum of ISTS of a strongly correlated series of tallies from local powers fluctuates wildly while maintaining the spectral form of fractional Brownian motion. The latter result is the evidence of a case where a series of tallies are away from CID, while the spectral form supports normality assumption on the sample mean. It is also demonstrated that one can make the unbiased estimation of the standard deviation of sample mean well before CID occurs. (author)

  1. Maximal compression of the redshift-space galaxy power spectrum and bispectrum

    Science.gov (United States)

    Gualdi, Davide; Manera, Marc; Joachimi, Benjamin; Lahav, Ofer

    2018-05-01

    We explore two methods of compressing the redshift-space galaxy power spectrum and bispectrum with respect to a chosen set of cosmological parameters. Both methods involve reducing the dimension of the original data vector (e.g. 1000 elements) to the number of cosmological parameters considered (e.g. seven ) using the Karhunen-Loève algorithm. In the first case, we run MCMC sampling on the compressed data vector in order to recover the 1D and 2D posterior distributions. The second option, approximately 2000 times faster, works by orthogonalizing the parameter space through diagonalization of the Fisher information matrix before the compression, obtaining the posterior distributions without the need of MCMC sampling. Using these methods for future spectroscopic redshift surveys like DESI, Euclid, and PFS would drastically reduce the number of simulations needed to compute accurate covariance matrices with minimal loss of constraining power. We consider a redshift bin of a DESI-like experiment. Using the power spectrum combined with the bispectrum as a data vector, both compression methods on average recover the 68 {per cent} credible regions to within 0.7 {per cent} and 2 {per cent} of those resulting from standard MCMC sampling, respectively. These confidence intervals are also smaller than the ones obtained using only the power spectrum by 81 per cent, 80 per cent, and 82 per cent respectively, for the bias parameter b1, the growth rate f, and the scalar amplitude parameter As.

  2. Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum

    Directory of Open Access Journals (Sweden)

    Fedak Waldemar

    2017-01-01

    Full Text Available Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.

  3. Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum

    Science.gov (United States)

    Fedak, Waldemar; Anweiler, Stanisław; Gancarski, Wojciech; Ulbrich, Roman

    2017-10-01

    Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.

  4. Theoretical and experimental investigation of the Z pinch plasma as a source of power pulse of soft X radiation for generation of shock waves in condensed targets

    International Nuclear Information System (INIS)

    Grabovskij, E.V.; Smirnov, V.P.; Zakharov, S.V.; Vorob'ev, O.Yu.; Dyabilin, K.S.; Lebedev, M.E.; Fortov, V.E.; Frolov, A.A.

    1996-01-01

    Paper presents the results of theoretical analysis of processes occurring in Z-pinch plasma under conditions initiating a powerful pulse of soft X-radiation. The main attention is focused on double liner circuit designs. Estimations of power of radiation and spectrum are studied. The results are used to simulate processes occurring at generation of shock waves under the effect of soft X-radiation on the target. Experiments to generate shock waves with up to 3 Mbar amplitude pressure in lead under the effect of soft X-radiation were conducted using Angara-5 plant. 24 refs., 9 figs

  5. Amplification of electromagnetic radiation in the exciton region of the spectrum of a semiconductor

    International Nuclear Information System (INIS)

    Nerkararyan, Kh.V.

    1989-01-01

    The problem of amplification of electromagnetic radiation in the exciton region of the spectrum of a semiconductor was first discussed by Haken. The possibility of amplification of an electromagnetic wave under conditions of Bose condensation of biexcitons was considered in Ref. 2. However, the difficulties encountered in the creation of a Bose condensed state of biexcitons complicate greatly the performance of an experiment of this kind. The authors shall show that amplification is possible also in a gaseous mixture of excitons and biexcitons which is in thermal equilibrium and can be described by the Maxwellian distribution function of the velocities

  6. 47 CFR 22.535 - Effective radiated power limits.

    Science.gov (United States)

    2010-10-01

    ... limits. The effective radiated power (ERP) of transmitters operating on the channels listed in § 22.531 must not exceed the limits in this section. (a) Maximum ERP. The ERP must not exceed the applicable limits in this paragraph under any circumstances. Frequency range (MHz) Maximum ERP (Watts) 35-36 600 43...

  7. Measurement of gamma radiation doses in nuclear power plant environment

    International Nuclear Information System (INIS)

    Bochvar, I.A.; Keirim-Markus, I.B.; Sergeeva, N.A.

    1976-01-01

    Considered are the problems of measuring gamma radiation dose values and the dose distribution in the nuclear power plant area with the aim of estimating the extent of their effect on the population. Presented are the dosimeters applied, their distribution throughout the controlled area, time of measurement. The distribution of gamma radiation doses over the controlled area and the dose alteration with the increase of the distance from the release source are shown. The results of measurements are investigated. The conclusion is made that operating nuclear power plants do not cause any increase in the gamma radiation dose over the area. Recommendations for clarifying the techniques for using dose-meters and decreasing measurement errors are given [ru

  8. A perturbative approach to the redshift space power spectrum: beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Benjamin; Koyama, Kazuya, E-mail: benjamin.bose@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Burnaby Road, Portsmouth, Hampshire, PO1 3FX (United Kingdom)

    2016-08-01

    We develop a code to produce the power spectrum in redshift space based on standard perturbation theory (SPT) at 1-loop order. The code can be applied to a wide range of modified gravity and dark energy models using a recently proposed numerical method by A.Taruya to find the SPT kernels. This includes Horndeski's theory with a general potential, which accommodates both chameleon and Vainshtein screening mechanisms and provides a non-linear extension of the effective theory of dark energy up to the third order. Focus is on a recent non-linear model of the redshift space power spectrum which has been shown to model the anisotropy very well at relevant scales for the SPT framework, as well as capturing relevant non-linear effects typical of modified gravity theories. We provide consistency checks of the code against established results and elucidate its application within the light of upcoming high precision RSD data.

  9. EFFECTS OF THE NEUTRINO MASS SPLITTING ON THE NONLINEAR MATTER POWER SPECTRUM

    International Nuclear Information System (INIS)

    Wagner, Christian; Verde, Licia; Jimenez, Raul

    2012-01-01

    We have performed cosmological N-body simulations which include the effect of the masses of the individual neutrino species. The simulations were aimed at studying the effect of different neutrino hierarchies on the matter power spectrum. Compared to the linear theory predictions, we find that nonlinearities enhance the effect of hierarchy on the matter power spectrum at mildly nonlinear scales. The maximum difference between the different hierarchies is about 0.5% for a sum of neutrino masses of 0.1 eV. Albeit this is a small effect, it is potentially measurable from upcoming surveys. In combination with neutrinoless double-β decay experiments, this opens up the possibility of using the sky to determine if neutrinos are Majorana or Dirac fermions.

  10. arXiv Neutrino masses and cosmology with Lyman-alpha forest power spectrum

    CERN Document Server

    Palanque-Delabrouille, Nathalie; Baur, Julien; Magneville, Christophe; Rossi, Graziano; Lesgourgues, Julien; Borde, Arnaud; Burtin, Etienne; LeGoff, Jean-Marc; Rich, James; Viel, Matteo; Weinberg, David

    2015-11-06

    We present constraints on neutrino masses, the primordial fluctuation spectrum from inflation, and other parameters of the $\\Lambda$CDM model, using the one-dimensional Ly$\\alpha$-forest power spectrum measured by Palanque-Delabrouille et al. (2013) from SDSS-III/BOSS, complemented by Planck 2015 cosmic microwave background (CMB) data and other cosmological probes. This paper improves on the previous analysis by Palanque-Delabrouille et al. (2015) by using a more powerful set of calibrating hydrodynamical simulations that reduces uncertainties associated with resolution and box size, by adopting a more flexible set of nuisance parameters for describing the evolution of the intergalactic medium, by including additional freedom to account for systematic uncertainties, and by using Planck 2015 constraints in place of Planck 2013. Fitting Ly$\\alpha$ data alone leads to cosmological parameters in excellent agreement with the values derived independently from CMB data, except for a weak tension on the scalar index ...

  11. Detection of the power spectrum of cosmic microwave background lensing by the Atacama Cosmology Telescope.

    Science.gov (United States)

    Das, Sudeep; Sherwin, Blake D; Aguirre, Paula; Appel, John W; Bond, J Richard; Carvalho, C Sofia; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Essinger-Hileman, Thomas; Fowler, Joseph W; Hajian, Amir; Halpern, Mark; Hasselfield, Matthew; Hincks, Adam D; Hlozek, Renée; Huffenberger, Kevin M; Hughes, John P; Irwin, Kent D; Klein, Jeff; Kosowsky, Arthur; Lupton, Robert H; Marriage, Tobias A; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Reese, Erik D; Schmitt, Benjamin L; Sehgal, Neelima; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Visnjic, Katerina; Wollack, Ed

    2011-07-08

    We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda cold dark matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4σ detection of the lensing signal measures the amplitude of density fluctuations to 12%.

  12. On the Soft Limit of the Large Scale Structure Power Spectrum: UV Dependence

    CERN Document Server

    Garny, Mathias; Porto, Rafael A; Sagunski, Laura

    2015-01-01

    We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agr...

  13. Radiative natural SUSY spectrum from deflected AMSB scenario with messenger-matter interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei [School of Physics, Zhengzhou University,Zhengzhou 450000 (China); State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China); Yang, Jin Min [State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China); Department of Physics, Tohoku University,Sendai 980-8578 (Japan); Zhang, Yang [State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics, Chinese Academy of Sciences,Beijing 100080 (China)

    2016-04-29

    A radiative natural SUSY spectrum are proposed in the deflected anomaly mediation scenario with general messenger-matter interactions. Due to the contributions from the new interactions, positive slepton masses as well as a large |A{sub t}| term can naturally be obtained with either sign of deflection parameter and few messenger species (thus avoid the possible Landau pole problem). In this scenario, in contrast to the ordinary (radiative) natural SUSY scenario with under-abundance of dark matter (DM), the DM can be the mixed bino-higgsino and have the right relic density. The 125 GeV Higgs mass can also be easily obtained in our scenario. The majority of low EW fine tuning points can be covered by the XENON-1T direct detection experiments.

  14. Changing of Bacteria Catalase Activity Under the Influence of Electro-Magnetic Radiation on a Frequency of Nitric Oxide Absorption and Radiation Molecular Spectrum

    Directory of Open Access Journals (Sweden)

    G.M. Shub

    2009-09-01

    Full Text Available The dynamics of catalase activity degree changing in Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa is described under the influence of electro-magnetic radiation on a frequency of nitric oxide absorption and radiation molecular spectrum. The panoramic spectrometric measuring complex, developed in Central Scientific Research Institute of measuring equipment Public corporation, Saratov, was used while carrying out the research. Electromagnetic vibrations of extremely high frequencies were stimulated in this complex imitating the structure of nitric oxide absorption and radiation molecular spectrum. The growth of activity of the mentioned enzyme of the strains under research was detected. The most significant changes were observed under 60-minutes exposure.

  15. On the effect of renormalization group improvement on the cosmological power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Moti, R. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Shojai, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of)

    2018-01-15

    Asymptotically safe quantum gravity predicts running gravitational and cosmological constants, while it remains a meaningful quantum field theory because of the existence of a finite number of non-Gaussian ultraviolet fixed points. We have investigated the effect of such running couplings on the cosmological perturbations. We have obtained the improved Mukhanov-Sassaki equation and solved it for two models. The effect of such running of the coupling constants on the cosmological power spectrum is also studied. (orig.)

  16. Nonlinearities in modified gravity cosmology: Signatures of modified gravity in the nonlinear matter power spectrum

    International Nuclear Information System (INIS)

    Cui Weiguang; Zhang Pengjie; Yang Xiaohu

    2010-01-01

    A large fraction of cosmological information on dark energy and gravity is encoded in the nonlinear regime. Precision cosmology thus requires precision modeling of nonlinearities in general dark energy and modified gravity models. We modify the Gadget-2 code and run a series of N-body simulations on modified gravity cosmology to study the nonlinearities. The modified gravity model that we investigate in the present paper is characterized by a single parameter ζ, which determines the enhancement of particle acceleration with respect to general relativity (GR), given the identical mass distribution (ζ=1 in GR). The first nonlinear statistics we investigate is the nonlinear matter power spectrum at k < or approx. 3h/Mpc, which is the relevant range for robust weak lensing power spectrum modeling at l < or approx. 2000. In this study, we focus on the relative difference in the nonlinear power spectra at corresponding redshifts where different gravity models have the same linear power spectra. This particular statistics highlights the imprint of modified gravity in the nonlinear regime and the importance of including the nonlinear regime in testing GR. By design, it is less susceptible to the sample variance and numerical artifacts. We adopt a mass assignment method based on wavelet to improve the power spectrum measurement. We run a series of tests to determine the suitable simulation specifications (particle number, box size, and initial redshift). We find that, the nonlinear power spectra can differ by ∼30% for 10% deviation from GR (|ζ-1|=0.1) where the rms density fluctuations reach 10. This large difference, on one hand, shows the richness of information on gravity in the corresponding scales, and on the other hand, invalidates simple extrapolations of some existing fitting formulae to modified gravity cosmology.

  17. Nonlinear evolution of the matter power spectrum in modified theories of gravity

    International Nuclear Information System (INIS)

    Koyama, Kazuya; Taruya, Atsushi; Hiramatsu, Takashi

    2009-01-01

    We present a formalism to calculate the nonlinear matter power spectrum in modified gravity models that explain the late-time acceleration of the Universe without dark energy. Any successful modified gravity models should contain a mechanism to recover general relativity (GR) on small scales in order to avoid the stringent constrains on deviations from GR at solar system scales. Based on our formalism, the quasi-nonlinear power spectrum in the Dvali-Gabadadze-Porratti braneworld models and f(R) gravity models are derived by taking into account the mechanism to recover GR properly. We also extrapolate our predictions to fully nonlinear scales using the parametrized post-Friedmann framework. In the Dvali-Gabadadze-Porratti and f(R) gravity models, the predicted nonlinear power spectrum is shown to reproduce N-body results. We find that the mechanism to recover GR suppresses the difference between the modified gravity models and dark energy models with the same expansion history, but the difference remains large at the weakly nonlinear regime in these models. Our formalism is applicable to a wide variety of modified gravity models and it is ready to use once consistent models for modified gravity are developed.

  18. Impact of large-scale tides on cosmological distortions via redshift-space power spectrum

    Science.gov (United States)

    Akitsu, Kazuyuki; Takada, Masahiro

    2018-03-01

    Although large-scale perturbations beyond a finite-volume survey region are not direct observables, these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a large-scale tide induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space power spectrum of galaxies in a way depending on an alignment between the tide, wave vector of small-scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a response function of the redshift-space power spectrum to large-scale tide. We then investigate the impact of large-scale tide on estimation of cosmological distances and the redshift-space distortion parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher matrix formalism. To do this, we treat the large-scale tide as a signal, rather than an additional source of the statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether the large-scale tide can be constrained at an accuracy better than the CDM prediction, if the effects up to a larger wave number in the nonlinear regime can be included.

  19. Turbulent Cloud Structure and Power Spectrum from 23 years of HST Observations

    Science.gov (United States)

    Cosentino, Richard; Simon, Amy; Morales-Juberias, Raul

    2018-01-01

    Images of Jupiter’s clouds show that turbulence is a ubiquitous phenomenon over many orders of scale size. According to Kolmogorov’s theory for turbulence, the frequency/distribution of clouds at various scales can be used to produce an energy power spectrum of a passive tracer. Kolmogorov theory predicts the spectral slopes for “shallow” and “deep” fluids in motion by following how energy is injected and dissipated in the fluid. We are quantifying the turbulent nature of Jupiter’s clouds over 23 years of Hubble Space Telescope (HST) observations using an algorithm first presented in Choi and Showman (2011, Icarus 216). We applied the power spectrum fitting algorithm to a variety of filters from available HST data and tested its sensitivity to free parameters and compare our results to Choi and Showman (2011). We will comment on the evidence for a 2D turbulent regime In Jupiter’s clouds and will report on empirical values found in the spectra and their physical interpretations, such as the Rhines scale. We also will report on the behavior of the passive tracer power spectrum and trends that exist over time for different latitudinal regions, primarily the belts and zones and the north and south equatorial belts.

  20. Radiation burden of population in nuclear power plant siting

    International Nuclear Information System (INIS)

    Navratil, J.

    The significance is discussed of the determination of the radiobiological consequences of normal operation and design basis accidents in nuclear power plant siting. The basic diagram and brief description is given of the programme for calculating the radiation load of the population in the surroundings of the nuclear power plant. The programme consists of two subprogrammes, i.e., the dispersion of radioactive gases (for normal operation and for accidents), the main programme for the determination of biological consequences and one auxiliary programme (the distribution of the population in the surroundings of the power plant). The four most important types of exposure to ionizing radiation are considered, namely inhalation, external irradiation from a cloud, ingestion (water, milk, vegetables), external irradiation from the deposit. (B.S.)

  1. Examination for optimization of synchrotron radiation spectrum for the x ray depth lithography

    Science.gov (United States)

    Dany, Raimund

    1992-06-01

    The effect of reducing the vertical distribution of synchrotron radiation on its spectral distribution is examined through resin irradiation. The resulting filter effect is compared to that of absorption filters. Transmission coefficients of titanium, gold, and polyamide were calculated from linear absorption coefficients with the Beer law. The use of a diaphragm in X-ray depth lithography, which is the first step of the LIGA (Lithography Galvanoforming Molding) process, is discussed. A calorimetric device for determining the synchrotron radiation power and distribution was developed and tested. Measurements at the ELSA storage ring show a strong dependence of the vertical emittance on the electron current.

  2. [Detection of endotoxins of Gram-negative bacteria on the basis of electromagnetic radiation frequency spectrum].

    Science.gov (United States)

    Likhoded, V G; Kuleshova, N V; Sergieva, N V; Konev, Iu V; Trubnikova, I A; Sudzhian, E V

    2007-01-01

    Method of Gram-negative bacteria endotoxins detection on the basis of their own spectrum of electromagnetic radiation frequency was developed. Frequency spectrum typical for chemotype Re glycolipid, which is a part of lypopolysaccharides in the majority of Gram-negative bacteria, was used. Two devices--"Mini- Expert-DT" (manufactured by IMEDIS, Moscow) and "Bicom" (manufactured by Regumed, Germany)--were used as generators of electromagnetic radiation. Detection of endotoxin using these devices was performed by electropuncture vegetative resonance test. Immunoenzyme reaction with antibodies to chemotype Re glycolipid was used during analysis of preparations for assessment of resonance-frequency method specificity. The study showed that resonance-frequency method can detect lypopolysaccharides of different enterobacteria in quantities up to 0.1 pg as well as bacteria which contain lypopolysaccharides. At the same time, this method does not detect such bacteria as Staphylococcus aureus, Bifidobacterium spp., Lactobacillus spp., and Candida albicans. The method does not require preliminary processing of blood samples and can be used for diagnostics of endotoxinemia, and detection of endotoxins in blood samples or injection solutions.

  3. Achievable rate of spectrum sharing cognitive radio systems over fading channels at low-power regime

    KAUST Repository

    Sboui, Lokman

    2014-11-01

    We study the achievable rate of cognitive radio (CR) spectrum sharing systems at the low-power regime for general fading channels and then for Nakagami fading. We formally define the low-power regime and present the corresponding closed-form expressions of the achievable rate lower bound under various types of interference and/or power constraints, depending on the available channel state information of the cross link (CL) between the secondary-user transmitter and the primary-user receiver. We explicitly characterize two regimes where either the interference constraint or the power constraint dictates the optimal power profile. Our framework also highlights the effects of different fading parameters on the secondary link (SL) ergodic achievable rate. We also study more realistic scenarios when there is either 1-bit quantized channel feedback from the CL alone or 2-bit feedback from both the CL and the SL and propose simple power control schemes and show that these schemes achieve the previously achieved rate at the low-power regime. Interestingly, we show that the low-power regime analysis provides a specific insight into the maximum achievable rate behavior of CR that has not been reported by previous studies.

  4. ELBE Center for High-Power Radiation Sources

    Directory of Open Access Journals (Sweden)

    Peter Dr. Michel

    2016-01-01

    Full Text Available In the ELBE Center for High-Power Radiation Sources, the superconducting linear electron accelerator ELBE, serving  two free electron lasers, sources for intense coherent THz radiation, mono-energetic positrons, electrons, γ-rays, a neutron time-of-flight system as well as two synchronized ultra-short pulsed Petawatt laser systems are collocated. The characteristics of these beams make the ELBE center a unique research instrument for a variety of external users in fields ranging from material science over nuclear physics to cancer research, as well as scientists of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR.

  5. Possible radiation injury at Koeberg Nuclear Power Station

    International Nuclear Information System (INIS)

    Van Rensburg, L.C.J.; De Villiers, B.; Van Zyl, C.J.

    1986-01-01

    Any injured patient from Koeberg Nuclear Power Station will be treated in the conventional manner as an acute surgical emergency; this has priority over decontamination. The ideal situation is decontamination at Koeberg before ambulance transferral to the Tygerberg Radiation Casualty Facility, but if this is not possible or complete, decontamination can be accomplished by a trained team in the unit. Teamwork is the essence at the place of injury, during transfer, in the decontamination area, in the operating theatre and during the postoperative phase. No surgical management is appropriate or complete without the very necessary guidance and advice from a physicist and the Advisory Group for Radiation Casualties

  6. New sources of high-power coherent radiation

    International Nuclear Information System (INIS)

    Sprehngl, F.

    1985-01-01

    New sources of high-power coherent radiation in the wavelength range from millimeter to ultraviolet are reviewed. Physical mechanisms underlying concepts of free electrons laser, cyclotron resonance laser and other new radiation sources are described. Free electron lasers and cyclotron resonance lasers are shown to suggest excellent possibilities for solving problems of spectroscopy, plasma heating radar and accelerator technology. Results of experiments with free electron laser in the Compton mode using linear accelerators microtrons and storage rings are given. Trends in further investigations are shown

  7. Very high power THz radiation at Jefferson Lab

    International Nuclear Information System (INIS)

    Carr, G.L.; Martin, Michael C.; McKinney, Wayne R.; Jordan, K.; Neil, George R.; Williams, G.P.

    2002-01-01

    We report the production of high power (20 watts average, ∼;1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. We describe the source, presenting theoretical calculations and their experimental verification. For clarity we compare this source with one based on ultrafast laser techniques, and in fact the radiation has qualities closely analogous to that produced by such sources, namely that it is spatially coherent, and comprises short duration pulses with transform-limited spectral content. In contrast to conventional THz radiation, however, the intensity is many orders of magnitude greater due to the relativistic enhancement

  8. Radiation protection during operation of nuclear power plants

    International Nuclear Information System (INIS)

    1983-01-01

    This Guide describes a Radiation Protection Programme for nuclear power plants. It includes: (1) An outline of the basic principles as well as practical aspects of the programme; (2) A description of the responsibilities of the operating organization to establish an effective programme based upon these principles; (3) A description of the administrative and technical measures to establish and implement the programme. This Guide also deals with the operational aspects to be considered by the operating organization in reviewing design in order to facilitate implementation of the Radiation Protection Programme. This Guide covers the requirements for a Radiation Protection Programme for all operational states of the nuclear power plant. It also includes guidelines for handling planned special exposures and for coping with unplanned exposures and contamination of personnel, areas, and equipment. Additional information concerning emergency situations involving releases of radioactive materials is given in Safety Guides 50-SG-O6, ''Preparedness of the Operating Organization (Licensee) for Emergencies at Nuclear Power Plants'', and 50-SG-G6, ''Preparedness of Public Authorities for Emergencies at Nuclear Power Plants''. This Guide covers the principles of dose limitation to site personnel and to the public, but it does not include detailed instructions on the techniques used for the actual measurement and evaluation of the exposures. This Guide does not include detailed instructions on environmental surveys, but it does mention principal steps in environmental monitoring which may be required for confirmation of the acceptability of radioactive discharges

  9. Use of an improved radiation amplification factor to estimate the effect of total ozone changes on action spectrum weighted irradiances and an instrument response function

    Science.gov (United States)

    Herman, Jay R.

    2010-12-01

    Multiple scattering radiative transfer results are used to calculate action spectrum weighted irradiances and fractional irradiance changes in terms of a power law in ozone Ω, U(Ω/200)-RAF, where the new radiation amplification factor (RAF) is just a function of solar zenith angle. Including Rayleigh scattering caused small differences in the estimated 30 year changes in action spectrum-weighted irradiances compared to estimates that neglect multiple scattering. The radiative transfer results are applied to several action spectra and to an instrument response function corresponding to the Solar Light 501 meter. The effect of changing ozone on two plant damage action spectra are shown for plants with high sensitivity to UVB (280-315 nm) and those with lower sensitivity, showing that the probability for plant damage for the latter has increased since 1979, especially at middle to high latitudes in the Southern Hemisphere. Similarly, there has been an increase in rates of erythemal skin damage and pre-vitamin D3 production corresponding to measured ozone decreases. An example conversion function is derived to obtain erythemal irradiances and the UV index from measurements with the Solar Light 501 instrument response function. An analytic expressions is given to convert changes in erythemal irradiances to changes in CIE vitamin-D action spectrum weighted irradiances.

  10. Spectrum resolving power of hearing: measurements, baselines, and influence of maskers

    Directory of Open Access Journals (Sweden)

    Alexander Ya. Supin

    2011-06-01

    Full Text Available Contemporary methods of measurement of frequency tuning in the auditory system are reviewed. Most of them are based on the frequency-selective masking paradigm and require multi-point measurements (a number of masked thresholds should be measured to obtain a single frequency-tuning estimate. Therefore, they are rarely used for practical needs. As an alternative approach, frequency-selective properties of the auditory system may be investigated using probes with complex frequency spectrum patterns, in particular, rippled noise that is characterized by a spectrum with periodically alternating maxima and minima. The maximal ripple density discriminated by the auditory system is  a convenient measure of the spectrum resolving power (SRP. To find the highest resolvable ripple density, a phase-reversal test has been suggested. Using this technique, normal SRP, its dependence on probe center frequency, spectrum contrast, and probe level were measured. The results were not entirely predictable by frequency-tuning data obtained by masking methods. SRP is influenced by maskers, with on- and off-frequency maskers influencing SRP very differently. Dichotic separation of the probe and masker results in almost complete release of SRP from influence of maskers.

  11. Simultaneous wireless information and power transfer for spectrum sharing in cognitive radio communication systems

    KAUST Repository

    Benkhelifa, Fatma

    2016-07-26

    In this paper, we consider the simultaneous wireless information and power transfer for the spectrum sharing (SS) in cognitive radio (CR) systems with a multi-antenna energy harvesting (EH) primary receiver (PR). The PR uses the antenna switching (AS) technique that assigns a subset of the PR\\'s antennas to harvest the energy from the radio frequency (RF) signals sent by the secondary transmitter (ST), and assigns the rest of the PR\\'s antennas to decode the information data. In this context, the primary network allows the secondary network to use the spectrum as long as the interference induced by the secondary transmitter (ST)\\'s signals is beneficial for the energy harvesting process at the PR side. The objective of this work is to show that the spectrum sharing is beneficial for both the SR and PR sides and leads to a win-win situation. To illustrate the incentive of the spectrum sharing cognitive system, we evaluate the mutual outage probability (MOP) introduced in [1] which declares an outage event if the PR or the secondary receiver (SR) is in an outage. Through the simulation results, we show that the performance of our system in terms of the MOP is always better than the performance of the system in the absence of ST and improves as the ST-PR interference increases. © 2016 IEEE.

  12. Chest CT using spectral filtration: radiation dose, image quality, and spectrum of clinical utility

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Franziska M.; Johnson, Thorsten R.C.; Sommer, Wieland H.; Thierfelder, Kolja M.; Meinel, Felix G. [University Hospital Munich, Institute for Clinical Radiology, Munich (Germany)

    2015-06-01

    To determine the radiation dose, image quality, and clinical utility of non-enhanced chest CT with spectral filtration. We retrospectively analysed 25 non-contrast chest CT examinations acquired with spectral filtration (tin-filtered Sn100 kVp spectrum) compared to 25 examinations acquired without spectral filtration (120 kV). Radiation metrics were compared. Image noise was measured. Contrast-to-noise-ratio (CNR) and figure-of-merit (FOM) were calculated. Diagnostic confidence for the assessment of various thoracic pathologies was rated by two independent readers. Effective chest diameters were comparable between groups (P = 0.613). In spectral filtration CT, median CTDI{sub vol}, DLP, and size-specific dose estimate (SSDE) were reduced (0.46 vs. 4.3 mGy, 16 vs. 141 mGy*cm, and 0.65 vs. 5.9 mGy, all P < 0.001). Spectral filtration CT had higher image noise (21.3 vs. 13.2 HU, P < 0.001) and lower CNR (47.2 vs. 75.3, P < 0.001), but was more dose-efficient (FOM 10,659 vs. 2,231/mSv, P < 0.001). Diagnostic confidence for parenchymal lung disease and osseous pathologies was lower with spectral filtration CT, but no significant difference was found for pleural pathologies, pulmonary nodules, or pneumonia. Non-contrast chest CT using spectral filtration appears to be sufficient for the assessment of a considerable spectrum of thoracic pathologies, while providing superior dose efficiency, allowing for substantial radiation dose reduction. (orig.)

  13. An action spectrum for UV-B radiation and the rat lens.

    Science.gov (United States)

    Merriam, J C; Löfgren, S; Michael, R; Söderberg, P; Dillon, J; Zheng, L; Ayala, M

    2000-08-01

    To determine an action spectrum for UV-B radiation and the rat lens and to show the effect of the atmosphere and the cornea on the action spectrum. One eye of young female rats was exposed to 5-nm bandwidths of UV-B radiation (290, 295, 300, 305, 310, and 315 nm). Light scattering of exposed and nonexposed lenses was measured 1 week after irradiation. A quadratic polynomial was fit to the dose-response curve for each wave band. The dose at each wave band that produced a level of light scattering greater than 95% of the nonexposed lenses was defined as the maximum acceptable dose (MAD). Transmittance of the rat cornea was measured with a fiberoptic spectrophotometer. The times to be exposed to the MAD in Stockholm (59.3 degrees N) and La Palma (28 degrees N) were compared. Significant light scattering was detected after UV-B at 295, 300, 305, 310, and 315 nm. The lens was most sensitive to UV-B at 300 nm. Correcting for corneal transmittance showed that the rat lens is at least as sensitive to UV radiation at 295 nm as at 300 nm. The times to be exposed to the MAD at each wave band were greater in Stockholm than in La Palma, and in both locations the theoretical time to be exposed to the MAD was least at 305 nm. After correcting for corneal transmittance, the biological sensitivity of the rat lens to UV-B is at least as great at 295 nm as at 300 nm. After correcting for transmittance by the atmosphere, UV-B at 305 nm is the most likely wave band to injure the rat lens in both Stockholm and La Palma.

  14. Tetrode bias power supply for Indus-1, synchrotron radiation source

    International Nuclear Information System (INIS)

    Tripathi, A.; Badapanda, M.K.; Tyagi, R.; Upadhyay, R.; Bohrey, A.; Hannurkar, P.R.

