WorldWideScience

Sample records for radiant energy transmission

  1. Nonimaging radiant energy device

    Science.gov (United States)

    Winston, Roland; Ning, Xiaohui

    1993-01-01

    A nonimaging radiant energy device may include a hyperbolically shaped reflective element with a radiant energy inlet and a radiant energy outlet. A convex lens is provided at the radiant energy inlet and a concave lens is provided at the radiant energy outlet. Due to the provision of the lenses and the shape of the walls of the reflective element, the radiant energy incident at the radiant energy inlet within a predetermined angle of acceptance is emitted from the radiant energy outlet exclusively within an acute exit angle. In another embodiment, the radiant energy device may include two interconnected hyperbolically shaped reflective elements with a respective convex lens being provided at each aperture of the device.

  2. Numerical study of influence of different dispersed components of crystal cloud on transmission of radiant energy

    Science.gov (United States)

    Shefer, Olga

    2017-11-01

    The calculated results of the transmission of visible and infrared radiation by an atmosphere layer involving ensembles of large preferentially oriented crystals and spherical particles are presented. To calculate extinction characteristics, the physical optics method and the Mie theory are applied. Among all atmospheric particles, both the small particles that are commensurable with the wavelength of the incident radiation and the large plates and the columns are distinguished by the most pronounced dependence of the transmission on spectra of radiant energy. The work illustrates features of influence of parameters of the particle size distribution, particle aspect ratios, orientation and particle refractive index, also polarization state of the incident radiation on the transmission. The predominant effect of the plates on the wavelength dependence of the transmission is shown. A separated and cooperative contributes of the large plates and the small volume shape particles to the common transmission by medium are considered.

  3. Direct conversion of infrared radiant energy for space power applications

    Science.gov (United States)

    Finke, R. C.

    1982-01-01

    A proposed technology to convert the earth radiant energy (infrared albedo) for spacecraft power is presented. The resultant system would eliminate energy storage requirements and simplify the spacecraft design. The design and performance of a infrared rectenna is discussed.

  4. Radiant Barriers Save Energy in Buildings

    Science.gov (United States)

    2014-01-01

    Langley Research Center needed to coat the Echo 1 satellite with a fine mist of vaporized metal, and collaborated with industry to create "radiant barrier technology." In 2010, Ryan Garrett learned about a new version of the technology resistant to oxidation and founded RadiaSource in Ogden, Utah, to provide the NASA-derived technology for applications in homes, warehouses, gymnasiums, and agricultural settings.

  5. Design of energy efficient building with radiant slab cooling

    Science.gov (United States)

    Tian, Zhen

    2007-12-01

    Air-conditioning comprises a substantial fraction of commercial building energy use because of compressor-driven refrigeration and fan-driven air circulation. Core regions of large buildings require year-round cooling due to heat gains from people, lights and equipment. Negative environmental impacts include CO2 emissions from electric generation and leakage of ozone-depleting refrigerants. Some argue that radiant cooling simultaneously improves building efficiency and occupant thermal comfort, and that current thermal comfort models fail to reflect occupant experience with radiant thermal control systems. There is little field evidence to test these claims. The University of Calgary's Information and Communications Technology (ICT) Building, is a pioneering radiant slab cooling installation in North America. Thermal comfort and energy performance were evaluated. Measurements included: (1) heating and cooling energy use, (2) electrical energy use for lighting and equipment, and (3) indoor temperatures. Accuracy of a whole building energy simulation model was evaluated with these data. Simulation was then used to compare the radiant slab design with a conventional (variable air volume) system. The radiant system energy performance was found to be poorer mainly due to: (1) simultaneous cooling by the slab and heating by other systems, (2) omission of low-exergy (e.g., groundwater) cooling possible with the high cooling water temperatures possible with radiant slabs and (3) excessive solar gain and conductive heat loss due to the wall and fenestration design. Occupant thermal comfort was evaluated through questionnaires and concurrent measurement of workstation comfort parameters. Analysis of 116 sets of data from 82 occupants showed that occupant assessment was consistent with estimates based on current thermal comfort models. The main thermal comfort improvements were reductions in (1) local discomfort from draft and (2) vertical air temperature stratification. The

  6. Performance of Radiant Heating Systems of Low-Energy Buildings

    Science.gov (United States)

    Sarbu, Ioan; Mirza, Matei; Crasmareanu, Emanuel

    2017-10-01

    After the introduction of plastic piping, the application of water-based radiant heating with pipes embedded in room surfaces (i.e., floors, walls, and ceilings), has significantly increased worldwide. Additionally, interest and growth in radiant heating and cooling systems have increased in recent years because they have been demonstrated to be energy efficient in comparison to all-air distribution systems. This paper briefly describes the heat distribution systems in buildings, focusing on the radiant panels (floor, wall, ceiling, and floor-ceiling). Main objective of this study is the performance investigation of different types of low-temperature heating systems with different methods. Additionally, a comparative analysis of the energy, environmental, and economic performances of floor, wall, ceiling, and floor-ceiling heating using numerical simulation with Transient Systems Simulation (TRNSYS) software is performed. This study showed that the floor-ceiling heating system has the best performance in terms of the lowest energy consumption, operation cost, CO2 emission, and the nominal boiler power. The comparison of the room operative air temperatures and the set-point operative air temperature indicates also that all radiant panel systems provide satisfactory results without significant deviations.

  7. ''Super-radiant'' states in intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    Auerbach, N.

    1994-01-01

    A ''super-radiant'' state emerges when, under certain conditions, one or a few ''internal'' states acquire a large collective decay width due to the coupling to one or a few ''external'' decay channels. The rest of the internal states are ''stripped'' of their decay width and become long lived quasistationary states. The essentials of such mechanism and its possible role in intermediate energy nuclear physics are discussed in this work

  8. Radiant energy collection and conversion apparatus and method

    Science.gov (United States)

    Hunt, A.J.

    The apparatus for collecting radiant energy and converting to alternate energy forms includes a housing having an interior space and a radiation transparent window allowing solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past the window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  9. Influence of increment thickness on radiant energy and microhardness of bulk-fill resin composites.

    Science.gov (United States)

    Karacolak, Gamze; Turkun, L Sebnem; Boyacioglu, Hayal; Ferracane, Jack L

    2018-03-30

    Determining the energy transferred at the bottom of eleven bulk-fill resin composites, comparing top and bottom microhardness's and evaluating the correlation between microhardness and radiant energy were aimed. Samples were placed over the bottom sensor of a visible light transmission spectrophotometer and polymerized for 20 s. The bottom and top Knoop microhardness were measured. Paired t-test and correlation analysis were used for statistics (p≤0.05). In all groups, the bottom radiant energy decreased significantly with increasing thickness. For groups of Aura 2 mm, X-tra Fil 2 and 4 mm, SDR 2 and 4 mm, X-tra Base 2 mm no significant difference was found between top and bottom microhardness. For the bottom levels of Aura, X-tra Fil, Filtek Bulk-Fill Posterior, SDR, X-tra Base groups no significant difference was found between the microhardness's of 2 and 4 mm thicknesses. For X-tra Fil, Tetric Evo Ceram Bulk-Fill, Filtek Bulk-Fill Flowable and Z100 groups radiant energy affected positively the microhardness.

  10. Radiant energy during infrared neural stimulation at the target structure

    Science.gov (United States)

    Richter, Claus-Peter; Rajguru, Suhrud; Stafford, Ryan; Stock, Stuart R.

    2013-03-01

    Infrared neural stimulation (INS) describes a method, by which an infrared laser is used to stimulate neurons. The major benefit of INS over stimulating neurons with electrical current is its spatial selectivity. To translate the technique into a clinical application it is important to know the energy required to stimulate the neural structure. With this study we provide measurements of the radiant exposure, at the target structure that is required to stimulate the auditory neurons. Flat polished fibers were inserted into scala tympani so that the spiral ganglion was in front of the optical fiber. Angle polished fibers were inserted along scala tympani, and rotating the beveled surface of the fiber allowed the radiation beam to be directed perpendicular to the spiral ganglion. The radiant exposure for stimulation at the modiolus for flat and angle polished fibers averaged 6.78+/-2.15 mJ/cm2. With the angle polished fibers, a 90º change in the orientation of the optical beam from an orientation that resulted in an INS-evoked maximum response, resulted in a 50% drop in the response amplitude. When the orientation of the beam was changed by 180º, such that it was directed opposite to the orientation with the maxima, minimum response amplitude was observed.

  11. Energy efficiency and indoor thermal perception. A comparative study between radiant panel and portable convective heaters

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed Hamza H.; Morsy, Mahmoud Gaber [Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut, 71516 (Egypt)

    2010-11-15

    This study investigates experimentally the thermal perception of indoor environment for evaluating the ability of radiant panel heaters to produce thermal comfort for space occupants as well as the energy consumption in comparison with conventional portable natural convective heaters. The thermal perception results show that, compared with conventional convection heater, a radiantly heated office room maintains a lower ambient air temperature while providing equal levels of thermal perception on the thermal dummy head as the convective heater and saves up to 39.1% of the energy consumption per day. However, for human subjects' vote experiments, the results show that for an environmentally controlled test room at outdoor environment temperatures of 0C and 5C, using two radiant panel heaters with a total capacity of 580 W leads to a better comfort sensation than the conventional portable natural convective heater with a 670 W capacity, with an energy saving of about 13.4%. In addition, for an outdoor environment temperature of 10C, using one radiant panel heater with a capacity of 290 W leads to a better comfort sensation than the conventional convection heater with a 670 W capacity, with an energy saving of about 56.7%. From the analytical results, it is found that distributing the radiant panel heater inside the office room, one on the wall facing the window and the other on the wall close to the window, provides the best operative temperature distribution within the room.

  12. Integrated application of combined cooling, heating and power poly-generation PV radiant panel system of zero energy buildings

    Science.gov (United States)

    Yin, Baoquan

    2018-02-01

    A new type of combined cooling, heating and power of photovoltaic radiant panel (PV/R) module was proposed, and applied in the zero energy buildings in this paper. The energy system of this building is composed of PV/R module, low temperature difference terminal, energy storage, multi-source heat pump, energy balance control system. Radiant panel is attached on the backside of the PV module for cooling the PV, which is called PV/R module. During the daytime, the PV module was cooled down with the radiant panel, as the temperature coefficient influence, the power efficiency was increased by 8% to 14%, the radiant panel solar heat collecting efficiency was about 45%. Through the nocturnal radiant cooling, the PV/R cooling capacity could be 50 W/m2. For the multifunction energy device, the system shows the versatility during the heating, cooling and power used of building utilization all year round.

  13. Effects of Floor Covering Resistance of a Radiant Floor on System Energy and Exergy Performances

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    Floor covering resistance (material and thickness) can be influenced by subjective choices (architectural design, interior design, texture, etc.) with significant effects on the performance of a radiant heating and cooling system. To study the effects of floor covering resistance on system...... performance, a water-based radiant floor heating and cooling system (dry, wooden construction) was considered to be coupled to an air-to-water heat pump, and the effects of varying floor covering resistances (0.05 m2K/W, 0.09 m2K/W and 0.15 m2K/W) on system performance were analyzed in terms of energy...... and exergy. In order to achieve the same heating and cooling outputs, higher average water temperatures are required in the heating mode (and lower temperatures in the cooling mode) with increasing floor covering resistance. These temperature requirements decrease the heat pump’s performance (lower...

  14. Radiant Research. Institute for Energy Technology 1948-98

    International Nuclear Information System (INIS)

    Njoelstad, Olav

    1999-01-01

    Institutt for Atomenergi (IFA), or Institute for Atomic Energy, at Kjeller, Norway, was founded in 1948. The history of the institute as given in this book was published in 1999 on the occasion of the institute's 50th anniversary. The scope of the institute was to do research and development as a foundation for peaceful application of nuclear energy and radioactive substances in Norway. The book tells the story of how Norway in 1951 became the first country after the four superpowers and Canada to have its own research reactor. After the completion of the reactor, the institute experienced a long and successful period and became the biggest scientific and technological research institute in Norway. Three more reactors were built, one in Halden and two at Kjeller. Plans were developed to build nuclear powered ships and nuclear power stations. It became clear, however, in the 1970s, that there was no longer political support for nuclear power in Norway, and it was necessary for the institute to change its research profile. In 1980, the institute changed its name to Institutt for energiteknikk (IFE), or Institute for energy technology, to signal the broadened scope. The book describes this painful but successful readjustment and shows how IFE in the 1980s and 1990s succeeded in using its special competence from the nuclear field to establish special competence in new research fields with great commercial potential

  15. Microwave energy transmission

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hiroshi [Kyoto Univ. (Japan)

    1989-03-05

    Laying stress on the technological problems and effect on the environment of microwave energy transmission, recent scientific and engineering problems and related subjects are described. Because no fuel is required for the solar power generation, the power generation system can not be considered as an expensive one when the unit cost of energy is taken into consideration. Some of the important technological problems in the microwave energy transmission are accurate microwave beam control technology to receiving stations and improvement in the efficiency of transmission system. Microwave energy beam has effects on living bodies, communication, and plasma atmosphere of the earth. Microwave energy transmission using a space flyer unit is scheduled. Its objective is the development of microwave wireless transmission technology and the study of the correlation between high power microwave and ionosphere plasma. Experiments on such a small scale application as a microwave driven space ship to bring results seem also important. 12 refs., 13 figs.

  16. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    DEFF Research Database (Denmark)

    Le Dréau, Jérôme

    is based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam...... losses, and an air-based terminal might be more energy-efficient than a radiant terminal (in terms of delivered energy). Regarding comfort, a similar global level has been observed for the radiant and air-based terminals in both numerical and experimental investigations. But the different terminals did...... not achieve the same uniformity in space. The active chilled beam theoretically achieves the most uniform comfort conditions (when disregarding the risk of draught), followed by the radiant ceiling. The least uniform conditions were obtained with the cooled floor due to large differences between the sitting...

  17. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    DEFF Research Database (Denmark)

    Le Dréau, Jérôme

    Heating and cooling terminals can be classified in two main categories: convective terminals (e.g air conditioning, active chilled beam, fan coil) and radiant terminals. The two terminals have different modes of heat transfer: the first one is mainly based on convection, whereas the second one...... is based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam...... losses, and an air-based terminal might be more energy-efficient than a radiant terminal (in terms of delivered energy). Regarding comfort, a similar global level has been observed for the radiant and air-based terminals in both numerical and experimental investigations. But the different terminals did...

  18. Solar–terrestrial radiant-energy regimes and temperature anomalies of natural and artificial turfs

    International Nuclear Information System (INIS)

    Jim, C.Y.

    2016-01-01

    Highlights: • Solar and terrestrial radian energy regimes affect temperature response of sports turfs. • Adjacent natural and artificial turfs were monitored with replications on sunny days. • Artificial turf has meager albedo, low specific heat and moisture to augment warming. • Artificial turf surface and substrate reach 70 °C but cool down effectively at night. • Artificial turf may induce heat stress on athletes in hot summer afternoon. - Abstract: Artificial turf can develop unusually high surface temperature on hot sunny days. Solar and terrestrial radiant energy regimes as key determinants of thermal performance deserve detailed investigation. This study evaluated six components of the radiant-energy environment of a natural turf (NT) and a contiguous artificial turf (AT) sports fields in Hong Kong: direct solar, reflected solar, net solar, sky thermal, ground thermal, and net thermal. Temperature was monitored at five positions: air at 150 cm, 50 cm and 15 cm height, turf surface, and substrate. The experiment included four replications, namely two summer sunny days, and two duplicated instrument sets at each turf site. The two sites reacted very differently to the same intense daily sum of solar radiation input of 23.70 MW m −2 with 9 h of bright sunshine (>120 W m −2 ), and daily sum of sky thermal radiation input of 38.59 MW m −2 . The maximum direct solar radiation reached 976.1 W m −2 at 1245 h. NT albedo of 0.23 vis-à-vis AT of merely 0.073, and higher moisture content and specific heat of NT materials, presented critical differences. The hydrophobic and generally dry plastic (polyethylene) pile-fibers and black rubber-granule infill materials have low specific heat. Intense incoming shortwave and longwave radiation absorbed readily by AT materials raised turf surface temperature to 70.2 °C and substrate 69.3 °C, in comparison with <40 °C at NT. A cascading warming effect was triggered, beginning with low albedo, high net solar

  19. Clouds and the Earth's Radiant Energy System (CERES) Data Products for Climate Research

    Science.gov (United States)

    Kato, Seiji; Loeb, Norman G.; Rutan, David A.; Rose, Fred G.

    2015-01-01

    NASA's Clouds and the Earth's Radiant Energy System (CERES) project integrates CERES, Moderate Resolution Imaging Spectroradiometer (MODIS), and geostationary satellite observations to provide top-of-atmosphere (TOA) irradiances derived from broadband radiance observations by CERES instruments. It also uses snow cover and sea ice extent retrieved from microwave instruments as well as thermodynamic variables from reanalysis. In addition, these variables are used for surface and atmospheric irradiance computations. The CERES project provides TOA, surface, and atmospheric irradiances in various spatial and temporal resolutions. These data sets are for climate research and evaluation of climate models. Long-term observations are required to understand how the Earth system responds to radiative forcing. A simple model is used to estimate the time to detect trends in TOA reflected shortwave and emitted longwave irradiances.

  20. The Influence of a Radiant Panel System with Integrated Phase Change Material on Energy Use and Thermal Indoor Environment

    DEFF Research Database (Denmark)

    Nielsen, Lin Flemming; Bourdakis, Eleftherios; Kazanci, Ongun Berk

    2018-01-01

    This study examined the effect on energy use and thermal comfort when combining microencapsulated phase change material (PCM) with radiant ceiling panels in a two-person office. The performance of the system was studied during the cooling season in the climates of Copenhagen, Denmark, and Rome...

  1. Extinction of radiant energy by large atmospheric crystals with different shapes

    International Nuclear Information System (INIS)

    Shefer, Olga

    2016-01-01

    The calculated results of extinction characteristics of visible and infrared radiation for large semi-transparent crystals are obtained by hybrid technique, which is a combination of the geometric optics method and the physical optics method. Energy and polarization characteristics of the radiation extinction in terms of the elements of the extinction matrix for individual large crystals and ensemble of crystals are discussed. Influences of particle shapes, aspect ratios, parameters of size distribution, complex refractive index, orientation of crystals, wavelength, and the polarization state of an incident radiation on the extinction are illustrated. It is shown that the most expressive and stable features of energy and polarization characteristics of the extinction are observed in the midinfrared region, despite the fact that the ice particles significantly absorb the radiant energy of this spectrum. It is demonstrated that the polarized extinction characteristics can reach several tens of percent at IR wavelengths. For the large crystals, the conditions of occurrence of the spectral behavior of the extinction coefficient in the visible, near-IR, and mid-IR wavelength ranges are determined. - Highlights: • Method of physical optics is used at coherent sum of diffracted and refracted fields. • The extinction characteristics in terms of elements of extinction matrix are obtained. • Influence of shapes and sizes of large particles on the extinction is evaluated. • Conditions of occurrence of extinction features are determined.

  2. Energy Transmission and Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; • enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers

  3. Clouds and Earth Radiant Energy System (CERES), a Review: Past, Present and Future

    Science.gov (United States)

    Smith, G. L.; Priestley, K. J.; Loeb, N. G.; Wielicki, B. A.; Charlock, T. P.; Minnis, P.; Doelling, D. R.; Rutan, D. A.

    2011-01-01

    The Clouds and Earth Radiant Energy System (CERES) project s objectives are to measure the reflected solar radiance (shortwave) and Earth-emitted (longwave) radiances and from these measurements to compute the shortwave and longwave radiation fluxes at the top of the atmosphere (TOA) and the surface and radiation divergence within the atmosphere. The fluxes at TOA are to be retrieved to an accuracy of 2%. Improved bidirectional reflectance distribution functions (BRDFs) have been developed to compute the fluxes at TOA from the measured radiances with errors reduced from ERBE by a factor of two or more. Instruments aboard the Terra and Aqua spacecraft provide sampling at four local times. In order to further reduce temporal sampling errors, data are used from the geostationary meteorological satellites to account for changes of scenes between observations by the CERES radiometers. A validation protocol including in-flight calibrations and comparisons of measurements has reduced the instrument errors to less than 1%. The data are processed through three editions. The first edition provides a timely flow of data to investigators and the third edition provides data products as accurate as possible with resources available. A suite of cloud properties retrieved from the MODerate-resolution Imaging Spectroradiometer (MODIS) by the CERES team is used to identify the cloud properties for each pixel in order to select the BRDF for each pixel so as to compute radiation fluxes from radiances. Also, the cloud information is used to compute radiation at the surface and through the atmosphere and to facilitate study of the relationship between clouds and the radiation budget. The data products from CERES include, in addition to the reflected solar radiation and Earth emitted radiation fluxes at TOA, the upward and downward shortwave and longwave radiation fluxes at the surface and at various levels in the atmosphere. Also at the surface the photosynthetically active radiation

  4. Climate Model Evaluation using New Datasets from the Clouds and the Earth's Radiant Energy System (CERES)

    Science.gov (United States)

    Loeb, Norman G.; Wielicki, Bruce A.; Doelling, David R.

    2008-01-01

    There are some in the science community who believe that the response of the climate system to anthropogenic radiative forcing is unpredictable and we should therefore call off the quest . The key limitation in climate predictability is associated with cloud feedback. Narrowing the uncertainty in cloud feedback (and therefore climate sensitivity) requires optimal use of the best available observations to evaluate and improve climate model processes and constrain climate model simulations over longer time scales. The Clouds and the Earth s Radiant Energy System (CERES) is a satellite-based program that provides global cloud, aerosol and radiative flux observations for improving our understanding of cloud-aerosol-radiation feedbacks in the Earth s climate system. CERES is the successor to the Earth Radiation Budget Experiment (ERBE), which has widely been used to evaluate climate models both at short time scales (e.g., process studies) and at decadal time scales. A CERES instrument flew on the TRMM satellite and captured the dramatic 1998 El Nino, and four other CERES instruments are currently flying aboard the Terra and Aqua platforms. Plans are underway to fly the remaining copy of CERES on the upcoming NPP spacecraft (mid-2010 launch date). Every aspect of CERES represents a significant improvement over ERBE. While both CERES and ERBE measure broadband radiation, CERES calibration is a factor of 2 better than ERBE. In order to improve the characterization of clouds and aerosols within a CERES footprint, we use coincident higher-resolution imager observations (VIRS, MODIS or VIIRS) to provide a consistent cloud-aerosol-radiation dataset at climate accuracy. Improved radiative fluxes are obtained by using new CERES-derived Angular Distribution Models (ADMs) for converting measured radiances to fluxes. CERES radiative fluxes are a factor of 2 more accurate than ERBE overall, but the improvement by cloud type and at high latitudes can be as high as a factor of 5

  5. Radiant Energy Measurements from a Scaled Jet Engine Axisymmetric Exhaust Nozzle for a Baseline Code Validation Case

    Science.gov (United States)

    Baumeister, Joseph F.

    1994-01-01

    A non-flowing, electrically heated test rig was developed to verify computer codes that calculate radiant energy propagation from nozzle geometries that represent aircraft propulsion nozzle systems. Since there are a variety of analysis tools used to evaluate thermal radiation propagation from partially enclosed nozzle surfaces, an experimental benchmark test case was developed for code comparison. This paper briefly describes the nozzle test rig and the developed analytical nozzle geometry used to compare the experimental and predicted thermal radiation results. A major objective of this effort was to make available the experimental results and the analytical model in a format to facilitate conversion to existing computer code formats. For code validation purposes this nozzle geometry represents one validation case for one set of analysis conditions. Since each computer code has advantages and disadvantages based on scope, requirements, and desired accuracy, the usefulness of this single nozzle baseline validation case can be limited for some code comparisons.

  6. Numerical Modeling of Conjugate Thermogravitational Convection in a Closed System with a Radiant Energy Source in Conditions of Convective-Radiative Heat Exchange at the External Boundary

    Directory of Open Access Journals (Sweden)

    Nee Alexander

    2016-01-01

    Full Text Available Mathematical modeling of conjugate natural convection in a closed rectangular cavity with a radiant energy source in conditions of convective-radiative heat exchange at the external boundary was conducted. The radiant energy distribution was set by the Lambert’s law. Conduction and convection processes analysis showed that the air masses flow pattern is modified slightly over the time. The temperature increases in the gas cavity, despite the heat removal from the one of the external boundary. According to the results of the integral heat transfer analysis were established that the average Nusselt number (Nuav increasing occurs up to τ = 200 (dimensionless time. Further Nuav has changed insignificantly due to the temperature field equalization near the interfaces “gas – wall”.

  7. Radiant Heat Transfer in Reusable Surface Insulation

    Science.gov (United States)

    Hughes, T. A.; Linford, R. M. F.; Chmitt, R. J.; Christensen, H. E.

    1973-01-01

    During radiant testing of mullite panels, temperatures in the insulation and support structure exceeded those predicted on the basis of guarded hot plate thermal conductivity tests. Similar results were obtained during arc tunnel tests of mullite specimens. The differences between effective conductivity and guarded hot plate values suggested that radiant transfer through the mullite was occurring. To study the radiant transport, measurements were made of the infrared transmission through various insulating materials and fibers of interest to the shuttle program, using black body sources over the range of 780 to 2000 K. Experimental data were analyzed and scattering coefficients were derived for a variety of materials, fiber diameters, and source temperature.

  8. Modeling the transmitted and stored energy in multilayer protective clothing under low-level radiant exposure

    International Nuclear Information System (INIS)

    Su, Yun; He, Jiazhen; Li, Jun

    2016-01-01

    Highlights: • A numerical model from heating source to skin tissues through multilayer fabric system is developed. • The numerical model is comprehensively validated with experimental data. • The model is used to investigate the relationship between the transmitted and stored energy and the influencing factors. - Abstract: A finite difference model was introduced to simulate the transmitted and stored energy in firefighters' protective clothing exposed to low-level thermal radiation. The model domain consists of a three-layer fire-resistant fabric system (outer shell, moisture barrier, and thermal liner), the human skin, and the air gap between clothing and the skin. The model accounted for the relationship between the transmitted heat during the exposure and the discharged heat during the cooling-down period. The numerical model predictions were compared with experimental data. Additionally, the parameters that affect the transmitted and stored energy of protective clothing were investigated. The results demonstrate that for the typical multilayer firefighter protective clothing, the transmitted heat during exposure and the discharged heat after exposure totally determine the skin burn under low-level heat exposure, especially for third-degree skin burns. The findings obtained in this study can be used to engineer fabric systems that provide better protection for the stored thermal burn.

  9. Radiant energy dissipation during final storage of high-level radioactive waste in rock salt

    International Nuclear Information System (INIS)

    Ramthun, H.

    1981-08-01

    A final disposal concept is assumed where the high-active waste from 1400 t of uranium, remaining after conditioning, is solidified in borosilicate glass and distributed in 1.760 waste casks. These containers 1.2 m in height and 0.3 m in diameter are to be buried 10 years after the fuel is removed from the reactor in the 300 m deep boreholes of a salt dome. For this design the mean absorbed dose rates are calculated in the glass die (3.9 Gy/s), the steel mantle (0.26 Gy/s) and in the salt rock (0.12 Gy/s at a distance of 1 cm and 0.034 Gy/s at a distance of 9 cm from the container surface) valid at the beginning of disposal. The risk involved with these amounts of stored lattice energy is shortly discussed. (orig.) [de

  10. A determination of the absolute radiant energy of a Robertson-Berger meter sunburn unit

    Science.gov (United States)

    DeLuisi, John J.; Harris, Joyce M.

    Data from a Robertson-Berger (RB) sunburn meter were compared with concurrent measurements obtained with an ultraviolet double monochromator (DM), and the absolute energy of one sunburn unit measured by the RB-meter was determined. It was found that at a solar zenith angle of 30° one sunburn unit (SU) is equivalent to 35 ± 4 mJ cm -2, and at a solar zenith angle of 69°, one SU is equivalent to 20 ± 2 mJ cm -2 (relative to a wavelength of 297 nm), where the rate of change is non-linear. The deviation is due to the different response functions of the RB-meter and the DM system used to simulate the response of human skin to the incident u.v. solar spectrum. The average growth rate of the deviation with increasing solar zenith angle was found to be 1.2% per degree between solar zenith angles 30 and 50° and 2.3% per degree between solar zenith angles 50 and 70°. The deviations of response with solar zenith angle were found to be consistent with reported RB-meter characteristics.

  11. Transmission Line Series Compensation for Wind Energy Transmission

    International Nuclear Information System (INIS)

    Palanichamy, C; Wong, Y C

    2015-01-01

    Wind energy has demonstrated to be a clean, copious and absolutely renewable source of energy, and the large penetration of it into the power grid indicates that wind energy is considered an effective means of power generation, Transmission of wind energy from remote locations to load centers necessitates long transmission lines. Series compensation is a proven and economical transmission solution to address system power transfer strength, grid stability, and voltage profile issues of long transmission lines. In this paper, a programmable approach to determine the capacitive reactance of series capacitor and optimum location for its placement to achieve maximum power transfer gas been presented. The respective program with sample solutions has been provided for real-time applications. (paper)

  12. Mathematical modelling, variational formulation and numerical simulation of the energy transfer process in a gray plate in the presence of a thermal radiant source

    International Nuclear Information System (INIS)

    Gama, R.M.S. da.

    1992-05-01

    The energy transfer process in a gray, opaque and rigid plate, heated by an external thermal radiant source, is considered. The source is regarded as a spherical black body, with radius a (a → 0) and uniform heat generation, placed above the plate. A mathematical model is constructed, assuming that the heat transfer from/to the plate takes place by thermal radiation. The obtained mathematical model is nonlinear. Is presented a suitable variational principle which is employed for simulating some particular cases. (author)

  13. Radiant cooling of an enclosure

    International Nuclear Information System (INIS)

    Chebihi, Abdeslam; Byun, Ki-Hong; Wen Jin; Smith, Theodore F.

    2006-01-01

    The purpose of this study is to analyze the potential for radiant cooling using the atmospheric sky window and to evaluate the desired characteristics of a radiant cooling material (RCM) applied to the ceiling window of a three-dimensional enclosure. The thermal characteristics of the system are governed by the geometry, ambient temperature, sky radiative temperature, amount of solar energy and its direction, heat transfer modes, wall radiative properties, and radiative properties of the RCMs. A semi-gray band analysis is utilized for the solar and infrared bands. The radiosity/irradiation method is used in each band to evaluate the radiant exchanges in the enclosure. The radiative properties for the RCM are varied in a parametric study to identify the desired properties of RCMs. For performance simulation of real RCMs, the radiative properties are calculated from spectral data. The desired solar property is a high reflectance for both opaque and semi-transparent RCMs. For a semi-transparent RCM, a low value of the solar transmittance is preferred. The desired infrared property is a high emittance for an opaque RCM. For a semi-transparent RCM, a high infrared transmittance is desired, and the emittance should be greater than zero

  14. Measurement of radiant properties of ceramic foam

    International Nuclear Information System (INIS)

    Hoornstra, J.; Turecky, M.; Maatman, D.

    1994-07-01

    An experimental facility is described for the measurement of the normal spectral and total emissivity and transmissivity of semi-transparent materials in the temperature range of 600 C to 1200 C. The set-up was used for the measurement of radiation properties of highly porous ceramic foam which is used in low NO x radiant burners. Emissivity and transmissivity data were measured and are presented for coated and uncoated ceramic foam of different thicknesses. (orig.)

  15. Renewable Energy Zone (REZ) Transmission Planning Process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nathan [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-08

    A REZ is a geographical area that enables the development of profitable, cost-effective, grid-connected renewable energy (RE). The REZ Transmission Planning Process is a proactive approach to plan, approve, and build transmission infrastructure connecting REZs to the power system which helps to increase the share of solar, wind and other RE resources in the power system while maintaining reliability and economics, and focuses on large-scale wind and solar resources that can be developed in sufficient quantities to warrant transmission system expansion and upgrades.

  16. Radiant heating of petroleum reservoirs; Aquecimento radiante de reservatorios petroliferos

    Energy Technology Data Exchange (ETDEWEB)

    Sidrim, Fernando A.C.

    1990-12-31

    This work presents a proposal of a simplified model for the enhanced oil recovery process through radiant heating of oil reservoirs. The resulting continuity, energy and motion equations were solved analytically for the prediction of the increase in well flow rates. The heat loss to adjacent formations and the necessary for the establishment of the temperature profile,which are transient terms of energy equation, have been neglected. Also, no temperature gradient in the axial direction has been modelled as a cylindrical wave propagating in a loss medium. It is concluded that: the inclusion of a radial conduction term in the energy equation led to higher flow rates than the ones predicted by the literature existing solution; if the absorption coefficient is too large, it is profitable to dry the reservoir around the well bore; the transient terms in the energy equation are significant for extended periods of well production. 47 refs., 18 figs., 4 tabs.

  17. CONDUCTIVE CHANNEL FOR ENERGY TRANSMISSION

    Directory of Open Access Journals (Sweden)

    V. V. Apollonov

    2014-01-01

    Full Text Available Laser spark obtained by using a conical optics is much more appropriate to form conducting channels in atmosphere. Only two types of lasers are actively considered to be used in forming high-conductivity channels in atmosphere, controlled by laser spark: pulsed sub-microsecond gas and chemical lasers (CO2, DF and short pulse solid-state and UV lasers. Main advantage of short pulse lasers is their ability in forming of super long ionized channels with a characteristic diameter of ~100  µ  in atmosphere along the  beam propagation direction. At estimated electron densities below  10 ⋅ 16 cm–3 in these filaments and laser wavelengths in the range of 0,5–1,0 mm, the plasma barely absorbs laser radiation.  In this case, the length of the track composed of many filaments is determined by the laser intensity and may reach many kilometers at a femtosecond pulse energy of ~100 mJ. However, these lasers could not be used to form high-conductivity long channels in atmosphere. The ohmic resistance of this type a conducting channels turned out to be very high, and the gas in the channels could not be strongly heated (< 1 J. An electric breakdown controlled by radiation of femtosecond solid-state laser was implemented in only at a length of 3 m with a voltage of 2 MV across the discharge gap (670 kV/m.Not so long ago scientific group from P. N. Lebedev has improved that result, the discharge gap – 1 m had been broken under KrF laser irradiation when switching high-voltage (up to 390 kV/m electric discharge by 100-ns UV pulses. Our previous result  –  16 m long conducting channel controlled by a  laser spark at the voltage  –  3 MV  – was obtained more than 20 years ago in Russia and Japan by using pulsed CO2  laser with energy  –  0,5 kJ. An average electric field strength  was < 190 kV/m. It is still too much for efficient applications.

  18. Great Plains Wind Energy Transmission Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

    2012-06-09

    In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task

  19. ACHP | Energy Development, Transmission, and Historic Preservation

    Science.gov (United States)

    with a focus on facilitating and expanding production within our borders, as well as creating the . While technologies vary (solar, wind, geo-thermal, bio-fuels, etc.), the challenges for the management proposing energy and transmission projects on federal land CEQ and ACHP's Handbook on Integrating NEPA and

  20. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  1. Laser Energy Transmission for a Wireless Energy Supply to Robots

    OpenAIRE

    Kawashima, Nobuki; Takeda, Kazuya

    2008-01-01

    We can find a lot of robot applications in construction activities, where it is very difficult or dangerous for a man to access and only robots can work. The time will come soon when the actual use of those robots is extensively realized and the wireless energy transmission technology using laser is a unique means to supply energy to those robots.

  2. Energy and bandwidth-efficient wireless transmission

    CERN Document Server

    Gao, Wei

    2017-01-01

    This book introduces key modulation and predistortion techniques for approaching energy and spectrum-efficient transmission for wireless communication systems. The book presents a combination of theoretical principles, practical implementations, and actual tests. It focuses on spectrum-efficient modulation and energy-efficient transmission techniques in the portable wireless communication systems, and introduces currently developed and designed RF transceivers in the latest wireless markets. Most materials, design examples, and design strategies used are based on the author’s two decades of work in the digital communication fields, especially in the areas of the digital modulations, demodulations, digital signal processing, and linearization of power amplifiers. The applications of these practical products and equipment cover the satellite communications on earth station systems, microwave communication systems, 2G GSM and 3G WCDMA mobile communication systems, and 802.11 WLAN systems.

  3. Clouds and the Earth's Radiant Energy System (CERES) algorithm theoretical basis document. volume 2; Geolocation, calibration, and ERBE-like analyses (subsystems 1-3)

    Science.gov (United States)

    Wielicki, B. A. (Principal Investigator); Barkstrom, B. R. (Principal Investigator); Charlock, T. P.; Baum, B. A.; Green, R. N.; Minnis, P.; Smith, G. L.; Coakley, J. A.; Randall, D. R.; Lee, R. B., III

    1995-01-01

    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 2 details the techniques used to geolocate and calibrate the CERES scanning radiometer measurements of shortwave and longwave radiance to invert the radiances to top-of-the-atmosphere (TOA) and surface fluxes following the Earth Radiation Budget Experiment (ERBE) approach, and to average the fluxes over various time and spatial scales to produce an ERBE-like product. Spacecraft ephemeris and sensor telemetry are used with calibration coefficients to produce a chronologically ordered data product called bidirectional scan (BDS) radiances. A spatially organized instrument Earth scan product is developed for the cloud-processing subsystem. The ERBE-like inversion subsystem converts BDS radiances to unfiltered instantaneous TOA and surface fluxes. The TOA fluxes are determined by using established ERBE techniques. Hourly TOA fluxes are computed from the instantaneous values by using ERBE methods. Hourly surface fluxes are estimated from TOA fluxes by using simple parameterizations based on recent research. The averaging process produces daily, monthly-hourly, and monthly means of TOA and surface fluxes at various scales. This product provides a continuation of the ERBE record.

  4. Influence of radiant energy exchange on the determination of convective heat transfer rates to Orbiter leeside surfaces during entry

    Science.gov (United States)

    Throckmorton, D. A.

    1982-01-01

    Temperatures measured at the aerodynamic surface of the Orbiter's thermal protection system (TPS), and calorimeter measurements, are used to determine heating rates to the TPS surface during atmospheric entry. On the Orbiter leeside, where convective heating rates are low, it is possible that a significant portion of the total energy input may result from solar radiation, and for the wing, cross radiation from the hot (relatively) Orbiter fuselage. In order to account for the potential impact of these sources, values of solar- and cross-radiation heat transfer are computed, based upon vehicle trajectory and attitude information and measured surface temperatures. Leeside heat-transfer data from the STS-2 mission are presented, and the significance of solar radiation and fuselage-to-wing cross-radiation contributions to total energy input to Orbiter leeside surfaces is assessed.

  5. PERFORMANCE EVALUATION OF CEILING RADIANT COOLING SYSTEM IN COMPOSITE CLIMATE

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Anuj [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2015-01-01

    Radiant cooling systems are proving to be an energy efficient solution due to higher thermal capacity of cooling fluid especially for the buildings that require individual zone controls and where the latent loads are moderate. The Conventional air conditioners work at very low temperature i.e.5-8 c (refrigerant evaporator inlet) while the radiant cooling systems, also referred as high temperature cooling system, work at high temperatures i.e. 14-18 c. The radiant cooling systems can maintain lower MRT (Mean Radiant Temperature) as ceiling panels maintain uniform temperature gradient inside room and provide higher human comfort. The radiant cooling systems are relatively new systems and their operation and energy savings potential are not quantified for a large number of buildings and operational parameters. Moreover, there are only limited numbers of whole building simulation studies have been carried out for these systems to have a full confidence in the capability of modelling tools to simulate these systems and predict the impact of various operating parameters. Theoretically, savings achieve due to higher temperature set point of chilled water, which reduces chiller-running time. However, conventional air conditioner runs continuously to maintain requisite temperature. In this paper, experimental study for performance evaluation of radiant cooling system carried out on system installed at Malaviya National Institute of Technology Jaipur. This paper quantifies the energy savings opportunities and effective temperature by radiant cooling system at different chilled water flow rates and temperature range. The data collected/ analysed through experimental study will used for calibration and validation of system model of building prepared in building performance simulation software. This validated model used for exploring optimized combinations of key parameters for composite climate. These optimized combinations will used in formulation of radiant cooling system

  6. Radiant absorption characteristics of corrugated curved tubes

    Directory of Open Access Journals (Sweden)

    Đorđević Milan Lj.

    2017-01-01

    Full Text Available The utilization of modern paraboloidal concentrators for conversion of solar radiation into heat energy requires the development and implementation of compact and efficient heat absorbers. Accurate estimation of geometry influence on absorption characteristics of receiver tubes is an important step in this process. This paper deals with absorption characteristics of heat absorber made of spirally coiled tubes with transverse circular corrugations. Detailed 3-D surface-to-surface Hemicube method was applied to compare radiation performances of corrugated and smooth curved tubes. The numerical results were obtained by varying the tube curvature ratio and incident radiant heat flux intensity. The details of absorption efficiency of corrugated tubes and the effect of curvature on absorption properties for both corrugated and smooth tubes were presented. The results may have significance to further analysis of highly efficient heat absorbers exposed to concentrated radiant heating. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 42006

  7. Radiant exchange in partially specular architectural environments

    Science.gov (United States)

    Beamer, C. Walter; Muehleisen, Ralph T.

    2003-10-01

    The radiant exchange method, also known as radiosity, was originally developed for thermal radiative heat transfer applications. Later it was used to model architectural lighting systems, and more recently it has been extended to model acoustic systems. While there are subtle differences in these applications, the basic method is based on solving a system of energy balance equations, and it is best applied to spaces with mainly diffuse reflecting surfaces. The obvious drawback to this method is that it is based around the assumption that all surfaces in the system are diffuse reflectors. Because almost all architectural systems have at least some partially specular reflecting surfaces in the system it is important to extend the radiant exchange method to deal with this type of surface reflection. [Work supported by NSF.

  8. Reducing LTE Uplink Transmission Energy by Allocating Resources

    DEFF Research Database (Denmark)

    Lauridsen, Mads; Jensen, Anders Riis; Mogensen, Preben

    2011-01-01

    The effect of physical resource block (PRB) allocation on an LTE modem's transmit power and total modem energy consumption is examined. In this paper the uplink resource blocks are scheduled in either a Frequency Division Multiple Access (FDMA) or Time Division Multiple Access (TDMA) manner......, to determine if low transmission power & long transmission time or high transmission power & short transmission time is most energy efficient. It is important to minimize the LTE modem's energy consumption caused by uplink transmission because it affects phone battery time, and because researchers rarely focus...

  9. Thermal model of attic systems with radiant barriers

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, K.E.

    1991-07-01

    This report summarizes the first phase of a project to model the thermal performance of radiant barriers. The objective of this phase of the project was to develop a refined model for the thermal performance of residential house attics, with and without radiant barriers, and to verify the model by comparing its predictions against selected existing experimental thermal performance data. Models for the thermal performance of attics with and without radiant barriers have been developed and implemented on an IBM PC/AT computer. The validity of the models has been tested by comparing their predictions with ceiling heat fluxes measured in a number of laboratory and field experiments on attics with and without radiant barriers. Cumulative heat flows predicted by the models were usually within about 5 to 10 percent of measured values. In future phases of the project, the models for attic/radiant barrier performance will be coupled with a whole-house model and further comparisons with experimental data will be made. Following this, the models will be utilized to provide an initial assessment of the energy savings potential of radiant barriers in various configurations and under various climatic conditions. 38 refs., 14 figs., 22 tabs.

  10. Wave energy transmission apparatus for high-temperature environments

    Science.gov (United States)

    Buckley, John D. (Inventor); Edwards, William C. (Inventor); Kelliher, Warren C. (Inventor); Carlberg, Ingrid A. (Inventor)

    2010-01-01

    A wave energy transmission apparatus has a conduit made from a refractory oxide. A transparent, refractory ceramic window is coupled to the conduit. Wave energy passing through the window enters the conduit.

  11. [Review of wireless energy transmission system for total artificial heart].

    Science.gov (United States)

    Zhang, Chi; Yang, Ming

    2009-11-01

    This paper sums up the fundamental structure of wireless energy transmission system for total artificial heart, and compares the key parameters and performance of some representative systems. After that, it is discussed that the future development trend of wireless energy transmission system for total artificial heart.

  12. A full-scale experimental set-up for assessing the energy performance of radiant wall and active chilled beam for cooling buildings

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    in decreasing the cooling need of the radiant wall compared to the active chilled beam. It has also been observed that the type and repartition of heat load have an influence on the cooling demand. Regarding the comfort level, both terminals met the general requirements, except at high solar heat gains......: overheating has been observed due to the absence of solar shading and the limited cooling capacity of the terminals. No local discomfort has been observed although some segments of the thermal manikin were slightly colder....

  13. High Voltage Power Transmission for Wind Energy

    Science.gov (United States)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  14. Performance evaluation of radiant cooling system application on a university building in Indonesia

    Science.gov (United States)

    Satrio, Pujo; Sholahudin, S.; Nasruddin

    2017-03-01

    The paper describes a study developed to estimate the energy savings potential of a radiant cooling system installed in an institutional building in Indonesia. The simulations were carried out using IESVE to evaluate thermal performance and energy consumption The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption and temperature distribution to determine the proportional energy savings and occupant comfort under different systems. The result was radiant cooling which integrated with a Dedicated Outside Air System (DOAS) could make 41,84% energy savings compared to the installed cooling system. The Computational Fluid Dynamics (CFD) simulation showed that a radiant system integrated with DOAS provides superior human comfort than a radiant system integrated with Variable Air Volume (VAV). Percentage People Dissatisfied was kept below 10% using the proposed system.

  15. Radiant recuperator modelling and design

    Directory of Open Access Journals (Sweden)

    Knežević Suzana D.

    2017-01-01

    Full Text Available Recuperators are frequently used in glass production and metallurgical processes to preheat combustion air by heat exchange with high temperature flue gases. Mass and energy balances of a 15 m high, concurrent radiant recuperator used in a glass fiber production process are given. The balances are used: for validation of a cell modeling method that predicts the performance of different recuperator designs, and for finding a simple solution to improve the existing recuperator. Three possible solutions are analyzed: to use the existing recuperator as a countercurrent one, to add an extra cylinder over the existing construction, and to make a system that consists of a central pipe and two concentric annular ducts. In the latter, two air streams flow in opposite directions, whereas air in the inner annular passage flows concurrently or countercurrently to flue gases. Compared with the concurrent recuperator, the countercurrent has only one drawback: the interface temperature is higher at the bottom. The advantages are: lower interface temperature at the top where the material is under maximal load, higher efficiency, and smaller pressure drop. Both concurrent and countercurrent double pipe-in-pipe systems are only slightly more efficient than pure concurrent and countercurrent recuperators, respectively. Their advantages are smaller interface temperatures whereas the disadvantages are their costs and pressure drops. To implement these solutions, the average velocities should be: for flue gas around 5 m/s, for air in the first passage less than 2 m/s, and for air in the second passage more than 25 m/s. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. EE 33027

  16. Radiant Heating and Cooling Systems. Part one

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    The use of radiant heating systems has several thousand years of history.1,2 The early stage of radiant system application was for heating purposes, where hot air from flue gas (cooking, fires) was circulated under floors or in walls. After the introduction of plastic piping water-based radiant...

  17. Energy losses of superconducting power transmission cables in the grid

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Okholm, Jan; Lomholt, Karin

    2001-01-01

    One of the obvious motives for development of superconducting power transmission cables is reduction of transmission losses. Loss components in superconducting cables as well as in conventional cables have been examined. These losses are used for calculating the total energy losses of conventional...... as well as superconducting cables when they are placed in the electric power transmission network. It is concluded that high load connections are necessary to obtain energy saving by the use of HTSC cables. For selected high load connections, an energy saving of 40% is expected. It is shown...

  18. Pricing and Capacity Planning Problems in Energy Transmission Networks

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer

    strategy. In the Nordic electricity system a market with zonal prices is adopted. We consider the problem of designing zones in an optimal way explicitly considering uncertainty. Finally, we formulate the integrated problem of pipeline capacity expansion planning and transmission pricing in natural gas...... necessitates a radical change in the way we plan and operate energy systems. Another paradigm change which began in the 1990’s for electricity systems is that of deregulation. This has led to a variety of different market structures implemented across the world. In this thesis we discuss capacity planning...... and transmission pricing problems in energy transmission networks. Although the modelling framework applies to energy networks in general, most of the applications discussed concern the transmission of electricity. A number of the problems presented involves transmission switching, which allows the operator...

  19. Transmission of wave energy in curved ducts

    Science.gov (United States)

    Rostafinski, W.

    1973-01-01

    A formation of wave energy flow was developed for motion in curved ducts. A parametric study over a range of frequencies determined the ability of circular bends to transmit energy for the case of perfectly rigid walls.

  20. Storage and transmission of secondary energy

    International Nuclear Information System (INIS)

    Taube, M.

    1979-09-01

    In the area of the total energy flow, possibilities and limits of shifts in time (storage) and in space (transfer) of secondary energy, i.e. electrical, chemical and thermal energy are examined and formulated. These shifts are linked to the qualitative conversions of secondary energy. The multiple technological possibilities, the spectrum of governing factors and the numerous technical and economical parameters show that only a complex optimization is possible. (Auth.)

  1. Optimum transmission system expansion offshore considering renewable energy sources

    NARCIS (Netherlands)

    Torbaghan, Shahab S.; Gibescu, Madeleine

    2017-01-01

    This chapter provides an overview of transmission expansion planning (TEP) methods and their practical application. First, it discusses the strategic importance of the transmission system. Next, it describes the reasons why TEP remains a challenge for systems with a large share of renewable energy.

  2. Wireless energy transmission to supplement energy harvesters in sensor network applications

    Energy Technology Data Exchange (ETDEWEB)

    Farinholt, Kevin M [Los Alamos National Laboratory; Taylor, Stuart G [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory

    2010-01-01

    In this paper we present a method for coupling wireless energy transmission with traditional energy harvesting techniques in order to power sensor nodes for structural health monitoring applications. The goal of this study is to develop a system that can be permanently embedded within civil structures without the need for on-board power sources. Wireless energy transmission is included to supplement energy harvesting techniques that rely on ambient or environmental, energy sources. This approach combines several transducer types that harvest ambient energy with wireless transmission sources, providing a robust solution that does not rely on a single energy source. Experimental results from laboratory and field experiments are presented to address duty cycle limitations of conventional energy harvesting techniques, and the advantages gained by incorporating a wireless energy transmission subsystem. Methods of increasing the efficiency, energy storage medium, target applications and the integrated use of energy harvesting sources with wireless energy transmission will be discussed.

  3. Method for the transmission of energy

    International Nuclear Information System (INIS)

    Weissenbach, B.

    1976-01-01

    According ot the invention, chemical energy and/or chemically bound latent energy from a heat source (preferably from a nuclear reactor), is conveyed to a consumer by means of ordinary, saturated hydrocarbons, or their oxygen-containing derivates (preferably methanol), or synthesis gas in open- or closed-cycle systems. (GG) [de

  4. Radiant floor cooling coupled with dehumidification systems in residential buildings: A simulation-based analysis

    International Nuclear Information System (INIS)

    Zarrella, Angelo; De Carli, Michele; Peretti, Clara

    2014-01-01

    Highlights: • The floor radiant cooling in a typical apartment is analyzed. • Dehumidification devices, fan-coil and mechanical ventilation are compared. • The results are analyzed in terms of both thermal comfort and energy consumption. • The energy consumption of the dehumidifiers is higher than that of other systems. • The mechanical ventilation decreases the moisture level better than other systems. - Abstract: The development of radiant cooling has stimulated an interest in new systems based on coupling ventilation with radiant cooling. However, radiant cooling systems may cause condensation to form on an active surface under warm and humid conditions during the cooling season. This phenomenon occurs when surface temperature falls below dew point. To prevent condensation, air humidity needs to be reduced with a dehumidification device or a mechanical ventilation system. There are two main options to achieve this. The first is to use dehumidification devices that reduce humidity, but are not coupled with ventilation, i.e. devices that handle room air and leave air change to infiltrations. The second is to combine a mechanical ventilation system with dehumidifying finned coils. This study analyzes the floor radiant cooling of a typical residential apartment within a multi-storey building in three Italian climate zones by means of a detailed simulation tool. Five systems were compared in terms of both indoor thermal comfort and energy consumption: radiant cooling without dehumidification; radiant cooling with a soft dehumidification device; radiant cooling with a dehumidification device which also supplies sensible cooling; radiant cooling coupled with fan coils; and radiant cooling with a mechanical ventilation system which dehumidifies and cools

  5. Microwave energy transmission system for solar power station

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hiroshi

    1988-05-05

    This paper deals with a microwave wireless energy transmission system which will be required for a solar power station under investigation, particularly, it describes its foundation and future investigation. It is supposed that for realization of microwave wireless transmission techniques, it is most important to investigate the effect of strong microwave beams on a plasma environment, establish control techniques for microwave beams in which a retro-directive system is combined with a computer control system, and develop a semiconductor transmission module. Institute of Space and Astronautical Science (Japan) made an experiment on the effect of microwaves on ionospheric plasma by using an observatory rocket. The institute has planned to make an experiment on a microwave energy transmission system which is to be mounted to a small-scale space flyer unit in order to examine the control of microwave beams and 10 KW power transmission, in addition to investigation on the interaction of microwave energy beams with a plasma environment. (4 figs, 3 tabs, 20 refs)

  6. Improved Scheduling Mechanisms for Synchronous Information and Energy Transmission.

    Science.gov (United States)

    Qin, Danyang; Yang, Songxiang; Zhang, Yan; Ma, Jingya; Ding, Qun

    2017-06-09

    Wireless energy collecting technology can effectively reduce the network time overhead and prolong the wireless sensor network (WSN) lifetime. However, the traditional energy collecting technology cannot achieve the balance between ergodic channel capacity and average collected energy. In order to solve the problem of the network transmission efficiency and the limited energy of wireless devices, three improved scheduling mechanisms are proposed: improved signal noise ratio (SNR) scheduling mechanism (IS2M), improved N-SNR scheduling mechanism (INS2M) and an improved Equal Throughput scheduling mechanism (IETSM) for different channel conditions to improve the whole network performance. Meanwhile, the average collected energy of single users and the ergodic channel capacity of three scheduling mechanisms can be obtained through the order statistical theory in Rayleig, Ricean, Nakagami- m and Weibull fading channels. It is concluded that the proposed scheduling mechanisms can achieve better balance between energy collection and data transmission, so as to provide a new solution to realize synchronous information and energy transmission for WSNs.

  7. Rocket experiment METS - Microwave Energy Transmission in Space

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A Microwave Energy Transmission in Space (METS) rocket experiment is being planned by the Solar Power Satellite Working Group at the Institute of Space and Astronautical Science in Japan for the forthcoming International Space Year, 1992. The METS experiment is an advanced version of the previous MINIX rocket experiment (Matsumoto et al., 1990). This paper describes a conceptual design of the METS rocket experiment. It aims at verifying a newly developed microwave energy transmission system for space use and to study nonlinear effects of the microwave energy beam in the space plasma environment. A high power microwave of 936 W will be transmitted by the new phased-array antenna from a mother rocket to a separated target (daughter rocket) through the ionospheric plasma. The active phased-array system has a capability of focusing the microwave energy around any spatial point by controlling the digital phase shifters individually.

  8. Rocket experiment METS Microwave Energy Transmission in Space

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Akiba, R.

    A METS (Microwave Energy Transmission in Space) rocket experiment is being planned by the SPS (Solar Power Satellite) Working Group at the Institute of Space and Astronautical Science (ISAS) in Japan for the forthcoming International Space Year (ISY), 1992. The METS experiment is an advanced version of our MINIX rocket experiment. This paper describes the conceptual design for the METS rocket experiment. Aims are to verify the feasibility of a newly developed microwave energy transmission system designed for use in space and to study nonlinear effects of the microwave energy beam on space plasma. A high power microwave (936 W) will be transmitted by a new phase-array antenna from a mother rocket to a separate target (daughter rocket) through the Earth's ionospheric plasma. The active phased-array system has the capability of being able to focus the microwave energy at any spatial point by individually controlling the digital phase shifters.

  9. On Maximizing the Throughput of Packet Transmission under Energy Constraints.

    Science.gov (United States)

    Wu, Weiwei; Dai, Guangli; Li, Yan; Shan, Feng

    2018-06-23

    More and more Internet of Things (IoT) wireless devices have been providing ubiquitous services over the recent years. Since most of these devices are powered by batteries, a fundamental trade-off to be addressed is the depleted energy and the achieved data throughput in wireless data transmission. By exploiting the rate-adaptive capacities of wireless devices, most existing works on energy-efficient data transmission try to design rate-adaptive transmission policies to maximize the amount of transmitted data bits under the energy constraints of devices. Such solutions, however, cannot apply to scenarios where data packets have respective deadlines and only integrally transmitted data packets contribute. Thus, this paper introduces a notion of weighted throughput, which measures how much total value of data packets are successfully and integrally transmitted before their own deadlines. By designing efficient rate-adaptive transmission policies, this paper aims to make the best use of the energy and maximize the weighted throughput. What is more challenging but with practical significance, we consider the fading effect of wireless channels in both offline and online scenarios. In the offline scenario, we develop an optimal algorithm that computes the optimal solution in pseudo-polynomial time, which is the best possible solution as the problem undertaken is NP-hard. In the online scenario, we propose an efficient heuristic algorithm based on optimal properties derived for the optimal offline solution. Simulation results validate the efficiency of the proposed algorithm.

  10. Radiant zone heated particulate filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-12-27

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  11. Subjective evaluation of different ventilation concepts combined with radiant heating and cooling

    DEFF Research Database (Denmark)

    Krajcik, Michal; Tomasi, Roberta; Simone, Angela

    2012-01-01

    Sixteen subjects evaluated the indoor environment in four experiments with different combinations of ventilation and radiant heating/cooling systems. Two test setups simulated a room in a low energy building with a single occupant during winter. The room was equipped either by a ventilation system...... supplying warm air space heating or by a combination of radiant floor heating and mixing ventilation system. Next two test setups simulated an office room with two occupants during summer, ventilated and cooled by a single displacement ventilation system or by a radiant floor cooling combined...

  12. Advanced radiant combustion system. Final report, September 1989--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.D.; Carswell, M.G.; Long, F.S.

