WorldWideScience

Sample records for radiant energy sensitive

  1. Nonimaging radiant energy device

    Science.gov (United States)

    Winston, Roland; Ning, Xiaohui

    1993-01-01

    A nonimaging radiant energy device may include a hyperbolically shaped reflective element with a radiant energy inlet and a radiant energy outlet. A convex lens is provided at the radiant energy inlet and a concave lens is provided at the radiant energy outlet. Due to the provision of the lenses and the shape of the walls of the reflective element, the radiant energy incident at the radiant energy inlet within a predetermined angle of acceptance is emitted from the radiant energy outlet exclusively within an acute exit angle. In another embodiment, the radiant energy device may include two interconnected hyperbolically shaped reflective elements with a respective convex lens being provided at each aperture of the device.

  2. Direct conversion of infrared radiant energy for space power applications

    Science.gov (United States)

    Finke, R. C.

    1982-01-01

    A proposed technology to convert the earth radiant energy (infrared albedo) for spacecraft power is presented. The resultant system would eliminate energy storage requirements and simplify the spacecraft design. The design and performance of a infrared rectenna is discussed.

  3. Radiant Barriers Save Energy in Buildings

    Science.gov (United States)

    2014-01-01

    Langley Research Center needed to coat the Echo 1 satellite with a fine mist of vaporized metal, and collaborated with industry to create "radiant barrier technology." In 2010, Ryan Garrett learned about a new version of the technology resistant to oxidation and founded RadiaSource in Ogden, Utah, to provide the NASA-derived technology for applications in homes, warehouses, gymnasiums, and agricultural settings.

  4. Design of energy efficient building with radiant slab cooling

    Science.gov (United States)

    Tian, Zhen

    2007-12-01

    Air-conditioning comprises a substantial fraction of commercial building energy use because of compressor-driven refrigeration and fan-driven air circulation. Core regions of large buildings require year-round cooling due to heat gains from people, lights and equipment. Negative environmental impacts include CO2 emissions from electric generation and leakage of ozone-depleting refrigerants. Some argue that radiant cooling simultaneously improves building efficiency and occupant thermal comfort, and that current thermal comfort models fail to reflect occupant experience with radiant thermal control systems. There is little field evidence to test these claims. The University of Calgary's Information and Communications Technology (ICT) Building, is a pioneering radiant slab cooling installation in North America. Thermal comfort and energy performance were evaluated. Measurements included: (1) heating and cooling energy use, (2) electrical energy use for lighting and equipment, and (3) indoor temperatures. Accuracy of a whole building energy simulation model was evaluated with these data. Simulation was then used to compare the radiant slab design with a conventional (variable air volume) system. The radiant system energy performance was found to be poorer mainly due to: (1) simultaneous cooling by the slab and heating by other systems, (2) omission of low-exergy (e.g., groundwater) cooling possible with the high cooling water temperatures possible with radiant slabs and (3) excessive solar gain and conductive heat loss due to the wall and fenestration design. Occupant thermal comfort was evaluated through questionnaires and concurrent measurement of workstation comfort parameters. Analysis of 116 sets of data from 82 occupants showed that occupant assessment was consistent with estimates based on current thermal comfort models. The main thermal comfort improvements were reductions in (1) local discomfort from draft and (2) vertical air temperature stratification. The

  5. Performance of Radiant Heating Systems of Low-Energy Buildings

    Science.gov (United States)

    Sarbu, Ioan; Mirza, Matei; Crasmareanu, Emanuel

    2017-10-01

    After the introduction of plastic piping, the application of water-based radiant heating with pipes embedded in room surfaces (i.e., floors, walls, and ceilings), has significantly increased worldwide. Additionally, interest and growth in radiant heating and cooling systems have increased in recent years because they have been demonstrated to be energy efficient in comparison to all-air distribution systems. This paper briefly describes the heat distribution systems in buildings, focusing on the radiant panels (floor, wall, ceiling, and floor-ceiling). Main objective of this study is the performance investigation of different types of low-temperature heating systems with different methods. Additionally, a comparative analysis of the energy, environmental, and economic performances of floor, wall, ceiling, and floor-ceiling heating using numerical simulation with Transient Systems Simulation (TRNSYS) software is performed. This study showed that the floor-ceiling heating system has the best performance in terms of the lowest energy consumption, operation cost, CO2 emission, and the nominal boiler power. The comparison of the room operative air temperatures and the set-point operative air temperature indicates also that all radiant panel systems provide satisfactory results without significant deviations.