    2009-01-01

    An AC regulator based 7 kV, 3 A high voltage DC power supply is designed, fabricated and tested on dummy load for BEL make Tetrode type 15000CX, used in the high power RF amplifier at 31.613 MHz employed with INDUS-1, Synchrotron Radiation Source (SRS). Various protections features like over voltage, under voltage, over current, phase failure and phase reversal are incorporated in this power supply and presented in this paper. As Tetrode amplifier requires various other power supplies in addition to this bias power supply and they are operated in a particular sequence for its healthy operation, suitable interlock arrangements have been incorporated and also presented in this paper. The reliable operation of protection and interlock features incorporated in this power supply has been checked with dummy load under simulated conditions. Three numbers of series limiting inductors, one in each phase, have been incorporated in this power supply to limit fault currents under unfavourable conditions and there by increasing the overall life of this power supply. It will replace existing 7 kV, 3 A HVDC power supply, which is in operation for more than fifteen years with Indus-1 SRS and is likely to be helpful in reducing the down time of Indus-1 SRS. It has better performance features than the existing power supply. The long term voltage stability better than 0.3 % and output ripple less than 0.3 % have been achieved for this Tetrode bias power supply. This power supply is likely to be integrated with INDUS-1 SRS soon. (author)

  15. Reconstruction of the primordial power spectrum of curvature perturbations using multiple data sets

    DEFF Research Database (Denmark)

    Hunt, Paul; Sarkar, Subir

    2014-01-01

    Detailed knowledge of the primordial power spectrum of curvature perturbations is essential both in order to elucidate the physical mechanism (`inflation') which generated it, and for estimating the cosmological parameters from observations of the cosmic microwave background and large-scale struc......Detailed knowledge of the primordial power spectrum of curvature perturbations is essential both in order to elucidate the physical mechanism (`inflation') which generated it, and for estimating the cosmological parameters from observations of the cosmic microwave background and large...... content of the universe. Moreover the deconvolution problem is ill-conditioned so a regularisation scheme must be employed to control error propagation. We demonstrate that `Tikhonov regularisation' can robustly reconstruct the primordial spectrum from multiple cosmological data sets, a significant...... advantage being that both its uncertainty and resolution are then quantified. Using Monte Carlo simulations we investigate several regularisation parameter selection methods and find that generalised cross-validation and Mallow's Cp method give optimal results. We apply our inversion procedure to data from...

  16. Relative radiation hazards of coal based and nuclear power plants

    International Nuclear Information System (INIS)

    Mishra, U.C.

    1983-04-01

    Coal, like most materials found in nature, contains trace quantities of naturally occurring radionuclides. However, low concentrations may become important if large quantities of coal are burnt in thermal power plants. Therefore a study was performed to determine the radioactivity in coal, in fly-ash and slag and assess the importance of radioactive emissions from thermal power plants. The results were compared to the radiological impact of nuclear power stations. Based on these data, theoretical estimates for the population living within 80km from power stations indicate that the collective dose commitments of coal-fired plants are one order of magnitude higher than those for BWR-type nuclear plants. Measurements taken in the vicinity of coal-fired plants were comparable to those for nuclear plants, i.e. within the range of variation of natural background radiation in India

  17. The matter power spectrum in redshift space using effective field theory

    Science.gov (United States)

    Fonseca de la Bella, Lucía; Regan, Donough; Seery, David; Hotchkiss, Shaun

    2017-11-01

    The use of Eulerian 'standard perturbation theory' to describe mass assembly in the early universe has traditionally been limited to modes with k lesssim 0.1 h/Mpc at z=0. At larger k the SPT power spectrum deviates from measurements made using N-body simulations. Recently, there has been progress in extending the reach of perturbation theory to larger k using ideas borrowed from effective field theory. We revisit the computation of the redshift-space matter power spectrum within this framework, including for the first time the full one-loop time dependence. We use a resummation scheme proposed by Vlah et al. to account for damping of baryonic acoustic oscillations due to large-scale random motions and show that this has a significant effect on the multipole power spectra. We renormalize by comparison to a suite of custom N-body simulations matching the MultiDark MDR1 cosmology. At z=0 and for scales k lesssim 0.4 h/Mpc we find that the EFT furnishes a description of the real-space power spectrum up to ~ 2%, for the l = 0 mode up to ~ 5%, and for the l = 2, 4 modes up to ~ 25%. We argue that, in the MDR1 cosmology, positivity of the l=0 mode gives a firm upper limit of k ≈ 0.74 h/Mpc for the validity of the one-loop EFT prediction in redshift space using only the lowest-order counterterm. We show that replacing the one-loop growth factors by their Einstein-de Sitter counterparts is a good approximation for the l=0 mode, but can induce deviations as large as 2% for the l=2, 4 modes. An accompanying software bundle, distributed under open source licenses, includes Mathematica notebooks describing the calculation, together with parallel pipelines capable of computing both the necessary one-loop SPT integrals and the effective field theory counterterms.

  18. The Xenon Test Chamber Q-SUN® for testing realistic tolerances of fungi exposed to simulated full spectrum solar radiation.

    Science.gov (United States)

    Dias, Luciana P; Araújo, Claudinéia A S; Pupin, Breno; Ferreira, Paulo C; Braga, Gilberto Ú L; Rangel, Drauzio E N

    2018-06-01

    The low survival of insect-pathogenic fungi when used for insect control in agriculture is mainly due to the deleterious effects of ultraviolet radiation and heat from solar irradiation. In this study, conidia of 15 species of entomopathogenic fungi were exposed to simulated full-spectrum solar radiation emitted by a Xenon Test Chamber Q-SUN XE-3-HC 340S (Q-LAB ® Corporation, Westlake, OH, USA), which very closely simulates full-spectrum solar radiation. A dendrogram obtained from cluster analyses, based on lethal time 50 % and 90 % calculated by Probit analyses, separated the fungi into three clusters: cluster 3 contains species with highest tolerance to simulated full-spectrum solar radiation, included Metarhizium acridum, Cladosporium herbarum, and Trichothecium roseum with LT 50  > 200 min irradiation. Cluster 2 contains eight species with moderate UV tolerance: Aschersonia aleyrodis, Isaria fumosorosea, Mariannaea pruinosa, Metarhizium anisopliae, Metarhizium brunneum, Metarhizium robertsii, Simplicillium lanosoniveum, and Torrubiella homopterorum with LT 50 between 120 and 150 min irradiation. The four species in cluster 1 had the lowest UV tolerance: Lecanicillium aphanocladii, Beauveria bassiana, Tolypocladium cylindrosporum, and Tolypocladium inflatum with LT 50  solar radiation before. We conclude that the equipment provided an excellent tool for testing realistic tolerances of fungi to full-spectrum solar radiation of microbial agents for insect biological control in agriculture. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  19. Syrinx - a research program for the pulsed power radiation facility

    International Nuclear Information System (INIS)

    Etlicher, B.; Chuvatin, A.S.; Choi, P.

    1996-01-01

    Syrinx is a targeted research program with the objective to study, through practical examples, the fundamentals necessary to define the details of all parts which will be required for a new powerful plasma radiation source. The current level of activities of Syrinx is in the design and construction of a multi-megajoule class IES based pulsed power driver which will use long conduction Plasma Opening Switch technology. The present paper reviews mainly the basic experimental research of the POS a nd Z-pinch accomplished in the framework of Syrinx project. This work has a unique international level of participation, from conceptual designs to particular investigations. (author). 9 figs., 17 refs

  20. Low power consumption and high temperature durability for radiation sensor

    International Nuclear Information System (INIS)

    Matsumoto, Yoshinori; Ueno, Hiroto

    2015-01-01

    Low power consumption and high temperature operation are important in an environmental monitoring system. The power consumption of 3 mW is achieved for the radiation sensor using low voltage operational amplifier and comparator in the signal processing circuit. The leakage reverse current of photodiode causes the charge amplifier saturation over 50degC. High temperature durability was improved by optimizing the circuit configuration and the values of feedback resistance and capacitance in the charge amplifier. The pulse response of the radiation sensor was measured up to 55degC. The custom detection circuit was designed by 0.6 μm CMOS process at 5-V supply voltage. The operation temperature was improved up to 65degC. (author)

  1. Lunar and Martian environmental interactions with nuclear power system radiators

    International Nuclear Information System (INIS)

    Perez-Davis, M.E.; Gaier, J.R.; Katzan, C.M.

    1994-01-01

    In the foreseeable future, NASA space milestones include a permanent manned presence on the Moon and an expedition to the planet Mars. Such steps will require careful consideration of environmental interactions in the selection and design of required power systems. Several environmental constituents may be hazardous to performance integrity. Potential threats common to both the Moon and Mars are low ambient temperatures, wide daily temperature swings, solar flux, and large quantities of dust. The surface of Mars provides the additional challenges of dust storms, winds, and a carbon dioxide atmosphere. In this review, the anticipated environmental interactions with surface power system radiators are described, as well as the impacts of these interactions on radiator durability, which have been identified at NASA Lewis Research Center

  2. Training in radiation protection for personnels in nuclear power plants

    International Nuclear Information System (INIS)

    Constancis, J.; Gauthier, A.

    1980-01-01

    For more than 10 years, in order to meet the wishes of their members, the A.P.A.V.E. associations have organised training courses in personnel radiation protection, as a consequence of their activities in the inspection of ionizing radiation sources in industrial or medical environments. Because of their experience, the A.P.A.V.E. associations were asked to provide for the training of the film personnel likely to work in nuclear power stations, in the field of occupational radiation protection. For the last 3 years, nearly 5,000 people have attended these training sessions. The present report describes the approach, draws the first conclusions and state some considerations on this subject [fr

  3. Variation of Neutron Moderating Power on HDPE by Gamma Radiation

    International Nuclear Information System (INIS)

    Park, Kwang June; Ju, June Sik; Kang, Hee Young; Shin, Hee Sung; Kim, Ho Dong

    2009-01-01

    High density polyethylene (HDPE) is degraded due to a radiation-induced oxidation when it is used as a neutron moderator in a neutron counter for a nuclear material accounting of spent fuels. The HDPE exposed to the gamma-ray emitted from the fission products in a spent nuclear fuel results in a radiation-induced degradation which changes its original molecular structure to others. So a neutron moderating power variation of HDPE, irradiated by a gamma radiation, was investigated in this work. Five HDPE moderator structures were exposed to the gamma radiation emitted from a 60 Co source to a level of 10 5 -10 9 rad to compare their post-irradiation properties. As a result of the neutron measurement test with 5 irradiated HDPE structures and a neutron measuring system, it was confirmed that the neutron moderating power for the 105 rad irradiated HDPE moderator revealed the largest decrease when the un-irradiated pure one was used as a reference. It implies that a neutron moderating power variation of HDPE is not directly proportional to the integrated gamma dose rate. To clarify the cause of these changes, some techniques such as a FTIR, an element analysis and a densitometry were employed. As a result of these analyses, it was confirmed that the molecular structure of the gamma irradiated HDPEs had partially changed to others, and the contents of hydrogen and oxygen had varied during the process of a radiation-induced degradation. The mechanism of these changes cannot be explained in detail at present, and thus need further study

  4. Comparison of Radiation Transport Codes, HZETRN, HETC and FLUKA, Using the 1956 Webber SPE Spectrum

    Science.gov (United States)

    Heinbockel, John H.; Slaba, Tony C.; Blattnig, Steve R.; Tripathi, Ram K.; Townsend, Lawrence W.; Handler, Thomas; Gabriel, Tony A.; Pinsky, Lawrence S.; Reddell, Brandon; Clowdsley, Martha S.; hide

    2009-01-01

    Protection of astronauts and instrumentation from galactic cosmic rays (GCR) and solar particle events (SPE) in the harsh environment of space is of prime importance in the design of personal shielding, spacec raft, and mission planning. Early entry of radiation constraints into the design process enables optimal shielding strategies, but demands efficient and accurate tools that can be used by design engineers in every phase of an evolving space project. The radiation transport code , HZETRN, is an efficient tool for analyzing the shielding effectiveness of materials exposed to space radiation. In this paper, HZETRN is compared to the Monte Carlo codes HETC-HEDS and FLUKA, for a shield/target configuration comprised of a 20 g/sq cm Aluminum slab in front of a 30 g/cm^2 slab of water exposed to the February 1956 SPE, as mode led by the Webber spectrum. Neutron and proton fluence spectra, as well as dose and dose equivalent values, are compared at various depths in the water target. This study shows that there are many regions where HZETRN agrees with both HETC-HEDS and FLUKA for this shield/target configuration and the SPE environment. However, there are also regions where there are appreciable differences between the three computer c odes.

  5. A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background

    Science.gov (United States)

    Netterfield, C. B.; Ade, P. A. R.; Bock, J. J.; Bond, J. R.; Borrill, J.; Boscaleri, A.; Coble, K.; Contaldi, C. R.; Crill, B. P.; Bernardis, P. de; hide

    2001-01-01

    This paper presents a measurement of the angular power spectrum of the Cosmic Microwave Background from l = 75 to l = 1025 (10' to 5 degrees) from a combined analysis of four 150 GHz channels in the BOOMERANG experiment. The spectrum contains multiple peaks and minima, as predicted by standard adiabatic-inflationary models in which the primordial plasma undergoes acoustic oscillations.

  6. Bayesian Analysis of the Power Spectrum of the Cosmic Microwave Background

    Science.gov (United States)

    Jewell, Jeffrey B.; Eriksen, H. K.; O'Dwyer, I. J.; Wandelt, B. D.

    2005-01-01

    There is a wealth of cosmological information encoded in the spatial power spectrum of temperature anisotropies of the cosmic microwave background. The sky, when viewed in the microwave, is very uniform, with a nearly perfect blackbody spectrum at 2.7 degrees. Very small amplitude brightness fluctuations (to one part in a million!!) trace small density perturbations in the early universe (roughly 300,000 years after the Big Bang), which later grow through gravitational instability to the large-scale structure seen in redshift surveys... In this talk, I will discuss a Bayesian formulation of this problem; discuss a Gibbs sampling approach to numerically sampling from the Bayesian posterior, and the application of this approach to the first-year data from the Wilkinson Microwave Anisotropy Probe. I will also comment on recent algorithmic developments for this approach to be tractable for the even more massive data set to be returned from the Planck satellite.

  7. POWER BEAMING LEAKAGE RADIATION AS A SETI OBSERVABLE

    Energy Technology Data Exchange (ETDEWEB)

    Benford, James N. [Microwave Sciences, 1041 Los Arabis Lane, Lafayette, CA 94549 (United States); Benford, Dominic J., E-mail: jimbenford@gmail.com [NASA’s Goddard Space Flight Center, Observational Cosmology Laboratory, Greenbelt, MD 20771 (United States)

    2016-07-10

    The most observable leakage radiation from an advanced civilization may well be from the use of power beaming to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors, and ultimately starships. We estimate the principal observable parameters of power beaming leakage. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for our receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC 8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system. We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful, if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be performed, potentially broadening the parameter space of the observable features that we have discussed here.

  8. Periodic table as a powerful tool for radiation education

    International Nuclear Information System (INIS)

    Aratani, Michi; Osanai, Yuko; Uchiumi, Fumiko; Tsushima, Kazuko; Kamayachi, Tei; Kudo, Michiko

    2005-01-01

    The periodic tables ordinarily start with an element of atomic number 1, hydrogen. Hydrogen atoms, however, are derived from neutrons by way of β decay. Consequently, neutron should be located at a zero position of atomic number, which corresponds to the left side and above helium. A periodic table, especially with the zero position for neutron, is essential from present view of matter and serves as a powerful tool for radiation education. (author)

  9. Radiation Testing of PICA at the Solar Power Tower

    Science.gov (United States)

    White, Susan

    2010-01-01

    Sandia National Laboratory's Solar Power Tower was used to irradiate specimens of Phenolic Impregnated Carbon Ablator (PICA), in order to evaluate whether this thermal protection system material responded differently to potential shock layer radiative heating than to convective heating. Tests were run at 50, 100 and 150 Watts per square centimeter levels of concentrated solar radiation. Experimental results are presented both from spectral measurements on 1- 10 mm thick specimens of PICA, as well as from in-depth temperature measurements on instrumented thicker test specimens. Both spectral measurements and measured in-depth temperature profiles showed that, although it is a porous, low-density material, PICA does not exhibit problematic transparency to the tested high levels of NIR radiation, for all pragmatic cm-to-inch scale thicknesses. PICA acted as a surface absorber to efficiently absorb the incident visible and near infrared incident radiation in the top 2 millimeter layer in the Solar Power Tower tests up to 150 Watts per square centimeter.

  10. High power beam profile monitor with optical transition radiation

    International Nuclear Information System (INIS)

    Denard, J.C.; Piot, P.; Capek, K.; Feldl, E.

    1997-01-01

    A simple monitor has been built to measure the profile of the high power beam (800 kW) delivered by the CEBAF accelerator at Jefferson Lab. The monitor uses the optical part of the forward transition radiation emitted from a thin carbon foil. The small beam size to be measured, about 100 μm, is challenging not only for the power density involved but also for the resolution the instrument must achieve. An important part of the beam instrumentation community believes the radiation being emitted into a cone of characteristic angle 1/γ is originated from a region of transverse dimension roughly λγ; thus the apparent size of the source of transition radiation would become very large for highly relativistic particles. This monitor measures 100 μm beam sizes that are much smaller than the 3.2 mm λγ limit; it confirms the statement of Rule and Fiorito that optical transition radiation can be used to image small beams at high energy. The present paper describes the instrument and its performance. The authors tested the foil in, up to 180 μA of CW beam without causing noticeable beam loss, even at 800 MeV, the lowest CEBAF energy

  11. Thinking outside the box: effects of modes larger than the survey on matter power spectrum covariance

    International Nuclear Information System (INIS)

    Putter, Roland de; Wagner, Christian; Verde, Licia; Mena, Olga; Percival, Will J.

    2012-01-01

    Accurate power spectrum (or correlation function) covariance matrices are a crucial requirement for cosmological parameter estimation from large scale structure surveys. In order to minimize reliance on computationally expensive mock catalogs, it is important to have a solid analytic understanding of the different components that make up a covariance matrix. Considering the matter power spectrum covariance matrix, it has recently been found that there is a potentially dominant effect on mildly non-linear scales due to power in modes of size equal to and larger than the survey volume. This beat coupling effect has been derived analytically in perturbation theory and while it has been tested with simulations, some questions remain unanswered. Moreover, there is an additional effect of these large modes, which has so far not been included in analytic studies, namely the effect on the estimated average density which enters the power spectrum estimate. In this article, we work out analytic, perturbation theory based expressions including both the beat coupling and this local average effect and we show that while, when isolated, beat coupling indeed causes large excess covariance in agreement with the literature, in a realistic scenario this is compensated almost entirely by the local average effect, leaving only ∼ 10% of the excess. We test our analytic expressions by comparison to a suite of large N-body simulations, using both full simulation boxes and subboxes thereof to study cases without beat coupling, with beat coupling and with both beat coupling and the local average effect. For the variances, we find excellent agreement with the analytic expressions for k −1 at z = 0.5, while the correlation coefficients agree to beyond k = 0.4 hMpc −1 . As expected, the range of agreement increases towards higher redshift and decreases slightly towards z = 0. We finish by including the large-mode effects in a full covariance matrix description for arbitrary survey

  12. Solar Flash Sub-Millimeter Wave Range Spectrum Part Radiation Modeling

    Directory of Open Access Journals (Sweden)

    V. Yu. Shustikov

    2015-01-01

    model that the reason for raising flux density spectrum of sub-millimeter radio emission of flare is thermal bremsstrahlung plasma radiation with a temperature of 0.1 mK.

  13. Using the CMB angular power spectrum to study Dark Matter-photon interactions

    International Nuclear Information System (INIS)

    Wilkinson, Ryan J.; Boehm, Céline; Lesgourgues, Julien

    2014-01-01

    In this paper, we explore the impact of Dark Matter-photon interactions on the CMB angular power spectrum. Using the one-year data release of the Planck satellite, we derive an upper bound on the Dark Matter-photon elastic scattering cross section of σ DM−γ ≤ 8 × 10 −31 (m DM /GeV) cm 2 (68% CL) if the cross section is constant and a present-day value of σ DM−γ ≤ 6 × 10 −40 (m DM /GeV) cm 2 (68% CL) if it scales as the temperature squared. For such a limiting cross section, both the B-modes and the TT angular power spectrum are suppressed with respect to ΛCDM predictions for ℓ∼>500 and ℓ∼>3000 respectively, indicating that forthcoming data from CMB polarisation experiments and Planck could help to constrain and characterise the physics of the dark sector. This essentially initiates a new type of dark matter search that is independent of whether dark matter is annihilating, decaying or asymmetric. Thus, any CMB experiment with the ability to measure the temperature and/or polarisation power spectra at high ℓ should be able to investigate the potential interactions of dark matter and contribute to our fundamental understanding of its nature

  14. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    International Nuclear Information System (INIS)

    Morikawa, Yoshitake

    1995-01-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolant system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data

  15. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Yoshitake [ISOGO Nuclear Engineering Center, Yokohama (Japan)

    1995-03-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolant system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data.

  16. Modelling redshift space distortion in the post-reionization H I 21-cm power spectrum

    Science.gov (United States)

    Sarkar, Debanjan; Bharadwaj, Somnath

    2018-05-01

    The post-reionization H I 21-cm signal is an excellent candidate for precision cosmology, this however requires accurate modelling of the expected signal. Sarkar et al. have simulated the real space H I 21-cm signal and have modelled the H I power spectrum as P_{{H I}}(k)=b^2 P(k), where P(k) is the dark matter power spectrum and b(k) is a (possibly complex) scale-dependent bias for which fitting formulas have been provided. This paper extends these simulations to incorporate redshift space distortion and predicts the expected redshift space H I 21-cm power spectrum P^s_{{H I}}(k_{\\perp },k_{allel }) using two different prescriptions for the H I distributions and peculiar velocities. We model P^s_{{H I}}(k_{\\perp },k_{allel }), assuming that it is the product of P_{{H I}}(k)=b^2 P(k) with a Kaiser enhancement term and a Finger of God (FoG) damping which has σp the pair velocity dispersion as a free parameter. Considering several possibilities for the bias and the damping profile, we find that the models with a scale-dependent bias and a Lorentzian damping profile best fit the simulated P^s_{{H I}}(k_{\\perp },k_{allel }) over the entire range 1 ≤ z ≤ 6. The best-fitting value of σp falls approximately as (1 + z)-m with m = 2 and 1.2, respectively, for the two different prescriptions. The model predictions are consistent with the simulations for k models underpredict P^s_2(k) at large k, and the fit is restricted to k < 0.15 Mpc-1.

  17. Bursts of gravitational radiation from superconducting cosmic strings and the neutrino mass spectrum

    International Nuclear Information System (INIS)

    Mosquera Cuesta, Herman J.

    2001-02-01

    Berezinsky, Hnatyk and Vilenkin showed that superconducting cosmic strings could be central engines for cosmological gamma-ray bursts and for producing the neutrino component of ultra-high energy cosmic rays. A consequence of this mechanism would be that a detectable cusp-triggered gravitational wave burst should be release simultaneously with the γ-ray surge. If contemporary measurements of both γ and ν radiation could be made for any particular source, then the cosmological time-delay between them might be useful for putting unprecedently tight bounds on the neutrino mass spectrum. Such measurements could consistently verify or rule out the model since strictly correlated behaviour is expected for the duration of the event and for the time variability of the spectra. (author)

  18. Computation of the power spectrum in chaotic ¼λφ4 inflation

    International Nuclear Information System (INIS)

    Rojas, Clara; Villalba, Víctor M.

    2012-01-01

    The phase-integral approximation devised by Fröman and Fröman, is used for computing cosmological perturbations in the quartic chaotic inflationary model. The phase-integral formulas for the scalar power spectrum are explicitly obtained up to fifth order of the phase-integral approximation. As in previous reports (Rojas 2007b, 2007c and 2009), we point out that the accuracy of the phase-integral approximation compares favorably with the numerical results and those obtained using the slow-roll and uniform approximation methods

  19. Computation of the power spectrum in chaotic ¼λφ{sup 4} inflation

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Clara [Centro de Estudios Interdisciplinarios de la Física, Instituto Venezolano de Investigaciones Científicas (IVIC), Carretera Panamericana Km. 11, Caracas 1020A (Venezuela, Bolivarian Republic of); Villalba, Víctor M., E-mail: clararoj@gmail.com, E-mail: Victor.Villalba@monash.edu [School of Mathematical Sciences, Faculty of Science, Monash University, Clayton, Vic 3800 (Australia)

    2012-01-01

    The phase-integral approximation devised by Fröman and Fröman, is used for computing cosmological perturbations in the quartic chaotic inflationary model. The phase-integral formulas for the scalar power spectrum are explicitly obtained up to fifth order of the phase-integral approximation. As in previous reports (Rojas 2007b, 2007c and 2009), we point out that the accuracy of the phase-integral approximation compares favorably with the numerical results and those obtained using the slow-roll and uniform approximation methods.

  20. Cosmological leverage from the matter power spectrum in the presence of baryon and nonlinear effects

    International Nuclear Information System (INIS)

    Bielefeld, Jannis; Huterer, Dragan; Linder, Eric V.

    2015-01-01

    We investigate how the use of higher wavenumbers (smaller scales) in the galaxy clustering power spectrum influences cosmological constraints. We take into account uncertainties from nonlinear density fluctuations, (scale dependent) galaxy bias, and baryonic effects. Allowing for substantially model independent uncertainties through separate fit parameters in each wavenumber bin that also allow for the redshift evolution, we quantify strong gains in dark energy and neutrino mass leverage with increasing maximum wavenumber, despite marginalizing over numerous (up to 125) extra fit parameters. The leverage is due to not only an increased number of modes but, more significantly, breaking of degeneracies beyond the linear regime

  1. Parametric instability producing broad symmetrical structure in the spectrum of ionospheric heating-induced radiation

    International Nuclear Information System (INIS)

    Kuo, S.P.

    1997-01-01

    A four-wave interaction process in which an O-mode electromagnetic pump decays parametrically into a lower hybrid decay mode and two-electron Bernstein sidebands is analyzed. It is shown that the instability can be excited in a spatial region near the electron Bernstein/upper hybrid double resonance and in a narrow pump frequency range slightly below the third harmonic electron cyclotron resonance. The two electron Bernstein sidebands have about the same intensity and thus, produce Broad Symmetrical Structure (BSS) in the emission spectrum after being converted into electromagnetic radiation by scattering off background field-aligned density irregularities. The results also show that the size of the instability zone becomes very small as the pump frequency operates near a cyclotron harmonic higher than the third. Thus, the converted emission will be too weak to be detected. This explains why the BSS feature in the spectrum of stimulated electromagnetic emissions (SEEs) has only been observed in the third harmonic case. copyright 1997 American Institute of Physics

  2. The Atacama Cosmology Telescope: A Measurement of the 600 less than l less than 8000 Cosmic Microwave Background Power Spectrum at 148 GHz

    Science.gov (United States)

    Fowler, J. W.; Acquaviva, V.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Bassistelli, E. S.; Bond, J. R.; Brown, B.; hide

    2010-01-01

    We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz. The measurement uses maps with 1.4' angular resolution made with data from the Atacama Cosmology Telescope (ACT). The observations cover 228 deg(sup 2) of the southern sky, in a 4 deg. 2-wide strip centered on declination 53 deg. South. The CMB at arc minute angular scales is particularly sensitive to the Silk damping scale, to the Sunyaev-Zel'dovich (SZ) effect from galaxy dusters, and to emission by radio sources and dusty galaxies. After masking the 108 brightest point sources in our maps, we estimate the power spectrum between 600 less than l less than 8000 using the adaptive multi-taper method to minimize spectral leakage and maximize use of the full data set. Our absolute calibration is based on observations of Uranus. To verify the calibration and test the fidelity of our map at large angular scales, we cross-correlate the ACT map to the WMAP map and recover the WMAP power spectrum from 250 less than l less than 1150. The power beyond the Silk damping tail of the CMB (l approximately 5000) is consistent with models of the emission from point sources. We quantify the contribution of SZ clusters to the power spectrum by fitting to a model normalized to sigma 8 = 0.8. We constrain the model's amplitude A(sub sz) less than 1.63 (95% CL). If interpreted as a measurement of as, this implies sigma (sup SZ) (sub 8) less than 0.86 (95% CL) given our SZ model. A fit of ACT and WMAP five-year data jointly to a 6-parameter ACDM model plus point sources and the SZ effect is consistent with these results.

  3. An adaptive crystal bender for high power synchrotron radiation beams

    International Nuclear Information System (INIS)

    Berman, L.E.; Hastings, J.B.

    1992-01-01

    Perfect crystal monochromators cannot diffract x-rays efficiently, nor transmit the high source brightness available at synchrotron radiation facilities, unless surface strains within the beam footprint are maintained within a few arcseconds. Insertion devices at existing synchrotron sources already produce x-ray power density levels that can induce surface slope errors of several arcseconds on silicon monochromator crystals at room temperature, no matter how well the crystal is cooled. The power density levels that will be produced by insertion devices at the third-generation sources will be as much as a factor of 100 higher still. One method of restoring ideal x-ray diffraction behavior, while coping with high power levels, involves adaptive compensation of the induced thermal strain field. The design and performance, using the X25 hybrid wiggler beam line at the National Synchrotron Light Source (NSLS), of a silicon crystal bender constructed for this purpose are described

  4. One-dimensional power spectrum and neutrino mass in the spectra of BOSS

    International Nuclear Information System (INIS)

    Borde, Arnaud

    2014-01-01

    The framework of the studies presented in this thesis is the one-dimensional power spectrum of the transmitted flux in the Lyman-alpha forests. The Lyman-alpha forest is an absorption pattern seen in the spectra of high redshift quasars corresponding to the absorption of the quasar light by the hydrogen clouds along the line of sight. It is a powerful cosmological tool as it probes relatively small scales, of the order of a few Mpc. It is also sensible to small non-linear effects such as the one induced by massive neutrinos. First, we have developed two independent methods to measure the one-dimensional power spectrum of the transmitted flux in the Lyman-alpha forest. The first method is based on a Fourier transform, and the second on a maximum likelihood estimator. The two methods are independent and have different systematic uncertainties. The determination of the noise level in the data spectra was subject to a novel treatment, because of its significant impact on the derived power spectrum. We applied the two methods to 13,821 quasar spectra from SDSS-III/BOSS DR9 selected from a larger sample of over 60,000 spectra on the basis of their high quality, large signal-to-noise ratio, and good spectral resolution. The power spectra measured using either approach are in good agreement over all twelve redshift bins from =2.2 to =4.4, and scales from 0.001 (km/s)"-"1 to 0.02 (km/s)"-"1. We carefully determined the methodological and instrumental systematic uncertainties of our measurements. Then, we present a suite of cosmological N-body simulations with cold dark matter, baryons and neutrinos aiming at modeling the low-density regions of the IGM as probed by the Lyman-alpha forests at high redshift. The simulations are designed to match the requirements imposed by the quality of BOSS and eBOSS data. They are made using either 768"3 or 192"3 particles of each type, spanning volumes ranging from (25 Mpc/h)"3 for high-resolution simulations to (100 Mpc/h)"3 for large

  5. Instantaneous response spectrum in seismic testing of nuclear power plant equipment

    International Nuclear Information System (INIS)

    Morrone, A.