    1996-09-01

    Results of the Advanced Radiant Combustion System (ARCS) project are presented in this report. This work was performed by Alzeta Corporation as prime contractor under a contract to the U.S. Department of Energy Office of Industrial Technologies as part of a larger DOE program entitled Research Program for Advanced Combustion Systems. The goals of the Alzeta ARCS project were to (a) Improve the high temperature performance characteristics of porous surface ceramic fiber burners, (b) Develop an Advanced Radiant Combustion System (ARCS) that combines combustion controls with an advanced radiant burner, and (c) Demonstrate the advanced burner and controls in an industrial application. Prior to the start of this project, Alzeta had developed and commercialized a porous surface radiant burner, the Pyrocore{trademark} burner. The product had been commercially available for approximately 5 years and had achieved commercial success in a number of applications ranging from small burners for commercial cooking equipment to large burners for low temperature industrial fluid heating applications. The burner was not recommended for use in applications with process temperatures above 1000{degrees}F, which prevented the burner from being used in intermediate to high temperature processes in the chemical and petroleum refining industries. The interest in increasing the maximum use temperature of the burner was motivated in part by a desire to expand the number of applications that could use the Pyrocore product, but also because many of the fluid sensitive heating applications of interest would benefit from the distributed flux characteristic of porous surface burners. Background information on porous surface radiant burners, and a discussion of advantages that would be provided by an improved product, are presented in Section 2.

  13. Data Acquisition and Transmission System for Building Energy Consumption Monitoring

    Directory of Open Access Journals (Sweden)

    Liang Zhao

    2013-01-01

    Full Text Available Building energy consumption monitoring and management system have been developed widely in China in order to gain the real-time data of energy consumption in buildings for analyzing it in the next state work. This paper describes a low-cost and small-sized collector based on the STM32 microcontroller, which can be placed in a building easily to implement the work of data acquisition, storage, and transmission. The collector gathers the electricity, water, heat, and energy consumption data through the RS485 field bus and stores the data into an SD card with mass storage, finally, using Internet to finish the communication and transmission to data server through TCP protocol. The collector has been used in application for two years, and the results show that the system is reliable and stable.

  14. Experimental evaluation of an active solar thermoelectric radiant wall system

    International Nuclear Information System (INIS)

    Liu, ZhongBing; Zhang, Ling; Gong, GuangCai; Han, TianHe

    2015-01-01

    Highlights: • A novel active solar thermoelectric radiant wall are proposed and tested. • The novel wall can control thermal flux of building envelope by using solar energy. • The novel wall can eliminate building envelop thermal loads and provide cooling capacity for space cooling. • Typical application issues including connection strategies, coupling with PV system etc. are discussed. - Abstract: Active solar thermoelectric radiant wall (ASTRW) system is a new solar wall technology which integrates thermoelectric radiant cooling and photovoltaic (PV) technologies. In ASTRW system, a PV system transfers solar energy directly into electrical energy to power thermoelectric cooling modes. Both the thermoelectric cooling modes and PV system are integrated into one enclosure surface as radiant panel for space cooling and heating. Hence, ASTRW system presents fundamental shift from minimizing building envelope energy losses by optimizing the insulation thickness to a new regime where active solar envelop is designed to eliminate thermal loads and increase the building’s solar gains while providing occupant comfort in all seasons. This article presents an experimental study of an ASTRW system with a dimension of 1580 × 810 mm. Experimental results showed that the inner surface temperature of the ASTRW is 3–8 °C lower than the indoor temperature of the test room, which indicated that the ASTRW system has the ability to control thermal flux of building envelope by using solar energy and reduce the air conditioning system requirements. Based on the optimal operating current of TE modules and the analysis based upon PV modeling theories, the number and type of the electrical connections for the TE modules in ASTRW system are discussed in order to get an excellent performance in the operation of the ASTRW system

  15. High voltage transmission of electrical energy over long distances

    Energy Technology Data Exchange (ETDEWEB)

    Tewari, S W

    1962-07-01

    Technical aspects of ac transmission lines, additional means of improving stability ac transmisson lines, insulation problems, ac transmission by cables, high voltage dc transmission, advantages of dc over ac transmission, disadvantages of dc transmission, use of underground cables for dc transmission, history of the development of conversion equipment; transmission schemes adopted on Gotland Island, Sweden; and economics of ac and dc transmission are discussed.

  16. Electric power transmission for a Hanford Nuclear Energy Center (HNEC)

    International Nuclear Information System (INIS)

    Harty, H.; Dowis, W.J.

    1983-06-01

    The original study of transmission for a Hanford Nuclear Energy Center (HNEC), which was completed in September 1975, was updated in June 1978. The present 1983 revision takes cognizance of recent changes in the electric power situation of the PNW with respect to: (1) forecasts of load growth, (2) the feasibility of early use of 1100 kV transmission, and (3) the narrowing opportunities for siting nuclear plants in the region. The purpose of this update is to explore and describe additions to the existing transmission system that would be necessary to accommodate three levels of generation at HNEC. Comparisons with a PNW system having new thermal generating capacity distributed throughout the marketing region are not made as was done in earlier versions

  17. Wireless data transmission for high energy physics applications

    Science.gov (United States)

    Dittmeier, Sebastian; Brenner, Richard; Dancila, Dragos; Dehos, Cedric; De Lurgio, Patrick; Djurcic, Zelimir; Drake, Gary; Gonzalez Gimenez, Jose Luis; Gustafsson, Leif; Kim, Do-Won; Locci, Elizabeth; Pfeiffer, Ullrich; Röhrich, Dieter; Rydberg, Anders; Schöning, André; Siligaris, Alexandre; Soltveit, Hans Kristian; Ullaland, Kjetil; Vincent, Pierre; Rodriguez Vazquez, Pedro; Wiedner, Dirk; Yang, Shiming

    2017-08-01

    Silicon tracking detectors operated at high luminosity collider experiments pose a challenge for current and future readout systems regarding bandwidth, radiation, space and power constraints. With the latest developments in wireless communications, wireless readout systems might be an attractive alternative to commonly used wired optical and copper based readout architectures. The WADAPT group (Wireless Allowing Data and Power Transmission) has been formed to study the feasibility of wireless data transmission for future tracking detectors. These proceedings cover current developments focused on communication in the 60 GHz band. This frequency band offers a high bandwidth, a small form factor and an already mature technology. Motivation for wireless data transmission for high energy physics application and the developments towards a demonstrator prototype are summarized. Feasibility studies concerning the construction and operation of a wireless transceiver system have been performed. Data transmission tests with a transceiver prototype operating at even higher frequencies in the 240 GHz band are described. Data transmission at rates up to 10 Gb/s have been obtained successfully using binary phase shift keying.

  18. A stable wireless energy transmission system for gastrointestinal microsystems.

    Science.gov (United States)

    Xin, W H; Yan, G Z; Wang, W X

    2010-01-01

    A wireless energy transmission system using a Helmholtz primary coil outside and a 3-dimensional secondary coil inside the body is introduced. It is designed to transmit stable power to a gastrointestinal microsystem regardless of its position and orientation when working in the gastric tract. Up to 310 mW of usable DC power can be delivered under worst-case geometrical conditions. Measured data of the system performance are presented and evaluated.

  19. On the Energy Efficiency of Dual Clutch Transmissions and Automated Manual Transmissions

    Directory of Open Access Journals (Sweden)

    Fabio Vacca

    2017-10-01

    Full Text Available The main benefits of dual clutch transmissions (DCTs are: (i a higher energy efficiency than automatic transmission systems with torque converters; and (ii the capability to fill the torque gap during gear shifts to allow seamless longitudinal acceleration profiles. Therefore, DCTs are viable alternatives to automated manual transmissions (AMTs. For vehicles equipped with engines that can generate considerable torque, large clutch-slip energy losses occur during power-on gear shifts and, as a result, DCTs need wet clutches for effective heat dissipation. This requirement substantially reduces DCT efficiency because of the churning and ancillary power dissipations associated with the wet clutch pack. To the knowledge of the authors, this study is the first to analyse the detailed power loss contributions of a DCT with wet clutches, and their relative significance along a set of driving cycles. Based on these results, a novel hybridised AMT (HAMT with a single dry clutch and an electric motor is proposed for the same vehicle. The HAMT architecture combines the high mechanical efficiency typical of AMTs with a single dry clutch, with the torque-fill capability and operational flexibility allowed by the electric motor. The measured efficiency maps of a case study DCT and HAMT are compared. This is then complemented by the analysis of the respective fuel consumption along the driving cycles, which is simulated with an experimentally validated vehicle model. In its internal combustion engine mode, the HAMT reduces fuel consumption by >9% with respect to the DCT.

  20. Exergy metrication of radiant panel heating and cooling with heat pumps

    International Nuclear Information System (INIS)

    Kilkis, Birol

    2012-01-01

    Highlights: ► Rational Exergy Management Model analytically relates heat pumps and radiant panels. ► Heat pumps driven by wind energy perform better with radiantpanels. ► Better CO 2 mitigation is possible with wind turbine, heat pump, radiant panel combination. ► Energy savings and thermo-mechanical performance are directly linked to CO 2 emissions. - Abstract: Radiant panels are known to be energy efficient sensible heating and cooling systems and a suitable fit for low-exergy buildings. This paper points out the little known fact that this may not necessarily be true unless their low-exergy demand is matched with low-exergy waste and alternative energy resources. In order to further investigate and metricate this condition and shed more light on this issue for different types of energy resources and energy conversion systems coupled to radiant panels, a new engineering metric was developed. Using this metric, which is based on the Rational Exergy Management Model, true potential and benefits of radiant panels coupled to ground-source heat pumps were analyzed. Results provide a new perspective in identifying the actual benefits of heat pump technology in curbing CO 2 emissions and also refer to IEA Annex 49 findings for low-exergy buildings. Case studies regarding different scenarios are compared with a base case, which comprises a radiant panel system connected to a natural gas-fired condensing boiler in heating and a grid power-driven chiller in cooling. Results show that there is a substantial CO 2 emission reduction potential if radiant panels are optimally operated with ground-source heat pumps driven by renewable energy sources, or optimally matched with combined heat and power systems, preferably running on alternative fuels.

  1. Potential impacts of nanotechnology on energy transmission applications and needs.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Environmental Science Division

    2007-11-30

    The application of nanotechnologies to energy transmission has the potential to significantly impact both the deployed transmission technologies and the need for additional development. This could be a factor in assessing environmental impacts of right-of-way (ROW) development and use. For example, some nanotechnology applications may produce materials (e.g., cables) that are much stronger per unit volume than existing materials, enabling reduced footprints for construction and maintenance of electricity transmission lines. Other applications, such as more efficient lighting, lighter-weight materials for vehicle construction, and smaller batteries having greater storage capacities may reduce the need for long-distance transport of energy, and possibly reduce the need for extensive future ROW development and many attendant environmental impacts. This report introduces the field of nanotechnology, describes some of the ways in which processes and products developed with or incorporating nanomaterials differ from traditional processes and products, and identifies some examples of how nanotechnology may be used to reduce potential ROW impacts. Potential environmental, safety, and health impacts are also discussed.

  2. Optimal Operation of Energy Storage in Power Transmission and Distribution

    Science.gov (United States)

    Akhavan Hejazi, Seyed Hossein

    In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider

  3. Transmission of wave energy through an offshore wind turbine farm

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Johnson, Martin; Sørensen, Ole Rene

    2013-01-01

    condition at infinity. From airborne and Satellite SAR (Synthetic Aperture Radar) a model has been derived for the change of the water surface friction C) inside and on the lee side of the offshore wind farm. The effects have been implemented in a spectral wind wave model,MIKE21 SW, and a parametric study......The transmission of wave energy passing an offshore wind farm is studied. Three effects that can change the wave field are analysed, which is the A) energy dissipation due to drag resistance, B) wave reflection/diffraction from structures, and C) the effect of a modified wind field inside...... and on the lee side of the wind farm. The drag dissipation, A), is quantified by a quadratic resistance law. The effect of B) is parameterised based on 1st order potential theory. A method to find the amount of reflected and transmitted wave energy is developed based on the panel method WAMIT™ and a radiation...

  4. [Study on a wireless energy transmission system for the noninvasive examination micro system inside alimentary tracts].

    Science.gov (United States)

    He, Xiu; Yan, Guo-Zheng; Wang, Fu-Min

    2008-01-01

    A wireless energy transmission system for the MEMS system inside alimentary tracts is reported here in the paper. It consists of an automatic frequency tracking circuit of phase lock loop and phase shift PWM control circuit. Experimental results show that the energy transmission system is capable of automatic frequency-tracking and transmission power-adjusting and has stable received energy.

  5. Ten questions about radiant heating and cooling systems

    DEFF Research Database (Denmark)

    Rhee, Kyu-Nam; Olesen, Bjarne W.; Kim, Kwang Woo

    2017-01-01

    studies on RHC systems in terms of comfort, heat transfer analysis, energy simulation, control strategy, system configurations and so on. Many studies have demonstrated that the RHC system is a good solution to improve indoor environmental quality while reducing building energy consumption for heating......Radiant heating and cooling (RHC) systems are being increasingly applied not only in residential but also in non-residential buildings such as commercial buildings, education facilities, and even large scale buildings such as airport terminals. Furthermore, with the combined ventilation system used...

  6. Linearization of the interaction principle: Analytic Jacobians in the 'Radiant' model

    International Nuclear Information System (INIS)

    Spurr, R.J.D.; Christi, M.J.

    2007-01-01

    In this paper we present a new linearization of the Radiant radiative transfer model. Radiant uses discrete ordinates for solving the radiative transfer equation in a multiply-scattering anisotropic medium with solar and thermal sources, but employs the adding method (interaction principle) for the stacking of reflection and transmission matrices in a multilayer atmosphere. For the linearization, we show that the entire radiation field is analytically differentiable with respect to any surface or atmospheric parameter for which we require Jacobians (derivatives of the radiance field). Derivatives of the discrete ordinate solutions are based on existing methods developed for the LIDORT radiative transfer models. Linearization of the interaction principle is completely new and constitutes the major theme of the paper. We discuss the application of the Radiant model and its linearization in the Level 2 algorithm for the retrieval of columns of carbon dioxide as the main target of the Orbiting Carbon Observatory (OCO) mission

  7. Renewable Energy Zone (REZ) Transmission Planning Process: A Guidebook for Practitioners

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nathan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Flores-Espino, Francisco [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hurlbut, David J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-05

    Achieving clean energy goals may require new investments in transmission, especially if planners anticipate economic growth and increased demand for electricity. The renewable energy zone (REZ) transmission planning process can help policymakers ensure their infrastructure investments achieve national goals in the most economical manner. Policymakers, planners, and system operators around the world have used variations of the REZ process to chart the expansion of their transmission networks and overcome the barriers of traditional transmission planning. This guidebook seeks to help power system planners, key decision makers, and stakeholders understand and use the REZ transmission planning process to integrate transmission expansion planning and renewable energy generation planning.

  8. Research on energy transmission calculation problem on laser detecting submarine

    Science.gov (United States)

    Fu, Qiang; Li, Yingchao; Zhang, Lizhong; Wang, Chao; An, Yan

    2014-12-01

    The laser detection and identification is based on the method of using laser as the source of signal to scan the surface of ocean. If the laser detection equipment finds out the target, it will immediately reflect the returning signal, and then through receiving and disposing the returning signal by the receiving system, to realize the function of detection and identification. Two mediums channels should be though in the process of laser detection transmission, which are the atmosphere and the seawater. The energy loss in the process of water transport, mainly considering the surface reflection and scattering attenuation and internal attenuation factors such as seawater. The energy consumption though atmospheric transmission, mainly considering the absorption of atmospheric and the attenuation causing by scattering, the energy consumption though seawater transmission, mainly considering the element such as surface reflection, the attenuation of scattering and internal attenuation of seawater. On the basis of the analysis and research, through the mode of establishment of atmospheric scattering, the model of sea surface reflection and the model of internal attenuation of seawater, determine the power dissipation of emitting lasers system, calculates the signal strength that reaches the receiver. Under certain conditions, the total attenuation of -98.92 dB by calculation, and put forward the related experiment scheme by the use of Atmospheric analog channel, seawater analog channel. In the experiment of the theory, we use the simulation pool of the atmosphere and the sea to replace the real environment where the laser detection system works in this kind of situation. To start with, we need to put the target in the simulating seawater pool of 10 meters large and then control the depth of the target in the sea level. We, putting the laser detection system in position where it is 2 kilometers far from one side, secondly use the equipment to aim at the target in some

  9. 75 FR 68607 - CenterPoint Energy-Illinois Gas Transmission Company; Notice of Baseline Filing

    Science.gov (United States)

    2010-11-08

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-80-001] CenterPoint Energy--Illinois Gas Transmission Company; Notice of Baseline Filing November 1, 2010. Take notice that on October 28, 2010, CenterPoint Energy--Illinois Gas Transmission Company submitted a revised...

  10. 76 FR 37809 - The Connecticut Transmission Municipal Electric Energy Cooperative; Notice of Request for Waiver...

    Science.gov (United States)

    2011-06-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. TS11-4-000] The Connecticut Transmission Municipal Electric Energy Cooperative; Notice of Request for Waiver or Exemption Take notice that on June 8, 2011, the Connecticut Transmission Municipal Electric Energy Cooperative filed a petition...

  11. Energy efficient downlink MIMO transmission with linear precoding

    Institute of Scientific and Technical Information of China (English)

    XU Jie; LI ShiChao; QIU Ling; SLIMANE Ben S.; YU ChengWen

    2013-01-01

    Energy efficiency (EE) is becoming increasingly important for wireless cellular networks. This paper addresses EE optimization problems in downlink multiuser MIMO systems with linear precoding. Referring to different active transmit/receive antenna sets and transmission schemes as different modes, we propose a joint bandwidth/power optimization and mode switching scheme to maximize EE. With a specific mode, we prove that the optimal bandwidth and transmit power is either full transmit power or full bandwidth. After deriving the optimal bandwidth and transmit power, we further propose mode switching to select the mode with optimal EE. Since the optimal mode switching, i.e. exhaustive search, is too complex to implement, an alternative heuristic method is developed to decrease the complexity through reducing the search size and avoiding the EE calculation during each search. Through simulations, we demonstrate that the proposed methods can significantly improve EE and the performance is similar to the optimal exhaustive search.

  12. Energy Efficient Data Transmission for Sensors with Wireless Charging.

    Science.gov (United States)

    Fang, Xiaolin; Luo, Junzhou; Wu, Weiwei; Gao, Hong

    2018-02-08

    This paper studies the problem of maximizing the energy utilization for data transmission in sensors with periodical wireless charging process while taking into account the thermal effect. Two classes of problems are analyzed: one is the case that wireless charging can process for only a limited period of time, and the other is the case that wireless charging can process for a long enough time. Algorithms are proposed to solve the problems and analysis of these algorithms are also provided. For the first problem, three subproblems are studied, and, for the general problem, we give an algorithm that can derive a performance bound of ( 1 - 1 2 m ) ( O P T - E ) compared to an optimal solution. In addition, for the second problem, we provide an algorithm with 2 m 2 m - 1 O P T + 1 performance bound for the general problem. Simulations confirm the analysis of the algorithms.

  13. Analysis of Energy Transmission Modes of Flyback Converter

    Directory of Open Access Journals (Sweden)

    GONG Shu

    2014-08-01

    Full Text Available It is of significance to investigate energy transmission modes of a flyback converter for its optimum design. In this paper, the ETMs of a flyback converter are divided into three modes, which are continuous conduction mode-complete inductor supply mode, continuous conduction mode- incomplete inductor supply mode and discontinuous conduction mode-incomplete inductor supply mode, respectively. A deep analysis of the operation is made, a reduction of the boundary condition between the modes is conducted and a comparison of current stress, transformer AP and output ripple voltage between the modes is performed. A 30W prototype is developed and its experiment is done. The experiment results are in agreement with the theoretical analysis quite well.

  14. Energy and Transmissibility in Nonlinear Viscous Base Isolators

    Science.gov (United States)

    Markou, Athanasios A.; Manolis, George D.

    2016-09-01

    High damping rubber bearings (HDRB) are the most commonly used base isolators in buildings and are often combined with other systems, such as sliding bearings. Their mechanical behaviour is highly nonlinear and dependent on a number of factors. At first, a physical process is suggested here to explain the empirical formula introduced by J.M. Kelly in 1991, where the dissipated energy of a HDRB under cyclic testing, at constant frequency, is proportional to the amplitude of the shear strain, raised to a power of approximately 1.50. This physical process is best described by non-Newtonian fluid behaviour, originally developed by F.H. Norton in 1929 to describe creep in steel at high-temperatures. The constitutive model used includes a viscous term, that depends on the absolute value of the velocity, raised to a non-integer power. The identification of a three parameter Kelvin model, the simplest possible system with nonlinear viscosity, is also suggested here. Furthermore, a more advanced model with variable damping coefficient is implemented to better model in this complex mechanical process. Next, the assumption of strain-rate dependence in their rubber layers under cyclic loading is examined in order to best interpret experimental results on the transmission of motion between the upper and lower surfaces of HDRB. More specifically, the stress-relaxation phenomenon observed with time in HRDB can be reproduced numerically, only if the constitutive model includes a viscous term, that depends on the absolute value of the velocity raised to a non-integer power, i. e., the Norton fluid previously mentioned. Thus, it becomes possible to compute the displacement transmissibility function between the top and bottom surfaces of HDRB base isolator systems and to draw engineering-type conclusions, relevant to their design under time-harmonic loads.

  15. 75 FR 43519 - Parker-Davis Project; Transmission Capacity for Renewable Energy Between Electrical District No...

    Science.gov (United States)

    2010-07-26

    ... DEPARTMENT OF ENERGY Western Area Power Administration Parker-Davis Project; Transmission Capacity for Renewable Energy Between Electrical District No. 5 Substation and the Palo Verde Hub AGENCY... Department of Energy (DOE), is requesting SOIs from entities that are interested in purchasing transmission...

  16. Cognitive radio-based transmission energy management in Wi-Fi nodes

    CSIR Research Space (South Africa)

    Olwal, TO

    2012-10-01

    Full Text Available -services. To solve such problems, in part, this study addresses the transmission energy management in Wi-Fi networks. Figure 1: Internet needs of rural communities PROPOSAL A cognitive radio-based transmission energy management (CR-TEM) solution for Wi... is incorporated into the Wi-Fi device to monitor the operation environments. Based on the environmental data, the transmission energy is adaptively adjusted until optimal conditions are achieved. Figure 2 illustrates the fundamentals of the cognitive radio...

  17. Airflow and Heat Transfer in the Slot-Vented Room with Radiant Floor Heating Unit

    Directory of Open Access Journals (Sweden)

    Xiang-Long Liu

    2012-01-01

    Full Text Available Radiant floor heating has received increasing attention due to its diverse advantages, especially the energy saving as compared to the conventional dwelling heating system. This paper presents a numerical investigation of airflow and heat transfer in the slot-vented room with the radiant floor heating unit. Combination of fluid convection and thermal radiation has been implemented through the thermal boundary conditions. Spatial distributions of indoor air temperature and velocity, as well as the heat transfer rates along the radiant floor and the outer wall, have been presented and analyzed covering the domains from complete natural convection to forced convection dominated flows. The numerical results demonstrate that the levels of average temperature in the room with lateral slot-ventilation are higher than those without slot-ventilation, but lower than those in the room with ceiling slot-ventilation. Overall, the slot-ventilation room with radiant floor heating unit could offer better indoor air quality through increasing the indoor air temperature and fresh air exchanging rate simultaneously. Concerning the airborne pollutant transports and moisture condensations, the performance of radiant floor heating unit will be further optimized in our future researches.

  18. Numerical Model and Experimental Analysis of the Thermal Behavior of Electric Radiant Heating Panels

    Directory of Open Access Journals (Sweden)

    Giovanni Ferrarini

    2018-01-01

    Full Text Available Electric radiant heating panels are frequently selected during the design phase of residential and industrial heating systems, especially for retrofit of existing buildings, as an alternative to other common heating systems, such as radiators or air conditioners. The possibility of saving living and working space and the ease of installation are the main advantages of electric radiant solutions. This paper investigates the thermal performance of a typical electric radiant panel. A climatic room was equipped with temperature sensors and heat flow meters to perform a steady state experimental analysis. For the dynamic behavior, a mathematical model was created and compared to a thermographic measurement procedure. The results showed for the steady state an efficiency of energy transformation close to one, while in a transient thermal regime the time constant to reach the steady state condition was slightly faster than the typical ones of hydronic systems.

  19. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Andrew D.; Wiser, Ryan; Porter, Kevin

    2009-02-02

    The rapid development of wind power that the United States has experienced over the last several years has been coupled with a growing concern that wind development will require substantial additions to the nation's transmission infrastructure. Transmission is particularly important for wind power due to the locational dependence of wind resources, the relatively low capacity factor of wind plants, and the mismatch between the short lead time to build a new wind project and the longer lead time often needed to plan, permit, and construct transmission. It is clear that institutional issues related to transmission planning, siting, and cost allocation will pose major obstacles to accelerated wind power deployment, but also of concern is the potential cost of this infrastructure build out. Simply put, how much extra cost will society bear to deliver wind power to load centers? Without an answer to this question, there can be no consensus on whether or not the cost of developing transmission for wind will be a major barrier to further wind deployment, or whether the institutional barriers to transmission expansion are likely to be of more immediate concern. In this report, we review a sample of 40 detailed transmission studies that have included wind power. These studies cover a broad geographic area, and were completed from 2001-2008. Our primary goal in reviewing these studies is to develop a better understanding of the transmission costs needed to access growing quantities of wind generation. A secondary goal is to gain a better appreciation of the differences in transmission planning approaches in order to identify those methodologies that seem most able to estimate the incremental transmission costs associated with wind development. Finally, we hope that the resulting dataset and discussion might be used to inform the assumptions, methods, and results of higher-level assessment models that are sometimes used to estimate the cost of wind deployment (e.g. NEMS

  20. Electric radiant heating : a hot profitable idea

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, G. [Britech Corp., Toronto, ON (Canada)

    2006-09-15

    Due to the high cost of heating oil, natural gas and propane, floor mounted radiant heating systems are now proving to be a cost effective method of heating homes. The systems provide evenly distributed heat across the entire floor area. Unlike hydronic floor systems, radiant floor systems require no maintenance, and are easy to control because no mechanical rooms or boilers are required. The system is comprised of a series of resistant heating cables, a thermostat, and a solid state relay. The cables are installed in a poured concrete pad. Separate temperature control devices are used to heat individual areas of floorspace. Building automation systems can also control the heating system by using simple ambient air- and floor-mounted sensors in conjunction with relays to energize the heating cables. The cost of thermostats and heating cables to heat a standard 2000 square foot home are estimated at $9000.00, with an additional 64 hours of installation costs. It was noted that the systems may prove to be less costly in the long-term than hydronic systems, which require additional boilers, pumps and water treatments. Electric radiant heating can be an even more cost-effective application when used with thermal storage heating applications that use lower-cost off-peak electricity to generate and store heat in concrete floor slabs or ceramic bricks contained in insulated cabinets. It was concluded that radiant heating systems are a viable and cost-effective alternative to expensive hydronic systems, which are costly to install and maintain. 4 figs.

  1. Wireless (Power Transfer Transmission of Electrical Energy (Electricity Intended for Consumer Purposes up to 50 W

    Directory of Open Access Journals (Sweden)

    Marek Piri

    2016-01-01

    Full Text Available This project deals with Power Semiconductor Systems PSS for wireless transmission of electricity to the power of 50~W with regard to the distance and transmission efficiency. We decided to use electromagnetic resonance for electrical energy transmission. For experimental verification, we have wound two coils of identical dimensions. At a given power transmission solutions, we obtain the highest efficiency η = 70% at a distance of 5 cm, where the transmitted power was 48 W.

  2. California Energy Commission Public Interest EnergyResearch/Energy System Integration -- Transmission-Planning Research&Development Scoping Project

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

    2004-07-01

    The objective of this Public Interest Energy Research (PIER)scoping project is to identify options for public-interest research and development (R&D) to improve transmission-planning tools, techniques, and methods. The information presented was gathered through a review of current California utility, California Independent System Operator (ISO), and related western states electricity transmission-planning activities and emerging needs. This report presents the project teams findings organized under six topic areas and identifies 17 distinct R&D activities to improve transmission-planning in California and the West. The findings in this report are intended for use, along with other materials, by PIER staff, to facilitate discussions with stakeholders that will ultimately lead to development of a portfolio of transmission-planning R&D activities for the PIER program.

  3. Electric power transmission for a Hanford Nuclear Energy Center (HNEC)

    International Nuclear Information System (INIS)

    1975-09-01

    The major issues examined in the comparison of the DIST and HNEC transmission concepts are: (1) type of transmission to be employed and an assessment of its technical feasibility, (2) availability of rights-of-way, (3) economics, (4) environmental impact, and (5) overall reliability of the transmission system. The type of transmission selected for bulk power transfer from an HNEC for the time period studied is overhead AC, 500 kV double or single circuit, a voltage currently used in the PNW system. This type of system can accommodate growth up to at least 23,000 MW of thermal capacity at an HNEC. Significant additional transmountain capacity needs would require 1100 kV transmission, which should be technologically proved by the end of the 1970s. (auth)

  4. The effects of different footprint sizes and cloud algorithms on the top-of-atmosphere radiative flux calculation from the Clouds and Earth's Radiant Energy System (CERES instrument on Suomi National Polar-orbiting Partnership (NPP

    Directory of Open Access Journals (Sweden)

    W. Su

    2017-10-01

    Full Text Available Only one Clouds and Earth's Radiant Energy System (CERES instrument is onboard the Suomi National Polar-orbiting Partnership (NPP and it has been placed in cross-track mode since launch; it is thus not possible to construct a set of angular distribution models (ADMs specific for CERES on NPP. Edition 4 Aqua ADMs are used for flux inversions for NPP CERES measurements. However, the footprint size of NPP CERES is greater than that of Aqua CERES, as the altitude of the NPP orbit is higher than that of the Aqua orbit. Furthermore, cloud retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS and the Moderate Resolution Imaging Spectroradiometer (MODIS, which are the imagers sharing the spacecraft with NPP CERES and Aqua CERES, are also different. To quantify the flux uncertainties due to the footprint size difference between Aqua CERES and NPP CERES, and due to both the footprint size difference and cloud property difference, a simulation is designed using the MODIS pixel-level data, which are convolved with the Aqua CERES and NPP CERES point spread functions (PSFs into their respective footprints. The simulation is designed to isolate the effects of footprint size and cloud property differences on flux uncertainty from calibration and orbital differences between NPP CERES and Aqua CERES. The footprint size difference between Aqua CERES and NPP CERES introduces instantaneous flux uncertainties in monthly gridded NPP CERES measurements of less than 4.0 W m−2 for SW (shortwave and less than 1.0 W m−2 for both daytime and nighttime LW (longwave. The global monthly mean instantaneous SW flux from simulated NPP CERES has a low bias of 0.4 W m−2 when compared to simulated Aqua CERES, and the root-mean-square (RMS error is 2.2 W m−2 between them; the biases of daytime and nighttime LW flux are close to zero with RMS errors of 0.8 and 0.2 W m−2. These uncertainties are within the uncertainties of CERES ADMs

  5. Opportunities and Challenges of AC/DC Transmission Network Planning Considering High Proportion Renewable Energy

    Directory of Open Access Journals (Sweden)

    Arslan Habib

    2018-03-01

    Full Text Available The time and space distribution characteristics of future high proportion of renewable energy sources will bring unprecedented challenges to the electric power system’s processing and planning, the basic form of electric power system and operating characteristics will have fundamental changes. Based on the research status quo at home and abroad, this paper expounds the four scientific problems of the transmission network planning with high proportion of renewable energy. Respectively, from the network source collaborative planning, transmission network flexible planning. With the distribution network in conjunction with the transmission network planning, transmission planning program comprehensive evaluation and decision-making methods. This paper puts forward the research ideas and framework of transmission network planning considering the high proportion of renewable energy. At the end, the future high proportion of (renewable energy grid-connected transmission network’s opportunities and challenges are presented.

  6. Transmission Power and Antenna Allocation for Energy-Efficient RF Energy Harvesting Networks with Massive MIMO

    Directory of Open Access Journals (Sweden)

    Yu Min Hwang

    2017-06-01

    Full Text Available The optimum transmission strategy for maximizing energy efficiency (EE of a multi-user massive multiple-input multiple-output (MIMO system in radio frequency energy harvesting networks is investigated. We focus on dynamic time-switching (TS antennas, to avoid the practical problems of power-splitting antennas, such as complex architectures, power loss and signal distortion when splitting the power of the received signal into power for information decoding (ID and energy harvesting (EH. However, since a single TS antenna cannot serve ID and EH simultaneously, the MIMO system is considered in this paper. We thus formulate an EE optimization problem and propose an iterative algorithm as a tractable solution, including an antenna selection strategy to optimally switch each TS antenna between ID mode and EH mode using nonlinear fractional programming and the Lagrange dual method. Further, the problem is solved under practical constraints of maximum transmission power and outage probabilities for a minimum amount of harvested power and rate capacity for each user. Simulation results show that the proposed algorithm is more energy-efficient than that of baseline schemes, and demonstrates the trade-off between the required amount of harvested power and energy efficiency.

  7. Electric radiant heating or, why are plumbers getting our work?

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, G. [Britech, Toronto, ON (Canada)

    2009-02-15

    Electric radiant heating (ERH) technologies are now being installed in floors as a means of reducing heating costs. The radiant installations have seen a large increase in sales over the last decade, and are now being used in commercial applications. Sales of hydronic ERH systems have increased by 24 per cent over the last year. ERH systems are energy efficient and do not cause drafts. The systems consist of resistant heating cables installed within the floors of a room. The cables are supplied as loose cables and tracks with predetermined spacings or rugged, heavier cable that can be stapled onto wooden subfloors. Program temperature setbacks can be applied on a room-by-room basis. Electric thermal storage systems allow building owners to store heat in the floors and are ideal for use in combination with time-of-use electric metering. Some electric utilities are now promoting the use of electric thermal storage in order to reduce demand during peak times. Thermostats used with the systems should have floor sensors and ambient air sensors to control space heating in conjunction with the floor sensor. It was concluded that electrical contractors who gain knowledge in the application and installation of the systems will tap into a growing revenue stream. 5 figs.

  8. Electric radiant heating or, why are plumbers getting our work?

    International Nuclear Information System (INIS)

    Lemieux, G.

    2009-01-01

    Electric radiant heating (ERH) technologies are now being installed in floors as a means of reducing heating costs. The radiant installations have seen a large increase in sales over the last decade, and are now being used in commercial applications. Sales of hydronic ERH systems have increased by 24 per cent over the last year. ERH systems are energy efficient and do not cause drafts. The systems consist of resistant heating cables installed within the floors of a room. The cables are supplied as loose cables and tracks with predetermined spacings or rugged, heavier cable that can be stapled onto wooden subfloors. Program temperature setbacks can be applied on a room-by-room basis. Electric thermal storage systems allow building owners to store heat in the floors and are ideal for use in combination with time-of-use electric metering. Some electric utilities are now promoting the use of electric thermal storage in order to reduce demand during peak times. Thermostats used with the systems should have floor sensors and ambient air sensors to control space heating in conjunction with the floor sensor. It was concluded that electrical contractors who gain knowledge in the application and installation of the systems will tap into a growing revenue stream. 5 figs

  9. Method for analysis of averages over transmission energy of resonance neutrons

    International Nuclear Information System (INIS)

    Komarov, A.V.; Luk'yanov, A.A.

    1981-01-01

    Experimental data on transmissions on iron specimens in different energy groups have been analyzed on the basis of an earlier developed theoretical model for the description of resonance neutron averages in transmission energy, as the functions of specimen thickness and mean resonance parameters. The parameter values obtained agree with the corresponding data evaluated in the theory of mean neutron cross sections. The method suggested for the transmission description permits to reproduce experimental results for any thicknesses of specimens [ru

  10. A search for space energy alternatives

    Science.gov (United States)

    Gilbreath, W. P.; Billman, K. W.

    1978-01-01

    This paper takes a look at a number of schemes for converting radiant energy in space to useful energy for man. These schemes are possible alternatives to the currently most studied solar power satellite concept. Possible primary collection and conversion devices discussed include the space particle flux devices, solar windmills, photovoltaic devices, photochemical cells, photoemissive converters, heat engines, dielectric energy conversion, electrostatic generators, plasma solar collectors, and thermionic schemes. Transmission devices reviewed include lasers and masers.

  11. 77 FR 30551 - Commercial Renewable Energy Transmission on the Outer Continental Shelf (OCS) Offshore Rhode...

    Science.gov (United States)

    2012-05-23

    ... transmission grid on the Rhode Island mainland to Block Island. Deepwater Wind proposes to connect an onshore... Island LLC (Deepwater Wind) Transmission System (BITS) proposal submitted to the Bureau of Ocean Energy... electrical power from Deepwater Wind's proposed 30 megawatt (MW) offshore wind energy project located in...

  12. Microwave power - An energy transmission alternative for the year 2000

    Science.gov (United States)

    Nalos, E.; Sperber, R.

    1980-01-01

    Recent technological advances related to the feasibility of efficient RF-dc rectification make it likely that by the year 2000 the transmission of power through space will have become a practical reality. Proposals have been made to power helicopters, aircraft, balloons, and rockets remotely. Other proposals consider the transfer of power from point to point on earth via relay through space or a transmission of power from large power sources in space. Attention has also been given to possibilities regarding the transmission of power between various points in the solar system. An outline is provided of the microwave power transmission system envisaged for the solar power satellite, taking into account the transmitting antenna, the receiver on earth, aspects of beam formation and control, transmitter options, the receiving antenna design, and cost and efficiency considerations.

  13. Dynamic heat transfer modeling and parametric study of thermoelectric radiant cooling and heating panel system

    International Nuclear Information System (INIS)

    Luo, Yongqiang; Zhang, Ling; Liu, Zhongbing; Wang, Yingzi; Wu, Jing; Wang, Xiliang

    2016-01-01

    Highlights: • Dynamic model of thermoelectric radiant panel system is established. • The internal parameters of thermoelectric module are dynamically calculated in simulation. • Both artificial neural networks model and system model are verified through experiment data. • Optimized system structure is obtained through parametric study. - Abstract: Radiant panel system can optimize indoor thermal comfort with lower energy consumption. The thermoelectric radiant panel (TERP) system is a new and effective prototype of radiant system using thermoelectric module (TEM) instead of conventional water pipes, as heat source. The TERP can realize more stable and easier system control as well as lower initial and operative cost. In this study, an improved system dynamic model was established by combining analytical system model and artificial neural networks (ANN) as well as the dynamic calculation functions of internal parameters of TEM. The double integral was used for the calculation of surface average temperature of TERP. The ANN model and system model were in good agreement with experiment data in both cooling and heating mode. In order to optimize the system design structure, parametric study was conducted in terms of the thickness of aluminum panel and insulation, as well as the arrangement of TEMs on the surface of radiant panel. It was found through simulation results that the optimum thickness of aluminum panel and insulation are respectively around 1–2 mm and 40–50 mm. In addition, TEMs should be uniformly installed on the surface of radiant panel and each TEM should stand at the central position of a square-shaped typical region with length around 0.387–0.548 m.

  14. Multi-region optimal deployment of renewable energy considering different interregional transmission scenarios

    International Nuclear Information System (INIS)

    Wang, Ge; Zhang, Qi; Mclellan, Benjamin C.; Li, Hailong

    2016-01-01

    Renewable energy is expected to play much more important role in future low-carbon energy system, however, renewable energy has problems with regard to load-following and regional imbalance. This study aims to plan the deployment of intermittent renewable energy in multiple regions considering the impacts of regional natural conditions and generation capacity mix as well as interregional transmission capacity using a multi-region dynamic optimization model. The model was developed to find optimized development paths toward future smart electricity systems with high level penetration of intermittent renewable energy considering regional differences and interregional transmission at national scale. As a case study, the model was applied to plan power generation in nine interconnected regions in Japan out to 2030. Four scenarios were proposed with different supporting policies for the interregional power transmission infrastructures and different nuclear power phase-out scenarios. The analysis results show that (i) the government's support for power transmission infrastructures is vital important to develop more intermittent renewable energy in appropriate regions and utilize renewable energy more efficiently; (ii) nuclear and renewable can complement rather than replace each other if enough interregional transmission capacity is provided. - Highlights: • Plan the optimal deployment of intermittent renewable energy in multiple regions. • A multi-region dynamic optimization model was developed. • The impacts of natural conditions and interregional transmission are studied. • The government's support for transmission is vital important for renewable energy. • Nuclear and renewable can complement rather than replace each other.

  15. Use of local convective and radiant cooling at warm environment

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Krejcirikova, Barbora; Kaczmarczyk, Jan

    2012-01-01

    The effect of four local cooling devices (convective, radiant and combined) on SBS symptoms reported by 24 subjects at 28 ˚C and 50% RH was studied. The devices studied were: (1) desk cooling fan, (2) personalized ventilation providing clean air, (3) two radiant panels and (4) two radiant panels...... and with radiant panel with attached fans, which also helped people to feel less fatigue. The SBS symptoms increased the most when the cooling fan, generating movement of polluted room air, was used....

  16. CHANDRA HIGH-ENERGY TRANSMISSION GRATING SPECTRUM OF AE AQUARII

    International Nuclear Information System (INIS)

    Mauche, Christopher W.

    2009-01-01

    The nova-like cataclysmic binary AE Aqr, which is currently understood to be a former supersoft X-ray binary and current magnetic propeller, was observed for over two binary orbits (78 ks) in 2005 August with the High-Energy Transmission Grating (HETG) on board the Chandra X-ray Observatory. The long, uninterrupted Chandra observation provides a wealth of details concerning the X-ray emission of AE Aqr, many of which are new and unique to the HETG. First, the X-ray spectrum is that of an optically thin multi-temperature thermal plasma; the X-ray emission lines are broad, with widths that increase with the line energy from σ ∼ 1 eV (510 km s -1 ) for O VIII to σ ∼ 5.5 eV (820 km s -1 ) for Si XIV; the X-ray spectrum is reasonably well fit by a plasma model with a Gaussian emission measure distribution that peaks at log T(K) = 7.16, has a width σ = 0.48, an Fe abundance equal to 0.44 times solar, and other metal (primarily Ne, Mg, and Si) abundances equal to 0.76 times solar; and for a distance d = 100 pc, the total emission measure EM = 8.0 x 10 53 cm -3 and the 0.5-10 keV luminosity L X = 1.1 x 10 31 erg s -1 . Second, based on the f/(i + r) flux ratios of the forbidden (f), intercombination (i), and recombination (r) lines of the Heα triplets of N VI, O VII, and Ne IX measured by Itoh et al. in the XMM-Newton Reflection Grating Spectrometer spectrum and those of O VII, Ne IX, Mg XI, and Si XIII in the Chandra HETG spectrum, either the electron density of the plasma increases with temperature by over three orders of magnitude, from n e ∼ 6 x 10 10 cm -3 for N VI [log T(K) ∼ 6] to n e ∼ 1 x 10 14 cm -3 for Si XIII [log T(K) ∼ 7], and/or the plasma is significantly affected by photoexcitation. Third, the radial velocity of the X-ray emission lines varies on the white dwarf spin phase, with two oscillations per spin cycle and an amplitude K ∼ 160 km s -1 . These results appear to be inconsistent with the recent models of Itoh et al., Ikhsanov, and

  17. The transmission of differing energy beta particles through various materials

    International Nuclear Information System (INIS)

    Quayle, D.R.

    1996-04-01

    The transmission of beta particles is frequently calculated in the same fashion as that of gamma rays, where the mass attenuation coefficient is defined by the slope of the exponential function. Numerous authors have used this approximation including Evans (1955), Loevinger (1952), and Chabot et. al. (1988). Recent work by McCarthy et. al. (1995) indicated that the exponential function seemed to fit well over a particular region of the transmission curve. Upon further investigation, the author decided to verify McCarthy's results by the use of different absorber materials and attempt to reproduce the experiments. A theoretical method will be used to estimate the transmission of the beta particles through the three absorbers, aluminum, zirconium, and iron. An alternate Monte Carlo code, the Electron Gamma Shower version 4 code (EGS4) will also be used to verify that the experiment is approximating a pencil beam of beta particles. Although these two methods offer a good cross check for the experimental data, they pose a conflict in regards to the type of beam that is to be generated. The experimental lab setup uses a collimated beam of electrons that will impinge upon the absorber, while the codes are written using a pencil beam. A minor discrepancy is expected to be observed in the experimental results and is currently under investigation by McCarthy. The results of this project supported the theory that the beta mass attenuation coefficient was accurately represented by the slope of an exponential function, but only for that particular region of the transmission curve that has a minimal absorber thickness. By fitting the data beyond 50% of the beta particle range this theory does not hold true. The theory generated by McCarthy (1995) and the EGS4 Monte Carlo code indicated that the transmission curve for a pencil beam was not accurately represented by an exponential function. The results of this experiment appeared to provide additional support to this assumption

  18. Decentralized control of transmission rates in energy-critical wireless networks

    KAUST Repository

    Xia, Li

    2013-06-01

    In this paper, we discuss the decentralized optimization of delay and energy consumption in a multi-hop wireless network. The goal is to minimize the energy consumption of energy-critical nodes and the overall packet transmission delay of the network. The transmission rates of energy-critical nodes are adjustable according to the local information of nodes, i.e., the length of packets queued. The multi-hop network is modeled as a queueing network.We prove that the system performance is monotone w.r.t. (with respect to) the transmission rate, thus the “bang-bang” control is an optimal control. We also prove that there exists a threshold type control policy which is optimal. We propose a decentralized algorithm to control transmission rates of these energy-critical nodes. Some simulation experiments are conducted to demonstrate the effectiveness of our approach.

  19. Decentralized control of transmission rates in energy-critical wireless networks

    KAUST Repository

    Xia, Li; Shihada, Basem

    2013-01-01

    In this paper, we discuss the decentralized optimization of delay and energy consumption in a multi-hop wireless network. The goal is to minimize the energy consumption of energy-critical nodes and the overall packet transmission delay of the network. The transmission rates of energy-critical nodes are adjustable according to the local information of nodes, i.e., the length of packets queued. The multi-hop network is modeled as a queueing network.We prove that the system performance is monotone w.r.t. (with respect to) the transmission rate, thus the “bang-bang” control is an optimal control. We also prove that there exists a threshold type control policy which is optimal. We propose a decentralized algorithm to control transmission rates of these energy-critical nodes. Some simulation experiments are conducted to demonstrate the effectiveness of our approach.

  20. Study on coal char ignition by radiant heat flux.

    Science.gov (United States)

    Korotkikh, A. G.; Slyusarskiy, K. V.

    2017-11-01

    The study on coal char ignition by CO2-continuous laser was carried out. The coal char samples of T-grade bituminous coal and 2B-grade lignite were studied via CO2-laser ignition setup. Ignition delay times were determined at ambient condition in heat flux density range 90-200 W/cm2. The average ignition delay time value for lignite samples were 2 times lower while this difference is larger in high heat flux region and lower in low heat flux region. The kinetic constants for overall oxidation reaction were determined using analytic solution of simplified one-dimensional heat transfer equation with radiant heat transfer boundary condition. The activation energy for lignite char was found to be less than it is for bituminous coal char by approximately 20 %.

  1. Analysis of retarding field energy analyzer transmission by simulation of ion trajectories

    Science.gov (United States)

    van de Ven, T. H. M.; de Meijere, C. A.; van der Horst, R. M.; van Kampen, M.; Banine, V. Y.; Beckers, J.

    2018-04-01

    Retarding field energy analyzers (RFEAs) are used routinely for the measurement of ion energy distribution functions. By contrast, their ability to measure ion flux densities has been considered unreliable because of lack of knowledge about the effective transmission of the RFEA grids. In this work, we simulate the ion trajectories through a three-gridded RFEA using the simulation software SIMION. Using idealized test cases, it is shown that at high ion energy (i.e., >100 eV) the transmission is equal to the optical transmission rather than the product of the individual grid transparencies. Below 20 eV, ion trajectories are strongly influenced by the electric fields in between the grids. In this region, grid alignment and ion focusing effects contribute to fluctuations in transmission with ion energy. Subsequently the model has been used to simulate the transmission and energy resolution of an experimental RFEA probe. Grid misalignments reduce the transmission fluctuations at low energy. The model predicts the minimum energy resolution, which has been confirmed experimentally by irradiating the probe with a beam of ions with a small energy bandwidth.

  2. A RADIANT AIR-CONDITIONING SYSTEM USING SOLAR-DRIVEN

    Directory of Open Access Journals (Sweden)

    S. A. ABDALLA

    2006-12-01

    Full Text Available Every air-conditioning system needs some fresh air to provide adequate ventilation air required to remove moisture, gases like ammonia and hydrogen sulphide, disease organisms, and heat from occupied spaces. However, natural ventilation is difficult to control because urban areas outside air is often polluted and cannot be supplied to inner spaces before being filtered. Besides the high electrical demand of refrigerant compression units used by most air-conditioning systems, and fans used to transport the cool air through the thermal distribution system draw a significant amount of electrical energy in comparison with electrical energy used by the building thermal conditioning systems. Part of this electricity heats the cooled air; thereby add to the internal thermal cooling peak load. In addition, refrigerant compression has both direct and indirect negative effects on the environment on both local and global scales. In seeking for innovative air-conditioning systems that maintain and improve indoor air quality under potentially more demanding performance criteria without increasing environmental impact, this paper presents radiant air-conditioning system which uses a solar-driven liquid desiccant evaporative cooler. The paper describes the proposed solar-driven liquid desiccant evaporative cooling system and the method used for investigating its performance in providing cold water for a radiant air-conditioning system in Khartoum (Central Sudan. The results of the investigation show that the system can operate in humid as well as dry climates and that employing such a system reduces air-conditioning peak electrical demands as compared to vapour compression systems.

  3. Behaviours, transmissions, generations: why is energy efficiency not enough?

    Energy Technology Data Exchange (ETDEWEB)

    Garabuau-Moussaoui, Isabelle (Electricite de France, Research and Development (France))

    2009-07-01

    Energy use is nowadays a very important question, in the context of global warming and expensive prices of energy. 'Energy conservation' is a paradox: environmental awareness increases, but also energy demand. Sociological knowledge concerning energy uses and energy savings remains important to understand the possible evolutions of practices and values and thus the possible future energy policies. Can the 'consumer society' become a 'less energy-intensive' society? This paper proposes to innovate with a 'new' way to analyse behaviours and to help policy makers to break the walls of 'the behavioural complexity'. We argue that energy efficiency, energy-using products and activities are socially embedded. More specifically, they depend on the 'social age' of people (children, teenagers, young adults, parents, old age people) and on their generation (events, experiences that people did live). The demonstration is based on the analysis of several qualitative studies carried out in France, showing that the generational and social ages analysis could be very efficient and innovative to understand: How are information, policies and energy-efficient technologies understood and embodied by people according to their age and their 'life story'? What kind of 'energy-related material culture' have people, and how does it evolve during the life? In a context of increasing energy demand, is it possible to change the energy-intensive 'socio-technical' mainstream towards a more sustainable way of life? What are the best moments during life for a behavioural change towards a less energy intensive way of life? Can we count on the new generation, to be more aware and less 'energy-intensive'?

  4. Marginal cost calculation of energy production in hydro thermoelectric systems considering the transmission system

    International Nuclear Information System (INIS)

    Pereira, M.V.F.; Gorenstin, B.G.; Alvarenga Filho, S.

    1989-01-01

    The alternatives for calculation of energy marginal cost in hydroelectric systems, considering the transmission one, was analysed, including fundamental concepts; generation/transmission systems, represented by linear power flow model; production marginal costs in hydrothermal systems and computation aspects. (C.G.C.). 11 refs, 5 figs

  5. Investigation of Wave Transmission from a Floating Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke

    2012-01-01

    This paper focuses on the calibration of the MIKE21BW model against the measured wave height reduction behind a 24 kW/m Wave Dragon (WD) wave energy converter. A numerical model is used to determine the wave transmission through the floating WD in varying wave conditions. The transmission obtained...

  6. Surface radiant flux densities inferred from LAC and GAC AVHRR data

    Science.gov (United States)

    Berger, F.; Klaes, D.

    To infer surface radiant flux densities from current (NOAA-AVHRR, ERS-1/2 ATSR) and future meteorological (Envisat AATSR, MSG, METOP) satellite data, the complex, modular analysis scheme SESAT (Strahlungs- und Energieflüsse aus Satellitendaten) could be developed (Berger, 2001). This scheme allows the determination of cloud types, optical and microphysical cloud properties as well as surface and TOA radiant flux densities. After testing of SESAT in Central Europe and the Baltic Sea catchment (more than 400scenes U including a detailed validation with various surface measurements) it could be applied to a large number of NOAA-16 AVHRR overpasses covering the globe.For the analysis, two different spatial resolutions U local area coverage (LAC) andwere considered. Therefore, all inferred results, like global area coverage (GAC) U cloud cover, cloud properties and radiant properties, could be intercompared. Specific emphasis could be made to the surface radiant flux densities (all radiative balance compoments), where results for different regions, like Southern America, Southern Africa, Northern America, Europe, and Indonesia, will be presented. Applying SESAT, energy flux densities, like latent and sensible heat flux densities could also be determined additionally. A statistical analysis of all results including a detailed discussion for the two spatial resolutions will close this study.

  7. Dual-Hop VLC/RF Transmission System with Energy Harvesting Relay under Delay Constraint

    KAUST Repository

    Rakia, Tamer; Yang, Hong-Chuan; Gebali, Fayez; Alouini, Mohamed-Slim

    2017-01-01

    In this paper, we introduce a dual-hop visible light communication (VLC) / radio frequency (RF) transmission system to extend the coverage of indoor VLC systems. The relay between the two hops is able to harvest light energy from different

  8. Research on optimal investment path of transmission corridor under the global energy Internet

    Science.gov (United States)

    Huang, Yuehui; Li, Pai; Wang, Qi; Liu, Jichun; Gao, Han

    2018-02-01

    Under the background of the global energy Internet, the investment planning of transmission corridor from XinJiang to Germany is studied in this article, which passes through four countries: Kazakhstan, Russia, Belarus and Poland. Taking the specific situation of different countries into account, including the length of transmission line, unit construction cost, completion time, transmission price, state tariff, inflation rate and so on, this paper constructed a power transmission investment model. Finally, the dynamic programming method is used to simulate the example, and the optimal strategies under different objective functions are obtained.

  9. Prediction of transmission loss through an aircraft sidewall using statistical energy analysis

    Science.gov (United States)

    Ming, Ruisen; Sun, Jincai

    1989-06-01

    The transmission loss of randomly incident sound through an aircraft sidewall is investigated using statistical energy analysis. Formulas are also obtained for the simple calculation of sound transmission loss through single- and double-leaf panels. Both resonant and nonresonant sound transmissions can be easily calculated using the formulas. The formulas are used to predict sound transmission losses through a Y-7 propeller airplane panel. The panel measures 2.56 m x 1.38 m and has two windows. The agreement between predicted and measured values through most of the frequency ranges tested is quite good.

  10. 75 FR 51990 - CenterPoint Energy-Illinois Gas Transmission Company; Notice of Baseline Filing

    Science.gov (United States)

    2010-08-24

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-80-000] CenterPoint Energy--Illinois Gas Transmission Company; Notice of Baseline Filing August 17, 2010. Take notice that on August 12, 2010, the applicant listed above submitted their baseline filing of its Statement of Operating...

  11. Energy consumption and information transmission in model neurons

    International Nuclear Information System (INIS)

    Torrealdea, Francisco J.; Sarasola, Cecilia; D'Anjou, Alicia

    2009-01-01

    This work deals with the problem of whether biological computation optimizes energy use in the way neurons communicate. By assigning an electrical energy function to a Hindmarsh-Rose neuron we are able to find its average energy consumption when it reacts to incoming signals sent by another neuron coupled to it by an electrical synapse. We find that there are values of the coupling strength at which the ratio of mutual information to energy consumption is maximum and, therefore, communicating at these coupling values would be energetically the most efficient option.

  12. Energy consumption and information transmission in model neurons

    Energy Technology Data Exchange (ETDEWEB)

    Torrealdea, Francisco J. [Department of Computer Science, University of the Basque Country, 20018 San Sebastian (Spain)], E-mail: francisco.torrealdea@ehu.es; Sarasola, Cecilia [Department of Physics of Materials, University of the Basque Country, 20018 San Sebastian (Spain); D' Anjou, Alicia [Department of Computer Science, University of the Basque Country, 20018 San Sebastian (Spain)

    2009-04-15

    This work deals with the problem of whether biological computation optimizes energy use in the way neurons communicate. By assigning an electrical energy function to a Hindmarsh-Rose neuron we are able to find its average energy consumption when it reacts to incoming signals sent by another neuron coupled to it by an electrical synapse. We find that there are values of the coupling strength at which the ratio of mutual information to energy consumption is maximum and, therefore, communicating at these coupling values would be energetically the most efficient option.

  13. submitter Superconducting transmission lines – Sustainable electric energy transfer with higher public acceptance?

    CERN Document Server

    Thomas, Heiko; Chervyakov, Alexander; Stückrad, Stefan; Salmieri, Delia; Rubbia, Carlo

    2016-01-01

    Despite the extensive research and development investments into superconducting science and technology, both at the fundamental and at the applied levels, many benefits of superconducting transmission lines (SCTL) remain unknown to the public and decision makers at large. This paper aims at informing about the progress in this important research field. Superconducting transmission lines have a tremendous size advantage and lower total electrical losses for high capacity transmission plus a number of technological advantages compared to solutions based on standard conductors. This leads to a minimized environmental impact and enables an overall more sustainable transmission of electric energy. One of the direct benefits may be an increased public acceptance due to the low visual impact with a subsequent reduction of approval time. The access of remote renewable energy (RE) sources with high-capacity transmission is rendered possible with superior efficiency. That not only translates into further reducing $CO_2...

  14. Energy-Efficient Algorithm for Sensor Networks with Non-Uniform Maximum Transmission Range

    Directory of Open Access Journals (Sweden)

    Yimin Yu

    2011-06-01

    Full Text Available In wireless sensor networks (WSNs, the energy hole problem is a key factor affecting the network lifetime. In a circular multi-hop sensor network (modeled as concentric coronas, the optimal transmission ranges of all coronas can effectively improve network lifetime. In this paper, we investigate WSNs with non-uniform maximum transmission ranges, where sensor nodes deployed in different regions may differ in their maximum transmission range. Then, we propose an Energy-efficient algorithm for Non-uniform Maximum Transmission range (ENMT, which can search approximate optimal transmission ranges of all coronas in order to prolong network lifetime. Furthermore, the simulation results indicate that ENMT performs better than other algorithms.