  6. ''Super-radiant'' states in intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    Auerbach, N.

    1994-01-01

    A ''super-radiant'' state emerges when, under certain conditions, one or a few ''internal'' states acquire a large collective decay width due to the coupling to one or a few ''external'' decay channels. The rest of the internal states are ''stripped'' of their decay width and become long lived quasistationary states. The essentials of such mechanism and its possible role in intermediate energy nuclear physics are discussed in this work

  7. Radiant energy collection and conversion apparatus and method

    Science.gov (United States)

    Hunt, A.J.

    The apparatus for collecting radiant energy and converting to alternate energy forms includes a housing having an interior space and a radiation transparent window allowing solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past the window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  8. Radiant energy during infrared neural stimulation at the target structure

    Science.gov (United States)

    Richter, Claus-Peter; Rajguru, Suhrud; Stafford, Ryan; Stock, Stuart R.

    2013-03-01

    Infrared neural stimulation (INS) describes a method, by which an infrared laser is used to stimulate neurons. The major benefit of INS over stimulating neurons with electrical current is its spatial selectivity. To translate the technique into a clinical application it is important to know the energy required to stimulate the neural structure. With this study we provide measurements of the radiant exposure, at the target structure that is required to stimulate the auditory neurons. Flat polished fibers were inserted into scala tympani so that the spiral ganglion was in front of the optical fiber. Angle polished fibers were inserted along scala tympani, and rotating the beveled surface of the fiber allowed the radiation beam to be directed perpendicular to the spiral ganglion. The radiant exposure for stimulation at the modiolus for flat and angle polished fibers averaged 6.78+/-2.15 mJ/cm2. With the angle polished fibers, a 90º change in the orientation of the optical beam from an orientation that resulted in an INS-evoked maximum response, resulted in a 50% drop in the response amplitude. When the orientation of the beam was changed by 180º, such that it was directed opposite to the orientation with the maxima, minimum response amplitude was observed.

  9. Energy efficiency and indoor thermal perception. A comparative study between radiant panel and portable convective heaters

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed Hamza H.; Morsy, Mahmoud Gaber [Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut, 71516 (Egypt)

    2010-11-15

    This study investigates experimentally the thermal perception of indoor environment for evaluating the ability of radiant panel heaters to produce thermal comfort for space occupants as well as the energy consumption in comparison with conventional portable natural convective heaters. The thermal perception results show that, compared with conventional convection heater, a radiantly heated office room maintains a lower ambient air temperature while providing equal levels of thermal perception on the thermal dummy head as the convective heater and saves up to 39.1% of the energy consumption per day. However, for human subjects' vote experiments, the results show that for an environmentally controlled test room at outdoor environment temperatures of 0C and 5C, using two radiant panel heaters with a total capacity of 580 W leads to a better comfort sensation than the conventional portable natural convective heater with a 670 W capacity, with an energy saving of about 13.4%. In addition, for an outdoor environment temperature of 10C, using one radiant panel heater with a capacity of 290 W leads to a better comfort sensation than the conventional convection heater with a 670 W capacity, with an energy saving of about 56.7%. From the analytical results, it is found that distributing the radiant panel heater inside the office room, one on the wall facing the window and the other on the wall close to the window, provides the best operative temperature distribution within the room.