    1977-01-01

    This paper presents the concept of instantaneous response spectrum (IRS) as the response of single degree of freedom oscillators at a particular time. It demonstrates that a shake table random motion whose standard TRS envelops the RRS does not necessarily satisfy the enveloping requirement instantaneously. That is, any one (or more) instantaneous required response spectrum (IRRS) is not enveloped by any instantaneous test response spectrum (ITRS). Response spectra from different time histories, including single frequency sine beat motion used in resonance testing, are compared for enveloping with maximum response and with the actual response at particular times. These comparisons are given for the enveloping of RRS and IRRS derived with a time history response calculated at a particular building elevation of a nuclear power plant. For the test motion, several of the most severe ITRS derived with a modified EL Centro motion and with a sine beat motion with ten cycles per beat were used. It is shown that although the TRS with the modified EL Centro motion enveloped the given RRS, the selected modified EL Centro ITRS did not envelop the corresponding IRRS. With the sine beat motion, even though the TRS did not fully envelop the given RRS, the resulting sine beat ITRS did not require a larger factor for full IRRS enveloping than those of the modified EL Centro motion

  6. Developmental trajectories of resting EEG power: an endophenotype of autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Adrienne L Tierney

    Full Text Available Current research suggests that autism spectrum disorder (ASD is characterized by asynchronous neural oscillations. However, it is unclear whether changes in neural oscillations represent an index of the disorder or are shared more broadly among both affected and unaffected family members. Additionally, it remains unclear how early these differences emerge in development and whether they remain constant or change over time. In this study we examined developmental trajectories in spectral power in infants at high- or low-risk for ASD. Spectral power was extracted from resting EEG recorded over frontal regions of the scalp when infants were 6, 9, 12, 18 and 24 months of age. We used multilevel modeling to assess change over time between risk groups in the delta, theta, low alpha, high alpha, beta, and gamma frequency bands. The results indicated that across all bands, spectral power was lower in high-risk infants as compared to low-risk infants at 6-months of age. Furthermore high-risk infants showed different trajectories of change in spectral power in the subsequent developmental window indicating that not only are the patterns of change different, but that group differences are dynamic within the first two years of life. These findings remained the same after removing data from a subset of participants who displayed ASD related behaviors at 24 or 36 months. These differences in the nature of the trajectories of EEG power represent important endophenotypes of ASD.

  7. KiDS-450: the tomographic weak lensing power spectrum and constraints on cosmological parameters

    Science.gov (United States)

    Köhlinger, F.; Viola, M.; Joachimi, B.; Hoekstra, H.; van Uitert, E.; Hildebrandt, H.; Choi, A.; Erben, T.; Heymans, C.; Joudaki, S.; Klaes, D.; Kuijken, K.; Merten, J.; Miller, L.; Schneider, P.; Valentijn, E. A.

    2017-11-01

    We present measurements of the weak gravitational lensing shear power spectrum based on 450 ° ^2 of imaging data from the Kilo Degree Survey. We employ a quadratic estimator in two and three redshift bins and extract band powers of redshift autocorrelation and cross-correlation spectra in the multipole range 76 ≤ ℓ ≤ 1310. The cosmological interpretation of the measured shear power spectra is performed in a Bayesian framework assuming a ΛCDM model with spatially flat geometry, while accounting for small residual uncertainties in the shear calibration and redshift distributions as well as marginalizing over intrinsic alignments, baryon feedback and an excess-noise power model. Moreover, massive neutrinos are included in the modelling. The cosmological main result is expressed in terms of the parameter combination S_8 ≡ σ _8 √{Ω_m/0.3} yielding S8 = 0.651 ± 0.058 (three z-bins), confirming the recently reported tension in this parameter with constraints from Planck at 3.2σ (three z-bins). We cross-check the results of the three z-bin analysis with the weaker constraints from the two z-bin analysis and find them to be consistent. The high-level data products of this analysis, such as the band power measurements, covariance matrices, redshift distributions and likelihood evaluation chains are available at http://kids.strw.leidenuniv.nl.

  8. Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100

    Energy Technology Data Exchange (ETDEWEB)

    Yèche, Christophe; Palanque-Delabrouille, Nathalie; Baur, Julien; Bourboux, Hélion du Mas des, E-mail: christophe.yeche@cea.fr, E-mail: nathalie.palanque-delabrouille@cea.fr, E-mail: julien.baur@cea.fr, E-mail: helion.du-mas-des-bourboux@cea.fr [CEA, Centre de Saclay, IRFU/SPP, F-91191 Gif-sur-Yvette (France)

    2017-06-01

    We present constraints on masses of active and sterile neutrinos in the context of the ΛCDMν and ΛWDM models, respectively. We use the one-dimensional Lyα-forest power spectrum from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III) measured by Palanque-Delabrouille et al. [1], and from the VLT/XSHOOTER legacy survey (XQ-100). In this paper, we present our own measurement of the publicly released XQ-100 quasar spectra, focusing in particular on an improved determination of the spectrograph resolution that allows us to push to smaller scales than the public release and reach k -modes of 0.070 s km{sup −1}. We compare the obtained 1D Lyα flux power spectrum to the one measured by Irsic et al. [2] to k -modes of 0.057 s km{sup −1}. Fitting Lyα data alone leads to cosmological parameters in excellent agreement with the values derived independently from Planck 2015 Cosmic Microwave Background (CMB) data. Combining BOSS and XQ-100 Lyα power spectra, we constrain the sum of neutrino masses to ∑ m {sub ν} < 0.8 eV (95% C.L.) including all identified sources of systematic uncertainties. With the addition of CMB data, this bound is tightened to ∑ m {sub ν} < 0.14 eV (95% C.L.). With their sensitivity to small scales, Lyα data are ideal to constrain ΛWDM models. Using XQ-100 alone, we issue lower bounds on pure dark matter particles: m {sub X} ∼> 2.08 : keV (95% C.L.) for early decoupled thermal relics, and m {sub s} ∼> 10.2 : keV (95% C.L.) for non-resonantly produced right-handed neutrinos. Combining the 1D Lyα-forest power spectrum measured by BOSS and XQ-100, we improve the two bounds to m {sub X} ∼> 4.17 : keV and m {sub s} ∼> 25.0 : keV (95% C.L.), slightly more constraining than what was achieved in Baur et al. 2015 [3] with BOSS data alone. The 3 σ bound shows a more significant improvement, increasing from m {sub X} ∼> 2.74 : keV for BOSS alone to m {sub X} ∼> 3.10 : keV for the combined BOSS

  9. Study on Pyroelectric Harvesters Integrating Solar Radiation with Wind Power

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2015-07-01

    Full Text Available Pyroelectric harvesters use temperature fluctuations to generate electrical outputs. Solar radiation and waste heat are rich energy sources that can be harvested. Pyroelectric energy converters offer a novel and direct energy-conversion technology by transforming time-dependent temperatures directly into electricity. Moreover, the great challenge for pyroelectric energy harvesting lies in finding promising temperature variations or an alternating thermal loading in real situations. Hence, in this article, a novel pyroelectric harvester integrating solar radiation with wind power by the pyroelectric effect is proposed. Solar radiation is a thermal source, and wind is a dynamic potential. A disk generator is used for harvesting wind power. A mechanism is considered to convert the rotary energy of the disk generator to drive a shutter for generating temperature variations in pyroelectric cells using a planetary gear system. The optimal period of the pyroelectric cells is 35 s to harvest the stored energy, about 70 μJ, while the rotary velocity of the disk generator is about 31 RPM and the wind speed is about 1 m/s. In this state, the stored energy acquired from the pyroelectric harvester is about 75% more than that from the disk generator. Although the generated energy of the proposed pyroelectric harvester is less than that of the disk generator, the pyroelectric harvester plays a complementary role when the disk generator is inactive in situations of low wind speed.

  10. Elementary Theoretical Forms for the Spatial Power Spectrum of Earth's Crustal Magnetic Field

    Science.gov (United States)

    Voorhies, C.

    1998-01-01

    The magnetic field produced by magnetization in Earth's crust and lithosphere can be distinguished from the field produced by electric currents in Earth's core because the spatial magnetic power spectrum of the crustal field differs from that of the core field. Theoretical forms for the spectrum of the crustal field are derived by treating each magnetic domain in the crust as the point source of a dipole field. The geologic null-hypothesis that such moments are uncorrelated is used to obtain the magnetic spectrum expected from a randomly magnetized, or unstructured, spherical crust of negligible thickness. This simplest spectral form is modified to allow for uniform crustal thickness, ellipsoidality, and the polarization of domains by an periodically reversing, geocentric axial dipole field from Earth's core. Such spectra are intended to describe the background crustal field. Magnetic anomalies due to correlated magnetization within coherent geologic structures may well be superimposed upon this background; yet representing each such anomaly with a single point dipole may lead to similar spectral forms. Results from attempts to fit these forms to observational spectra, determined via spherical harmonic analysis of MAGSAT data, are summarized in terms of amplitude, source depth, and misfit. Each theoretical spectrum reduces to a source factor multiplied by the usual exponential function of spherical harmonic degree n due to geometric attenuation with attitude above the source layer. The source factors always vary with n and are approximately proportional to n(exp 3) for degrees 12 through 120. The theoretical spectra are therefore not directly proportional to an exponential function of spherical harmonic degree n. There is no radius at which these spectra are flat, level, or otherwise independent of n.

  11. Anisotropic power spectrum and bispectrum in the f(ϕ)F2 mechanism

    Science.gov (United States)

    Bartolo, Nicola; Matarrese, Sabino; Peloso, Marco; Ricciardone, Angelo

    2013-01-01

    A suitable coupling of the inflaton φ to a vector kinetic term F2 gives frozen and scale invariant vector perturbations. We compute the cosmological perturbations ζ that result from such coupling by taking into account the classical vector field that unavoidably gets generated at large scales during inflation. This generically results in a too-anisotropic power spectrum of ζ. Specifically, the anisotropy exceeds the 1% level (10% level) if inflation lasts ˜5 e-folds (˜50 e-folds) more than the minimal amount required to produce the cosmic microwave background modes. This conclusion applies, among others, to the application of this mechanism for magnetogenesis, for anisotropic inflation, and for the generation of anisotropic perturbations at the end of inflation through a waterfall field coupled to the vector (in this case, the unavoidable contribution that we obtain is effective all throughout inflation, and it is independent of the waterfall field). For a tuned duration of inflation, a 1% (10%) anisotropy in the power spectrum corresponds to an anisotropic bispectrum which is enhanced like the local one in the squeezed limit, and with an effective local fNL˜3(˜30). More in general, a significant anisotropy of the perturbations may be a natural outcome of all models that sustain higher than 0 spin fields during inflation.

  12. Constraining primordial non-Gaussianity with bispectrum and power spectrum from upcoming optical and radio surveys

    Science.gov (United States)

    Karagiannis, Dionysios; Lazanu, Andrei; Liguori, Michele; Raccanelli, Alvise; Bartolo, Nicola; Verde, Licia

    2018-07-01

    We forecast constraints on primordial non-Gaussianity (PNG) and bias parameters from measurements of galaxy power spectrum and bispectrum in future radio continuum and optical surveys. In the galaxy bispectrum, we consider a comprehensive list of effects, including the bias expansion for non-Gaussian initial conditions up to second order, redshift space distortions, redshift uncertainties and theoretical errors. These effects are all combined in a single PNG forecast for the first time. Moreover, we improve the bispectrum modelling over previous forecasts, by accounting for trispectrum contributions. All effects have an impact on final predicted bounds, which varies with the type of survey. We find that the bispectrum can lead to improvements up to a factor ˜5 over bounds based on the power spectrum alone, leading to significantly better constraints for local-type PNG, with respect to current limits from Planck. Future radio and photometric surveys could obtain a measurement error of σ (f_{NL}^{loc}) ≈ 0.2. In the case of equilateral PNG, galaxy bispectrum can improve upon present bounds only if significant improvements in the redshift determinations of future, large volume, photometric or radio surveys could be achieved. For orthogonal non-Gaussianity, expected constraints are generally comparable to current ones.

  13. On the soft limit of the large scale structure power spectrum. UV dependence

    International Nuclear Information System (INIS)

    Garny, Mathias

    2015-08-01

    We derive a non-perturbative equation for the large scale structure power spectrum of long-wavelength modes. Thereby, we use an operator product expansion together with relations between the three-point function and power spectrum in the soft limit. The resulting equation encodes the coupling to ultraviolet (UV) modes in two time-dependent coefficients, which may be obtained from response functions to (anisotropic) parameters, such as spatial curvature, in a modified cosmology. We argue that both depend weakly on fluctuations deep in the UV. As a byproduct, this implies that the renormalized leading order coefficient(s) in the effective field theory (EFT) of large scale structures receive most of their contribution from modes close to the non-linear scale. Consequently, the UV dependence found in explicit computations within standard perturbation theory stems mostly from counter-term(s). We confront a simplified version of our non-perturbative equation against existent numerical simulations, and find good agreement within the expected uncertainties. Our approach can in principle be used to precisely infer the relevance of the leading order EFT coefficient(s) using small volume simulations in an 'anisotropic separate universe' framework. Our results suggest that the importance of these coefficient(s) is a ∝ 10% effect, and plausibly smaller.

  14. Balance of excitation and inhibition determines 1/f power spectrum in neuronal networks.

    Science.gov (United States)

    Lombardi, F; Herrmann, H J; de Arcangelis, L

    2017-04-01

    The 1/f-like decay observed in the power spectrum of electro-physiological signals, along with scale-free statistics of the so-called neuronal avalanches, constitutes evidence of criticality in neuronal systems. Recent in vitro studies have shown that avalanche dynamics at criticality corresponds to some specific balance of excitation and inhibition, thus suggesting that this is a basic feature of the critical state of neuronal networks. In particular, a lack of inhibition significantly alters the temporal structure of the spontaneous avalanche activity and leads to an anomalous abundance of large avalanches. Here, we study the relationship between network inhibition and the scaling exponent β of the power spectral density (PSD) of avalanche activity in a neuronal network model inspired in Self-Organized Criticality. We find that this scaling exponent depends on the percentage of inhibitory synapses and tends to the value β = 1 for a percentage of about 30%. More specifically, β is close to 2, namely, Brownian noise, for purely excitatory networks and decreases towards values in the interval [1, 1.4] as the percentage of inhibitory synapses ranges between 20% and 30%, in agreement with experimental findings. These results indicate that the level of inhibition affects the frequency spectrum of resting brain activity and suggest the analysis of the PSD scaling behavior as a possible tool to study pathological conditions.

  15. Power spectral density and scaling exponent of high frequency global solar radiation sequences

    Science.gov (United States)

    Calif, Rudy; Schmitt, François G.; Huang, Yongxiang

    2013-04-01

    The part of the solar power production from photovlotaïcs systems is constantly increasing in the electric grids. Solar energy converter devices such as photovoltaic cells are very sensitive to instantaneous solar radiation fluctuations. Thus rapid variation of solar radiation due to changes in the local meteorological condition can induce large amplitude fluctuations of the produced electrical power and reduce the overall efficiency of the system. When large amount of photovoltaic electricity is send into a weak or small electricity network such as island network, the electric grid security can be in jeopardy due to these power fluctuations. The integration of this energy in the electrical network remains a major challenge, due to the high variability of solar radiation in time and space. To palliate these difficulties, it is essential to identify the characteristic of these fluctuations in order to anticipate the eventuality of power shortage or power surge. The objective of this study is to present an approach based on Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT) to highlight the scaling properties of global solar irradiance data G(t). The scale of invariance is detected on this dataset using the Empirical Mode Decomposition in association with arbitrary-order Hilbert spectral analysis, a generalization of (HHT) or Hilbert Spectral Analysis (HSA). The first step is the EMD, consists in decomposing the normalized global solar radiation data G'(t) into several Intrinsic Mode Functions (IMF) Ci(t) without giving an a priori basis. Consequently, the normalized original solar radiation sequence G'(t) can be written as a sum of Ci(t) with a residual rn. From all IMF modes, a joint PDF P(f,A) of locally and instantaneous frequency f and amplitude A, is estimated. To characterize the scaling behavior in amplitude-frequency space, an arbitrary-order Hilbert marginal spectrum is defined to: Iq(f) = 0 P (f,A)A dA (1) with q × 0 In case of scale

  16. The Japan Power Demonstration Reactor dismantling project. Radiation control

    International Nuclear Information System (INIS)

    Tomii, Hiroyuki; Seiki, Yoshihiro

    1996-01-01

    In the Japan Power Demonstration Reactor (JPDR) dismantling project, radiation control was performed properly with routine and special monitoring to keep the occupational safety and to collect data necessary for future dismantling of nuclear facilities. This report describes a summary of radiation control in the dismantling activities and some results of parametric analysis on dose equivalent evaluation, and introduces the following knowledge on radiological protection effectiveness of the dismantling systems applied in the project. a) Use of remote dismantling systems was effective in reducing equivalent workplace exposure. b) Utilization of existing facilities as radiation shield or radioactivity containment was effective in reducing workplace exposure, and also in increasing work efficiency. c) Use of underwater cutting systems was useful to minimize air contamination, and to reduce the dose equivalent rate in the working area. d) In the planning of dismantling, it is necessary to optimize the radiation protection by analyzing dismantling work procedures and evaluating radiological features of the dismantling systems applied, including additional work which the systems require brought from such activities. (author)

  17. Power spectrum analysis of polarized emission from the Canadian galactic plane survey

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, R. A.; Rosolowsky, E. W. [University of British Columbia Okanagan, 3333 University Way, Kelowna BC, V1V 1V7 (Canada); Kothes, R.; Landecker, T. L. [National Research Council Canada, Dominion Radio Astrophysical Observatory, Box 248, Penticton, BC, V2A 6J9 (Canada)

    2014-05-20

    Angular power spectra are calculated and presented for the entirety of the Canadian Galactic Plane Survey polarization data set at 1.4 GHz covering an area of 1060 deg{sup 2}. The data analyzed are a combination of data from the 100 m Effelsberg Telescope, the 26 m Telescope at the Dominion Radio Astrophysical Observatory, and the Synthesis Telescope at the Dominion Radio Astrophysical Observatory, allowing all scales to be sampled down to arcminute resolution. The resulting power spectra cover multipoles from ℓ ≈ 60 to ℓ ≈ 10{sup 4} and display both a power-law component at low multipoles and a flattening at high multipoles from point sources. We fit the power spectrum with a model that accounts for these components and instrumental effects. The resulting power-law indices are found to have a mode of 2.3, similar to previous results. However, there are significant regional variations in the index, defying attempts to characterize the emission with a single value. The power-law index is found to increase away from the Galactic plane. A transition from small-scale to large-scale structure is evident at b = 9°, associated with the disk-halo transition in a 15° region around l = 108°. Localized variations in the index are found toward H II regions and supernova remnants, but the interpretation of these variations is inconclusive. The power in the polarized emission is anticorrelated with bright thermal emission (traced by Hα emission) indicating that the thermal emission depolarizes background synchrotron emission.

  18. THREE-DIMENSIONAL RADIATIVE TRANSFER MODELING OF THE POLARIZATION OF THE SUN'S CONTINUOUS SPECTRUM

    International Nuclear Information System (INIS)

    Bueno, Javier Trujillo; Shchukina, Nataliya

    2009-01-01

    Polarized light provides the most reliable source of information at our disposal for diagnosing the physical properties of astrophysical plasmas, including the three-dimensional (3D) structure of the solar atmosphere. Here we formulate and solve the 3D radiative transfer problem of the linear polarization of the solar continuous radiation, which is principally produced by Rayleigh and Thomson scattering. Our approach takes into account not only the anisotropy of the solar continuum radiation but also the symmetry-breaking effects caused by the horizontal atmospheric inhomogeneities produced by the solar surface convection. We show that such symmetry-breaking effects do produce observable signatures in Q/I and U/I, even at the very center of the solar disk where we observe the forward scattering case, but their detection would require obtaining very high resolution linear polarization images of the solar surface. Without spatial and/or temporal resolution U/I ∼ 0 and the only observable quantity is Q/I, whose wavelength variation at a solar disk position close to the limb has been recently determined semi-empirically. Interestingly, our 3D radiative transfer modeling of the polarization of the Sun's continuous spectrum in a well-known 3D hydrodynamical model of the solar photosphere shows remarkable agreement with the semi-empirical determination, significantly better than that obtained via the use of one-dimensional (1D) atmospheric models. Although this result confirms that the above-mentioned 3D model was indeed a suitable choice for our Hanle-effect estimation of the substantial amount of 'hidden' magnetic energy that is stored in the quiet solar photosphere, we have found however some small discrepancies whose origin may be due to uncertainties in the semi-empirical data and/or in the thermal and density structure of the 3D model. For this reason, we have paid some attention also to other (more familiar) observables, like the center-limb variation of the

  19. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad

    2013-08-27

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  20. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad; Shamim, Atif; Tarr, Nicholas Garry; Roy, Langis

    2013-01-01

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  1. Radiation resistance of wide-bandgap semiconductor power transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hazdra, Pavel; Popelka, Stanislav [Department of Microelectronics, Czech Technical University in Prague (Czech Republic)

    2017-04-15

    Radiation resistance of state-of-the-art commercial wide-bandgap power transistors, 1700 V 4H-SiC power MOSFETs and 200 V GaN HEMTs, to the total ionization dose was investigated. Transistors were irradiated with 4.5 MeV electrons with doses up to 2000 kGy. Electrical characteristics and introduced defects were characterized by current-voltage (I-V), capacitance-voltage (C-V), and deep level transient spectroscopy (DLTS) measurements. Results show that already low doses of 4.5 MeV electrons (>1 kGy) cause a significant decrease in threshold voltage of SiC MOSFETs due to embedding of the positive charge into the gate oxide. On the other hand, other parameters like the ON-state resistance are nearly unchanged up to the dose of 20 kGy. At 200 kGy, the threshold voltage returns back close to its original value, however, the ON-state resistance increases and transconductance is lowered. This effect is caused by radiation defects introduced into the low-doped drift region which decrease electron concentration and mobility. GaN HEMTs exhibit significantly higher radiation resistance. They keep within the datasheet specification up to doses of 2000 kGy. Absence of dielectric layer beneath the gate and high concentration of carriers in the two dimensional electron gas channel are the reasons of higher radiation resistance of GaN HEMTs. Their degradation then occurs at much higher doses due to electron mobility degradation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Calculating the Responses of Self-Powered Radiation Detectors.

    Science.gov (United States)

    Thornton, D. A.

    Available from UMI in association with The British Library. The aim of this research is to review and develop the theoretical understanding of the responses of Self -Powered Radiation Detectors (SPDs) in Pressurized Water Reactors (PWRs). Two very different models are considered. A simple analytic model of the responses of SPDs to neutrons and gamma radiation is presented. It is a development of the work of several previous authors and has been incorporated into a computer program (called GENSPD), the predictions of which have been compared with experimental and theoretical results reported in the literature. Generally, the comparisons show reasonable consistency; where there is poor agreement explanations have been sought and presented. Two major limitations of analytic models have been identified; neglect of current generation in insulators and over-simplified electron transport treatments. Both of these are developed in the current work. A second model based on the Explicit Representation of Radiation Sources and Transport (ERRST) is presented and evaluated for several SPDs in a PWR at beginning of life. The model incorporates simulation of the production and subsequent transport of neutrons, gamma rays and electrons, both internal and external to the detector. Neutron fluxes and fuel power ratings have been evaluated with core physics calculations. Neutron interaction rates in assembly and detector materials have been evaluated in lattice calculations employing deterministic transport and diffusion methods. The transport of the reactor gamma radiation has been calculated with Monte Carlo, adjusted diffusion and point-kernel methods. The electron flux associated with the reactor gamma field as well as the internal charge deposition effects of the transport of photons and electrons have been calculated with coupled Monte Carlo calculations of photon and electron transport. The predicted response of a SPD is evaluated as the sum of contributions from individual

  3. Low-Cost Radiator for Fission Power Thermal Control

    Science.gov (United States)

    Maxwell, Taylor; Tarau, Calin; Anderson, William; Hartenstine, John; Stern, Theodore; Walmsley, Nicholas; Briggs, Maxwell

    2014-01-01

    NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar surface power applications. The systems are envisioned in the 10 to 100kW(sub e) range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kW(sub e) non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water. By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POC(TradeMark) foam saddles, aluminum honeycomb, and a second facesheet. A two-heat pipe radiator prototype, based on the single facesheet direct-bond concept, was fabricated and tested to verify the ability of the direct-bond joint to withstand coefficient of thermal expansion (CTE) induced stresses during thermal cycling. The thermal gradients along the bonds were measured before and after thermal cycle tests to determine if the performance degraded. Overall, the results indicated that the initial uniformity of the adhesive was poor along one of the heat pipes. However, both direct bond joints showed no measureable amount of degradation after being thermally cycled at both moderate and aggressive conditions.

  4. Reconstruction of real-space linear matter power spectrum from multipoles of BOSS DR12 results

    Science.gov (United States)

    Lee, Seokcheon

    2018-02-01

    Recently, the power spectrum (PS) multipoles using the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) sample are analyzed [1]. The based model for the analysis is the so-called TNS quasi-linear model and the analysis provides the multipoles up to the hexadecapole [2]. Thus, one might be able to recover the real-space linear matter PS by using the combinations of multipoles to investigate the cosmology [3]. We provide the analytic form of the ratio of quadrupole (hexadecapole) to monopole moments of the quasi-linear PS including the Fingers-of-God (FoG) effect to recover the real-space PS in the linear regime. One expects that observed values of the ratios of multipoles should be consistent with those of the linear theory at large scales. Thus, we compare the ratios of multipoles of the linear theory, including the FoG effect with the measured values. From these, we recover the linear matter power spectra in real-space. These recovered power spectra are consistent with the linear matter power spectra.

  5. Power noise spectrum classification in the problem of the IBR-2 reactor

    International Nuclear Information System (INIS)

    Bargel, M.; Kitowski, J.; Pepelyshev, Yu.N.

    1988-01-01

    The classification spectrum results of random fluctuations in the IBR-2 energy pulse are presented. The work is performed for the application of the obtained results to the reactor diagnostics and the study of its noise uncontrolled states. For classification of the spectra the method of pattern recognition based upon the ISODATA heuristic algorithm is used. It is shown that a set of noise uncontrolled reactor states, registered during the reactor operation period at power of 0.4-2 MVt with the first variant of moving reflector (1983-1986) is formed into 4(5) most typical states. Each of the states corresponds to the general conditions of the reactor core cooling and provides the normal work of the moving reflector. However, these states differ in coolant flow, power level and peculiarities of the moving reflector rotation regime. One type of anomal power noise, connected with some disorder in the moving reflctor work, is isolated. This work also presents the possibility of control over the state of moving reflectors according to the change in the amplitude of power oscillations at some frequences. The reactor noise classification results can be used as the data bank for the IBR-2 reactor diagnostic system

  6. Association between power law coefficients of the anatomical noise power spectrum and lesion detectability in breast imaging modalities

    Science.gov (United States)

    Chen, Lin; Abbey, Craig K.; Boone, John M.

    2013-03-01

    Previous research has demonstrated that a parameter extracted from a power function fit to the anatomical noise power spectrum, β, may be predictive of breast mass lesion detectability in x-ray based medical images of the breast. In this investigation, the value of β was compared with a number of other more widely used parameters, in order to determine the relationship between β and these other parameters. This study made use of breast CT data sets, acquired on two breast CT systems developed in our laboratory. A total of 185 breast data sets in 183 women were used, and only the unaffected breast was used (where no lesion was suspected). The anatomical noise power spectrum computed from two-dimensional region of interests (ROIs), was fit to a power function (NPS(f) = α f-β), and the exponent parameter (β) was determined using log/log linear regression. Breast density for each of the volume data sets was characterized in previous work. The breast CT data sets analyzed in this study were part of a previous study which evaluated the receiver operating characteristic (ROC) curve performance using simulated spherical lesions and a pre-whitened matched filter computer observer. This ROC information was used to compute the detectability index as well as the sensitivity at 95% specificity. The fractal dimension was computed from the same ROIs which were used for the assessment of β. The value of β was compared to breast density, detectability index, sensitivity, and fractal dimension, and the slope of these relationships was investigated to assess statistical significance from zero slope. A statistically significant non-zero slope was considered to be a positive association in this investigation. All comparisons between β and breast density, detectability index, sensitivity at 95% specificity, and fractal dimension demonstrated statistically significant association with p performance. Specifically, lower values of β were associated with lower breast density

  7. Tunable high-power narrow-spectrum external-cavity diode laser based on tapered amplifier at 668 nm

    DEFF Research Database (Denmark)

    Chi, Mingjun; Erbert, G.; Sumpf, B.

    2010-01-01

    A 668 nm tunable high-power narrow-spectrum diode laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. The laser system is tunable from 659 to 675 nm. As high as 1.38 W output power is obtained at 668.35 nm. The emission spectral bandwidth is less than...

  8. Method of fabricating self-powered nuclear radiation detector assemblies

    International Nuclear Information System (INIS)

    Playfoot, K.; Bauer, R.F.; Sekella, Y.M.

    1982-01-01

    In a method of fabricating a self-powered nuclear radiation detector assembly an emitter electrode wire and signal cable center wire are connected and disposed within the collector electrode tubular sheath with compressible insulating means disposed between the wires and the tubular sheath. The above assembly is reduced in diameter while elongating the tubular sheath and the emitter wire and signal cable wire. The emitter wire is reduced to a predetermined desired diameter, and is trimmed to a predetermined length. An end cap is hermetically sealed to the tubular sheath at the extending end of the emitter with insulating means between the emitter end and the end cap. (author)

  9. THE POWER SPECTRUM OF THE MILKY WAY: VELOCITY FLUCTUATIONS IN THE GALACTIC DISK

    Energy Technology Data Exchange (ETDEWEB)

    Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Bird, Jonathan C. [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235 (United States); Pérez, Ana E. García; Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Nidever, David L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48104 (United States); Zasowski, Gail, E-mail: bovy@ias.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2015-02-20

    We investigate the kinematics of stars in the mid-plane of the Milky Way (MW) on scales between 25 pc and 10 kpc with data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), the Radial Velocity Experiment (RAVE), and the Geneva-Copenhagen survey (GCS). Using red-clump (RC) stars in APOGEE, we determine the large-scale line-of-sight velocity field out to 5 kpc from the Sun in (0.75 kpc){sup 2} bins. The solar motion V{sub ☉} {sub –} {sub c} with respect to the circular velocity V{sub c} is the largest contribution to the power on large scales after subtracting an axisymmetric rotation field; we determine the solar motion by minimizing the large-scale power to be V{sub ☉} {sub –} {sub c} = 24 ± 1 (ran.) ± 2 (syst. [V{sub c} ]) ± 5 (syst.[large-scale]) km s{sup –1}, where the systematic uncertainty is due to (1) a conservative 20 km s{sup –1} uncertainty in V{sub c} and (2) the estimated power on unobserved larger scales. Combining the APOGEE peculiar-velocity field with RC stars in RAVE out to 2 kpc from the Sun and with local GCS stars, we determine the power spectrum of residual velocity fluctuations in the MW's disk on scales between 0.2 kpc{sup –1} ≤ k ≤ 40 kpc{sup –1}. Most of the power is contained in a broad peak between 0.2 kpc{sup –1} < k < 0.9 kpc{sup –1}. We investigate the expected power spectrum for various non-axisymmetric perturbations and demonstrate that the central bar with commonly used parameters but of relatively high mass can explain the bulk of velocity fluctuations in the plane of the Galactic disk near the Sun. Streaming motions ≈10 km s{sup –1} on ≳ 3 kpc scales in the MW are in good agreement with observations of external galaxies and directly explain why local determinations of the solar motion are inconsistent with global measurements.