  15. Improving the Energy Market: Algorithms, Market Implications, and Transmission Switching

    Science.gov (United States)

    Lipka, Paula Ann

    This dissertation aims to improve ISO operations through a better real-time market solution algorithm that directly considers both real and reactive power, finds a feasible Alternating Current Optimal Power Flow solution, and allows for solving transmission switching problems in an AC setting. Most of the IEEE systems do not contain any thermal limits on lines, and the ones that do are often not binding. Chapter 3 modifies the thermal limits for the IEEE systems to create new, interesting test cases. Algorithms created to better solve the power flow problem often solve the IEEE cases without line limits. However, one of the factors that makes the power flow problem hard is thermal limits on the lines. The transmission networks in practice often have transmission lines that become congested, and it is unrealistic to ignore line limits. Modifying the IEEE test cases makes it possible for other researchers to be able to test their algorithms on a setup that is closer to the actual ISO setup. This thesis also examines how to convert limits given on apparent power---as is in the case in the Polish test systems---to limits on current. The main consideration in setting line limits is temperature, which linearly relates to current. Setting limits on real or apparent power is actually a proxy for using the limits on current. Therefore, Chapter 3 shows how to convert back to the best physical representation of line limits. A sequential linearization of the current-voltage formulation of the Alternating Current Optimal Power Flow (ACOPF) problem is used to find an AC-feasible generator dispatch. In this sequential linearization, there are parameters that are set to the previous optimal solution. Additionally, to improve accuracy of the Taylor series approximations that are used, the movement of the voltage is restricted. The movement of the voltage is allowed to be very large at the first iteration and is restricted further on each subsequent iteration, with the restriction

  16. Interregional power transmission: a component in planning for renewable energy technologies

    International Nuclear Information System (INIS)

    Krueger Nielsen, S.; Soerensen, B.

    2000-01-01

    We discuss the role played by interregional power transmission on the basis of recent scenario work. In a project dealing with long-term planning for energy efficiency and renewable energy in Europe we modelled a scenario for the present 15 EU countries' energy system in 2050. The basis for the scenario is the concept of 'fair pricing' for energy services, meaning that the price of energy should reflect all externalities, but not otherwise be taxed or subsidized. The project assessed resource availability and expected technology price developments over time for a number of energy-related technologies, both on the supply side, the intermediate conversion chain and on the demand side. Among these, transmission technologies play an important role, both in smoothing out renewable energy supplies within the European Union region, and also allowing substantial import of energy from countries outside the EU having a surplus of renewable energy based power. (orig.)

  17. Exploration of resource and transmission expansion decisions in the Western Renewable Energy Zone initiative

    International Nuclear Information System (INIS)

    Mills, Andrew; Phadke, Amol; Wiser, Ryan

    2011-01-01

    The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this paper we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33% of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33% RE target across nearly all scenarios analyzed (38-65%). Solar energy is almost always the second largest source (14-41%). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Further, we find that even with total transmission expenditures of $17-34 billion these costs still represent just 10-19% of the total delivered cost of renewable energy. - Research highlights: → We describe a new tool to evaluate transmission expansion and renewable resource selection. → We examine a scenario where 33% of the energy in the Western Interconnection comes from renewables. → Wind energy provides the majority of new renewable energy. → For some loads, the decision to procure wind and the required transmission is insensitive to assumptions. → For other loads, assumptions can shift toward more solar, which also changes the needed transmission.

  18. Experimental observation on asymmetric energy flux within the forbidden frequency band in the LC transmission line

    International Nuclear Information System (INIS)

    Tao Feng; Chen Weizhong; Pan Junting; Xu Wen; Du Sidan

    2012-01-01

    We study the energy flux in a nonlinear electrical transmission line consisting of two coupled segments which are identical in structure and different in parameters. The asymmetry of energy flux caused by nonlinear wave has been observed experimentally in the forbidden band of the line. The experiment shows whether the energy can flow through the transmission line depends on the amplitude of the boundary driving voltages, which can be well explained in the theoretical framework of nonlinear supratransmission. The numerical simulation based on Kirchhoff’s laws further verifies the existence of the asymmetric energy flux in the forbidden band.

  19. Low-energy electron transmission through high aspect ratio Al O nanocapillaries

    DEFF Research Database (Denmark)

    Milosavljević, A.R.; Jureta, J.; Víkor, G.

    2009-01-01

    Electron transmission through insulating AlO nanocapillaries of different diameters (40 and 270 nm) and 15 μm length has been investigated for low-energy electrons (2-120 V). The total intensity of transmitted current weakly depends on the incident electron energy and tilt angle defined with resp......Electron transmission through insulating AlO nanocapillaries of different diameters (40 and 270 nm) and 15 μm length has been investigated for low-energy electrons (2-120 V). The total intensity of transmitted current weakly depends on the incident electron energy and tilt angle defined...

  20. Radiant non-catalytic recuperative reformer

    Energy Technology Data Exchange (ETDEWEB)

    Khinkis, Mark J.; Kozlov, Aleksandr P.

    2017-10-31

    A radiant, non-catalytic recuperative reformer has a flue gas flow path for conducting hot exhaust gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is positioned adjacent to the flue gas flow path to permit heat transfer from the hot exhaust gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, a portion of the reforming mixture flow path is positioned outside of flue gas flow path for a relatively large residence time.

  1. Validation of the uncertainty budget for soft X-ray radiant power measurement using a cryogenic radiometer

    International Nuclear Information System (INIS)

    Rabus, H.; Klein, R.; Scholze, F.; Thornagel, R.; Ulm, G.

    2002-01-01

    The cryogenic radiometer SYRES, a thermal detector based on the electrical substitution principle, has been used as the primary detector standard for radiant power measurement in the ultraviolet, vacuum ultraviolet and soft X-ray spectral ranges. In order to investigate the possibility of radiant energy being deposited in its absorber cavity without being transformed into heat when detecting soft X-rays, SYRES has been directly compared with the electron storage ring BESSY 1, a primary radiometric source standard of calculable spectral radiant power. To this end, the integral radiant power emitted by the storage ring,into a solid angle defined by a high-precision aperture was measured with SYRES. The experiments were conducted at two nominal energies of the circulating electrons, 800 MeV and 340 MeV, to study the influence of the different spectral distributions of the synchrotron radiation. For the original graphite-coated cavity absorber, significant discrepancies were found which could be traced back to the ablation of the graphite coating from the copper cavity body. In the case of the new gold-coated cavity absorber, the calculated and measured values of the radiant power agreed in all experiments within the combined relative uncertainties of typically 2.5 x 10 -3 (k = 1). (author)

  2. Large-scale wind energy application. Transporting wind energy over long distances using an HVDC transmission line, in combination with hydro energy or biomass energy

    International Nuclear Information System (INIS)

    Coelingh, J.P.; Van Wijk, A.J.M.; Betcke, J.W.H.; Geuzendam, C.; Gilijamse, W.; Westra, C.A.; Curvers, A.P.W.M.; Beurskens, H.J.M.

    1995-08-01

    The main objective of the study on the title subject is to assess the long-term prospects for large-scale application of wind energy, in combination with hydro energy in Norway and in combination with biomass energy in Scotland. These countries have high wind resource areas, however they are located far away from load centres. The development of new transmission technologies as High Voltage Direct Current (HVDC) transmission lines, in combination with highly suitable places for wind energy in Norway and Scotland, forms the driving force behind this study. The following two cases are being considered: (1) a large-scale wind farm (1,000 MW) in Norway from which electricity is transmitted to The Netherlands by using an HVDC transmission line, in combination with hydro energy. Hydro energy already makes a large contribution to the energy supply of Norway. Wind farms can contribute to the electricity production and save hydro energy generated electricity and make the export of electricity profitable; and (2) a large-scale wind farm (1,000 MW) in Scotland from which electricity is transmitted to The Netherlands by using an HVDC transmission line, in combination with biomass energy. Scotland has a large potential for biomass production such as energy crops and forestry. Poplars and willows cultivated on set-aside land can be gasified and fed into modern combined-cycle plants to generate electricity. In Scotland the usable potential of wind energy may be limited in the short and medium term by the capacity of the grid. New connections can overcome this constraint and allow wind energy to be treated as a European Union resource rather than as a national resource. Thus, the concept of this study is to look at the possibilities of making a 1,000 MW link from The Netherlands to Norway or to Scotland, in order to supply electricity at competitive costs generated with renewable energy sources. 16 figs., 24 tabs., 80 refs

  3. Adaptive Control of the Packet Transmission Period with Solar Energy Harvesting Prediction in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kideok Kwon

    2015-04-01

    Full Text Available A number of research works has studied packet scheduling policies in energy scavenging wireless sensor networks, based on the predicted amount of harvested energy. Most of them aim to achieve energy neutrality, which means that an embedded system can operate perpetually while meeting application requirements. Unlike other renewable energy sources, solar energy has the feature of distinct periodicity in the amount of harvested energy over a day. Using this feature, this paper proposes a packet transmission control policy that can enhance the network performance while keeping sensor nodes alive. Furthermore, this paper suggests a novel solar energy prediction method that exploits the relation between cloudiness and solar radiation. The experimental results and analyses show that the proposed packet transmission policy outperforms others in terms of the deadline miss rate and data throughput. Furthermore, the proposed solar energy prediction method can predict more accurately than others by 6.92%.

  4. Adaptive control of the packet transmission period with solar energy harvesting prediction in wireless sensor networks.

    Science.gov (United States)

    Kwon, Kideok; Yang, Jihoon; Yoo, Younghwan

    2015-04-24

    A number of research works has studied packet scheduling policies in energy scavenging wireless sensor networks, based on the predicted amount of harvested energy. Most of them aim to achieve energy neutrality, which means that an embedded system can operate perpetually while meeting application requirements. Unlike other renewable energy sources, solar energy has the feature of distinct periodicity in the amount of harvested energy over a day. Using this feature, this paper proposes a packet transmission control policy that can enhance the network performance while keeping sensor nodes alive. Furthermore, this paper suggests a novel solar energy prediction method that exploits the relation between cloudiness and solar radiation. The experimental results and analyses show that the proposed packet transmission policy outperforms others in terms of the deadline miss rate and data throughput. Furthermore, the proposed solar energy prediction method can predict more accurately than others by 6.92%.

  5. Cross Layer Design for Optimizing Transmission Reliability, Energy Efficiency, and Lifetime in Body Sensor Networks.

    Science.gov (United States)

    Chen, Xi; Xu, Yixuan; Liu, Anfeng

    2017-04-19

    High transmission reliability, energy efficiency, and long lifetime are pivotal issues for wireless body area networks (WBANs. However, these performance metrics are not independent of each other, making it hard to obtain overall improvements through optimizing one single aspect. Therefore, a Cross Layer Design Optimal (CLDO) scheme is proposed to simultaneously optimize transmission reliability, energy efficiency, and lifetime of WBANs from several layers. Firstly, due to the fact that the transmission power of nodes directly influences the reliability of links, the optimized transmission power of different nodes is deduced, which is able to maximize energy efficiency in theory under the premise that requirements on delay and jitter are fulfilled. Secondly, a relay decision algorithm is proposed to choose optimized relay nodes. Using this algorithm, nodes will choose relay nodes that ensure a balance of network energy consumption, provided that all nodes transmit with optimized transmission power and the same packet size. Thirdly, the energy consumption of nodes is still unbalanced even with optimized transmission power because of their different locations in the topology of the network. In addition, packet size also has an impact on final performance metrics. Therefore, a synthesized cross layer method for optimization is proposed. With this method, the transmission power of nodes with more residual energy will be enhanced while suitable packet size is determined for different links in the network, leading to further improvements in the WBAN system. Both our comprehensive theoretical analysis and experimental results indicate that the performance of our proposed scheme is better than reported in previous studies. Relative to the relay selection and power control game (RSPCG) scheme, the CLDO scheme can enhance transmission reliability by more than 44.6% and prolong the lifetime by as much as 33.2%.

  6. Free electron lasers for transmission of energy in space

    Science.gov (United States)

    Segall, S. B.; Hiddleston, H. R.; Catella, G. C.

    1981-01-01

    A one-dimensional resonant-particle model of a free electron laser (FEL) is used to calculate laser gain and conversion efficiency of electron energy to photon energy. The optical beam profile for a resonant optical cavity is included in the model as an axial variation of laser intensity. The electron beam profile is matched to the optical beam profile and modeled as an axial variation of current density. Effective energy spread due to beam emittance is included. Accelerators appropriate for a space-based FEL oscillator are reviewed. Constraints on the concentric optical resonator and on systems required for space operation are described. An example is given of a space-based FEL that would produce 1.7 MW of average output power at 0.5 micrometer wavelength with over 50% conversion efficiency of electrical energy to laser energy. It would utilize a 10 m-long amplifier centered in a 200 m-long optical cavity. A 3-amp, 65 meV electrostatic accelerator would provide the electron beam and recover the beam after it passes through the amplifier. Three to five shuttle flights would be needed to place the laser in orbit.

  7. Incorporating energy efficiency into electric power transmission planning: A western United States case study

    International Nuclear Information System (INIS)

    Barbose, Galen L.; Sanstad, Alan H.; Goldman, Charles A.

    2014-01-01

    Driven by system reliability goals and the need to integrate significantly increased renewable power generation, long-range, bulk-power transmission planning processes in the United States are undergoing major changes. At the same time, energy efficiency is an increasing share of the electricity resource mix in many regions, and has become a centerpiece of many utility resource plans and state policies as a means of meeting electricity demand, complementing supply-side sources, and reducing carbon dioxide emissions from the electric power system. The paper describes an innovative project in the western United States to explicitly incorporate end-use efficiency into load forecasts – projections of electricity consumption and demand – that are a critical input into transmission planning and transmission planning studies. Institutional and regulatory background and context are reviewed, along with a detailed discussion of data sources and analytical procedures used to integrate efficiency into load forecasts. The analysis is intended as a practical example to illustrate the kinds of technical and institutional issues that must be addressed in order to incorporate energy efficiency into regional transmission planning activities. - Highlights: • Incorporating energy efficiency into electric power transmission planning is an emergent analytical and policy priority. • A new methodology for this purpose was developed and applied in the western U.S. transmission system. • Efficiency scenarios were created and incorporated into multiple load forecasts. • Aggressive deployment of efficiency policies and programs can significantly reduce projected load. • The approach is broadly applicable in long-range transmission planning

  8. Expected Transmission Energy Route Metric for Wireless Mesh Senor Networks

    Directory of Open Access Journals (Sweden)

    YanLiang Jin

    2011-01-01

    Full Text Available Mesh is a network topology that achieves high throughput and stable intercommunication. With great potential, it is expected to be the key architecture of future networks. Wireless sensor networks are an active research area with numerous workshops and conferences arranged each year. The overall performance of a WSN highly depends on the energy consumption of the network. This paper designs a new routing metric for wireless mesh sensor networks. Results from simulation experiments reveal that the new metric algorithm improves the energy balance of the whole network and extends the lifetime of wireless mesh sensor networks (WMSNs.

  9. ENERGY EFFICIENCY OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSION TESTS AT LOCOMOTIVE REPAIR PLANT

    Directory of Open Access Journals (Sweden)

    B. E. Bodnar

    2015-10-01

    Full Text Available Purpose. In difficult economic conditions, cost reduction of electricity consumption for the needs of production is an urgent task for the country’s industrial enterprises. Technical specifications of enterprises, which repair diesel locomotive hydraulic transmission, recommend conducting a certain amount of evaluation and regulatory tests to monitor their condition after repair. Experience shows that a significant portion of hydraulic transmission defects is revealed by bench tests. The advantages of bench tests include the ability to detect defects after repair, ease of maintenance of the hydraulic transmission and relatively low labour intensity for eliminating defects. The quality of these tests results in the transmission resource and its efficiency. Improvement of the technology of plant post-repairs hydraulic tests in order to reduce electricity consumption while testing. Methodology. The possible options for hydraulic transmission test bench improvement were analysed. There was proposed an energy efficiency method for diesel locomotive hydraulic transmission testing in locomotive repair plant environment. This is achieved by installing additional drive motor which receives power from the load generator. Findings. Based on the conducted analysis the necessity of improving the plant stand testing of hydraulic transmission was proved. The variants of the stand modernization were examined. The test stand modernization analysis was conducted. Originality. The possibility of using electric power load generator to power the stand electric drive motor or the additional drive motor was theoretically substantiated. Practical value. A variant of hydraulic transmission test stand based on the mutual load method was proposed. Using this method increases the hydraulic transmission load range and power consumption by stand remains unchanged. The additional drive motor will increase the speed of the input shaft that in its turn wil allow testing in

  10. Energy losses in magnetically insulated transmission lines due to microparticles

    International Nuclear Information System (INIS)

    Gray, E.W.; Stinnett, R.W.

    1987-01-01

    We discuss the effects of high-velocity and hypervelocity microparticles in the magnetically insulated transmission lines of multiterawatt accelerators used for particle beam fusion and radiation effects simulation. These microparticles may be a possible source for plasma production near the anode and cathode in early stages of the voltage pulse, and current carriers during and after the power pulse, resulting in power flow losses. Losses in the current pulse, due to microparticles, are estimated to be approximately 12 mA/cm 2 (0.3 kA) as a lower limit, and --0.3 A/cm 2 (7.2 kA) for microparticle initiated, anode plasma positive ion transport. We have calculated the velocities reached by these microparticles and the effects on them of Van der Waals forces. Field emission from the particles and their effects on cathode and anode plasma formation have been examined. Particle collision with the electrodes is also examined in terms of plasma production, as in the electron deposition in the particles in transit across the anode-cathode gap. Blistering of the electrode surface, thought to be due to H - bombardment was also observed and appears to be consistent with losses due to negative ions previously reported by J. P. VanDevender, R. W. Stinnett, and R. J. Anderson [App. Phys. Lett. 38, 229 (1981)

  11. A Mixed Transmission Strategy to Achieve Energy Balancing in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Liu, Tong; Gu, Tao; Jin, Ning

    2017-01-01

    In this paper, we investigate the problem of energy balanced data collection in wireless sensor networks, aiming to balance energy consumption among all sensor nodes during the data propagation process. Energy balanced data collection can potentially save energy consumption and prolong network...... lifetime, and hence, it has many practical implications for sensor network design and deployment. The traditional hop-by-hop transmission model allows a sensor node to propagate its packets in a hop-by-hop manner toward the sink, resulting in poor energy balancing for the entire network. To address...... the problem, we apply a slice-based energy model, and divide the problem into inter-slice and intra-slice energy balancing problems. We then propose a probability-based strategy named inter-slice mixed transmission protocol and an intra-slice forwarding technique to address each of the problems. We propose...

  12. Impact of Variable Renewable Energy on European Cross-Border Electricity Transmission

    NARCIS (Netherlands)

    Brancucci Martinez-Anido, C.; De Vries, L.J.; Fulli, G.

    2012-01-01

    The estimated growth of Europe’s electricity demand and the policy goals of mitigating climate change result in an expected increase in variable renewable energy. A high penetration of wind and solar energy will bring several new challenges to the European electricity transmission network. The

  13. Energy transmission re: Remote sites key to economic development for the Arctic and developing regions

    Energy Technology Data Exchange (ETDEWEB)

    Olds, G A [Dept. of Commerce and Development, Juneau, AK (United States)

    1992-01-01

    Recent developments of laser technology in energy beaming have converged to suggest the possibility of controlled experimentation in testing the viability, environmental soundness, and economic feasibility of wireless energy transmission in Alaska. The reasons why Alaska was thought to be an ideal setting for such experimental development are discussed.

  14. Microwave energy transmission test toward the SPS using the space station

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, N.; Matsumoto, H.; Miyatake, S.; Kimura, I.; Nagatomo, M.

    1986-12-01

    An outline of a project METT (Microwave Energy Transmission Test) using the Space Station is described. The objectives of the METT are to develop and test the technology of microwave energy transmission for the future Solar Power Satellite (SPS), and to estimate the environmental effects of the high power microwaves on the ionosphere and the atmosphere. Energy generated with solar cells is transmitted from a transmitting antenna on the bus platform near the Space Station to a rectenna on the sub-satellite or the ground station in order to test the total efficiency and the functions of the developed system of the energy transmission. Plasma similar to that in the D and E layers in the ionosphere is produced in a large balloon opened on the sub-satellite in order to investigate possible interactions between the SPS microwave and the ionospheric plasma and to determine the maximum power density of the microwave beam which passes through the ionosphere.

  15. Numerical analysis of diffuse ceiling ventilation and its integration with a radiant ceiling system

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per Kvols; Chen, Qingyan

    2017-01-01

    A novel system combining diffuse ceiling ventilation and radiant ceiling was proposed recently, with the aim of providing energy efficient and comfort environment to office buildings. Designing of such a system is challenging because of complex interactions between the two subsystems and a large ......-uniformity air distribution and further led to the draught problem in the occupied zone. This system was recommended to apply in the small offices instead of large, open spaces....

  16. The transmission business rate order application, 1999-2000 : application to the Ontario Energy Board

    International Nuclear Information System (INIS)

    1998-01-01

    The Ontario government is restructuring the electric power industry by introducing competition to the generation and retailing sectors, as well as to the transmission and distribution sectors within the industry. This application marks the beginning of the regulation of the Ontario Hydro Services Company Inc.'s (OHSC) transmission business by the Ontario Energy Board (OEB). The OHSC has asked the OEB to approve a revenue requirement for the transmission business and rates derived from the revenue requirement for unbundled transmission services to customers for the year 1999. For the year 2000, the OHSC asked the OEB to approve the performance-based regulation mechanism and the transmission rates derived from that mechanism. This document includes the actual text of the application and provides the justification for the $1,327 million revenue requirement for 1999 and the PBR framework forecast of $ 1,291 million for the year 2000. tabs., figs

  17. Regional Transmission Organizations and Wind Energy: A Happy Marriage or Divorce Proceedings?; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, B.; Porter, K.

    2002-05-01

    In 1996, the Federal Energy Regulatory Commission (FERC) issued Order 888, which required transmission-owning utilities under FERC jurisdiction to provide open access transmission service to eligible wholesale power customers. Among other things, the elements of electric service are unbundled, meaning that wind project developers must not only find a taker for the energy but also potentially make interconnection, ancillary service, and transmission arrangements for their wind projects. In 1999, the FERC issued Order 2000, which required transmission-owning utilities to file an intent with FERC on whether they have joined or plan to join a regional transmission organization (RTO). Order 2000 also required RTOs to meet certain criteria and be approved by FERC in order to begin operations as an RTO. More recently, FERC said it would issue a Notice of Proposed Rulemaking in 2002 on certain requirements and services, often termed''standard market design'' (SMD), that must be included in all transmission tariffs filed at FERC. This paper discusses the chronology of open access transmission issues, from Order 888 onward, and reviews some of the important issues raised by FERC's SMD initiative.

  18. 76 FR 49762 - FirstEnergy Service Co. v. Midwest Independent Transmission System Operator, Inc.; Notice of...

    Science.gov (United States)

    2011-08-11

    ... declaratory order asking that the Commission declare that Multi-Value Project (MVP) transmission usage charges... unreasonable to apply MVP transmission usage charges to FirstEnergy or its customers migrated from the Midwest...

  19. Energy transmission using microwaves and its possibility. Maikuroha ni yoru energy yuso to sono kanosei

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, H.; Shinohara, N. (Kyoto University, Kyoto (Japan))

    1993-09-01

    Transmitting of electric energy in the form of electromagnetic waves is a century-old idea, which has reached its final step of realization at last. This paper describes a review and future prospects on electric power transmitting technologies using microwaves (a wavelength of 12 cm is thought as the most promising candidate). Electric power was transmitted successfully to a flying helicopter in the U.S.A. in 1964. Transmission of 30-kW power was performed in 1975 to a power receiving rectenna (an antenna with microwave receiving rectification circuit) placed 1.6 tm away using a parabola as a transmitting antenna. These studies were carried over to the investigative studies on space power stations (SPS). This is a conception to install a static satellite equipped with a huge solar cell array in the sky of about 36,000 km high to generate power, convert the power to microwaves, and transmit the power of ten million kilowatt class to the ground. A number of results of advanced experiments have been obtained in Japan using rockets or aircraft. 26 refs., 5 figs.

  20. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Andrew; Phadke, Amol; Wiser, Ryan

    2010-02-16

    Building transmission to reach renewable energy (RE) goals requires coordination among renewable developers, utilities and transmission owners, resource and transmission planners, state and federal regulators, and environmental organizations. The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this report we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33% of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Of the renewable resources in WREZ resource hubs, and under the assumptions described in this report, our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33% RE target across nearly all scenarios analyzed (38-65%). Solar energy is almost always the second largest source (14-41%). Solar exceeds wind by a small margin only when solar thermal energy is assumed to experience cost reductions relative to all other technologies. Biomass, geothermal, and hydropower are found to represent a smaller portion of the selected resources, largely due to the limited resource quantity of these resources identified within the WREZ-identified hubs (16-23% combined). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Uncertainties and policies that impact bus-bar costs are the most important to evaluate carefully, but

  1. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Andrew D.; Phadke, Amol A.; Wiser, Ryan H.

    2010-06-10

    The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this paper we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33percent of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33percent RE target across nearly all scenarios analyzed (38-65percent). Solar energy is almost always the second largest source (14-41percent). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Further, we find that even with total transmission expenditures of $17-34 billion these costs still represent just 10-19percent of the total delivered cost of renewable energy.

  2. Effects of channel blocking on information transmission and energy efficiency in squid giant axons.

    Science.gov (United States)

    Liu, Yujiang; Yue, Yuan; Yu, Yuguo; Liu, Liwei; Yu, Lianchun

    2018-04-01

    Action potentials are the information carriers of neural systems. The generation of action potentials involves the cooperative opening and closing of sodium and potassium channels. This process is metabolically expensive because the ions flowing through open channels need to be restored to maintain concentration gradients of these ions. Toxins like tetraethylammonium can block working ion channels, thus affecting the function and energy cost of neurons. In this paper, by computer simulation of the Hodgkin-Huxley neuron model, we studied the effects of channel blocking with toxins on the information transmission and energy efficiency in squid giant axons. We found that gradually blocking sodium channels will sequentially maximize the information transmission and energy efficiency of the axons, whereas moderate blocking of potassium channels will have little impact on the information transmission and will decrease the energy efficiency. Heavy blocking of potassium channels will cause self-sustained oscillation of membrane potentials. Simultaneously blocking sodium and potassium channels with the same ratio increases both information transmission and energy efficiency. Our results are in line with previous studies suggesting that information processing capacity and energy efficiency can be maximized by regulating the number of active ion channels, and this indicates a viable avenue for future experimentation.

  3. Error analysis of thermocouple measurements in the Radiant Heat Facility

    International Nuclear Information System (INIS)

    Nakos, J.T.; Strait, B.G.

    1980-12-01

    The measurement most frequently made in the Radiant Heat Facility is temperature, and the transducer which is used almost exclusively is the thermocouple. Other methods, such as resistance thermometers and thermistors, are used but very rarely. Since a majority of the information gathered at Radiant Heat is from thermocouples, a reasonable measure of the quality of the measurements made at the facility is the accuracy of the thermocouple temperature data

  4. Simplified Building Thermal Model Used for Optimal Control of Radiant Cooling System

    Directory of Open Access Journals (Sweden)

    Lei He

    2016-01-01

    Full Text Available MPC has the ability to optimize the system operation parameters for energy conservation. Recently, it has been used in HVAC systems for saving energy, but there are very few applications in radiant cooling systems. To implement MPC in buildings with radiant terminals, the predictions of cooling load and thermal environment are indispensable. In this paper, a simplified thermal model is proposed for predicting cooling load and thermal environment in buildings with radiant floor. In this thermal model, the black-box model is introduced to derive the incident solar radiation, while the genetic algorithm is utilized to identify the parameters of the thermal model. In order to further validate this simplified thermal model, simulated results from TRNSYS are compared with those from this model and the deviation is evaluated based on coefficient of variation of root mean square (CV. The results show that the simplified model can predict the operative temperature with a CV lower than 1% and predict cooling loads with a CV lower than 10%. For the purpose of supervisory control in HVAC systems, this simplified RC thermal model has an acceptable accuracy and can be used for further MPC in buildings with radiation terminals.

  5. Radiant heat testing of the H1224A shipping/storage container

    Energy Technology Data Exchange (ETDEWEB)

    Harding, D.C.; Bobbe, J.G.; Stenberg, D.R.; Arviso, M.

    1994-05-01

    H1224A weapons containers have been used for years by the Departments of Energy and Defense to transport and store W78 warhead midsections. Although designed to protect the midsections only from low-energy impacts, a recent transportation risk assessment effort has identified a need to evaluate the container`s ability to protect weapons in more severe accident environments. Four radiant heat tests were performed: two each on an H1224A container (with a Mk12a Mod 6c mass mock-up midsection inside) and two on a low-cost simulated H1224A container (with a hollow Mk12 aeroshell midsections inside). For each unit tested, temperatures were recorded at numerous points throughout the container and midsection during a 4-hour 121{degrees}C (250{degrees}F) and 30-minute 1010{degrees}C (1850{degrees}F) radiant environment. Measured peak temperatures experienced by the inner walls of the midsections as a result of exposure to the high-temperature radiant environment ranged from 650{degrees} C to 980{degrees} C (1200{degrees} F to 1800{degrees}F) for the H1224A container and 770 {degrees} to 990 {degrees}C (1420{degrees} F to 1810{degrees}F) for the simulated container. The majority of both containers were completely destroyed during the high-temperature test. Temperature profiles will be used to benchmark analytical models and predict warhead midsection temperatures over a wide range of the thermal accident conditions.

  6. Highly efficient solutions for smart and bulk power transmission of 'green energy'

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, Wilfried; Retzmann, Dietmar; Uecker, Karl

    2010-09-15

    Environmental constraints, loss minimization and CO2 reduction will play an increasingly more important role in future. Security and sustainability of power supply as well as economic efficiency needs application of advanced technologies. Innovative solutions with HVDC (High Voltage Direct Current) and FACTS (Flexible AC Transmission Systems) have the potential to cope with these challenges. They provide the features which are necessary to avoid technical problems in power systems, they increase the transmission capacity and system stability very efficiently and help prevent cascading outages. Furthermore, they are essential for Grid Access of Renewable Energy Sources such as Hydro, Wind and Solar-Energy.

  7. Highly efficient solutions for smart and bulk power transmission of 'green energy'

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, Wilfried; Retzmann, Dietmar; Uecker, Karl

    2010-09-15

    Environmental constraints, loss minimization and CO2 reduction will play an increasingly more important role in future. Security and sustainability of power supply as well as economic efficiency needs application of advanced technologies. Innovative solutions with HVDC (High Voltage Direct Current) and FACTS (Flexible AC Transmission Systems) have the potential to cope with these challenges. They provide the features which are necessary to avoid technical problems in power systems, they increase the transmission capacity and system stability very efficiently and help prevent cascading outages. Furthermore, they are essential for Grid Access of Renewable Energy Sources such as Hydro, Wind and Solar-Energy.

  8. Nanoporous metal film: An energy-dependent transmission device for electron waves

    International Nuclear Information System (INIS)

    Grech, S.; Degiovanni, A.; Lapena, L.; Morin, R.

    2011-01-01

    We measure electron transmission through free-standing ultrathin nanoporous gold films, using the coherent electron beam emitted by sharp field emission tips in a low energy electron projection microscope setup. Transmission coefficient versus electron wavelength plots show periodic oscillations between 75 and 850 eV. These oscillations result from the energy dependence of interference between paths through the gold and paths through the nanometer-sized pores of the film. We reveal that these films constitute high transmittance quantum devices acting on electron waves through a wavelength-dependent complex transmittance defined by the porosity and the thickness of the film.

  9. Analysis of excimer laser radiant exposure effect toward corneal ablation volume at LASIK procedure

    Science.gov (United States)

    Adiati, Rima Fitria; Rini Rizki, Artha Bona; Kusumawardhani, Apriani; Setijono, Heru; Rahmadiansah, Andi

    2016-11-01

    LASIK (Laser Asissted In Situ Interlamelar Keratomilieusis) is a technique for correcting refractive disorders of the eye such as myopia and astigmatism using an excimer laser. This procedure use photoablation technique to decompose corneal tissues. Although preferred due to its efficiency, permanency, and accuracy, the inappropriate amount radiant exposure often cause side effects like under-over correction, irregular astigmatism and problems on surrounding tissues. In this study, the radiant exposure effect toward corneal ablation volume has been modelled through several processes. Data collecting results is laser data specifications with 193 nm wavelength, beam diameter of 0.065 - 0.65 cm, and fluence of 160 mJ/cm2. For the medical data, the myopia-astigmatism value, cornea size, corneal ablation thickness, and flap data are taken. The first modelling step is determining the laser diameter between 0.065 - 0.65 cm with 0.45 cm increment. The energy, power, and intensity of laser determined from laser beam area. Number of pulse and total energy is calculated before the radiant exposure of laser is obtained. Next is to determine the parameters influence the ablation volume. Regression method used to create the equation, and then the spot size is substituted to the model. The validation used is statistic correlation method to both experimental data and theory. By the model created, it is expected that any potential complications can be prevented during LASIK procedures. The recommendations can give the users clearer picture to determine the appropriate amount of radiant exposure with the corneal ablation volume necessary.

  10. Calculation and application of energy transaction allocation factors in electric power transmission systems

    Science.gov (United States)

    Fradi, Aniss

    The ability to allocate the active power (MW) loading on transmission lines and transformers, is the basis of the "flow based" transmission allocation system developed by the North American Electric Reliability Council. In such a system, the active power flows must be allocated to each line or transformer in proportion to the active power being transmitted by each transaction imposed on the system. Currently, this is accomplished through the use of the linear Power Transfer Distribution Factors (PTDFs). Unfortunately, no linear allocation models exist for other energy transmission quantities, such as MW and MVAR losses, MVAR and MVA flows, etc. Early allocation schemes were developed to allocate MW losses due to transactions to branches in a transmission system, however they exhibited diminished accuracy, since most of them are based on linear power flow modeling of the transmission system. This thesis presents a new methodology to calculate Energy Transaction Allocation factors (ETA factors, or eta factors), using the well-known process of integration of a first derivative function, as well as consistent and well-established mathematical and AC power flow models. The factors give a highly accurate allocation of any non-linear system quantity to transactions placed on the transmission system. The thesis also extends the new ETA factors calculation procedure to restructure a new economic dispatch scheme where multiple sets of generators are economically dispatched to meet their corresponding load and their share of the losses.

  11. Development of transmission dose estimation algorithm for in vivo dosimetry in high energy radiation treatment

    International Nuclear Information System (INIS)

    Yun, Hyong Geun; Shin, Kyo Chul; Hun, Soon Nyung; Woo, Hong Gyun; Ha, Sung Whan; Lee, Hyoung Koo

    2004-01-01

    In vivo dosimetry is very important for quality assurance purpose in high energy radiation treatment. Measurement of transmission dose is a new method of in vivo dosimetry which is noninvasive and easy for daily performance. This study is to develop a tumor dose estimation algorithm using measured transmission dose for open radiation field. For basic beam data, transmission dose was measured with various field size (FS) of square radiation field, phantom thickness (Tp), and phantom chamber distance (PCD) with a acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. By using regression analysis of measured basic beam data, a transmission dose estimation algorithm was developed. Accuracy of the algorithm was tested with flat solid phantom with various thickness in various settings of rectangular fields and various PCD. In our developed algorithm, transmission dose was equated to quadratic function of log(A/P) (where A/P is area-perimeter ratio) and the coefficients of the quadratic functions were equated to tertiary functions of PCD. Our developed algorithm could estimate the radiation dose with the errors within ±0.5% for open square field, and with the errors within ±1.0% for open elongated radiation field. Developed algorithm could accurately estimate the transmission dose in open radiation fields with various treatment settings of high energy radiation treatment. (author)

  12. Cross-layer Energy Optimization Under Image Quality Constraints for Wireless Image Transmissions.

    Science.gov (United States)

    Yang, Na; Demirkol, Ilker; Heinzelman, Wendi

    2012-01-01

    Wireless image transmission is critical in many applications, such as surveillance and environment monitoring. In order to make the best use of the limited energy of the battery-operated cameras, while satisfying the application-level image quality constraints, cross-layer design is critical. In this paper, we develop an image transmission model that allows the application layer (e.g., the user) to specify an image quality constraint, and optimizes the lower layer parameters of transmit power and packet length, to minimize the energy dissipation in image transmission over a given distance. The effectiveness of this approach is evaluated by applying the proposed energy optimization to a reference ZigBee system and a WiFi system, and also by comparing to an energy optimization study that does not consider any image quality constraint. Evaluations show that our scheme outperforms the default settings of the investigated commercial devices and saves a significant amount of energy at middle-to-large transmission distances.

  13. Compressor-less Hydrogen Transmission Pipelines Deliver Large-scale Stranded Renewable Energy at Competitive Cost

    International Nuclear Information System (INIS)

    W Leighty; J Holloway; R Merer; B Somerday; C San Marchi; G Keith; D White

    2006-01-01

    We assume a transmission-constrained world, where large new wind plants and other renewable energies must pay all transmission costs for delivering their energy to distant markets. We modeled a 1,000 MW (1 GW) (name plate) wind plant in the large wind resource of the North America Great Plains, delivering exclusively hydrogen fuel, via a new gaseous hydrogen (GH2) pipeline, to an urban market at least 300 km distant. All renewable electric energy output would be converted, at the source, to hydrogen, via 100 bar output electrolyzers, directly feeding the GH2 transmission pipeline without costly compressor stations at inlet or at midline. The new GH2 pipeline is an alternative to new electric transmission lines. We investigate whether the pipeline would provide valuable energy storage. We present a simple model by which we estimate the cost of wind-source hydrogen fuel delivered to the distant city gate in year 2010, at GW scale. Ammonia, synthetic hydrocarbons, and other substances may also be attractive renewable-source energy carriers, storage media, and fuels; they are not considered in this paper. (authors)

  14. Outage Analysis of Cooperative Transmission with Energy Harvesting Relay: Time Switching versus Power Splitting

    Directory of Open Access Journals (Sweden)

    Guanyao Du

    2015-01-01

    Full Text Available This paper investigates the multiuser transmission network with an energy harvesting (EH cooperative relay, where a source transmits independent information to multiple destinations with the help of an energy constrained relay. The relay can harvest energy from the radio frequency (RF signals transmitted from the source, and it helps the multiuser transmission only by consuming the harvested energy. By adopting the time switching and the power splitting relay receiver architectures, we firstly propose two protocols, the time switching cooperative multiuser transmission (TSCMT protocol and the power splitting cooperative multiuser transmission (PSCMT protocol, to enable the simultaneous information processing and EH at the relay for the system. To evaluate the system performance, we theoretically analyze the system outage probability for the two proposed protocols and then derive explicit expressions for each of them, respectively. Numerical results are provided to demonstrate the accuracy of our analytical results and reveal that compared with traditional noncooperative scheme our proposed protocols are green solutions to offer reliable communication and lower system outage probability without consuming additional energy. In particular, for the same transmit power at the source, the PSCMT protocol is superior to the TSCMT protocol to obtain lower system outage probability.

  15. Grassroots Technological Resistance: The People's Power Project and the Impossible Dream of Wireless Transmission of Energy.

    Science.gov (United States)

    Schmidt, Pete

    2017-09-01

    In 1972, the Minnesota United Power Association (UPA) teamed up with the Minnesota Cooperative Power Association (CPA) to initiate an electrification project designed to bring power from North Dakota to the Twin Cities area. A significant backlash and protest began once farmers across the state became aware of the plan and the potential impending land seizure. In the midst of these actions, one group sought to create an alternative to the power line transmission system by designing a system of wireless energy transmission based on the plans of Nikola Tesla. This self-funded conglomeration of farmers and amateur researchers formed the People's Power Project (PPP) and set about building Tesla's system for the wireless transmission of energy. Using archival documents, this paper recounts this episode and argues that, in this case, the potential for successful grassroots action was derailed by the influence of longstanding myths about Tesla and his devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Prediction of radiant heat flux from horizontal propane jet fire

    International Nuclear Information System (INIS)

    Zhou, Kuibin; Liu, Jiaoyan; Jiang, Juncheng

    2016-01-01

    Highlights: • Line source model for the radiant heat flux from horizontal jet fire is proposed. • A review on the difference between horizontal and vertical jet fires is conducted. • Effects of lift-off distance and flame shape are discussed for the line source model. • Line source model gives encouraging results relative to the validity of model system. - Abstract: Jet fires are often reported to occur in process industry with lots of hazardous heat energy released. A line source model describing the flame emissive power and subsequent heat flux radiated from a horizontal propane jet fire is evaluated through a testing against experimental fire data and comparison against other models. By a review on the jet flame behavior, the correlations of the lift-off distance, flame length and radiative fraction are proposed to close the line source model in theory. It is found that the fuel jet direction holds a considerable effect on the flame behavior by comparison between horizontal and vertical jet fires. Results indicate that the lift-off distance and the flame shape influence the model prediction to some extent. Comparison of model predictions against data collected in the near field and predictions from the point source model and multipoint source model gives encouraging results relative to the validity of model system.

  17. Radiant{trademark} Liquid Radioisotope Intravascular Radiation Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Eigler, N.; Whiting, J.; Chernomorsky, A.; Jackson, J.; Knapp, F.F., Jr.; Litvack, F.

    1998-01-16

    RADIANT{trademark} is manufactured by United States Surgical Corporation, Vascular Therapies Division, (formerly Progressive Angioplasty Systems). The system comprises a liquid {beta}-radiation source, a shielded isolation/transfer device (ISAT), modified over-the-wire or rapid exchange delivery balloons, and accessory kits. The liquid {beta}-source is Rhenium-188 in the form of sodium perrhenate (NaReO{sub 4}), Rhenium-188 is primarily a {beta}-emitter with a physical half-life of 17.0 hours. The maximum energy of the {beta}-particles is 2.1 MeV. The source is produced daily in the nuclear pharmacy hot lab by eluting a Tungsten-188/Rhenium-188 generator manufactured by Oak Ridge National Laboratory (ORNL). Using anion exchange columns and Millipore filters the effluent is concentrated to approximately 100 mCi/ml, calibrated, and loaded into the (ISAT) which is subsequently transported to the cardiac catheterization laboratory. The delivery catheters are modified Champion{trademark} over-the-wire, and TNT{trademark} rapid exchange stent delivery balloons. These balloons have thickened polyethylene walls to augment puncture resistance; dual radio-opaque markers and specially configured connectors.

  18. Development of a secondary electron energy analyzer for a transmission electron microscope.

    Science.gov (United States)

    Magara, Hideyuki; Tomita, Takeshi; Kondo, Yukihito; Sato, Takafumi; Akase, Zentaro; Shindo, Daisuke

    2018-04-01

    A secondary electron (SE) energy analyzer was developed for a transmission electron microscope. The analyzer comprises a microchannel plate (MCP) for detecting electrons, a coil for collecting SEs emitted from the specimen, a tube for reducing the number of backscattered electrons incident on the MCP, and a retarding mesh for selecting the energy of SEs incident on the MCP. The detection of the SEs associated with charging phenomena around a charged specimen was attempted by performing electron holography and SE spectroscopy using the energy analyzer. The results suggest that it is possible to obtain the energy spectra of SEs using the analyzer and the charging states of a specimen by electron holography simultaneously.

  19. Terminological dictionary of electrical power industry in range of generation, transmission and distribution of electric energy

    International Nuclear Information System (INIS)

    Biernacki, T.; Cegla, S.; Ciszewski, W.

    1990-08-01

    The dictionary contains about 5000 terms about conventional and nuclear power plants, energy sources, transmission lines, automation, power systems, environment protection, statistics etc. Each term is given with definition and its equivalents in English, French, German and Russian. Indexes of Polish, English, French, German and Russian terms are provided at the back of dictionary. (A.S.)

  20. Wireless Energy and Information Transmission in FSO and RF-FSO Links

    KAUST Repository

    Makki, Behrooz; Svensson, Tommy; Buisman, Koen; Perez, Joaquin; Alouini, Mohamed-Slim

    2017-01-01

    We propose and analyze a wireless energy and information transmission scheme in free-space optical (FSO) links. The results are presented for both quasi-static and fast-fading conditions. We derive closed-form expressions for throughput, outage

  1. Study on the application of energy storage system in offshore wind turbine with hydraulic transmission

    International Nuclear Information System (INIS)

    Fan, Yajun; Mu, Anle; Ma, Tao

    2016-01-01

    Highlights: • Hydraulic offshore wind turbine is capable of outputting near constant power. • Open loop hydraulic transmission uses seawater as the working fluid. • Linear control strategy distributes total flow according to demand and supply. • Constant pressure hydraulic accumulator stores/releases the surplus energy. • Simulations show the dynamic performance of the hybrid system. - Abstract: A novel offshore wind turbine comprising fluid power transmission and energy storage system is proposed. In this wind turbine, the conventional mechanical transmission is replaced by an open-loop hydraulic system, in which seawater is sucked through a variable displacement pump in nacelle connected directly with the rotor and utilized to drive a Pelton turbine installed on the floating platform. Aiming to smooth and stabilize the output power, an energy storage system with the capability of flexible charging and discharging is applied. The related mathematical model is developed, which contains some sub-models that are categorized as the wind turbine rotor, hydraulic pump, transmission pipeline, proportional valve, accumulator and hydraulic turbine. A linear control strategy is adopted to distribute the flow out of the proportional valve through comparing the demand power with captured wind energy by hydraulic pump. Ultimately, two time domain simulations demonstrate the operation of the hybrid system when the hydraulic accumulator is utilized and show how this system can be used for load leveling and stabilizing the output power.

  2. Price-based optimal control of power flow in electrical energy transmission networks

    NARCIS (Netherlands)

    Jokic, A.; Lazar, M.; Bosch, van den P.P.J.; Bemporad, A.; Bicchi, A.; Buttazzo, G.

    2007-01-01

    This article presents a novel control scheme for achieving optimal power balancing and congestion control in electrical energy transmission networks via nodal prices. We develop an explicit controller that guarantees economically optimal steady-state operation while respecting all line flow

  3. Optical fiber cable for transmission of high power laser energy over great distances

    Science.gov (United States)

    Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Moxley, Joel F.; Koblick, Yeshaya

    2016-05-24

    There is provided a system and apparatus for the transmission of high power laser energy over great distances without substantial power loss and without the presence of stimulated Raman scattering. There is further provided systems and optical fiber cable configurations and optical fiber structures for the delivering high power laser energy over great distances to a tool or surface to perform an operation or work with the tool or upon the surface.

  4. Optical fiber configurations for transmission of laser energy over great distances

    Science.gov (United States)

    Rinzler, Charles C; Zediker, Mark S

    2013-10-29

    There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.

  5. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-17

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.

  6. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    International Nuclear Information System (INIS)

    1995-01-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A

  7. Natural gas transmission and distribution model of the National Energy Modeling System

    International Nuclear Information System (INIS)

    1997-02-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA's modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes

  8. Natural gas transmission and distribution model of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

  9. Validation of the uncertainty budget for soft X-ray radiant power measurement using a cryogenic radiometer

    CERN Document Server

    Rabus, H; Scholze, F; Thornagel, R; Ulm, G

    2002-01-01

    The cryogenic radiometer SYRES, a thermal detector based on the electrical substitution principle, has been used as the primary detector standard for radiant power measurement in the ultraviolet, vacuum ultraviolet and soft X-ray spectral ranges. In order to investigate the possibility of radiant energy being deposited in its absorber cavity without being transformed into heat when detecting soft X-rays, SYRES has been directly compared with the electron storage ring BESSY 1, a primary radiometric source standard of calculable spectral radiant power. To this end, the integral radiant power emitted by the storage ring,into a solid angle defined by a high-precision aperture was measured with SYRES. The experiments were conducted at two nominal energies of the circulating electrons, 800 MeV and 340 MeV, to study the influence of the different spectral distributions of the synchrotron radiation. For the original graphite-coated cavity absorber, significant discrepancies were found which could be traced back to th...

  10. Fiber optic transmission system delivered to Fusion Research Center of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Hayashida, Mutsuo; Hiramoto, Kiyoshi; Yamazaki, Kunihiro

    1983-01-01

    In general there are many electromagnetically induced noises in the premises of factories, power plants and substations. Under such electrically bad environments, for the computer data transmission that needs high speed processing and high reliability, the optical fiber cable is superion to the coaxial cable or the flat-type cable in aspects of the inductionlessness and a wide bandwidth. Showa Electric Wire and Cable Co., Ltd. has delivered and installed a computer data transmission system consisting of optical modems and optical fiber cables for connecting every experiment building in the premises of Fusion Research Center of Japan Atomic Energy Research Institute. This paper describes the outline of this system. (author)

  11. Experiment of Power Supply Method for WLAN Sensor Using Both Energy Harvesting and Microwave Power Transmission

    International Nuclear Information System (INIS)

    Sakaguchi, K; Yamashita, S; Yamamoto, K; Nishio, T; Morikura, M; Huang, Y; Shinohara, N

    2014-01-01

    This paper proposes to improve effectiveness of supplying a sensor with energy using microwave power transmission (MPT) and energy harvesting (EH). The MPT duration should be as short as possible to avoid serious interference between the MPT and wireless local area network data transmission when co-channel operation of both microwave power transmission (MPT) and wireless data transmissions is performed. To shorten the MPT duration, we use multiple power sources such as an MPT source and an EH source to supply a sensor with power. Here, an overcharge or an energy shortage could occur at the sensor if the power supplied by both the MPT and EH sources is not adjusted appropriately. To solve this problem, the power supplied by multiple sources should be estimated precisely. In this paper, we propose a scheme for estimating the power supplied by multiple sources on the basis of an existing MPT scheduling system and then conducted an experiment using the scheme. From the experimental results, it is confirmed to estimate the power supplied by multiple sources successfully. In addition, the required MPT duration when the EH source is used is reduced compared to that when it is not used. Moreover, it is confirmed that the sensor station successfully estimates the power supplied by an MPT source and that by an EH source and adequately configures the MPT duration

  12. Research on hybrid transmission mode for HVDC with optimal thermal power and renewable energy combination

    Science.gov (United States)

    Zhang, Jinfang; Yan, Xiaoqing; Wang, Hongfu

    2018-02-01

    With the rapid development of renewable energy in Northwest China, curtailment phenomena is becoming more and more serve owing to lack of adjustment ability and enough transmission capacity. Based on the existing HVDC projects, exploring the hybrid transmission mode associated with thermal power and renewable power will be necessary and important. This paper has proposed a method on optimal thermal power and renewable energy combination for HVDC lines, based on multi-scheme comparison. Having established the mathematic model for electric power balance in time series mode, ten different schemes have been picked for figuring out the suitable one by test simulation. By the proposed related discriminated principle, including generation device utilization hours, renewable energy electricity proportion and curtailment level, the recommendation scheme has been found. The result has also validated the efficiency of the method.

  13. Alternative forms of energy transmission from OTEC plants. [Chemical and electrical

    Energy Technology Data Exchange (ETDEWEB)

    Konopka, A.; Biederman, N.; Talib, A.; Yudow, B.

    1977-01-01

    The transmission of OTEC-derived chemical and electrical energy is compared. The chemical energy-carriers considered are the following: gaseous and liquid hydrogen, liquid ammonia, methanol, gasoline, hydrazine hydrate, anhydrous hydrazine, unsymmetrical dimethylhydrazine (UDMH), 1,7-Octadiyne, and tetrahydrodicyclopentadiene. The assessment assumes that each of the above energy carriers were transported by barge and/or pipeline. The delivered costs were then compared with transmission of electricity by submarine cables. Because chemical and electrical energy are not equivalent, however, their comparison can only be done after the outputs are converted to a common form. Thus, in addition to presenting the delivered cost and overall energy efficiency of the chemical energy-carriers, we have provided a discussion of the equipment, costs, and efficiencies of converting the hydrogen and ammonia delivered into electricity, and the electricity delivered into hydrogen and ammonia. A concise technical assessment and economic analysis of components associated with the conversion, storage, transportation, and shore-based receiving facilities for the conversion of OTEC mechanical energy to chemical energy is provided and compared to the conversion and transmission of electrical power. Results concerning the hydrogen and ammonia analysis were determined as part of the OTEC program at IGT from May 1975 through May 1976 under Contract No. NSF-C1008 (AER-75-00033) with the National Science Foundation and ERDA. Information concerning carbonaceous fuels and high-energy fuels production was developed as part of the current IGT OTEC program under Contract No. E(49-18)-2426 with ERDA.

  14. Growth and solar energy conversion of Azolla sp., cultivated under four solar irradiance flux density; Crescimento e conversao da energia solar de Azolla sp. cultivada em quatro densidades do fluxo radiante

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, E.F. de [Acre Univ., Rio Branco, AC (Brazil); Lopes, N.F. [Vicosa Univ., MG (Brazil). Dept. de Biologia Vegetal

    1994-02-01

    Growth and solar energy conversion were studied in three Azolla species grown under four levels (30, 50, 70 and 100%) of solar radiation incidence under outdoor conditions. Under full sunlight, the specie A. microphylla showed higher crop growth rate, relative growth rate, net assimilation rate and efficiency of solar energy conversion than the other ones. (author). 8 figs., 23 refs.

  15. Experimental and Numerical Study of the Radiant Induction-Unit and the Induction Radiant Air-Conditioning System

    Directory of Open Access Journals (Sweden)

    Qiang Si

    2016-12-01

    Full Text Available In this paper we proposed the novel air-conditioning system which combined induction ventilation and radiant air-conditioning. The indoor terminal device is the radiant induction-unit (RIDU. The RIDU is the induction unit combined with the pore radiant panel on which the copper pipes with rigid aluminum diffusion fins are installed. The two-stage evaporator chiller with the non-azeotropic mixture refrigerant is utilized in the system to reduce the initial investment in equipment. With the performance test and the steady state heat transfer model based on the theory of radiative heat transfer, the relationship between the induction ratio of the RIDU and the characteristic of the air supply was studied. Based on this, it is verified that the RIDU has a lower dew-point temperature and better anti-condensation performance than a traditional plate-type radiant panel. The characteristics of the radiation and convection heat transfer of the RIDU were studied. The total heat exchange of the RIDU can be 16.5% greater than that of the traditional plate-type radiant terminal.

  16. THE MAIN DIRECTIONS OF IMPROVING THE EFFICIENCY OF PRODUCTION, TRANSMISSION AND DISTRIBUTION OF ELECTRICAL ENERGY

    Directory of Open Access Journals (Sweden)

    I. V. Zhezhelenko

    2018-01-01

    Full Text Available The main directions of increase of efficiency of production, transmission and distribution of electric energy have been formulated. The relation between the values of electricity losses during transmission via power grids of different countries and the level of the economies of these countries characterized by the value of gross domestic product at purchasing power parity per capita has been established. In the countries with a gross domestic product at purchasing power parity per capita less than 20 thousand US dollars electricity losses during its transmission via power grids are 1.5–2.5 times more than the ones transmitted via power grids of the industrialized countries where the specified purchasing power parity is in the range of 30.4–54.5 thousand US dollars. In the countries with more developed economies the technical culture of production, transmission and distribution of electricity is higher; the modern control systems of operation modes of electrical networks are used as well as of monitoring and accounting of electricity; also there are solvent and disciplined consumers in such countries as well as clear regulatory framework and tariff regulation system. However, the process of transmission and distribution of electricity is effective if not only low relative losses take place, but the normal (contractual requirements for carrying capacity, quality and reliability of electricity supply are provided. The possibility of analytical determination of the optimum value of reserve capacity of power plants providing the required level of reliability of the power system has been considered.

  17. NorthernLights Transmission : bringing competitive cogen energy from the oil sands to west coast markets

    International Nuclear Information System (INIS)

    Hogan, M.J.C.

    2005-01-01

    NorthernLights Transmission is an initiative by TransCanada that proposes 2 major high-voltage direct current (HVDC) transmission lines to bring low cost, fossil fuelled and renewable generation from the Fort McMurray area to growing electricity markets in the Pacific Northwest, Nevada, Arizona and California. This presentation demonstrated why oil sands cogeneration, shipped via NorthernLights Transmission, is a very attractive resource for these markets. It was shown that the best generation resources are tied to natural resources such as coal, wind, oil sands cogeneration and hydro. Both the Pacific Northwest and California markets prefer low carbon dioxide generation. The proposed HVDC transmission lines would maximize the use of existing energy infrastructure corridors and rights-of-way where possible. This paper presented details of the proposed Celilo Project and the Inland Project, and noted that both are attractive from a technical and economic perspective. The transmission line for the Celilo project would originate in Fort McMurray and connect highly efficient cogeneration and other developing forms of generation to growing loads in the Pacific Northwest and northern California. The cogeneration plants will supply steam and electricity to northern Alberta's oil sands developments along with surplus electricity for export. tabs., figs

  18. Addressing preservation of elastic contrast in energy-filtered transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.G.; D' Alfonso, A.J.; Forbes, B.D.; Allen, L.J., E-mail: lja@unimelb.edu.au

    2016-01-15

    Energy-filtered transmission electron microscopy (EFTEM) images with resolutions of the order of an Ångström can be obtained using modern microscopes corrected for chromatic aberration. However, the delocalized nature of the transition potentials for atomic ionization often confounds direct interpretation of EFTEM images, leading to what is known as “preservation of elastic contrast”. In this paper we demonstrate how more interpretable images might be obtained by scanning with a focused coherent probe and incoherently averaging the energy-filtered images over probe position. We dub this new imaging technique energy-filtered imaging scanning transmission electron microscopy (EFISTEM). We develop a theoretical framework for EFISTEM and show that it is in fact equivalent to precession EFTEM, where the plane wave illumination is precessed through a range of tilts spanning the same range of angles as the probe forming aperture in EFISTEM. It is demonstrated that EFISTEM delivers similar results to scanning transmission electron microscopy with an electron energy-loss spectrometer but has the advantage that it is immune to coherent aberrations and spatial incoherence of the probe and is also more resilient to scan distortions. - Highlights: • Interpretation of EFTEM images is complicated by preservation of elastic contrast. • More direct images obtained by scanning with a focused coherent probe and averaging. • This is equivalent to precession EFTEM through the solid angle defined by the probe. • Also yields similar results to energy-loss scanning transmission electron microscopy. • Scanning approach immune to probe aberrations and resilient to scan distortions.