  10. Observation of high-power coherent synchrotron radiation in the THz region from the JAEA energy recovery linac

    International Nuclear Information System (INIS)

    Takahashi, Toshiharu; Okuda, Shuichi; Minehara, Eisuke J.; Hajima, Ryoichi; Sawamura, Masaru; Nagai, Ryoji; Kikuzawa, Nobihiro; Iijima, Hokuto; Nishitani, Tomohiro; Nishimori, Nobuyuki

    2007-01-01

    The energy recovery linac (ERL) is able to generate high-power coherent synchrotron radiation (CSR) in the terahertz and the millimeter-wave regions, because it produces shorter bunches than usual storage rings and a higher current than conventional linacs. The spectrum of CSR has been measured at the JAEA-ERL in the wavenumber range from 0.5 to 15 cm -1 . The detected power was 2x10 -4 W/cm -1 at 2.5 cm -1 for the average beam current of 17.7 μA. When the infrared FEL was operated with the undulator in the ERL, the CSR spectrum was shifted to the longer wavelengths because of the energy broadening of the electron beam. (author)

  11. Ionizing radiation risks to satellite power systems (SPS) workers

    International Nuclear Information System (INIS)

    1980-11-01

    The radiation risks to the health of workers who will construct and maintain solar power satellites in the space environment were examined. For ionizing radiation, the major concern will be late or delayed health effects, particularly the increased risk of radiation-induced cancer. The estimated lifetime risk for cancer is 0.8 to 5.0 excess deaths per 10,000 workers per rad of exposure. Thus, for example, in 10,000 workers who completed ten missions with an exposure of 40 rem per mission, 320 to 2000 additional deaths in excess of the 1640 deaths from normally occurring cancer, would be expected. These estimates would indicate a 20 to 120% increase in cancer deaths in the worker-population. The wide range in these estimates stems from the choice of the risk-projection model and the dose-response relationsip. The choice between a linear and a linear-quadratic dose-response model may alter the risk estimate by a factor of about two. The method of analysis (e.g., relative vs absolute risk model) can alter the risk estimate by an additional factor of three. Choosing different age and sex distributions can further change the estimate by another factor of up to three. The potential genetic consequences could be of significance, but at the present time, sufficient information on the age and sex distribution of the worker population is lacking for precise estimation of risk. The potential teratogenic consequences resulting from radiation are considered significant. Radiation exposure of a pregnant worker could result in developmental abnormalities

  12. Ionizing radiation risks to satellite power systems (SPS) workers

    Energy Technology Data Exchange (ETDEWEB)

    Lyman, J.T.; Ainsworth, E.J.; Alpen, E.L.; Bond, V.; Curtis, S.B.; Fry, R.J.M.; Jackson, K.L.; Nachtwey, S.; Sondhaus, C.; Tobias, C.A.; Fabrikant, J.I.

    1980-11-01

    The radiation risks to the health of workers who will construct and maintain solar power satellites in the space environment were examined. For ionizing radiation, the major concern will be late or delayed health effects, particularly the increased risk of radiation-induced cancer. The estimated lifetime risk for cancer is 0.8 to 5.0 excess deaths per 10,000 workers per rad of exposure. Thus, for example, in 10,000 workers who completed ten missions with an exposure of 40 rem per mission, 320 to 2000 additional deaths in excess of the 1640 deaths from normally occurring cancer, would be expected. These estimates would indicate a 20 to 120% increase in cancer deaths in the worker-population. The wide range in these estimates stems from the choice of the risk-projection model and the dose-response relationsip. The choice between a linear and a linear-quadratic dose-response model may alter the risk estimate by a factor of about two. The method of analysis (e.g., relative vs absolute risk model) can alter the risk estimate by an additional factor of three. Choosing different age and sex distributions can further change the estimate by another factor of up to three. The potential genetic consequences could be of significance, but at the present time, sufficient information on the age and sex distribution of the worker population is lacking for precise estimation of risk. The potential teratogenic consequences resulting from radiation are considered significant. Radiation exposure of a pregnant worker could result in developmental abnormalities.

  13. Reconstruction of a direction-dependent primordial power spectrum from Planck CMB data

    Science.gov (United States)

    Durakovic, Amel; Hunt, Paul; Mukherjee, Suvodip; Sarkar, Subir; Souradeep, Tarun

    2018-02-01

    We consider the possibility that the primordial curvature perturbation is direction-dependent. To first order this is parameterised by a quadrupolar modulation of the power spectrum and results in statistical anisotropy of the CMB, which can be quantified using `bipolar spherical harmonics'. We compute these for the Planck DR2-2015 SMICA map and estimate the noise covariance from Planck Full Focal Plane 9 simulations. A constant quadrupolar modulation is detected with 2.2 σ significance, dropping to 2σ when the primordial power is assumed to scale with wave number k as a power law. Going beyond previous work we now allow the spectrum to have arbitrary scale-dependence. Our non-parametric reconstruction then suggests several spectral features, the most prominent at k ~ 0.006 Mpc‑1. When a constant quadrupolar modulation is fitted to data in the range 0.005 <= k/Mpc‑1 <= 0.008, its preferred directions are found to be related to the cosmic hemispherical asymmetry and the CMB dipole. To determine the significance we apply two test statistics to our reconstructions of the quadrupolar modulation from data, against reconstructions of realisations of noise only. With a test statistic sensitive only to the amplitude of the modulation, the reconstructions from the multipole range 30 <= l <= 1200 are unusual with 2.1σ significance. With the second test statistic, sensitive also to the direction, the significance rises to 6.9σ. Our approach is easily generalised to include other data sets such as polarisation, large-scale structure and forthcoming 21-cm line observations which will enable these anomalies to be investigated further.

  14. The effect of blood acceleration on the ultrasound power Doppler spectrum

    Science.gov (United States)

    Matchenko, O. S.; Barannik, E. A.

    2017-09-01

    The purpose of the present work was to study the influence of blood acceleration and time window length on the power Doppler spectrum for Gaussian ultrasound beams. The work has been carried out on the basis of continuum model of the ultrasound scattering from inhomogeneities in fluid flow. Correlation function of fluctuations has been considered for uniformly accelerated scatterers, and the resulting power Doppler spectra have been calculated. It is shown that within the initial phase of systole uniformly accelerated slow blood flow in pulmonary artery and aorta tends to make the correlation function about 4.89 and 7.83 times wider, respectively, than the sensitivity function of typical probing system. Given peak flow velocities, the sensitivity function becomes, vice versa, about 4.34 and 3.84 times wider, respectively, then the correlation function. In these limiting cases, the resulting spectra can be considered as Gaussian. The optimal time window duration decreases with increasing acceleration of blood flow and equals to 11.62 and 7.54 ms for pulmonary artery and aorta, respectively. The width of the resulting power Doppler spectrum is shown to be defined mostly by the wave vector of the incident field, the duration of signal and the acceleration of scatterers in the case of low flow velocities. In the opposite case geometrical properties of probing field and the average velocity itself are more essential. In the sense of signal-noise ratio, the optimal duration of time window can be found. Abovementioned results may contribute to the improved techniques of Doppler ultrasound diagnostics of cardiovascular system.

  15. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    International Nuclear Information System (INIS)

    2006-05-01

    -to-date and documented safety analyses must be prepared and actively be included in both the preventive safety work and in connection with plant modifications. The licensees have implemented design analysis projects for a long period of time and clarified and stringent regulations for safety analyses have entered into force in 2005. As a result, updated safety reports exist for many of the facilities and schedules exist for the supplementary work that remains to be done. SKI's reinforced supervision of Barsebaeck 2 continued until the closure of the reactor on May 31, 2005. In SKI's opinion, BKAB mainly handled the lengthy facility closure in a satisfactory manner. The handling of nuclear waste at the nuclear facilities has mainly functioned well. The same applies to the operation of the Repository for Low and Intermediate-level Operational Waste (SFR-1) and the Central Interim Storage Facility for Spent Nuclear Fuel (CLAB). The overall evaluation of the Swedish Radiation Protection Authority (SSI) is that radiation protection at Swedish nuclear power plants has functioned well in 2005. The total radiation dose to the personnel at Swedish nuclear power plants was 9.2 manSv, which agrees with the average value of the total radiation doses over the last five years (9 manSv). No-one received a radiation dose in excess of the established dose limits and the radiation levels in the facilities are largely unchanged compared with previous years. The radiation doses to the public from the Swedish nuclear power plants continue to be low. SSI considers that continuous work is also needed in the future at the facilities to further reduce radioactive releases by applying the best available technique (BAT) and other measures. The control measurements that SSI is conducting on environmental samples from around the nuclear power facilities as well as on radioactive releases to water show a good agreement with the licensees' own measurements

  16. Safety and Radiation Protection at Swedish Nuclear Power Plants 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-15

    other things. Up-to-date and documented safety analyses must be prepared and actively be included in both the preventive safety work and in connection with plant modifications. The licensees have implemented design analysis projects for a long period of time and clarified and stringent regulations for safety analyses have entered into force in 2005. As a result, updated safety reports exist for many of the facilities and schedules exist for the supplementary work that remains to be done. SKI's reinforced supervision of Barsebaeck 2 continued until the closure of the reactor on May 31, 2005. In SKI's opinion, BKAB mainly handled the lengthy facility closure in a satisfactory manner. The handling of nuclear waste at the nuclear facilities has mainly functioned well. The same applies to the operation of the Repository for Low and Intermediate-level Operational Waste (SFR-1) and the Central Interim Storage Facility for Spent Nuclear Fuel (CLAB). The overall evaluation of the Swedish Radiation Protection Authority (SSI) is that radiation protection at Swedish nuclear power plants has functioned well in 2005. The total radiation dose to the personnel at Swedish nuclear power plants was 9.2 manSv, which agrees with the average value of the total radiation doses over the last five years (9 manSv). No-one received a radiation dose in excess of the established dose limits and the radiation levels in the facilities are largely unchanged compared with previous years. The radiation doses to the public from the Swedish nuclear power plants continue to be low. SSI considers that continuous work is also needed in the future at the facilities to further reduce radioactive releases by applying the best available technique (BAT) and other measures. The control measurements that SSI is conducting on environmental samples from around the nuclear power facilities as well as on radioactive releases to water show a good agreement with the licensees' own measurements.

  17. Safety and radiation protection in Indian nuclear power plants

    International Nuclear Information System (INIS)

    Ghadge, S.G.

    2008-01-01

    Full text: Nuclear energy, an important option for electricity generation is environment friendly, technologically proven, economically competitive and associated with the advantages of energy security and diversity. At present, India has an installed nuclear power generation capacity of 4120 M We with 6 more reactors are under construction/ commissioning at 4 sites. Nuclear power program, in India, as of now is primarily based on pressurized heavy water technology and these reactors are designed with safety features, such as, independent and diverse shut down systems, emergency core cooling system, double containment; pressure suppression pool etc. The principles of redundancy, diversity, fail-safe and passive systems are used in the design. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. In this regard the prime responsibility for safety rests with the organization responsible for facilities and activities that give rise to radiation risks and is achieved by establishing and maintaining the necessary competence, providing adequate training and information, establishing procedures and arrangements to maintain safety under all conditions; verifying appropriate design and the adequate quality of facilities and activities and of their associated equipment; ensuring the safe control of all radioactive material that is used, produced, stored or transported, ensuring the safe control of all radioactive waste that is generated. 'Radiation Protection for Nuclear Facilities', issued by Atomic Energy Regulatory Board (the regulatory authority for NPPs in India) is the basic document for following radiation protection procedures in NPPs. Approved work procedures for all radiation jobs exist. Pre job briefing and post job analysis are carried out. Radiation protection is integrated with plant operation. Radiation levels indicate the performance of several systems. Several measures are adopted in design and

  18. Power spectrum analysis of the x-ray scatter signal in mammography and breast tomosynthesis projections.

    Science.gov (United States)

    Sechopoulos, Ioannis; Bliznakova, Kristina; Fei, Baowei

    2013-10-01

    To analyze the frequency domain characteristics of the signal in mammography images and breast tomosynthesis projections with patient tissue texture due to detected scattered x-rays. Acquisitions of x-ray projection images of 19 different patient breasts were simulated using previously acquired volumetric patient images. Acquisition of these images was performed with a dedicated breast CT prototype system, and the images were classified into voxels representing skin, adipose, and glandular tissue with a previously validated automated algorithm. The classified three dimensional images then underwent simulated mechanical compression representing that which is performed during acquisition of mammography and breast tomosynthesis images. The acquisition of projection images of each patient breast was simulated using Monte Carlo methods with each simulation resulting in two images: one of the primary (non-scattered) signal and one of the scatter signal. To analyze the scatter signal for both mammography and breast tomosynthesis, two projections images of each patient breast were simulated, one with the x-ray source positioned at 0° (mammography and central tomosynthesis projection) and at 30° (wide tomosynthesis projection). The noise power spectra (NPS) for both the scatter signal alone and the total signal (primary + scatter) for all images were obtained and the combined results of all patients analyzed. The total NPS was fit to the expected power-law relationship NPS(f) = k/f β and the results were compared with those previously published on the power spectrum characteristics of mammographic texture. The scatter signal alone was analyzed qualitatively and a power-law fit was also performed. The mammography and tomosynthesis projections of three patient breasts were too small to analyze, so a total of 16 patient breasts were analyzed. The values of β for the total signal of the 0° projections agreed well with previously published results. As expected, the scatter

  19. Radiation protection programme at Krsko nuclear power plant

    International Nuclear Information System (INIS)

    Breznik, B.

    1996-01-01

    Krsko NPP, a Westinghouse two-loop PWR of 632 M We power, is in commercial operation since 1982. Reduction of radioactive releases to the environment and the reduction of doses to workers is the basic goal in the plant radiological protection. The radiation protection programme is established to ensure that the radiation exposures to workers and members of the public are minimized according to the As Low As Reasonably Achievable approach and controlled in accordance with international safety standards and Slovenian regulations. The basis for the operational and technical measures has been provided according to the industrial good practice. The effluent control is based on the Standard Radioactive Effluent Technical Specifications, and environmental surveillance is established according to the programme defined by the regulations. The dose constraints and performance indicators are used to assure the effectiveness of the radiation protection programme and provide a convenient follow-up tool. The monitoring programme results of each year show that there is no measurable dose to the public due to radioactive releases. The commitment to the dose burden of any member of a critical group is assessed to be below the dose constraint. Individual and collective doses of the workers are within a range typical for the PWRs of a similar type. (author)

  20. Testing a direction-dependent primordial power spectrum with observations of the cosmic microwave background

    International Nuclear Information System (INIS)

    Ma Yinzhe; Efstathiou, George; Challinor, Anthony

    2011-01-01

    Statistical isotropy is often assumed in cosmology and should be tested rigorously against observational data. We construct simple quadratic estimators to reconstruct asymmetry in the primordial power spectrum from CMB temperature and polarization data and verify their accuracy using simulations with quadrupole power asymmetry. We show that the Planck mission, with its millions of signal-dominated modes of the temperature anisotropy, should be able to constrain the amplitude of any spherical multipole of a scale-invariant quadrupole asymmetry at the 0.01 level (2σ). Almost independent constraints can be obtained from polarization at the 0.03 level after four full-sky surveys, providing an important consistency test. If the amplitude of the asymmetry is large enough, constraining its scale dependence should become possible. In scale-free quadrupole models with 1% asymmetry, consistent with the current limits from WMAP temperature data (after correction for beam asymmetries), Planck should constrain the spectral index q of power-law departures from asymmetry to Δq=0.3. Finally, we show how to constrain models with axisymmetry in the same framework. For scale-free quadrupole models, Planck should constrain the direction of the asymmetry to a 1σ accuracy of about 2 degrees using one year of temperature data.

  1. Delay analysis of a point-to-multipoint spectrum sharing network with CSI based power allocation

    KAUST Repository

    Khan, Fahd Ahmed

    2012-10-01

    In this paper, we analyse the delay performance of a point-to-multipoint cognitive radio network which is sharing the spectrum with a point-to-multipoint primary network. The channel is assumed to be independent but not identically distributed and has Nakagami-m fading. A constraint on the peak transmit power of the secondary user transmitter (SU-Tx) is also considered in addition to the peak interference power constraint. Based on the constraints, a power allocation scheme which requires knowledge of the instantaneous channel state information (CSI) of the interference links is derived. The SU-Tx is assumed to be equipped with a buffer and is modelled using the M/G/1 queueing model. Closed form expressions for the probability distribution function (PDF) and cumulative distribution function (CDF) of the packet transmission time is derived. Using the PDF, the expressions for the moments of transmission time are obtained. In addition, using the moments, the expressions for the performance measures such as the total average waiting time of packets and the average number of packets waiting in the buffer of the SU-Tx are also obtained. Numerical simulations corroborate the theoretical results. © 2012 IEEE.

  2. Spacecraft radio scattering observations of the power spectrum of electron density fluctuations in the solar wind

    International Nuclear Information System (INIS)

    Woo, R.; Armstrong, J.W.

    1979-01-01

    Solar wind electron density power spectra in the solar equatorial region are inferred from observations of phase scintillations and spectral broadening made with the Viking, Helios, and Pioneer spacecraft. The heliocentric distance range covered is 2--215 R/sub S/, and for some observations close to the sun the spectra extend to fluctuation frequencies as high as 100 Hz. For heliocentric distances > or approx. =20 R/sub S/ the equivalent spacecraft-measured one-dimensional density spectrym V/sub n/e is well modeled by a single power law (f/sup -alpha/) in the frequency range 10 -4 -5 x 10 -2 Hz. The mean spectral index α is 1.65, very close to the Kolmogorov value of 5/3. Under the assumption of constant solar wind speed, V/sub n/e varies as R/sup -3.45/, where R is heliocentric distance. Within 20 R/sub S/, V/sub n/e can still be modeled by a single power law over the frequency range 10 -3 -10 1 Hz, but the spectral index becomes smaller, αapprox.1.1. The flattening of the density spectrum with 20 R/sub S/ is presumably associated with energy deposition in the near-sun region and acceleration of the solar wind

  3. Sinusoidal Parameter Estimation Using Quadratic Interpolation around Power-Scaled Magnitude Spectrum Peaks

    Directory of Open Access Journals (Sweden)

    Kurt James Werner

    2016-10-01

    Full Text Available The magnitude of the Discrete Fourier Transform (DFT of a discrete-time signal has a limited frequency definition. Quadratic interpolation over the three DFT samples surrounding magnitude peaks improves the estimation of parameters (frequency and amplitude of resolved sinusoids beyond that limit. Interpolating on a rescaled magnitude spectrum using a logarithmic scale has been shown to improve those estimates. In this article, we show how to heuristically tune a power scaling parameter to outperform linear and logarithmic scaling at an equivalent computational cost. Although this power scaling factor is computed heuristically rather than analytically, it is shown to depend in a structured way on window parameters. Invariance properties of this family of estimators are studied and the existence of a bias due to noise is shown. Comparing to two state-of-the-art estimators, we show that an optimized power scaling has a lower systematic bias and lower mean-squared-error in noisy conditions for ten out of twelve common windowing functions.

  4. Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station.

    Science.gov (United States)

    Zheng, Jianyu; Wang, Hui; Fu, Jianbin; Wei, Li; Pan, Shilong; Wang, Lixian; Liu, Jianguo; Zhu, Ninghua

    2014-03-10

    A fiber-distributed Ultra-wideband (UWB) noise radar was achieved, which consists of a chaotic UWB noise source based on optoelectronic oscillator (OEO), a fiber-distributed transmission link, a colorless base station (BS), and a cross-correlation processing module. Due to a polarization modulation based microwave photonic filter and an electrical UWB pass-band filter embedded in the feedback loop of the OEO, the power spectrum of chaotic UWB signal could be shaped and notch-filtered to avoid the spectrum-overlay-induced interference to the narrow band signals. Meanwhile, the wavelength-reusing could be implemented in the BS by means of the distributed polarization modulation-to-intensity modulation conversion. The experimental comparison for range finding was carried out as the chaotic UWB signal was notch-filtered at 5.2 GHz and 7.8 GHz or not. Measured results indicate that space resolution with cm-level could be realized after 3-km fiber transmission thanks to the excellent self-correlation property of the UWB noise signal provided by the OEO. The performance deterioration of the radar raised by the energy loss of the notch-filtered noise signal was negligible.

  5. Investigation of Improved Methods in Power Transfer Efficiency for Radiating Near-Field Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Hesheng Cheng

    2016-01-01

    Full Text Available A metamaterial-inspired efficient electrically small antenna is proposed, firstly. And then several improving power transfer efficiency (PTE methods for wireless power transfer (WPT systems composed of the proposed antenna in the radiating near-field region are investigated. Method one is using a proposed antenna as a power retriever. This WPT system consisted of three proposed antennas: a transmitter, a receiver, and a retriever. The system is fed by only one power source. At a fixed distance from receiver to transmitter, the distance between the transmitter and the retriever is turned to maximize power transfer from the transmitter to the receiver. Method two is using two proposed antennas as transmitters and one antenna as receiver. The receiver is placed between the two transmitters. In this system, two power sources are used to feed the two transmitters, respectively. By adjusting the phase difference between the two feeding sources, the maximum PTE can be obtained at the optimal phase difference. Using the same configuration as method two, method three, where the maximum PTE can be increased by regulating the voltage (or power ratio of the two feeding sources, is proposed. In addition, we combine the proposed methods to construct another two schemes, which improve the PTE at different extent than classical WPT system.

  6. Power spectrum oscillations from Planck-suppressed operators in effective field theory motivated monodromy inflation

    Science.gov (United States)

    Price, Layne C.

    2015-11-01

    We consider a phenomenological model of inflation where the inflaton is the phase of a complex scalar field Φ . Planck-suppressed operators of O (f5/Mpl) modify the geometry of the vev ⟨Φ ⟩ at first order in the decay constant f , which adds a first-order periodic term to the definition of the canonically normalized inflaton ϕ . This correction to the inflaton induces a fixed number of extra oscillatory terms in the potential V ˜θp. We derive the same result in a toy scenario where the vacuum ⟨Φ ⟩ is an ellipse with an arbitrarily large eccentricity. These extra oscillations change the form of the power spectrum as a function of scale k and provide a possible mechanism for differentiating effective field theory motivated inflation from models where the angular shift symmetry is a gauge symmetry.

  7. Constraining models of f(R) gravity with Planck and WiggleZ power spectrum data

    Science.gov (United States)

    Dossett, Jason; Hu, Bin; Parkinson, David

    2014-03-01

    In order to explain cosmic acceleration without invoking ``dark'' physics, we consider f(R) modified gravity models, which replace the standard Einstein-Hilbert action in General Relativity with a higher derivative theory. We use data from the WiggleZ Dark Energy survey to probe the formation of structure on large scales which can place tight constraints on these models. We combine the large-scale structure data with measurements of the cosmic microwave background from the Planck surveyor. After parameterizing the modification of the action using the Compton wavelength parameter B0, we constrain this parameter using ISiTGR, assuming an initial non-informative log prior probability distribution of this cross-over scale. We find that the addition of the WiggleZ power spectrum provides the tightest constraints to date on B0 by an order of magnitude, giving log10(B0) explanation.

  8. Predicting speech intelligibility in adverse conditions: evaluation of the speech-based envelope power spectrum model

    DEFF Research Database (Denmark)

    Jørgensen, Søren; Dau, Torsten

    2011-01-01

    conditions by comparing predictions to measured data from [Kjems et al. (2009). J. Acoust. Soc. Am. 126 (3), 1415-1426] where speech is mixed with four different interferers, including speech-shaped noise, bottle noise, car noise, and cafe noise. The model accounts well for the differences in intelligibility......The speech-based envelope power spectrum model (sEPSM) [Jørgensen and Dau (2011). J. Acoust. Soc. Am., 130 (3), 1475–1487] estimates the envelope signal-to-noise ratio (SNRenv) of distorted speech and accurately describes the speech recognition thresholds (SRT) for normal-hearing listeners...... observed for the different interferers. None of the standardized models successfully describe these data....

  9. Statistical measurement of power spectrum density of large aperture optical component

    International Nuclear Information System (INIS)

    Xu Jiancheng; Xu Qiao; Chai Liqun

    2010-01-01

    According to the requirement of ICF, a method based on statistical theory has been proposed to measure the power spectrum density (PSD) of large aperture optical components. The method breaks the large-aperture wavefront into small regions, and obtains the PSD of the large-aperture wavefront by weighted averaging of the PSDs of the regions, where the weight factor is each region's area. Simulation and experiment demonstrate the effectiveness of the proposed method. They also show that, the obtained PSDs of the large-aperture wavefront by statistical method and sub-aperture stitching method fit well, when the number of small regions is no less than 8 x 8. The statistical method is not sensitive to translation stage's errors and environment instabilities, thus it is appropriate for PSD measurement during the process of optical fabrication. (authors)

  10. A power filter for the detection of burst events based on time-frequency spectrum estimation

    International Nuclear Information System (INIS)

    Guidi, G M; Cuoco, E; Vicere, A

    2004-01-01

    We propose as a statistic for the detection of bursts in a gravitational wave interferometer the 'energy' of the events estimated with a time-dependent calculation of the spectrum. This statistic has an asymptotic Gaussian distribution with known statistical moments, which makes it possible to perform a uniformly most powerful test (McDonough R N and Whalen A D 1995 Detection of Signals in Noise (New York: Academic)) on the energy mean. We estimate the receiver operating characteristic (ROC, from the same book) of this statistic for different levels of the signal-to-noise ratio in the specific case of a simulated noise having the spectral density expected for Virgo, using test signals taken from a library of possible waveforms emitted during the collapse of the core of type II supernovae

  11. Imprint of DESI fiber assignment on the anisotropic power spectrum of emission line galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Pinol, Lucas [Département de Physique, École Normale Supérieure, Paris (France); Cahn, Robert N. [Lawrence Berkeley National Laboratory, Berkeley, California (United States); Hand, Nick [Department of Astronomy, University of California, Berkeley, California (United States); Seljak, Uroš; White, Martin, E-mail: lucas.pinol@ens.fr, E-mail: rncahn@lbl.gov, E-mail: nhand@berkeley.edu, E-mail: useljak@berkeley.edu, E-mail: mwhite@berkeley.edu [Department of Physics, University of California, Berkeley, California (United States)

    2017-04-01

    The Dark Energy Spectroscopic Instrument (DESI), a multiplexed fiber-fed spectrograph, is a Stage-IV ground-based dark energy experiment aiming to measure redshifts for 29 million Emission-Line Galaxies (ELG), 4 million Luminous Red Galaxies (LRG), and 2 million Quasi-Stellar Objects (QSO). The survey design includes a pattern of tiling on the sky, the locations of the fiber positioners in the focal plane of the telescope, and an observation strategy determined by a fiber assignment algorithm that optimizes the allocation of fibers to targets. This strategy allows a given region to be covered on average five times for a five-year survey, with a typical variation of about 1.5 about the mean, which imprints a spatially-dependent pattern on the galaxy clustering. We investigate the systematic effects of the fiber assignment coverage on the anisotropic galaxy clustering of ELGs and show that, in the absence of any corrections, it leads to discrepancies of order ten percent on large scales for the power spectrum multipoles. We introduce a method where objects in a random catalog are assigned a coverage, and the mean density is separately computed for each coverage factor. We show that this method reduces, but does not eliminate the effect. We next investigate the angular dependence of the contaminated signal, arguing that it is mostly localized to purely transverse modes. We demonstrate that the cleanest way to remove the contaminating signal is to perform an analysis of the anisotropic power spectrum P ( k ,μ) and remove the lowest μ bin, leaving μ > 0 modes accurate at the few-percent level. Here, μ is the cosine of the angle between the line-of-sight and the direction of k-vector . We also investigate two alternative definitions of the random catalog and show that they are comparable but less effective than the coverage randoms method.

  12. Optimized Large-scale CMB Likelihood and Quadratic Maximum Likelihood Power Spectrum Estimation

    Science.gov (United States)

    Gjerløw, E.; Colombo, L. P. L.; Eriksen, H. K.; Górski, K. M.; Gruppuso, A.; Jewell, J. B.; Plaszczynski, S.; Wehus, I. K.

    2015-11-01

    We revisit the problem of exact cosmic microwave background (CMB) likelihood and power spectrum estimation with the goal of minimizing computational costs through linear compression. This idea was originally proposed for CMB purposes by Tegmark et al., and here we develop it into a fully functioning computational framework for large-scale polarization analysis, adopting WMAP as a working example. We compare five different linear bases (pixel space, harmonic space, noise covariance eigenvectors, signal-to-noise covariance eigenvectors, and signal-plus-noise covariance eigenvectors) in terms of compression efficiency, and find that the computationally most efficient basis is the signal-to-noise eigenvector basis, which is closely related to the Karhunen-Loeve and Principal Component transforms, in agreement with previous suggestions. For this basis, the information in 6836 unmasked WMAP sky map pixels can be compressed into a smaller set of 3102 modes, with a maximum error increase of any single multipole of 3.8% at ℓ ≤ 32 and a maximum shift in the mean values of a joint distribution of an amplitude-tilt model of 0.006σ. This compression reduces the computational cost of a single likelihood evaluation by a factor of 5, from 38 to 7.5 CPU seconds, and it also results in a more robust likelihood by implicitly regularizing nearly degenerate modes. Finally, we use the same compression framework to formulate a numerically stable and computationally efficient variation of the Quadratic Maximum Likelihood implementation, which requires less than 3 GB of memory and 2 CPU minutes per iteration for ℓ ≤ 32, rendering low-ℓ QML CMB power spectrum analysis fully tractable on a standard laptop.

  13. Effects of primary recoil (PKA) energy spectrum on radiation damage in fcc metals

    International Nuclear Information System (INIS)

    Iwata, Tadao; Iwase, Akihiro

    1997-10-01

    Irradiation effects by different energetic particles such as electrons, various ions and neutrons are compared in fcc metals, particularly in Cu and Ni. It is discussed on the statistical consideration that the logarithm of the so-called PKA median energy, log T 1/2 , is a good representative to characterize the primary recoil (i.e. PKA) energy spectrum with the resultant defect production. For the irradiations of electrons, various ions and neutrons to Cu and Ni, fundamental physical quantities such as the fraction of stage I recovery, the defect production cross sections and the radiation annealing cross sections can be well scaled as a function of log T 1/2 , if the effects of the electron excitation caused by irradiating ions are excluded. Namely, all data of the respective physical quantity lie on a single continuous curve as a function of log T 1/2 . This characteristic curve is utilized to predict the damage accumulation (i.e. defect concentration) as a function of dpa in Cu and Ni with the PKA median energy as a parameter. (author)

  14. Mutation of Haemophilus influenzae transforming DNA in vitro with near-ultraviolet radiation: action spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Juarez, E; Setlow, J K [Escuela Nacional de Ciencias Biologicas, Mexico City. Dept. de Bioquimica; Oak Ridge National Lab., Tenn. (USA). Biology Div.)

    1976-05-01

    Mutations were produced in purified transforming DNA from Haemophilus influenzae by near UV radiation and were assayed as mutants among cells transformed with irradiated DNA. The maximum efficiency of mutation induction was at around 334 nm, and the efficiency dropped off steeply at lower and higher wavelengths. The difference between the action spectrum for mutation and that for the oxygen-independent inactivation of transforming DNA, which had a shoulder at 365 nm, indicates that there are different lesions involved in the inactivating and mutagenic effects of near-UV. The presence of histidine during irradiation enhanced the mutagenic effect at 334 and 365 nm, although it protected against inactivation at 365 nm. The effective near-UV wavelengths for in vitro mutation are to some extent the same as the effective wavelengths for mutation in vivo reported previously. These findings indicate that mutations are produced in vivo by near-UV with DNA as the primary target molecule rather than by a secondary non-photochemical reaction between DNA and some other cell component.

  15. Effects of primary recoil (PKA) energy spectrum on radiation damage in fcc metals

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Tadao; Iwase, Akihiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-10-01

    Irradiation effects by different energetic particles such as electrons, various ions and neutrons are compared in fcc metals, particularly in Cu and Ni. It is discussed on the statistical consideration that the logarithm of the so-called PKA median energy, log T{sub 1/2}, is a good representative to characterize the primary recoil (i.e. PKA) energy spectrum with the resultant defect production. For the irradiations of electrons, various ions and neutrons to Cu and Ni, fundamental physical quantities such as the fraction of stage I recovery, the defect production cross sections and the radiation annealing cross sections can be well scaled as a function of log T{sub 1/2}, if the effects of the electron excitation caused by irradiating ions are excluded. Namely, all data of the respective physical quantity lie on a single continuous curve as a function of log T{sub 1/2}. This characteristic curve is utilized to predict the damage accumulation (i.e. defect concentration) as a function of dpa in Cu and Ni with the PKA median energy as a parameter. (author)

  16. Noise power spectrum of the fixed pattern noise in digital radiography detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sik, E-mail: dskim@hufs.ac.kr [Department of Electronics Engineering, Hankuk University of Foreign Studies, Gyeonggi-do 449-791 (Korea, Republic of); Kim, Eun [R& D Center, DRTECH Co., Gyeonggi-do 13558 (Korea, Republic of)

    2016-06-15

    Purpose: The fixed pattern noise in radiography image detectors is caused by various sources. Multiple readout circuits with gate drivers and charge amplifiers are used to efficiently acquire the pixel voltage signals. However, the multiple circuits are not identical and thus yield nonuniform system gains. Nonuniform sensitivities are also produced from local variations in the charge collection elements. Furthermore, in phosphor-based detectors, the optical scattering at the top surface of the columnar CsI growth, the grain boundaries, and the disorder structure causes spatial sensitivity variations. These nonuniform gains or sensitivities cause fixed pattern noise and degrade the detector performance, even though the noise problem can be partially alleviated by using gain correction techniques. Hence, in order to develop good detectors, comparative analysis of the energy spectrum of the fixed pattern noise is important. Methods: In order to observe the energy spectrum of the fixed pattern noise, a normalized noise power spectrum (NNPS) of the fixed pattern noise is considered in this paper. Since the fixed pattern noise is mainly caused by the nonuniform gains, we call the spectrum the gain NNPS. We first asymptotically observe the gain NNPS and then formulate two relationships to calculate the gain NNPS based on a nonuniform-gain model. Since the gain NNPS values are quite low compared to the usual NNPS, measuring such a low NNPS value is difficult. By using the average of the uniform exposure images, a robust measuring method for the gain NNPS is proposed in this paper. Results: By using the proposed measuring method, the gain NNPS curves of several prototypes of general radiography and mammography detectors were measured to analyze their fixed pattern noise properties. We notice that a direct detector, which is based on the a-Se photoconductor, showed lower gain NNPS than the indirect-detector case, which is based on the CsI scintillator. By comparing the gain

  17. The Power Spectrum of the Milky Way: Velocity Fluctuations in the Galactic Disk

    Science.gov (United States)

    Bovy, Jo; Bird, Jonathan C.; García Pérez, Ana E.; Majewski, Steven R.; Nidever, David L.; Zasowski, Gail

    2015-02-01

    We investigate the kinematics of stars in the mid-plane of the Milky Way (MW) on scales between 25 pc and 10 kpc with data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE), the Radial Velocity Experiment (RAVE), and the Geneva-Copenhagen survey (GCS). Using red-clump (RC) stars in APOGEE, we determine the large-scale line-of-sight velocity field out to 5 kpc from the Sun in (0.75 kpc)2 bins. The solar motion V ⊙ - c with respect to the circular velocity Vc is the largest contribution to the power on large scales after subtracting an axisymmetric rotation field; we determine the solar motion by minimizing the large-scale power to be V ⊙ - c = 24 ± 1 (ran.) ± 2 (syst. [Vc ]) ± 5 (syst.[large-scale]) km s-1, where the systematic uncertainty is due to (1) a conservative 20 km s-1 uncertainty in Vc and (2) the estimated power on unobserved larger scales. Combining the APOGEE peculiar-velocity field with RC stars in RAVE out to 2 kpc from the Sun and with local GCS stars, we determine the power spectrum of residual velocity fluctuations in the MW's disk on scales between 0.2 kpc-1 plane of the Galactic disk near the Sun. Streaming motions ≈10 km s-1 on >~ 3 kpc scales in the MW are in good agreement with observations of external galaxies and directly explain why local determinations of the solar motion are inconsistent with global measurements.

  18. New 21 cm Power Spectrum Upper Limits From PAPER II: Constraints on IGM Properties at z = 7.7

    Science.gov (United States)

    Pober, Jonathan; Ali, Zaki; Parsons, Aaron; Paper Team

    2015-01-01

    Using a simulation-based framework, we interpret the power spectrum measurements from PAPER of Ali et al. in the context of IGM physics at z = 7.7. A cold IGM will result in strong 21 cm absorption relative to the CMB and leads to a 21 cm fluctuation power spectrum that can exceed 3000 mK^2. The new PAPER measurements allow us to rule out extreme cold IGM models, placing a lower limit on the physical temperature of the IGM. We also compare this limit with a calculation for the predicted heating from the currently observed galaxy population at z = 8.

  19. Third-Order Density Perturbation and One-Loop Power Spectrum in Dark-Energy-Dominated Universe

    OpenAIRE

    Takahashi, Ryuichi

    2008-01-01

    We investigate the third-order density perturbation and the one-loop correction to the linear power spectrum in the dark-energy cosmological model. Our main interest is to understand the dark-energy effect on baryon acoustic oscillations in a quasi-nonlinear regime ($k \\approx 0.1h$/Mpc). Analytical solutions and simple fitting formulae are presented for the dark-energy model with the general time-varying equation of state $w(a)$. It turns out that the power spectrum coincides with the approx...

  20. Halo Pressure Profile through the Skew Cross-power Spectrum of the Sunyaev–Zel’dovich Effect and CMB Lensing in Planck

    Energy Technology Data Exchange (ETDEWEB)

    Timmons, Nicholas; Cooray, Asantha; Feng, Chang [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Keating, Brian [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States)

    2017-11-01

    We measure the cosmic microwave background (CMB) skewness power spectrum in Planck , using frequency maps of the HFI instrument and the Sunyaev–Zel’dovich (SZ) component map. The two-to-one skewness power spectrum measures the cross-correlation between CMB lensing and the thermal SZ effect. We also directly measure the same cross-correlation using the Planck CMB lensing map and the SZ map and compare it to the cross-correlation derived from the skewness power spectrum. We model fit the SZ power spectrum and CMB lensing–SZ cross-power spectrum via the skewness power spectrum to constrain the gas pressure profile of dark matter halos. The gas pressure profile is compared to existing measurements in the literature including a direct estimate based on the stacking of SZ clusters in Planck .

  1. Safety and Radiation Protection at Swedish Nuclear Power Plants 2004

    International Nuclear Information System (INIS)

    2005-05-01

    higher inspector presence than normal and more stringent reporting requirements. In SKI's opinion, Barsebaeck Kraft AB (BKAB), with the measures that have been implemented, is maintaining safety at the Barsebaeck nuclear power plant. In December, Studsvik Nuclear AB decided to close down the two reactors at Studsvik. Therefore, SKI immediately initiated an intensified supervision of the decommissioning process at the reactors. The handling of nuclear waste at nuclear power plants, including the operation of the Repository for Low and Intermediate-level Operational Waste (SFR-1) and the Central Interim Storage Facility for Spent Nuclear Fuel (CLAB) has largely functioned well for the most part. In 2004, the total radiation dose to the personnel at nuclear power plants was 6.4 manSv, which is lower than in 2003. The average value for the past five years is 9 manSv. The shutdown periods were shorter at a few reactors due to the fact that work progress surpassed expectations. Technical problems and unplanned repair work resulted in a somewhat higher dose than expected at a few reactors. No individual received a radiation dose greater than 20 mSv. The fuel defects that occurred in 2004 did not result in any significant impact on radiation protection. The dose to people living in the vicinity of the nuclear power plants in 2004 was below 1 per cent of the permitted dose. The control measurements that SSI conducts on environmental samples around nuclear power plants and on the radioactive releases to water show a good agreement with the licensees' own measurements

  2. Resource Allocation with Adaptive Spread Spectrum OFDM Using 2D Spreading for Power Line Communications

    Directory of Open Access Journals (Sweden)

    Baudais Jean-Yves

    2007-01-01

    Full Text Available Bit-loading techniques based on orthogonal frequency division mutiplexing (OFDM are frequently used over wireline channels. In the power line context, channel state information can reasonably be obtained at both transmitter and receiver sides, and adaptive loading can advantageously be carried out. In this paper, we propose to apply loading principles to an spread spectrum OFDM (SS-OFDM waveform which is a multicarrier system using 2D spreading in the time and frequency domains. The presented algorithm handles the subcarriers, spreading codes, bits and energies assignment in order to maximize the data rate and the range of the communication system. The optimization is realized at a target symbol error rate and under spectral mask constraint as usually imposed. The analytical study shows that the merging principle realized by the spreading code improves the rate and the range of the discrete multitone (DMT system in single and multiuser contexts. Simulations have been run over measured power line communication (PLC channel responses and highlight that the proposed system is all the more interesting than the received signal-to-noise ratio (SNR is low.

  3. Resource Allocation with Adaptive Spread Spectrum OFDM Using 2D Spreading for Power Line Communications

    Science.gov (United States)

    Baudais, Jean-Yves; Crussière, Matthieu

    2007-12-01

    Bit-loading techniques based on orthogonal frequency division mutiplexing (OFDM) are frequently used over wireline channels. In the power line context, channel state information can reasonably be obtained at both transmitter and receiver sides, and adaptive loading can advantageously be carried out. In this paper, we propose to apply loading principles to an spread spectrum OFDM (SS-OFDM) waveform which is a multicarrier system using 2D spreading in the time and frequency domains. The presented algorithm handles the subcarriers, spreading codes, bits and energies assignment in order to maximize the data rate and the range of the communication system. The optimization is realized at a target symbol error rate and under spectral mask constraint as usually imposed. The analytical study shows that the merging principle realized by the spreading code improves the rate and the range of the discrete multitone (DMT) system in single and multiuser contexts. Simulations have been run over measured power line communication (PLC) channel responses and highlight that the proposed system is all the more interesting than the received signal-to-noise ratio (SNR) is low.

  4. Statistical Analysis of Solar PV Power Frequency Spectrum for Optimal Employment of Building Loads

    Energy Technology Data Exchange (ETDEWEB)

    Olama, Mohammed M [ORNL; Sharma, Isha [ORNL; Kuruganti, Teja [ORNL; Fugate, David L [ORNL

    2017-01-01

    In this paper, a statistical analysis of the frequency spectrum of solar photovoltaic (PV) power output is conducted. This analysis quantifies the frequency content that can be used for purposes such as developing optimal employment of building loads and distributed energy resources. One year of solar PV power output data was collected and analyzed using one-second resolution to find ideal bounds and levels for the different frequency components. The annual, seasonal, and monthly statistics of the PV frequency content are computed and illustrated in boxplot format. To examine the compatibility of building loads for PV consumption, a spectral analysis of building loads such as Heating, Ventilation and Air-Conditioning (HVAC) units and water heaters was performed. This defined the bandwidth over which these devices can operate. Results show that nearly all of the PV output (about 98%) is contained within frequencies lower than 1 mHz (equivalent to ~15 min), which is compatible for consumption with local building loads such as HVAC units and water heaters. Medium frequencies in the range of ~15 min to ~1 min are likely to be suitable for consumption by fan equipment of variable air volume HVAC systems that have time constants in the range of few seconds to few minutes. This study indicates that most of the PV generation can be consumed by building loads with the help of proper control strategies, thereby reducing impact on the grid and the size of storage systems.

  5. Galaxy power-spectrum responses and redshift-space super-sample effect

    Science.gov (United States)

    Li, Yin; Schmittfull, Marcel; Seljak, Uroš

    2018-02-01

    As a major source of cosmological information, galaxy clustering is susceptible to long-wavelength density and tidal fluctuations. These long modes modulate the growth and expansion rate of local structures, shifting them in both amplitude and scale. These effects are often named the growth and dilation effects, respectively. In particular the dilation shifts the baryon acoustic oscillation (BAO) peak and breaks the assumption of the Alcock-Paczynski (AP) test. This cannot be removed with reconstruction techniques because the effect originates from long modes outside the survey. In redshift space, the long modes generate a large-scale radial peculiar velocity that affects the redshift-space distortion (RSD) signal. We compute the redshift-space response functions of the galaxy power spectrum to long density and tidal modes at leading order in perturbation theory, including both the growth and dilation terms. We validate these response functions against measurements from simulated galaxy mock catalogs. As one application, long density and tidal modes beyond the scale of a survey correlate various observables leading to an excess error known as the super-sample covariance, and thus weaken their constraining power. We quantify the super-sample effect on BAO, AP, and RSD measurements, and study its impact on current and future surveys.

  6. Modeling the relationship between photosynthetically active radiation and global horizontal irradiance using singular spectrum analysis

    International Nuclear Information System (INIS)

    Zempila, Melina-Maria; Taylor, Michael; Bais, Alkiviadis; Kazadzis, Stelios

    2016-01-01

    We report on the construction of generic models to calculate photosynthetically active radiation (PAR) from global horizontal irradiance (GHI), and vice versa. Our study took place at stations of the Greek UV network (UVNET) and the Hellenic solar energy network (HNSE) with measurements from NILU-UV multi-filter radiometers and CM pyranometers, chosen due to their long (≈1 M record/site) high temporal resolution (≈1 min) record that captures a broad range of atmospheric environments and cloudiness conditions. The uncertainty of the PAR measurements is quantified to be ±6.5% while the uncertainty involved in GHI measurements is up to ≈±7% according to the manufacturer. We show how multi-linear regression and nonlinear neural network (NN) models, trained at a calibration site (Thessaloniki) can be made generic provided that the input–output time series are processed with multi-channel singular spectrum analysis (M-SSA). Without M-SSA, both linear and nonlinear models perform well only locally. M-SSA with 50 time-lags is found to be sufficient for identification of trend, periodic and noise components in aerosol, cloud parameters and irradiance, and to construct regularized noise models of PAR from GHI irradiances. Reconstructed PAR and GHI time series capture ≈95% of the variance of the cross-validated target measurements and have median absolute percentage errors <2%. The intra-site median absolute error of M-SSA processed models were ≈8.2±1.7 W/m"2 for PAR and ≈9.2±4.2 W/m"2 for GHI. When applying the models trained at Thessaloniki to other stations, the average absolute mean bias between the model estimates and measured values was found to be ≈1.2 W/m"2 for PAR and ≈0.8 W/m"2 for GHI. For the models, percentage errors are well within the uncertainty of the measurements at all sites. Generic NN models were found to perform marginally better than their linear counterparts. - Highlights: • Generic linear regression and nonlinear neural network

  7. The full-sky relativistic correlation function and power spectrum of galaxy number counts. Part I: theoretical aspects

    Science.gov (United States)

    Tansella, Vittorio; Bonvin, Camille; Durrer, Ruth; Ghosh, Basundhara; Sellentin, Elena

    2018-03-01

    We derive an exact expression for the correlation function in redshift shells including all the relativistic contributions. This expression, which does not rely on the distant-observer or flat-sky approximation, is valid at all scales and includes both local relativistic corrections and integrated contributions, like gravitational lensing. We present two methods to calculate this correlation function, one which makes use of the angular power spectrum Cl(z1,z2) and a second method which evades the costly calculations of the angular power spectra. The correlation function is then used to define the power spectrum as its Fourier transform. In this work theoretical aspects of this procedure are presented, together with quantitative examples. In particular, we show that gravitational lensing modifies the multipoles of the correlation function and of the power spectrum by a few percent at redshift z=1 and by up to 30% and more at z=2. We also point out that large-scale relativistic effects and wide-angle corrections generate contributions of the same order of magnitude and have consequently to be treated in conjunction. These corrections are particularly important at small redshift, z=0.1, where they can reach 10%. This means in particular that a flat-sky treatment of relativistic effects, using for example the power spectrum, is not consistent.

  8. Reliability of high power electron accelerators for radiation processing

    International Nuclear Information System (INIS)

    Zimek, Z.

    2011-01-01

    Accelerators applied for radiation processing are installed in industrial facilities where accelerator availability coefficient should be at the level of 95% to fulfill requirements according to industry standards. Usually the exploitation of electron accelerator reviles the number of short and few long lasting failures. Some technical shortages can be overcome by practical implementation the experience gained in accelerator technology development by different accelerator manufactures. The reliability/availability of high power accelerators for application in flue gas treatment process must be dramatically improved to meet industrial standards. Support of accelerator technology dedicated for environment protection should be provided by governmental and international institutions to overcome accelerator reliability/availability problem and high risk and low direct profit in this particular application. (author)

  9. Occupational radiation exposure at commercial nuclear power reactors, 1978

    International Nuclear Information System (INIS)

    Brooks, B.G.

    1979-11-01

    An updated compilation is presented of occupational radiation exposures at commercial nuclear power reactors for the years 1969 through 1978. Data received from the 64 light water cooled reactors (LWRs) that had completed at least one year of commercial operation as of December 31, 1978 are included. This represents an increase of seven reactors over the number contained in last year's report. The total number of personnel monitored at LWRs during 1978 increased by approximately 12% to 76,121. The number of workers that received measurable doses, however, increased only 8% to 45,978. The total collective dose for 1978 is estimated to be 31,806 man-rems, a small decrease from last year's value of 32,511, which results in the average dose per worker decreasing slightly to 0.69 rems. The average collective dose per reactor also decreased, by approximately 15%, to a value of 497 man-rems

  10. Reliability of high power electron accelerators for radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z. [Department of Radiation Chemistry and Technology, Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2011-07-01

    Accelerators applied for radiation processing are installed in industrial facilities where accelerator availability coefficient should be at the level of 95% to fulfill requirements according to industry standards. Usually the exploitation of electron accelerator reviles the number of short and few long lasting failures. Some technical shortages can be overcome by practical implementation the experience gained in accelerator technology development by different accelerator manufactures. The reliability/availability of high power accelerators for application in flue gas treatment process must be dramatically improved to meet industrial standards. Support of accelerator technology dedicated for environment protection should be provided by governmental and international institutions to overcome accelerator reliability/availability problem and high risk and low direct profit in this particular application. (author)

  11. Does power mobility training impact a child's mastery motivation and spectrum of EEG activity? An exploratory project.

    Science.gov (United States)

    Kenyon, Lisa K; Farris, John P; Aldrich, Naomi J; Rhodes, Samhita

    2017-08-30

    The purposes of this exploratory project were: (1) to evaluate the impact of power mobility training with a child who has multiple, severe impairments and (2) to determine if the child's spectrum of electroencephalography (EEG) activity changed during power mobility training. A single-subject A-B-A-B research design was conducted with a four-week duration for each phase. Two target behaviours were explored: (1) mastery motivation assessed via the dimensions of mastery questionnaire (DMQ) and (2) EEG data collected under various conditions. Power mobility skills were also assessed. The participant was a three-year, two-month-old girl with spastic quadriplegic cerebral palsy, gross motor function classification system level V. Each target behaviour was measured weekly. During intervention phases, power mobility training was provided. Improvements were noted in subscale scores of the DMQ. Short-term and long-term EEG changes were also noted. Improvements were noted in power mobility skills. The participant in this exploratory project demonstrated improvements in power mobility skill and function. EEG data collection procedures and variability in an individual's EEG activity make it difficult to determine if the participant's spectrum of EEG activity actually changed in response to power mobility training. Additional studies are needed to investigate the impact of power mobility training on the spectrum of EEG activity in children who have multiple, severe impairments. Implications for Rehabilitation Power mobility training appeared to be beneficial for a child with multiple, severe impairments though the child may never become an independent, community-based power wheelchair user. Electroencephalography may be a valuable addition to the study of power mobility use in children with multiple, severe impairments. Power mobility training appeared to impact mastery motivation (the internal drive to solve complex problems and master new skills) in a child who has multiple

  12. Present situation of occupational radiation exposure in nuclear power plants

    International Nuclear Information System (INIS)

    Imabori, Akira

    1979-01-01

    The present situation of the radiation exposure of workers, including both employes and subcontractors, in the nuclear power plants in Japan, is presented. Twenty seven nuclear power reactors in operation and under construction are tabulated with the name, the owner, the electric output and the commissioning year of each plant. The results of exposure of the workers in these plants are shown, classifying the dose rate into less than 0.5 rem, 0.5 - 1.5 rem, 1.5 - 2.5 rem, 2.5 - 5 rem and more than 5 rem, and the workers into employes and subcontractors. It is noted that the exposure dose of the subcontractors occupies about 88% of all exposure dose, and the exposure is concentrated during regular inspection period. The exposure dose of about 80% of the workers is less than 0.5 rem, and no one was irradiated more than 5 rem in a year. The total exposure dose, which has especially the tendency of increasing with extended maintenance period and decreasing during plant operation period, shows also the trend of increasing with the lapse of operation years. As for the point of view of whole exposure dose, the value is 0.06 -- 0.43 man-rem/10 6 kWh in 1976 FY. It is considered to be necessary to grasp the total exposure dose of each worker wandering from one plant to another, and the central registration center for the workers in radioactive environment was established in 1978. The whole exposure dose data of each worker are stored in the central computer in this center. This system is highly appreciated in radiation exposure management. The total exposure dose is related to the rate of utilization of nuclear plants, and it is expected to decrease with the decrease of plant outage. (Nakai, Y.)

  13. Efficiency of Synchrotron Radiation from Rotation-powered Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Kisaka, Shota [Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa, 252-5258 (Japan); Tanaka, Shuta J., E-mail: kisaka@phys.aoyama.ac.jp, E-mail: sjtanaka@center.konan-u.ac.jp [Department of Physics, Konan University, Kobe, Hyogo, 658-8501 (Japan)

    2017-03-01

    Synchrotron radiation is widely considered to be the origin of the pulsed non-thermal emissions from rotation-powered pulsars in optical and X-ray bands. In this paper, we study the synchrotron radiation emitted by the created electron and positron pairs in the pulsar magnetosphere to constrain the energy conversion efficiency from the Poynting flux to the particle energy flux. We model two pair creation processes, two-photon collision, which efficiently works in young γ -ray pulsars (≲10{sup 6} year), and magnetic pair creation, which is the dominant process to supply pairs in old pulsars (≳10{sup 6} year). Using the analytical model, we derive the maximum synchrotron luminosity as a function of the energy conversion efficiency. From the comparison with observations, we find that the energy conversion efficiency to the accelerated particles should be an order of unity in the magnetosphere, even though we make a number of the optimistic assumptions to enlarge the synchrotron luminosity. In order to explain the luminosity of the non-thermal X-ray/optical emission from pulsars with low spin-down luminosity L {sub sd} ≲ 10{sup 34} erg s{sup −1}, non-dipole magnetic field components should be dominant at the emission region. For the γ -ray pulsars with L {sub sd} ≲ 10{sup 35} erg s{sup −1}, observed γ -ray to X-ray and optical flux ratios are much higher than the flux ratio between curvature and the synchrotron radiations. We discuss some possibilities such as the coexistence of multiple accelerators in the magnetosphere as suggested from the recent numerical simulation results. The obtained maximum luminosity would be useful to select observational targets in X-ray and optical bands.

  14. Fourier power spectrum characteristics of face photographs: attractiveness perception depends on low-level image properties.

    Science.gov (United States)

    Menzel, Claudia; Hayn-Leichsenring, Gregor U; Langner, Oliver; Wiese, Holger; Redies, Christoph

    2015-01-01

    We investigated whether low-level processed image properties that are shared by natural scenes and artworks - but not veridical face photographs - affect the perception of facial attractiveness and age. Specifically, we considered the slope of the radially averaged Fourier power spectrum in a log-log plot. This slope is a measure of the distribution of special frequency power in an image. Images of natural scenes and artworks possess - compared to face images - a relatively shallow slope (i.e., increased high spatial frequency power). Since aesthetic perception might be based on the efficient processing of images with natural scene statistics, we assumed that the perception of facial attractiveness might also be affected by these properties. We calculated Fourier slope and other beauty-associated measurements in face images and correlated them with ratings of attractiveness and age of the depicted persons (Study 1). We found that Fourier slope - in contrast to the other tested image properties - did not predict attractiveness ratings when we controlled for age. In Study 2A, we overlaid face images with random-phase patterns with different statistics. Patterns with a slope similar to those in natural scenes and artworks resulted in lower attractiveness and higher age ratings. In Studies 2B and 2C, we directly manipulated the Fourier slope of face images and found that images with shallower slopes were rated as more attractive. Additionally, attractiveness of unaltered faces was affected by the Fourier slope of a random-phase background (Study 3). Faces in front of backgrounds with statistics similar to natural scenes and faces were rated as more attractive. We conclude that facial attractiveness ratings are affected by specific image properties. An explanation might be the efficient coding hypothesis.

  15. Damage-Tolerant, Lightweight, High-Temperature Radiator for Nuclear Powered Spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — Game-changing propulsion systems are often enabled by novel designs using advanced materials. Radiator performance dictates power output for nuclear electric...

  16. Occupational radiation exposures at Canadian CANDU nuclear power stations

    International Nuclear Information System (INIS)

    LeSurf, J.E.; Taylor, G.F.

    1982-09-01

    In Canada, methods to reduce the radiation exposure to workers at nuclear power reactors have been studied and implemented since the early days of the CANDU reactor program. Close collaboration between the designers, the operators, and the manufacturers has reduced the total exposure at each station, the dose requirement to operate and maintain each successive station compared with earlier stations, and the average annual exposure per worker. Specific methods developed to achieve dose reduction include water chemistry; corrosion resistant materials; low cobalt materials; decontamination; hot filtration, improved equipment reliability, maintainability, and accessibility; improved shielding design and location; planning of work for low exposure; improved operating and maintenance procedures; removal of tritium from D 2 O systems and work environments; improved protective clothing; on-power refuelling; worker awareness and training; and many other small improvements. The 1981 occupational dose productivity factors for Pickering A and Bruce A nuclear generating stations were respectively 0.43 and 0.2 rem/MW(e).a

  17. Supercluster simulations: impact of baryons on the matter power spectrum and weak lensing forecasts for Super-CLASS

    Science.gov (United States)

    Peters, Aaron; Brown, Michael L.; Kay, Scott T.; Barnes, David J.

    2018-03-01

    We use a combination of full hydrodynamic and dark matter only simulations to investigate the effect that supercluster environments and baryonic physics have on the matter power spectrum, by re-simulating a sample of supercluster sub-volumes. On large scales we find that the matter power spectrum measured from our supercluster sample has at least twice as much power as that measured from our random sample. Our investigation of the effect of baryonic physics on the matter power spectrum is found to be in agreement with previous studies and is weaker than the selection effect over the majority of scales. In addition, we investigate the effect of targeting a cosmologically non-representative, supercluster region of the sky on the weak lensing shear power spectrum. We do this by generating shear and convergence maps using a line-of-sight integration technique, which intercepts our random and supercluster sub-volumes. We find the convergence power spectrum measured from our supercluster sample has a larger amplitude than that measured from the random sample at all scales. We frame our results within the context of the Super-CLuster Assisted Shear Survey (Super-CLASS), which aims to measure the cosmic shear signal in the radio band by targeting a region of the sky that contains five Abell clusters. Assuming the Super-CLASS survey will have a source density of 1.5 galaxies arcmin-2, we forecast a detection significance of 2.7^{+1.5}_{-1.2}, which indicates that in the absence of systematics the Super-CLASS project could make a cosmic shear detection with radio data alone.

  18. Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts

    Science.gov (United States)

    Dichiara, S.; Guidorzi, C.; Amati, L.; Frontera, F.; Margutti, R.