  19. Efficiency and the public interest: QF transmission and the Energy Policy Act of 1992

    International Nuclear Information System (INIS)

    Fox-Penner, P.

    1993-01-01

    Prior to the enactment of the Energy Policy Act of 1992 (Act), most Federal Energy Regulatory Commission (FERC or Commission) deliberations involving transmission services did not occur in transmission rate or service proceedings per se. The Commission conducted a number of general inquiries or studies of the subject, including setting the terms and conditions of transmission services as part of merger proceedings and open-quotes market-basedclose quotes pricing proceedings. With the passage of the Act, the FERC is likely to be asked to confront the advisability of requiring transmission services in a more direct manner. The Act permits open-quotes[a]ny electric utility, Federal power marketing agency, or any other person generating electrical energy for sale for resaleclose quotes to petition the Commission for a wheeling order. The FERC may order wheeling in accordance with section 212 of the Federal Power Act (FPA) and a finding that such wheeling would open-quotes otherwise be in the public interest.close quotes When compounded with the need to find that wheeling is in the public interest, the requirements set forth in section 212 are considerable. This article focuses on an important area of section 212 criteria, namely the interplay between between the public interest and economic efficiency criteria in the case of Public Utility Regulatory Policies Act of 1978 (PURPA) Qualifying Facilities (QF). Two recent proceedings in which the FERC considered the need to provide power transmission service guarantees for QFs are analyzed from the standpoint of public and private economic welfare. The two proceedings are the merger of Utah Power ampersand Light Company, PacifiCorp, PC/UP ampersand L Merging Corporation (Utah) and the Western Systems Power Pool application (WSPP)

  20. A method of applying two-pump system in automatic transmissions for energy conservation

    Directory of Open Access Journals (Sweden)

    Peng Dong

    2015-06-01

    Full Text Available In order to improve the hydraulic efficiency, modern automatic transmissions tend to apply electric oil pump in their hydraulic system. The electric oil pump can support the mechanical oil pump for cooling, lubrication, and maintaining the line pressure at low engine speeds. In addition, the start–stop function can be realized by means of the electric oil pump; thus, the fuel consumption can be further reduced. This article proposes a method of applying two-pump system (one electric oil pump and one mechanical oil pump in automatic transmissions based on the forward driving simulation. A mathematical model for calculating the transmission power loss is developed. The power loss transfers to heat which requires oil flow for cooling and lubrication. A leakage model is developed to calculate the leakage of the hydraulic system. In order to satisfy the flow requirement, a flow-based control strategy for the electric oil pump is developed. Simulation results of different driving cycles show that there is a best combination of the size of electric oil pump and the size of mechanical oil pump with respect to the optimal energy conservation. Besides, the two-pump system can also satisfy the requirement of the start–stop function. This research is extremely valuable for the forward design of a two-pump system in automatic transmissions with respect to energy conservation and start–stop function.

  1. A Pilot Directional Protection for HVDC Transmission Line Based on Relative Entropy of Wavelet Energy

    Directory of Open Access Journals (Sweden)

    Sheng Lin

    2015-07-01

    Full Text Available On the basis of analyzing high-voltage direct current (HVDC transmission system and its fault superimposed circuit, the direction of the fault components of the voltage and the current measured at one end of transmission line is certified to be different for internal faults and external faults. As an estimate of the differences between two signals, relative entropy is an effective parameter for recognizing transient signals in HVDC transmission lines. In this paper, the relative entropy of wavelet energy is applied to distinguish internal fault from external fault. For internal faults, the directions of fault components of voltage and current are opposite at the two ends of the transmission line, indicating a huge difference of wavelet energy relative entropy; for external faults, the directions are identical, indicating a small difference. The simulation results based on PSCAD/EMTDC show that the proposed pilot protection system acts accurately for faults under different conditions, and its performance is not affected by fault type, fault location, fault resistance and noise.

  2. Illumination, data transmission, and energy harvesting: the threefold advantage of VLC.

    Science.gov (United States)

    Sandalidis, Harilaos G; Vavoulas, Alexander; Tsiftsis, Theodoros A; Vaiopoulos, Nicholas

    2017-04-20

    Visible light communication (VLC) is a promising technology that meets illumination and information transmission requirements in an indoor environment. Because light waves convey energy, a VLC link may exploit that fact for energy harvesting purposes. In this context, a single light emitting diode lamp located at a close distance over a tablet or laptop PC can potentially offer simultaneous lighting, Internet access, and battery recharging without cables. The present study introduces this threefold role of VLC systems by properly adapting some energy harvesting receiver architectures recently launched for usage in RF communications. The rate-energy trade-off for these architectures is revealed in order to maximize the efficiency of simultaneous energy and information reception, by elaborating on indicative numerical results. Furthermore, the performance in terms of the bit-error rate for pulse amplitude modulated signals is investigated. The results obtained offer some useful insights into the effective optical receiver implementation from the aspect of information theory.

  3. HTGR molten salt sensible energy transmission and storage system design and costs

    International Nuclear Information System (INIS)

    1981-09-01

    This report, which was prepared for Gas-Cooled Reactor Associates by United Engineers and Constructors under Contract No. GCRA/UE and C 81-203, presents the design and cost for a molten salt Sensible Energy Transmission and Storage (SETS) System. Although the reference system for this study is sized to be compatible with an 1170 MW(t) HTGR Nuclear Heat Source, the results and conclusions should be generally applicable to most large scale molten salt energy transmission system applications. A preliminary conceptual design is presented and alternative configurations are discussed. The sensitivity of system costs to variations in important system parameters are also presented. Costs for a reference case conceptual design are reported in constant 1980 dollars and inflated 1995 dollars

  4. eV-TEM: Transmission electron microscopy in a low energy cathode lens instrument

    Energy Technology Data Exchange (ETDEWEB)

    Geelen, Daniël, E-mail: geelen@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands); Thete, Aniket [Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands); Schaff, Oliver; Kaiser, Alexander [SPECS GmbH, Voltastrasse 5, D-13355 Berlin (Germany); Molen, Sense Jan van der [Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands); Tromp, Rudolf [IBM T.J. Watson Research Center, 1101 Kitchawan Road, P.O. Box 218, Yorktown Heights, NY 10598 (United States)

    2015-12-15

    We are developing a transmission electron microscope that operates at extremely low electron energies, 0–40 eV. We call this technique eV-TEM. Its feasibility is based on the fact that at very low electron energies the number of energy loss pathways decreases. Hence, the electron inelastic mean free path increases dramatically. eV-TEM will enable us to study elastic and inelastic interactions of electrons with thin samples. With the recent development of aberration correction in cathode lens instruments, a spatial resolution of a few nm appears within range, even for these very low electron energies. Such resolution will be highly relevant to study biological samples such as proteins and cell membranes. The low electron energies minimize adverse effects due to radiation damage. - Highlights: • We present a new way of performing low energy transmission electron microscopy in an aberration corrected LEEM/PEEM instrument. • We show a proof of principle where we measure transmitted electrons through a suspended graphene monolayer with a preliminary setup. • We present an improved setup design that provides better control of the incident electron beam.

  5. Principle of energy-filtering transmission electron microscopy and its applications

    International Nuclear Information System (INIS)

    Kurata, Hiroki

    1997-01-01

    Energy-filtering transmission electron microscopy (EFTEM) is widely used to make images and diffraction patterns more quantitative by removing the inelastic background, and to perform elemental and chemical mapping at high spatial resolution. The principal factors restricting the spatial resolution in elemental maps are discussed. The relativistic effect on inelastic scattering cross-section, which becomes significant for high-voltage EFTEM analysis, is also discussed in relation to the detection efficiency of core-loss signals. (author)

  6. Cross-Country Electricity Trade, Renewable Energy and European Transmission Infrastructure Policy

    OpenAIRE

    Abrell, Jan; Rausch, Sebastian

    2016-01-01

    This paper develops a multi-country multi-sector general equilibrium model, integrating high-frequency electricity dispatch and trade decisions, to study the e ects of electricity transmission infrastructure (TI) expansion and re- newable energy (RE) penetration in Europe for gains from trade and carbon dioxide emissions in the power sector. TI can bene t or degrade environ- mental outcomes, depending on RE penetration: it complements emissions abatement by mitigating dispatch problems associ...

  7. Energy transmission through a double-wall curved stiffened panel using Green's theorem

    Science.gov (United States)

    Ghosh, Subha; Bhattacharya, Partha

    2015-04-01

    It is a common practice in aerospace and automobile industries to use double wall panels as fuselage skins or in window panels to improve acoustic insulation. However, the scientific community is yet to develop a reliable prediction method for a suitable vibro-acoustic model for sound transmission through a curved double-wall panel. In this quest, the present work tries to delve into the modeling of energy transmission through a double-wall curved panel. Subsequently the radiation of sound power into the free field from the curved panel in the low to mid frequency range is also studied. In the developed model to simulate a stiffened aircraft fuselage configuration, the outer wall is provided with longitudinal stiffeners. A modal expansion theory based on Green's theorem is implemented to model the energy transmission through an acoustically coupled double-wall curved panel. An elemental radiator approach is implemented to calculate the radiated energy from the curved surface in to the free field. The developed model is first validated with various numerical models available. It has been observed in the present study that the radius of curvature of the surface has a prominent effect on the behavior of radiated sound power into the free field. Effect of the thickness of the air gap between the two curved surfaces on the sound power radiation has also been noted.

  8. Parametric study of variable renewable energy integration in Europe: Advantages and costs of transmission grid extensions

    International Nuclear Information System (INIS)

    Schaber, Katrin; Steinke, Florian; Mühlich, Pascal; Hamacher, Thomas

    2012-01-01

    Wind and solar energy will play an important role in the decarbonization of the European electricity generation. However, high shares of these variable renewable energies (VREs) challenge the power system considerably due to their temporal fluctuations and geographical dispersion. In this paper, we systematically analyze transmission grid extensions as an integration measure for VREs in Europe. We show the effects of grid extensions for fundamental properties of the power system as a function of the penetration and mix of wind and solar energy. Backup capacity requirements and overproduction are reduced with a powerful overlay transmission grid. We determine the costs of the grid extensions in dependence of the VRE penetration and mix and find that the grid integration costs remain below 25% of the VRE investment costs for all conceivable VRE configurations. Furthermore, robust design features of future power systems in terms of grid geometry and flexibility requirements for backup technologies are identified. We apply a spatially and temporally highly resolved techno-economic model of the European power system for our analysis. - Highlights: ► Quantification of the advantages and costs of a European overlay transmission grid. ► Grid integration costs for VREs in Europe remain below 6€/MWh. ► Application of a detailed power system model to a wide parameter space.

  9. Mode and climatic factors effect on energy losses in transient heat modes of transmission lines

    Science.gov (United States)

    Bigun, A. Ya; Sidorov, O. A.; Osipov, D. S.; Girshin, S. S.; Goryunov, V. N.; Petrova, E. V.

    2018-01-01

    Electrical energy losses increase in modern grids. The losses are connected with an increase in consumption. Existing models of electric power losses estimation considering climatic factors do not allow estimating the cable temperature in real time. Considering weather and mode factors in real time allows to meet effectively and safely the consumer’s needs to minimize energy losses during transmission, to use electric power equipment effectively. These factors increase an interest in the evaluation of the dynamic thermal mode of overhead transmission lines conductors. The article discusses an approximate analytic solution of the heat balance equation in the transient operation mode of overhead lines based on the least squares method. The accuracy of the results obtained is comparable with the results of solving the heat balance equation of transient thermal mode with the Runge-Kutt method. The analysis of mode and climatic factors effect on the cable temperature in a dynamic thermal mode is presented. The calculation of the maximum permissible current for variation of weather conditions is made. The average electric energy losses during the transient process are calculated with the change of wind, air temperature and solar radiation. The parameters having the greatest effect on the transmission capacity are identified.

  10. Facilitating efficient augmentation of transmission networks to connect renewable energy generation: the Australian experience

    International Nuclear Information System (INIS)

    Wright, Glen

    2012-01-01

    Australia is heavily dependent on coal for electricity generation. The Renewable Energy Target has spurred growth in the utilization of renewable energy sources, with further growth expected into the future. Australia's strongest renewable energy sources are generally distant from the transmission network in resource ‘basins’. Investment is needed to augment the transmission network to enable delivery of electricity from these sources to consumers. Considerable economies of scale flow from anticipating the connection of numerous generators in an area over time and sizing augmentations accordingly. Following a lengthy rulemaking process, the National Electricity Rules were recently amended by a new rule, designed to facilitate the construction of such efficiently sized augmentations. However, the new rule is more conservative than initially envisaged, making little substantive change to the current frameworks for augmentation and connection. This paper outlines these frameworks and the rulemaking process and identifies the key debates surrounding the rule change are identified. This paper then provides a detailed analysis of the new rule, concluding that it is defective in a number of respects and is unlikely to result in the efficient and timely augmentation of the network needed to unlock the potential of Australia's strongest renewable energy resources. - Highlights: ► Remoteness of renewable energy sources is a barrier to greater renewable energy utilization. ► Significant economies of scale flow from efficiently-sized transmission network augmentation. ► Current frameworks in Australia do not incentivise efficiently-sized network augmentations. ► The lack of property rights in an augmentation is particularly problematic. ► The new Scale Efficient Network Extensions rule is not apt to facilitate efficiently-sized network augmentations.

  11. Energy-water analysis of the 10-year WECC transmission planning study cases.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll; Passell, Howard David; Castillo, Cesar; Moreland, Barbara

    2011-11-01

    In 2011 the Department of Energy's Office of Electricity embarked on a comprehensive program to assist our Nation's three primary electric interconnections with long term transmission planning. Given the growing concern over water resources in the western U.S. the Western Electricity Coordinating Council (WECC) requested assistance with integrating water resource considerations into their broader electric transmission planning. The result is a project with three overarching objectives: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners in the Western Interconnection to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy-Water DSS through a strongly collaborative process between the Western Electricity Coordinating Council (WECC), Western Governors Association (WGA), the Western States Water Council (WSWC) and their associated stakeholder teams. (3) Exercise the Energy-Water DSS to investigate water stress implications of the transmission planning scenarios put forward by WECC, WGA, and WSWC. The foundation for the Energy-Water DSS is Sandia National Laboratories Energy-Power-Water Simulation (EPWSim) model (Tidwell et al. 2009). The modeling framework targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. This framework provides an interactive environment to explore trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., state, county, watershed, interconnection). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. The framework currently supports

  12. The Role of Interconnecting Transmission Network in Energy Market Environment in Croatia

    International Nuclear Information System (INIS)

    Radmilovic, B.

    2001-01-01

    For energy market liberalisation in a small country like Croatia, it is necessary to build strong interconnecting lines to neighbouring systems. In that way it is possible to get power under favourable market conditions and also to export domestic production (especially from hydro power plants) to external markets. Geographical position of Croatia in Europe (East West, North South) is very interesting under liberalised energy market conditions. In that sense, the possibilities and role of Croatian transmission network (400 and 220 kV) for possible transits and other country needs should be analysed. (author)

  13. A dual energy gamma-ray transmission technique for gold alloy identification

    International Nuclear Information System (INIS)

    Sumi, Tetsuo; Shingu, Hiroyasu; Iwase, Hirotoshi

    1991-01-01

    An application of the dual energy gamma-ray transmission techniques to gold alloy identification is presented. The measurement by dual energy gamma-ray transmission is independent of thickness and density of a sample. Due to this advantage, golden accessories such as necklaces, earrings and rings can be assayed in spite of their various thicknesses and irregular sectional shapes. Choice of a gamma-ray energy pair suitable for the object is important. The authors chose 511 keV and 1275 keV gamma-rays from 22 Na. With this energy pair, R value (a ratio of mass attenuation coefficients for low and high energy gamma-rays) is predominantly related to the weight fraction of gold of the sample. Using a 370 kBq 22 Na small source and a 50 mm dia.x 50 mm thick NaI(Tl) scintillator for 1200 seconds, a resolution of 2% for the R value was obtained. This corresponds to approximately 5% of the weight fraction of gold. A better resolution can be obtained by increasing the source activity or measurement time. (author)

  14. Energy-Efficient Resource and Power Allocation for Underlay Multicast Device-to-Device Transmission

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    2017-11-01

    Full Text Available In this paper, we present an energy-efficient resource allocation and power control scheme for D2D (Device-to-Device multicasting transmission. The objective is to maximize the overall energy-efficiency of D2D multicast clusters through effective resource allocation and power control schemes, while considering the quality of service (QoS requirements of both cellular users (CUs and D2D clusters. We first build the optimization model and a heuristic resource and power allocation algorithm is then proposed to solve the energy-efficiency problem with less computational complexity. Numerical results indicate that the proposed algorithm outperforms existing schemes in terms of throughput per energy consumption.

  15. Improved Performance of Connected Foundations for Resilient Energy Transmission Infrastructure in Soft Soils

    Directory of Open Access Journals (Sweden)

    Doohyun Kyung

    2015-12-01

    Full Text Available The connected foundation is an effective structural type of foundation that can improve the sustainability of electrical transmission towers in soft soils to serve as a resilient energy supply system. In this study, the performance of electrical transmission towers reinforced with connected beams was investigated using a series of field load tests. Model transmission tower structures were manufactured and adopted into the tests. Based on the load capacity mobilization and failure mechanism, a criterion to define the load carrying capacity for connected foundation was proposed. It was found that the performance of connected foundation varies with the mechanical property of connection beam. The load capacity and differential settlement increased and decreased, respectively, with increasing connection beam stiffness. Such effect of connection beam was more pronounced as the height of load application point or tower height (zh increases. Based on the load test results, a design model was proposed that can be used to evaluate the sustainable performance and load carrying capacity of connected foundations. Field load tests with prototype transmission tower structure models were conducted to check and confirm the performance of connected foundation and the proposed design method.

  16. A leader-followers model of transmission augmentation for considering strategic behaviours of generating companies in energy markets

    International Nuclear Information System (INIS)

    Hesamzadeh, M.R.; Hosseinzadeh, N.; Wolfs, P.J.

    2010-01-01

    This paper suggests an integrated mathematical framework developed based on the leader-followers game for augmentation of transmission networks. Transmission Network Service Provider moves first and designs the horizon year transmission system. Generating Companies compete for having the highest share from the energy market and they find their equilibrium point using the Nash equilibrium concept. Finally, Market Management Company receives the planning schedule of transmission system and the energy offer prices and clears the market. In addition to the exact mathematical modelling of the interested players of transmission planning problem, the methodology can design the future transmission system not only for improving the system social welfare but also for encouraging competition among horizon year generating companies. (author)

  17. Common raven occurrence in relation to energy transmission line corridors transiting human-altered sagebrush steppe

    Science.gov (United States)

    Coates, Peter S.; Howe, Kristy B.; Casazza, Michael L.; Delehanty, David J.

    2014-01-01

    Energy-related infrastructure and other human enterprises within sagebrush steppe of the American West often results in changes that promote common raven (Corvus corax; hereafter, raven) populations. Ravens, a generalist predator capable of behavioral innovation, present a threat to many species of conservation concern. We evaluate the effects of detailed features of an altered landscape on the probability of raven occurrence using extensive raven survey (n= 1045) and mapping data from southern Idaho, USA. We found nonlinear relationships between raven occurrence and distances to transmission lines, roads, and facilities. Most importantly, raven occurrence was greater with presence of transmission lines up to 2.2 km from the corridor.We further explain variation in raven occurrence along anthropogenic features based on the amount of non-native vegetation and cover type edge, such that ravens select fragmented sagebrush stands with patchy, exotic vegetative introgression. Raven occurrence also increased with greater length of edge formed by the contact of big sagebrush (Artemisia tridentate spp.) with non-native vegetation cover types. In consideration of increasing alteration of sagebrush steppe, these findings will be useful for planning energy transmission corridor placement and other management activities where conservation of sagebrush obligate species is a priority.

  18. Transmission of Helium Isotopes through Graphdiyne Pores: Tunneling versus Zero Point Energy Effects.

    Science.gov (United States)

    Hernández, Marta I; Bartolomei, Massimiliano; Campos-Martínez, José

    2015-10-29

    Recent progress in the production of new two-dimensional (2D) nanoporous materials is attracting considerable interest for applications to isotope separation in gases. In this paper we report a computational study of the transmission of (4)He and (3)He through the (subnanometer) pores of graphdiyne, a recently synthesized 2D carbon material. The He-graphdiyne interaction is represented by a force field parametrized upon ab initio calculations, and the (4)He/(3)He selectivity is analyzed by tunneling-corrected transition state theory. We have found that both zero point energy (of the in-pore degrees of freedom) and tunneling effects play an extraordinary role at low temperatures (≈20-30 K). However, both quantum features work in opposite directions in such a way that the selectivity ratio does not reach an acceptable value. Nevertheless, the efficiency of zero point energy is in general larger, so that (4)He tends to diffuse faster than (3)He through the graphdiyne membrane, with a maximum performance at 23 K. Moreover, it is found that the transmission rates are too small in the studied temperature range, precluding practical applications. It is concluded that the role of the in-pore degrees of freedom should be included in computations of the transmission probabilities of molecules through nanoporous materials.

  19. Study of a conceptual nuclear energy center at Green River, Utah. Power demand, load center assessment and transmission

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.R.; Thaik, A.; Pingel, P.

    1982-02-01

    This document constitutes a segment of a feasibility study investigating the ramification of constructing a nuclear energy center in an arid western region. In this phase of the study. The projected power demands and load center locations were reviewed and assessed. Alternative transmission systems were analysed and a conceptual transmission for bulk power transportation is proposed with potential line routes. Environmental impacts of the proposed transmission were also identified.

  20. Study of a conceptual nuclear energy center at Green River, Utah. Power demand, load center assessment and transmission

    International Nuclear Information System (INIS)

    Smith, D.R.; Thaik, A.; Pingel, P.

    1982-02-01

    This document constitutes a segment of a feasibility study investigating the ramification of constructing a nuclear energy center in an arid western region. In this phase of the study. The projected power demands and load center locations were reviewed and assessed. Alternative transmission systems were analysed and a conceptual transmission for bulk power transportation is proposed with potential line routes. Environmental impacts of the proposed transmission were also identified

  1. An energy saving mechanism of EPON networks for real time video transmission

    Science.gov (United States)

    Liu, Chien-Ping; Wu, Ho-Ting; Chiang, Yun-Ting; Chien, Shieh-Chieh; Ke, Kai-Wei

    2015-07-01

    Modern access networks are constructed widely by passive optical networks (PONs) to meet the growing bandwidth demand. However, higher bandwidth means more energy consumption. To save energy, a few research works propose the dual-mode energy saving mechanism that allows the ONU to operate between active and sleep modes periodically. However, such dual-mode energy saving design may induce unnecessary power consumption or packet delay increase in the case where only downstream data exist for most of the time. In this paper, we propose a new tri-mode energy saving scheme for Ethernet PON (EPON). The new tri-mode energy saving design, combining the dual-mode saving mechanism with the doze mode, allows the ONU to switch among these three modes alternatively. In the doze mode, the ONU may receive downstream data while keeping its transmitter close. Such scenario is often observed for real time video downstream transmission. Furthermore, the low packet delay of high priority upstream data can be attained through the use of early wake-up mechanism employed in both energy saving modes. The energy saving and system efficiency can thus be achieved jointly while maintaining the differentiated QoS for data with various priorities. Performance results via simulation have demonstrated the effectiveness of such mechanism.

  2. Model documentation: Natural Gas Transmission and Distribution Model of the National Energy Modeling System; Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-24

    The Natural Gas Transmission and Distribution Model (NGTDM) is a component of the National Energy Modeling System (NEMS) used to represent the domestic natural gas transmission and distribution system. NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the Energy Information Administration (EIA) and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. This report documents the archived version of NGTDM that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 1994, DOE/EIA-0383(94). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. It is intended to fulfill the legal obligation of the EIA to provide adequate documentation in support of its models (Public Law 94-385, Section 57.b.2). This report represents Volume 1 of a two-volume set. (Volume 2 will report on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.) Subsequent chapters of this report provide: (1) an overview of the NGTDM (Chapter 2); (2) a description of the interface between the National Energy Modeling System (NEMS) and the NGTDM (Chapter 3); (3) an overview of the solution methodology of the NGTDM (Chapter 4); (4) the solution methodology for the Annual Flow Module (Chapter 5); (5) the solution methodology for the Distributor Tariff Module (Chapter 6); (6) the solution methodology for the Capacity Expansion Module (Chapter 7); (7) the solution methodology for the Pipeline Tariff Module (Chapter 8); and (8) a description of model assumptions, inputs, and outputs (Chapter 9).

  3. Transmission Congestion Management using a Wind Integrated Compressed Air Energy Storage System

    Directory of Open Access Journals (Sweden)

    S. Gope

    2017-08-01

    Full Text Available Transmission congestion is a vital problem in the power system security and reliability sector. To ensure the stable operation of the system, a congestion free power network is desirable. In this paper, a new Congestion Management (CM technique, the Wind integrated Compressed Air Energy Storage (WCAES system is used to alleviate transmission congestion and to minimize congestion mitigation cost. The CM problem has been solved by using the Generator Sensitivity Factor (GSF and the Bus Sensitivity Factor (BSF. BSF is used for finding the optimal location of WCAES in the system. GSF with a Moth Flame Optimization (MFO algorithm is used for rescheduling the generators to alleviate congestion and to minimize congestion cost by improving security margin. The impact of the WCAES system is tested with a 39 bus system. To validate this approach, the same problem has been solved with a Particle Swarm Optimization (PSO algorithm and the obtained results are compared with the ones from the MFO algorithm.

  4. The insertion of environmental impact assessment in the planning process of electrical energy transmission systems

    International Nuclear Information System (INIS)

    Pires, S.H.

    1994-03-01

    The main objective of this work is to identify and propose adequate methodologies in each stage of the planning process of electrical energy transmission systems. The aim is to incorporate the environmental dimension as a variable of this process, along with the economic and technical aspects. All these factors are to be taken into consideration in the decision-making, design and management of these projects. The environmental impact assessment (EIA) concepts, methods and procedures were analysed, as well as the roles that it should play, as a means to become the effective instrument of the Environmental Policy. In this study we analysed the whole planning process of the implementation of transmission lines and their impact on the environment. The current attitudes about this subject were investigated and scrutinized. Critical evaluations were made to suggest an orientation in the formulation of the proposed methodology. (author). 125 refs, 11 figs, 13 tabs

  5. System of failures diagnosis for energy transmission systems, using Petri nets

    International Nuclear Information System (INIS)

    Zapata, German; Grisales, John Faber; Gomez, Juan Camilo; Quintero Henao, Luis Fernando

    2005-01-01

    An expert system of second generation was used integrating the inverse Petri nets (RPN) and the systems based on rules (rule-based system) for the accomplishment of a program in Visual Basic that helps in the obtaining of an opportune and fast analysis of transmission of energy at the time of happening a fault in anymore of its components (line or bus). The program is proven in a portion of system IEEE -118 standard bus test system, in which two extracted cases of literature are developed and are the obtained results. Finally tests realized with the method developed in the laboratory of machines of the national university of Colombia, Medellin campus, simulating a system of transmission with two lines and two buses

  6. Dual-Hop VLC/RF Transmission System with Energy Harvesting Relay under Delay Constraint

    KAUST Repository

    Rakia, Tamer

    2017-02-09

    In this paper, we introduce a dual-hop visible light communication (VLC) / radio frequency (RF) transmission system to extend the coverage of indoor VLC systems. The relay between the two hops is able to harvest light energy from different artificial light sources and sunlight entering the room. The relay receives data packet over a VLC channel and uses the harvested energy to retransmit it to a mobile terminal over an RF channel. We develop a novel statistical model for the harvested electrical power and analyze the probability of data packet loss. We define a system design parameter (α ∈ [0, 1)) that controls the time dedicated for excess energy harvesting and data packet retransmission. It was found that the parameter has an optimal value which minimizes the packet loss probability. Further more, this optimal value is independent of the RF channel path loss. However, optimal showed inverse dependence on the packet size.

  7. Design of an effective energy receiving adapter for microwave wireless power transmission application

    Directory of Open Access Journals (Sweden)

    Peng Xu

    2016-10-01

    Full Text Available In this paper, we demonstrate the viability of an energy receiving adapter in a 8×8 array form with high power reception efficiency with the resonator of artificial electromagnetic absorber being used as the element. Unlike the conventional reported rectifying antenna resonators, both the size of the element and the separations between the elements are electrically small in our design. The energy collecting process is explained with an equivalent circuit model, and a RF combining network is designed to combine the captured AC power from each element to one main terminal for AC-to-DC conversion. The energy receiving adapter yields a total reception efficiency of 67% (including the wave capture efficiency of 86% and the AC-to-DC conversion efficiency of 78%, which is quite promising for microwave wireless power transmission.

  8. Model documentation Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    International Nuclear Information System (INIS)

    1996-01-01

    The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of a two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues

  9. Model documentation Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-26

    The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of a two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.

  10. Modeling and simulation of hydrostatic transmission system with energy regeneration using hydraulic accumulator

    International Nuclear Information System (INIS)

    Ho, Triet Hung; Ahn, Kyoung Kwan

    2010-01-01

    A new hydraulic closed-loop hydrostatic transmission (HST) energy-saving system is proposed in this paper. The system improves the efficiency of the primary power source. Furthermore, the system is energy regenerative, highly efficient even under partial load conditions. It can work in either a flow or pressure coupling configuration, allowing it to avoid the disadvantages of each configuration. A hydraulic accumulator, the key component of the energy regenerative modality, can be decoupled from or coupled to the HST circuit to improve the efficiency of the system in low-speed, high-torque situations. The accumulator is used in a novel way to recover the kinetic energy without reversion of fluid flow. Both variable displacement hydraulic pump /motors are used when the system operates in the flow coupling configuration so as to enable it to meet the difficult requirements of some industrial and mobile applications. Modeling and a simulation were undertaken with regard to testing the primary energy sources in the two configurations and recovering the energy potential of the system. The results indicated that the low efficiency of traditional HSTs under partial load conditions can be improved by utilizing the pressure coupling configuration. The round-trip efficiency of the system in the energy recovery testing varied from 32% to 66% when the losses of the load were taken into account

  11. An Algorithm for Timely Transmission of Solicitation Messages in RPL for Energy-Efficient Node Mobility.

    Science.gov (United States)

    Park, Jihong; Kim, Ki-Hyung; Kim, Kangseok

    2017-04-19

    The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) was proposed for various applications of IPv6 low power wireless networks. While RPL supports various routing metrics and is designed to be suitable for wireless sensor network environments, it does not consider the mobility of nodes. Therefore, there is a need for a method that is energy efficient and that provides stable and reliable data transmission by considering the mobility of nodes in RPL networks. This paper proposes an algorithm to support node mobility in RPL in an energy-efficient manner and describes its operating principle based on different scenarios. The proposed algorithm supports the mobility of nodes by dynamically adjusting the transmission interval of the messages that request the route based on the speed and direction of the motion of mobile nodes, as well as the costs between neighboring nodes. The performance of the proposed algorithm and previous algorithms for supporting node mobility were examined experimentally. From the experiment, it was observed that the proposed algorithm requires fewer messages per unit time for selecting a new parent node following the movement of a mobile node. Since fewer messages are used to select a parent node, the energy consumption is also less than that of previous algorithms.

  12. Power transmission study for a wave energy scheme based on Lancaster Flexible Bag devices. Supervisory and telecontrol system

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-01

    Various options are considered for power data transmission associated with the power collection and transmission system of a postulated wave energy conversion scheme off the Outer Hebrides. For data transmission between the off-shore and on-shore power collector stations a Power Line Carrier (PLC) system is judged to be most suitable. In the case of data transmission between power collector stations and the main control centre, a microwave/radio link is proposed as the amount of data does not lend itself to a PLC system. Cost estimates, in the main for equipment supply only, are given.

  13. 76 FR 12955 - CenterPoint Energy Gas Transmission Company, LLC; Notice of Intent To Prepare an Environmental...

    Science.gov (United States)

    2011-03-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-78-000] CenterPoint Energy Gas Transmission Company, LLC; Notice of Intent To Prepare an Environmental Assessment for the Proposed Line AM- 46 Replacement Project, Request for Comments on Environmental Issues, and Notice of Onsite Environmental Review The staff of the...

  14. Radiant smiles everywhere - before the Chernobyl accident

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The business reports presented by the Federal German electric utilities for 1985 are almost all simply brillant. Electricity consumption has been going up, some of the utilities even can boast about rates kept constant over the year. But before the printed business reports could be presented to the meetings of shareholders, a nasty cloud threw a dark shadow over all the brilliant results. The Chernobyl accident made some of the hymns over the nuclear electricity increases and nuclear power in general sound rather queer. Could we do without this energy source. Substituting nuclear power would yearly require: 28 million t of oil, or 41 million t of hard coal, or 142 million t of browncoal, or 38 thousand million cubic metres of natural gas. Extrapolating current conditions and assuming best achievements, renewable energy sources might be able to meet 6 p.c. of the primary energy demands by the year 2000. (orig./HP) [de

  15. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  16. A mobility based vibroacoustic energy transmission simulation into an enclosure through a double-wall panel.

    Science.gov (United States)

    Sahu, Atanu; Bhattacharya, Partha; Niyogi, Arup Guha; Rose, Michael

    2017-06-01

    Double-wall panels are known for their superior sound insulation properties over single wall panels as a sound barrier. The sound transmission phenomenon through a double-wall structure is a complex process involving vibroacoustic interaction between structural panels, the air-cushion in between, and the secondary acoustic domain. It is in this context a versatile and a fully coupled technique based on the finite-element-boundary element model is developed that enables estimation of sound transfer through a double-wall panel into an adjacent enclosure while satisfying the displacement compatibility across the interface. The contribution of individual components in the transmitted energy is identified through numerical simulations.

  17. Wireless Energy and Information Transmission in FSO and RF-FSO Links

    KAUST Repository

    Makki, Behrooz

    2017-09-22

    We propose and analyze a wireless energy and information transmission scheme in free-space optical (FSO) links. The results are presented for both quasi-static and fast-fading conditions. We derive closed-form expressions for throughput, outage probability and optimal power allocation optimizing the system throughput/outage probability. Finally, we complement the FSO link with an additional radio frequency (RF) link to create a hybrid RF-FSO system and reduce the system outage probability. The results show that joint implementation of the RF and FSO links leads to considerable performance improvement, compared to the cases with only FSO-based communication.

  18. Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. Subsequent chapters of this report provide: an overview of NGTDM; a description of the interface between the NEMS and NGTDM; an overview of the solution methodology of the NGTDM; the solution methodology for the Annual Flow Module; the solution methodology for the Distributor Tariff Module; the solution methodology for the Capacity Expansion Module; the solution methodology for the Pipeline Tariff Module; and a description of model assumptions, inputs, and outputs.

  19. Load calculations of radiant cooling systems for sizing the plant

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    The aim of this study was, by using a building simulation software, to prove that a radiant cooling system should not be sized based on the maximum cooling load but at a lower value. For that reason six radiant cooling models were simulated with two control principles using 100%, 70% and 50......% of the maximum cooling load. It was concluded that all tested systems were able to provide an acceptable thermal environment even when the 50% of the maximum cooling load was used. From all the simulated systems the one that performed the best under both control principles was the ESCS ceiling system. Finally...... it was proved that ventilation systems should be sized based on the maximum cooling load....

  20. Cooling load calculation by the radiant time series method - effect of solar radiation models

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Alexandre M.S. [Universidade Estadual de Maringa (UEM), PR (Brazil)], E-mail: amscosta@uem.br

    2010-07-01

    In this work was analyzed numerically the effect of three different models for solar radiation on the cooling load calculated by the radiant time series' method. The solar radiation models implemented were clear sky, isotropic sky and anisotropic sky. The radiant time series' method (RTS) was proposed by ASHRAE (2001) for replacing the classical methods of cooling load calculation, such as TETD/TA. The method is based on computing the effect of space thermal energy storage on the instantaneous cooling load. The computing is carried out by splitting the heat gain components in convective and radiant parts. Following the radiant part is transformed using time series, which coefficients are a function of the construction type and heat gain (solar or non-solar). The transformed result is added to the convective part, giving the instantaneous cooling load. The method was applied for investigate the influence for an example room. The location used was - 23 degree S and 51 degree W and the day was 21 of January, a typical summer day in the southern hemisphere. The room was composed of two vertical walls with windows exposed to outdoors with azimuth angles equals to west and east directions. The output of the different models of solar radiation for the two walls in terms of direct and diffuse components as well heat gains were investigated. It was verified that the clear sky exhibited the less conservative (higher values) for the direct component of solar radiation, with the opposite trend for the diffuse component. For the heat gain, the clear sky gives the higher values, three times higher for the peek hours than the other models. Both isotropic and anisotropic models predicted similar magnitude for the heat gain. The same behavior was also verified for the cooling load. The effect of room thermal inertia was decreasing the cooling load during the peak hours. On the other hand the higher thermal inertia values are the greater for the non peak hours. The effect

  1. Economics and a novel voltage conversion technique associated with exporting Wyoming's energy by HVDC transmission

    Science.gov (United States)

    Xu, Kaili

    Wyoming is by far the largest coal producing state in the US, but local utilization is extremely low. As much as 92% of Wyoming's coal is shipped to the other states and is mainly consumed by their electricity producers. Coal accounts for more than 50% of the US electricity generation and is one of the least expensive energy sources. Wyoming could utilize its coal better by exporting electricity instead of exporting the coal only in its raw form. Natural gas is another important energy resource in Wyoming but local utilization is even lower. As a result of the development in coalbed methane fields, natural gas production in Wyoming is almost in pace with its coal production. In addition to constructing more new pipelines, new transmission lines should be considered as an alternative way of exporting this energy. Because of their enormous electricity market sizes and high electricity prices, California, Texas and Illinois are chosen to be the target markets for Wyoming's electricity. The proposed transmission schemes use High Voltage DC (HVDC) lines, which are suitable for long distance and cross-system power transmission. Technical and economic feasibilities are studied in details. The Wyoming-California scheme has a better return of investment than both the Wyoming-Texas and the Wyoming-Illinois schemes. A major drawback of HVDC transmission is the high level of harmonics generated by the converters. Elaborate filtering is required at both the AC and the DC sides. A novel pulse-multiplication method is proposed in the thesis to reduce the harmonics from the converter source. By introducing an averaging inductor, the proposed method uses less thyristors to achieve the same high-pulse operation as the existing series scheme. The reduction of thyristors makes the switching circuit more reliable and easier to control and maintain. Harmonic analysis shows that the harmonic level can be reduced to about one third of the original system. The proposed method is also

  2. Integrating Renewable Energy into the Transmission and Distribution System of the U. S. Virgin Islands

    Energy Technology Data Exchange (ETDEWEB)

    Burman, K.; Olis, D.; Gevorgian, V.; Warren, A.; Butt, R.; Lilienthal, P.; Glassmire, J.

    2011-09-01

    This report focuses on the economic and technical feasibility of integrating renewable energy technologies into the U.S. Virgin Islands transmission and distribution systems. The report includes three main areas of analysis: 1) the economics of deploying utility-scale renewable energy technologies on St. Thomas/St. John and St. Croix; 2) potential sites for installing roof- and ground-mount PV systems and wind turbines and the impact renewable generation will have on the electrical subtransmission and distribution infrastructure, and 3) the feasibility of a 100- to 200-megawatt power interconnection of the Puerto Rico Electric Power Authority (PREPA), Virgin Islands Water and Power Authority (WAPA), and British Virgin Islands (BVI) grids via a submarine cable system.

  3. Prediction of sound transmission loss through multilayered panels by using Gaussian distribution of directional incident energy

    Science.gov (United States)

    Kang; Ih; Kim; Kim

    2000-03-01

    In this study, a new prediction method is suggested for sound transmission loss (STL) of multilayered panels of infinite extent. Conventional methods such as random or field incidence approach often given significant discrepancies in predicting STL of multilayered panels when compared with the experiments. In this paper, appropriate directional distributions of incident energy to predict the STL of multilayered panels are proposed. In order to find a weighting function to represent the directional distribution of incident energy on the wall in a reverberation chamber, numerical simulations by using a ray-tracing technique are carried out. Simulation results reveal that the directional distribution can be approximately expressed by the Gaussian distribution function in terms of the angle of incidence. The Gaussian function is applied to predict the STL of various multilayered panel configurations as well as single panels. The compared results between the measurement and the prediction show good agreements, which validate the proposed Gaussian function approach.

  4. Transmission electron microscopy study of ion energy deposition in gold: evidence for a spike threshold

    International Nuclear Information System (INIS)

    Ruault, M.O.; Bernas, H.; Chaumont, J.

    1978-01-01

    Nine different atomic species, from K to Yb, were implanted into gold at energies ranging from 20 to 150 keV. The nature and depth-distribution of the resultant defect clusters were studied by transmission electron microscopy techniques as well as a modification of the '2 1/2-D' stereo technique developed by Mitchell and Bell. The effect of implanted ion dose and sample purity were determined. The cluster depth distributions are in overall agreement with the damage distributions deduced from the energy deposition calculations of Winterbon, Sigmund, and Sanders. The nature of the defect clusters is found to depend on the mass and energy of the incoming ion, in agreement with our previously reported work. These results are suggested to provide evidence for the decisive influence of the deposited energy density on the nature of visible damage. We conclude that it is possible to distinguish between cascade and 'spike' effects, the latter setting in when the average energy per atom in the cascade is approximately 2 eV/atom. All results (obtained -at low doses on pure samples- for a variety of ion species in Au, Al, Cu, W, Mo and Ni) may be related to each other in this way

  5. Floating microbial fuel cells as energy harvesters for signal transmission from natural water bodies

    Science.gov (United States)

    Schievano, Andrea; Colombo, Alessandra; Grattieri, Matteo; Trasatti, Stefano P.; Liberale, Alessandro; Tremolada, Paolo; Pino, Claudio; Cristiani, Pierangela

    2017-02-01

    A new type of floating microbial fuel cell (fMFC) was developed for power supply of remote environmental sensors and data transmission. Ten operating fMFCs generated a cell potential in the range 100-800 mV depending on the external resistance applied. Power production peaked around 3-3.5 mW (power density of 22-28 mW m-2 cathode) after about 20-30 days of start-up period. The average of daily electrical energy harvested ranged between 10 and 35 mWh/d. Long-term performances were ensured in the presence of dense rice plants (Oryza Sativa). A power management system, based on a step-up DC/DC converter and a low-power data transmission system via SIGFOX™ technology, have been set up for the fMFCs. The tested fMFCs systems allowed to: i) harvest produced energy, ii) supply electronic devices (intermittent LED-light and a buzzer); iii) transmit remote data at low speed (three message of 12 bites each, in 6 s). Several 'floating garden' MFCs were set in the context of demonstrative events at EXPO2015 world exposition held in Milan between May-October 2015. Some of the 'floating garden' MFCs were operating for more than one year.

  6. Photosynthetic utilization of radiant energy by CAM Dendrobium flowers

    International Nuclear Information System (INIS)

    Khoo, G.H.; Hew, C.S.; He, J.

    1997-01-01

    14 CO 2 fixation was observed in orchid Dendrobium flowers; its rate decreased with the flower development. Chlorophyll (Chl) fluorescence in different developmental stages of flowers was compared to other green plant parts (leaf, inflorescence stalk, and fruit capsule). The photochemical efficiency of photosystem 2 (PS2) (Fv/Fm) of a leaf was 14-21 % higher than that of a mature flower perianth (sepal, petal, and labellum) which had a much lower total Chl content and Chl a/b ratio. A higher quantum yield of PS2 (ΦPS2) than in the mature flowers was observed in all green parts. Flower sepals had higher Chl content, Chl a/b ratio, and Fv/Fm values than the petal and labellum. During flower development the Chl content, Chl a/b ratio, Fv/Fm, and qN decreased while ΦPS2 and qP remained constant. An exposure of developing flowers to irradiances above 50 µmol m -2 s -1 resulted in a very drastic drop of ΦPS2 and qP, and a coherent increase of qN as compared to other green plant organs. A low saturation irradiance (PFD of 100 µmol m -2 s -1 ) and the increase in qN in the flower indicate that irradiation stress may occur since there is no further protection when the flower is exposed to irradiances above 100 µmol m -2 s -1 . A low Chl/carotenoid ratio in mature flower perianth as a consequence of Chl content reduction in the course of flower development suggests a relief of irradiation stress via this mean. (author)

  7. Electric radiant heating: A hot item in home comfort

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, G. [Britech Corp., Toronto, ON (Canada)

    2003-12-01

    Electric radiant heating as a floor warming system and its growing popularity in home comfort are discussed. Price can be as low as $2.00 per square foot; cost of operation may be as little as 30 cents per square foot per year, depending on time of use and local hydro rates. The use of radiant cable heating is said to have surged in popularity; it provides the same warmth and comfort as more expensive hydronic systems. Radiant cable is simple and inexpensive to install since unlike hydronic systems, it requires no complicated mechanical system with boiler, heat exchanger, valves, pumps and extensive controls. Nevertheless, prospective end users are warned to make sure that the cable is sturdy, tough, has multiple layers of protection with a thick grounding system and conductor core. In addition to heating floors, electric heating cables can also be used for snow and ice control and for melting in driveways and gutters. In these type of installations heavy duty cables are used which are installed under asphalt, concrete or interlocking stones. Thirty watts per square foot per hour is the typical requirement for melting snow and ice. Based on average electricity prices in Ontario, melting snow on an 800 square foot driveway would cost about $2.20 per hour. Assuming five hours for the system to clear the driveway, installing a heating system under the driveway could be an economically viable solution for the home owner, providing freedom from ice, the inconvenience of shovelling snow, and saving time and money.

  8. Simulation calculation for the energy deposition profile and the transmission fraction of intense pulsed electron beam at various incident angles

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Zhang Jiasheng; Huang Jianjun; Sun Jianfeng

    2002-01-01

    The incident angles have a heavy effect on the intense pulsed electron beam energy deposition profile, energy deposition fraction and beam current transmission fraction in material. The author presents electron beam energy deposition profile and energy deposition fraction versus electron energy (0.5-2.0 MeV), at various incident angles for three aluminum targets of various thickness via theoretical calculation. The intense pulsed electron beam current transmission fractions versus electron energy (0.4-1.4 MeV) at various incident angles for three thickness of carbon targets were also theoretically calculated. The calculation results indicate that the deposition energy in unit mass of material surface layer increase with the rise of electron beam incident angle, and electron beam with low incident angle (closer to normal incident angle) penetrates deeper into the target material. The electron beams deposit more energy in unit mass of material surface layer at 60 degree-70 degree incident angle

  9. ENTSOE Role in Transmission Network Planning Following the Provisons of the EU's Third Energy Package

    International Nuclear Information System (INIS)

    Medjimorec, D.

    2011-01-01

    In the initial period of its operation the European network of transmission system operators for electricity (ENTSO-E) has prepared and published the first edition of its ten-year network development plan (TYNDP) for period 2010-2020, by which has fulfilled one of the ENTSO-E's tasks according to the new Directive 714/09/EZ on grid accessing conditions for cross-border electricity exchange. In this process, ENTSO-E has carried out a broad public debates, which provided, together with general reactions of a number of major European power industry stakeholders, expectations regarding new editions of this non-binding paper (TYNDP), which followed every two years. Following these experiences, and the experiences of individual transmission system operators as participants of making TYNDP ''pilot'' through ENTSO-E, a plan and a time schedule of activities were adopted until the publication of the next TYNDP in the spring of 2012. Important step in this represents parallel preparation and creation of six regional investment plans (RIP) in order to reduce the scope of activities at the pan-European TYNDP level and to ensure their consistency. Namely among this six regions agreed between transmission system operators, which are members of ENTSO-E, there are certain overlaps in the area which they include (and thus in included projects). One of the three main reasons for launching investment projects in new or reconstructed transmission facilities which are covered with TYNDP or RIP is the integration of electricity market. Therefore is, within the methodology improvement of making TYNDP or RIP, further expanded treatment of input data, especially in terms of market-relevant data and data needed for modeling electricity market and its impact on investment in the transmission system. Also, additional scenarios that are used by all RIP are defined, where the most important scenario is so called 20-20-20 which as the basic input parameters takes National investment plans whose

  10. Dynamics of the Solar Wind Electromagnetic Energy Transmission Into Magnetosphere during Large Geomagnetic Storms

    Science.gov (United States)

    Kuznetsova, Tamara; Laptukhov, Alexej; Petrov, Valery

    Causes of the geomagnetic activity (GA) in the report are divided into temporal changes of the solar wind parameters and the changes of the geomagnetic moment orientation relative directions of the solar wind electric and magnetic fields. Based on our previous study we concluded that a reconnection based on determining role of mutual orientation of the solar wind electric field and geomagnetic moment taking into account effects of the Earth's orbital and daily motions is the most effective compared with existing mechanisms. At present a reconnection as paradigma that has applications in broad fields of physics needs analysis of experimental facts to be developed. In terms of reconnection it is important not only mutual orientation of vectors describing physics of interaction region but and reconnection rate which depends from rate of energy flux to those regions where the reconnection is permitted. Applied to magnetosphere these regions first of all are dayside magnetopause and polar caps. Influence of rate of the energy flux to the lobe magnetopause (based on calculations of the Poyting electromagnetic flux component controlling the reconnection rate along the solar wind velocity Pv) on planetary GA (Dst, Kp indices) is investigated at different phases of geomagnetic storms. We study also the rate of energy flux to the polar caps during storms (based on calculations of the Poyting flux vector component along the geomagnetic moment Pm) and its influence on magnetic activity in the polar ionosphere: at the auroral zone (AU,AL indices). Results allow to evaluate contributions of high and low latitude sources of electromagnetic energy to the storm development and also to clear mechanism of the electromagnetic energy transmission from the solar wind to the magnetosphere. We evaluate too power of the solar wind electromagnetic energy during well-known large storms and compare result with power of the energy sources of other geophysical processes (atmosphere, ocean

  11. Radiant heat exchange measurements for Tore Supra

    International Nuclear Information System (INIS)

    Chatain, D.; Disdier, F.; Gauthier, A.; Raffin, M.; Renaud, M.

    1984-03-01

    In order to minimize the energy consumption of the low temperature cryogenic system connected to the superconducting magnet of TORE-SUPRA, heat exchange from thermal radiation between the vacuum vessels and the thermal shields has been studied. Accordingly large scale cold and hot walls of T.S. have been simulated in a model with reduced dimensions. In this model, the experiment consists in the measurement of the thermal radiated power between two concentric cylindrical surfaces of stainless steel under vacuum conditions. The temperature of the external cylinder was kept constant at 80 K. The internal cylinder was bakeable up to 250 0 C. Various surface treatments were applied on the two cylinders (mechanical polishing and metal deposition of Al, Ag, Ni) [fr

  12. Elemental distribution imaging by energy-filtering transmission electron microscopy (EFTEM) and its applications

    International Nuclear Information System (INIS)

    Kurata, Hiroki

    1996-01-01

    EFTEM is new microscopy with the object of visualizing high resolution quantitative elemental distribution. The measurement principles and the present state of EFTEM studies are explained by the examples of measurement of the elemental distributions. EFTEM is a combination of the transmission electron microscope with the electron energy loss spectroscopy (EFLS). EFTEM method sets the slit in the specific energy field and put the electron passing the slit back in the microscopic image. The qualitative elemental analysis is obtained by observing the position of the absorption end of core electronic excitation spectrum and the quantitative one by determining the core electronic excitation strength of the specific atom depend on filtering with energy selector slit. The binding state and the local structure in the neighborhood of excited atom is determined by the fine structure of absorption end. By the chemical mapping method, the distribution image of chemical binding state is visualized by the imaging chemical map obtained by filtering the specific peak strength of fine structure with the narrow energy selector slit. The fine powder of lead chromate (PbCrO 4 ) covered with silica glass was shown as a typical example of the elemental distribution image of core electronic excitation spectrum. The quantitative analysis method of elemental distribution image is explained. The possibility of single atom analysis at nanometer was shown by the example of nanotube observed by EFTEM. (S.Y.)

  13. Nash Equilibrium of an Energy Saving Strategy with Dual Rate Transmission in Wireless Regional Area Network

    Directory of Open Access Journals (Sweden)

    Zhanqiang Huo

    2017-01-01

    Full Text Available Wireless regional area network (WRAN adopts centralized network architecture and is currently one of the most typical cognitive radio networks. In order to reduce the energy consumption of the communication networks with the constraint of spectrum resource utilization, a working sleep mechanism is introduced into the base station (BS, and a novel energy saving strategy with dual rate transmission is proposed. Combining the multiple-vacation queue and priority queue, using the quasi-birth-death process and the matrix-geometric solution method, we assess the average latency and the forced termination probability of secondary user packets, as well as the energy saving ratio and the channel utilization of system. Based on the revenue-expenditure structure, a profit function is built, and then the Nash equilibrium behavior and the socially optimal behavior are investigated. With the help of the particle swarm optimization, an intelligent optimization algorithm to search the socially optimal arrival rate of secondary user packets is presented. In order to unify the arrival rates of secondary user packets with Nash equilibrium and social optimization, a reasonable pricing policy is formulated. In addition, system experiments are carried out to verify the effectiveness of the energy saving strategy and the rationality of the pricing policy.

  14. A Monte Carlo study of the energy spectra and transmission characteristics of scattered radiation from x-ray computed tomography.

    Science.gov (United States)

    Platten, David John

    2014-06-01

    Existing data used to calculate the barrier transmission of scattered radiation from computed tomography (CT) are based on primary beam CT energy spectra. This study uses the EGSnrc Monte Carlo system and Epp user code to determine the energy spectra of CT scatter from four different primary CT beams passing through an ICRP 110 male reference phantom. Each scatter spectrum was used as a broad-beam x-ray source in transmission simulations through seventeen thicknesses of lead (0.00-3.50 mm). A fit of transmission data to lead thickness was performed to obtain α, β and γ parameters for each spectrum. The mean energy of the scatter spectra were up to 12.3 keV lower than that of the primary spectrum. For 120 kVp scatter beams the transmission through lead was at least 50% less than predicted by existing data for thicknesses of 1.5 mm and greater; at least 30% less transmission was seen for 140 kVp scatter beams. This work has shown that the mean energy and half-value layer of CT scatter spectra are lower than those of the corresponding primary beam. The transmission of CT scatter radiation through lead is lower than that calculated with currently available data. Using the data from this work will result in less lead shielding being required for CT scanner installations.

  15. Validities of three multislice algorithms for quantitative low-energy transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ming, W.Q.; Chen, J.H., E-mail: jhchen123@hnu.edu.cn

    2013-11-15

    Three different types of multislice algorithms, namely the conventional multislice (CMS) algorithm, the propagator-corrected multislice (PCMS) algorithm and the fully-corrected multislice (FCMS) algorithm, have been evaluated in comparison with respect to the accelerating voltages in transmission electron microscopy. Detailed numerical calculations have been performed to test their validities. The results show that the three algorithms are equivalent for accelerating voltage above 100 kV. However, below 100 kV, the CMS algorithm will introduce significant errors, not only for higher-order Laue zone (HOLZ) reflections but also for zero-order Laue zone (ZOLZ) reflections. The differences between the PCMS and FCMS algorithms are negligible and mainly appear in HOLZ reflections. Nonetheless, when the accelerating voltage is further lowered to 20 kV or below, the PCMS algorithm will also yield results deviating from the FCMS results. The present study demonstrates that the propagation of the electron wave from one slice to the next slice is actually cross-correlated with the crystal potential in a complex manner, such that when the accelerating voltage is lowered to 10 kV, the accuracy of the algorithms is dependent of the scattering power of the specimen. - Highlights: • Three multislice algorithms for low-energy transmission electron microscopy are evaluated. • The propagator-corrected algorithm is a good alternative for voltages down to 20 kV. • Below 20 kV, a fully-corrected algorithm has to be employed for quantitative simulations.

  16. A hybrid finite element - statistical energy analysis approach to robust sound transmission modeling

    Science.gov (United States)

    Reynders, Edwin; Langley, Robin S.; Dijckmans, Arne; Vermeir, Gerrit

    2014-09-01

    When considering the sound transmission through a wall in between two rooms, in an important part of the audio frequency range, the local response of the rooms is highly sensitive to uncertainty in spatial variations in geometry, material properties and boundary conditions, which have a wave scattering effect, while the local response of the wall is rather insensitive to such uncertainty. For this mid-frequency range, a computationally efficient modeling strategy is adopted that accounts for this uncertainty. The partitioning wall is modeled deterministically, e.g. with finite elements. The rooms are modeled in a very efficient, nonparametric stochastic way, as in statistical energy analysis. All components are coupled by means of a rigorous power balance. This hybrid strategy is extended so that the mean and variance of the sound transmission loss can be computed as well as the transition frequency that loosely marks the boundary between low- and high-frequency behavior of a vibro-acoustic component. The method is first validated in a simulation study, and then applied for predicting the airborne sound insulation of a series of partition walls of increasing complexity: a thin plastic plate, a wall consisting of gypsum blocks, a thicker masonry wall and a double glazing. It is found that the uncertainty caused by random scattering is important except at very high frequencies, where the modal overlap of the rooms is very high. The results are compared with laboratory measurements, and both are found to agree within the prediction uncertainty in the considered frequency range.

  17. The examination of calcium ion implanted alumina with energy filtered transmission electron microscopy

    International Nuclear Information System (INIS)

    Hunt, E.M.; Hampikian, J.M.

    1997-01-01

    Ion implantation can be used to alter in the optical response of insulators through the formation of embedded nano-sized particles. Single crystal alumina has been implanted at ambient temperature with 50 keV Ca + to a fluence of 5 x 10 16 ions/cm 2 . Ion channeling, Knoop microhardness measurements, and transmission electron microscopy (TEM) indicate that the alumina surface layer was amorphized by the implant. TEM also revealed nano-sized crystals ∼7--8 nm in diameter. These nanocrystals are randomly oriented, and exhibit a face-centered cubic structure (FCC) with a lattice parameter of 0.409 nm ± 0.002 nm. The similarity between this crystallography and that of pure aluminum suggests that they are metallic aluminum nanocrystals with a slightly dilated lattice parameter, possibly due to the incorporation of a small amount of calcium. Energy-filtered transmission electron microscopy (EFTEM) provides an avenue by which to confirm the metallic nature of the aluminum involved in the nanocrystals. EFTEM has confirmed that the aluminum present in the particles is metallic in nature, that the particles are oxygen deficient in comparison with the matrix material and that the particles are deficient in calcium, and therefore not likely to be calcia. The particles thus appear to be FCC Al (possibly alloyed with a few percent Ca) with a lattice parameter of 0.409nm. A similar result was obtained for yttrium ion implantation into alumina

  18. Validities of three multislice algorithms for quantitative low-energy transmission electron microscopy

    International Nuclear Information System (INIS)

    Ming, W.Q.; Chen, J.H.