    2016-05-01

    Context. The origin of the gamma-ray burst (GRB) prompt emission still defies explanation, in spite of recent progress made, for example, on the occasional presence of a thermal component in the spectrum along with the ubiquitous non-thermal component that is modelled with a Band function. The combination of finite duration and aperiodic modulations make GRBs hard to characterise temporally. Although correlations between GRB luminosity and spectral hardness on one side and time variability on the other side have long been known, the loose and often arbitrary definition of the latter makes the interpretation uncertain. Aims: We characterise the temporal variability in an objective way and search for a connection with rest-frame spectral properties for a number of well-observed GRBs. Methods: We studied the individual power density spectra (PDS) of 123 long GRBs with measured redshift, rest-frame peak energy Ep,I of the time-averaged ν Fν spectrum, and well-constrained PDS slope α detected with Swift, Fermi and past spacecraft. The PDS were modelled with a power law either with or without a break adopting a Bayesian Markov chain Monte Carlo technique. Results: We find a highly significant Ep,I-α anti-correlation. The null hypothesis probability is ~10-9. Conclusions: In the framework of the internal shock synchrotron model, the Ep,I-α anti-correlation can hardly be reconciled with the predicted Ep,I ∝ Γ-2, unless either variable microphysical parameters of the shocks or continual electron acceleration are assumed. Alternatively, in the context of models based on magnetic reconnection, the PDS slope and Ep,I are linked to the ejecta magnetisation at the dissipation site, so that more magnetised outflows would produce more variable GRB light curves at short timescales (≲1 s), shallower PDS, and higher values of Ep,I. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  19. Estimating local noise power spectrum from a few FBP-reconstructed CT scans

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Rongping, E-mail: rongping.zeng@fda.hhs.gov; Gavrielides, Marios A.; Petrick, Nicholas; Sahiner, Berkman; Li, Qin; Myers, Kyle J. [Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, CDRH, FDA, Silver Spring, Maryland 20993 (United States)

    2016-01-15

    Purpose: Traditional ways to estimate 2D CT noise power spectrum (NPS) involve an ensemble average of the power spectrums of many noisy scans. When only a few scans are available, regions of interest are often extracted from different locations to obtain sufficient samples to estimate the NPS. Using image samples from different locations ignores the nonstationarity of CT noise and thus cannot accurately characterize its local properties. The purpose of this work is to develop a method to estimate local NPS using only a few fan-beam CT scans. Methods: As a result of FBP reconstruction, the CT NPS has the same radial profile shape for all projection angles, with the magnitude varying with the noise level in the raw data measurement. This allows a 2D CT NPS to be factored into products of a 1D angular and a 1D radial function in polar coordinates. The polar separability of CT NPS greatly reduces the data requirement for estimating the NPS. The authors use this property and derive a radial NPS estimation method: in brief, the radial profile shape is estimated from a traditional NPS based on image samples extracted at multiple locations. The amplitudes are estimated by fitting the traditional local NPS to the estimated radial profile shape. The estimated radial profile shape and amplitudes are then combined to form a final estimate of the local NPS. We evaluate the accuracy of the radial NPS method and compared it to traditional NPS methods in terms of normalized mean squared error (NMSE) and signal detectability index. Results: For both simulated and real CT data sets, the local NPS estimated with no more than six scans using the radial NPS method was very close to the reference NPS, according to the metrics of NMSE and detectability index. Even with only two scans, the radial NPS method was able to achieve a fairly good accuracy. Compared to those estimated using traditional NPS methods, the accuracy improvement was substantial when a few scans were available

  20. Safety and Radiation Protection at Swedish Nuclear Power Plants 2007

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    transparent basis for making decisions in safety matters. During the year it has however become apparent that further improvement measures are necessary. The plant has had a relatively large number of operational disturbances during 2007 which have been analysed in order to implement suitable measures. Modernisation projects follow the time schedules which were decided earlier for implementation in order to comply with the regulations. Some measures are already completed, others are underway, and the programme will continue until 2013. SKI is supervising the progress of the modernisation and the improvements to the physical protection of the plants. Forsmark Kraftgrupp AB has applied for permission to increase the thermal power in reactors Forsmark 1-3. The government hasn't yet granted permission for these power increases. SKI has approved trial operation for Ringhals 1 and Ringhals 3 at the increased power levels during the year. For Ringhals 3 this is the first stage of the planned power increases. Ringhals has also applied to increase the thermal power in Ringhals 4. The government has granted permission for the thermal power increase in Oskarshamn 3. SKI is currently performing a safety review of this application. Oskarshamn have made an application to increase the thermal power in Oskarshamn 2. During 2007 SKI has performed inspections to control how nuclear safeguards are managed by the nuclear power stations. In all 80 inspections have been carried out. Nothing has been found during these inspections to indicate that there are any deficiencies in the nuclear safeguard activities. No serious incidents or accidents have occurred resulting in abnormal radiation exposure of personnel. Radioactive releases from the plants have resulted in calculated doses to the most exposed person in the critical group that are well below the environmental impact goal of 10 microsievert. Forsmark, which in recent years has had recurrent problems with the measurement of airborne

  1. Safety and Radiation Protection at Swedish Nuclear Power Plants 2007

    International Nuclear Information System (INIS)

    2008-01-01

    transparent basis for making decisions in safety matters. During the year it has however become apparent that further improvement measures are necessary. The plant has had a relatively large number of operational disturbances during 2007 which have been analysed in order to implement suitable measures. Modernisation projects follow the time schedules which were decided earlier for implementation in order to comply with the regulations. Some measures are already completed, others are underway, and the programme will continue until 2013. SKI is supervising the progress of the modernisation and the improvements to the physical protection of the plants. Forsmark Kraftgrupp AB has applied for permission to increase the thermal power in reactors Forsmark 1 - 3. The government has not as yet granted permission for these power increases. SKI has approved trial operation for Ringhals 1 and Ringhals 3 at the increased power levels during the year. For Ringhals 3 this is the first stage of the planned power increases. Ringhals has also applied to increase the thermal power in Ringhals 4. The government has granted permission for the thermal power increase in Oskarshamn 3. SKI is currently performing a safety review of this application. Oskarshamn have made an application to increase the thermal power in Oskarshamn 2. During 2007 SKI has performed inspections to control how nuclear safeguards are managed by the nuclear power stations. In all 80 inspections have been carried out. Nothing has been found during these inspections to indicate that there are any deficiencies in the nuclear safeguard activities. No serious incidents or accidents have occurred resulting in abnormal radiation exposure of personnel. Radioactive releases from the plants have resulted in calculated doses to the most exposed person in the critical group that are well below the environmental impact goal of 10 microsievert. Forsmark, which in recent years has had recurrent problems with the measurement of airborne

  2. Power allocation and achievable data rate in spectrum-sharing channels under adaptive primary service outage constraints

    KAUST Repository

    Yang, Yuli; Aï ssa, Sonia

    2012-01-01

    used, provides an interference-tolerable zone. Based on this gap, a secondary user (SU) has an increased opportunity to access the licensed spectrum and to determine the transmit power it should use to keep the PU's quality-of-service (QoS) unaffected

  3. Spectral properties of plant leaves pertaining to urban landscape design of broad-spectrum solar ultraviolet radiation reduction

    Science.gov (United States)

    Yoshimura, Haruka; Zhu, Hui; Wu, Yunying; Ma, Ruijun

    2010-03-01

    Human exposure to harmful ultraviolet (UV) radiation has important public health implications. Actual human exposure to solar UV radiation depends on ambient UV irradiance, and the latter is influenced by ground reflection. In urban areas with higher reflectivity, UV exposure occurs routinely. To discover the solar UV radiation regulation mechanism of vegetation, the spectral reflectance and transmittance of plant leaves were measured with a spectrophotometer. Typically, higher plants have low leaf reflectance (around 5%) and essentially zero transmittance throughout the UV region regardless of plant species and seasonal change. Accordingly, incident UV radiation decreases to 5% by being reflected and is reduced to zero by passing through a leaf. Therefore, stratified structures of vegetation are working as another terminator of UV rays, protecting whole terrestrial ecosystems, while vegetation at waterfronts contributes to protect aquatic ecosystems. It is possible to protect the human population from harmful UV radiation by urban landscape design of tree shade and the botanical environment. Even thin but uniformly distributed canopy is effective in attenuating UV radiation. To intercept diffuse radiation, UV screening by vertical structures such as hedges should be considered. Reflectivity of vegetation is around 2%, as foliage surfaces reduce incident UV radiation via reflection, while also eliminating it by transmittance. Accordingly, vegetation reduces incident UV radiation to around 2% by reflection. Vegetation influence on ambient UV radiation is broad-spectrum throughout the UV region. Only trees provide cool UV protective shade. Urban landscapes aimed at abating urban heat islands integrated with a reduction of human UV over-exposure would contribute to mitigation of climate change.

  4. Bio-WiTel: A Low-Power Integrated Wireless Telemetry System for Healthcare Applications in 401-406 MHz Band of MedRadio Spectrum.

    Science.gov (United States)

    Srivastava, Abhishek; Sankar K, Nithin; Chatterjee, Baibhab; Das, Devarshi; Ahmad, Meraj; Kukkundoor, Rakesh Keshava; Saraf, Vivek; Ananthapadmanabhan, Jayachandran; Sharma, Dinesh Kumar; Baghini, Maryam Shojaei

    2018-03-01

    This paper presents a low-power integrated wireless telemetry system (Bio-WiTel) for healthcare applications in 401-406 MHz frequency band of medical device radiocommunication (MedRadio) spectrum. In this paper, necessary design considerations for telemetry system for short-range (upto 3 m) communication of biosignals are presented. These considerations help greatly in making important design decisions, which eventually lead to a simple, low power, robust, and reliable wireless system implementation. Transmitter (TX) and receiver (RX) of Bio-WiTel system have been fabricated in 180 nm mixed mode CMOS technology. While radiating -18 dBm output power to a 50 antenna, the packaged TX IC consumes 250 μW power in 100% on state from 1 V supply, whereas the RX IC consumes 990 μW power from 1.8 V supply with a sensitivity of -75 dBm. Measurement results show that TX fulfils the spectral mask requirement at a maximum data rate of 72 kb/s. The measured bit error rate (BER) of RX is less than for a data rate of 200 kb/s. The proposed Bio-WiTel system is tested successfully in home and hospital environments for the communication of electrocardiogram and photoplethysmogram signals at a data rate of 57.6 kb/s with a measured BER of <10 for a maximum distance of 3 m.

  5. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    Science.gov (United States)

    Britton, Jr; Charles, L [Alcoa, TN; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN

    2011-04-26

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  6. Neural Spike-Train Analyses of the Speech-Based Envelope Power Spectrum Model

    Science.gov (United States)

    Rallapalli, Varsha H.

    2016-01-01

    Diagnosing and treating hearing impairment is challenging because people with similar degrees of sensorineural hearing loss (SNHL) often have different speech-recognition abilities. The speech-based envelope power spectrum model (sEPSM) has demonstrated that the signal-to-noise ratio (SNRENV) from a modulation filter bank provides a robust speech-intelligibility measure across a wider range of degraded conditions than many long-standing models. In the sEPSM, noise (N) is assumed to: (a) reduce S + N envelope power by filling in dips within clean speech (S) and (b) introduce an envelope noise floor from intrinsic fluctuations in the noise itself. While the promise of SNRENV has been demonstrated for normal-hearing listeners, it has not been thoroughly extended to hearing-impaired listeners because of limited physiological knowledge of how SNHL affects speech-in-noise envelope coding relative to noise alone. Here, envelope coding to speech-in-noise stimuli was quantified from auditory-nerve model spike trains using shuffled correlograms, which were analyzed in the modulation-frequency domain to compute modulation-band estimates of neural SNRENV. Preliminary spike-train analyses show strong similarities to the sEPSM, demonstrating feasibility of neural SNRENV computations. Results suggest that individual differences can occur based on differential degrees of outer- and inner-hair-cell dysfunction in listeners currently diagnosed into the single audiological SNHL category. The predicted acoustic-SNR dependence in individual differences suggests that the SNR-dependent rate of susceptibility could be an important metric in diagnosing individual differences. Future measurements of the neural SNRENV in animal studies with various forms of SNHL will provide valuable insight for understanding individual differences in speech-in-noise intelligibility.

  7. Gas density fluctuations in the Perseus Cluster: clumping factor and velocity power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, I.; Churazov, E.; Arevalo, P.; Schekochihin, A. A.; Allen, S. W.; Fabian, A. C.; Forman, W. R.; Sanders, J. S.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.

    2015-05-20

    X-ray surface brightness fluctuations in the core of the Perseus Cluster are analysed, using deep observations with the Chandra observatory. The amplitude of gas density fluctuations on different scales is measured in a set of radial annuli. It varies from 7 to 12 per cent on scales of ~10–30 kpc within radii of 30–220 kpc from the cluster centre. Using a statistical linear relation between the observed amplitude of density fluctuations and predicted velocity, the characteristic velocity of gas motions on each scale is calculated. The typical amplitudes of the velocity outside the central 30 kpc region are 90–140 km s-1 on ~20–30 kpc scales and 70–100 km s-1 on smaller scales ~7–10 kpc. The velocity power spectrum (PS) is consistent with cascade of turbulence and its slope is in a broad agreement with the slope for canonical Kolmogorov turbulence. The gas clumping factor estimated from the PS of the density fluctuations is lower than 7–8 per cent for radii ~30–220 kpc from the centre, leading to a density bias of less than 3–4 per cent in the cluster core. Uncertainties of the analysis are examined and discussed. Future measurements of the gas velocities with the Astro-H, Athena and Smart-X observatories will directly measure the gas density–velocity perturbation relation and further reduce systematic uncertainties in this analysis.

  8. FOREGROUND CONTAMINATION IN INTERFEROMETRIC MEASUREMENTS OF THE REDSHIFTED 21 cm POWER SPECTRUM

    International Nuclear Information System (INIS)

    Bowman, Judd D.; Morales, Miguel F.; Hewitt, Jacqueline N.

    2009-01-01

    Subtraction of astrophysical foreground contamination from 'dirty' sky maps produced by simulated measurements of the Murchison Widefield Array (MWA) has been performed by fitting a third-order polynomial along the spectral dimension of each pixel in the data cubes. The simulations are the first to include the unavoidable instrumental effects of the frequency-dependent primary antenna beams and synthesized array beams. They recover the one-dimensional spherically binned input redshifted 21 cm power spectrum within ∼1% over the scales probed most sensitively by the MWA (0.01 ∼ -1 ) and demonstrate that realistic instrumental effects will not mask the epoch of reionization signal. We find that the weighting function used to produce the dirty sky maps from the gridded visibility measurements is important to the success of the technique. Uniform weighting of the visibility measurements produces the best results, whereas natural weighting significantly worsens the foreground subtraction by coupling structure in the density of the visibility measurements to spectral structure in the dirty sky map data cube. The extremely dense uv-coverage of the MWA was found to be advantageous for this technique and produced very good results on scales corresponding to |u| ∼< 500λ in the uv-plane without any selective editing of the uv-coverage.

  9. Quantitative Diagnosis of Rotor Vibration Fault Using Process Power Spectrum Entropy and Support Vector Machine Method

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Fei

    2014-01-01

    Full Text Available To improve the diagnosis capacity of rotor vibration fault in stochastic process, an effective fault diagnosis method (named Process Power Spectrum Entropy (PPSE and Support Vector Machine (SVM (PPSE-SVM, for short method was proposed. The fault diagnosis model of PPSE-SVM was established by fusing PPSE method and SVM theory. Based on the simulation experiment of rotor vibration fault, process data for four typical vibration faults (rotor imbalance, shaft misalignment, rotor-stator rubbing, and pedestal looseness were collected under multipoint (multiple channels and multispeed. By using PPSE method, the PPSE values of these data were extracted as fault feature vectors to establish the SVM model of rotor vibration fault diagnosis. From rotor vibration fault diagnosis, the results demonstrate that the proposed method possesses high precision, good learning ability, good generalization ability, and strong fault-tolerant ability (robustness in four aspects of distinguishing fault types, fault severity, fault location, and noise immunity of rotor stochastic vibration. This paper presents a novel method (PPSE-SVM for rotor vibration fault diagnosis and real-time vibration monitoring. The presented effort is promising to improve the fault diagnosis precision of rotating machinery like gas turbine.

  10. Spatial correlation in 3D MIMO channels using fourier coefficients of power spectrums

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-03-01

    In this paper, an exact closed-form expression for the Spatial Correlation Function (SCF) is derived for the standardized three-dimensional (3D) multiple-input multiple-output (MIMO) channel. This novel SCF is developed for a uniform linear array of antennas with non-isotropic antenna patterns. The proposed method resorts to the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials to obtain a closed-form expression for the SCF for arbitrary angular distributions and antenna patterns. The resulting expression depends on the underlying angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty of the proposed method lies in the SCF being valid for any 3D propagation environment. Numerical results validate the proposed analytical expression and study the impact of angular spreads on the correlation. The derived SCF will help evaluate the performance of correlated 3D MIMO channels in the future. © 2015 IEEE.

  11. The noise power spectrum in CT with direct fan beam reconstruction

    International Nuclear Information System (INIS)

    Baek, Jongduk; Pelc, Norbert J.

    2010-01-01

    The noise power spectrum (NPS) is a useful metric for understanding the noise content in images. To examine some unique properties of the NPS of fan beam CT, the authors derived an analytical expression for the NPS of fan beam CT and validated it with computer simulations. The nonstationary noise behavior of fan beam CT was examined by analyzing local regions and the entire field-of-view (FOV). This was performed for cases with uniform as well as nonuniform noise across the detector cells and across views. The simulated NPS from the entire FOV and local regions showed good agreement with the analytically derived NPS. The analysis shows that whereas the NPS of a large FOV in parallel beam CT (using a ramp filter) is proportional to frequency, the NPS with direct fan beam FBP reconstruction shows a high frequency roll off. Even in small regions, the fan beam NPS can show a sharp transition (discontinuity) at high frequencies. These effects are due to the variable magnification and therefore are more pronounced as the fan angle increases. For cases with nonuniform noise, the NPS can show the directional dependence and additional effects.

  12. Power spectrum constraints from spectral distortions in the cosmic microwave background

    Science.gov (United States)

    Hu, Wayne; Scott, Douglas; Silk, Joseph

    1994-01-01

    Using recent experimental limits on chemical potential distortions from Cosmic Background Explorer (COBE) Far Infrared Astronomy Satellite (FIRAS), and the large lever-arm spanning the damping of sub-Jeans scale fluctuations to the COBE DMR fluctuations, we set a constraint on the slope of the primordial power spectrum n. It is possible to analytically calculate the contribution over the full range of scales and redshifts, correctly taking into account fluctuation growth and damping as well as thermalization processes. Assuming conservatively that mu is less than 1.76 x 10(exp -4), we find that the 95% upper limit on n is only weakly dependent on other cosmological parameters, e.g., n is less than 1.60 (h=0.5) and n is less than 1.63 (h=1.0) for Omega(sub 0) = 1, with marginally weaker constraints for Omega(sub 0) is less than 1 in a flat model with a cosmological constant.

  13. Nonlinear power spectrum from resummed perturbation theory: a leap beyond the BAO scale

    International Nuclear Information System (INIS)

    Anselmi, Stefano; Pietroni, Massimo

    2012-01-01

    A new computational scheme for the nonlinear cosmological matter power spectrum (PS) is presented. Our method is based on evolution equations in time, which can be cast in a form extremely convenient for fast numerical evaluations. A nonlinear PS is obtained in a time comparable to that needed for a simple 1-loop computation, and the numerical implementation is very simple. Our results agree with N-body simulations at the percent level in the BAO range of scales, and at the few-percent level up to k ≅ 1 h/Mpc at z∼>0.5, thereby opening the possibility of applying this tool to scales interesting for weak lensing. We clarify the approximations inherent to this approach as well as its relations to previous ones, such as the Time Renormalization Group, and the multi-point propagator expansion. We discuss possible lines of improvements of the method and its intrinsic limitations by multi streaming at small scales and low redshifts

  14. Power spectrum tomography of dark matter annihilation with local galaxy distribution

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Shin' ichiro, E-mail: s.ando@uva.nl [GRAPPA Institute, University of Amsterdam, 1098 XH Amsterdam (Netherlands)

    2014-10-01

    Cross-correlating the gamma-ray background with local galaxy catalogs potentially gives stringent constraints on dark matter annihilation. We provide updated theoretical estimates of sensitivities to the annihilation cross section from gamma-ray data with Fermi telescope and 2MASS galaxy catalogs, by elaborating the galaxy power spectrum and astrophysical backgrounds, and adopting the Markov-Chain Monte Carlo simulations. In particular, we show that taking tomographic approach by dividing the galaxy catalogs into more than one redshift slice will improve the sensitivity by a factor of a few to several. If dark matter halos contain lots of bright substructures, yielding a large annihilation boost (e.g., a factor of ∼100 for galaxy-size halos), then one may be able to probe the canonical annihilation cross section for thermal production mechanism up to masses of ∼700 GeV. Even with modest substructure boost (e.g., a factor of ∼10 for galaxy-size halos), on the other hand, the sensitivities could still reach a factor of three larger than the canonical cross section for dark matter masses of tens to a few hundreds of GeV.

  15. On the performance of the noise power spectrum from the gain-corrected radiography images.

    Science.gov (United States)

    Kim, Dong Sik; Lee, Eunae

    2018-01-01

    Fixed pattern noise due to nonuniform amplifier gains and scintillator sensitivity should be alleviated in radiography imaging to acquire low-noise x-ray images from detectors. Here, the noise property of the detector is usually evaluated observing the noise power spectrum (NPS). A gain-correction scheme, in which uniformly illuminated images are averaged to design a gain map, can be applied to alleviate the fixed pattern noise problem. The normalized NPS (NNPS) of the gain-corrected image decreases as the number of images for the average increases and converges to an infimum, which can be achieved if the fixed pattern noise is completely removed. If we know the NNPS infimum of the detector, then we can determine the performance of the gain-corrected images compared with the achievable lower bound. We first construct an image-formation model considering the nonuniform gain and then consider two measurement methods based on subtraction and division to estimate the NNPS infimum of the detector. In order to obtain a high-precision NNPS infimum estimate, we consider a time-averaging method. For several flat-panel radiography detectors, we constructed the NNPS infimum measurements and compared them with NNPS values of the gain-corrected images. We observed that the NNPS values of the gain-corrected images approached the NNPS infimum as the number of images for the average increased.

  16. Numerical Study of Tire Hydroplaning Based on Power Spectrum of Asphalt Pavement and Kinetic Friction Coefficient

    Directory of Open Access Journals (Sweden)

    Shengze Zhu

    2017-01-01

    Full Text Available Hydroplaning is a driving phenomenon threating vehicle’s control stability and safety. It happens when tire rolls on wet pavement with high speed that hydrodynamic force uplifts the tire. Accurate numerical simulation to reveal the mechanism of hydroplaning and evaluate the function of relevant factors in this process is significant. In order to describe the friction behaviors of tire-pavement interaction, kinetic friction coefficient curve of tire rubber and asphalt pavement was obtained by combining pavement surface power spectrum and complex modulus of tread rubber through Persson’s friction theory. Finite element model of tire-fluid-pavement was established in ABAQUS, which was composed of a 225-40-R18 radial tire and three types of asphalt pavement covered with water film. Mechanical responses and physical behaviors of tire-pavement interaction were observed and compared with NASA equation to validate the applicability and accuracy of this model. Then contact force at tire-pavement interface and critical hydroplaning speed influenced by tire inflation pressure, water film thickness, and pavement types were investigated. The results show higher tire inflation pressure, thinner water film, and more abundant macrotexture enhancing hydroplaning speed. The results could be applied to predict hydroplaning speed on different asphalt pavement and improve pavement skid resistance design.

  17. Constraining models of f(R) gravity with Planck and WiggleZ power spectrum data

    International Nuclear Information System (INIS)

    Dossett, Jason; Parkinson, David; Hu, Bin

    2014-01-01

    In order to explain cosmic acceleration without invoking ''dark'' physics, we consider f(R) modified gravity models, which replace the standard Einstein-Hilbert action in General Relativity with a higher derivative theory. We use data from the WiggleZ Dark Energy survey to probe the formation of structure on large scales which can place tight constraints on these models. We combine the large-scale structure data with measurements of the cosmic microwave background from the Planck surveyor. After parameterizing the modification of the action using the Compton wavelength parameter B 0 , we constrain this parameter using ISiTGR, assuming an initial non-informative log prior probability distribution of this cross-over scale. We find that the addition of the WiggleZ power spectrum provides the tightest constraints to date on B 0 by an order of magnitude, giving log 10 (B 0 ) < −4.07 at 95% confidence limit. Finally, we test whether the effect of adding the lensing amplitude A Lens and the sum of the neutrino mass ∑m ν is able to reconcile current tensions present in these parameters, but find f(R) gravity an inadequate explanation

  18. Duties and responsibilities of the Nuclear Power Inspectorate and the National Radiation Protection Institute in connection with nuclear power plants

    International Nuclear Information System (INIS)

    Eckered, T.

    1977-01-01

    The two Swedish bodies competent for the control of nuclear energy are the Swedish Nuclear Power Inspectorate (SKI) and the National Swedish Institute on Radiation Protection (SSI). The duties of both bodies in respect of inspection stem from the provisions of the Atomic Energy Act and the Radiation Protection Act. The procedure to be followed for construction and operation of nuclear power plants is described from the viewpoint of the responsibilities entrusted to SKI and SSI. (NEA) [fr

  19. National conference on radiation safety of nuclear power plants and their environmental impacts

    International Nuclear Information System (INIS)

    Moravek, J.

    1989-01-01

    The first national conference on radiation safety of nuclear power plants and their environmental impacts was held in Tale (CS), 12 to 15 October, 1987 with the participation of 201 Czechoslovak specialists representing central authorities, research institutes, institutions of higher education, power plants in operation and under construction, water management and hygiene inspection and some production sectors, specialists from Hungary, Poland and the GDR. The participants heard 110 papers. The conference agenda comprised keynote papers presented in plenary session and five specialist sessions: 1. Radiation control of discharges and their surroundings. 2. Monitoring and evaluation of the radiation situation in nuclear power plants. 3. Equipment for monitoring the nuclear power plant and its environs. 4. Mathematical modelling and assessment of the nuclear power plant radiation environmental impact. 5. Evaluation of sources and of the transport of radioactive materials inside the power plant and the minimization of the nuclear power plant's environmental impact. (Z.M.)

  20. Measures of radiation protection in the operation of nuclear power plants in the German Democratic Republic

    International Nuclear Information System (INIS)

    Richter, D.; Schreiter, W.

    1975-11-01

    A survey is given on the provisions concerning (a) radiation protection at nuclear power plants in the GDR including the instructions applying within the plant, (b) the organization of radiation protection services, and (c) the measures of radiation protection surveillance inside and outside the plant during operation. (author)

  1. Practice of radiation dose control for tech-modification items in Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zhang Yong; Chen Zhongyu; Xu Hongming; Fan Liguang; Jiang Jianqi; Bu Weidong

    2006-01-01

    In order to improve the safety and reliability of nuclear power plant operation, many tech-modifications related to system or equipment have been completed since operation in Qinshan NPP. this paper introduces radiation dose control for mainly tech-modifications items related to radiation, including radiation protection optimization measures and experience in aspects of item planning, program writing, process control, etc. (authors)

  2. Monte Carlo study of MOSFET dosimeter dose correction factors considering energy spectrum of radiation field in a steam generator channel head

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung Koo; Choi, Sang Hyoun; Kim, Chan Hyeong [Hanyang Univ., Seoul (Korea, Republic of)

    2006-12-15

    In Korea, a real-time effective dose measurement system is in development. The system uses 32 high-sensitivity MOSFET dosimeters to measure radiation doses at various organ locations in an anthropomorphic physical phantom. The MOSFET dosimeters are, however, mainly made of silicon and shows some degree of energy and angular dependence especially for low energy photons. This study determines the correction factors to correct for these dependences of the MOSFET dosimeters for accurate measurement of radiation doses at organ locations in the phantom. For this, first, the dose correction factors of MOSFET dosimeters were determined for the energy spectrum in the steam generator channel of the Kori Nuclear Power Plant Unit no.1 by Monte Carlo simulations. Then, the results were compared with the dose correction factors from 0.662 MeV and 1.25 MeV mono-energetic photons. The difference of the dose correction factors were found very negligible ({<=}1.5%), which in general shows that the dose corrections factors determined from 0.662 MeV and 1.25 MeV can be in a steam general channel head of a nuclear power plant. The measured effective dose was generally found to decrease by {approx}7% when we apply the dose correction factors.

  3. Measurement of the Radiative Decay of the Longest-Lived Level in the Fe XVII Spectrum

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, Peter; Träbert, Elmar

    2014-08-01

    The Fe XVII emission spectrum comprises several very prominent X-ray lines that play an important role in the study of many astrophysical objects. Among the Fe XVII X-ray lines, those emanating from a 3s level, i.e., lines 3F, 3G, and M2, invariably appear too strong compared to the lines emanating from a 3d level, i.e., lines 3C and 3D, when compared to theory. Two of the four 3s levels are metastable, which means they have a rather long radiative decay time compared to collisional processes. The decay rate of the 2p^53s J=2 level has recently been measured at the Livermore EBIT facility [J. R. Crespo López-Urrutia and P. Beiersdorfer, ApJ 721, 576 (2010)], and the scatter of predictions by a factor of 1.7 has been reduced to a measurement uncertainty of merely a few percent. Even longer-lived is the J=0 level of the same 2p^53s configuration. Theory predicts an exclusive magnetic dipole decay to the lowest J=1 level of the same 2p^53s configuration, i.e. to the upper level of line 3G. There appear to be fewer predictions for this rate than for the rates associated with the other Fe XVII levels. Various calculations yield a decay rate near 16 000 s-1 for this level (or a level lifetime near 63 µs). If this value is correct, electron-impact collisions affect line ratios tied to this level at densities between about 10^10 cm-3 and 10^13 cm-3, that is, exactly at many coronal densities of present interest. We have used the Livermore EBIT facility to measure the M1 decay rate of the 2p^53s J=0 level. We find a value commensurate with the value predicted by the Flexible Atomic Code.Work performed under auspices of U.S. D.o.E. by DE-AC52-07NA27344 and supported by NASA's APRA progam under Interagency Agreement NNG13WF991.

  4. Hepatic hemangiomas: spectrum of US appearances on gray-scale, power doppler, and contrast-enhanced US

    International Nuclear Information System (INIS)

    Kim, Kyoung Won; Kim, Tae Kyoung; Han Joon Koo; Kim, Ah Young; Lee, Hyun Ju; Park, Seong Ho; Kim, Young Hoon; Choi, Byung Ihn

    2000-01-01

    Because US plays a key role in the initial evaluation of hepatic hemangiomas, knowledge of the entire spectrum of US appearances of these tumors is important. Most hemangiomas have a distinctive US appearance, and even with those with atypical appearances on conventional gray-scale US, specific diagnoses can be made using pulse-inversion harmonic US with contrast agents. In this essay, we review the spectrum of US appearances of hepatic hemangiomas on conventional gray-scale, power Doppler, and pulse-inversion harmonic US with contrast agents. (author)

  5. A Brief Review of Heavy-Ion Radiation Degradation and Failure of Silicon UMOS Power Transistors

    Directory of Open Access Journals (Sweden)

    Kenneth F. Galloway

    2014-09-01

    Full Text Available Silicon VDMOS power MOSFET technology is being supplanted by UMOS (or trench power MOSFET technology. Designers of spaceborne power electronics systems incorporating this newer power MOSFET technology need to be aware of several unique threats that this technology may encounter in space. Space radiation threats to UMOS power devices include vulnerabilities to SEB, SEGR, and microdose. There have been relatively few studies presented or published on the effects of radiation on this device technology. The S-O-A knowledge of UMOS power device degradation and failure under heavy-ion exposure is reviewed.

  6. Theory of coherent transition radiation generated by ellipsoidal electron bunches

    NARCIS (Netherlands)

    Root, op 't W.P.E.M.; Smorenburg, P.W.; Oudheusden, van T.; Wiel, van der M.J.; Luiten, O.J.

    2007-01-01

    We present the theory of coherent transition radiation (CTR) generated by ellipsoidal electron bunches. We calculate analytical expressions for the electric field spectrum, the power spectrum, and the temporal electric field of CTR, generated by cylindrically symmetric ellipsoidal electron bunches

  7. Survey of radiation protection, radiation transport, and shielding information needs of the nuclear power industry. Final report

    International Nuclear Information System (INIS)

    Maskewitz, B.F.; Trubey, D.K.; Roussin, R.W.; McGill, B.L.

    1976-04-01

    The Radiation Shielding Information Center (RSIC) is engaged in a program to seek out, organize, and disseminate information in the area of radiation transport, shielding, and radiation protection. This information consists of published literature, nuclear data, and computer codes and advanced analytical techniques required by ERDA, its contractors, and the nuclear power industry to improve radiation analysis and computing capability. Information generated in this effort becomes a part of the RSIC collection and/or data base. The purpose of this report on project 219-1 is to document the results of the survey of information and computer code needs of the nuclear power industry in the area of radiation analysis and protection

  8. Survey of radiation protection, radiation transport, and shielding information needs of the nuclear power industry. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Maskewitz, B.F.; Trubey, D.K.; Roussin, R.W.; McGill, B.L.

    1976-04-01

    The Radiation Shielding Information Center (RSIC) is engaged in a program to seek out, organize, and disseminate information in the area of radiation transport, shielding, and radiation protection. This information consists of published literature, nuclear data, and computer codes and advanced analytical techniques required by ERDA, its contractors, and the nuclear power industry to improve radiation analysis and computing capability. Information generated in this effort becomes a part of the RSIC collection and/or data base. The purpose of this report on project 219-1 is to document the results of the survey of information and computer code needs of the nuclear power industry in the area of radiation analysis and protection.

  9. Upgrades of DARWIN, a dose and spectrum monitoring system applicable to various types of radiation over wide energy ranges

    Science.gov (United States)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Shigyo, Nobuhiro; Watanabe, Fusao; Sakurai, Hiroki; Arai, Yoichi

    2011-05-01

    A dose and spectrum monitoring system applicable to neutrons, photons and muons over wide ranges of energy, designated as DARWIN, has been developed for radiological protection in high-energy accelerator facilities. DARWIN consists of a phoswitch-type scintillation detector, a data-acquisition (DAQ) module for digital waveform analysis, and a personal computer equipped with a graphical-user-interface (GUI) program for controlling the system. The system was recently upgraded by introducing an original DAQ module based on a field programmable gate array, FPGA, and also by adding a function for estimating neutron and photon spectra based on an unfolding technique without requiring any specific scientific background of the user. The performance of the upgraded DARWIN was examined in various radiation fields, including an operational field in J-PARC. The experiments revealed that the dose rates and spectra measured by the upgraded DARWIN are quite reasonable, even in radiation fields with peak structures in terms of both spectrum and time variation. These results clearly demonstrate the usefulness of DARWIN for improving radiation safety in high-energy accelerator facilities.

  10. Upgrades of DARWIN, a dose and spectrum monitoring system applicable to various types of radiation over wide energy ranges

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Shigyo, Nobuhiro; Watanabe, Fusao; Sakurai, Hiroki; Arai, Yoichi

    2011-01-01

    A dose and spectrum monitoring system applicable to neutrons, photons and muons over wide ranges of energy, designated as DARWIN, has been developed for radiological protection in high-energy accelerator facilities. DARWIN consists of a phoswitch-type scintillation detector, a data-acquisition (DAQ) module for digital waveform analysis, and a personal computer equipped with a graphical-user-interface (GUI) program for controlling the system. The system was recently upgraded by introducing an original DAQ module based on a field programmable gate array, FPGA, and also by adding a function for estimating neutron and photon spectra based on an unfolding technique without requiring any specific scientific background of the user. The performance of the upgraded DARWIN was examined in various radiation fields, including an operational field in J-PARC. The experiments revealed that the dose rates and spectra measured by the upgraded DARWIN are quite reasonable, even in radiation fields with peak structures in terms of both spectrum and time variation. These results clearly demonstrate the usefulness of DARWIN for improving radiation safety in high-energy accelerator facilities.

  11. A study on the spectrum analyzing of internal leak in valve for power plant using acoustic emission method

    International Nuclear Information System (INIS)

    Lee, Sang Guk; Lee, Sun Ki; Lee, Jun Shin; Sohn, Seok Man

    2004-01-01

    The purpose of this study is to estimate the availability of acoustic emission method to the internal leak of the valves at nuclear power plants. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. From the comparison of the background noise data with the experimental results as to relation between leak flow and acoustic signal, the minimum leak flow rates that can be detected by acoustic signal was suggested. When the background levels are higher than the acoustic signal, the method described below was considered that the analysis the remainder among the background noise frequency spectrum and the acoustic signal spectrum become a very useful leak detection method. A few experimental examples of the spectrum analysis that varied the background noise characteristic were given

  12. Effect of focused ultrasound stimulation at different ultrasonic power levels on the local field potential power spectrum

    International Nuclear Information System (INIS)

    Yuan Yi; Lu Cheng-Biao; Li Xiao-Li

    2015-01-01

    Local field potential (LFP) signals of the rat hippocampus were recorded under noninvasive focused ultrasound stimulation (FUS) with different ultrasonic powers. The LFP mean absolute power was calculated with the Welch algorithm at the delta, theta, alpha, beta, and gamma frequency bands. The experimental results demonstrate that the LFP mean absolute power at different frequency bands increases as the ultrasound power increases. (paper)

  13. The coyote universe extended: Precision emulation of the matter power spectrum

    International Nuclear Information System (INIS)

    Heitmann, Katrin; Kwan, Juliana; Habib, Salman; Lawrence, Earl; Higdon, David

    2014-01-01

    Modern sky surveys are returning precision measurements of cosmological statistics such as weak lensing shear correlations, the distribution of galaxies, and cluster abundance. To fully exploit these observations, theorists must provide predictions that are at least as accurate as the measurements, as well as robust estimates of systematic errors that are inherent to the modeling process. In the nonlinear regime of structure formation, this challenge can only be overcome by developing a large-scale, multi-physics simulation capability covering a range of cosmological models and astrophysical processes. As a first step to achieving this goal, we have recently developed a prediction scheme for the matter power spectrum (a so-called emulator), accurate at the 1% level out to k ∼ 1 Mpc –1 and z = 1 for wCDM cosmologies based on a set of high-accuracy N-body simulations. It is highly desirable to increase the range in both redshift and wavenumber and to extend the reach in cosmological parameter space. To make progress in this direction, while minimizing computational cost, we present a strategy that maximally reuses the original simulations. We demonstrate improvement over the original spatial dynamic range by an order of magnitude, reaching k ∼ 10 h Mpc –1 , a four-fold increase in redshift coverage, to z = 4, and now include the Hubble parameter as a new independent variable. To further the range in k and z, a new set of nested simulations run at modest cost is added to the original set. The extension in h is performed by including perturbation theory results within a multi-scale procedure for building the emulator. This economical methodology still gives excellent error control, ∼5% near the edges of the domain of applicability of the emulator. A public domain code for the new emulator is released as part of the work presented in this paper.

  14. Use of local noise power spectrum and wavelet analysis in quantitative image quality assurance for EPIDs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soyoung [Department of Radiation Oncology, University Hospitals Case and Medical Center, Cleveland, Ohio 44106 (United States); Yan, Guanghua; Bassett, Philip; Samant, Sanjiv, E-mail: samant@ufl.edu [Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida 32608 (United States); Gopal, Arun [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 (United States)

    2016-09-15

    Purpose: To investigate the use of local noise power spectrum (NPS) to characterize image noise and wavelet analysis to isolate defective pixels and inter-subpanel flat-fielding artifacts for quantitative quality assurance (QA) of electronic portal imaging devices (EPIDs). Methods: A total of 93 image sets including custom-made bar-pattern images and open exposure images were collected from four iViewGT a-Si EPID systems over three years. Global quantitative metrics such as modulation transform function (MTF), NPS, and detective quantum efficiency (DQE) were computed for each image set. Local NPS was also calculated for individual subpanels by sampling region of interests within each subpanel of the EPID. The 1D NPS, obtained by radially averaging the 2D NPS, was fitted to a power-law function. The r-square value of the linear regression analysis was used as a singular metric to characterize the noise properties of individual subpanels of the EPID. The sensitivity of the local NPS was first compared with the global quantitative metrics using historical image sets. It was then compared with two commonly used commercial QA systems with images collected after applying two different EPID calibration methods (single-level gain and multilevel gain). To detect isolated defective pixels and inter-subpanel flat-fielding artifacts, Haar wavelet transform was applied on the images. Results: Global quantitative metrics including MTF, NPS, and DQE showed little change over the period of data collection. On the contrary, a strong correlation between the local NPS (r-square values) and the variation of the EPID noise condition was observed. The local NPS analysis indicated image quality improvement with the r-square values increased from 0.80 ± 0.03 (before calibration) to 0.85 ± 0.03 (after single-level gain calibration) and to 0.96 ± 0.03 (after multilevel gain calibration), while the commercial QA systems failed to distinguish the image quality improvement between the two

  15. A Novel Wireless Power Transfer-Based Weighed Clustering Cooperative Spectrum Sensing Method for Cognitive Sensor Networks.

    Science.gov (United States)

    Liu, Xin

    2015-10-30

    In a cognitive sensor network (CSN), the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs) becomes very large. In this paper, a novel wireless power transfer (WPT)-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF) energy of the primary node (PN) to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability.

  16. A Novel Wireless Power Transfer-Based Weighed Clustering Cooperative Spectrum Sensing Method for Cognitive Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2015-10-01

    Full Text Available In a cognitive sensor network (CSN, the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs becomes very large. In this paper, a novel wireless power transfer (WPT-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF energy of the primary node (PN to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability.

  17. Radiation safety for the emergency situation of the power plant accident. Radiation safety in society and its education

    International Nuclear Information System (INIS)

    Kosako, Toshiso

    2012-01-01

    Great East Japan Earthquake and Tsunamis, and following Fukushima Daiichi Nuclear Power Accident brought about great impact on society in Japan. Accident analysis of inside reactor was studied by reactor physics or reactor engineering knowledge, while dissipation of a large amount of radioactive materials outside reactor facilities, and radiation and radioactivity effects on people by way of atmosphere, water and soil were dealt with radiation safety or radiation protection. Due to extremely low frequency and experience of an emergency, there occurred a great confusion in the response of electric power company concerned, relevant regulating competent authorities, local government and media, and related scholars and researchers, which caused great anxieties amount affected residents and people. This article described radiation safety in the society and its education. Referring to actual examples, how radiation safety or radiation protection knowledge should be dealt with emergency risk management in the society was discussed as well as problem of education related with nuclear power, radiation and prevention of disaster and fostering of personnel for relevant people. (T. Tanaka)

  18. Production of a narrow band of 0.511-MeV radiation by use of the PHERMEX bremsstrahlung spectrum

    International Nuclear Information System (INIS)

    Stroscio, M.A.

    1976-06-01

    The pair production cross section is numerically integrated over a typical PHERMEX bremsstrahlung spectrum to obtain the probability of pair production in a target of nuclear charge Z, and density rho. The pair production cross section used herein is only approximate in that it neglects screening, neglects the Coulomb field for the emerging pair (first Born approximation), and neglects pair production by atomic electrons. In spite of these approximations, an order-of-magnitude estimate of the amount of 0.511-MeV radiation produced by a typical pulse is still given

  19. A novel power harmonic analysis method based on Nuttall-Kaiser combination window double spectrum interpolated FFT algorithm

    Science.gov (United States)

    Jin, Tao; Chen, Yiyang; Flesch, Rodolfo C. C.

    2017-11-01

    Harmonics pose a great threat to safe and economical operation of power grids. Therefore, it is critical to detect harmonic parameters accurately to design harmonic compensation equipment. The fast Fourier transform (FFT) is widely used for electrical popular power harmonics analysis. However, the barrier effect produced by the algorithm itself and spectrum leakage caused by asynchronous sampling often affects the harmonic analysis accuracy. This paper examines a new approach for harmonic analysis based on deducing the modifier formulas of frequency, phase angle, and amplitude, utilizing the Nuttall-Kaiser window double spectrum line interpolation method, which overcomes the shortcomings in traditional FFT harmonic calculations. The proposed approach is verified numerically and experimentally to be accurate and reliable.

  20. Measurement of a Peak in the Cosmic Microwave Background Power Spectrum from the North American test flight of BOOMERANG

    CERN Document Server

    Mauskopf, P D; De Bernardis, P; Bock, J J; Borrill, J; Boscaleri, A; Crill, B P; De Gasperis, G; De Troia, G; Farese, P; Ferreira, P G; Ganga, K; Giacometti, M; Hanany, S; Hristov, V V; Iacoangeli, A; Jaffe, A H; Lange, A E; Lee, A T; Masi, S; Melchiorri, A; Melchiorri, F; Miglio, L; Montroy, T; Netterfield, C B; Pascale, E; Piacentini, F; Richards, P L; Romeo, G; Ruhl, J E; Scannapieco, E S; Scaramuzzi, F; Stompor, R; Vittorio, N

    2000-01-01

    We describe a measurement of the angular power spectrum of anisotropies in the Cosmic Microwave Background (CMB) from 0.3 degrees to ~10 degrees from the North American test flight of the BOOMERANG experiment. BOOMERANG is a balloon-borne telescope with a bolometric receiver designed to map CMB anisotropies on a Long Duration Balloon flight. During a 6-hour test flight of a prototype system in 1997, we mapped > 200 square degrees at high galactic latitudes in two bands centered at 90 and 150 GHz with a resolution of 26 and 16.6 arcmin FWHM respectively. Analysis of the maps gives a power spectrum with a peak at angular scales of ~1 degree with an amplitude ~70 uK.

  1. Measurement of a peak in the cosmic microwave background power spectrum from the North American test flight of Boomerang

    International Nuclear Information System (INIS)

    Mauskopf, P.D.; Ade, P.A.R.; Bock, J.J.; Borrill, J.; Boscaleri, A.; Crill, B.P.; Bernardis, P. de; DeGasperis, G.; De Troia, G.; Farese, P.; Ferreira, P.G.; Ganga, K.; Giacometti, M.; Hanany, S.; Hristov, V.V.; Iacoangeli, A.; Jaffe, A.H.; Lange, A.E.; Lee, A.T.; Masi, S.; Melchiorri, A.; Melchiorri, F.; Miglio, L.; Montroy, T.; Netterfield, C.B.; Pascale, E.; Piacentini, F.; Richards, P.L.; Romeo, G.; Ruhl, J.E.; Scannapieco, E.; Scaramuzzi, F.; Stompor, R.; Vittorio, N.

    1999-01-01

    We describe a measurement of the angular power spectrum of anisotrophies in the Cosmic Microwave Background (CMB) from 0.2 deg to approx. 10 deg. from the test flight of the BOOMERANG experiment. BOOMERANG is a balloon-borne telescope with a bolometric receiver designed to map CMB anisotrophies on a Long Duration Balloon flight. During a 6-hour test flight of a prototype system in 1997, we mapped > 200 square degrees at high galactic latitudes in two bands centered at 90 and 150 GHz with a resolution of 26 and 16.6 arcmin FWHM respectively. Analysis of the maps gives a power spectrum with a peak at angular scales of approx. 1 deg. with an amplitude of approx. 70-muKcmb

  2. Planck intermediate results LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters

    DEFF Research Database (Denmark)

    Aghanim, N.; Akrami, Y.; Ashdown, M.

    2017-01-01

    never before been measured to cosmic-variance level precision. We have investigated these shifts to determine whether they are within the range of expectation and to understand their origin in the data. Taking our parameter set to be the optical depth of the reionized intergalactic medium τ, the baryon...... density ωb, the matter density ωm, the angular size of the sound horizon θ∗, the spectral index of the primordial power spectrum, ns, and Ase- 2τ (where As is the amplitude of the primordial power spectrum), we have examined the change in best-fit values between a WMAP-like large angular-scale data set...

  3. A Measurement of the Angular Power Spectrum of the CMB from l = 100 to 400

    Science.gov (United States)

    Miller, A. D.; Caldwell, R.; Devlin, M. J.; Dorwart, W. B.; Herbig, T.; Nolta, M. R.; Page, L. A.; Puchalla, J.; Torbet, E.; Tran, H. T.

    2000-05-01

    We report on a measurement of the angular spectrum of the CMB between l 100 and l 400 made at 144 GHz from Cerro Toco in the Chilean altiplano. When the new data are combined with previous data at 30 and 40 GHz, taken with the same instrument observing the same section of sky, we find: 1) a rise in the angular spectrum to a maximum with δ Tl 85 μ K at l 200 and a fall at l>300, thereby localizing the peak near l 200; and 2) that the anisotropy at l 200 has the spectrum of the CMB. Cosmological implications are discussed.

  4. Spectrum of perturbations arising in a nonsingular model of the Universe with the initial de Sitter stage and the anisotropy of the relic radiation

    International Nuclear Information System (INIS)

    Starobinskij, A.A.

    1983-01-01

    Spectrum of primary adiabatic perturbations and gravitational waves formed in the proposed earlier by the author nonsingular cosmological model with the initial quantum de Sitter stage generated by gravitational vacuum polarization is calculated. The spectrum of gravitational waves appears to be flat, the spectrum of adiabatic perturbations is close to the flat one. The large-scale anisotropy of the temperature T of the relic electromagnetic radiation due to these fluctuations is found. It is shown that the most promising way to detect the anisotropy in the case of a flat perturbation spectrum is the investigation of correlations of ΔT/T at the angles of 5 deg - 10 deg

  5. Temperature and Solar Radiation Effects on Photovoltaic Panel Power

    OpenAIRE

    Karafil, Akif; Ozbay, Harun; Kesler, Metin

    2016-01-01

    Solar energy is converted to electrical energy directly by semi-conductors materials used in Photovoltaic (PV) panels. Although, there has been great advancements in semi-conductor material technology in recent years panel efficiency is very lower. There are many factors affecting the panel efficiency such as tilt angle, shading, dust, solar radiation level, temperature and wiring losses. Among these factors, solar radiation level and temperature are more prominent. The solar radiation level ...

  6. What next-generation 21 cm power spectrum measurements can teach us about the epoch of reionization

    International Nuclear Information System (INIS)

    Pober, Jonathan C.; Morales, Miguel F.; Liu, Adrian; McQuinn, Matthew; Parsons, Aaron R.; Dillon, Joshua S.; Hewitt, Jacqueline N.; Tegmark, Max; Aguirre, James E.; Bowman, Judd D.; Jacobs, Daniel C.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Werthimer, Dan J.

    2014-01-01

    A number of experiments are currently working toward a measurement of the 21 cm signal from the epoch of reionization (EoR). Whether or not these experiments deliver a detection of cosmological emission, their limited sensitivity will prevent them from providing detailed information about the astrophysics of reionization. In this work, we consider what types of measurements will be enabled by the next generation of larger 21 cm EoR telescopes. To calculate the type of constraints that will be possible with such arrays, we use simple models for the instrument, foreground emission, and the reionization history. We focus primarily on an instrument modeled after the ∼0.1 km 2 collecting area Hydrogen Epoch of Reionization Array concept design and parameterize the uncertainties with regard to foreground emission by considering different limits to the recently described 'wedge' footprint in k space. Uncertainties in the reionization history are accounted for using a series of simulations that vary the ionizing efficiency and minimum virial temperature of the galaxies responsible for reionization, as well as the mean free path of ionizing photons through the intergalactic medium. Given various combinations of models, we consider the significance of the possible power spectrum detections, the ability to trace the power spectrum evolution versus redshift, the detectability of salient power spectrum features, and the achievable level of quantitative constraints on astrophysical parameters. Ultimately, we find that 0.1 km 2 of collecting area is enough to ensure a very high significance (≳ 30σ) detection of the reionization power spectrum in even the most pessimistic scenarios. This sensitivity should allow for meaningful constraints on the reionization history and astrophysical parameters, especially if foreground subtraction techniques can be improved and successfully implemented.

  7. A computer program for estimating the power-density spectrum of advanced continuous simulation language generated time histories

    Science.gov (United States)

    Dunn, H. J.

    1981-01-01

    A computer program for performing frequency analysis of time history data is presented. The program uses circular convolution and the fast Fourier transform to calculate power density spectrum (PDS) of time history data. The program interfaces with the advanced continuous simulation language (ACSL) so that a frequency analysis may be performed on ACSL generated simulation variables. An example of the calculation of the PDS of a Van de Pol oscillator is presented.

  8. The power of MAIC and the challenges for radiation protection

    International Nuclear Information System (INIS)

    Gellermann, R.

    2016-01-01

    The ''radioactive'' radiation has proved to be a medial usable theme of the anti-nuclear movement in recent decades. This has caused significant political changes in Germany. The article tries to outline a phenomenon that can be described as Medial-Antinuclear Interests Complex (MAIC). The views on radiation and radiation risks propagated by MAIC to the public have demonized the disposal of radioactive waste. This results in situations, which tacitly accept unnecessary risks for the population. A new approach for raising the public awareness in particular regarding long-term safety and radiation protection is possible and necessary.

  9. The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectrum at 148 AND 218 GHz from the 2008 Southern Survey

    Science.gov (United States)

    Das, Sudeep; Marriage, Tobias A.; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; Battistelli, Elia A.; Bond, J. Richard; Brown, Ben; hide

    2010-01-01

    We present measurements of the cosmic microwave background (CMB) power spectrum made by the Atacama Cosmology Telescope at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. Our results dearly show the second through the seventh acoustic peaks in the CMB power spectrum. The measurements of these higher-order peaks provide an additional test of the ACDM cosmological model. At l > 3000, we detect power in excess of the primary anisotropy spectrum of the CMB. At lower multipoles 500 < l < 3000, we find evidence for gravitational lensing of the CMB in the power spectrum at the 2.8(sigma) level. We also detect a low level of Galactic dust in our maps, which demonstrates that we can recover known faint, diffuse signals.

  10. Spectrum of the cosmic background radiation: early and recent measurements from the White Mountain Research Station

    International Nuclear Information System (INIS)

    Smoot, G.F.

    1985-09-01

    The White Mountain Research Station has provided a support facility at a high, dry, radio-quiet site for measurements that have established the blackbody character of the cosmic microwave background radiation. This finding has confirmed the interpretation of the radiation as a relic of the primeval fireball and helped to establish the hot Big Bang theory as the standard cosmological model

  11. An optimally weighted estimator of the linear power spectrum disentangling the growth of density perturbations across galaxy surveys

    International Nuclear Information System (INIS)

    Sorini, D.

    2017-01-01

    Measuring the clustering of galaxies from surveys allows us to estimate the power spectrum of matter density fluctuations, thus constraining cosmological models. This requires careful modelling of observational effects to avoid misinterpretation of data. In particular, signals coming from different distances encode information from different epochs. This is known as ''light-cone effect'' and is going to have a higher impact as upcoming galaxy surveys probe larger redshift ranges. Generalising the method by Feldman, Kaiser and Peacock (1994) [1], I define a minimum-variance estimator of the linear power spectrum at a fixed time, properly taking into account the light-cone effect. An analytic expression for the estimator is provided, and that is consistent with the findings of previous works in the literature. I test the method within the context of the Halofit model, assuming Planck 2014 cosmological parameters [2]. I show that the estimator presented recovers the fiducial linear power spectrum at present time within 5% accuracy up to k ∼ 0.80 h Mpc −1 and within 10% up to k ∼ 0.94 h Mpc −1 , well into the non-linear regime of the growth of density perturbations. As such, the method could be useful in the analysis of the data from future large-scale surveys, like Euclid.

  12. KL Estimation of the Power Spectrum Parameters from the Angular Distribution of Galaxies in Early SDSS Data

    CERN Document Server

    Szalay, Alexander S.; Matsubara, Takahiko; Scranton, Ryan; Vogeley, Michael S.; Connolly, Andrew; Dodelson, Scott; Eisenstein, Daniel; Frieman, Joshua A.; Gunn, James E.; Hui, Lam; Johnston, David; Kent, Stephen M.; Kerscher, Martin; Loveday, Jon; Meiksin, Avery; Narayanan, Vijay; Nichol, Robert C.; O'Connell, Liam; Pope, Adrian; Scoccimarro, Roman; Sheth, Ravi K.; Stebbins, Albert; Strauss, Michael A.; Szapudi, Istvan; Tegmark, Max; Zehavi, Idit; Annis, James; Bahcall, Neta A.; Brinkmann, Jon; Csabai, Istvan; Fukugita, Masataka; Hennessy, Greg; Hogg, David W.; Ivezic, Zeljko; Knapp, Gillian R.; Kunszt, Peter Z.; Lamb, Don Q.; Lee, Brian C.; Lupton, Robert H.; Munn, Jeffrey R.; Peoples, John; Pier, Jeffrey R.; Rockosi, Constance; Schlegel, David; Stoughton, Christopher; Tucker, Douglas L.; Yanny, Brian; York, Donald G.; Szalay, Alexander S.; Jain, Bhuvnesh; Matsubara, Takahiko; Scranton, Ryan; Vogeley, Michael S.; Connolly, Andrew; Dodelson, Scott; Eisenstein, Daniel; Frieman, Joshua A.; Gunn, James E.; Hui, Lam; Johnston, David; Kent, Stephen; Kerscher, Martin; Loveday, Jon; Meiksin, Avery; Narayanan, Vijay; Nichol, Robert C.; Connell, Liam O'; Pope, Adrian; Scoccimarro, Roman; Sheth, Ravi K.; Stebbins, Albert; Strauss, Michael A.; Szapudi, Istvan; Tegmark, Max; Zehavi, Idit

    2002-01-01

    We present measurements of parameters of the 3-dimensional power spectrum of galaxy clustering from 222 square degrees of early imaging data in the Sloan Digital Sky Survey. The projected galaxy distribution on the sky is expanded over a set of Karhunen-Loeve eigenfunctions, which optimize the signal-to-noise ratio in our analysis. A maximum likelihood analysis is used to estimate parameters that set the shape and amplitude of the 3-dimensional power spectrum. Our best estimates are Gamma=0.188 +/- 0.04 and sigma_8L = 0.915 +/- 0.06 (statistical errors only), for a flat Universe with a cosmological constant. We demonstrate that our measurements contain signal from scales at or beyond the peak of the 3D power spectrum. We discuss how the results scale with systematic uncertainties, like the radial selection function. We find that the central values satisfy the analytically estimated scaling relation. We have also explored the effects of evolutionary corrections, various truncations of the KL basis, seeing, sam...

  13. The speech-based envelope power spectrum model (sEPSM) family: Development, achievements, and current challenges

    DEFF Research Database (Denmark)

    Relano-Iborra, Helia; Chabot-Leclerc, Alexandre; Scheidiger, Christoph

    2017-01-01

    have extended the predictive power of the original model to a broad range of conditions. This contribution presents the most recent developments within the sEPSM “family:” (i) A binaural extension, the B-sEPSM [Chabot-Leclerc et al. (2016). J. Acoust. Soc. Am. 140(1), 192-205] which combines better......Intelligibility models provide insights regarding the effects of target speech characteristics, transmission channels and/or auditory processing on the speech perception performance of listeners. In 2011, Jørgensen and Dau proposed the speech-based envelope power spectrum model [sEPSM, Jørgensen...

  14. Instantaneous response spectrum in seismic testing of nuclear power plant equipment

    International Nuclear Information System (INIS)

    Morrone, A.

    1977-01-01

    Seismic response spectra, as used in seismic analyses, give the maximum responses of single degree of freedom oscillators without consideration of the different time in the seismic time history at which each of the maximum responses occur. For response spectrum seismic analysis, the use of time-independent maximum responses is appropriate. The time dependece is considered in a statistical manner, for multi-degree of freedom systems, usually by combining the modal effects by the square root of the sum of the squares. For seismic testing of electrical equipment. IEEE Std. 344-1975 makes use of the response spectrum to define the input motion of the shake table. One of the basic requirements is that the test response spectrum (TRS) that is, the response spectrum produced by the shake table motion, should envelop the required response spectrum (RRS) calculated from the building analysis at the support point of the equipment being tested. This paper presents the concept of instantaneous response spectrum (IRS) as the response of single degree of freedom oscillators at a particular time. It demonstrates that a shake table random motion whose standard TRS envelops the RRS does not necessarily satisfy the enveloping requirement instantaneously. (Auth.)

  15. Substantiation of the radiation monitoring scope in the region of nuclear power plant location

    Energy Technology Data Exchange (ETDEWEB)

    Zykova, A S; Zhakov, Yu A; Yambrovskii, Ya M

    1977-12-01

    To provide radiation safety of the population in the region of nuclear power plant location, it is necessary to define the character and quantity of radiation monitoring. On the basis of radiation monitoring of effluents from operating nuclear power plants it is found that the effluents can be registered at a distance of 5-7 km from the plant. The quantity of sample analysis of the main enviromental objectives must provide an exact definition of the content of radioactive substances produced by radioactive fallouts and effluents from nuclear power plants.

  16. Substantiation of the radiation monitoring scope in the region of nuclear power plant location

    International Nuclear Information System (INIS)

    Zykova, A.S.; Zhakov, Yu.A.; Jambrovskij, Ya.M.

    1977-01-01

    To provide radiation safety of the population in the region of nuclear power plant location, it is necessary to define the character and quantity of radiation monitoring. On the basis of radiation monitoring of flowouts from operating nuclear power plants it is found that the flowouts can be registered at a distance of 5-7 km from the plant. The quantity of sample analysis of the main enviromental objectives must provide an exact definition of the content of radioactive substances produced by radioactive fallouts and flowouts from nuclear power plants

  17. Geant4 simulation of ion chambers response to 60Co spectrum of LNMRI/IRD Shepherd 81-14D Radiator

    Science.gov (United States)

    Queiroz Filho, P. P.; Da Silva, C. N. M.

    2018-03-01

    The National Ionizing Radiation Metrology Laboratory of the Radioprotection and Dosimetry Institute (LNMRI / IRD) has recently acquired a Shepherd 81-14D Radiator. In this work we simulate, using Geant4, the behavior with the inverse square law radiation for 3 models of PTW spherical chambers used in radioprotection, a relevant information to planning the measurements. We did the corrections for the attenuation and scattering in the air for each distance, where we used the 60Co spectrum simulated previously.

  18. Real-time assessment of radiation burden of the population in the vicinity of nuclear power plants during radiation accidents

    International Nuclear Information System (INIS)

    Stubna, M.

    1986-01-01

    The method is presented of real-time calculation of the radiation situation (dose equivalents) in the environs of a nuclear power plant in case of an accident involving the release of radioactive substances into the atmosphere, this for the potentially most significant exposure paths in the initial and medium stages of the accident. The method allows to take into consideration the time dependence of the rate of radioactive substance release from the nuclear power plant and to assess the development in space and time of the radiation situation in the environs of the nuclear power plant. The use of the method is illustrated by an example of the calculation of the development of the radiation situation for model accidents of a hypothetical PWR with containment. (author)

  19. Synchrotron radiation

    International Nuclear Information System (INIS)

    Farge, Y.

    1982-01-01

    Synchrotron radiation is produced by electrons accelerated near the velocity of light in storage rings, which are used for high energy Physics experiments. The radiation light exhibits a wide spread continuous spectrum ranging from 01 nanometre to radiofrequency. This radiation is characterized by high power (several kilowatts) and intense brightness. The paper recalls the emission laws and the distinctive properties of the radiation, and gives some of the numerous applications in research, such as molecular spectroscopy, X ray diffraction by heavy proteins and X ray microlithography in LVSI circuit making [fr

  20. Spectrum of chromosomal aberrations in peripheral lymphocytes of hospital workers occupationally exposed to low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Maffei, Francesca; Angelini, Sabrina; Forti, Giorgio Cantelli; Violante, Francesco S.; Lodi, Vittorio; Mattioli, Stefano; Hrelia, Patrizia

    2004-01-01

    Chromosome aberrations frequency was estimated in peripheral lymphocytes from hospital workers occupationally exposed to low levels of ionizing radiation and controls. Chromosome aberrations yield was analyzed by considering the effects of dose equivalent of ionizing radiation over time, and of confounding factors, such as age, gender and smoking status. Frequencies of aberrant cells and chromosome breaks were higher in exposed workers than in controls (P=0.007, and P=0.001, respectively). Seven dicentric aberrations were detected in the exposed group and only three in controls, but the mean frequencies were not significantly different. The dose equivalent to whole body of ionizing radiation (Hwb) did appear to influence the spectrum of chromosomal aberrations when the exposed workers were subdivided by a cut off at 50 mSv. The frequencies of chromosome breaks in both subgroups of workers were significantly higher than in controls (≤50 mSv, P=0.041; >50 mSv, P=0.018). On the other hand, the frequency of chromatid breaks observed in workers with Hwb >50 mSv was significantly higher than in controls (P=0.015) or workers with Hwb ≤50 mSv (P=0.046). Regarding the influence of confounding factors on genetic damage, smoking status and female gender seem to influence the increase in chromosome aberration frequencies in the study population. Overall, these results suggested that chromosome breaks might provide a good marker for assessing genetic damage in populations exposed to low levels of ionizing radiation

  1. Calorimeter with capacitance transducer for measurement of SHF radiation power

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Onishchenko, I.N.; Uskov, V.V.

    2005-01-01

    A calorimeter of simple design for measuring total energy of microwave radiation is described. It operates in the energy range of 0.5 J to 6 kJ; water is used as the absorbing material. A capacitive probe is applied to measure changes in the water volume. The energy absorption factor of electromagnetic radiation in the range of 3-60 GHz is at least 0.9. The calorimeter is insensitive to radiation field nonuniformity over the absorber volume. The calorimeter is intended for measuring the radiation energy of beam plasma generators and generators with dielectric structure. Its design makes it possible to simultaneously measure the radiation energy and monitor the beam current [ru

  2. A framework for noise-power spectrum analysis of multidimensional images

    International Nuclear Information System (INIS)

    Siewerdsen, J.H.; Cunningham, I.A.; Jaffray, D.A.

    2002-01-01

    A methodological framework for experimental analysis of the noise-power spectrum (NPS) of multidimensional images is presented that employs well-known properties of the n-dimensional (nD) Fourier transform. The approach is generalized to n dimensions, reducing to familiar cases for n=1 (e.g., time series) and n=2 (e.g., projection radiography) and demonstrated experimentally for two cases in which n=3 (viz., using an active matrix flat-panel imager for x-ray fluoroscopy and cone-beam CT to form three-dimensional (3D) images in spatiotemporal and volumetric domains, respectively). The relationship between fully nD NPS analysis and various techniques for analyzing a 'central slice' of the NPS is formulated in a manner that is directly applicable to measured nD data, highlights the effects of correlation, and renders issues of NPS normalization transparent. The spatiotemporal NPS of fluoroscopic images is analyzed under varying conditions of temporal correlation (image lag) to investigate the degree to which the NPS is reduced by such correlation. For first-frame image lag of ∼5-8 %, the NPS is reduced by ∼20% compared to the lag-free case. A simple model is presented that results in an approximate rule of thumb for computing the effect of image lag on NPS under conditions of spatiotemporal separability. The volumetric NPS of cone-beam CT images is analyzed under varying conditions of spatial correlation, controlled by adjustment of the reconstruction filter. The volumetric NPS is found to be highly asymmetric, exhibiting a ramp characteristic in transverse planes (typical of filtered back-projection) and a band-limited characteristic in the longitudinal direction (resulting from low-pass characteristics of the imager). Such asymmetry could have implications regarding the detectability of structures visualized in transverse versus sagittal or coronal planes. In all cases, appreciation of the full dimensionality of the image data is essential to obtaining

  3. UTILITY OF A WIDE SPECTRUM LIGHT METER AS AN UNDERWATER SENSOR OF PHOTOSYNTHETICALLY ACTIVE RADIATION (PAR)

    Science.gov (United States)

    The strong attenuation of infra red wavelengths (>700 nm) in coastal waters is suggestive that some instruments with broad spectral responses might be useful, inexpensive substitutes for PAR sensors in studies of estuarine plant dynamics. Wide spectrum (350-1100 nm) light intensi...