    2013-01-01

    Three different types of multislice algorithms, namely the conventional multislice (CMS) algorithm, the propagator-corrected multislice (PCMS) algorithm and the fully-corrected multislice (FCMS) algorithm, have been evaluated in comparison with respect to the accelerating voltages in transmission electron microscopy. Detailed numerical calculations have been performed to test their validities. The results show that the three algorithms are equivalent for accelerating voltage above 100 kV. However, below 100 kV, the CMS algorithm will introduce significant errors, not only for higher-order Laue zone (HOLZ) reflections but also for zero-order Laue zone (ZOLZ) reflections. The differences between the PCMS and FCMS algorithms are negligible and mainly appear in HOLZ reflections. Nonetheless, when the accelerating voltage is further lowered to 20 kV or below, the PCMS algorithm will also yield results deviating from the FCMS results. The present study demonstrates that the propagation of the electron wave from one slice to the next slice is actually cross-correlated with the crystal potential in a complex manner, such that when the accelerating voltage is lowered to 10 kV, the accuracy of the algorithms is dependent of the scattering power of the specimen. - Highlights: • Three multislice algorithms for low-energy transmission electron microscopy are evaluated. • The propagator-corrected algorithm is a good alternative for voltages down to 20 kV. • Below 20 kV, a fully-corrected algorithm has to be employed for quantitative simulations

  19. Transport Schemes for Fiber-Wireless Technology: Transmission Performance and Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Christina Lim

    2014-04-01

    Full Text Available Fiber-wireless technology has been actively researched as a potential candidate for next generation broadband wireless signal distribution. Despite the popularity, this hybrid scheme has many technical challenges that impede the uptake and commercial deployment. One of the inherent issues is the transport of the wireless signals over a predominantly digital optical network in today’s telecommunication infrastructure. Many different approaches have been introduced and demonstrated with digitized RF transport of the wireless signals being the most compatible with the existing optical fiber networks. In this paper, we review our work in the area of digitized RF transport to address the inherent issues related to analog transport in the fiber-wireless links and compare the transmission performance and energy efficiency with the other transport strategies.

  20. Development of laser surface cladding through energy transmission over optical fiber

    International Nuclear Information System (INIS)

    Hirano, Kenji; Morishige, Norio; Irisawa, Toshio

    1990-01-01

    Much attention has recently been paid to laser cladding techniques as an approach in controlling the composition and structure of the metal surface. If YAG laser is used as the cladding method, the flexibility of laser cladding process increases extremely because YAG laser beam is transmitted through an optical fiber, and enabling cladding on pipes installed in actual plants. So experiments on YAG laser cladding through energy transmission over an optical fiber were performed to prevent stress corrosion cracking in austenitic stainless steel pipes. In order to build a cladding layer, mixed metal powder were pre-placed on the inner surface of the pipe using organic binder and the pre-placed powder beds were melted with YAG laser beam transmitted using an optical fiber. This paper introduces the method of building a cladding layer on pipes in actual nuclear plants. (author)

  1. Study of the nanostructure of Gum Metal using energy-filtered transmission electron microscopy

    International Nuclear Information System (INIS)

    Yano, T.; Murakami, Y.; Shindo, D.; Kuramoto, S.

    2009-01-01

    The nanostructure of Gum Metal, which has many anomalous mechanical properties, was investigated using transmission electron microscopy with energy filtering. A precise analysis of the weak diffuse electron scattering that was observed in the electron diffraction patterns of the Gum Metal specimen revealed that Gum Metal contains a substantial amount of the nanometer-sized ω phase. The morphology of the ω phase appeared to have a correlation with the faulting in the {2 1 1} planes, which are one of the characteristic lattice imperfections of the Gum Metal specimen. It is likely that the nanometer-sized ω phase may be a type of obstacle related to the restriction of the dislocation movement, which has been a significant problem in research on Gum Metal

  2. EFFICIENCY ANALYSIS OF ENERGY ACCUMULATING MECHANISM FOR TRACTOR WITH ELECTROMECHANICAL TRANSMISSION

    Directory of Open Access Journals (Sweden)

    Ch. I. Zhdanovich

    2017-01-01

    Full Text Available Dependence of tractor wheel torque on theoretical tractor motion speed has been used for comparison of tractor operation with electromechanical transmission with installation of energy accumulating mechanism and without its installation. In this case a traction asynchronous electric motor is operating under nominal and limit conditions. The paper also considers dependence diagrams of actual input power for the traction asynchronous electric motor and its losses due to theoretical tractor motion speed. Tractor wheel torque is limited during the operation of the traction asynchronous electric motor with energy accumulating mechanisms by the following factors: maximum electric motor torque at the given frequency of supply voltage; maximum value of internal combustion motor output which can be transferred to the traction asynchronous electric motor; grip of the wheels. During the operation of the traction asynchronous electric motor with energy accumulating mechanisms there is a possibility for short power consumption without regard to the second limitation because it is possible to use power not only of internal combustion motor but also the power which is stored in the energy accumulating mechanisms. Comparison of characteristics has been made when a tractor is operating at high gear and when it is operating at all gears (that is two gears. Operation of the 5th class tractors has been analyzed for all possible cases (operation with energy accumulating mechanisms and without the mechanisms while being operated at all gears and various types of work: tilling, sowing, cultivation, bulldozing work, transport mode. In this case equipment has been used which is aggregated with the 5th class tractor. 

  3. Unforeseen consequences of dedicated renewable energy transmission: Potential implications for renewable electricity development

    Energy Technology Data Exchange (ETDEWEB)

    Bezdek, Roger

    2010-09-15

    Renewable electricity generation requires expansion of electricity transmission, and the U.S. is planning to build a 'green' transmission lines restricted to renewable electricity. However, local jurisdictions are resisting this unless the transmission serves local constituents and existing power plants. This paper finds that if such transmission is built and local access allowed, then the major beneficiaries may be existing power plants. Their access to added transmission could enable them to sell electric power at rates against which renewables cannot compete. These issues must be addressed if large additions of new transmission lines are to facilitate expansion of renewable electricity generation worldwide.

  4. Guided transmission of highly charged ions through nanocapillaries in PET. Study of the energy dependencies

    International Nuclear Information System (INIS)

    Helhammer, R.; Pesic, Z.D.; Sobocinski, P.; Bundesmann, J.; Fink, D.; Stolterfoht, N.; Sulik, B.

    2004-01-01

    Full text: Recently we reported experiments in which slow highly charged ions are transmitted through nanocapillaries of 100nm diameter in an insulating PET foil of 10μm thickness [1]. The results of this work differ significantly from previous studies, which have been focused on capillaries in metals [2]. We measured the transmission of 3 keV Ne 7+ ions through the capillaries and focused the attention on ions whose charge has not changed during the passage through the capillary. The observation that the angular distribution for PET has a peak maximum whose position is equal to the tilt angle indicates a guiding of the Ne 7+ ion within the capillary. This guiding shows that the inner walls of the capillaries are charged up in a self-organizing process and collisions with the surface are finally prevented. We studied the time evolution of the capillary guiding as well as dependencies on the tilt angle [3]. Our most recent measurements were focussed on the investigation of the energy dependency for the guiding of Ne 7+ through capillaries. The measurements were done in an energy range from 2 keV up to 10 keV.We measured higher guiding efficiency for lower energies consistent with a previously developed model, which predicted an increase of the guiding efficiency with decreasing projectile energy [3]. In addition we found the effect of a narrower width of the angular distribution of transmitted ions. This effect is also well described by the model. However, further work is needed to explain the amount of charges to build up the deflection field at the end of the capillaries

  5. Radiant science, dark politics: a memoir of the nuclear age

    International Nuclear Information System (INIS)

    Kamen, M.D.

    1985-01-01

    The reviewer describes Radiant Science, Dark Politics: A Memoir of the Nuclear Age in contrast to a memoir by James R. Killian, Jr., a contemporary of Kamen. Kamen, co-discoverer of carbon-14 and a valued member of the Berkeley Radiation Laboratory, was fired in 1944 and blackballed as a security risk. Rehabilitated by the end of the war, his continued fight against political injustice through the McCarthy era colors the book and, for the reviewer, makes it self-serving. Kamen's later scientific work reflected his desire to work alone rather than in collaboration

  6. Radiant coolers - Theory, flight histories, design comparisons and future applications

    Science.gov (United States)

    Donohoe, M. J.; Sherman, A.; Hickman, D. E.

    1975-01-01

    Radiant coolers have been developed for application to the cooling of infrared detectors aboard NASA earth observation systems and as part of the Defense Meteorological Satellite Program. The prime design constraints for these coolers are the location of the cooler aboard the satellite and the satellite orbit. Flight data from several coolers indicates that, in general, design temperatures are achieved. However, potential problems relative to the contamination of cold surfaces are also revealed by the data. A comparison among the various cooler designs and flight performances indicates design improvements that can minimize the contamination problem in the future.

  7. Electromagnetic Compatibility of Transcutaneous Energy Transmission Systemfor Totally Implantable Artificial Heart

    Science.gov (United States)

    Shiba, Kenji; Koshiji, Kohji

    Transcutaneous Energy Transmission (TET) is one way of providing the energy needed to power a totally implantable artificial heart (TIAH). In the present study, an externally coupled TET system was implanted in a prototype human phantom to evaluate emission and immunity. In the emission evaluation, measurements were conducted based on CISPR Pub.11 and VDE 0871 standards, while immunity tests were based on the standards of the IEC 61000-4 series. The magnetic field of the radiated emission was measured using a loop antenna. At 0.1[MHz], we found the greatest magnetic field of 47.8 [dBμA/m], somewhat less than CISPR’s upper limit of 54 [dBμA/m]. For the conducted emission, by installing a noise filter and ferrite beads in the input section of the DC-power supply, conducted emission could be kept within the allowable limits of CISPR Pub.11 and VDE 0871. Finally, the immunity tests against radiated and conducted emission, electrostatic discharge and voltage fluctuation proved that the prototype could withstand the maximum level of disturbance. These results confirmed that the TET system implanted in a human phantom could, through modification, meet the emission and immunity standards.

  8. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, A.A. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Shapiro, D.S., E-mail: shapiro.dima@gmail.com [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); National University of Science and Technology MISIS, 119049 Moscow (Russian Federation); Remizov, S.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); V.A. Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow (Russian Federation); Pogosov, W.V. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Lozovik, Yu.E. [N.L. Dukhov All-Russia Research Institute of Automatics, 127055 Moscow (Russian Federation); National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Institute of Spectroscopy, Russian Academy of Sciences, 142190 Moscow Region, Troitsk (Russian Federation)

    2017-02-12

    We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation. - Highlights: • Coupled qubit-resonator system under the modulation of a resonator frequency is considered. • Counterrotating terms of the Hamiltonian are of importance even in the resonance. • Qubit excited state population is highest if driving frequency matches dressed-state energy.

  9. Alternatives to electricity for transmission and annual-scale firming - Storage for diverse, stranded, renewable energy resources: hydrogen and ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leighty, William

    2010-09-15

    The world's richest renewable energy resources 'of large geographic extent and high intensity' are stranded: far from end-users with inadequate or nonexistent gathering and transmission systems to deliver energy. Output of most renewables varies greatly, at time scales of seconds-seasons: energy capture assets operate at low capacity factor; energy delivery is not 'firm'. New electric transmission systems, or fractions thereof, dedicated to renewables, suffer the same low CF: substantial stranded capital assets, increasing the cost of delivered renewable-source energy. Electricity storage cannot affordably firm large renewables at annual scale. Gaseous hydrogen and anhydrous ammonia fuels can: attractive alternatives.

  10. A transmission power optimization with a minimum node degree for energy-efficient wireless sensor networks with full-reachability.

    Science.gov (United States)

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-03-20

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments.

  11. A Transmission Power Optimization with a Minimum Node Degree for Energy-Efficient Wireless Sensor Networks with Full-Reachability

    Science.gov (United States)

    Chen, Yi-Ting; Horng, Mong-Fong; Lo, Chih-Cheng; Chu, Shu-Chuan; Pan, Jeng-Shyang; Liao, Bin-Yih

    2013-01-01

    Transmission power optimization is the most significant factor in prolonging the lifetime and maintaining the connection quality of wireless sensor networks. Un-optimized transmission power of nodes either interferes with or fails to link neighboring nodes. The optimization of transmission power depends on the expected node degree and node distribution. In this study, an optimization approach to an energy-efficient and full reachability wireless sensor network is proposed. In the proposed approach, an adjustment model of the transmission range with a minimum node degree is proposed that focuses on topology control and optimization of the transmission range according to node degree and node density. The model adjusts the tradeoff between energy efficiency and full reachability to obtain an ideal transmission range. In addition, connectivity and reachability are used as performance indices to evaluate the connection quality of a network. The two indices are compared to demonstrate the practicability of framework through simulation results. Furthermore, the relationship between the indices under the conditions of various node degrees is analyzed to generalize the characteristics of node densities. The research results on the reliability and feasibility of the proposed approach will benefit the future real deployments. PMID:23519351

  12. Provisioning Strategies for Transparent Optical Networks Considering Transmission Quality, Security, and Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Jirattigalachote, Amornrat

    2012-07-01

    The continuous growth of traffic demand driven by the brisk increase in number of Internet users and emerging online services creates new challenges for communication networks. The latest advances in Wavelength Division Multiplexing (WDM) technology make it possible to build Transparent Optical Networks (TONs) which are expected to be able to satisfy this rapidly growing capacity demand. The work in this thesis addresses three important aspects. In particular, this thesis focuses on routing and wavelength assignment (RWA) strategies specifically devised to target: (i) the lightpath transmission quality, (ii) the network security (i.e., in terms of vulnerability to physical-layer attacks), and (iii) the reduction of the network energy consumption. Our contributions are summarized below. A number of Impairment Constraint Based Routing (ICBR) algorithms have been proposed in the literature to consider physical-layer impairments during the connection provisioning phase. Their objective is to prevent the selection of optical connections (referred to as lightpaths) with poor signal quality. These ICBR approaches always assign each connection request the least impaired lightpath and support only a single threshold of transmission quality, used for all connection requests. However, next generation networks are expected to support a variety of services with disparate requirements for transmission quality. To address this issue, in this thesis we propose an ICBR algorithm supporting differentiation of services at the Bit Error Rate (BER) level, referred to as ICBR-Diff. Our approach takes into account the effect of physical-layer impairments during the connection provisioning phase where various BER thresholds are considered for accepting/blocking connection requests, depending on the signal quality requirements of the connection requests. We tested the proposed ICBR-Diff approach in different network scenarios, including also a fiber heterogeneity. It is shown that it can

  13. Joint Planning Of Energy Storage and Transmission Considering Wind-Storage Combined System and Demand Side Response

    Science.gov (United States)

    Huang, Y.; Liu, B. Z.; Wang, K. Y.; Ai, X.

    2017-12-01

    In response to the new requirements of the operation mode of wind-storage combined system and demand side response for transmission network planning, this paper presents a joint planning of energy storage and transmission considering wind-storage combined system and demand side response. Firstly, the charge-discharge strategy of energy storage system equipped at the outlet of wind farm and demand side response strategy are analysed to achieve the best comprehensive benefits through the coordination of the two. Secondly, in the general transmission network planning model with wind power, both energy storage cost and demand side response cost are added to the objective function. Not only energy storage operation constraints and but also demand side response constraints are introduced into the constraint condition. Based on the classical formulation of TEP, a new formulation is developed considering the simultaneous addition of the charge-discharge strategy of energy storage system equipped at the outlet of the wind farm and demand side response strategy, which belongs to a typical mixed integer linear programming model that can be solved by mature optimization software. The case study based on the Garver-6 bus system shows that the validity of the proposed model is verified by comparison with general transmission network planning model. Furthermore, the results demonstrate that the joint planning model can gain more economic benefits through setting up different cases.

  14. An experimental study about effect of far infrared radiant ceramics on efficient methane fermentation

    International Nuclear Information System (INIS)

    Oda, A.; Yamazaki, M.; Oida, A.

    2003-01-01

    Methane fermentation, well known as one of the methods for organic wastes treatment, has been used as an energy production process in order to produce a gaseous fuel. But methane fermentation has some problems to be solved about gas production rate and volatile solids reduction efficiency. Simple methods to improve these problems are needed. In this study, we focused on far infrared radiant ceramics as a stimulating substance to activate methanogenic bacteria. Firstly, through the experiment of one batch fermentation, it was confirmed that the ceramics in the fermenter caused increase of total gas production. Next, even through the experiment of continuous fermentation, same stimulating effect was confirmed. It was considered that this effect was caused not only by a function of bio-contactor of the ceramics but also by far infrared radiation from ceramics. (author)

  15. Time and Energy Efficient Relay Transmission for Multi-Hop Wireless Sensor Networks.

    Science.gov (United States)

    Kim, Jin-Woo; Barrado, José Ramón Ramos; Jeon, Dong-Keun

    2016-06-27

    The IEEE 802.15.4 standard is widely recognized as one of the most successful enabling technologies for short range low rate wireless communications and it is used in IoT applications. It covers all the details related to the MAC and PHY layers of the IoT protocol stack. Due to the nature of IoT, the wireless sensor networks are autonomously self-organized networks without infrastructure support. One of the issues in IoT is the network scalability. To address this issue, it is necessary to support the multi-hop topology. The IEEE 802.15.4 network can support a star, peer-to-peer, or cluster-tree topology. One of the IEEE 802.15.4 topologies suited for the high predictability of performance guarantees and energy efficient behavior is a cluster-tree topology where sensor nodes can switch off their transceivers and go into a sleep state to save energy. However, the IEEE 802.15.4 cluster-tree topology may not be able to provide sufficient bandwidth for the increased traffic load and the additional information may not be delivered successfully. The common drawback of the existing approaches is that they do not address the poor bandwidth utilization problem in IEEE 802.15.4 cluster-tree networks, so it is difficult to increase the network performance. Therefore, to solve this problem in this paper we study a relay transmission protocol based on the standard protocol in the IEEE 802.15.4 MAC. In the proposed scheme, the coordinators can relay data frames to their parent devices or their children devices without contention and can provide bandwidth for the increased traffic load or the number of devices. We also evaluate the performance of the proposed scheme through simulation. The simulation results demonstrate that the proposed scheme can improve the reliability, the end-to-end delay, and the energy consumption.

  16. Time and Energy Efficient Relay Transmission for Multi-Hop Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jin-Woo Kim

    2016-06-01

    Full Text Available The IEEE 802.15.4 standard is widely recognized as one of the most successful enabling technologies for short range low rate wireless communications and it is used in IoT applications. It covers all the details related to the MAC and PHY layers of the IoT protocol stack. Due to the nature of IoT, the wireless sensor networks are autonomously self-organized networks without infrastructure support. One of the issues in IoT is the network scalability. To address this issue, it is necessary to support the multi-hop topology. The IEEE 802.15.4 network can support a star, peer-to-peer, or cluster-tree topology. One of the IEEE 802.15.4 topologies suited for the high predictability of performance guarantees and energy efficient behavior is a cluster-tree topology where sensor nodes can switch off their transceivers and go into a sleep state to save energy. However, the IEEE 802.15.4 cluster-tree topology may not be able to provide sufficient bandwidth for the increased traffic load and the additional information may not be delivered successfully. The common drawback of the existing approaches is that they do not address the poor bandwidth utilization problem in IEEE 802.15.4 cluster-tree networks, so it is difficult to increase the network performance. Therefore, to solve this problem in this paper we study a relay transmission protocol based on the standard protocol in the IEEE 802.15.4 MAC. In the proposed scheme, the coordinators can relay data frames to their parent devices or their children devices without contention and can provide bandwidth for the increased traffic load or the number of devices. We also evaluate the performance of the proposed scheme through simulation. The simulation results demonstrate that the proposed scheme can improve the reliability, the end-to-end delay, and the energy consumption.

  17. Beacon-S TM: Non-uniform attenuation correction for SPECT imaging. The new medium-energy transmission device for AXIS and IRIX

    International Nuclear Information System (INIS)

    Daniel Gagnon, D.

    1999-01-01

    The paper presents new medium-energy transmission device for SPECT imaging. Beacon-S includes a 356-keV medium energy 133 Ba source with a 10.54-year half-life. Beacon-S provide high-resolution and high-contrast transmission scans. The higher energy of the gamma substantially improves the transmission contrast for larger patients by virtue of better penetration through the body

  18. Energy efficiency of electrical infrared heating elements

    International Nuclear Information System (INIS)

    Brown, K.J.; Farrelly, R.; O’Shaughnessy, S.M.; Robinson, A.J.

    2016-01-01

    Highlights: • Characterization of the radiant energy efficiency of infrared heating elements. • Performed for a commercially available ceramic heater element for two cases. • Total radiant power and net radiant efficiency is computed. • Radiant efficiencies are strongly dependant on the input power to the element. • In-plane efficiencies depend on the distance from the heater. - Abstract: A measurement system has been designed to characterize the radiant energy efficiency of infrared heating elements. The system also allows for measurement of the radiant heat flux distribution emitted from radiant heater assemblies. To facilitate these, a 6-axis robotic arm is fitted with a Schmidt–Boelter radiant heat flux gauge. A LabVIEW interface operates the robot and positions the sensor in the desired location and subsequently acquires the desired radiant heat flux measurement. To illustrate the functionality of the measurement system and methodology, radiant heat flux distributions and efficiency calculations are performed for a commercially available ceramic heater element for two cases. In the first, a spherical surface is traced around the entire heater assembly and the total radiant power and net radiant efficiency is computed. In the second, 50 cm × 50 cm vertical planes are traced parallel to the front face of the heater assembly at distances between 10 cm and 50 cm and the in-plane power and efficiencies are computed. The results indicate that the radiant efficiencies are strongly dependant on the input power to the element and, for the in-plane efficiencies, depend on the distance from the heater.

  19. A New Energy-Efficient Data Transmission Scheme Based on DSC and Virtual MIMO for Wireless Sensor Network

    OpenAIRE

    Li, Na; Zhang, Liwen; Li, Bing

    2015-01-01

    Energy efficiency in wireless sensor network (WSN) is one of the primary performance parameters. For improving the energy efficiency of WSN, we introduce distributed source coding (DSC) and virtual multiple-input multiple-output (MIMO) into wireless sensor network and then propose a new data transmission scheme called DSC-MIMO. DSC-MIMO compresses the source data using distributed source coding before transmitting, which is different from the existing communication schemes. Data compression c...

  20. Adequacy assessment of composite generation and transmission systems incorporating wind energy conversion systems

    Science.gov (United States)

    Gao, Yi

    The development and utilization of wind energy for satisfying electrical demand has received considerable attention in recent years due to its tremendous environmental, social and economic benefits, together with public support and government incentives. Electric power generation from wind energy behaves quite differently from that of conventional sources. The fundamentally different operating characteristics of wind energy facilities therefore affect power system reliability in a different manner than those of conventional systems. The reliability impact of such a highly variable energy source is an important aspect that must be assessed when the wind power penetration is significant. The focus of the research described in this thesis is on the utilization of state sampling Monte Carlo simulation in wind integrated bulk electric system reliability analysis and the application of these concepts in system planning and decision making. Load forecast uncertainty is an important factor in long range planning and system development. This thesis describes two approximate approaches developed to reduce the number of steps in a load duration curve which includes load forecast uncertainty, and to provide reasonably accurate generating and bulk system reliability index predictions. The developed approaches are illustrated by application to two composite test systems. A method of generating correlated random numbers with uniform distributions and a specified correlation coefficient in the state sampling method is proposed and used to conduct adequacy assessment in generating systems and in bulk electric systems containing correlated wind farms in this thesis. The studies described show that it is possible to use the state sampling Monte Carlo simulation technique to quantitatively assess the reliability implications associated with adding wind power to a composite generation and transmission system including the effects of multiple correlated wind sites. This is an important

  1. 16 CFR Figure 3 to Subpart A of... - Flooring Radiant Tester Schematic Side Elevation

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flooring Radiant Tester Schematic Side Elevation 3 Figure 3 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 3 Figure 3 to Subpart A of Part 1209—Flooring Radiant Tester Schematic Side...

  2. Human response to local convective and radiant cooling in a warm environment

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Krejcirikova, Barbora; Kaczmarczyk, Jan

    2013-01-01

    The response of 24 human subjects to local convective cooling, radiant cooling, and combined radiant and convective cooling was studied at 28°C and 50% relative humidity. The local cooling devices used were (1) a tabletop cooling fan, (2) personalized ventilation providing a stream of clean air, (3...

  3. Elemental mapping in achromatic atomic-resolution energy-filtered transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, B.D. [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia); Houben, L. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Gruenberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Mayer, J. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Gruenberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Central Facility for Electron Microscopy, RWTH Aachen University, D-52074 Aachen (Germany); Dunin-Borkowski, R.E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Gruenberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Allen, L.J., E-mail: lja@unimelb.edu.au [School of Physics, University of Melbourne, Parkville, VIC 3010 (Australia)

    2014-12-15

    We present atomic-resolution energy-filtered transmission electron microscopy (EFTEM) images obtained with the chromatic-aberration-corrected FEI Titan PICO at the Ernst-Ruska Centre, Jülich, Germany. We find qualitative agreement between experiment and simulation for the background-subtracted EFTEM images of the Ti–L{sub 2,3} and O–K edges for a specimen of SrTiO{sub 3} oriented down the [110] zone axis. The simulations utilize the transition potential formulation for inelastic scattering, which permits a detailed investigation of contributions to the EFTEM image. We find that energy-filtered images of the Ti–L{sub 2,3} and O–K edges are lattice images and that the background-subtracted core-loss maps may not be directly interpretable as elemental maps. Simulations show that this is a result of preservation of elastic contrast, whereby the qualitative details of the image are determined primarily by elastic, coherent scattering. We show that this effect places a constraint on the range of specimen thicknesses which could theoretically yield directly useful elemental maps. In general, interpretation of EFTEM images is ideally accompanied by detailed simulations. - Highlights: • Achromatic atomic-resolution EFTEM images were obtained for STO 〈110〉. • Simulations were in qualitative agreement with Ti–L{sub 2,3} and O–K edge maps. • The experimental EFTEM maps are not directly interpretable as elemental maps. • Image intensities are strongly determined by preservation of elastic contrast. • Interpretation of EFTEM images is ideally accompanied by detailed simulations.

  4. Two-Stage Design Method for Enhanced Inductive Energy Transmission with Q-Constrained Planar Square Loops.

    Directory of Open Access Journals (Sweden)

    Akaa Agbaeze Eteng

    Full Text Available Q-factor constraints are usually imposed on conductor loops employed as proximity range High Frequency Radio Frequency Identification (HF-RFID reader antennas to ensure adequate data bandwidth. However, pairing such low Q-factor loops in inductive energy transmission links restricts the link transmission performance. The contribution of this paper is to assess the improvement that is reached with a two-stage design method, concerning the transmission performance of a planar square loop relative to an initial design, without compromise to a Q-factor constraint. The first stage of the synthesis flow is analytical in approach, and determines the number and spacing of turns by which coupling between similar paired square loops can be enhanced with low deviation from the Q-factor limit presented by an initial design. The second stage applies full-wave electromagnetic simulations to determine more appropriate turn spacing and widths to match the Q-factor constraint, and achieve improved coupling relative to the initial design. Evaluating the design method in a test scenario yielded a more than 5% increase in link transmission efficiency, as well as an improvement in the link fractional bandwidth by more than 3%, without violating the loop Q-factor limit. These transmission performance enhancements are indicative of a potential for modifying proximity HF-RFID reader antennas for efficient inductive energy transfer and data telemetry links.

  5. Getting to Gender Equality in Energy Infrastructure : Lessons from Electricity Generation, Transmission, and Distribution Projects

    OpenAIRE

    Orlando, Maria Beatriz; Janik, Vanessa Lopes; Vaidya, Pranav; Angelou, Nicolina; Zumbyte, Ieva; Adams, Norma

    2018-01-01

    Getting to Gender Equality in Electricity Infrastructure: Lessons from Electricity Generation, Transmission, and Distribution Projects examines the social and gender footprint of large-scale electricity generation, transmission, and distribution projects to establish a foundation on which further research and replication of good practices can be built. The main impact pathways analyzed are...

  6. 76 FR 79206 - Commercial Renewable Energy Transmission on the Outer Continental Shelf (OCS) Offshore Mid...

    Science.gov (United States)

    2011-12-21

    ...-circuit, high-voltage direct current (HVDC) transmission line that would collect power generated by wind...-voltage alternating current into HVDC using voltage sourced converters. Each offshore converter platform... transmission grid at up to seven locations where AWC terrestrial converter stations would convert the HVDC...

  7. Electron energy loss spectroscopy microanalysis and imaging in the transmission electron microscope: example of biological applications

    International Nuclear Information System (INIS)

    Diociaiuti, Marco

    2005-01-01

    This paper reports original results obtained in our laboratory over the past few years in the application of both electron energy loss spectroscopy (EELS) and electron spectroscopy imaging (ESI) to biological samples, performed in two transmission electron microscopes (TEM) equipped with high-resolution electron filters and spectrometers: a Gatan model 607 single magnetic sector double focusing EEL serial spectrometer attached to a Philips 430 TEM and a Zeiss EM902 Energy Filtering TEM. The primary interest was on the possibility offered by the combined application of these spectroscopic techniques with those offered by the TEM. In particular, the electron beam focusing available in a TEM allowed us to perform EELS and ESI on very small sample volumes, where high-resolution imaging and electron diffraction techniques can provide important structural information. I show that ESI was able to improve TEM performance, due to the reduced chromatic aberration and the possibility of avoiding the sample staining procedure. Finally, the analysis of the oscillating extended energy loss fine structure (EXELFS) beyond the ionization edges characterizing the EELS spectra allowed me, in a manner very similar to the extended X-ray absorption fine structure (EXAFS) analysis of the X-ray absorption spectra, to obtain short-range structural information for such light elements of biological interest as O or Fe. The Philips EM430 (250-300 keV) TEM was used to perform EELS microanalysis on Ca, P, O, Fe, Al and Si. The assessment of the detection limits of this method was obtained working with well-characterized samples containing Ca and P, and mimicking the actual cellular matrix. I applied EELS microanalysis to Ca detection in bone tissue during the mineralization process and to P detection in the cellular membrane of erythrocytes treated with an anti-tumoral drug, demonstrating that the cellular membrane is a drug target. I applied EELS microanalysis and selected area electron

  8. A Cognitive Radio-Based Energy-Efficient System for Power Transmission Line Monitoring in Smart Grids

    Directory of Open Access Journals (Sweden)

    Saeed Ahmed

    2017-01-01

    Full Text Available The research in industry and academia on smart grids is predominantly focused on the regulation of generated power and management of its consumption. Because transmission of bulk-generated power to the consumer is immensely reliant on secure and efficient transmission grids, comprising huge electrical and mechanical assets spanning a vast geographic area, there is an impending need to focus on the transmission grids as well. Despite the challenges in wireless technologies for SGs, cognitive radio networks are considered promising for provisioning of communications services to SGs. In this paper, first, we present an IEEE 802.22 wireless regional area network cognitive radio-based network model for smart monitoring of transmission lines. Then, for a prolonged lifetime of battery finite monitoring network, we formulate the spectrum resource allocation problem as an energy efficiency maximization problem, which is a nonlinear integer programming problem. To solve this problem in an easier way, we propose an energy-efficient resource-assignment scheme based on the Hungarian method. Performance analysis shows that, compared to a pure opportunistic assignment scheme with a throughput maximization objective and compared to a random scheme, the proposed scheme results in an enhanced lifetime while consuming less battery energy without compromising throughput performance.

  9. Radiant-and-plasma technology for coal processing

    Directory of Open Access Journals (Sweden)

    Vladimir Messerle

    2012-12-01

    Full Text Available Radiant-and-plasma technology for coal processing is presented in the article. Thermodynamic computation and experiments on plasma processing of bituminous coal preliminary electron-beam activated were fulfilled in comparison with plasma processing of the coal. Positive influence of the preliminary electron-beam activation of coal on synthesis gas yield was found. Experiments were carried out in the plasma gasifier of 100 kW power. As a result of the measurements of material and heat balance of the process gave the following integral indicators: weight-average temperature of 2200-2300 K, and carbon gasification degree of 82,4-83,2%. Synthesis gas yield at thermochemical preparation of raw coal dust for burning was 24,5% and in the case of electron-beam activation of coal synthesis gas yield reached 36,4%, which is 48% higher.

  10. Results from radiant treatment in no Hodgkin's lymphomas of adults

    International Nuclear Information System (INIS)

    Alert, J.; Rodriguez, E.; Mesa, E.; Diaz, C.

    1982-01-01

    From 1973 to 1979, at the Institute of Oncology and Radiobiology, Havana City, 91 adults were irradiated because they underwent no Hodgkin's lymphomas at Stage I (located) and Stage II (regional extension) to whom radiant treatment was the basic therapeutic selection, with single or multiple fields and dose ranging between 3 500 and 4 000 rads-tumor, and some of them at Stage III, where primary treatment was chemotherapy. Present survival for all of them after 3 and 5 years is 55.7% and 54.7%, with 84.4% for patients at Stage I, 55.8% and 52.4% for Stage II and 33.8% for Stage III. Survival was similar for both sexes; in the same way ganglionar processes and those of extraganglionar localization presented no significant survival differences. Only to 7 patients (7.7%) modular forms were diagnosed. (author)

  11. Methods of total spectral radiant flux realization at VNIIOFI

    Science.gov (United States)

    Ivashin, Evgeniy; Lalek, Jan; Rybczyński, Andrzej; Ogarev, Sergey; Khlevnoy, Boris; Dobroserdov, Dmitry; Sapritsky, Victor

    2018-02-01

    VNIIOFI carries out works on realization of independent methods for realization of the total spectral radiant flux (TSRF) of incoherent optical radiation sources - reference high-temperature blackbodies (BB), halogen lamps, and LED with quasi-Lambert spatial distribution of radiance. The paper describes three schemes for measuring facilities using photometers, spectroradiometers and computer-controlled high class goniometer. The paper describes different approaches for TSRF realization at the VNIIOFI National radiometric standard on the basis of high-temperature BB and LED sources, and gonio-spectroradiometer. Further, they are planned to be compared, and the use of fixed-point cells (in particular, based on the high-temperature δ(MoC)-C metal-carbon eutectic with a phase transition temperature of 2583 °C corresponding to the metrological optical “source-A”) as an option instead of the BB is considered in order to enhance calibration accuracy.

  12. Energy-Efficient Multicast Transmission for Underlay Device-to-Device Communications: A Social-Aware Perspective

    Directory of Open Access Journals (Sweden)

    Fan Jiang

    2017-01-01

    Full Text Available In this paper, by utilizing the social relationships among mobile users, we present a framework of energy-efficient cluster formation and resource allocation for multicast D2D transmission. In particular, we first deal with D2D multicast cluster/group formation strategy from both physical distance and social trust level. Then we aim to maximize the overall energy-efficiency of D2D multicast groups through resource allocation and power control scheme, which considers the quality-of-service (QoS requirements of both cellular user equipment and D2D groups. A heuristic algorithm is proposed to solve above energy-efficiency problem with less complexity. After that, considering the limited battery capacity of mobile users, we propose an energy and social aware cluster head update algorithm, which incorporates both the energy constraint and social centrality measurement. Numerical results indicate that the proposed social-tie based D2D multicast group formation and update algorithm form a multicast group in an energy efficient way. Moreover, the proposed resource and power allocation scheme achieves better energy efficiency in terms of throughput per energy consumption. These results show that, by exploiting social domain information, underlay D2D multicast transmission has high practical potential in saving the source on wireless links and in the backhaul.

  13. Response analysis and energy transmissibility of a vibration isolation system with real-power nonlinearities under a NMPPF controller

    International Nuclear Information System (INIS)

    Huang, Dongmei; Xu, Wei; Shi, Lingling

    2016-01-01

    Highlights: • The nonlinear modified positive position feedback (NMPPF) scheme and the real-power form of restoring and damping forces are combined to improve the response performance of a vibration isolation system. • The primary resonance, dynamical stability and energy transmissibility of the real-power vibration isolation system are studied. • The sensitivity of the controller parameters on the responses has been analyzed. • In order to suppress the amplitude peak, the feedback parameters have been determined by the frequency response. • The energy transmissibility is investigated. - Abstract: In this paper, the nonlinear modified positive position feedback (NMPPF) scheme and the real-power form of restoring and damping forces are combined to improve the response performance of a vibration isolation system. Based on the method of multiple scales, the frequency response, the stability and the energy transmissibility of the real-power vibration isolation system are studied. It is found that the controlled isolation system exhibits a softening behavior for sub-linear restoring force, while it exhibits the two peak response characteristic rather than a hardening behavior for over-linear restoring force. Further, the sensitivity of the feedback parameters on the responses is discussed. The results, compared to the conventional PPF and IRC methods, show that the proposed method is significantly more effective in controlling the steady-state response, and slightly advantageous for the steady-state dynamics control. The effectiveness of this method is also verified by time domain analysis. Then, the suitable feedback and controller parameters are derived by simulation results in which the amplitude peak is suppressed and the resonance stability is maintained. Finally, the energy transmissibility of the vibration isolation system is investigated. The results show that the feedback gain can reduce the whole transmissibility level and greatly suppress vibration

  14. Finite-elements modeling of radiant heat transfers between mobile surfaces; Modelisation par elements finis de transferts radiatifs entre surfaces mobiles

    Energy Technology Data Exchange (ETDEWEB)

    Daurelle, J V; Cadene, V; Occelli, R [Universite de Provence, 13 - Marseille (France)

    1997-12-31

    In the numerical modeling of thermal industrial problems, radiant heat transfers remain difficult to take into account and require important computer memory and long computing time. These difficulties are enhanced when radiant heat transfers are coupled with finite-elements diffusive heat transfers because finite-elements architecture is complex and requires a lot of memory. In the case of radiant heat transfers along mobile boundaries, the methods must be optimized. The model described in this paper concerns the radiant heat transfers between diffuse grey surfaces. These transfers are coupled with conduction transfers in the limits of the diffusive opaque domain. 2-D and 3-D geometries are analyzed and two configurations of mobile boundaries are considered. In the first configuration, the boundary follows the deformation of the mesh, while in the second, the boundary moves along the fixed mesh. Matter displacement is taken into account in the term of transport of the energy equation, and an appropriate variation of the thermophysical properties of the transition elements between the opaque and transparent media is used. After a description of the introduction of radiative limit conditions in a finite-elements thermal model, the original methods used to optimize calculation time are explained. Two examples of application illustrate the approach used. The first concerns the modeling of radiant heat transfers between fuel rods during a reactor cooling accident, and the second concerns the study of heat transfers inside the air-gap of an electric motor. The method of identification of the mobile surface on the fixed mesh is described. (J.S.) 12 refs.

  15. Finite-elements modeling of radiant heat transfers between mobile surfaces; Modelisation par elements finis de transferts radiatifs entre surfaces mobiles

    Energy Technology Data Exchange (ETDEWEB)

    Daurelle, J.V.; Cadene, V.; Occelli, R. [Universite de Provence, 13 - Marseille (France)

    1996-12-31

    In the numerical modeling of thermal industrial problems, radiant heat transfers remain difficult to take into account and require important computer memory and long computing time. These difficulties are enhanced when radiant heat transfers are coupled with finite-elements diffusive heat transfers because finite-elements architecture is complex and requires a lot of memory. In the case of radiant heat transfers along mobile boundaries, the methods must be optimized. The model described in this paper concerns the radiant heat transfers between diffuse grey surfaces. These transfers are coupled with conduction transfers in the limits of the diffusive opaque domain. 2-D and 3-D geometries are analyzed and two configurations of mobile boundaries are considered. In the first configuration, the boundary follows the deformation of the mesh, while in the second, the boundary moves along the fixed mesh. Matter displacement is taken into account in the term of transport of the energy equation, and an appropriate variation of the thermophysical properties of the transition elements between the opaque and transparent media is used. After a description of the introduction of radiative limit conditions in a finite-elements thermal model, the original methods used to optimize calculation time are explained. Two examples of application illustrate the approach used. The first concerns the modeling of radiant heat transfers between fuel rods during a reactor cooling accident, and the second concerns the study of heat transfers inside the air-gap of an electric motor. The method of identification of the mobile surface on the fixed mesh is described. (J.S.) 12 refs.

  16. Nanoscale Energy-Filtered Scanning Confocal Electron Microscopy Using a Double-Aberration-Corrected Transmission Electron Microscope

    International Nuclear Information System (INIS)

    Wang Peng; Behan, Gavin; Kirkland, Angus I.; Nellist, Peter D.; Takeguchi, Masaki; Hashimoto, Ayako; Mitsuishi, Kazutaka; Shimojo, Masayuki

    2010-01-01

    We demonstrate that a transmission electron microscope fitted with two spherical-aberration correctors can be operated as an energy-filtered scanning confocal electron microscope. A method for establishing this mode is described and initial results showing 3D chemical mapping with nanoscale sensitivity to height and thickness changes in a carbon film are presented. Importantly, uncorrected chromatic aberration does not limit the depth resolution of this technique and moreover performs an energy-filtering role, which is explained in terms of a combined depth and energy-loss response function.

  17. Visualization of phase evolution in model organic photovoltaic structures via energy-filtered transmission electron microscopy.

    Science.gov (United States)

    Herzing, Andrew A; Ro, Hyun Wook; Soles, Christopher L; DeLongchamp, Dean M

    2013-09-24

    The morphology of the active layer in an organic photovoltaic bulk-heterojunction device is controlled by the extent and nature of phase separation during processing. We have studied the effects of fullerene crystallinity during heat treatment in model structures consisting of a layer of poly(3-hexylthiophene) (P3HT) sandwiched between two layers of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Utilizing a combination of focused ion-beam milling and energy-filtered transmission electron microscopy, we monitored the local changes in phase distribution as a function of annealing time at 140 °C. In both cases, dissolution of PCBM within the surrounding P3HT was directly visualized and quantitatively described. In the absence of crystalline PCBM, the overall phase distribution remained stable after intermediate annealing times up to 60 s, whereas microscale PCBM aggregates were observed after annealing for 300 s. Aggregate growth proceeded vertically from the substrate interface via uptake of PCBM from the surrounding region, resulting in a large PCBM-depleted region in their vicinity. When precrystallized PCBM was present, amorphous PCBM was observed to segregate from the intermediate P3HT layer and ripen the crystalline PCBM underneath, owing to the far lower solubility of crystalline PCBM within P3HT. This process occurred rapidly, with segregation already evident after annealing for 10 s and with uptake of nearly all of the amorphous PCBM by the crystalline layer after 60 s. No microscale aggregates were observed in the precrystallized system, even after annealing for 300 s.

  18. Depth profiling: RBS versus energy-dispersive X-ray imaging using scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Markwitz, Andreas

    2000-01-01

    Rutherford backscattering spectrometry (RBS) is known to be one of the techniques ideal for analysis of thin films. Elemental concentrations of matrix components and impurities can be investigated as well as depth profiles of almost each element of the periodic table. Best of all, RBS has both a high sensitivity and a high depth resolution, and is a non-destructive analysis technique that does not require specific sample preparation. Solid-state samples are mounted without preparation inside a high-vacuum analysis chamber. However, depth-related interpretation of elemental depth profiles requires the material density of the specimen and stopping power values to be taken into consideration. In many cases, these parameters can be estimated with sufficient precision. However, the assumed density can be inaccurate for depth scales in the nanometer range. For example, in the case of Ge nanoclusters in 500 nm thick SiO 2 layers, uncertainty is related to the actual position of a very thin Ge nanocluster band. Energy-dispersive X-ray emission (EDX) spectroscopy, using a high-resolution scanning transmission electron microscope (STEM) can assist in removing this uncertainty. By preparing a thin section of the specimen, EDX can be used to identify the position of the Ge nanocluster band very precisely, by correlating the Ge profile with the depth profiles of silicon and oxygen. However, extraction of the concentration profiles from STEM-EDX spectra is in general not straightforward. Therefore, a combination of the two very different analysis techniques is often the best and only successful way to extract high-resolution concentration profiles

  19. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios

    Science.gov (United States)

    Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao

    2015-01-01

    A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation. PMID:26404292

  20. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios

    Directory of Open Access Journals (Sweden)

    Feihong Dong

    2015-09-01

    Full Text Available A typical application scenario of remote wireless sensor networks (WSNs is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation.

  1. Energy-Efficient Transmissions for Remote Wireless Sensor Networks: An Integrated HAP/Satellite Architecture for Emergency Scenarios.

    Science.gov (United States)

    Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao

    2015-09-03

    A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation.

  2. Evaluation of Various Retrofitting Concepts of Building Envelope for Offices Equipped with Large Radiant Ceiling Panels by Dynamic Simulations

    Directory of Open Access Journals (Sweden)

    Sabina Jordan

    2015-09-01

    Full Text Available In order to achieve significant savings in energy and an improved level of thermal comfort in retrofitted existing buildings, specific retrofitting concepts that combine new technologies and design need to be developed and implemented. Large radiant surfaces systems are now among the most promising future technologies to be used both in retrofitted and in new low-energy buildings. These kinds of systems have been the topic of several studies dealing with thermal comfort and energy utilization, but some specific issues concerning their possible use in various concepts for retrofitting are still poorly understood. In the present paper, some results of dynamic simulations, with the transient system simulation tool (TRNSYS model, of the retrofitted offices equipped with radiant ceiling panels are presented and thoroughly analysed. Based on a precise comparison of the results of these simulations with actual measurements in the offices, certain input data for the model were added, so that the model was consequently validated. The model was then applied to the evaluation of various concepts of building envelopes for office retrofitting. By means of dynamic simulations of indoor environment it was possible to determine the benefits and limitations of individual retrofitting concepts. Some specific parameters, which are relevant to these concepts, were also identified.

  3. 77 FR 10489 - Xcel Energy Services Inc., Northern States Power Company v. American Transmission Company, LLC...

    Science.gov (United States)

    2012-02-22

    ... ATC has not compiled with express terms and conditions of the Transmission Owners Agreement and the Midwest ISO Tariff and (2) direct ATC to enter into negotiations with XES and NSPW to develop final terms...

  4. Technical and economic aspects of the transmission of energy at extra high voltages

    Energy Technology Data Exchange (ETDEWEB)

    Kahnt, R

    1967-01-01

    The reasons for the employment of higher transmission voltages are listed and the points decisive for the selection of three phase ac or dc systems are reviewed. A treatment of the technical and economic problems arising in three phase extra high voltage transmission is presented. These include selection of voltage, economical design of power lines, insulation problems, power supply dependability, equipment rating and reactive power and stability problems.

  5. Neutron resonance transmission spectroscopy with high spatial and energy resolution at the J-PARC pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Shinohara, T.; Kai, T.; Ooi, M. [Japan Atomic Energy Agency, 2–4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kamiyama, T.; Kiyanagi, Y.; Shiota, Y. [Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo-shi, Hokkaido 060-8628 (Japan); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Rd., Sturbridge, MA 01566 (United States)

    2014-05-11

    The sharp variation of neutron attenuation at certain energies specific to particular nuclides (the lower range being from ∼1 eV up to ∼1 keV), can be exploited for the remote mapping of element and/or isotope distributions, as well as temperature probing, within relatively thick samples. Intense pulsed neutron beam-lines at spallation sources combined with a high spatial, high-timing resolution neutron counting detector, provide a unique opportunity to measure neutron transmission spectra through the time-of-flight technique. We present the results of experiments where spatially resolved neutron resonances were measured, at energies up to 50 keV. These experiments were performed with the intense flux low background NOBORU neutron beamline at the J-PARC neutron source and the high timing resolution (∼20 ns at epithermal neutron energies) and spatial resolution (∼55 µm) neutron counting detector using microchannel plates coupled to a Timepix electronic readout. Simultaneous element-specific imaging was carried out for several materials, at a spatial resolution of ∼150 µm. The high timing resolution of our detector combined with the low background beamline, also enabled characterization of the neutron pulse itself – specifically its pulse width, which varies with neutron energy. The results of our measurements are in good agreement with the predicted results for the double pulse structure of the J-PARC facility, which provides two 100 ns-wide proton pulses separated by 600 ns, broadened by the neutron energy moderation process. Thermal neutron radiography can be conducted simultaneously with resonance transmission spectroscopy, and can reveal the internal structure of the samples. The transmission spectra measured in our experiments demonstrate the feasibility of mapping elemental distributions using this non-destructive technique, for those elements (and in certain cases, specific isotopes), which have resonance energies below a few keV, and with lower

  6. Radiometric measurements of wall temperatures in the 800 K to 1150 K range for a quartz radiant heating tube

    International Nuclear Information System (INIS)

    Blevins, L.G.; Sivathanu, Y.R.; Gore, J.P.; Shahien, M.A.

    1995-01-01

    Many industrial applications require heat transfer to a load in an inert environment, which can be achieved by using gas-fired radiant tubes. A radiant tube consists of a flame confined in a cylindrical metal or ceramic chamber. The flame heats the tube wall, which in turn radiates to the load. One important characteristic of radiant heating tubes is wall temperature uniformity. Numerical models of radiant tubes have been used to predict wall temperatures, but there is a lack of experimental data for validation. Recently, Namazian et al., Singh and Gorski, and Peters et al. have measured wall temperature profiles of radiant tubes using thermocouples. 13 refs., 3 figs

  7. Low-energy electron transmission and secondary-electron emission experiments on crystalline and molten long-chain alkanes

    International Nuclear Information System (INIS)

    Ueno, N.; Sugita, K.; Seki, K.; Inokuchi, H.

    1986-01-01

    This paper describes the results of low-energy electron transmission and secondary-electron emission experiments on thin films of long-chain alkanes deposited on metal substrates. The spectral changes due to crystal-melt phase transition were measured in situ in both experiments. The ground-state energy V 0 of the quasifree electron in crystalline state was determined to be 0.5 +- 0.1 eV. The value of V 0 for the molten state was found to be negative. Further, in the crystalline state evidence is found for a direct correspondence between the transmission maxima and the high value of the density of states in the conduction bands

  8. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    International Nuclear Information System (INIS)

    Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S.

    2011-01-01

    Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

  9. State and performance of on-stream ash content determination in lignite and black coal using 2-energy transmission technique

    International Nuclear Information System (INIS)

    Thuemmel, H.W.; Koerner, G.; Leonhardt, J.

    1986-01-01

    The total r.m.s. ash error of the 2-energy transmission on-stream ash gauges KRAS-2 (CIIRR, GDR) and SIROASH (Australia) are 4 weight percentage for raw lignite and 0.5 weight percentage for black coal, respectively. A detailed error analysis shows that this difference is due to the high water content and to strong variations in the ash composition of raw lignite. Both gauges show essentially the same radiometric performance. (author)

  10. Analysis of directional radiative behavior and heating efficiency for a gas-fired radiant burner

    International Nuclear Information System (INIS)

    Li, B.X.; Lu, Y.P.; Liu, L.H.; Kudo, K.; Tan, H.P.

    2005-01-01

    For the purpose of energy conservation and uniform heating of object surface, a gas-fired porous radiant burner with a bundle of reflecting tubes is developed. A physical model is developed to simulate the directional radiative behavior of this heating device, in which the Monte Carlo method based on the concept of radiation distribution factor is used to compute the directional radiative behavior. The effects of relating parameters on the directional behavior of radiative heating and the heating efficiency are analyzed. With the increase of the length-to-radius ratio of tube, the radiation heating efficiency decreases, but the radiation energy incident on the object surface is more collimated. The radiation heating efficiency increases with the specular reflectivity. With the increase in length of tube segment with specular reflective surface, the radiation heating efficiency increases, but the extent of concentration and collimation of radiative energy decreases. For real design of the heating device, some trade-offs are needed to balance the radiation heating efficiency and the uniformity of radiative heating of object surface

  11. Modeling and Characteristic Analysis of Wireless Ultrasonic Vibration Energy Transmission Channels through Planar and Curved Metal Barriers

    Directory of Open Access Journals (Sweden)

    DingXin Yang

    2018-01-01

    Full Text Available Wireless ultrasonic vibration energy transmission systems through metal barriers based on piezoelectric transducers have drawn a lot of focus due to the advantage of nonpenetration of the barriers, thus maintaining the integrity of sealed structures. It is meaningful to investigate appropriate modeling methods and to characterize such wireless ultrasonic energy transmission channels with different geometric shapes. In this paper, equivalent circuit modeling and finite element modeling methods are applied to the planar metal barrier channel, and a 3-dimensional finite element modeling method is applied to the cylindrical metallic barrier channel. Meanwhile, the experimental setup is established and measurements are carried out to validate the effectiveness of the corresponding modeling methods. The results show that Leach’s equivalent circuit modeling method and finite element modeling method are nearly similarly effective in characterizing the planar metal barrier channel. But for a cylindrical metal barrier, only the three-dimensional finite element modeling method is effective. Furthermore, we found that, for the planar barrier, the effect of standing waves on the efficiency of wireless energy transmission is dominated. But for the curved barrier, only the resonant phenomenon of the piezoelectric transducer exists.

  12. Controlled passive actuation: concepts for energy efficient actuation using mechanical storage elements and continuously variable transmissions

    NARCIS (Netherlands)

    Dresscher, Douwe

    2016-01-01

    Walking robots consume more energy for locomotion than their wheeled and tracked counterparts. To achieve energy autonomous operation, a robot needs to run on energy that is harvested from its environment. In this light, it is meaningful to address reduction of energy consumption. The contribution

  13. An experimental study of thermal comfort at different combinations of air and mean radiant temperature

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.

    2009-01-01

    It is often discussed if a person prefers a low air temperature (ta) and a high mean radiant temperature (tr), vice-versa or it does not matter as long as the operative temperature is acceptable. One of the hypotheses is that it does not matter for thermal comfort but for perceived air quality......, a lower air temperature is preferred. This paper presents an experimental study with 30 human subjects exposed to three different combinations of air- and mean radiant temperature with an operative temperature around 23 °C. The subjects gave subjective evaluations of thermal comfort and perceived air...... quality during the experiments. The PMV-index gave a good estimation of thermal sensation vote (TSV) when the air and mean radiant temperature were the same. In the environment with different air- and mean radiant temperatures, a thermal comfort evaluation shows an error up to 1 scale unit on the 7-point...

  14. Effect of condensation on light transmission and energy budget of seven greenhouse cover materials

    NARCIS (Netherlands)

    Stanghellini, C.; Bruins, M.A.; Mohammadkhani, V.; Swinkels, G.L.A.M.; Sonneveld, P.J.

    2012-01-01

    Model calculations and the few data that are available show that over 100 L water condense yearly on each square meter of a greenhouse cover. It is known that the presence of condensate reduces light transmission. This effect is suppressed to some extent by adding film-forming (anti-drop) additives

  15. Effect of condensation on light transmission and energy budget of seven greenhouse cover materials

    NARCIS (Netherlands)

    V. Mohammadkhani; Gert-Jan Swinkels; C. Stanghellini; Piet Sonneveld; M.A. Bruins

    2011-01-01

    Model calculations and the few data that are available show that over 100 L water condense yearly on each square meter of a greenhouse cover. It is known that the presence of condensate reduces light transmission. This effect is suppressed to some extent by adding film-forming (anti-drop) additives

  16. The integration of renewable energies into the German transmission grid—A scenario comparison

    International Nuclear Information System (INIS)

    Schroeder, Andreas; Oei, Pao-Yu; Sander, Aram; Hankel, Lisa; Laurisch, Lilian Charlotte

    2013-01-01

    This article presents a quantitative assessment of the need for electricity transmission capacity investments in Germany for 2030. Congestion is analyzed and its possible relief through appropriate grid reinforcements as those described in the Ten Year Network Development Plan (TYNDP) of the European Commission. Congestion is investigated in three scenarios which differ in the location of power resources and the line expansion projects accomplished. Results show that the TYNDP and overlay line projects proposed in 2011 are not sufficient measures to cope with the increasing demand for transmission capacity. The paper also concludes that if power generation resources are moved closer to demand centers grid bottlenecks can be partly relieved by 2030. The introduction of a high-voltage direct current (HVDC) backbone grid does not relieve congestion significantly. - Highlights: • The need for power transmission capacity in Germany for 2030 is assessed. • The TYNDP is insufficient to cope with increasing demand for transmission. • If generation is moved closer to demand grid bottlenecks are partly relieved. • An HVDC backbone grid does not relieve congestion significantly

  17. Lagrangian and Hamiltonian Formulation of Transmission Line Systems with Boundary Energy Flow

    NARCIS (Netherlands)

    Jeltsema, Dimitri; Schaft, Arjan J. van der

    The classical Lagrangian and Hamiltonian formulation of an electrical transmission line is reviewed and extended to allow for varying boundary conditions, The method is based on the definition of an infinite-dimensional analogue of the affine Lagrangian and Hamiltonian input-output systems

  18. Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies

    International Nuclear Information System (INIS)

    Delucchi, Mark A.; Jacobson, Mark Z.

    2011-01-01

    This is Part II of two papers evaluating the feasibility of providing all energy for all purposes (electric power, transportation, and heating/cooling), everywhere in the world, from wind, water, and the sun (WWS). In Part I, we described the prominent renewable energy plans that have been proposed and discussed the characteristics of WWS energy systems, the global demand for and availability of WWS energy, quantities and areas required for WWS infrastructure, and supplies of critical materials. Here, we discuss methods of addressing the variability of WWS energy to ensure that power supply reliably matches demand (including interconnecting geographically dispersed resources, using hydroelectricity, using demand-response management, storing electric power on site, over-sizing peak generation capacity and producing hydrogen with the excess, storing electric power in vehicle batteries, and forecasting weather to project energy supplies), the economics of WWS generation and transmission, the economics of WWS use in transportation, and policy measures needed to enhance the viability of a WWS system. We find that the cost of energy in a 100% WWS will be similar to the cost today. We conclude that barriers to a 100% conversion to WWS power worldwide are primarily social and political, not technological or even economic. - Research highlights: → We evaluate the feasibility of global energy supply from wind, water, and solar energy. → WWS energy can be supplied reliably and economically to all energy-use sectors. → The social cost of WWS energy generally is less than the cost of fossil-fuel energy. → Barriers to 100% WWS power worldwide are socio-political, not techno-economic.

  19. Ignition of Cellulosic Paper at Low Radiant Fluxes

    Science.gov (United States)

    White, K. Alan

    1996-01-01

    The ignition of cellulosic paper by low level thermal radiation is investigated. Past work on radiative ignition of paper is briefly reviewed. No experimental study has been reported for radiative ignition of paper at irradiances below 10 Watts/sq.cm. An experimental study of radiative ignition of paper at these low irradiances is reported. Experimental parameters investigated and discussed include radiant power levels incident on the sample, the method of applying the radiation (focussed vs. diffuse Gaussian source), the presence and relative position of a separate pilot ignition source, and the effects of natural convection (buoyancy) on the ignition process in a normal gravity environment. It is observed that the incident radiative flux (in W/sq.cm) has the greatest influence on ignition time. For a given flux level, a focussed Gaussian source is found to be advantageous to a more diffuse, lower amplitude, thermal source. The precise positioning of a pilot igniter relative to gravity and to the fuel sample affects the ignition process, but the precise effects are not fully understood. Ignition was more readily achieved and sustained with a horizontal fuel sample, indicating the buoyancy plays a role in the ignition process of cellulosic paper. Smoldering combustion of doped paper samples was briefly investigated, and results are discussed.

  20. Design and construction of a regenerative radiant tube burner

    International Nuclear Information System (INIS)

    Henao, Diego Alberto; Cano C, Carlos Andres; Amell Arrieta, Andres A.

    2002-01-01

    The technological development of the gas industry in Colombia, aiming at efficient and safe use of the natural gas, requires the assimilation and adaptation of new generation, technologies for this purpose in this article results are presented on the design, construction and characterization of a prototype of a burner of regenerative radiant robe with a thermal power of 9,94 kW and a factor of air 1,05. This system takes advantage of the high exit temperature of the combustion smokes, after they go trough a metallic robe where they transfer the heat by radiation, to heat a ceramic channel that has the capacity to absorbing a part of the heat of the smokes and then transferring them to a current of cold air. The benefits of air heating are a saving in fuel, compared with other processes that don't incorporate the recovery of heat from the combustion gases. In this work it was possible to probe a methodology for the design of this type of burners and to reach maximum temperatures of heating of combustion air of 377,9 centigrade degrees, using a material available in the national market, whose regenerative properties should be studied in depth

  1. Automatic drawing and CAD actualization in processing data of radiant sampling in physics prospect

    International Nuclear Information System (INIS)

    Liu Jinsheng

    2010-01-01

    In this paper discussed a method of processing radiant sampling data with computer. By this method can get expain the curve of radiant sampling data, and we can combine mineral masses and analyse and calculate them, then record the result on Notebook. There are many merites of this method: easy to learn, simple to use, high efficient. It adapts to all sorts of mines. (authors)

  2. Automatic drawing and cad actualiztion in processing data of radiant sampling in physics prospect

    International Nuclear Information System (INIS)

    Liu Jinsheng

    2010-01-01

    In this paper discussed a method of processing radiant sampling data with computer. By this method can get explain the curve of radiant sampling data, and we can combine mineral masses and analyses and calculate them, then record the result on Notebook. There are many merites of this method: easy to learn, simple to use, high efficient. It adapts to all sorts of mines. (authors)

  3. General Relativistic Radiant Shock Waves in the Post-Quasistatic Approximation

    Energy Technology Data Exchange (ETDEWEB)

    H, Jorge A Rueda [Centro de Fisica Fundamental, Universidad de Los Andes, Merida 5101, Venezuela Escuela de Fisica, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); Nunez, L A [Centro de Fisica Fundamental, Universidad de Los Andes, Merida 5101, Venezuela Centro Nacional de Calculo Cientifico, Universidad de Los Andes, CeCalCULA, Corporacion Parque Tecnologico de Merida, Merida 5101, Venezuela (Venezuela)

    2007-05-15

    An evolution of radiant shock wave front is considered in the framework of a recently presented method to study self-gravitating relativistic spheres, whose rationale becomes intelligible and finds full justification within the context of a suitable definition of the post-quasistatic approximation. The spherical matter configuration is divided into two regions by the shock and each side of the interface having a different equation of state and anisotropic phase. In order to simulate dissipation effects due to the transfer of photons and/or neutrinos within the matter configuration, we introduce the flux factor, the variable Eddington factor and a closure relation between them. As we expected the strong of the shock increases the speed of the fluid to relativistic ones and for some critical values is larger than light speed. In addition, we find that energy conditions are very sensible to the anisotropy, specially the strong energy condition. As a special feature of the model, we find that the contribution of the matter and radiation to the radial pressure are the same order of magnitude as in the mant as in the core, moreover, in the core radiation pressure is larger than matter pressure.

  4. General Relativistic Radiant Shock Waves in the Post-Quasistatic Approximation

    International Nuclear Information System (INIS)

    H, Jorge A Rueda; Nunez, L A

    2007-01-01

    An evolution of radiant shock wave front is considered in the framework of a recently presented method to study self-gravitating relativistic spheres, whose rationale becomes intelligible and finds full justification within the context of a suitable definition of the post-quasistatic approximation. The spherical matter configuration is divided into two regions by the shock and each side of the interface having a different equation of state and anisotropic phase. In order to simulate dissipation effects due to the transfer of photons and/or neutrinos within the matter configuration, we introduce the flux factor, the variable Eddington factor and a closure relation between them. As we expected the strong of the shock increases the speed of the fluid to relativistic ones and for some critical values is larger than light speed. In addition, we find that energy conditions are very sensible to the anisotropy, specially the strong energy condition. As a special feature of the model, we find that the contribution of the matter and radiation to the radial pressure are the same order of magnitude as in the mant as in the core, moreover, in the core radiation pressure is larger than matter pressure

  5. Radiant heat increases piglets’ use of the heated creep area on the critical days after birth

    DEFF Research Database (Denmark)

    Larsen, Mona Lilian Vestbjerg; Thodberg, Karen; Pedersen, Lene Juul

    2017-01-01

    The aim of the present study was to investigate how piglets’ use of a creep area is affected by using radiant heat compared to an incandescent light bulb. It was hypothesised that radiant heat would increase the use of the creep area. Twenty litters were randomly assigned to one of two heat sources...... in the creep area: (1) an incandescent light bulb (STANDARD, n=10) or (2) a radiant heat source (RADIANT, n=10) with five of each type of heat source in each of two batches. Observations on piglets’ position in the pen were made by scan sampling every ten minutes in a 4-hour period from 1100 to 1500 h on day 1......–7, 14 and 21 post partum. A higher percentage of piglets in the creep area was seen for RADIANT litters compared to STANDARD litters on day 2 (P=0.002) and day 3 (P=0.005), and percentage of piglets in the creep area increased for RADIANT litters from day 1 to 2 (P

  6. Transmission Challenges and Best Practices for Cost-Effective Renewable Energy Delivery across State and Provincial Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengru [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hurlbut, David J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bird, Lori A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Qin [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-22

    A strategically planned transmission network is an important source of flexibility for the integration of large-scale renewable energy (RE). Such a network can offer access to a broad geographic diversity of resources, which can reduce flexibility needs and facilitate sharing between neighboring balancing areas. This report builds on two previous NREL technical reports - Advancing System Flexibility for High Penetration Renewable Integration (Milligan et al. 2015) and 'Renewables-Friendly' Grid Development Strategies (Hurlbut et al. 2015) - which discuss various flexibility options and provide an overview of U.S. market models and grid planning. This report focuses on addressing issues with cross-regional/provincial transmission in China with the aim of integrating renewable resources that are concentrated in remote areas and require inter-regional/provincial power exchange.

  7. Transmission Challenges and Best Practices for Cost-Effective Renewable Energy Delivery across State and Provincial Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Hurlbut, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wang, Qin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-21

    A strategically planned transmission network is an important source of flexibility for the integration of large-scale renewable energy (RE). Such a network can offer access to a broad geographic diversity of resources, which can reduce flexibility needs and facilitate sharing between neighboring balancing areas. This report builds on two previous NREL technical reports - Advancing System Flexibility for High Penetration Renewable Integration (Milligan et al. 2015) and 'Renewables-Friendly' Grid Development Strategies (Hurlbut et al. 2015) - which discuss various flexibility options and provide an overview of U.S. market models and grid planning. This report focuses on addressing issues with cross-regional/provincial transmission in China with the aim of integrating renewable resources that are concentrated in remote areas and require inter-regional/provincial power exchange.

  8. The planning of transmission grids. Conditions of the energy policy turnaround; Die Planung der Uebertragungsnetze. Bedingung der Energiewende.

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Siegfried de; Durinke, Peter; Kause, Harriet [DE WITT Rechtsanwaltsgesellschaft mbH, Berlin (Germany)

    2012-07-01

    The book reports on planning processes for the power transmission grid. The design and implementation of a high-voltage line of the transmission system consists of four stages (Part I): (a) National planning of requirements; (b) Planning procedures or federal sector planning; (c) Planning approval procedure; (d) Expropriation proceedings. Part II of this book describes the planning according to the Energy Economy Law (EnWG) and Electricity Grid Expansion Act (EnLAG). The Part III of the book under consideration describes the procedures to be taken out by the NABEG (Act for the Acceleration of Network Expansion) from the scope of paragraph 15 ROG (Regional Planning Act) and paragraph 43 EnWG.

  9. Influence of the Integral Quality Monitor transmission detector on high energy photon beams: A multi-centre study.

    Science.gov (United States)

    Casar, Bozidar; Pasler, Marlies; Wegener, Sonja; Hoffman, David; Talamonti, Cinzia; Qian, Jianguo; Mendez, Ignasi; Brojan, Denis; Perrin, Bruce; Kusters, Martijn; Canters, Richard; Pallotta, Stefania; Peterlin, Primoz

    2017-09-01

    The influence of the Integral Quality Monitor (IQM) transmission detector on photon beam properties was evaluated in a preclinical phase, using data from nine participating centres: (i) the change of beam quality (beam hardening), (ii) the influence on surface dose, and (iii) the attenuation of the IQM detector. For 6 different nominal photon energies (4 standard, 2 FFF) and square field sizes from 1×1cm 2 to 20×20cm 2 , the effect of IQM on beam quality was assessed from the PDD 20,10 values obtained from the percentage dose depth (PDD) curves, measured with and without IQM in the beam path. The change in surface dose with/without IQM was assessed for all available energies and field sizes from 4×4cm 2 to 20×20cm 2 . The transmission factor was calculated by means of measured absorbed dose at 10cm depth for all available energies and field sizes. (i) A small (0.11-0.53%) yet statistically significant beam hardening effect was observed, depending on photon beam energy. (ii) The increase in surface dose correlated with field size (pphoton energies except for 18MV. The change in surface dose was smaller than 3.3% in all cases except for the 20×20cm 2 field and 10MV FFF beam, where it reached 8.1%. (iii) For standard beams, transmission of the IQM showed a weak dependence on the field size, and a pronounced dependence on the beam energy (0.9412 for 6MV to 0.9578 for 18MV and 0.9440 for 6MV FFF; 0.9533 for 10MV FFF). The effects of the IQM detector on photon beam properties were found to be small yet statistically significant. The magnitudes of changes which were found justify treating IQM either as tray factors within the treatment planning system (TPS) for a particular energy or alternatively as modified outputs for specific beam energy of linear accelerators, which eases the introduction of the IQM into clinical practice. Copyright © 2017. Published by Elsevier GmbH.

  10. Influence of the Integral Quality Monitor transmission detector on high energy photon beams. A multi-centre study

    Energy Technology Data Exchange (ETDEWEB)

    Casar, Bozidar [Institute of Oncology, Ljubljana (Slovenia). Dept. of Radiation Physics; Pasler, Marlies [Lake Constance Radiation Oncology Center, Singen and Friedrichshafen (Germany); Wegener, Sonja [Wuerzburg Univ. (Germany). Dept. of Radiation Oncology; and others

    2017-10-01

    The influence of the Integral Quality Monitor (IQM) transmission detector on photon beam properties was evaluated in a preclinical phase, using data from nine participating centres: (i) the change of beam quality (beam hardening), (ii) the influence on surface dose, and (iii) the attenuation of the IQM detector. For 6 different nominal photon energies (4 standard, 2 FFF) and square field sizes from 1 x 1 cm{sup 2} to 20 x 20 cm{sup 2}, the effect of IQM on beam quality was assessed from the PDD{sub 20,10} values obtained from the percentage dose depth (PDD) curves, measured with and without IQM in the beam path. The change in surface dose with/without IQM was assessed for all available energies and field sizes from 4 x 4 cm{sup 2} to 20 x 20 cm{sup 2}. The transmission factor was calculated by means of measured absorbed dose at 10 cm depth for all available energies and field sizes. (i) A small (0.11-0.53%) yet statistically significant beam hardening effect was observed, depending on photon beam energy. (ii) The increase in surface dose correlated with field size (p < 0.01) for all photon energies except for 18 MV. The change in surface dose was smaller than 3.3% in all cases except for the 20 x 20 cm{sup 2} field and 10 MV FFF beam, where it reached 8.1%. (iii) For standard beams, transmission of the IQM showed a weak dependence on the field size, and a pronounced dependence on the beam energy (0.9412 for 6 MV to 0.9578 for 18 MV and 0.9440 for 6 MV FFF; 0.9533 for 10 MV FFF). The effects of the IQM detector on photon beam properties were found to be small yet statistically significant. The magnitudes of changes which were found justify treating IQM either as tray factors within the treatment planning system (TPS) for a particular energy or alternatively as modified outputs for specific beam energy of linear accelerators, which eases the introduction of the IQM into clinical practice.

  11. The transmission diffraction patterns of silicon implanted with high-energy α-particles

    International Nuclear Information System (INIS)

    Wieteska, K.; Wierzchowski, W.

    1995-01-01

    2 mm thick silicon wafers, implanted with 4.8 MeV α-particles are studied by means of transmission section topography and additionally by Lang and double-crystal methods. It was found that all three methods produced a negligible contrast in the symmetric transmission reflection apart from some fragments of the implanted area's boundaries. The interference fringes were observed in the case of asymmetric reflections. The asymmetric section topographs revealed distinct interference fringes, which cannot be explained in terms of simple bicrystal models. In particular, the curvature of these fringes may be interpreted as being due to the change in the implanted ion dose along the beam intersecting the crystal. Some features of the fringe pattern were reproduced by numerical integration of Takagi-Taupin equations. (author)

  12. Design and control of a point absorber wave energy converter with an open loop hydraulic transmission

    International Nuclear Information System (INIS)

    Fan, YaJun; Mu, AnLe; Ma, Tao

    2016-01-01

    Highlights: • Point absorber wave energy converter is presented. • Piston pump module captures and converts wave energy. • Hydraulic accumulator stores/releases the surplus energy. • Fuzzy controller adjusts the displacement of hydraulic motor. • Generator outputs meet the electricity demand precisely. - Abstract: In this paper, a point absorber wave energy converter combined with offshore wind turbine is proposed. In the system, the wave energy is captured and converted into hydraulic energy by a piston pump module, which is combined with a wind turbine floating platform, and then the hydraulic energy is converted into electricity energy by a variable displacement hydraulic motor and induction generator. In order to smooth and stabilize the captured wave energy, a hydraulic accumulator is applied to store and release the excess energy. In order to meet the demand power a fuzzy controller is designed to adjust the displacement of hydraulic motor and controlled the output power. Simulation under irregular wave condition has been carried out to verify the validity of the mathematical model and the effectiveness of the controller strategy. The results show that the wave energy converter system could deliver the required electricity power precisely as the motor output torque is controlled. The accumulator could damp out all the fluctuations in output power, so the wave energy would become a dispatchable power source.

  13. Transmission of wave energy in curved ducts. [acoustic propagation within rigid walls

    Science.gov (United States)

    Rostafinski, W.

    1974-01-01

    Investigation of the ability of circular bends to transmit acoustic energy flux. A formulation of wave-energy flow is developed for motion in curved ducts. A parametric study over a range of frequencies shows the ability of circular bends to transmit energy in the case of perfectly rigid walls.

  14. Energy Conversion and Transmission Characteristics Analysis of Ice Storage Air Conditioning System Driven by Distributed Photovoltaic Energy System

    Directory of Open Access Journals (Sweden)

    Yongfeng Xu

    2016-01-01

    Full Text Available In order to reduce the investment and operation cost of distributed PV energy system, ice storage technology was introduced to substitute batteries for solar energy storage. Firstly, the ice storage air conditioning system (ISACS driven by distributed photovoltaic energy system (DPES was proposed and the feasibility studies have been investigated in this paper. And then, the theoretical model has been established and experimental work has been done to analyze the energy coupling and transferring characteristics in light-electricity-cold conversion process. In addition, the structure optimization analysis was investigated. Results revealed that energy losses were high in ice making process of ice slide maker with only 17.38% energy utilization efficiency and the energy efficiency and exergy efficiency of ISACS driven by DPES were 5.44% and 67.30%, respectively. So the immersed evaporator and cointegrated exchanger were adopted for higher energy utilization efficiency and better financial rewards in structure optimization. The COP and exergy efficiency of ice maker can be increased to 1.48 and 81.24%, respectively, after optimization and the energy utilization efficiency of ISACS driven by DPES could be improved 2.88 times. Moreover, ISACS has the out-of-the-box function of ordinary air conditioning system. In conclusion, ISACS driven by DPES will have good application prospects in tropical regions without power grid.

  15. Numerical method to calculate the quantum transmission, resonance and eigenvalue energies: application to a biased multibarrier systems

    Energy Technology Data Exchange (ETDEWEB)

    Maiz, F., E-mail: fethimaiz@gmail.com [University of Cartage, Nabeul Engineering Preparatory Institute, Merazka, 8000 Nabeul (Tunisia); King Khalid University, Faculty of Science, Physics Department, PO Box 9004, Abha 61413 (Saudi Arabia)

    2015-04-15

    A novel method to calculate the quantum transmission, resonance and eigenvalue energies forming the sub-bands structure of non-symmetrical, non-periodical semiconducting heterostructure potential has been proposed in this paper. The method can be applied on a multilayer system with varying thickness of the layer and effective mass of electrons and holes. Assuming an approximated effective mass and using Bastard's boundary conditions, Schrödinger equation at each media is solved and then using a confirmed recurrence method, the transmission and reflection coefficients and the energy quantification condition are expressed. They are simple combination of coupled equations. Schrödinger's equation solutions are Airy functions or plane waves, depending on the electrical potential energy slope. To illustrate the feasibility of the proposed method, the N barriers – (N−1) wells structure for N=3, 5, 8, 9, 17 and 35 are studied. All results show very good agreements with previously published results obtained from applying different methods on similar systems.

  16. Structural defects in multiferroic BiMnO3 studied by transmission electron microscopy and electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Yang, H.; Chi, Z. H.; Yao, L. D.; Zhang, W.; Li, F. Y.; Jin, C. Q.; Yu, R. C.

    2006-01-01

    The multiferroic material BiMnO 3 synthesized under high pressure has been systematically studied by transmission electron microscopy and electron energy-loss spectroscopy, and some important structural defects are revealed in this multiferroic material. The frequently observed defects are characterized to be Σ3(111) twin boundaries, Ruddlesden-Popper [Acta Crystallogr. 11, 54 (1958)] antiphase boundaries, and a p p superdislocations connected with a small segment of Ruddlesden-Popper defect. These defects are present initially in the as-synthesized sample. In addition, we find that ordered voids (oxygen vacancies) are easily introduced into the multiferroic BiMnO 3 by electron-beam irradiation

  17. Tunnel effect wave energy detection

    Science.gov (United States)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1995-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  18. Big Pylons: Mixed signals for transmission. Spatial planning for energy distribution

    International Nuclear Information System (INIS)

    Ritchie, Heather; Hardy, Maelíosa; Lloyd, M. Greg; McGreal, Stanley

    2013-01-01

    The effective delivery of a sustainable energy future raises many challenges in relation to energy distribution where a new understanding of spatial planning is needed in relation to energy production, consumption and storage. Understanding the emergent low carbon energy economy in terms of its production, distribution and consumption characteristics has prompted a deliberate spatial planning interest. This paper examines issues relating to spatial planning, regulation, political legitimacy and accountability in the current and future systems for energy distribution. In particular it examines the Beauly Denny public inquiry in Scotland as a case study in terms of demonstrating the changing state–market–civil relations in an energy transition context with differentiated values and interests. The case study highlights implications for the regulation in the public interest of highly contested spaces, places and development schemes, together with a synopsis of government structure and change that is influencing the future of spatial planning and energy distribution in particular. - Highlights: • We examine links between spatial planning and regulation of energy distribution. • We examine the Beauly Denny public inquiry in Scotland. • We highlight challenges surrounding the development of a resilient energy system. • We highlight links between spatial planning and infrastructural development

  19. High energy transmission of Al2O3 doped with light transition metals

    KAUST Repository

    Schuster, Cosima

    2012-01-31

    The transmission of transparent colored ceramics based on Al2O3doped with light transition metals is measured in the visible and infrared range. To clarify the role of the dopands we perform ab initiocalculations. We discuss the electronic structure and present optical spectra obtained in the independent particle approximation. We argue that the gross spectral features of Co- and Ni-doped Al2O3 samples are described by our model, while the validity of the approach is limited for Cr-doped Al2O3.

  20. High energy transmission of Al2O3 doped with light transition metals

    KAUST Repository

    Schuster, Cosima; Klimke, J.; Schwingenschlö gl, Udo

    2012-01-01

    The transmission of transparent colored ceramics based on Al2O3doped with light transition metals is measured in the visible and infrared range. To clarify the role of the dopands we perform ab initiocalculations. We discuss the electronic structure and present optical spectra obtained in the independent particle approximation. We argue that the gross spectral features of Co- and Ni-doped Al2O3 samples are described by our model, while the validity of the approach is limited for Cr-doped Al2O3.

  1. IMPROVING THE TRANSMISSION PERFORMANCE BASED ON MINIMIZING ENERGY IN MOBILE ADHOC NETWORKS

    Directory of Open Access Journals (Sweden)

    Gundala Swathi

    2015-06-01

    Full Text Available Networking is collectively no of mobile nodes allocate users to correctly detect a distant environment. These wireless mobile networks want strong but simple, scalable, energy efficient and also self organize routing algorithms. In Mobile technology small quantity of power electronics and less power radio frequency have permit the expansion of small, comparatively economical and less power nodes, are associated in a wireless mobile networkIn this study we proposed method are: energy effectiveness, energetic occurrence zone and multiple hop TRANSMIT, taking into concern between the energy of transmit nodes and distance from the transmit node to the trusted neighbor node, link weight energy utilization and distance are measured as most important constraint for decide on greatest possible path from Zone Head (ZH to the neighbor node. In this we use the different constraints and lessen the quantity of distribution messages during the Transmit node choice point to decrease the energy utilization of the complete network.

  2. An energy-efficient transmission scheme for real-time data in wireless sensor networks.

    Science.gov (United States)

    Kim, Jin-Woo; Barrado, José Ramón Ramos; Jeon, Dong-Keun

    2015-05-20

    The Internet of things (IoT) is a novel paradigm where all things or objects in daily life can communicate with other devices and provide services over the Internet. Things or objects need identifying, sensing, networking and processing capabilities to make the IoT paradigm a reality. The IEEE 802.15.4 standard is one of the main communication protocols proposed for the IoT. The IEEE 802.15.4 standard provides the guaranteed time slot (GTS) mechanism that supports the quality of service (QoS) for the real-time data transmission. In spite of some QoS features in IEEE 802.15.4 standard, the problem of end-to-end delay still remains. In order to solve this problem, we propose a cooperative medium access scheme (MAC) protocol for real-time data transmission. We also evaluate the performance of the proposed scheme through simulation. The simulation results demonstrate that the proposed scheme can improve the network performance.

  3. Cryogenic Fiber Optic Sensors for Superconducting Magnets and Power Transmission Lines in High Energy Physics Applications

    CERN Document Server

    AUTHOR|(CDS)2081689; Bajko, Marta

    In the framework of the Luminosity upgrade of the Large Hadron Collider (HL - LHC), a remarkable R&D effort is now ongoing at the European Organization for Nuclear Research (CERN) in order to develop a new generation of accelerator magnets and superconducting power transmission lines. The magnet technology will be based on Nb$_{3}$Sn enabling to operate in the 11 - 13 T range. In parallel, in order to preserve the power converters from the increasing radiation level, high power transmission lines are foreseen to feed the magnets from free - radiation zones. These will be based on high temperature superconductors cooled down with helium gas in the range 5 - 30 K. The new technologies will require advanced design and fabrication approaches as well as adapted instrumentation for monitoring both the R&D phase and operation. Resistive sensors have been used so far for voltage, temperature and strain monitoring but their integration still suffers from the number of electrical wires and the complex compensat...

  4. European concerted action on offshore wind energy deployment: inventory and analysis of power transmission barriers in eight member states

    International Nuclear Information System (INIS)

    Woyte, Achim; Gardner, Paul; Snodin, Helen

    2007-01-01

    The European Concerted Action for Offshore Wind Energy Deployment (COD) was carried out by eight sea-bordering European Union member states, with the objective to remove not explicitly technical barriers to offshore wind energy. Within the COD, an inventory of relevant aspects affecting the grid integration of offshore wind energy on a large scale in the eight countries has been made. Collected data items for this inventory are national plans and prospects for offshore wind energy, information about the transmission system, possibilities for grid connection, aspects of the grid codes, balancing, connection and energy pricing. The comprehensive COD reports were published and presented in October 2005 during the Copenhagen Offshore wind conference. This paper provides a short description of the situation for each country. Thereafter, country-specific information is grouped based on geography and membership in a synchronous zone. Additionally, a view is developed on the desirable facilities for the trans-European exchange of power from large wind farms. Finally, we elaborate overall conclusions in order to arrive at generalized observations, recommendations for policy makers and issues that will emerge in the near future. As a general conclusion, many things need to be done on a technical level in order to integrate large amounts of offshore wind power into our power systems. However, none of these measures is technically unknown. Therefore, the feasibility of integrating large amounts of offshore wind power is mainly a question of finance and hence based on political decisions. (Author)

  5. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yasaman Samei

    2008-08-01

    Full Text Available Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN. With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture. This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  6. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks.

    Science.gov (United States)

    Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman

    2008-08-04

    Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  7. Optimizing Transmission and Shutdown for Energy-Efficient Real-time Packet Scheduling in Clustered Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Rajkumar Ragunathan

    2005-01-01

    Full Text Available Energy efficiency is imperative to enable the deployment of ad hoc networks. Conventional power management focuses independently on the physical or MAC layer and approaches differ depending on the abstraction level. At the physical layer, the fundamental tradeoff between transmission rate and energy is exploited, which leads to transmit as slow as possible. At MAC level, power reduction techniques aim to transmit as fast as possible to maximize the radios power-off interval. The two approaches seem conflicting and it is not obvious which one is the most appropriate. We propose a transmission strategy that optimally mixes both techniques in a multiuser context. We present a cross-layer solution considering the transceiver power characteristics, the varying system load, and the dynamic channel constraints. Based on this, we derive a low-complexity online scheduling algorithm. Results considering an -ary quadrature amplitude modulation radio show that for a range of scenarios a large power reduction is achieved, compared to the case where only scaling or shutdown is considered.

  8. Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower

    International Nuclear Information System (INIS)

    Ma, Peizheng; Wang, Lin-Shu; Guo, Nianhua

    2014-01-01

    Highlights: • Investigated cooling of thermally homeostatic buildings in 7 U.S. cities by modeling. • Natural energy is harnessed by cooling tower to extract heat for building cooling. • Systematically studied possibility and conditions of using cooling tower in buildings. • Diurnal ambient temperature amplitude is taken into account in cooling tower cooling. • Homeostatic building cooling is possible in locations with large ambient T amplitude. - Abstract: A case is made that while it is important to mitigate dissipative losses associated with heat dissipation and mechanical/electrical resistance for engineering efficiency gain, the “architect” of energy efficiency is the conception of best heat extraction frameworks—which determine the realm of possible efficiency. This precept is applied to building energy efficiency here. Following a proposed process assumption-based design method, which was used for determining the required thermal qualities of building thermal autonomy, this paper continues this line of investigation and applies heat extraction approach investigating the extent of building partial homeostasis and the possibility of full homeostasis by using cooling tower in one summer in seven selected U.S. cities. Cooling tower heat extraction is applied parametrically to hydronically activated radiant-surfaces model-buildings. Instead of sizing equipment as a function of design peak hourly temperature as it is done in heat balance design-approach of selecting HVAC equipment, it is shown that the conditions of using cooling tower depend on both “design-peak” daily-mean temperature and the distribution of diurnal range in hourly temperature (i.e., diurnal temperature amplitude). Our study indicates that homeostatic building with natural cooling (by cooling tower alone) is possible only in locations of special meso-scale climatic condition such as Sacramento, CA. In other locations the use of cooling tower alone can only achieve homeostasis

  9. Energy and angular distribution of electrons after transmission of thick layers

    International Nuclear Information System (INIS)

    Kreyling, H.

    1975-01-01

    In this work, the behaviour of electrons going through material-layers is studied. For a layer-thickness where the theories of multiple-scattering are no longer valid, a Monte-Carlo-method is presented for the calculation of energy distributions as a function of scattering-angle. Plastic-scintillator-material (NE 102 A produced by Nuclear Enterprises Ltd.) was bombarded by electrons with energies between 0.5 and 2.0 MeV and the energy-distributions of the electrons, scatterd in the layer, were measured as a function of the scattering-angle. With the aid of the Monte-Carlo-method developed in this paper, energy distributions were calculated as a function of scattering-angle for the two absorber materials aluminium (single-element material) and NE 102 A (chemical compound of C, N, H, O). (orig./WL) [de

  10. Lost in transmission : a comprehensive critique of the BC energy plan

    International Nuclear Information System (INIS)

    Shaffer, M.; Hove, J.; Yamashita, J.

    2007-06-01

    This document presented an independent critique and review of the British Columbia (BC) 2007 energy plan. The critique focused on BC hydro-related policies in the energy plan, and was presented in three policy papers. The first paper addressed self-sufficiency and insurance issues. It examined the need for new sources of electricity supply in terms of imports and other market purchases that are currently used to meet BC Hydro's requirements. The second paper addressed BC Hydro electricity rates and the impacts and costs of buying high and selling low. It identified the impacts and costs of the low electricity rate policy in the energy plan, a policy that would inflate the demand for electricity and exaggerate the need for new sources of power caused by the self-sufficiency and insurance policies in the energy plan. Specifically, the second paper discussed BC Hydro rates under the energy plan, the limitations of power smart programs, distributional issues and alternative strategy. The third paper addressed supply issues in the energy plan, with particular reference to targeting low value/high cost resources. It focused on the types of resources BC Hydro had to acquire. It specifically addressed the pressure to acquire run-of-river and wind energy which, despite their superficial appeal, are low in value and high in cost, and could have significant environmental impact. It was concluded that despite the attempt to address environmental concerns, the province's energy plan is designed to artificially increase the market for new independent power producer supply. 76 refs., 9 tabs., 4 figs

  11. Energy-Efficient Data Gathering Scheme Based on Broadcast Transmissions in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Soobin Lee

    2013-01-01

    previous works have proposed ideas that reduce the energy consumption of the network by exploiting the spatial correlation between sensed information. In this paper, we propose a distributed data compression framework that exploits the broadcasting characteristic of the wireless medium to improve energy efficiency. We analyze the performance of the proposed framework numerically and compare it with the performance of previous works using simulation. The proposed scheme performs better when the sensing information is correlated.

  12. Gas Regional Initiative. North West Regional Energy Market. Transmission Transparency Project. First Implementation Report

    International Nuclear Information System (INIS)

    2008-07-01

    The purpose of this report is to comment on the implementation of the TSO Transmission Transparency Project. In December 2007 sixteen TSOs presented a project plan which committed them to publishing information on capacity availability and gas flows at crossborder interconnection points in the North-West gas region. The data types to be published were agreed between TSOs and network users. It was agreed that TSOs would release new information on capacity and actual gas flows at crossborder interconnection points. The TSOs have committed to publishing the agreed information by three project milestones May, September or December 2008. At the end of May 2008 the TSOs submitted initial data to Ofgem (Office of the Gas and Electricity Markets) on implementation. This report presents the data submitted by the TSOs, provides comment on implementation progress and explains the next steps. This report does not approve or guarantee the accuracy of the data submitted by TSOs

  13. Evaluation of energy saving tasks performed by the energy transmission and distribution companies; Denmark; Evaluering af energiselskabernes energibespareaktiviteter

    Energy Technology Data Exchange (ETDEWEB)

    Togeby, M. (Ea Energianalyse A/S, Copenhagen (Denmark))

    2012-05-15

    The evaluation is described in the Agreement of 20 November 2009 between the Danish Climate and Energy Minister and the distribution companies for electricity, natural gas, district heating and oil about the companies' future energy conservation efforts. The evaluation was conducted to provide recommendations for adjusting the system. The results of the evaluation show that energy companies and utilities meet the overall savings obligation. In 2011, 2,098 GWh savings are recorded, which is more than the obligation. The evaluation shows that the net effect is about 760 GWh (36%). When looking at types of energy companies, then the oil companies' activities generally have a low net effect and additionally is assessed to be low in relation to the district heating companies' renovation of the district heating network. The greatest additionally exists among large savings in the industry. The means that energy companies use to achieve savings obligations are significantly different today than a few years ago. Today there are grants for more than 85% of registered savings. Before 2006 primarily information and advice was used. Thus an estimated 400 million DKK annually is used for grants. Socio-economics is positive for the part of the effort that is aimed at businesses. The socio-economic value of the savings is calculated to be twice as large as the total cost when you only look at the industry. The system can thus be readily seen as a useful instrument to promote energy conservation in industry. For households, it is estimated that the net effect is 20% of the reported savings, while for industry the net effect is estimated to be 45%. Also, for renovations of the heat distribution networks the net effect is estimated to be low. (LN)

  14. An Energy-Efficient Link Layer Protocol for Reliable Transmission over Wireless Networks

    Directory of Open Access Journals (Sweden)

    Iqbal Adnan

    2009-01-01

    Full Text Available In multihop wireless networks, hop-by-hop reliability is generally achieved through positive acknowledgments at the MAC layer. However, positive acknowledgments introduce significant energy inefficiencies on battery-constrained devices. This inefficiency becomes particularly significant on high error rate channels. We propose to reduce the energy consumption during retransmissions using a novel protocol that localizes bit-errors at the MAC layer. The proposed protocol, referred to as Selective Retransmission using Virtual Fragmentation (SRVF, requires simple modifications to the positive-ACK-based reliability mechanism but provides substantial improvements in energy efficiency. The main premise of the protocol is to localize bit-errors by performing partial checksums on disjoint parts or virtual fragments of a packet. In case of error, only the corrupted virtual fragments are retransmitted. We develop stochastic models of the Simple Positive-ACK-based reliability, the previously-proposed Packet Length Optimization (PLO protocol, and the SRVF protocol operating over an arbitrary-order Markov wireless channel. Our analytical models show that SRVF provides significant theoretical improvements in energy efficiency over existing protocols. We then use bit-error traces collected over different real networks to empirically compare the proposed and existing protocols. These experimental results further substantiate that SRVF provides considerably better energy efficiency than Simple Positive-ACK and Packet Length Optimization protocols.

  15. Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability.

    Science.gov (United States)

    Wang, Jake X; Smith, Joshua R; Bonde, Pramod

    2014-04-01

    Left ventricular assist device therapy has radically improved congestive heart failure survival with smaller rotary pumps. The driveline used to power today's left ventricular assist devices, however, continues to be a source of infection, traumatic damage, and rehospitalization. Previous attempts to wirelessly power left ventricular assist devices using transcutaneous energy transfer systems have been limited by restrictions on separation distance and alignment between the transmit and receive coils. Resonant electrical energy transfer allows power delivery at larger distances without compromising safety and efficiency. This review covers the efforts to wirelessly power mechanical circulatory assist devices and the progress made in enhancing their energy sources. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Space power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Kuribayashi, Shizuma [Mitsubishi Heavy Industries, Ltd., Tokyo, (Japan)

    1989-10-05

    There being a conception to utilize solar energy by use of a space power station (SPS), a method to bring that universal grace to mankind is wireless energy transmission. The wireless energy transmission is regarded to be microwave transmission or laser beam transmission. The microwave transmission is to transmit 2.45GHz band microwave from the SPS to a receiving station on the ground to meet power demand on earth. The microwave, as small in attenuation in atmosphere and resistant against rain and cloud, is made candidate and, however, problematic in influence on organism, necessary large area of receiving antenna and many other points to be studied. While the laser transmission, as more convergent of beam than the microwave transmission, is advantageous with enabling the receiving area to be small and, however, disadvantageous with being not resistant against dust, rain and cloud, if used for the energy transmission between the space and earth. 2 refs., 2 figs.

  17. Electrical transmission

    Energy Technology Data Exchange (ETDEWEB)

    Sayers, D P

    1960-05-01

    After briefly tracing the history of electricity transmission, trends in high voltage transmission and experiments being conducted on 650 kV are discussed. 5000 miles of the U.K. grid are operated at 132 kV and 1000 at 275 kV, ultimately to provide a super grid at 380 kV. Problems are insulation, radio interference and the cost of underground lines (16 times that of overhead lines). Also considered are the economics of the grid as a means of transporting energy and as a means of spreading the peak load over the power stations in the most efficient manner. Finally, the question of amenities is discussed.

  18. Link Quality-Based Transmission Power Adaptation for Reduction of Energy Consumption and Interference

    NARCIS (Netherlands)

    Zhou, J.; Jacobsson, M.; Niemegeers, I.

    2010-01-01

    Today, many wireless devices are mobile and battery powered. Based on the fact that battery capacity is still limited, energy saving is an important issue in wireless communication.Meanwhile, the number of wireless devices continues to increase and this creates interference problems between wireless

  19. High speed optical wireless data transmission system for particle sensors in high energy physics

    Science.gov (United States)

    Ali, W.; Corsini, R.; Ciaramella, E.; Dell'Orso, R.; Messineo, A.; Palla, F.

    2015-08-01

    High speed optical fiber or copper wire communication systems are frequently deployed for readout data links used in particle physics detectors. Future detector upgrades will need more bandwidth for data transfer, but routing requirements for new cables or optical fiber will be challenging due to space limitations. Optical wireless communication (OWC) can provide high bandwidth connectivity with an advantage of reduced material budget and complexity of cable installation and management. In a collaborative effort, Scuola Superiore Sant'Anna and INFN Pisa are pursuing the development of a free-space optical link that could be installed in a future particle physics detector or upgrade. We describe initial studies of an OWC link using the inner tracker of the Compact Muon Solenoid (CMS) detector as a reference architecture. The results of two experiments are described: the first to verify that the laser source transmission wavelength of 1550 nm will not introduce fake signals in silicon strip sensors while the second was to study the source beam diameter and its tolerance to misalignment. For data rates of 2.5 Gb/s and 10 Gb/s over a 10 cm working distance it was observed that a tolerance limit of ±0.25 mm to ±0.8 mm can be obtained for misaligned systems with source beam diameters of 0.38 mm to 3.5 mm, respectively.

  20. Characterisation of nano-structured titanium and aluminium nitride coatings by indentation, transmission electron microscopy and electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Girleanu, M., E-mail: maria.girleanu@uha.fr [Mecanique, Materiaux et Procedes de Fabrication, LPMT (EA CNRS 4365), Universite de Haute Alsace, 61 rue Albert Camus, F-68093 Mulhouse (France); Pac, M.-J.; Louis, P. [Mecanique, Materiaux et Procedes de Fabrication, LPMT (EA CNRS 4365), Universite de Haute Alsace, 61 rue Albert Camus, F-68093 Mulhouse (France); Ersen, O.; Werckmann, J. [Departement Structures et Interfaces, IPCMS (UMR CNRS 7504), Universite de Strasbourg, 23 rue du Loess, F-67087 Strasbourg (France); Rousselot, C. [Departement Micro Nano Sciences et Systemes, FEMTO-ST (UMR CNRS 6174), Universite de Franche-Comte, BP 71427, F-25211 Montbeliard (France); Tuilier, M.-H. [Mecanique, Materiaux et Procedes de Fabrication, LPMT (EA CNRS 4365), Universite de Haute Alsace, 61 rue Albert Camus, F-68093 Mulhouse (France)

    2011-07-01

    Titanium and aluminium nitride Ti{sub 1-x}Al{sub x}N films deposited by radiofrequency magnetron reactive sputtering onto steel substrate are examined by transmission electron microscopy over all the range of composition (x = 0, 0.5, 0.68, 0.86, 1). The deposition parameters are optimised in order to grow nitride films with low stress over all the composition range. Transmission electron microscopy cross-section images of Vickers indentation prints performed on that set of coatings show the evolution of their damage behaviour as increasing x Al content. Cubic Ti-rich nitrides consist of small grains clustered in rather large columns sliding along each other during indentation. Hexagonal Al-rich films grow in thinner columns which can be bent under the Vickers tip. Indentation tests carried out on TiN and AlN films are simulated using finite element modelling. Particular aspects of shear stresses and displacements in the coating/substrate are investigated. The growth mode and the nanostructure of two typical films, TiN and Ti{sub 0.14}Al{sub 0.86}N, are studied in detail by combining transmission electron microscopy cross-sections and plan views. Electron energy loss spectrum taken across Ti{sub 0.14}Al{sub 0.86}N film suggests that a part of nitrogen atoms is in cubic-like local environment though the lattice symmetry of Al-rich coatings is hexagonal. The poorly crystallised domains containing Ti and N atoms in cubic-like environment are obviously located in grain boundaries and afford protection of the coating against cracking.

  1. Characterisation of nano-structured titanium and aluminium nitride coatings by indentation, transmission electron microscopy and electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Girleanu, M.; Pac, M.-J.; Louis, P.; Ersen, O.; Werckmann, J.; Rousselot, C.; Tuilier, M.-H.

    2011-01-01

    Titanium and aluminium nitride Ti 1-x Al x N films deposited by radiofrequency magnetron reactive sputtering onto steel substrate are examined by transmission electron microscopy over all the range of composition (x = 0, 0.5, 0.68, 0.86, 1). The deposition parameters are optimised in order to grow nitride films with low stress over all the composition range. Transmission electron microscopy cross-section images of Vickers indentation prints performed on that set of coatings show the evolution of their damage behaviour as increasing x Al content. Cubic Ti-rich nitrides consist of small grains clustered in rather large columns sliding along each other during indentation. Hexagonal Al-rich films grow in thinner columns which can be bent under the Vickers tip. Indentation tests carried out on TiN and AlN films are simulated using finite element modelling. Particular aspects of shear stresses and displacements in the coating/substrate are investigated. The growth mode and the nanostructure of two typical films, TiN and Ti 0.14 Al 0.86 N, are studied in detail by combining transmission electron microscopy cross-sections and plan views. Electron energy loss spectrum taken across Ti 0.14 Al 0.86 N film suggests that a part of nitrogen atoms is in cubic-like local environment though the lattice symmetry of Al-rich coatings is hexagonal. The poorly crystallised domains containing Ti and N atoms in cubic-like environment are obviously located in grain boundaries and afford protection of the coating against cracking.

  2. Reconsidering the European regulation of merchant transmission investment in light of the third energy package: The role of dominant generators

    International Nuclear Information System (INIS)

    Hauteclocque, Adrien de; Rious, Vincent

    2011-01-01

    The regulation of merchant transmission investment (MTI) has become an important issue in the EU electricity sector, subsequent to the granting of authorizations by European authorities to five merchant projects: BritNed, Estlink, the East West Cables, NorGer and recently a merchant line connecting Italy and Austria. The creation of a new Agency for the Cooperation of Energy Regulators (ACER) at the EU level, which has decision-making powers on MTI, therefore presents a unique opportunity to question and re-design the current European policy. This paper shows that the recent decisions concerning MTI may suffer a strong bias against dominant electricity generators while incumbent Transmission System Operators (TSOs) or new entrant TSOs are generally favored by national regulators and the European Commission (EC). This strategy is misguided as it fails to recognize both the new incentives of generators to develop MTI and the conflict of interest between the regulated and non-regulated activities of incumbent TSOs. Letting dominant generators undertake MTI is indeed generally beneficial as long as potential abuses of dominance are mitigated. To deter possible anti-competitive effects, we propose a new and feasible allocation of regulatory powers based on a clear demarcation between the market monitoring powers of ACER and the antitrust powers of the EC. - Highlights: → We compare TSOs and generators as merchant transmission investors in Europe. → We find a bias among regulators against the involvement of generators. → The conflict of interest with the regulated activities of TSOs is under-estimated. → Investment by generators is preferable provided market manipulation is deterred. → We propose a new allocation of regulatory powers to make it possible.

  3. Energy efficient heating and ventilation of large halls

    CERN Document Server

    Hojer, Ondrej; Kabele, Karel; Kotrbaty, Miroslav; Sommer, Klaus; Petras, Dusan

    2011-01-01

    This guidebook is focused on modern methods for design, control and operation of energy efficient heating systems in large spaces and industrial halls. The book deals with thermal comfort, light and dark gas radiant heaters, panel radiant heating, floor heating and industrial air heating systems. Various heating systems are illustrated with case studies. Design principles, methods and modeling tools are presented for various systems.

  4. Competitive energy consumption under transmission constraints in a multi-supplier power grid system

    Science.gov (United States)

    Popov, Ivan; Krylatov, Alexander; Zakharov, Victor; Ivanov, Dmitry

    2017-04-01

    Power grid architectures need to be revised in order to manage the increasing number of producers and, more generally, the decentralisation of energy production and distribution. In this work, we describe a multi-supplier multi-consumer congestion model of a power grid, where the costs of consumers depend on the congestion in nodes and arcs of the power supply network. The consumer goal is both to meet their energy demand and to minimise the costs. We show that the methods of non-atomic routing can be applied in this model in order to describe current distribution in the network. We formulate a consumer cost minimisation game for this setting, and discuss the challenges arising in equilibrium search for this game.

  5. Experimental evaluation of heat transfer coefficients between radiant ceiling and room

    DEFF Research Database (Denmark)

    Causone, Francesco; Corgnati, Stefano P.; Filippi, Marco

    2009-01-01

    The heat transfer coefficients between radiant surfaces and room are influenced by several parameters: surfaces temperature distributions, internal gains, air movements. The aim of this paper is to evaluate the heat transfer coefficients between radiant ceiling and room in typical conditions...... of occupancy of an office or residential building. Internal gains were therefore simulated using heated cylinders and heat losses using cooled surfaces. Evaluations were developed by means of experimental tests in an environmental chamber. Heat transfer coefficient may be expressed separately for radiation...

  6. Thermal Conditions in a Simulated Office Environment with Convective and Radiant Cooling Systems

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Kostov, Kalin

    2013-01-01

    velocity and turbulent intensity were measured and draft rate levels calculated in the room. Manikin-based equivalent temperature (MBET) was determined by two thermal manikins to identify the impact of the local thermal conditions generated by the studied systems on occupants’ thermal comfort. The results......The thermal conditions in a two person office room were measured with four air conditioning systems: chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and four desk partition mounted local radiant cooling panels with mixing...

  7. Three-dimensional simulation of super-radiant Smith-Purcell radiation

    International Nuclear Information System (INIS)

    Li, D.; Imasaki, K.; Yang, Z.; Park, Gun-Sik

    2006-01-01

    A simulation of coherent and super-radiant Smith-Purcell radiation is performed in the gigahertz regime using a three-dimensional particle-in-cell code. The simulation model supposes a rectangular grating to be driven by a single electron bunch and a train of periodic bunches, respectively. The true Smith-Purcell radiation is distinguished from the evanescent wave, which has an angle independent frequency lower than the minimum allowed Smith-Purcell frequency. We also find that the super-radiant radiations excited by periodic bunches are emitted at higher harmonics of the bunching frequency and at the corresponding Smith-Purcell angles

  8. Cooling load calculations of radiant and all-air systems for commercial buildings

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Bauman, Fred; Schiavon, Stefano

    The authors simulated in TRNSYS three radiant systems coupled with a 50% sized variable air volume (VAV) system and a 50% sized all-air VAV system with night ventilation. The objective of this study was to identify the differences in the cooling load profiles of the examined systems when they are......The authors simulated in TRNSYS three radiant systems coupled with a 50% sized variable air volume (VAV) system and a 50% sized all-air VAV system with night ventilation. The objective of this study was to identify the differences in the cooling load profiles of the examined systems when...

  9. Fixed, low radiant exposure vs. incremental radiant exposure approach for diode laser hair reduction: a randomized, split axilla, comparative single-blinded trial.

    Science.gov (United States)

    Pavlović, M D; Adamič, M; Nenadić, D

    2015-12-01

    Diode lasers are the most commonly used treatment modalities for unwanted hair reduction. Only a few controlled clinical trials but not a single randomized controlled trial (RCT) compared the impact of various laser parameters, especially radiant exposure, onto efficacy, tolerability and safety of laser hair reduction. To compare the safety, tolerability and mid-term efficacy of fixed, low and incremental radiant exposures of diode lasers (800 nm) for axillary hair removal, we conducted an intrapatient, left-to-right, patient- and assessor-blinded and controlled trial. Diode laser (800 nm) treatments were evaluated in 39 study participants (skin type II-III) with unwanted axillary hairs. Randomization and allocation to split axilla treatments were carried out by a web-based randomization tool. Six treatments were performed at 4- to 6-week intervals with study subjects blinded to the type of treatment. Final assessment of hair reduction was conducted 6 months after the last treatment by means of blinded 4-point clinical scale using photographs. The primary endpoint was reduction in hair growth, and secondary endpoints were patient-rated tolerability and satisfaction with the treatment, treatment-related pain and adverse effects. Excellent reduction in axillary hairs (≥ 76%) at 6-month follow-up visit after receiving fixed, low and incremental radiant exposure diode laser treatments was obtained in 59% and 67% of study participants respectively (Z value: 1.342, P = 0.180). Patients reported lower visual analogue scale (VAS) pain score on the fixed (4.26) than on the incremental radiant exposure side (5.64) (P diode laser treatments were less painful and better tolerated. © 2015 European Academy of Dermatology and Venereology.

  10. Composition measurement in substitutionally disordered materials by atomic resolution energy dispersive X-ray spectroscopy in scanning transmission electron microscopy.

    Science.gov (United States)

    Chen, Z; Taplin, D J; Weyland, M; Allen, L J; Findlay, S D

    2017-05-01

    The increasing use of energy dispersive X-ray spectroscopy in atomic resolution scanning transmission electron microscopy invites the question of whether its success in precision composition determination at lower magnifications can be replicated in the atomic resolution regime. In this paper, we explore, through simulation, the prospects for composition measurement via the model system of Al x Ga 1-x As, discussing the approximations used in the modelling, the variability in the signal due to changes in configuration at constant composition, and the ability to distinguish between different compositions. Results are presented in such a way that the number of X-ray counts, and thus the expected variation due to counting statistics, can be gauged for a range of operating conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. 16 CFR Figure 4 to Subpart A of... - Flooring Radiant Panel Tester Schematic Low Flux End, Elevation

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flooring Radiant Panel Tester Schematic Low Flux End, Elevation 4 Figure 4 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY... Standard Pt. 1209, Subpt. A, Fig. 4 Figure 4 to Subpart A of Part 1209—Flooring Radiant Panel Tester...

  12. A new transmission based monochromator for energy-selective neutron imaging at the ICON beamline

    International Nuclear Information System (INIS)

    Peetermans, S.; Tamaki, M.; Hartmann, S.; Kaestner, A.; Morgano, M.; Lehmann, E.H.

    2014-01-01

    A new type of monochromator has been developed for energy-selective neutron imaging at continuous sources. It combines the use of a mechanical neutron velocity selector with pyrolytic graphite crystals of different mosaicity. The beam can be monochromatized to similar levels as a standard double crystal monochromator. It can flexibly produce different desired spectral shapes, even an asymmetric one. Intrinsically, no higher order contamination of the spectrum is present. Working with the transmitted beam, the beam divergence (and thus the spatial resolution) is uncompromised. The device has been calibrated, characterized and its performance demonstrated with the measurement of Bragg edges for iron and lead, resolving them more sharply than if solely a mechanical velocity selector was used

  13. Radiant and convective heat transfer for flow of a transparent gas in a short tube with prescribed sinusoidal wall heat flux

    International Nuclear Information System (INIS)

    de Lemos, M.J.S.

    1982-01-01

    The present analysis accounts for radiant and convective heat transfer for a transparent fluid flowing in a short tube with prescribed wall heat flux. The heat flux distribution used was of sine shape with maximum at the middle of the tube. Such a solution is the approximate one for axial power in a nuclear reactor. The solutions for the tube wall and gas bulk temperatures were obtained by successive substitutions for the wall and gas balance energy equations. The results show a decrease of 30% for the maximum wall temperature using black surface (e = 1). In this same case, the increasing in the gas temperature shows a decrease of 58%

  14. Calculation codes for radiant heat transfers; Les codes de calcul de rayonnement thermique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This document reports on 12 papers about computerized simulation and modeling of radiant heat transfers and fluid flows in various industrial and domestic situations: space heating, metal industry (furnaces, boilers..), aerospace industry (turbojet engines, combustion chambers) etc.. This workshop was organized by the ``radiation`` section of the French society of thermal engineers. (J.S.)

  15. Present and projected future mean radiant temperature for three European cities

    Science.gov (United States)

    Thorsson, Sofia; Rayner, David; Lindberg, Fredrik; Monteiro, Ana; Katzschner, Lutz; Lau, Kevin Ka-Lun; Campe, Sabrina; Katzschner, Antje; Konarska, Janina; Onomura, Shiho; Velho, Sara; Holmer, Björn

    2017-09-01

    Present-day and projected future changes in mean radiant temperature, T mrt in one northern, one mid-, and one southern European city (represented by Gothenburg, Frankfurt, and Porto), are presented, and the concept of hot spots is adopted. Air temperature, T a , increased in all cities by 2100, but changes in solar radiation due to changes in cloudiness counterbalanced or exacerbated the effects on T mrt. The number of days with high T mrt in Gothenburg was relatively unchanged at the end of the century (+1 day), whereas it more than doubled in Frankfurt and tripled in Porto. The use of street trees to reduce daytime radiant heat load was analyzed using hot spots to identify where trees could be most beneficial. Hot spots, although varying in intensity and frequency, were generally confined to near sunlit southeast-southwest facing walls, in northeast corner of courtyards, and in open spaces in all three cities. By adding trees in these spaces, the radiant heat load can be reduced, especially in spaces with no or few trees. A set of design principles for reducing the radiant heat load is outlined based on these findings and existing literature.

  16. Calculation codes for radiant heat transfers; Les codes de calcul de rayonnement thermique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This document reports on 12 papers about computerized simulation and modeling of radiant heat transfers and fluid flows in various industrial and domestic situations: space heating, metal industry (furnaces, boilers..), aerospace industry (turbojet engines, combustion chambers) etc.. This workshop was organized by the ``radiation`` section of the French society of thermal engineers. (J.S.)

  17. Applicability of meteor radiant determination methods depending on orbit type. I. High-eccentric orbits

    Science.gov (United States)

    Svoren, J.; Neslusan, L.; Porubcan, V.

    1993-07-01

    It is evident that there is no uniform method of calculating meteor radiants which would yield reliable results for all types of cometary orbits. In the present paper an analysis of this problem is presented, together with recommended methods for various types of orbits. Some additional methods resulting from mathematical modelling are presented and discussed together with Porter's, Steel-Baggaley's and Hasegawa's methods. In order to be able to compare how suitable the application of the individual radiant determination methods is, it is necessary to determine the accuracy with which they approximate real meteor orbits. To verify the accuracy with which the orbit of a meteoroid with at least one node at 1 AU fits the original orbit of the parent body, we applied the Southworth-Hawkins D-criterion (Southworth, R.B., Hawkins, G.S.: 1963, Smithson. Contr. Astrophys 7, 261). D0.2 the fit is rather poor and the change of orbit unrealistic. The optimal methods with the smallest values of D for given types of orbits are shown in two series of six plots. The new method of rotation around the line of apsides we propose is very appropriate in the region of small inclinations. There is no doubt that Hasegawa's omega-adjustment method (Hasegawa, I.: 1990, Publ. Astron. Soc. Japan 42, 175) has the widest application. A comparison of the theoretical radiants with the observed radiants of seven known meteor showers is also presented.

  18. Theoretical Analysis of Interferometer Wave Front Tilt and Fringe Radiant Flux on a Rectangular Photodetector

    Directory of Open Access Journals (Sweden)

    Franz Konstantin Fuss

    2013-09-01

    Full Text Available This paper is a theoretical analysis of mirror tilt in a Michelson interferometer and its effect on the radiant flux over the active area of a rectangular photodetector or image sensor pixel. It is relevant to sensor applications using homodyne interferometry where these opto-electronic devices are employed for partial fringe counting. Formulas are derived for radiant flux across the detector for variable location within the fringe pattern and with varying wave front angle. The results indicate that the flux is a damped sine function of the wave front angle, with a decay constant of the ratio of wavelength to detector width. The modulation amplitude of the dynamic fringe pattern reduces to zero at wave front angles that are an integer multiple of this ratio and the results show that the polarity of the radiant flux changes exclusively at these multiples. Varying tilt angle causes radiant flux oscillations under an envelope curve, the frequency of which is dependent on the location of the detector with the fringe pattern. It is also shown that a fringe count of zero can be obtained for specific photodetector locations and wave front angles where the combined effect of fringe contraction and fringe tilt can have equal and opposite effects. Fringe tilt as a result of a wave front angle of 0.05° can introduce a phase measurement difference of 16° between a photodetector/pixel located 20 mm and one located 100 mm from the optical origin.

  19. Experimental and numerical analysis of air and radiant cooling systems in offices

    DEFF Research Database (Denmark)

    Corgnati, S. P.; Perino, M.; Fracastoro, G. V.

    2009-01-01

    This paper analyses office cooling systems based on all air mixing ventilation systems alone or coupled with radiant ceiling panels. This last solution may be effectively applied to retrofit all air systems that are no longer able to maintain a suitable thermal comfort in the indoor environment, ...