  4. Monte-Carlo study on primary knock-on atom energy spectrum produced by neutron radiation

    International Nuclear Information System (INIS)

    Zhou Wei; Liu Yongkang; Deng Yongjun; Ma Jimin

    2012-01-01

    Computational method on energy distribution of primary knock-on atom (PKA) produced by neutron radiation was built in the paper. Based on the DBCN card in MCNP, reaction position, reaction type and energy transfer between neutrons and atoms were recorded. According to statistic of these data, energy and space distributions of PKAs were obtained. The method resolves preferably randomicity of random number and efficiency of random sampling computation. The results show small statistical fluctuation and well statistical. Three-dimensional figure of energy and space distribution of PKAs were obtained, which would be important to evaluate radiation capability of materials and study radiation damage by neutrons. (authors)

  5. Relative Power of Specific EEG Bands and Their Ratios during Neurofeedback Training in Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Yao eWang

    2016-01-01

    Full Text Available Neurofeedback is a mode of treatment that is potentially useful for improving self-regulation skills in persons with autism spectrum disorder. We proposed that operant conditioning of EEG in neurofeedback mode can be accompanied by changes in the relative power of EEG bands. However, the details on the change of the relative power of EEG bands during neurofeedback training course in autism are not yet well explored. In this study, we analyzed the EEG recordings of children diagnosed with autism and enrolled in a prefrontal neurofeedback treatment course. The protocol used in this training was aimed at increasing the ability to focus attention, and the procedure represented the wide band EEG amplitude suppression training along with upregulation of the relative power of gamma activity. Quantitative EEG analysis was completed for each session of neurofeedback using wavelet transform to determine the relative power of gamma and theta/beta ratio, and further to detect the statistical changes within and between sessions. We found a linear decrease of theta/beta ratio and a liner increase of relative power of gamma activity over 18 weekly sessions of neurofeedback in 18 high functioning children with autism. The study indicates that neurofeedback is an effective method for altering EEG characteristics associated with the autism spectrum disorder. Also, it provides information about specific changes of EEG activities and details the correlation between changes of EEG and neurofeedback indexes during the course of neurofeedback. This pilot study contributes to the development of more effective approaches to EEG data analysis during prefrontal neurofeedback training in autism.Key word: Electroencephalography, Neurofeedback, Autism Spectrum Disorder, Gamma activity, EEG bands’ ratios

  6. Radiation Tolerant Low Power Precision Time Source, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The availability of small, low power atomic clocks is now a reality for ground-based and airborne navigation systems. Kernco's Low Power Precision Time Source...

  7. Low Cost Radiator for Fission Power Thermal Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA Glenn Research Center (GRC) is developing fission power system technology for future space transportation and surface power applications. The early systems are...

  8. Low Cost Radiator for Fission Power Thermal Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA GRC is developing fission power system technology for future space transportation and surface power applications. The early systems are envisioned in the 10 to...

  9. Active control of radiated sound power from a baffled, rectangular panel

    DEFF Research Database (Denmark)

    Mørkholt, Jakob

    1996-01-01

    with an array of eleven microphones in front of the panel, is very close to minimising the actual radiated sound power. Practical experiments where such an array estimate has been minimised using the filtered X LMS algorithm have shown that substantial reductions of radiated sound power can be obtained over......Active control of radiated sound power from a rectangular baffled panel by minimisation of an accurate power estimate, using piezoceramic actuators, has been investigated. Computer simulations have shown that minimising a power estimate obtained by discretised integration of the far field intensity...... a broad frequency range using few piezoceramic actuators, provided that an accurate estimate of the sound power is available for minimisation....

  10. Stochastic control of living systems: Normalization of physiological functions by magnetic field with 1/f power spectrum

    Science.gov (United States)

    Muzalevskaya, N. I.; Uritsky, V. M.; Korolyov, E. V.; Reschikov, A. M.; Timoshinov, G. P.

    1993-08-01

    For the first time correcting stochastic control of physiological status of living systems by weak low-frequency fluctuating magnetic field with 1/f spectrum (1/f MF) is demonstrated experimentally. The correction was observed in all main systems, including cardiovascular, central nervous, immunity systems of experimental animals. Pronounced prophylactic and therapeutic influence of 1/f MF on malignant growth and radiation disease was discovered. Theoretical interpretation of the results obtained is based upon the notion of fundamental role of 1/f fluctuations in homeostasis of living systems.

  11. Organisation of radiation protection at Sizewell Nuclear Power Plant in the UK. Report n. 290

    International Nuclear Information System (INIS)

    Crouail, P.; Jeannin, B.; Lefaure, C.; Panisset, L.

    2004-01-01

    This report first describes the organisation and management of radiation protection at Sizewell Nuclear Power Plant (UK): general organisation, organisation of the radiation protection department, goals of radiation protection at plant and corporate levels, measurement of radiation protection performance, presence of health physicists in the plant, national and international comparisons. Then, it addresses the training of workers and radiation protection specialists with respect to radiation protection, the management of zoning and surveillance (action to address the radiation risk and the contamination risk). It describes the relationships of Health physicists with contractors and other workers teams, and the relationships with safety authorities. It indicates the different outages of this organisation: general planning, information sheets, physicists work planning, reviews and meetings. It describes the management of personal dosimetry with radiation work permits and actions aimed at the reduction of doses during various operations. The last part proposes a feedback experience report and evokes the generated database, and addresses events reporting

  12. Pulse shape and spectrum of coherent diffraction-limited transition radiation from electron beams

    Energy Technology Data Exchange (ETDEWEB)

    van Tilborg, J.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2003-12-20

    The electric field in the temporal and spectral domain of coherent diffraction-limited transition radiation is studied. An electron bunch, with arbitrary longitudinal momentum distribution, propagating at normal incidence to a sharp metal-vacuum boundary with finite transverse dimension is considered. A general expression for the spatiotemporal electric field of the transition radiation is derived, and closed-form solutions for several special cases are given. The influence of parameters such as radial boundary size, electron momentum distribution, and angle of observation on the waveform (e.g., radiation pulse length and amplitude) are discussed. For a Gaussian electron bunch, the coherent radiation waveform is shown to have a single-cycle profile. Application to a novel THz source based on a laser-driven accelerator is discussed.

  13. Conducted and radiated emission tests for fault tolerant power distribution system ECPS-100 developed for PHWR700MW C and I

    International Nuclear Information System (INIS)

    Das, Shantanu; Yadav, Ramnayan

    2016-01-01

    Electronics devices when designed to meet specific requirements, the designers do not generally envisage the amount of electromagnetic interference that this particular device may give as power line conducted noise and radiated noise. After the product is developed, the quantification of the same is carried out in certified EMI-EMC set-up to get these figures of conducted emissions (CE) and radiated emissions (RE), and its mitigation as per limits of the chosen standard. In the latest TM embodiment of Fault Tolerant Power Distribution System ECPS"T"M (Electronics Corporation Power Supply) developed for NPCIL (PHWR700MW plant) we carried out CE and RE tests and quantified the spectrum obtained for CE and RE, and mitigated them as per CISPR22 standards. In this short article we bring out the CE and RE results of the latest product ECPS, done at EMI-EMC Centre of ECIL Hyderabad. (author)

  14. Exposed persons at the Chernobyl Atomic Power Station accident: acute radiation effects

    International Nuclear Information System (INIS)

    Gus'kova, A.K.; Baranov, A.E.; Barabanova, A.V.

    1987-01-01

    Observation made over 115 patients with acute radiation sickness due to exposure external γ- and β-rays confirmed high efficiency of the earlier proposed principles of prognostication of the degree of severity by clinical manifestations of the primary disease response and those of separate syndromes, using the methods of hematological and cytogenetic analyses. Out of 115 victims, 56 persons had radiation burns (RB), 17 intestinal syndrome (IS), 80 - oropharengeal syndrome (ORS), 7 - interstitial radiation pneumonitis (IRP). In thanatogenesis, of prime importance were: RB (more than 40% of the body surface) - 19 persons and IRP - 7 persons. A severe course of intestinal and oropharengeal syndromes was combined with other fatal manifestations of radiation injury. Early isolation of patients (2-4 stages), selective decontamination of the intestine, prescription of a wide spectrum antibiotics, antimycotic and antiviral drugs, as well as γ-globulin could practically remove the risk of the development of fatal infectious complications during a medullary andtransitory forms of radiation sickness

  15. High-z objects and cold dark matter cosmogonies - Constraints on the primordial power spectrum on small scales

    Science.gov (United States)

    Kashlinsky, A.

    1993-01-01

    Modified cold dark matter (CDM) models were recently suggested to account for large-scale optical data, which fix the power spectrum on large scales, and the COBE results, which would then fix the bias parameter, b. We point out that all such models have deficit of small-scale power where density fluctuations are presently nonlinear, and should then lead to late epochs of collapse of scales M between 10 exp 9 - 10 exp 10 solar masses and (1-5) x 10 exp 14 solar masses. We compute the probabilities and comoving space densities of various scale objects at high redshifts according to the CDM models and compare these with observations of high-z QSOs, high-z galaxies and the protocluster-size object found recently by Uson et al. (1992) at z = 3.4. We show that the modified CDM models are inconsistent with the observational data on these objects. We thus suggest that in order to account for the high-z objects, as well as the large-scale and COBE data, one needs a power spectrum with more power on small scales than CDM models allow and an open universe.

  16. Low-Power Large-Area Radiation Detector for Space Science Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this task is to develop a low-power, large-area detectors from SiC, taking advantage of very low thermal noise characteristics and high radiation...

  17. Research on Intense Pulsed Power for Electromagnetic Radiation

    National Research Council Canada - National Science Library

    Collins, Carl

    2001-01-01

    .... Subsequent experiments using tunable x-rays from the synchrotron radiation source, SPring-8 showed that the triggering was initiated by photoionization of an electron from the L-shell surrounding the isomeric nucleus. A fraction of 0.2...

  18. High power radiation guiding systems for laser driven accelerators

    International Nuclear Information System (INIS)

    Cutolo, A.

    1985-01-01

    This paper reviews the main problems encountered in the design of an optical system for transmitting high fluence radiation in a laser driven accelerator. Particular attention is devoted to the analysis of mirror and waveguide systems. (orig.)

  19. Radiation protection and the development of nuclear power plants

    International Nuclear Information System (INIS)

    Bovard, P.; Fitoussi, L.

    1975-01-01

    Radiological hazards are defined. Following a short explanation of the International Commission on Radiation Protection's permissible values of exposure, some indicators are given about the component of natural radioactivity [fr

  20. Inflation with primordial broken power law spectrum as an alternative to the concordance cosmological model

    International Nuclear Information System (INIS)

    Pandolfi, Stefania; Giusarma, Elena; Lattanzi, Massimiliano; Melchiorri, Alessandro

    2010-01-01

    We consider cosmological models with a non-scale-invariant spectrum of primordial perturbations and assess whether they represent a viable alternative to the concordance ΛCDM model. We find that in the framework of a model selection analysis, the WMAP and 2dF data do not provide any conclusive evidence in favor of one or the other kind of model. However, when a marginalization over the entire space of nuisance parameters is performed, models with a modified primordial spectrum and Ω Λ =0 are strongly disfavored.

  1. Radiation damage in bioapatites: the ESR spectrum of irradiated dental enamel revisited

    International Nuclear Information System (INIS)

    Rossi, A.M.; Poupeau, G.

    1990-01-01

    We have studied the ESR spectrum of enamel from fossil vertebrate teeth perpendicular = 2.0026 and g longitudinal = 1.9975; and species B, having an orthorhombic symmetry with g 1 = 2.0032, g 2 = 2.0018 and g 3 = 1.9975. Center A is probably located at an OH - site of the hydroxyapatite lattice. Centre B could be a distorted centre A. (author)

  2. Development of optical spectrum acquisition with spectrophotometer for characterization of optical radiation sources

    International Nuclear Information System (INIS)

    Solano Vargas, Alvaro

    2013-01-01

    An improved process of the data acquisition system is developed with Pasco 750 interface and Pasco OS-8539 spectrophotometer. The optical spectrum and color temperature of incandescent sources available are obtained from the Laboratorio de Fotonica y Tecnologia Laser Aplicada. The procedures developed in the project are recommended to collect data and analyze results. The purchase of a new Software and the interface of Pasco is recommended to have a better operation and update [es

  3. Experimental determination of radiated internal wave power without pressure field data

    OpenAIRE

    Lee, Frank M.; Paoletti, M. S.; Swinney, Harry L.; Morrison, P. J.

    2014-01-01

    We present a method to determine, using only velocity field data, the time-averaged energy flux $\\left$ and total radiated power $P$ for two-dimensional internal gravity waves. Both $\\left$ and $P$ are determined from expressions involving only a scalar function, the stream function $\\psi$. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method...

  4. The design and qualification of radiation tolerant equipment for the nuclear power industry

    International Nuclear Information System (INIS)

    Sharp, R.; Pater, L.

    1995-01-01

    The nuclear power industry has many demands for equipment tolerant to the damaging effects of radiation. The wide variety of applications, including components handling, tooling, monitoring and communications, means that a systematic evaluation of the effects of radiation on materials and components used for equipment in radioactive facilities is often required. This paper describes the various effects of radiation on equipment, and discusses how to manage them when using and designing equipment. (Author)

  5. A new algorithm to determine the total radiated power at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gloeggler, Stephan; Bernert, Matthias; Eich, Thomas [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Collaboration: The ASDEX Upgrade Team

    2016-07-01

    Radiation is an essential part of the power balance in a fusion plasma. In future fusion devices about 90% of the power will have to be dissipated, mainly by radiation. For the development of an appropriate operational scenario, information about the absolute level of plasma radiation (P{sub rad,tot}) is crucial. Bolometers are used to measure the radiated power, however, an algorithm is required to derive the absolute power out of many line-integrated measurements. The currently used algorithm (BPD) was developed for the main chamber radiation. It underestimates the divertor radiation as its basic assumptions are not satisfied in this region. Therefore, a new P{sub rad,tot} algorithm is presented. It applies an Abel inversion on the main chamber and uses empirically based assumptions for poloidal asymmetries and the divertor radiation. To benchmark the new algorithm, synthetic emissivity profiles are used. On average, the new Abel inversion based algorithm deviates by only 10% from the nominal synthetic value while BPD is about 25% too low. With both codes time traces of ASDEX Upgrade discharges are calculated. The analysis of these time traces shows that the underestimation of the divertor radiation can have significant consequences on the accuracy of BPD while the new algorithm is shown to be stable.

  6. Achievable rate of spectrum sharing cognitive radio systems over fading channels at low-power regime

    KAUST Repository

    Sboui, Lokman; Rezki, Zouheir; Alouini, Mohamed-Slim

    2014-01-01

    the previously achieved rate at the low-power regime. Interestingly, we show that the low-power regime analysis provides a specific insight into the maximum achievable rate behavior of CR that has not been reported by previous studies.

  7. Upper limits on the 21 cm power spectrum at z = 5.9 from quasar absorption line spectroscopy

    Science.gov (United States)

    Pober, Jonathan C.; Greig, Bradley; Mesinger, Andrei

    2016-11-01

    We present upper limits on the 21 cm power spectrum at z = 5.9 calculated from the model-independent limit on the neutral fraction of the intergalactic medium of x_{H I} chain Monte Carlo Epoch of Reionization analysis code, we explore the probability distribution of 21 cm power spectra consistent with this constraint on the neutral fraction. We present 99 per cent confidence upper limits of Δ2(k) limit dependent on the sampled k mode. This limit can be used as a null test for 21 cm experiments: a detection of power at z = 5.9 in excess of this value is highly suggestive of residual foreground contamination or other systematic errors affecting the analysis.

  8. Delay analysis of a point-to-multipoint spectrum sharing network with CSI based power allocation

    KAUST Repository

    Khan, Fahd Ahmed; Tourki, Kamel; Alouini, Mohamed-Slim; Qaraqe, Khalid A.

    2012-01-01

    and has Nakagami-m fading. A constraint on the peak transmit power of the secondary user transmitter (SU-Tx) is also considered in addition to the peak interference power constraint. Based on the constraints, a power allocation scheme which requires

  9. Laboratory simulation of interplanetary ultraviolet radiation (broad spectrum) and its effects on Deinococcus radiodurans

    Science.gov (United States)

    Paulino-Lima, Ivan Gláucio; Pilling, Sérgio; Janot-Pacheco, Eduardo; de Brito, Arnaldo Naves; Barbosa, João Alexandre Ribeiro Gonçalves; Leitão, Alvaro Costa; Lage, Claudia de Alencar Santos

    2010-08-01

    The radiation-resistant bacterium Deinococcus radiodurans was exposed to a simulated interplanetary UV radiation at the Brazilian Synchrotron Light Laboratory (LNLS). Bacterial samples were irradiated on different substrates to investigate the influence of surface relief on cell survival. The effects of cell multi-layers were also investigated. The ratio of viable microorganisms remained virtually the same (average 2%) for integrated doses from 1.2 to 12 kJ m -2, corresponding to 16 h of irradiation at most. The asymptotic profiles of the curves, clearly connected to a shielding effect provided by multi-layering cells on a cavitary substrate (carbon tape), means that the inactivation rate may not change significantly along extended periods of exposure to radiation. Such high survival rates reinforce the possibility of an interplanetary transfer of viable microbes.

  10. Harnessing the Power of Play: Opportunities for Children with Autism Spectrum Disorders

    Science.gov (United States)

    Mastrangelo, Sonia

    2009-01-01

    Play is a complex phenomenon that occurs naturally for most children; they move through the various stages of play development and are able to add complexity, imagination, and creativity to their thought processes and actions. However, for many children with autism spectrum disorders (ASD), the various stages of play never truly develop, or occur…

  11. The Power of Positivity: Predictors of Relationship Satisfaction for Parents of Children with Autism Spectrum Disorder

    Science.gov (United States)

    Ekas, Naomi V.; Timmons, Lisa; Pruitt, Megan; Ghilain, Christine; Alessandri, Michael

    2015-01-01

    The current study uses the actor-partner interdependence model to examine the predictors of relationship satisfaction for mothers and fathers of children with autism spectrum disorder. Sixty-seven couples completed measures of optimism, benefit finding, coping strategies, social support, and relationship satisfaction. Results indicated that…

  12. Estimation of soft X-ray and EUV transition radiation power emitted from the MIRRORCLE-type tabletop synchrotron.

    Science.gov (United States)

    Toyosugi, N; Yamada, H; Minkov, D; Morita, M; Yamaguchi, T; Imai, S

    2007-03-01

    The tabletop synchrotron light sources MIRRORCLE-6X and MIRRORCLE-20SX, operating at electron energies E(el) = 6 MeV and E(el) = 20 MeV, respectively, can emit powerful transition radiation (TR) in the extreme ultraviolet (EUV) and the soft X-ray regions. To clarify the applicability of these soft X-ray and EUV sources, the total TR power has been determined. A TR experiment was performed using a 385 nm-thick Al foil target in MIRRORCLE-6X. The angular distribution of the emitted power was measured using a detector assembly based on an NE102 scintillator, an optical bundle and a photomultiplier. The maximal measured total TR power for MIRRORCLE-6X is P(max) approximately equal 2.95 mW at full power operation. Introduction of an analytical expression for the lifetime of the electron beam allows calculation of the emitted TR power by a tabletop synchrotron light source. Using the above measurement result, and the theoretically determined ratio between the TR power for MIRRORCLE-6X and MIRRORCLE-20SX, the total TR power for MIRRORCLE-20SX can be obtained. The one-foil TR target thickness is optimized for the 20 MeV electron energy. P(max) approximately equal 810 mW for MIRRORCLE-20SX is obtained with a single foil of 240 nm-thick Be target. The emitted bremsstrahlung is negligible with respect to the emitted TR for optimized TR targets. From a theoretically known TR spectrum it is concluded that MIRRORCLE-20SX can emit 150 mW of photons with E > 500 eV, which makes it applicable as a source for performing X-ray lithography. The average wavelength, \\overline\\lambda = 13.6 nm, of the TR emission of MIRRORCLE-20SX, with a 200 nm Al target, could provide of the order of 1 W EUV.

  13. Exclusion of UV-B radiation from normal solar spectrum on the growth of mung bean and maize

    International Nuclear Information System (INIS)

    Pal, M.; Sharma, A.; Abrol, Y.P.; Sengupta, U.K.

    1997-01-01

    The increase in UV-B radiation due to depletion of the ozone layer has potentially harmful effects on plant growth and performance. The bulk of these studies conducted in growth chambers, greenhouses or in the field use different types of exposure systems which may be responsible for differences in the sensitivity of a crop to UV-B radiation. A field study using selective filters to remove the UV-B portion of the solar spectrum was conducted with mung bean (a dicotyledonous C 3 plant) and maize (a monocotyledonous C 4 plant) to determine the sensitivity of these crop plants to ambient UV-B levels without disturbing the microenvironment. Mung bean was found to be sensitive to ambient UV-B levels in terms of leaf area development, plant height attained and net photosynthesis, while maize was found to be unaffected by ambient UV-B levels (22.8 |GmW cm −2 nm −1 ) found in Delhi, India (28°38′N, 77°13′E). The level of ambient UV-B radiation thus appears to be inhibitory for optimal growth of plants, especially dicotyledonous mung bean. (author)

  14. Fast and Accurate Hybrid Stream PCRTMSOLAR Radiative Transfer Model for Reflected Solar Spectrum Simulation in the Cloudy Atmosphere

    Science.gov (United States)

    Yang, Qiguang; Liu, Xu; Wu, Wan; Kizer, Susan; Baize, Rosemary R.

    2016-01-01

    A hybrid stream PCRTM-SOLAR model has been proposed for fast and accurate radiative transfer simulation. It calculates the reflected solar (RS) radiances with a fast coarse way and then, with the help of a pre-saved matrix, transforms the results to obtain the desired high accurate RS spectrum. The methodology has been demonstrated with the hybrid stream discrete ordinate (HSDO) radiative transfer (RT) model. The HSDO method calculates the monochromatic radiances using a 4-stream discrete ordinate method, where only a small number of monochromatic radiances are simulated with both 4-stream and a larger N-stream (N = 16) discrete ordinate RT algorithm. The accuracy of the obtained channel radiance is comparable to the result from N-stream moderate resolution atmospheric transmission version 5 (MODTRAN5). The root-mean-square errors are usually less than 5x10(exp -4) mW/sq cm/sr/cm. The computational speed is three to four-orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This method is very efficient to simulate thousands of RS spectra under multi-layer clouds/aerosols and solar radiation conditions for climate change study and numerical weather prediction applications.

  15. Four-Wave Mixing of Gigawatt Power, Long-Wave Infrared Radiation in Gases and Semiconductors

    Science.gov (United States)

    Pigeon, Jeremy James

    The nonlinear optics of gigawatt power, 10 microm, 3 and 200 ps long pulses propagating in gases and semiconductors has been studied experimentally and numerically. In this work, the development of a high-repetition rate, picosecond, CO2 laser system has enabled experiments using peak intensities in the range of 1-10 GW/cm2, approximately one thousand times greater than previous nonlinear optics experiments in the long-wave infrared (LWIR) spectral region. The first measurements of the nonlinear refractive index of the atomic and molecular gases Kr, Xe, N2, O2 and the air at a wavelength near 10 microm were accomplished by studying the four-wave mixing (FWM) of dual-wavelength, 200 ps CO2 laser pulses. These measurements indicate that the nonlinearities of the diatomic molecules N2, O2 and the air are dominated by the molecular contribution to the nonlinear refractive index. Supercontinuum (SC) generation covering the infrared spectral range, from 2-20 microm, was realized by propagating 3 ps, 10 microm pulses in an approximately 7 cm long, Cr-doped GaAs crystal. Temporal measurements of the SC radiation show that pulse splitting accompanies the generation of such broadband light in GaAs. The propagation of 3 ps, 10 microm pulses in GaAs was studied numerically by solving the Generalized Nonlinear Schrodinger Equation (GNLSE). These simulations, combined with analytic estimates, were used to determine that stimulated Raman scattering combined with a modulational instability caused by the propagation of intense LWIR radiation in the negative group velocity dispersion region of GaAs are responsible for the SC generation process. The multiple FWM of a 106 GHz, 200 ps CO2 laser beat-wave propagating in GaAs was used to generate a broadband FWM spectrum that was compressed by the negative group velocity dispersion of GaAs and NaCl crystals to form trains of high-power, picosecond pulses at a wavelength near 10 microm. Experimental FWM spectra obtained using 165 and 882

  16. Monolayer graphene dispersion and radiative cooling for high power LED

    Science.gov (United States)

    Hsiao, Tun-Jen; Eyassu, Tsehaye; Henderson, Kimberly; Kim, Taesam; Lin, Chhiu-Tsu

    2013-10-01

    Molecular fan, a radiative cooling by thin film, has been developed and its application for compact electronic devices has been evaluated. The enhanced surface emissivity and heat dissipation efficiency of the molecular fan coating are shown to correlate with the quantization of lattice modes in active nanomaterials. The highly quantized G and 2D bands in graphene are achieved by our dispersion technique, and then incorporated in an organic-inorganic acrylate emulsion to form a coating assembly on heat sinks (for LED and CPU). This water-based dielectric layer coating has been formulated and applied on metal core printed circuit boards. The heat dissipation efficiency and breakdown voltage are evaluated by a temperature-monitoring system and a high-voltage breakdown tester. The molecular fan coating on heat dissipation units is able to decrease the equilibrium junction temperature by 29.1 ° C, while functioning as a dielectric layer with a high breakdown voltage (>5 kV). The heat dissipation performance of the molecular fan coating applied on LED devices shows that the coated 50 W LED gives an enhanced cooling of 20% at constant light brightness. The schematics of monolayer graphene dispersion, undispersed graphene platelet, and continuous graphene sheet are illustrated and discussed to explain the mechanisms of radiative cooling, radiative/non-radiative, and non-radiative heat re-accumulation.

  17. Monolayer graphene dispersion and radiative cooling for high power LED

    International Nuclear Information System (INIS)

    Hsiao, Tun-Jen; Eyassu, Tsehaye; Henderson, Kimberly; Kim, Taesam; Lin, Chhiu-Tsu

    2013-01-01

    Molecular fan, a radiative cooling by thin film, has been developed and its application for compact electronic devices has been evaluated. The enhanced surface emissivity and heat dissipation efficiency of the molecular fan coating are shown to correlate with the quantization of lattice modes in active nanomaterials. The highly quantized G and 2D bands in graphene are achieved by our dispersion technique, and then incorporated in an organic-inorganic acrylate emulsion to form a coating assembly on heat sinks (for LED and CPU). This water-based dielectric layer coating has been formulated and applied on metal core printed circuit boards. The heat dissipation efficiency and breakdown voltage are evaluated by a temperature-monitoring system and a high-voltage breakdown tester. The molecular fan coating on heat dissipation units is able to decrease the equilibrium junction temperature by 29.1 ° C, while functioning as a dielectric layer with a high breakdown voltage (>5 kV). The heat dissipation performance of the molecular fan coating applied on LED devices shows that the coated 50 W LED gives an enhanced cooling of 20% at constant light brightness. The schematics of monolayer graphene dispersion, undispersed graphene platelet, and continuous graphene sheet are illustrated and discussed to explain the mechanisms of radiative cooling, radiative/non-radiative, and non-radiative heat re-accumulation. (paper)

  18. Optimal Power Allocation for Downstream xDSL With Per-Modem Total Power Constraints: Broadcast Channel Optimal Spectrum Balancing (BC-OSB)

    Science.gov (United States)

    Le Nir, Vincent; Moonen, Marc; Verlinden, Jan; Guenach, Mamoun

    2009-02-01

    Recently, the duality between Multiple Input Multiple Output (MIMO) Multiple Access Channels (MAC) and MIMO Broadcast Channels (BC) has been established under a total power constraint. The same set of rates for MAC can be achieved in BC exploiting the MAC-BC duality formulas while preserving the total power constraint. In this paper, we describe the BC optimal power allo- cation applying this duality in a downstream x-Digital Subscriber Lines (xDSL) context under a total power constraint for all modems over all tones. Then, a new algorithm called BC-Optimal Spectrum Balancing (BC-OSB) is devised for a more realistic power allocation under per-modem total power constraints. The capacity region of the primal BC problem under per-modem total power constraints is found by the dual optimization problem for the BC under per-modem total power constraints which can be rewritten as a dual optimization problem in the MAC by means of a precoder matrix based on the Lagrange multipliers. We show that the duality gap between the two problems is zero. The multi-user power allocation problem has been solved for interference channels and MAC using the OSB algorithm. In this paper we solve the problem of multi-user power allocation for the BC case using the OSB algorithm as well and we derive a computational efficient algorithm that will be referred to as BC-OSB. Simulation results are provided for two VDSL2 scenarios: the first one with Differential-Mode (DM) transmission only and the second one with both DM and Phantom- Mode (PM) transmissions.

  19. Relationship between images of risk and anxiety toward radiation. Comparison of radiation from chest X-rays and nuclear power plants

    International Nuclear Information System (INIS)

    Matsui, Yuko

    2003-01-01

    In order to clarify the components of people's images of radiation risk and the determinants for the degree of anxiety about radiation exposure, an investigation was conducted. Two kinds of radiation, from nuclear power plants and during a chest X-ray, which are relatively familiar to people, were focused on. As a result, only a 'dread' factor was common to both radiation types of. Although the degree of anxiety toward both types of radiation showed a positive correlation with the 'dread' image, the anxiety toward X-ray radiation showed a negative correlation with the 'feeling of conquest'. Anxiety toward radiation from nuclear power plants had a negative correlation with 'control by experts'. These results suggest that the words radiation from nuclear power plants' evoke an image of a situation with high radiation exposure, which is beyond the experts' control abilities. (author)

  20. Controlling occupational radiation exposure at operating nuclear power stations

    International Nuclear Information System (INIS)

    Dickson, H.W.; Oakes, T.W.; Shank, K.E.

    1977-01-01

    The historical development of the philosophy of keeping the radiation exposure of workers at light-water reactors as low as reasonably achievable (ALARA) is presented. A review is made of some of the ALARA activities of the Nuclear Regulatory Commission, the Energy Research and Development Administration, and various nuclear installations. Data compiled by the NRC show that routine and special maintenance at light-water reactors accounts for 72 percent of all occupational exposure at these sites. The role that Oak Ridge National Laboratory has taken in ALARA research is presented, with emphasis placed on a study of valve malfunctions at light-water reactors. The valve study indicates a trend toward decreasing valve reliability over the past few years. Finally a cost--benefit analysis of radiation dose reduction is discussed. The rationale for assigning a cost per man-rem based on the radiation exposure level that is encountered is presented