  20. Short-Circuit Fault Detection and Classification Using Empirical Wavelet Transform and Local Energy for Electric Transmission Line.

    Science.gov (United States)

    Huang, Nantian; Qi, Jiajin; Li, Fuqing; Yang, Dongfeng; Cai, Guowei; Huang, Guilin; Zheng, Jian; Li, Zhenxin

    2017-09-16

    In order to improve the classification accuracy of recognizing short-circuit faults in electric transmission lines, a novel detection and diagnosis method based on empirical wavelet transform (EWT) and local energy (LE) is proposed. First, EWT is used to deal with the original short-circuit fault signals from photoelectric voltage transformers, before the amplitude modulated-frequency modulated (AM-FM) mode with a compactly supported Fourier spectrum is extracted. Subsequently, the fault occurrence time is detected according to the modulus maxima of intrinsic mode function (IMF₂) from three-phase voltage signals processed by EWT. After this process, the feature vectors are constructed by calculating the LE of the fundamental frequency based on the three-phase voltage signals of one period after the fault occurred. Finally, the classifier based on support vector machine (SVM) which was constructed with the LE feature vectors is used to classify 10 types of short-circuit fault signals. Compared with complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and improved CEEMDAN methods, the new method using EWT has a better ability to present the frequency in time. The difference in the characteristics of the energy distribution in the time domain between different types of short-circuit faults can be presented by the feature vectors of LE. Together, simulation and real signals experiment demonstrate the validity and effectiveness of the new approach.

  1. Energy transmission transformer for a wireless capsule endoscope: analysis of specific absorption rate and current density in biological tissue.

    Science.gov (United States)

    Shiba, Kenji; Nagato, Tomohiro; Tsuji, Toshio; Koshiji, Kohji

    2008-07-01

    This paper reports on the electromagnetic influences on the analysis of biological tissue surrounding a prototype energy transmission system for a wireless capsule endoscope. Specific absorption rate (SAR) and current density were analyzed by electromagnetic simulator in a model consisting of primary coil and a human trunk including the skin, fat, muscle, small intestine, backbone, and blood. First, electric and magnetic strength in the same conditions as the analytical model were measured and compared to the analytical values to confirm the validity of the analysis. Then, SAR and current density as a function of frequency and output power were analyzed. The validity of the analysis was confirmed by comparing the analytical values with the measured ones. The SAR was below the basic restrictions of the International Commission on Nonionizing Radiation Protection (ICNIRP). At the same time, the results for current density show that the influence on biological tissue was lowest in the 300-400 kHz range, indicating that it was possible to transmit energy safely up to 160 mW. In addition, we confirmed that the current density has decreased by reducing the primary coil's current.

  2. Characteristics of infrared thermometers manufactured in Japan and calibration methods for sky radiant emittance

    International Nuclear Information System (INIS)

    Wang, X.; Horiguchi, I.; Machimura, T.

    1993-01-01

    Infrared thermometers to measure surface temperature have been increasingly adopted in recent years. The characteristics of the IR thermometer, however, are not well known.IR thermometers manufactured in Japan systematically adjust for ambient radiation based on the internal temperature of the thermometer. If, therefore, there is a large difference between the internal temperature of the IR thermometer and the apparent temperature associated with the surrounding radiation, a large error will be induced into the measured surface temperature.The purpose of our research was to determine the characteristics and measurement errors of IR thermometers. Experiments were performed with regard to the following items: (1) Measurement errors related to the internal temperature of the IR thermometer. (2) Linearity of the output signal of the IR thermometer. (3) Response of the output signal to changes in the emissivity setting. (4) Effect of sky radiant emittance on the measured surface temperature. (5) Calibration method for the terrestrial surface.The following is a summary of the results: Measurement error is affected by the internal temperature of the IR thermometer. Measurement accuracy is improved with a controlled internal temperature of 20-30°C. The measurement error becomes larger at emissivity settings under 0.7.The measurement error outdoors was not proportional to the downward longwave radiation, but to the sky radiant temperature measured by the IR thermometer. Calibration for sky radiant emittance was improved by using the difference between sky radiant temperature and air temperature.When the surface temperature measured by the infrared thermometer is plotted against the surface temperature measured by thermocouple, the sky radiant emittance error is obtained from the Y intercept. Additionally, the difference between true temperature and output of the IR thermometer for a reference plate was compared to that obtained for vegetation, and the RMS obtained was

  3. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise.

    Science.gov (United States)

    Guéritée, Julien; Tipton, Michael J

    2015-02-01

    The aims of the present work were to investigate the relationships between radiant heat load, air velocity and body temperatures with or without coincidental exercise to determine the physiological mechanisms that drive thermal comfort and thermoregulatory behaviour. Seven male volunteers wearing swimming trunks in 18°C, 22°C or 26°C air were exposed to increasing air velocities up to 3 m s(-1) and self-adjusted the intensity of the direct radiant heat received on the front of the body to just maintain overall thermal comfort, at rest or when cycling (60 W, 60 rpm). During the 30 min of the experiments, skin and rectal temperatures were continuously recorded. We hypothesized that mean body temperature should be maintained stable and the intensity of the radiant heat and the mean skin temperatures would be lower when cycling. In all conditions, mean body temperature was lower when facing winds of 3 m s(-1) than during the first 5 min, without wind. When facing winds, in all but the 26°C air, the radiant heat was statistically higher at rest than when exercising. In 26°C air mean skin temperature was lower at rest than when exercising. No other significant difference was observed. In all air temperatures, high correlation coefficients were observed between the air velocity and the radiant heat load. Other factors that we did not measure may have contributed to the constant overall thermal comfort status despite dropping mean skin and body temperatures. It is suggested that the allowance to behaviourally adjust the thermal environment increases the tolerance of cold discomfort. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. On the Role of Minor Branches, Energy Dissipation, and Small Defects in the Transient Response of Transmission Mains

    Directory of Open Access Journals (Sweden)

    Silvia Meniconi

    2018-02-01

    Full Text Available In the last decades several reliable technologies have been proposed for fault detection in water distribution networks (DNs, whereas there are some limitations for transmission mains (TMs. For TM inspection, the most common fault detection technologies are of inline types—with sensors inserted into the pipelines—and then more expensive with respect to those used in DNs. An alternative to in-line sensors is given by transient test-based techniques (TTBTs, where pressure waves are injected in pipes “to explore” them. On the basis of the results of some tests, this paper analyses the relevance of the system configuration, energy dissipation phenomena, and pipe material characteristics in the transient behavior of a real TM. With this aim, a numerical model has been progressively refined not only in terms of the governing equations but also by including a more and more realistic representation of the system layout and taking into account the actual functioning conditions. As a result, the unexpected role of the minor branches—i.e., pipes with a length smaller than the 1% of the length of the main pipe—is pointed out and a preliminary criterion for the system skeletonization is offered. Moreover, the importance of both unsteady friction and viscoelasticity is evaluated as well as the remarkable effects of small defects is highlighted.

  5. Freeform Lens Design for Scattering Data with General Radiant Fields

    Science.gov (United States)

    Gutiérrez, Cristian E.; Sabra, Ahmad

    2018-05-01

    We show the existence of a lens, when its lower face is given, such that it refracts radiation emanating from a planar source, with a given field of directions, into the far field that preserves a given distribution of energies. Conditions are shown under which the lens obtained is physically realizable. It is shown that the upper face of the lens satisfies a pde of Monge-Ampère type.

  6. Theoretical study of the transmission of low-energy (0-10 eV) electrons through thin-film organic molecular solids: benzene

    International Nuclear Information System (INIS)

    Goulet, T.; Jay-Gerin, J.-P.

    1986-01-01

    A theoretical study of the transmission of low-energy (0 to 10 eV) electrons incident from vacuum through thin-film organic molecular solids deposited on a cold metal substrate is presented and developed for the specific case of solid benzene. In essence, using a semiclassical description of electron transport in solids with an energy-independent scattering mean free path and assuming an isotropic electron scattering, the behavior of a penetrating electron in the film is simulated when a large number of scattering events are present. The good agreement between the calculated electron transmission spectra and those obtained experimentally indicates that our study provides a realistic description of the electron transport in the film, and accounts for the influence of the various electron-molecule scattering processes upon the energy dependence of the transmitted current. In particular, we show that the excitonic subionization energy losses are at the origin of the main structures of the observed electron transmission spectra. It is also shown that our study can successfully be used to estimate the probabilities of the various electron scattering processes which occur in the film, as well as the electron mean free path (l). For solid benzene, l is about 8 A in the considered electron energy range. (author)

  7. Super-radiant Smith–Purcell radiation from periodic line charges

    International Nuclear Information System (INIS)

    Li, D.; Hangyo, M.; Tsunawaki, Y.; Yang, Z.; Wei, Y.; Miyamoto, S; Asakawa, M.R.; Imasaki, K.

    2012-01-01

    Smith–Purcell radiation occurs when an electron passes close to the surface of a metallic grating. The radiation becomes coherent when the length of the electron bunch is smaller than the wavelength of the radiation. A train of periodic bunches can enhance the spectral intensity by changing the angular and spectral distribution of the radiation. This is called super-radiant Smith–Purcell radiation, and has been observed in experiments and particle-in-cell simulations. In this paper, we introduce a new method to study this effect by calculating the reflected waves of an incident evanescent wave from periodic line charges. The reflection coefficients are numerically computed, and the spectral distributions of the super-radiant radiation are demonstrated. These analytical results are in agreement with those obtained through part-in-cell simulations.

  8. Study of thermosiphon and radiant panel passive heating systems for metal buildings

    Energy Technology Data Exchange (ETDEWEB)

    Biehl, F.A.; Schnurr, N.M.; Wray, W.O.

    1983-01-01

    A study of passive-heating systems appropriate for use on metal buildings is being conducted at Los Alamos National Laboratory for the Naval Civil Engineering Laboratory, Port Hueneme, California. The systems selected for study were chosen on the basis of their appropriateness for retrofit applications, although they are also suitable for new construction: simple radiant panels that communicate directly with the building interior and a backflow thermosiphon that provides heat indirectly.

  9. Free of pollution gas - an utopia or attainable goal? Gas radiant burner with a small capacity

    International Nuclear Information System (INIS)

    Hofbauer, P.; Bornscheuer, W.

    1993-01-01

    The firm Viessmann has developed a gas radiant burner for boiler capacities up to 100 kN combusting gas with extremely low pollutant emissions. This is possible since from the reaction zone a considerable part of the combustion heat is delivered through radiation by means of a glowing special steel structure. The theoretical fundamentals are explained by means of considerations regarding the equilibrium and a reaction kinetic numerical model. (orig.) [de

  10. Effects of cryogen spray cooling and high radiant exposures on selective vascular injury during laser irradiation of human skin.

    Science.gov (United States)

    Tunnell, James W; Chang, David W; Johnston, Carol; Torres, Jorge H; Patrick, Charles W; Miller, Michael J; Thomsen, Sharon L; Anvari, Bahman

    2003-06-01

    Increasing radiant exposure offers a means to increase treatment efficacy during laser-mediated treatment of vascular lesions, such as port-wine stains; however, excessive radiant exposure decreases selective vascular injury due to increased heat generation within the epidermis and collateral damage to perivascular collagen. To determine if cryogen spray cooling could be used to maintain selective vascular injury (ie, prevent epidermal and perivascular collagen damage) when using high radiant exposures (16-30 J/cm2). Observational study. Academic hospital and research laboratory. Twenty women with normal abdominal skin (skin phototypes I-VI). Skin was irradiated with a pulsed dye laser (wavelength = 585 nm; pulse duration = 1.5 milliseconds; 5-mm-diameter spot) using various radiant exposures (8-30 J/cm2) without and with cryogen spray cooling (50- to 300-millisecond cryogen spurts). Hematoxylin-eosin-stained histologic sections from each irradiated site were examined for the degree of epidermal damage, maximum depth of red blood cell coagulation, and percentage of vessels containing perivascular collagen coagulation. Long cryogen spurt durations (>200 milliseconds) protected the epidermis in light-skinned individuals (skin phototypes I-IV) at the highest radiant exposure (30 J/cm2); however, epidermal protection could not be achieved in dark-skinned individuals (skin phototypes V-VI) even at the lowest radiant exposure (8 J/cm2). The red blood cell coagulation depth increased with increasing radiant exposure (to >2.5 mm for skin phototypes I-IV and to approximately 1.2 mm for skin phototypes V-VI). In addition, long cryogen spurt durations (>200 milliseconds) prevented perivascular collagen coagulation in all skin types. Cryogen spurt durations much longer than those currently used in therapy (>200 milliseconds) may be clinically useful for protecting the epidermis and perivascular tissues when using high radiant exposures during cutaneous laser therapies

  11. Inverse optimal design of the radiant heating in materials processing and manufacturing

    Science.gov (United States)

    Fedorov, A. G.; Lee, K. H.; Viskanta, R.

    1998-12-01

    Combined convective, conductive, and radiative heat transfer is analyzed during heating of a continuously moving load in the industrial radiant oven. A transient, quasi-three-dimensional model of heat transfer between a continuous load of parts moving inside an oven on a conveyor belt at a constant speed and an array of radiant heaters/burners placed inside the furnace enclosure is developed. The model accounts for radiative exchange between the heaters and the load, heat conduction in the load, and convective heat transfer between the moving load and oven environment. The thermal model developed has been used to construct a general framework for an inverse optimal design of an industrial oven as an example. In particular, the procedure based on the Levenberg-Marquardt nonlinear least squares optimization algorithm has been developed to obtain the optimal temperatures of the heaters/burners that need to be specified to achieve a prescribed temperature distribution of the surface of a load. The results of calculations for several sample cases are reported to illustrate the capabilities of the procedure developed for the optimal inverse design of an industrial radiant oven.

  12. Optimum pulse duration and radiant exposure for vascular laser therapy of dark port-wine skin: a theoretical study

    International Nuclear Information System (INIS)

    Tunnell, James W.; Anvari, Bahman; Wang, Lihong V.

    2003-01-01

    Laser therapy for cutaneous hypervascular malformations such as port-wine stain birthmarks is currently not feasible for dark-skinned individuals. We study the effects of pulse duration, radiant exposure, and cryogen spray cooling (CSC) on the thermal response of skin, using a Monte Carlo based optical-thermal model. Thermal injury to the epidermis decreases with increasing pulse duration during irradiation at a constant radiant exposure; however, maintaining vascular injury requires that the radiant exposure also increase. At short pulse durations, only a minimal increase in radiant exposure is necessary for a therapeutic effect to be achieved because thermal diffusion from the vessels is minimal. However, at longer pulse durations the radiant exposure must be greatly increased. There exists an optimum pulse duration at which minimal damage to the epidermis and significant injury within the targeted vasculature occur. For example, the model predicts optimum pulse durations of approximately 1.5, 6, and 20 ms for vessel diameters of 40, 80, and 120 μm, respectively. Optimization of laser pulse duration and radiant exposure in combination with CSC may offer a means to treat cutaneous lesions in dark-skinned individuals

  13. A soft computing scheme incorporating ANN and MOV energy in fault detection, classification and distance estimation of EHV transmission line with FSC.

    Science.gov (United States)

    Khadke, Piyush; Patne, Nita; Singh, Arvind; Shinde, Gulab

    2016-01-01

    In this article, a novel and accurate scheme for fault detection, classification and fault distance estimation for a fixed series compensated transmission line is proposed. The proposed scheme is based on artificial neural network (ANN) and metal oxide varistor (MOV) energy, employing Levenberg-Marquardt training algorithm. The novelty of this scheme is the use of MOV energy signals of fixed series capacitors (FSC) as input to train the ANN. Such approach has never been used in any earlier fault analysis algorithms in the last few decades. Proposed scheme uses only single end measurement energy signals of MOV in all the 3 phases over one cycle duration from the occurrence of a fault. Thereafter, these MOV energy signals are fed as input to ANN for fault distance estimation. Feasibility and reliability of the proposed scheme have been evaluated for all ten types of fault in test power system model at different fault inception angles over numerous fault locations. Real transmission system parameters of 3-phase 400 kV Wardha-Aurangabad transmission line (400 km) with 40 % FSC at Power Grid Wardha Substation, India is considered for this research. Extensive simulation experiments show that the proposed scheme provides quite accurate results which demonstrate complete protection scheme with high accuracy, simplicity and robustness.

  14. Transmission sputtering of gold thin-films by low-energy (< 1 keV) xenon ions: I. The system and the measurement

    International Nuclear Information System (INIS)

    Ayrault, G.; Seidman, D.N.

    1978-01-01

    A novel system for direct measurement of the transmission sputtering yields of ion-irradiated thin films is described. The system was specifically designed for the study of the transmission sputtering caused by low energy ( 0 A thick) which was mounted in a JEM 200 transmission electron-microscope holder. The temperature of the specimen could be varied between approx. 25 and 300 K employing a continuous-transfer liquid-helium cryostat. The particles (atoms or ions) ejected from the unirradiated surface of the gold thin-film were detected by two channetron electron-multiplier arrays in the Chevron configuration; the Chevron detector was able to detect individual transmission sputtered particles when operated in the saturated mode. To further enhance resolution the electron cascades, produced by the CEMA, were amplified and shaped electronically into uniform square pulses. The shaped signals were detected with an Ithaco 391A lock-in amplifier (LIA). With the aid of a ratiometer feature in the LIA we were able to measure directly the ratio of the transmission sputtered-current (I/sub t/) to the incident ion-current (I/sub b/); for I/sub b/ = μA cm -2 a ratio of I/sub t//I/sub b/ as small as 1 x 10 -9 was measured. A detailed discussion of the calibration procedure and the experimental errors, involved in this technique, are also presented. 45 references

  15. Study of the Vibration Transmission and Path Recognition of an Underground Powerhouse Using Energy Finite Element Method

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2016-01-01

    Full Text Available Taking the underground powerhouse of a pumped storage power station as the engineering background, this study established a 3D finite element model of the main and auxiliary powerhouse and performed the dynamic harmonica calculation for its fluctuating pressure. Based on the power flow theory, the ANSYS Parametric Design Language (APDL procedure was completed to calculate the power transmission in the powerhouse. The law of dominant path recognition was first proposed to assess the structure’s dominant transmission using a numerical solution on nodes in the model. The conductivity of the closed-cell foam that filled the structure’s joints was examined, as were the dynamic transmission features of the rock around and beneath the powerhouse. The results indicated that, as a structural joint filler, closed-cell foam could actively restrict vibration transmission, and the directions of dynamic transmission were mainly perpendicular to and along the river in the foundation rock. Approximately 20 percent of the foundation rock beneath the auxiliary powerhouse was disturbed by the concrete around the spiral case and induced vibrations in the powerhouse’s lower floors. Vibration in the higher floors was derived from downstream rock, and the dynamic transmission effect had a clear advantage along the horizontal direction.

  16. Radiant heat loss, an unexploited path for heat stress reduction in shaded cattle.

    Science.gov (United States)

    Berman, A; Horovitz, T

    2012-06-01

    Reducing thermal radiation on shaded animals reduces heat stress independently of other means of stress relief. Radiant heat exchange was estimated as a function of climate, shade structure, and animal density. Body surface portion exposed to radiant sources in shaded environments was determined by geometrical relations to determine angles of view of radiation sources (roof underside, sky, sun-exposed ground, shaded ground) on the animal's surface. The relative representation of environment radiation sources on the body surface was determined. Animal thermal radiation balance was derived from radiant heat gained from radiation sources (including surrounding animals) and that lost from the animal surface. The animal environment was assumed to have different shade dimensions and temperatures. These were summed to the radiant heat balance of the cow. The data formed served to estimate the effect of changes in intensity of radiation sources, roof and shaded surface dimensions, and animal density on radiant heat balance (Rbal) of cattle. Roof height effect was expressed by effect of roof temperature on Rbal. Roof underside temperature (35 to 75°C) effect on Rbal was reduced by roof height. If roof height were 4m, an increase in its underside temperature from 35 to 75°C would increase mean Rbal from -63 to -2 W·m⁻², whereas if roof height were 10 m, Rbal would only increase from -99 to -88 W·m⁻². A hot ground temperature increase from 35 to 65°C reduced mean Rbal heat loss from -45 to 3 W·m⁻². Increasing the surface of the shaded area had only a minor effect on Rbal and on the effect of hot ground on Rbal. Increasing shade roof height reduced the effect of roof temperature on Rbal to minor levels when height was > 8m. Increasing the roof height from 4 to 10 m decreased Rbal from -32 to -94 W·m⁻². Increasing indirect radiation from 100 to 500 W·m⁻² was associated with an increase in Rbal from -135 to +23 W·m⁻². Their combined effects were lower

  17. Characterization of a quadrant diamond transmission X-ray detector including a precise determination of the mean electron-hole pair creation energy.

    Science.gov (United States)

    Keister, Jeffrey W; Cibik, Levent; Schreiber, Swenja; Krumrey, Michael

    2018-03-01

    Precise monitoring of the incoming photon flux is crucial for many experiments using synchrotron radiation. For photon energies above a few keV, thin semiconductor photodiodes can be operated in transmission for this purpose. Diamond is a particularly attractive material as a result of its low absorption. The responsivity of a state-of-the art diamond quadrant transmission detector has been determined, with relative uncertainties below 1% by direct calibration against an electrical substitution radiometer. From these data and the measured transmittance, the thickness of the involved layers as well as the mean electron-hole pair creation energy were determined, the latter with an unprecedented relative uncertainty of 1%. The linearity and X-ray scattering properties of the device are also described.

  18. Comparing solar photovoltaic energy versus stretch of the lines on transmission: real case of lacking rural community without electric energy; Comparativo entre energia solar fotovoltaica versus extensao de rede, aplicado em caso concreto de uma comunidade carente e remota

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Rafael Pimenta; Souza, Teofilo Miguel de; Gastaldi, Andre Fava [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil). Centro de Energias Renovaveis], e-mail: teofilo@feg.unesp.br

    2004-07-01

    In the work observed a lacking rural community and without electric energy. They were analyzed and compared two approaches of lead energy to this population: Photovoltaic energy and stretch of the lines of transmission from the concessionaire. It carried out himself a study about the photovoltaic system as well as electric kinds of batteries, controllers, panels photovoltaic and invertors. Had also a hoist about the costs of acquisition, installation and maintenance of the photovoltaic system and of the conventional system (stretch from the net from the concessionaire of energy). Finally compared the two systems regarding the costs. (author)

  19. An on-line identification device for coal and gangue based on dual-energy γ-ray transmission and microcontroller

    International Nuclear Information System (INIS)

    Chen Guojie; Zhu Xing

    2004-01-01

    The operating principle, hardware design, software design and stabled-spectrum method of on-line identification device for coal and gangue based on dual-energy γ-ray transmission and microcontroller are introduced. The integrated linear amplifier and integrated single channel pulse height analyzer are analyzed. The on-line identification device has advantages of small size, low cost as well stabilization. (authors)

  20. A Cross-Layer Wireless Sensor Network Energy-Efficient Communication Protocol for Real-Time Monitoring of the Long-Distance Electric Transmission Lines

    Directory of Open Access Journals (Sweden)

    Jun Yu

    2015-01-01

    Full Text Available Optimization of energy consumption in Wireless Sensor Network (WSN nodes has become a critical link that constrains the engineering application of the smart grid due to the fact that the smart grid is characterized by long-distance transmission in a special environment. The paper proposes a linear hierarchical network topological structure specific to WSN energy conservation in environmental monitoring of the long-distance electric transmission lines in the smart grid. Based on the topological structural characteristics and optimization of network layers, the paper also proposes a Topological Structure be Layered Configurations (TSLC routing algorithm to improve the quality of WSN data transmission performance. Coprocessing of the network layer and the media access control (MAC layer is achieved by using the cross-layer design method, accessing the status for the nodes in the network layer and obtaining the status of the network nodes of the MAC layer. It efficiently saves the energy of the whole network, improves the quality of the network service performance, and prolongs the life cycle of the network.

  1. Modelling and Simulation of the Radiant Field in an Annular Heterogeneous Photoreactor Using a Four-Flux Model

    Directory of Open Access Journals (Sweden)

    O. Alvarado-Rolon

    2018-01-01

    Full Text Available This work focuses on modeling and simulating the absorption and scattering of radiation in a photocatalytic annular reactor. To achieve so, a model based on four fluxes (FFM of radiation in cylindrical coordinates to describe the radiant field is assessed. This model allows calculating the local volumetric rate energy absorption (LVREA profiles when the reaction space of the reactors is not a thin film. The obtained results were compared to radiation experimental data from other authors and with the results obtained by discrete ordinate method (DOM carried out with the Heat Transfer Module of Comsol Multiphysics® 4.4. The FFM showed a good agreement with the results of Monte Carlo method (MC and the six-flux model (SFM. Through this model, the LVREA is obtained, which is an important parameter to establish the reaction rate equation. In this study, the photocatalytic oxidation of benzyl alcohol to benzaldehyde was carried out, and the kinetic equation for this process was obtained. To perform the simulation, the commercial software COMSOL Multiphysics v. 4.4 was employed.

  2. Blanchability and sensory quality of large runner peanuts blanched in a radiant wall oven using infrared radiation.

    Science.gov (United States)

    Kettler, Katrina; Adhikari, Koushik; Singh, Rakesh K

    2017-10-01

    The main factors behind the growing popularity of infrared radiation heating in food processing include its energy efficiency, food quality retention and process speed, as well as the simplicity of equipment. Infrared radiation was employed as an alternative heat treatment to the conventional hot air method used in peanut blanching. The present study aimed to investigate the application of infrared heating for blanching peanuts and determine their blanchability and sensory quality under various processing conditions. The total blanchabilities (expressed as a percentage of total blanched) of the infrared radiation trials (radiant wall oven) at 343 °C for 1.5 min, 316 °C for 1.5 min, 288 °C for 1.5 min and 343 °C for 1 min did not differ significantly compared to the hot air control trials (impingement oven) at 100 °C for 30 and 20 min. All infrared trials had significantly lower (P infrared samples demonstrated the possible initiation of oxidation for the conventionally blanched sample at 18 weeks of storage at 24 °C (room temperature), with no indication of oxidation in the infrared samples stored at the same temperature. Infrared radiation peanut blanching is a viable alternative to conventional hot air blanching because of the shorter process time and longer shelf-life, as evident from the sensory storage study. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr. (,.Distributed Utility Associates, Livermore, CA)

    2005-11-01

    This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

  4. Do energy prices stimulate food price volatility? Examining volatility transmission between US oil, ethanol and corn markets

    NARCIS (Netherlands)

    Gardebroek, C.; Hernandez, M.A.

    2013-01-01

    This paper examines volatility transmission in oil, ethanol and corn prices in the United States between 1997 and 2011. We follow a multivariate GARCH approach to evaluate the level of interdependence and the dynamics of volatility across these markets. Preliminary results indicate a higher

  5. Do energy prices stimulate food price volatility? Examining volatility transmission between US oil, ethanol and corn markets

    NARCIS (Netherlands)

    Gardebroek, C.; Hernandez, M.A.

    2012-01-01

    This paper examines volatility transmission in oil, ethanol and corn prices in the United States between 1997 and 2011. We follow a multivariate GARCH approach to evaluate the level of interdependence and the dynamics of volatility across these markets. Preliminary results indicate a higher

  6. Do energy prices stimulate food price volatility? Examining volatility transmission between US oil, ethanol and corn markets

    NARCIS (Netherlands)

    Hernandez, M.A.; Gardebroek, C.

    2012-01-01

    This paper examines volatility transmission in oil, ethanol and corn prices in the United States between 1997 and 2011. We follow a multivariate GARCH approach to evaluate the level of interdependence and the dynamics of volatility across these markets. The estimation results indicate a higher

  7. Electric Power Transmission Lines

    Data.gov (United States)

    Department of Homeland Security — Transmission Lines are the system of structures, wires, insulators and associated hardware that carry electric energy from one point to another in an electric power...

  8. Application of roof radiant burners in large pusher-type furnaces

    Directory of Open Access Journals (Sweden)

    A. Varga

    2009-07-01

    Full Text Available The paper deals with the application of roof flat-flame burners in the pusher-type steel slab reheating furnaces, after furnace reconstruction and replacement of conventional torch burners, with the objective to increase the efficiency of radiative heat transfer from the refractory roof to the charge. Based on observations and on measurements of the construction and process parameters under operating conditions, the advantages and disadvantages of indirectly oriented radiant heat transfer are analysed in relation to the heat transfer in classically fired furnaces.

  9. Comparison of radiant and convective cooling of office room: effect of workstation layout

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Rezgals, Lauris

    2014-01-01

    and compared. The room was furnished with two workstations, two laptops and two thermal manikins resembling occupants. Two heat load levels, design (65 W/m2) and usual (39 W/m2), were generated by adding heat from warm panels simulating solar radiation. Two set-ups were studied: occupants sitting......The impact of heat source location (room layout) on the thermal environment generated in a double office room with four cooling ventilation systems - overhead ventilation, chilled ceiling with overhead ventilation, active chilled beam and active chilled beam with radiant panels was measured...

  10. Sensitivity analysis of the thermal performance of radiant and convective terminals for cooling buildings

    DEFF Research Database (Denmark)

    Le Dréau, J.; Heiselberg, P.

    2014-01-01

    Heating and cooling terminals can be classified in two main categories: convective terminals (e.g. active chilled beam, air conditioning) and radiant terminals. The mode of heat transfer of the two emitters is different: the first one is mainly based on convection, whereas the second one is based...... conducted to determine the parameters influencing their thermal performance the most. The air change rate, the outdoor temperature and the air temperature stratification have the largest effect on the cooling need (maintaining a constant operative temperature). For air change rates higher than 0.5 ACH...

  11. Three dimensional modelling and numerical analysis of super-radiant harmonic emission in FEL (optical klystron)

    International Nuclear Information System (INIS)

    Gover, A.; Friedman, A.; Luccio, A.

    1986-09-01

    A full 3-D Analysis of super-radiant (bunched electron) free electron harmonic radiation is presented. A generalized form of the FEL pendulum equation was derived and numerically solved. Both spectral and phasor formulation were developed to treat the radiation in the time domain. In space the radiation field is expanded in terms of either a set of free space discrete modes or plane waves. The numerical solutions reveal some new distinctly 3-D effects to which we provide a physical explanation. 12 refs., 9 figs., 5 tabs

  12. Perceived air quality, thermal comfort, and SBS symptoms at low air temperature and increased radiant temperature

    DEFF Research Database (Denmark)

    Toftum, Jørn; Reimann, Gregers Peter; Foldbjerg, P.

    2002-01-01

    source present at the low temperature. To maintain overall thermal neutrality, the low air temperature was partly compensated for by individually controlled radiant heating, and partly by allowing subjects to modify clothing insulation. A reduction of the air temperature from 23 deg.C to 18 deg.......C suggested an improvement of the perceived air quality, while no systematic effect on symptom intensity was observed. The overall indoor environment was evaluated equally acceptable at both temperatures due to local thermal discomfort at the low air temperature....

  13. Failure Investigation of Radiant Platen Superheater Tube of Thermal Power Plant Boiler

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Mandal, A.; Roy, H.

    2015-04-01

    This paper highlights a case study of typical premature failure of a radiant platen superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement and chemical analysis, are conducted as part of the investigations. Apart from these, metallographic analysis and fractography are also conducted to ascertain the probable cause of failure. Finally it has been concluded that the premature failure of the super heater tube can be attributed to localized creep at high temperature. The corrective actions has also been suggested to avoid this type of failure in near future.

  14. Literarily -radiant

    International Nuclear Information System (INIS)

    Halvorsen, Finn

    2008-01-01

    The article discusses radiation emissions from various every day appliances such as mobile telephones, wireless technologic aids, networks, radios and television sets. The health risks are mentioned (tk)

  15. Marginal cost calculation of energy production in hydro thermoelectric systems considering the transmission system; Calculo do custo marginal de producao de energia em sistemas hidrotermoeletricos levando em consideracao a rede de transmissao

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, M V.F. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil); Gorenstin, B G [Centro de Pesquisas de Energia Eletrica, Rio de Janeiro, RJ (Brazil); Alvarenga Filho, S [ELETROBRAS, Rio de Janeiro, RJ (Brazil)

    1990-12-31

    The alternatives for calculation of energy marginal cost in hydroelectric systems, considering the transmission one, was analysed, including fundamental concepts; generation/transmission systems, represented by linear power flow model; production marginal costs in hydrothermal systems and computation aspects. (C.G.C.). 11 refs, 5 figs.

  16. Neuroglial Transmission

    DEFF Research Database (Denmark)

    Gundersen, Vidar; Storm-Mathisen, Jon; Bergersen, Linda Hildegard

    2015-01-01

    as a signaling substance recently shown to act on specific lactate receptors in the brain. Complementing neurotransmission at a synapse, neuroglial transmission often implies diffusion of the transmitter over a longer distance and concurs with the concept of volume transmission. Transmission from glia modulates...... synaptic neurotransmission based on energetic and other local conditions in a volume of tissue surrounding the individual synapse. Neuroglial transmission appears to contribute significantly to brain functions such as memory, as well as to prevalent neuropathologies....

  17. Solar radiation and cooling load calculation for radiant systems: Definition and evaluation of the Direct Solar Load

    DEFF Research Database (Denmark)

    Causone, Francesco; Corgnati, Stefano P.; Filippi, Marco

    2010-01-01

    The study of the influence of solar radiation on the built environment is a basic issue in building physics and currently it is extremely important because glazed envelopes are widely used in contemporary architecture. In the present study, the removal of solar heat gains by radiant cooling systems...... is investigated. Particular attention is given to the portion of solar radiation converted to cooling load, without taking part in thermal absorption phenomena due to the thermal mass of the room. This specific component of the cooling load is defined as the Direct Solar Load. A simplified procedure to correctly...... calculate the magnitude of the Direct Solar Load in cooling load calculations is proposed and it is implemented with the Heat Balance method and the Radiant Time Series method. The F ratio of the solar heat gains directly converted to cooling load, in the case of a low thermal mass radiant ceiling...

  18. Use of local convective and radiant cooling at warm environment: effect on thermal comfort and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Duszyk, Marcin; Krejcirikova, Barbora

    2012-01-01

    The effect of four local cooling devices (convective, radiant and combined) on thermal comfort and perceived air quality reported by 24 subjects at 28 ˚C and 50% RH was studied. The devices studied were: (1) desk cooling fan, (2) personalized ventilation providing clean air, (3) two radiant panels...... and (4) two radiant panels with one panel equipped with small fans. A reference condition without cooling was tested as well. The response of the subjects to the exposed conditions was collected by computerized questionnaires. The cooling devices significantly (pthermal comfort...... compared to without cooling. The acceptability of the thermal environment was similar for all cooling devices. The acceptability of air movement and PAQ increased when the local cooling methods were used. The best results were achieved with personalized ventilation and cooling fan. The improvement in PAQ...

  19. Dynamic behavior of radiant cooling system based on capillary tubes in walls made of high performance concrete

    DEFF Research Database (Denmark)

    Mikeska, Tomás; Svendsen, Svend

    2015-01-01

    elements made of high performance concrete. The influence of the radiant cooling system on the indoor climate of the test room in terms of the air, surface and operative temperatures and velocities was investigated.The results show that the temperature of the room air can be kept in a comfortable range...... using cooling water for the radiant cooling system with a temperature only about 4K lower than the temperature of the room air. The relatively high speed reaction of the designed system is a result of the slim construction of the sandwich wall elements made of high performance concrete. (C) 2015...... the small amount of fresh air required by standards to provide a healthy indoor environment.This paper reports on experimental analyses evaluating the dynamic behavior of a test room equipped with a radiant cooling system composed of plastic capillary tubes integrated into the inner layer of sandwich wall...

  20. Effect of radiant heat transfer on the performance of high temperature heat exchanger

    International Nuclear Information System (INIS)

    Mori, Yasuo; Hijikata, Kunio; Yamada, Yukio

    1975-01-01

    The development of high temperature gas-cooled reactors is motivated by the consideration of the application of nuclear heat for industrial uses or direct steelmaking and chemical processes. For these purposes, reliable and efficient heat exchangers should be developed. This report analyzes the effect of radiant heat transfer on the performance of high temperature heat exchangers. The heat transfer model is as follows: the channel composed with two parallel adiabatic walls is divided with one parallel plate between the walls. Non-radiative fluid flows in the two separated channels in opposite direction. Heat transfer equations for this system were obtained, and these equations were solved by some approximate method and numerical analysis. The effect of radiation on heat transfer became larger as the radiant heat transfer between two walls was larger. In the heat exchangers of counter flow type, the thermal efficiency is controlled with three parameters, namely radiation-convection parameter, Stanton number and temperature difference. The thermal efficiency was larger with the increase of these parameters. (Iwase, T.)

  1. Numerical Simulation of the Thermal Process in a W-Shape Radiant Tube Burner

    Science.gov (United States)

    Wang, Yi; Li, Jiyong; Zhang, Lifeng; Ling, Haitao; Li, Yanlong

    2014-07-01

    In the current work, three-dimensional mathematical models were developed for the heat transfer and combustion in a W-shape radiant tube burner (RTB) and were solved using Fluent software (ANSYS Inc., Canonsburg, PA). The standard k- ɛ model, nonpremixed combustion model, and the discrete ordinate model were used for the modeling of turbulence, combustion, and radiant heat transfer, respectively. In addition, the NO x postprocessor was used for the prediction of the NO emission. A corresponding experiment was performed for the validation of mathematical models. The details of fluid flow, heat transfer, and combustion in the RTB were investigated. Moreover, the effect of the air/fuel ratio (A/F) and air staging on the performance of RTB was studied with the reference indexes including heat efficiency, maximum temperature difference on shell wall, and NO emission at the outlet. The results indicated that a low speed zone formed in the vicinity of the combustion chamber outlet, and there were two relative high-temperature zones in the RTB, one in combustion chamber that favored the flame stability and the other from the main flame in the RTB. The maximum temperature difference was 95.48 K. As the A/F increased, the temperature increased first and then decreased. As the ratio of the primary to secondary air increased, the recirculation zone at the outlet of combustion chamber shrank gradually to disappear, and the flame length was longer and the temperature in flame decreased correspondingly.

  2. Radiative heat exchange of a meteor body in the approximation of radiant heat conduction

    International Nuclear Information System (INIS)

    Pilyugin, N.N.; Chernova, T.A.

    1986-01-01

    The problem of the thermal and dynamic destruction of large meteor bodies moving in planetary atmospheres is fundamental for the clarification of optical observations and anomalous phenomena in the atmosphere, the determination of the physicochemical properties of meteoroids, and the explanation of the fall of remnants of large meteorites. Therefore, it is important to calculate the coefficient of radiant heat exchange (which is the determining factor under these conditions) for large meteor bodies as they move with hypersonic velocities in an atmosphere. The solution of this problem enables one to find the ablation of a meteorite during its aerodynamic heating and to determine the initial conditions for the solution of problems of the breakup of large bodies and their subsequent motion and ablation. Hypersonic flow of an inviscid gas stream over an axisymmetric blunt body is analyzed with allowance for radiative transfer in a thick-thin approximation. The gas-dynamic problem of the flow of an optically thick gas over a large body is solved by the method of asymptotic joined expansions, using a hypersonic approximation and local self-similarity. An equation is obtained for the coefficient of radiant heat exchange and the peculiarities of such heat exchange for meteor bodies of large size are noted

  3. Non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner

    Energy Technology Data Exchange (ETDEWEB)

    Catapan, R.C.; Costa, M. [Mechanical Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal); Oliveira, A.A.M. [Mechanical Engineering Department, Federal University of Santa Catarina, Campus Universitario Professor Joao David Ferreira Lima, 88040-900 Florianopolis, SC (Brazil)

    2011-01-15

    Industrial processes where the heating of large surfaces is required lead to the possibility of using large surface porous radiant burners. This causes additional temperature uniformity problems, since it is increasingly difficult to evenly distribute the reactant mixture over a large burner surface while retaining its stability and keeping low pollutant emissions. In order to allow for larger surface area burners, a non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner using a single large injection hole is proposed and analyzed for a double-layered burner operating in open and closed hot (laboratory-scale furnace, with temperature-controlled, isothermal walls) environments. In both environments, local mean temperatures within the porous medium have been measured. For lower reactant flow rate and ambient temperature the flame shape is conical and anchored at the rim of the injection hole. As the volumetric flow rate or furnace temperature is raised, the flame undergoes a transition to a plane flame stabilized near the external burner surface. However, the stability range envelope remains the same in both regimes. (author)

  4. High-temperature process heat reactor with solid coolant and radiant heat exchange

    International Nuclear Information System (INIS)

    Alekseev, A.M.; Bulkin, Yu.M.; Vasil'ev, S.I.

    1984-01-01

    The high temperature graphite reactor with the solid coolant in which heat transfer is realized by radiant heat exchange is described. Neutron-physical and thermal-technological features of the reactor are considered. The reactor vessel is made of sheet carbon steel in the form of a sealed rectangular annular box. The moderator is a set of graphite blocks mounted as rows of arched laying Between the moderator rows the solid coolant annular layings made of graphite blocks with high temperature nuclear fuel in the form of coated microparticles are placed. The coolant layings are mounted onto ring movable platforms, the continuous rotation of which is realizod by special electric drives. Each part of the graphite coolant laying consecutively passes through the reactor core neutron cut-off zones and technological zone. In the core the graphite is heated up to the temperature of 1350 deg C sufficient for effective radiant heat transfer. In the neutron cut-off zone the chain reaction and further graphite heating are stopped. In the technological zone the graphite transfers the accumulated heat to the walls of technological channels in which the working medium moves. The described reactor is supposed to be used in nuclear-chemical complex for ammonia production by the method of methane steam catalytic conversion

  5. Morteros acumuladores con parafinas microencapsuladas para el aprovechamiento de la energía solar en suelos radiantes

    OpenAIRE

    Zetola Vargas, Vicente Andrés

    2013-01-01

    Esta Tesis plantea la pregunta de si el uso de morteros con parafinas microencapsuladas combinado con colectores solares térmicos puede reducir el consumo de energías convencionales, en un sistema tradicional de suelo radiante. Se pretende contribuir al conocimiento acerca del efecto que produce en el edificio, el calor latente acumulado en suelos radiantes, utilizando morteros de cemento Portland con material de cambio de fase (PCM), en conjunto con la energía solar. Para cumplir con este pr...

  6. Thermal environment in simulated offices with convective and radiant cooling systems under cooling (summer) mode of operation

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Kostov, Kalin

    2016-01-01

    The thermal environment in a double office room and in a six-person meeting room obtained with chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and four desk partition-mounted local radiant cooling panels with mixing...... calculated. Manikin-based equivalent temperature (MBET) was determined by using two thermal manikins to identify the impact of the local thermal conditions generated by the studied systems on occupants' thermal perception. The results revealed that the differences in the thermal conditions achieved...

  7. Control characteristics and heating performance analysis of automatic thermostatic valves for radiant slab heating system in residential apartments

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byung-Cheon [Department of Building Equipment System Engineering, Kyungwon University, Seongnam City (Korea); Song, Jae-Yeob [Graduate School, Building Equipment System Engineering, Kyungwon University, Seongnam City (Korea)

    2010-04-15

    Computer simulations and experiments are carried out to research the control characteristics and heating performances for a radiant slab heating system with automatic thermostatic valves in residential apartments. An electrical equivalent R-C circuit is applied to analyze the unsteady heat transfer in the house. In addition, the radiant heat transfer between slabs, ceilings and walls in the room is evaluated by enclosure analysis method. Results of heating performance and control characteristics were determined from control methods such as automatic thermostatic valves, room air temperature-sensing method, water-temperature-sensing method, proportional control method, and On-Off control method. (author)

  8. Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.

    Energy Technology Data Exchange (ETDEWEB)

    Eyer, James M. (Distributed Utility Associates, Inc., Livermore, CA)

    2009-06-01

    The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

  9. Development of cross-border transmission lines in Poland and their significance for the Central East Europeam energy market

    Energy Technology Data Exchange (ETDEWEB)

    Andruszkiewicz, Jerzy

    2010-09-15

    This publication presents the existing cross-border transmission lines connecting Poland with neighbouring countries and their use in the currently applied mechanisms for making available the transfer capacities. The prospects and the considered options of development in cross-border interconnections were presented, taking into account their role in the integration of the European market and of the trade relations with neighbouring counties other than members of the European Community. The role of the planned interconnections in solving the problems of central European countries connected with the implementation of European strategy that reduce CO2 emissions in the area of electricity generation was discussed.

  10. Towards a uniform specification of light therapy devices for the treatment of affective disorders and use for non-image forming effects: Radiant flux.

    Science.gov (United States)

    Aarts, M P J; Rosemann, A L P

    2018-08-01

    For treating affective disorders like SAD, light therapy is used although the underlying mechanism explaining this success remains unclear. To accelerate the research on defining the light characteristics responsible for inducing a specific effect a uniform manner for specifying the irradiance at the eye should be defined. This allows a genuine comparison between light-affect studies. An important factor impacting the irradiance at the eye are the radiant characteristics of the used light therapy device. In this study the radiant fluxes of five different light therapy devices were measured. The values were weighted against the spectral sensitivity of the five photopigments present in the human eye. A measurement was taken every five minutes to control for a potential stabilizing effect. The results show that all five devices show large differences in radiant flux. The devices equipped with blue LED lights have a much lower spectral radiant flux than the devices equipped with a fluorescent light source or a white LED. The devices with fluorescent lamps needed 30 min to stabilize to a constant radiant flux. In this study only five devices were measured. Radiant flux is just the first step to identify uniform specifications for light therapy devices. It is recommended to provide all five α-opic radiant fluxes. Preferably, the devices should come with a spectral power distribution of the radiant flux. For the devices equipped with a fluorescent lamp it is recommended to provide information on the stabilization time. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. A system of two piezoelectric transducers and a storage circuit for wireless energy transmission through a thin metal wall.

    Science.gov (United States)

    Hu, Hongping; Hu, Yuantai; Chen, Chuanyao; Wang, Ji

    2008-10-01

    A system to wirelessly convey electric energy through a thin metal wall is proposed in the paper, where 2 piezoelectric transducers are used to realize energy transformation between electric and mechanical, and a rechargeable battery is employed to store the transmitted energy. To integrate them as a whole, an interface of a modulating circuit is applied between the transducer system and the storage battery. In addition, a synchronized switch harvesting on inductor in parallel with the transducer system is introduced to artificially extend the closed interval of the modulating circuit. The process of transmitting energy is computed, and the performance of the transducer system is optimized in detail for a prescribed external electric source. The results obtained are useful for understanding and designing wireless energy supply systems.

  12. Radiant heat transfers in turbojet engines. Two applications, three levels of modeling; Transferts radiatifs dans les foyers de turboreacteurs. Deux applications, trois niveaux de modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J L; Desaulty, M [SNECMA, Centre de Villaroche, 77 - Moissy-Cramayel (France); Taine, J [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France)

    1997-12-31

    Several applications linked with the dimensioning of turbojet engines require the use of modeling of radiant heat transfers. Two different applications are presented in this study: the modeling of heat transfers in the main combustion chamber, and modeling of the infrared signature of the post-combustion chamber of a military engine. In the first application, two types of radiant heat transfer modeling are presented: a global modeling based on empirical considerations and used in rapid pre-dimensioning methods, and a modeling based on a grey gases concept and combined to a ray shooting type technique allowing the determination of local radiant heat flux values. In the second application, a specific modeling of the radiant heat flux is used in the framework of a ray shooting method. Each model represents a different level of successive approximations of the radiant heat transfer adapted to flow specificities and to the performance requested. (J.S.) 16 refs.

  13. Radiant heat transfers in turbojet engines. Two applications, three levels of modeling; Transferts radiatifs dans les foyers de turboreacteurs. Deux applications, trois niveaux de modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.L.; Desaulty, M. [SNECMA, Centre de Villaroche, 77 - Moissy-Cramayel (France); Taine, J. [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France)

    1996-12-31

    Several applications linked with the dimensioning of turbojet engines require the use of modeling of radiant heat transfers. Two different applications are presented in this study: the modeling of heat transfers in the main combustion chamber, and modeling of the infrared signature of the post-combustion chamber of a military engine. In the first application, two types of radiant heat transfer modeling are presented: a global modeling based on empirical considerations and used in rapid pre-dimensioning methods, and a modeling based on a grey gases concept and combined to a ray shooting type technique allowing the determination of local radiant heat flux values. In the second application, a specific modeling of the radiant heat flux is used in the framework of a ray shooting method. Each model represents a different level of successive approximations of the radiant heat transfer adapted to flow specificities and to the performance requested. (J.S.) 16 refs.

  14. Smart Control of Air Climatization System in Function on the Values of Mean Local Radiant Temperature

    Directory of Open Access Journals (Sweden)

    Giuseppe Cannistraro

    2015-08-01

    Full Text Available The hygrothermal comfort indoor conditions are defined as: those environmental conditions in which an individual exposed, expresses a state of satisfaction. These conditions cannot always be achieved anywhere in an optimal way and economically; in some cases they can be obtained only in work environments specific areas. This could be explained because of air conditioning systems designing is generally performed both on the basis of the fundamental parameters’ average values, such as temperature, velocity and relative humidity (Ta, va e φa and derived parameters such as operating temperature and mean radiant one (Top eTmr. However, in some specific cases - large open-spaces or in case of radiating surfaces - the descriptors defining indoor comfort conditions, based on average values, do not provide the optimum values required during the air conditioning systems design phase. This is largely due to the variability of real environmental parameters values compared to the average ones taken as input in the calculation. The results obtained in previous scientific papers on the thermal comfort have been the driving element of this work. It offers a simple, original and clever way of thinking about the new domotic systems for air conditioning, based on the “local mean radiant temperature.” This is a very important parameter when one wants to analyze comfort in environments characterized by the presence of radiating surfaces, as will be seen hereinafter. In order to take into account the effects of radiative exchanges in the open-space workplace, where any occupant may find themselves in different temperature and humidity conditions, this paper proposes an action on the domotic climate control, with ducts and vents air distribution placed in different zones. Comparisons were performed between the parameters values representing the punctual thermal comfort, with the Predicted Mean Vote PMV, in an environment marked by radiating surfaces (i

  15. Our views on transmission policy

    International Nuclear Information System (INIS)

    Wellford, W.H.; Sutley, N.H.

    1990-01-01

    In this article the authors discuss the need for predictable and fair access to transmission facilities in order to ensure competitive generation of power. They propose that the Federal Energy Regulatory Commission should regulate transmission to prevent a utility from gaining a competitive advantage in electricity generation markets, the incorporation of transmission access into every bidding program under state jurisdiction, and requirement of transmission rates, terms and conditions for all in-state utilities be included in the request for proposal

  16. R-matrix analysis of 235U neutron transmission and cross sections in the energy range 0 to 2.25 keV

    International Nuclear Information System (INIS)

    Leal, L.C.; Derrien, H.; Larson, N.M.; Wright, R.Q.

    1997-11-01

    This document describes a new R-matrix analysis of 235 U cross section data in the energy range from 0 to 2,250 eV. The analysis was performed with the computer code SAMMY, that has recently been updated to permit, for the first time, inclusion of both differential and integral data within the analysis process. Fourteen differential data sets and six integral quantities were used in this evaluation: two measurements of fission plus capture, one of fission plus absorption, six of fission alone, two of transmission, and one of eta, plus standard values of thermal cross sections for fission, capture, and scattering, and of K1 and the Westcott g-factors for both fission and absorption. An excellent representation was obtained for the high-resolution transmission, fission, and capture cross-section data as well as for the integral quantities. The result is a single set of resonance parameters spanning the entire range up to 2,250 eV, a decided improvement over the present ENDF/VI evaluation, in which eleven discrete resonance parameter sets are required to cover that same energy range. This new evaluation is expected to greatly improve predictability of the criticality safety margins for nuclear systems in which 235 U is present

  17. Energy-efficient VCSEL-based multiGigabit IR-UWB over Fiber with Airlink Transmission System

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Pham, Tien Thang; Jensen, Jesper Bevensee

    2010-01-01

    We propose VCSEL based impulse-radio ultrawideband technology for energy efficient high-speed wireless networks; with full passive signal distribution, from the central office to the home with high-speed wireless connection to the final user.......We propose VCSEL based impulse-radio ultrawideband technology for energy efficient high-speed wireless networks; with full passive signal distribution, from the central office to the home with high-speed wireless connection to the final user....

  18. Transmission issues

    International Nuclear Information System (INIS)

    Bradford, J.; Wilson, L.; Thon, S.; Millar, N.

    2005-01-01

    This session on transmission issues focused on the role that transmission plays in electricity markets and the importance of getting the market structure right in terms of generation divestiture with buy back contracts, demand side responsive programs, transmission upgrades and long term contracts. The difficulties of distinguishing between market power and scarcity were examined along with some of the complications that ensue if transmission experiences congestion, as exemplified by the August 2003 blackout in eastern North America. The presentations described the best ways to handle transmission issues, and debated whether transmission should be deregulated or follow market forces. Issues of interconnections and reliability of connections were also debated along with the attempt to integrate renewables into the grid. Some presentations identified what new transmission must be built and what must be done to ensure that transmission gets built. The challenges and business opportunities for transmission in Alberta were discussed with reference to plans to invest in new infrastructure, where it is going outside of the province and how it works with other jurisdictions. Manitoba's Conawapa Hydro Project and its 2000 MW tie line to Ontario was also discussed. Some examples of non-optimal use of interconnections in Europe were also discussed in an effort to learn from these mistakes and avoid them in Canada. tabs., figs

  19. Neutron transmission benchmark problems for iron and concrete shields in low, intermediate and high energy proton accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hayashi, Katsumi [and others

    1996-09-01

    Benchmark problems were prepared for evaluating the calculation codes and the nuclear data for accelerator shielding design by the Accelerator Shielding Working Group of the Research Committee on Reactor Physics in JAERI. Four benchmark problems: transmission of quasi-monoenergetic neutrons generated by 43 MeV and 68 MeV protons through iron and concrete shields at TIARA of JAERI, neutron fluxes in and around an iron beam stop irradiated by 500 MeV protons at KEK, reaction rate distributions inside a thick concrete shield irradiated by 6.2 GeV protons at LBL, and neutron and hadron fluxes inside an iron beam stop irradiated by 24 GeV protons at CERN are compiled in this document. Calculational configurations and neutron reaction cross section data up to 500 MeV are provided. (author)

  20. Where the Solar system meets the solar neighbourhood: patterns in the distribution of radiants of observed hyperbolic minor bodies

    Science.gov (United States)

    de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl; Aarseth, Sverre J.

    2018-05-01

    Observed hyperbolic minor bodies might have an interstellar origin, but they can be natives of the Solar system as well. Fly-bys with the known planets or the Sun may result in the hyperbolic ejection of an originally bound minor body; in addition, members of the Oort cloud could be forced to follow inbound hyperbolic paths as a result of secular perturbations induced by the Galactic disc or, less frequently, due to impulsive interactions with passing stars. These four processes must leave distinctive signatures in the distribution of radiants of observed hyperbolic objects, both in terms of coordinates and velocity. Here, we perform a systematic numerical exploration of the past orbital evolution of known hyperbolic minor bodies using a full N-body approach and statistical analyses to study their radiants. Our results confirm the theoretical expectations that strong anisotropies are present in the data. We also identify a statistically significant overdensity of high-speed radiants towards the constellation of Gemini that could be due to the closest and most recent known fly-by of a star to the Solar system, that of the so-called Scholz's star. In addition to and besides 1I/2017 U1 (`Oumuamua), we single out eight candidate interstellar comets based on their radiants' velocities.

  1. A METHOD FOR EVALUATION OF NON-UNIFORM RADIANT-CONVECTIVE LOAD ON HUMAN BODY DURING MENTAL WORK

    Directory of Open Access Journals (Sweden)

    Lenka Prokšová Zuská

    2017-10-01

    Full Text Available The objective of this study was to develop a documentation for the amendment of the microclimatic part of the Czech Government Regulation, particularly in a non-uniform radiant-convective load evaluation. Changes in regulation were made based on experimental data obtained on a group of experimental individuals in a climatic chamber. One of the objectives of the climatic chamber experiments was to evaluate whether there was a possibility to use an alternative method, which utilizes a new value – stereotemperature, for the assessment. A group of 24 women was exposed to a non-uniform radiant-convective load in a climatic chamber for 1 hour during their computer work. Measurements were divided according to the globe temperature into 3 stages. The physical parameters of air were continuously measured: the air temperature, globe temperature, air velocity, radiant temperature, relative humidity, stereotemperature and physiological parameters. Thermal sensations of experimental subjects were expressed in the seven-point scale according to EN ISO 7730. The thermal sensation correlated very well with the difference of stereotemperature and the globe temperature. The stereotemperature correlated very well with the radiant temperature. In this work, the composed equations were used to develop the limit values for the thermal stress evaluation in the uniform and non-uniform thermal environment at workplaces. It is possible to determine how the body of an exposed person perceives the non-uniform climatic conditions in the indoor environment, by adding the stereotemperature to government regulations.

  2. Experimental study including subjective evaluations of mixing and displacement ventilation combined with radiant floor heating/cooling system

    DEFF Research Database (Denmark)

    Krajcik, Michal; Tomasi, Roberta; Simone, Angela

    2013-01-01

    Sixteen subjects evaluated the indoor environment in four experiments with different combinations of ventilation systems and radiant heating/cooling systems. In the first two tests, the simulated residential room was equipped either by a mixing ventilation system supplying warm air for space heat...

  3. Radiant heating tests of several liquid metal heat-pipe sandwich panels

    International Nuclear Information System (INIS)

    Camarda, C.J.; Basiulis, A.

    1983-08-01

    Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors

  4. The Super-Radiant Mechanism and the Widths of Compound Nuclear States

    International Nuclear Information System (INIS)

    Auerbach, N

    2012-01-01

    In the introduction I will present the theory of the super-radiant mechanism as applied to various phenomena. I will then discuss the statistics of resonance widths in a many-body Fermi system with open decay channels. Depending on the strength of the coupling to the continuum such systems show deviations from the standard Porter-Thomas distribution. The deviations result from the process of increasing interaction of the intrinsic states through the common decay channels. In the limit of very strong coupling this leads to super-radiance. The results I will present are important for the understanding of recent experimental data concerning the width distribution of compound neutron resonances in nuclei.

  5. A critical examination of the validity of simplified models for radiant heat transfer analysis.

    Science.gov (United States)

    Toor, J. S.; Viskanta, R.

    1972-01-01

    Examination of the directional effects of the simplified models by comparing the experimental data with the predictions based on simple and more detailed models for the radiation characteristics of surfaces. Analytical results indicate that the constant property diffuse and specular models do not yield the upper and lower bounds on local radiant heat flux. In general, the constant property specular analysis yields higher values of irradiation than the constant property diffuse analysis. A diffuse surface in the enclosure appears to destroy the effect of specularity of the other surfaces. Semigray and gray analyses predict the irradiation reasonably well provided that the directional properties and the specularity of the surfaces are taken into account. The uniform and nonuniform radiosity diffuse models are in satisfactory agreement with each other.

  6. Thermal Texture Selection and Correction for Building Facade Inspection Based on Thermal Radiant Characteristics

    Science.gov (United States)

    Lin, D.; Jarzabek-Rychard, M.; Schneider, D.; Maas, H.-G.

    2018-05-01

    An automatic building façade thermal texture mapping approach, using uncooled thermal camera data, is proposed in this paper. First, a shutter-less radiometric thermal camera calibration method is implemented to remove the large offset deviations caused by changing ambient environment. Then, a 3D façade model is generated from a RGB image sequence using structure-from-motion (SfM) techniques. Subsequently, for each triangle in the 3D model, the optimal texture is selected by taking into consideration local image scale, object incident angle, image viewing angle as well as occlusions. Afterwards, the selected textures can be further corrected using thermal radiant characteristics. Finally, the Gauss filter outperforms the voted texture strategy at the seams smoothing and thus for instance helping to reduce the false alarm rate in façade thermal leakages detection. Our approach is evaluated on a building row façade located at Dresden, Germany.

  7. Radiant thinking and the use of the mind map in nurse practitioner education.

    Science.gov (United States)

    Spencer, Julie R; Anderson, Kelley M; Ellis, Kathryn K

    2013-05-01

    The concept of radiant thinking, which led to the concept of mind mapping, promotes all aspects of the brain working in synergy, with thought beginning from a central point. The mind map, which is a graphical technique to improve creative thinking and knowledge attainment, utilizes colors, images, codes, and dimensions to amplify and enhance key ideas. This technique augments the visualization of relationships and links between concepts, which aids in information acquisition, data retention, and overall comprehension. Faculty can promote students' use of the technique for brainstorming, organizing ideas, taking notes, learning collaboratively, presenting, and studying. These applications can be used in problem-based learning, developing plans of care, health promotion activities, synthesizing disease processes, and forming differential diagnoses. Mind mapping is a creative way for students to engage in a unique method of learning that can expand memory recall and help create a new environment for processing information. Copyright 2013, SLACK Incorporated.

  8. Research on the Improvement of a Natural Gas Fired Burner for the CHP Application in a Central Heating Boiler using Radiant Burner Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bieleveld, T.

    2010-08-15

    These days, the reduction of CO2 emissions from combustion devices is one of the main priorities for each design improvement. For the domestic use of the central heating boiler, Microgen Engine Corporation produces free piston Stirling engines for the Combined Heat and Power (CHP) application in these central heating boilers (Dutch: 'HRe ketel'). With CHP, the generation of electricity and heat are combined to increase overall efficiency, as heat is generally a waste product from the combustion to electric generation process. In this application, the Stirling engine, which can be defined as an external combustion engine, is heated by a natural gas fired engine-burner and cooled by a coolant flow. The heat transfer into the engine is converted into mechanical work and a heat flux from the engine. The mechanical work is used to produce electricity via a linear alternator. Heat in the flue gasses from the engine-burner is reused in a secondary burner and condensing heat exchanger. The coolant flow from the engine, after passing the secondary burner, is used for heating purposes. The heat transfer from engine-burner to the Stirling engine is analyzed and via several motivations it is found that it is favorable to improve fuel to electric conversion efficiency, for which the heat transfer efficiency of the engine-burner to the Stirling engine should be improved, as the engine design is not to be altered. From an initially developed linear free piston Stirling engine model and measurements performed at Microgen Engine Corporation, St. Petersborough, (UK), the engine power demand and engine-burner performance are found. The results are used to visualize the current energy flows of the Stirling engine and engine burner subsystem. The heat transfer to the engine is analyzed to find possible heat transfer improvements. It is concluded that heat transfer from the engine-burner to the engine can be approved if the flue losses due to convective heat transfer are

  9. Newborns' temperature submitted to radiant heat and to the Top Maternal device at birth.

    Science.gov (United States)

    Albuquerque, Rosemeire Sartori de; Mariani, Corintio; Bersusa, Ana Aparecida Sanches; Dias, Vanessa Macedo; Silva, Maria Izabel Mota da

    2016-08-08

    to compare the axillar temperatures of newborns that are put immediately after birth in skin-to-skin contact under the Top Maternal device, as compared to those in a radiant heat crib. comparatives observational study of the case-control type about temperature of 60 babies born at the Obstetric Center and Normal Delivery Center of a public hospital of the municipality of Sao Paulo, being them: 29 receiving assistance in heated crib and 31 in skin-to skin contact, shielded by a cotton tissue placed on mother's thorax, called Top Maternal. the temperature of the babies of the skin-to-skin contact group presented higher values in a larger share of the time measures verified, as compared to those that were placed in radiant heat crib, independently from the place of birth. Differences between the two groups were not statistically significant. the study contributes to generate new knowledge, supporting the idea of keeping babies with their mothers immediately after birth protected with the Maternal Top, without harming their wellbeing, as it keeps the axillar temperature in recommendable levels. comparar a temperatura axilar dos recém-nascidos acomodados - imediatamente após o nascimento - em contato pele a pele, sob o Top Maternal, em berço de calor radiante. estudo comparativo observacional do tipo Caso-Controle sobre a temperatura de 60 bebês nascidos no Centro Obstétrico e Centro de Parto Normal de um hospital público do município de São Paulo, sendo: 29 assistidos em berço aquecido e 31 em contato pele a pele, protegidos por uma malha de algodão colocada sobre o tórax da mãe, denominada Top Maternal. a temperatura dos bebês do grupo de contato pele a pele teve maior valor na maioria dos tempos verificados comparada à dos que foram colocados em berço de calor radiante, independentemente do local de nascimento. A diferença entre os grupos não foi estatisticamente significante. o estudo contribui com a geração de um novo conhecimento que sustenta a

  10. Transmission eigenvalues

    Science.gov (United States)

    Cakoni, Fioralba; Haddar, Houssem

    2013-10-01

    In inverse scattering theory, transmission eigenvalues can be seen as the extension of the notion of resonant frequencies for impenetrable objects to the case of penetrable dielectrics. The transmission eigenvalue problem is a relatively late arrival to the spectral theory of partial differential equations. Its first appearance was in 1986 in a paper by Kirsch who was investigating the denseness of far-field patterns for scattering solutions of the Helmholtz equation or, in more modern terminology, the injectivity of the far-field operator [1]. The paper of Kirsch was soon followed by a more systematic study by Colton and Monk in the context of developing the dual space method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium [2]. In this paper they showed that for a spherically stratified media transmission eigenvalues existed and formed a discrete set. Numerical examples were also given showing that in principle transmission eigenvalues could be determined from the far-field data. This first period of interest in transmission eigenvalues was concluded with papers by Colton et al in 1989 [3] and Rynne and Sleeman in 1991 [4] showing that for an inhomogeneous medium (not necessarily spherically stratified) transmission eigenvalues, if they existed, formed a discrete set. For the next seventeen years transmission eigenvalues were ignored. This was mainly due to the fact that, with the introduction of various sampling methods to determine the shape of an inhomogeneous medium from far-field data, transmission eigenvalues were something to be avoided and hence the fact that transmission eigenvalues formed at most a discrete set was deemed to be sufficient. In addition, questions related to the existence of transmission eigenvalues or the structure of associated eigenvectors were recognized as being particularly difficult due to the nonlinearity of the eigenvalue problem and the special structure of the associated transmission

  11. The Domestic and Export Market for Large Scale Wave Energy in Ireland and the Economics of Export Transmission

    OpenAIRE

    Sharkey, Fergus; Honer, Kevin; Conlon, Michael; Gaughan, Kevin; Robinson, Emma

    2013-01-01

    Ireland is on track to meet its 2020 renewable energy targets with over 2 GW of onshore wind installed in the all island market as of 2013, and a multiple of this capacity in various stages of planning and development. It is currently unclear how much of this potential capacity will ultimately be installed but it has become clear that the wind industry in Ireland will change focus to export opportunities post 2020. This presents some interesting challenges for wave energy in Ireland. There...

  12. Mapping temperature and radiant geothermal heat flux anomalies in the Yellowstone geothermal system using ASTER thermal infrared data

    Science.gov (United States)

    Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.

  13. Solar ultraviolet and the occupational radiant exposure of Queensland school teachers: A comparative study between teaching classifications and behavior patterns.

    Science.gov (United States)

    Downs, Nathan J; Harrison, Simone L; Chavez, Daniel R Garzon; Parisi, Alfio V

    2016-05-01

    Classroom teachers located in Queensland, Australia are exposed to high levels of ambient solar ultraviolet as part of the occupational requirement to provide supervision of children during lunch and break times. We investigated the relationship between periods of outdoor occupational radiant exposure and available ambient solar radiation across different teaching classifications and schools relative to the daily occupational solar ultraviolet radiation (HICNIRP) protection standard of 30J/m(2). Self-reported daily sun exposure habits (n=480) and personal radiant exposures were monitored using calibrated polysulphone dosimeters (n=474) in 57 teaching staff from 6 different schools located in tropical north and southern Queensland. Daily radiant exposure patterns among teaching groups were compared to the ambient UV-Index. Personal sun exposures were stratified among teaching classifications, school location, school ownership (government vs non-government), and type (primary vs secondary). Median daily radiant exposures were 15J/m(2) and 5J/m(2)HICNIRP for schools located in northern and southern Queensland respectively. Of the 474 analyzed dosimeter-days, 23.0% were found to exceed the solar radiation protection standard, with the highest prevalence found among physical education teachers (57.4% dosimeter-days), followed by teacher aides (22.6% dosimeter-days) and classroom teachers (18.1% dosimeter-days). In Queensland, peak outdoor exposure times of teaching staff correspond with periods of extreme UV-Index. The daily occupational HICNIRP radiant exposure standard was exceeded in all schools and in all teaching classifications. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A comparative transmission electron microscopy, energy dispersive x-ray spectroscopy and spatially resolved micropillar compression study of the yttria partially stabilised zirconia - porcelain interface in dental prosthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lunt, Alexander J.G., E-mail: alexander.lunt@chch.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Mohanty, Gaurav, E-mail: gaurav.mohanty@empa.ch [EMPA Materials Science & Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Ying, Siqi, E-mail: siqi.ying@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Dluhoš, Jiří, E-mail: jiri.dluhos@tescan.cz [TESCAN Brno, s.r.o., Libušina tř. 1, 623 00 Brno-Kohoutovice (Czech Republic); Sui, Tan, E-mail: tan.sui@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Neo, Tee K., E-mail: neophyte@singnet.com.sg [Specialist Dental Group, Mount Elizabeth Orchard, 3 Mount Elizabeth, #08-03/08-08/08-10, 228510 (Singapore); Michler, Johann, E-mail: johann.michler@empa.ch [EMPA Materials Science & Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Korsunsky, Alexander M., E-mail: alexander.korsunsky@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom)

    2015-12-01

    Recent studies into the origins of failure of yttria partially stabilised zirconia–porcelain veneered prosthesis have revealed the importance of micro-to-nano scale characterisation of this interface zone. Current understanding suggests that the heat treatment, residual stresses and varying microstructure at this location may contribute to near-interface porcelain chipping. In this study the chemical, microstructural and mechanical property variation across the interfacial zone has been characterised at two differing length scales and using three independent techniques; energy dispersive X-ray spectroscopy, transmission electron microscopy and micropillar compression. Energy dispersive X-ray spectroscopy mapping of the near-interface region revealed, for the first time, that the diffusional lengths of twelve principal elements are limited to within 2–6 μm of the interface. This study also revealed that 0.2–2 μm diameter zirconia grains had become detached from the bulk and were embedded in the near-interface porcelain. Transmission electron microscopy analysis demonstrated the presence of nanoscale spherical features, indicative of tensile creep induced voiding, within the first 0.4–1.5 μm from the interface. Within zirconia, variations in grain size and atomistic structure were also observed within the 3 μm closest to the interface. Micropillar compression was performed over a 100 μm range on either side of the interface at the spatial resolution of 5 μm. This revealed an increase in zirconia and porcelain loading modulus at close proximities (< 5 μm) to the interface and a decrease in zirconia modulus at distances between 6 and 41 μm from this location. The combination of the three experimental techniques has revealed intricate details of the microstructural, chemical and consequently mechanical heterogeneities in the YPSZ–porcelain interface, and demonstrated that the length scales typically associated with this behaviour are approximately ± 5

  15. Quantifying Transmission.

    Science.gov (United States)

    Woolhouse, Mark

    2017-07-01

    Transmissibility is the defining characteristic of infectious diseases. Quantifying transmission matters for understanding infectious disease epidemiology and designing evidence-based disease control programs. Tracing individual transmission events can be achieved by epidemiological investigation coupled with pathogen typing or genome sequencing. Individual infectiousness can be estimated by measuring pathogen loads, but few studies have directly estimated the ability of infected hosts to transmit to uninfected hosts. Individuals' opportunities to transmit infection are dependent on behavioral and other risk factors relevant given the transmission route of the pathogen concerned. Transmission at the population level can be quantified through knowledge of risk factors in the population or phylogeographic analysis of pathogen sequence data. Mathematical model-based approaches require estimation of the per capita transmission rate and basic reproduction number, obtained by fitting models to case data and/or analysis of pathogen sequence data. Heterogeneities in infectiousness, contact behavior, and susceptibility can have substantial effects on the epidemiology of an infectious disease, so estimates of only mean values may be insufficient. For some pathogens, super-shedders (infected individuals who are highly infectious) and super-spreaders (individuals with more opportunities to transmit infection) may be important. Future work on quantifying transmission should involve integrated analyses of multiple data sources.

  16. Study of semiconductor valence plasmon line shapes via electron energy-loss spectroscopy in the transmission electron microscope

    International Nuclear Information System (INIS)

    Kundmann, M.K.

    1988-11-01

    Electron energy-loss spectra of the semiconductors Si, AlAs, GaAs, InAs, InP, and Ge are examined in detail in the regime of outer-shell and plasmon energy losses (0--100eV). Particular emphasis is placed on modeling and analyzing the shapes of the bulk valence plasmon lines. A line shape model based on early work by Froehlich is derived and compared to single-scattering probability distributions extracted from the measured spectra. Model and data are found to be in excellent agreement, thus pointing the way to systematic characterization of the plasmon component of EELS spectra. The model is applied to three separate investigations. 82 refs

  17. Alternative approaches to transmission investment

    Energy Technology Data Exchange (ETDEWEB)

    Welch, J.L. [International Transmission Co., Detroit, MI (United States)

    2004-07-01

    The International Transmission Company (ITC) is an independent power transmission company that owns, operates and maintains the high voltage transmission system in southeastern Michigan. The company's current focus is on investing in the transmission infrastructure to improve reliability, relieve congestion, improve access to generation and reduce energy costs for consumers. There is a need for investment in power transmission. Trends indicate that power transactions are on the rise while transmission investment is lagging because pricing protocols are inadequate and there is no regional tariff mechanism to allocate the benefits of new investment. The presentation reviewed the applicability of FTRs to transmission owners and the pitfalls of participant funding pricing. It also outlined the regional benefit allocation mechanism (RBAM) with an illustrative example. It was concluded that existing pricing policies must be improved to address the growing need for transmission investment. RBAM is needed to help investors recover costs from project beneficiaries. figs.

  18. Comparison between dispersed nuclear power plants and a nuclear energy center at a hypothetical site on Kentucky Lake, Tennessee. Volume II. Transmission of power

    International Nuclear Information System (INIS)

    Reister, D.B.; Zelby, L.W.

    1976-05-01

    A comparison is made among power transmission systems required to serve a single set of load center demands from four modes of siting the generating facilities: a single generation site with an ultimate generation capacity of 48,000 MW; four generation sites each with a generation capacity of 12,000 MW; 10 generation sites each with a generation capacity of 4,800 MW; and a system that resulted when the existing utility plan for future generation was logically expanded. The time period for the study is from the year 1985 to the year 2020, when the full 48,000 MW of new capacity from the single large nuclear energy center is on-line. The load centers served are Huntsville, Alabama; Evansville, Indiana; Paducah, Kentucky; and Chattanooga, Nashville, and Memphis, Tennessee. Generation sites are real locations but are hypothetical in terms of miles of transmission lines, the product of the amount of power transmitted and the distance transmitted (GW-miles), and cost

  19. Study of the energy band in n-type GaAs and p-type In P by transmission and photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Banai, N.; Khanzadeh, M.

    1998-01-01

    Optical characterization of the n-type In P grown by horizontal Bridgman method was carried out using modular photoluminescence and optical transmission spectroscopy. The measured transmission spectra at room temperature using Cary 17 DX spectrophotometer reveals the band gap energies of 1.4 and 1.34 eV for p-type In P and the n-type GaAs, respectively. Photoluminescence spectra of the above samples was measured at 77 K with the excitation intensity of (20 W/Cm 2 ). The (B-A) transitions occur at 1.405 eV and at 1.382 eV respectively. Three spectra were observed for the n-type GaAs sample, namely, (B-B), (B-A) and another relatively wide spectra at wavelengths above the absorption edge caused by the deep level impurities. The peak position of these spectra are 1.482, 1.4 and 1.36 eV respectively. (author)

  20. Remote sensing for industrial applications in the energy business: digital territorial data integration for planning of overhead power transmission lines (OHTLs)

    Science.gov (United States)

    Terrazzino, Alfonso; Volponi, Silvia; Borgogno Mondino, Enrico

    2001-12-01

    An investigation has been carried out, concerning remote sensing techniques, in order to assess their potential application to the energy system business: the most interesting results concern a new approach, based on digital data from remote sensing, to infrastructures with a large territorial distribution: in particular OverHead Transmission Lines, for the high voltage transmission and distribution of electricity on large distances. Remote sensing could in principle be applied to all the phases of the system lifetime, from planning to design, to construction, management, monitoring and maintenance. In this article, a remote sensing based approach is presented, targeted to the line planning: optimization of OHTLs path and layout, according to different parameters (technical, environmental and industrial). Planning new OHTLs is of particular interest in emerging markets, where typically the cartography is missing or available only on low accuracy scale (1:50.000 and lower), often not updated. Multi- spectral images can be used to generate thematic maps of the region of interest for the planning (soil coverage). Digital Elevation Models (DEMs), allow the planners to easily access the morphologic information of the surface. Other auxiliary information from local laws, environmental instances, international (IEC) standards can be integrated in order to perform an accurate optimized path choice and preliminary spotting of the OHTLs. This operation is carried out by an ABB proprietary optimization algorithm: the output is a preliminary path that bests fits the optimization parameters of the line in a life cycle approach.

  1. Energy Reconstruction and high-speed Data Transmission with FPGAs for the Upgrade of the ATLAS Liquid Argon Calorimeter at LHC

    CERN Document Server

    Stärz, Steffen

    The Liquid Argon calorimeter of the ATLAS detector at CERN near Geneva is equipped with improved readout and trigger electronics for the operation at higher luminosity LHC in the frame of several upgrades (Phase-0, I, and II). Special attention is given to an early digitisation of detector raw data and their following digital data transmission and processing via FPGAs already for the Level-1 trigger. The upgrades additionally foresee to provide higher spatial granularity information for the Level-1 trigger in order to improve its performance for low momentum single particles at increased collision rates. The first part of this dissertation contains the development and implementation of a modular detector simulation framework, AREUS, which allows to analyse different filter algorithms for the energy reconstruction as well as their performance with respect to the expected digitised detector raw data. In this detector simulation framework the detailed algorithmic functionality of the FPGAs has been taken into ac...

  2. Characterization of the Carancas-Puno meteorite by energy dispersive X-ray fluorescence, X-ray diffractometry and transmission Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ceron Loayza, Maria L., E-mail: malucelo@hotmail.com; Bravo Cabrejos, Jorge A. [Universidad Nacional Mayor de San Marcos, Laboratorio de Analisis de Suelos, Facultad de Ciencias Fisicas (Peru)

    2011-11-15

    We report the results of the study of a meteorite that impacted an inhabited zone on 15 September 2007 in the neighborhood of the town of Carancas, Puno Region, about 1,300 km south of Lima. The analysis carried out by energy dispersive X-ray fluorescence, X-ray diffractometry and transmission Moessbauer spectroscopy (at room temperature and at 4.2 K), reveal the presence in the meteorite sample of magnetic sites assigned to taenite (Fe,Ni) and troilite (Fe,S) phases, and of two paramagnetic doublets assigned to Fe{sup 2 + }, one associated with olivine and the other to pyroxene. In accord with these results, this meteorite is classified as a type IV chondrite meteorite.

  3. Primary investigation of a design for a dual energy gamma-ray transmission gauge to determine the ash content of coal on a conveyor belt

    International Nuclear Information System (INIS)

    Abedinzadeh, A.; Rahimi, H.; Rahimi, N.; Amini, A.; Naimpour, A.; Moafian, J.

    1993-01-01

    In order to design a dual energy γ-ray transmission gauge for measuring, on-line, the ash content of coal, an investigation was carried out to determine the relation between the theoretical mass absorption coefficient (μ-bar) and the % ash of coal in the Kerman District Coal Mines. Because coal, transported on a conveyor belt, may be a non-homogeneous mixture from one or more mines, it was decided to compare % ash in a mixture of coals from several mines with that from individual mines, the measurements being made whilst the coal was being transported on a conveyor belt. The investigation shows that the relation between the mass absorption coefficient and the % ash in a coal mixture from several mines cannot be used to assess, accurately, the value of μ-bar for coals from individual mines in this particular region. (author)

  4. Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy

    International Nuclear Information System (INIS)

    Pantzas, K; Voss, P L; Ougazzaden, A; Patriarche, G; Largeau, L; Mauguin, O; Troadec, D; Gautier, S; Moudakir, T; Suresh, S

    2012-01-01

    Using elastic scattering theory we show that a small set of energy dispersive x-ray spectroscopy (EDX) measurements is sufficient to experimentally evaluate the scattering function of electrons in high-angle annular dark field scanning transmission microscopy (HAADF-STEM). We then demonstrate how to use this function to transform qualitative HAADF-STEM images of InGaN layers into precise, quantitative chemical maps of the indium composition. The maps obtained in this way combine the resolution of HAADF-STEM and the chemical precision of EDX. We illustrate the potential of such chemical maps by using them to investigate nanometer-scale fluctuations in the indium composition and their impact on the growth of epitaxial InGaN layers. (paper)

  5. An Integrated Optimal Energy Management/Gear-Shifting Strategy for an Electric Continuously Variable Transmission Hybrid Powertrain Using Bacterial Foraging Algorithm

    Directory of Open Access Journals (Sweden)

    Syuan-Yi Chen

    2016-01-01

    Full Text Available This study developed an integrated energy management/gear-shifting strategy by using a bacterial foraging algorithm (BFA in an engine/motor hybrid powertrain with electric continuously variable transmission. A control-oriented vehicle model was constructed on the Matlab/Simulink platform for further integration with developed control strategies. A baseline control strategy with four modes was developed for comparison with the proposed BFA. The BFA was used with five bacterial populations to search for the optimal gear ratio and power-split ratio for minimizing the cost: the equivalent fuel consumption. Three main procedures were followed: chemotaxis, reproduction, and elimination-dispersal. After the vehicle model was integrated with the vehicle control unit with the BFA, two driving patterns, the New European Driving Cycle and the Federal Test Procedure, were used to evaluate the energy consumption improvement and equivalent fuel consumption compared with the baseline. The results show that [18.35%,21.77%] and [8.76%,13.81%] were improved for the optimal energy management and integrated optimization at the first and second driving cycles, respectively. Real-time platform designs and vehicle integration for a dynamometer test will be investigated in the future.

  6. National transmission grid study

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Spencer [USDOE Office of the Secretary of Energy, Washington, DC (United States)

    2003-05-31

    The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE’s Policy Office Electricity Modeling System (POEMS). DOE’s analysis, presented in Section 2, confirms the central role of the nation’s transmission system in lowering costs to consumers through increased trade. More importantly, DOE’s analysis also confirms the results of previous studies, which show that transmission bottlenecks and related transmission system market practices are adding hundreds of millions of dollars to consumers’ electricity bills each year. A more detailed technical overview of the use of POEMS is provided in Appendix A. DOE led an extensive, open, public input process and heard a wide range of comments and recommendations that have all been considered.1 More than 150 participants registered for three public workshops held in Detroit, MI (September 24, 2001); Atlanta, GA (September 26, 2001); and Phoenix, AZ (September 28, 2001).

  7. Force transmissibility versus displacement transmissibility

    Science.gov (United States)

    Lage, Y. E.; Neves, M. M.; Maia, N. M. M.; Tcherniak, D.

    2014-10-01

    It is well-known that when a single-degree-of-freedom (sdof) system is excited by a continuous motion of the foundation, the force transmissibility, relating the force transmitted to the foundation to the applied force, equals the displacement transmissibility. Recent developments in the generalization of the transmissibility to multiple-degree-of-freedom (mdof) systems have shown that similar simple and direct relations between both types of transmissibility do not appear naturally from the definitions, as happens in the sdof case. In this paper, the authors present their studies on the conditions under which it is possible to establish a relation between force transmissibility and displacement transmissibility for mdof systems. As far as the authors are aware, such a relation is not currently found in the literature, which is justified by being based on recent developments in the transmissibility concept for mdof systems. Indeed, it does not appear naturally, but the authors observed that the needed link is present when the displacement transmissibility is obtained between the same coordinates where the applied and reaction forces are considered in the force transmissibility case; this implies that the boundary conditions are not exactly the same and instead follow some rules. This work presents a formal derivation of the explicit relation between the force and displacement transmissibilities for mdof systems, and discusses its potential and limitations. The authors show that it is possible to obtain the displacement transmissibility from measured forces, and the force transmissibility from measured displacements, opening new perspectives, for example, in the identification of applied or transmitted forces. With this novel relation, it becomes possible, for example, to estimate the force transmissibility matrix with the structure off its supports, in free boundary conditions, and without measuring the forces. As far as force identification is concerned, this

  8. Stochastic risk-averse coordinated scheduling of grid integrated energy storage units in transmission constrained wind-thermal systems within a conditional value-at-risk framework

    International Nuclear Information System (INIS)

    Hemmati, Reza; Saboori, Hedayat; Saboori, Saeid

    2016-01-01

    In recent decades, wind power resources have been integrated in the power systems increasingly. Besides confirmed benefits, utilization of large share of this volatile source in power generation portfolio has been faced system operators with new challenges in terms of uncertainty management. It is proved that energy storage systems are capable to handle projected uncertainty concerns. Risk-neutral methods have been proposed in the previous literature to schedule storage units considering wind resources uncertainty. Ignoring risk of the cost distributions with non-desirable properties may result in experiencing high costs in some unfavorable scenarios with high probability. In order to control the risk of the operator decisions, this paper proposes a new risk-constrained two-stage stochastic programming model to make optimal decisions on energy storage and thermal units in a transmission constrained hybrid wind-thermal power system. Risk-aversion procedure is explicitly formulated using the conditional value-at-risk measure, because of possessing distinguished features compared to the other risk measures. The proposed model is a mixed integer linear programming considering transmission network, thermal unit dynamics, and storage devices constraints. The simulations results demonstrate that taking the risk of the problem into account will affect scheduling decisions considerably depend on the level of the risk-aversion. - Highlights: • Risk of the operation decisions is handled by using risk-averse programming. • Conditional value-at-risk is used as risk measure. • Optimal risk level is obtained based on the cost/benefit analysis. • The proposed model is a two-stage stochastic mixed integer linear programming. • The unit commitment is integrated with ESSs and wind power penetration.

  9. Data transmission

    National Research Council Canada - National Science Library

    Tugal, Dogan A; Tugal, Osman

    1989-01-01

    This updated second edition provides working answers to today's critical questions about designing and managing all types of data transmission systems and features a new chapter on local area networks (LANs...

  10. Analytical transmissibility based transfer path analysis for multi-energy-domain systems using four-pole parameter theory

    Science.gov (United States)

    Mashayekhi, Mohammad Jalali; Behdinan, Kamran

    2017-10-01

    The increasing demand to minimize undesired vibration and noise levels in several high-tech industries has generated a renewed interest in vibration transfer path analysis. Analyzing vibration transfer paths within a system is of crucial importance in designing an effective vibration isolation strategy. Most of the existing vibration transfer path analysis techniques are empirical which are suitable for diagnosis and troubleshooting purpose. The lack of an analytical transfer path analysis to be used in the design stage is the main motivation behind this research. In this paper an analytical transfer path analysis based on the four-pole theory is proposed for multi-energy-domain systems. Bond graph modeling technique which is an effective approach to model multi-energy-domain systems is used to develop the system model. In this paper an electro-mechanical system is used as a benchmark example to elucidate the effectiveness of the proposed technique. An algorithm to obtain the equivalent four-pole representation of a dynamical systems based on the corresponding bond graph model is also presented in this paper.

  11. Performance Evaluation of Radiator and Radiant Floor Heating Systems for an Office Room Connected to a Ground-Coupled Heat Pump

    Directory of Open Access Journals (Sweden)

    Ioan Sarbu

    2016-03-01

    Full Text Available A ground-coupled heat pump (GCHP system used to provide the space heating for an office room is a renewable, high performance technology. This paper discusses vapour compression-based HP systems, briefly describing the thermodynamic cycle calculations, as well as the coefficient of performance (COP and CO2 emissions of a HP with an electro-compressor and compares different heating systems in terms of energy consumption, thermal comfort and environmental impact. It is focused on an experimental study performed to test the energy efficiency of the radiator or radiant floor heating system for an office room connected to a GCHP. The main performance parameters (COP and CO2 emissions are obtained for one month of operation of the GCHP system, and a comparative analysis of these parameters is presented. Additionally, two numerical simulation models of useful thermal energy and the system COP in heating mode are developed using the Transient Systems Simulation (TRNSYS software. Finally, the simulations obtained from TRNSYS software are analysed and compared to the experimental data, showing good agreement and thus validating the simulation models.

  12. Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications: Assessing the Technical Needs for Utility Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, L.M.

    2005-12-21

    Power electronics can provide utilities the ability to more effectively deliver power to their customers while providing increased reliability to the bulk power system. In general, power electronics is the process of using semiconductor switching devices to control and convert electrical power flow from one form to another to meet a specific need. These conversion techniques have revolutionized modern life by streamlining manufacturing processes, increasing product efficiencies, and increasing the quality of life by enhancing many modern conveniences such as computers, and they can help to improve the delivery of reliable power from utilities. This report summarizes the technical challenges associated with utilizing power electronics devices across the entire spectrum from applications to manufacturing and materials development, and it provides recommendations for research and development (R&D) needs for power electronics systems in which the U.S. Department of Energy (DOE) could make a substantial impact toward improving the reliability of the bulk power system.

  13. Analysis of the technology for the transmission of electrical energy through by the resonance phenomenon between objects

    International Nuclear Information System (INIS)

    Montiel Cubillo, Jose Alonso

    2011-01-01

    Physical principles that allow the transfer of electrical energy by magnetic resonance between objects are developed, for this was chosen the technology by engineers and physicists of the Massachusetts Institute of Technology called Witricity. Among the most important points covered are: the antecedents, efficiency of the technology, its potential applications, consequences for human health and the nature, scope and experimental designs. The methodology used in its most is bibliographical, mainly focused on the fundamentals nominated by the developers of the technology WiTricity. For future implementations is recommended the utilization of electronic elements of the highest quality, which are capable of withstanding high temperatures and powers. Those components is wished that are usually higher than would be used in the electronics laboratory practice, of the courses Electronic Laboratory I and II; the purchase of such items is even contemplated outside of Costa Rica. (author) [es

  14. An Investigation of Energy Transmission Due to Flexural Wave Propagation in Lightweight, Built-Up Structures. Thesis

    Science.gov (United States)

    Mickol, John Douglas; Bernhard, R. J.

    1986-01-01

    A technique to measure flexural structure-borne noise intensity is investigated. Two accelerometers serve as transducers in this cross-spectral technique. The structure-borne sound power is obtained by two different techniques and compared. In the first method, a contour integral of intensity is performed from the values provided by the two-accelerometer intensity technique. In the second method, input power is calculated directly from the output of force and acceleration transducers. A plate and two beams were the subjects of the sound power comparisons. Excitation for the structures was either band-limited white noise or a deterministic signal similar to a swept sine. The two-accelerometer method was found to be sharply limited by near field and transducer spacing limitations. In addition, for the lightweight structures investigated, it was found that the probe inertia can have a significant influence on the power input to the structure. In addition to the experimental investigation of structure-borne sound energy, an extensive study of the point harmonically forced, point-damped beam boundary value problem was performed to gain insight into measurements of this nature. The intensity formulations were also incorporated into the finite element method. Intensity mappings were obtained analytically via finite element modeling of simple structures.

  15. Radiant Ceiling Panels Combined with Localized Methods for Improved Thermal Comfort of Both Patient and Medical Staff in Patient Room

    DEFF Research Database (Denmark)

    Mori, Sakura; Barova, Mariya; Bolashikov, Zhecho Dimitrov

    2012-01-01

    The objectives were to identify whether ceiling installed radiant heating panels can provide thermal comfort to the occupants in a patient room, and to determine a method for optimal thermal environment to both patient and medical staff simultaneously. The experiments were performed in a climate...... mattress were used to provide local heating for the patient. The effects of the methods were identified by comparing the manikin based equivalent temperatures. The optimal thermal comfort level for both patient and medical staff would obtained when two conventional cotton blankets were used with extra...... chamber resembling a single-bed patient room under convective air conditioning alone or combined with the ceiling installed radiant heating panels. Two thermal manikins simulated a patient lying in the bed and a doctor standing next to the patient. Conventional cotton blanket, electric blanket, electric...

  16. Effect of radiant heat at the birth site in farrowing crates on hypothermia and behaviour in neonatal piglets

    DEFF Research Database (Denmark)

    Andersen, Heidi Mai-Lis; Pedersen, Lene Juul

    2016-01-01

    It has been documented that floor heating of the farrowing area in loose housed sows improves survival of piglets significantly. However, today, the majority of farrowing pens are designed with crating of sows and slatted floor at the birth site. The aim of this study was to investigate whether...... providing radiant heat at the birth site to new-born piglets in pens with crated sows reduced hypothermia, time to first milk intake and growth of the piglets during the 1st week. Second parity Danish Landrace×Yorkshire sows (n=36) were randomly divided into two groups: Control (CG) and heat (HG......). In the area behind the sow (zone 1), two radiant heat panels were mounted above the slatted floor in the HG. The farrowings were attended, and the heaters were turned on at birth of first piglet and turned off 12 h after. Birth time, time to leave zone 1, time to first contact with udder and time to first...

  17. Minerals and aligned collagen fibrils in tilapia fish scales: structural analysis using dark-field and energy-filtered transmission electron microscopy and electron tomography.

    Science.gov (United States)

    Okuda, Mitsuhiro; Ogawa, Nobuhiro; Takeguchi, Masaki; Hashimoto, Ayako; Tagaya, Motohiro; Chen, Song; Hanagata, Nobutaka; Ikoma, Toshiyuki

    2011-10-01

    The mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer. Dark-field imaging and three-dimensional observation using electron tomography revealed that hydroxyapatite and needle-like materials were mainly found in the matrix between the collagen fibrils. It was observed that hydroxyapatite and needle-like materials were preferentially distributed on the surface of the hole zones in the aligned collagen fibrils structure and in the matrix between the collagen fibrils in the mineralized internal layer of the scale.

  18. Voluntary transmission access: The PSI proposal

    International Nuclear Information System (INIS)

    Norris, J.E.

    1990-01-01

    This article examines a proposal from PSI Energy, Inc. (formerly Public Service Company of Indiana) to allow open access to its power transmission facilities and the response of the Federal Energy Regulatory Commission's response to that proposal. The topics discussed include transmission tariffs, competition, market share, expansion of transmission capacity and its funding, and reciprocal agreements to provide similar service

  19. Experimental research on the indoor temperature and humidity fields in radiant ceiling air-conditioning system under natural ventilation

    Science.gov (United States)

    Huang, Tao; Xiang, Yutong; Wang, Yonghong

    2017-05-01

    In this paper, the indoor temperature and humidity fields of the air in a metal ceiling radiant panel air conditioning system with fresh air under natural ventilation were researched. The temperature and humidity distributions at different height and different position were compared. Through the computation analysis of partial pressure of water vapor, the self-recovery characteristics of humidity after the natural ventilation was discussed.

  20. Solar radiation, phytoplankton pigments and the radiant heating of the equatorial Pacific warm pool

    Science.gov (United States)

    Siegel, David A.; Ohlmann, J. Carter; Washburn, Libe; Bidigare, Robert R.; Nosse, Craig T.; Fields, Erik; Zhou, Yimei

    1995-01-01

    Recent optical, physical, and biological oceanographic observations are used to assess the magnitude and variability of the penetrating flux of solar radiation through the mixed layer of the warm water pool (WWP) of the western equatorial Pacific Ocean. Typical values for the penetrative solar flux at the climatological mean mixed layer depth for the WWP (30 m) are approx. 23 W/sq m and are a large fraction of the climatological mean net air-sea heat flux (approx. 40 W/sq m). The penetrating solar flux can vary significantly on synoptic timescales. Following a sustained westerly wind burst in situ solar fluxes were reduced in response to a near tripling of mixed layer phytoplankton pigment concentrations. This results in a reduction in the penetrative flux at depth (5.6 W/sq m at 30 m) and corresponds to a biogeochemically mediated increase in the mixed layer radiant heating rate of 0.13 C per month. These observations demonstrate a significant role of biogeochemical processes on WWP thermal climate. We speculate that this biogeochemically mediated feedback process may play an important role in enhancing the rate at which the WWP climate system returns to normal conditions following a westerly wind burst event.

  1. EXPERIMENTAL INVESTIGATION OF THE CONVECTIVE HEAT TRANSFER IN A SPIRALLY COILED CORRUGATED TUBE WITH RADIANT HEATING

    Directory of Open Access Journals (Sweden)

    Milan Đorđević

    2017-12-01

    Full Text Available The Archimedean spiral coil made of a transversely corrugated tube was exposed to radiant heating in order to represent a heat absorber of the parabolic dish solar concentrator. The main advantage of the considered innovative design solution is a coupling effect of the two passive methods for heat transfer enhancement - coiling of the flow channel and changes in surface roughness. The curvature ratio of the spiral coil varies from 0.029 to 0.234, while water and a mixture of propylene glycol and water are used as heat transfer fluids. The unique focus of this study is on specific boundary conditions since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but in the axial direction as well. Instrumentation of the laboratory model of the heat absorber mounted in the radiation field includes measurement of inlet fluid flow rate, pressure drop, inlet and outlet fluid temperature and 35 type K thermocouples welded to the coil surface. A thermal analysis of the experimentally obtained data implies taking into consideration the externally applied radiation field, convective and radiative heat losses, conduction through the tube wall and convection to the internal fluid. The experimental results have shown significant enhancement of the heat transfer rate compared to spirally coiled smooth tubes, up to 240% in the turbulent flow regime.

  2. Evolution of arbitrary moments of radiant intensity distribution for partially coherent general beams in atmospheric turbulence

    Science.gov (United States)

    Dan, Youquan; Xu, Yonggen

    2018-04-01

    The evolution law of arbitrary order moments of the Wigner distribution function, which can be applied to the different spatial power spectra, is obtained for partially coherent general beams propagating in atmospheric turbulence using the extended Huygens-Fresnel principle. A coupling coefficient of radiant intensity distribution (RID) in turbulence is introduced. Analytical expressions of the evolution of the first five-order moments, kurtosis parameter, coupling coefficient of RID for general beams in turbulence are derived, and the formulas are applied to Airy beams. Results show that there exist two types for general beams in turbulence. A larger value of kurtosis parameter for Airy beams also reveals that coupling effect due to turbulence is stronger. Both theoretical analysis and numerical results show that the maximum value of kurtosis parameter for an Airy beam in turbulence is independent of turbulence strength parameter and is only determined by inner scale of turbulence. Relative angular spread, kurtosis and coupling coefficient are less influenced by turbulence for Airy beams with a smaller decay factor and a smaller initial width of the first lobe.

  3. Mathematical Modeling of Radiant Heat Transfer in Mirror Systems Considering Deep Reflecting Surface Defects

    Directory of Open Access Journals (Sweden)

    V. V. Leonov

    2014-01-01

    Full Text Available When designing large-sized mirror concentrating systems (MCS for high-temperature solar power plants, one must have at disposal reasonably reliable and economical methods and tools, making it possible to analyze its characteristics, to predict them depending on the operation conditions and accordingly to choose the most suitable system for the solution of particular task.Experimental determination of MCS characteristics requires complicated and expensive experimentation, having significant limitations on interpretation of the results, as well as limitations imposed due to the size of the structure. Therefore it is of particular interest to develop a mathematical model capable of estimating power characteristics of MCS considering the influence of operating conditions, design features, roughness and other surface defects.For efficient solution of the tasks the model must ensure simulation of solar radiant flux as well as simulation of geometrical and optical characteristics of reflection surface and their interaction. In this connection a statistical mathematical model of radiation heat exchange based on use of Monte Carlo methods and Finite Element Method was developed and realized in the software complex, making it possible to determine main characteristics of the MCS.In this paper the main attention is given to definition of MCS radiation characteristics with account for deep reflecting surface defects (cavities, craters. Deep cavities are not typical for MCS, but their occurrence is possible during operation as a result of erosion or any physical damage. For example, for space technology it is primarily micrometeorite erosion.

  4. Numerical investigation on the convective heat transfer in a spiral coil with radiant heating

    Directory of Open Access Journals (Sweden)

    Đorđević Milan Lj.

    2016-01-01

    Full Text Available The objective of this study was to numerically investigate the heat transfer in spiral coil tube in the laminar, transitional, and turbulent flow regimes. The Archimedean spiral coil was exposed to radiant heating and should represent heat absorber of parabolic dish solar concentrator. Specific boundary conditions represent the uniqueness of this study, since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but also in the axial direction. The curvature ratio of spiral coil varies from 0.029 at the flow inlet to 0.234 at the flow outlet, while the heat transfer fluid is water. The 3-D steady-state transport equations were solved using the Reynolds stress turbulence model. Results showed that secondary flows strongly affect the flow and that the heat transfer is strongly asymmetric, with higher values near the outer wall of spiral. Although overall turbulence levels were lower than in a straight pipe, heat transfer rates were larger due to the curvature-induced modifications of the mean flow and temperature fields. [Projekat Ministarstva nauke Republike Srbije, br. 42006

  5. Dependence of calculus retropulsion dynamics on fiber size and radiant exposure during Ho:YAG lithotripsy.

    Science.gov (United States)

    Lee, Ho; Ryan, Robert T; Kim, Jeehyun; Choi, Bernard; Arakeri, Navanit V; Teichman, Joel M H; Welch, A J

    2004-08-01

    During pulsed laser lithotripsy, the calculus is subject to a strong recoil momentum which moves the calculus away from laser delivery and prolongs the operation. This study was designed to quantify the recoil momentum during Ho:YAG laser lithotripsy. The correlation among crater shape, debris trajectory, laser-induced bubble and recoil momentum was investigated. Calculus phantoms made from plaster of Paris were ablated with free running Ho:YAG lasers. The dynamics of recoil action of a calculus phantom was monitored by a high-speed video camera and the laser ablation craters were examined with Optical Coherent Tomography (OCT). Higher radiant exposure resulted in larger ablation volume (mass) which increased the recoil momentum. Smaller fibers produced narrow craters with a steep contoured geometry and decreased recoil momentum compared to larger fibers. In the presence of water, recoil motion of the phantom deviated from that of phantom in air. Under certain conditions, we observed the phantom rocking towards the fiber after the laser pulse. The shape of the crater is one of the major contributing factors to the diminished recoil momentum of smaller fibers. The re-entrance flow of water induced by the bubble collapse is considered to be the cause of the rocking of the phantom.

  6. Influence on living body by radiant rays produced in low power reactor

    International Nuclear Information System (INIS)

    Ogura, Isao; Nakamura, Katsuichi; Usuyama, Hideo; Usui, Akinori; Hosomi, Takashi; Yoshimura, Yoshinao; Nakai, Takahide; Egashira, Masamichi

    1984-01-01

    There is possibility of a risk that a living body is irradiated by those for slightly indifference to radiant rays, radiation source or devices of low level dose or dose rate. Accordingly, a low power reactor (UTR-KINKI) was utilized for a observation of influence by radiation of low level dose or dose rate, the rabbits were irradiated in it at output 1 w. The large influence was not expected for the low level dose rate of 1.313 Rad/hr even if they were irradiated for the several hours, but in a part of blood components a slight change was recognized. The change of M pattern in white blood corpuscle number was indicated likewise as irradiation of 500R X-ray, reported from Jacobson and others, by irradiation to about 13 Rads. In addition, lymphocyte number was increased considerably in an early stage. This fact will be useful for a recovery of an injury as mentioned by Lucky. The rabbits of alloxan diabetes mellitus and hepatitis were irradiated in the same way as above, but they scarcely showed the alterations. However, numerous rabbits can't be used in this experiment for the equipment and others. (author)

  7. A new integrating sphere design for spectral radiant flux determination of light-emitting diodes

    Science.gov (United States)

    Hanselaer, P.; Keppens, A.; Forment, S.; Ryckaert, W. R.; Deconinck, G.

    2009-09-01

    Light-emitting diode (LED) technology is developing very quickly and may be considered an alternative for traditional light sources. However, at this moment, manufacturers and end users of LEDs are facing a rather basic but major problem. The lack of standardization regarding optical and electrical characterization of LEDs appears to compromise a successful implementation. In particular, numbers quoted for the luminous flux, and consequently for the efficacy of LEDs, are very sensitive data because they are used to impress and push the LED market. In this paper, the most was made of the typical hemispherical radiation of high-power LEDs to increase the accuracy of the flux determination using a custom-made integrating sphere. Recently developed measurement techniques such as the use of an external spectral irradiance standard and an optimized spectral irradiance detection head are combined with a very particular port geometry and a minimized baffle area. This results in a uniform spatial response distribution function (SRDF), which guarantees an accurate radiant and luminous flux determination, irrespective of the spatial intensity distribution of the LED package or luminaire. The effect of the directional response of the detector head on the SRDF has been explored. Measurements on LED devices with and without external optics are presented, illustrating the possibilities of the measurement setup.

  8. A new integrating sphere design for spectral radiant flux determination of light-emitting diodes

    International Nuclear Information System (INIS)

    Hanselaer, P; Keppens, A; Forment, S; Ryckaert, W R; Deconinck, G

    2009-01-01

    Light-emitting diode (LED) technology is developing very quickly and may be considered an alternative for traditional light sources. However, at this moment, manufacturers and end users of LEDs are facing a rather basic but major problem. The lack of standardization regarding optical and electrical characterization of LEDs appears to compromise a successful implementation. In particular, numbers quoted for the luminous flux, and consequently for the efficacy of LEDs, are very sensitive data because they are used to impress and push the LED market. In this paper, the most was made of the typical hemispherical radiation of high-power LEDs to increase the accuracy of the flux determination using a custom-made integrating sphere. Recently developed measurement techniques such as the use of an external spectral irradiance standard and an optimized spectral irradiance detection head are combined with a very particular port geometry and a minimized baffle area. This results in a uniform spatial response distribution function (SRDF), which guarantees an accurate radiant and luminous flux determination, irrespective of the spatial intensity distribution of the LED package or luminaire. The effect of the directional response of the detector head on the SRDF has been explored. Measurements on LED devices with and without external optics are presented, illustrating the possibilities of the measurement setup

  9. Assessing the accuracy of globe thermometer method in predicting outdoor mean radiant temperature under Malaysia tropical microclimate

    Science.gov (United States)

    Khrit, N. G.; Alghoul, M. A.; Sopian, K.; Lahimer, A. A.; Elayeb, O. K.

    2017-11-01

    Assessing outdoor human thermal comfort and urban climate quality require experimental investigation of microclimatic conditions and their variations in open urban spaces. For this, it is essential to provide quantitative information on air temperature, humidity, wind velocity and mean radiant temperature. These parameters can be quantified directly except mean radiant temperature (Tmrt). The most accurate method to quantify Tmrt is integral radiation measurements (3-D shortwave and long-wave) which require using expensive radiometer instruments. To overcome this limitation the well-known globe thermometer method was suggested to calculate Tmrt. The aim of this study was to assess the possibility of using indoor globe thermometer method in predicting outdoor mean radiant temperature under Malaysia tropical microclimate. Globe thermometer method using small and large sizes of black-painted copper globes (50mm, 150mm) were used to estimate Tmrt and compare it with the reference Tmrt estimated by integral radiation method. The results revealed that the globe thermometer method considerably overestimated Tmrt during the middle of the day and slightly underestimated it in the morning and late evening. The difference between the two methods was obvious when the amount of incoming solar radiation was high. The results also showed that the effect of globe size on the estimated Tmrt is mostly small. Though, the estimated Tmrt by the small globe showed a relatively large amount of scattering caused by rapid changes in radiation and wind speed.

  10. PAIR INFLUENCE OF WIND SPEED AND MEAN RADIANT TEMPERATURE ON OUTDOOR THERMAL COMFORT OF HUMID TROPICAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Sangkertadi Sangkertadi

    2016-01-01

    Full Text Available The purposes of this article is to explore knowledge of outdoor thermal comfort in humid tropical environment for urban activities especially for people in walking activity, and those who stationary/seated with moderate action. It will be characterized the pair influence of wind speed and radiant temperature on the outdoor thermal comfort. Many of researchers stated that those two microclimate variables give significant role on outdoor thermal comfort in tropical humid area. Outdoor Tropical Comfort (OTC model was used for simulation in this study. The model output is comfort scale that refers on ASHRAE definition. The model consists of two regression equations with variables of air temperature, globe temperature, wind speed, humidity and body posture, for two types of activity: walking and seated. From the results it can be stated that there is significant role of wind speed to reduce mean radiant temperature and globe temperature, when the velocity is elevated from 0.5 m/s to 2 m/s. However, the wind has not play significant role when the speed is changed from 2 m/s to 3.5 m/s. The results of the study may inspire us to implement effectiveness of electrical-fan equipment for outdoor space in order to get optimum wind speed, coupled with optimum design of shading devices to minimize radiant temperature for thermal comfort.

  11. Effects of radiant exposure and wavelength spectrum of light-curing units on chemical and physical properties of resin cements

    Directory of Open Access Journals (Sweden)

    Adriano Fonseca Lima

    2016-11-01

    Full Text Available Objectives In this study, we evaluated the influence of different radiant exposures provided by single-peak and polywave light-curing units (LCUs on the degree of conversion (DC and the mechanical properties of resin cements. Materials and Methods Six experimental groups were established for each cement (RelyX ARC, 3M ESPE; LuxaCore Dual, Ivoclar Vivadent; Variolink, DMG, according to the different radiant exposures (5, 10, and 20 J/cm2 and two LCUs (single-peak and polywave. The specimens were made (7 mm in length × 2 mm in width × 1 mm in height using silicone molds. After 24 hours of preparation, DC measurement was performed using Fourier transform infrared spectrometry. The same specimens were used for the evaluation of mechanical properties (flexural strength, FS; elastic modulus, E by a three-point bending test. Data were assessed for normality, after which two-way analysis of variance (ANOVA and post hoc Tukey's test were performed. Results No properties of the Variolink cement were influenced by any of the considered experimental conditions. In the case of the RelyX ARC cement, DC was higher when polywave LCU was used; FS and E were not influenced by the conditions evaluated. The LuxaCore cement showed greater sensitivity to the different protocols. Conclusions On the basis of these results, both the spectrum of light emitted and the radiant exposure used could affect the properties of resin cements. However, the influence was material-dependent.

  12. The efficacy of radiant heat controls on workers' heat stress around the blast furnace of a steel industry.

    Science.gov (United States)

    Giahi, Omid; Darvishi, Ebrahim; Aliabadi, Mohsen; Khoubi, Jamshid

    2015-01-01

    Workers' exposure to excessive heat in molten industries is mainly due to radiant heat from hot sources. The aim of this study was to evaluate the efficacy of radiant heat controls on workers heat stress around a typical blast furnace. Two main interventions were applied for reducing radiant heat around the blast furnace of a steel industry located in western Iran. These included using a heat absorbing system in the furnace body and installing reflective aluminum barrier in the main workstation. Heat stress indexes were measured before and after each intervention using the digital WBGT-meter. The results showed MRT and WBGT indexes decreased by 20 °C and 3.9 °C, respectively after using heat absorbing system and also decreased by 18.6 °C and 2.5 °C, respectively after installing a reflective barrier. These indexes decrease by 26.5 °C and 5.2 °C, respectively due to the simultaneous application of the two interventions which were statistically significant (p steel industries.

  13. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response.

    Science.gov (United States)

    Troussel, Ph; Villette, B; Emprin, B; Oudot, G; Tassin, V; Bridou, F; Delmotte, F; Krumrey, M

    2014-01-01

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  14. 3D analysis of the morphology and spatial distribution of nitrogen in nitrogen-doped carbon nanotubes by energy-filtered transmission electron microscopy tomography.

    Science.gov (United States)

    Florea, Ileana; Ersen, Ovidiu; Arenal, Raul; Ihiawakrim, Dris; Messaoudi, Cédric; Chizari, Kambiz; Janowska, Izabela; Pham-Huu, Cuong

    2012-06-13

    We present here the application of the energy-filtered transmission electron microscopy (EFTEM) in the tomographic mode to determine the precise 3D distribution of nitrogen within nitrogen-doped carbon nanotubes (N-CNTs). Several tilt series of energy-filtered images were acquired on the K ionization edges of carbon and nitrogen on a multiwalled N-CNT containing a high amount of nitrogen. Two tilt series of carbon and nitrogen 2D maps were then calculated from the corresponding energy-filtered images by using a proper extraction procedure of the chemical signals. Applying iterative reconstruction algorithms provided two spatially correlated C and N elemental-selective volumes, which were then simultaneously analyzed with the shape-sensitive reconstruction deduced from Zero-Loss recordings. With respect to the previous findings, crucial information obtained by analyzing the 3D chemical maps was that, among the two different kind of arches formed in these nanotubes (transversal or rounded ones depending on their morphology), the transversal arches contain more nitrogen than do the round ones. In addition, a detailed analysis of the shape-sensitive volume allowed the observation of an unexpected change in morphology along the tube axis: close to the round arches (with less N), the tube is roughly cylindrical, whereas near the transversal ones (with more N), its shape changes to a prism. This relatively new technique is very powerful in the material science because it combines the ability of the classical electron tomography to solve 3D structures and the chemical selectivity of the EFTEM imaging.

  15. Modular assembly of a photovoltaic solar energy receiver

    Science.gov (United States)

    Graven, Robert M.; Gorski, Anthony J.; Schertz, William W.; Graae, Johan E. A.

    1978-01-01

    There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.

  16. The energy balance of the earth's surface : a practical approach

    NARCIS (Netherlands)

    Bruin, de H.A.R.

    1982-01-01

    This study is devoted to the energy balance of the earth's surface with a special emphasis on practical applications. A simple picture of the energy exchange processes that take place at the ground is the following. Per unit time and area an amount of radiant energy is supplied to the surface. This

  17. Transmission line capital costs

    International Nuclear Information System (INIS)

    Hughes, K.R.; Brown, D.R.

    1995-05-01

    The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy's Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs

  18. Regional Transmission Projects: Finding Solutions

    Energy Technology Data Exchange (ETDEWEB)

    The Keystone Center

    2005-06-15

    The Keystone Center convened and facilitated a year-long Dialogue on "Regional Transmission Projects: Finding Solutions" to develop recommendations that will help address the difficult and contentious issues related to expansions of regional electric transmission systems that are needed for reliable and economic transmission of power within and across regions. This effort brought together a cross-section of affected stakeholders and thought leaders to address the problem with the collective wisdom of their experience and interests. Transmission owners sat at the table with consumer advocates and environmental organizations. Representatives from regional transmission organizations exchanged ideas with state and federal regulators. Generation developers explored common interests with public power suppliers. Together, the Dialogue participants developed consensus solutions about how to begin unraveling some of the more intractable issues surrounding identification of need, allocation of costs, and reaching consensus on siting issues that can frustrate the development of regional transmission infrastructure. The recommendations fall into three broad categories: 1. Recommendations on appropriate institutional arrangements and processes for achieving regional consensus on the need for new or expanded transmission infrastructure 2. Recommendations on the process for siting of transmission lines 3. Recommendations on the tools needed to support regional planning, cost allocation, and siting efforts. List of Dialogue participants: List of Dialogue Participants: American Electric Power American Transmission Company American Wind Energy Association California ISO Calpine Corporation Cinergy Edison Electric Institute Environmental Defense Federal Energy Regulatory Commission Great River Energy International Transmission Company ISO-New England Iowa Public Utility Board Kanner & Associates Midwest ISO National Association of Regulatory Utility Commissioners National Association

  19. Energy-filtered environmental transmission electron microscopy for the assessment of solid-gas reactions at elevated temperature: NiO/YSZ-H2 as a case study

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2016-01-01

    A novel approach, which is based on the analysis of sequences of images recorded using energy-filtered transmission electron microscopy and can be used to assess the reaction of a solid with a gas at elevated temperature, is illustrated for the reduction of a NiO/ceramic solid oxide fuel cell ano...

  20. Small passenger car transmission test-Chevrolet 200 transmission

    Science.gov (United States)

    Bujold, M. P.

    1980-01-01

    The small passenger car transmission was tested to supply electric vehicle manufacturers with technical information regarding the performance of commerically available transmissions which would enable them to design a more energy efficient vehicle. With this information the manufacturers could estimate vehicle driving range as well as speed and torque requirements for specific road load performance characteristics. A 1979 Chevrolet Model 200 automatic transmission was tested per a passenger car automatic transmission test code (SAE J651b) which required drive performance, coast performance, and no load test conditions. The transmission attained maximum efficiencies in the mid-eighty percent range for both drive performance tests and coast performance tests. Torque, speed and efficiency curves map the complete performance characteristics for Chevrolet Model 200 transmission.