  10. Integrated application of combined cooling, heating and power poly-generation PV radiant panel system of zero energy buildings

    Science.gov (United States)

    Yin, Baoquan

    2018-02-01

    A new type of combined cooling, heating and power of photovoltaic radiant panel (PV/R) module was proposed, and applied in the zero energy buildings in this paper. The energy system of this building is composed of PV/R module, low temperature difference terminal, energy storage, multi-source heat pump, energy balance control system. Radiant panel is attached on the backside of the PV module for cooling the PV, which is called PV/R module. During the daytime, the PV module was cooled down with the radiant panel, as the temperature coefficient influence, the power efficiency was increased by 8% to 14%, the radiant panel solar heat collecting efficiency was about 45%. Through the nocturnal radiant cooling, the PV/R cooling capacity could be 50 W/m2. For the multifunction energy device, the system shows the versatility during the heating, cooling and power used of building utilization all year round.

  11. Influence of increment thickness on radiant energy and microhardness of bulk-fill resin composites.

    Science.gov (United States)

    Karacolak, Gamze; Turkun, L Sebnem; Boyacioglu, Hayal; Ferracane, Jack L

    2018-03-30

    Determining the energy transferred at the bottom of eleven bulk-fill resin composites, comparing top and bottom microhardness's and evaluating the correlation between microhardness and radiant energy were aimed. Samples were placed over the bottom sensor of a visible light transmission spectrophotometer and polymerized for 20 s. The bottom and top Knoop microhardness were measured. Paired t-test and correlation analysis were used for statistics (p≤0.05). In all groups, the bottom radiant energy decreased significantly with increasing thickness. For groups of Aura 2 mm, X-tra Fil 2 and 4 mm, SDR 2 and 4 mm, X-tra Base 2 mm no significant difference was found between top and bottom microhardness. For the bottom levels of Aura, X-tra Fil, Filtek Bulk-Fill Posterior, SDR, X-tra Base groups no significant difference was found between the microhardness's of 2 and 4 mm thicknesses. For X-tra Fil, Tetric Evo Ceram Bulk-Fill, Filtek Bulk-Fill Flowable and Z100 groups radiant energy affected positively the microhardness.

  12. Effects of Floor Covering Resistance of a Radiant Floor on System Energy and Exergy Performances

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    Floor covering resistance (material and thickness) can be influenced by subjective choices (architectural design, interior design, texture, etc.) with significant effects on the performance of a radiant heating and cooling system. To study the effects of floor covering resistance on system...... performance, a water-based radiant floor heating and cooling system (dry, wooden construction) was considered to be coupled to an air-to-water heat pump, and the effects of varying floor covering resistances (0.05 m2K/W, 0.09 m2K/W and 0.15 m2K/W) on system performance were analyzed in terms of energy...... and exergy. In order to achieve the same heating and cooling outputs, higher average water temperatures are required in the heating mode (and lower temperatures in the cooling mode) with increasing floor covering resistance. These temperature requirements decrease the heat pump’s performance (lower...

  13. Radiant Research. Institute for Energy Technology 1948-98

    International Nuclear Information System (INIS)

    Njoelstad, Olav

    1999-01-01

    Institutt for Atomenergi (IFA), or Institute for Atomic Energy, at Kjeller, Norway, was founded in 1948. The history of the institute as given in this book was published in 1999 on the occasion of the institute's 50th anniversary. The scope of the institute was to do research and development as a foundation for peaceful application of nuclear energy and radioactive substances in Norway. The book tells the story of how Norway in 1951 became the first country after the four superpowers and Canada to have its own research reactor. After the completion of the reactor, the institute experienced a long and successful period and became the biggest scientific and technological research institute in Norway. Three more reactors were built, one in Halden and two at Kjeller. Plans were developed to build nuclear powered ships and nuclear power stations. It became clear, however, in the 1970s, that there was no longer political support for nuclear power in Norway, and it was necessary for the institute to change its research profile. In 1980, the institute changed its name to Institutt for energiteknikk (IFE), or Institute for energy technology, to signal the broadened scope. The book describes this painful but successful readjustment and shows how IFE in the 1980s and 1990s succeeded in using its special competence from the nuclear field to establish special competence in new research fields with great commercial potential

  14. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    DEFF Research Database (Denmark)

    Le Dréau, Jérôme

    is based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam...... losses, and an air-based terminal might be more energy-efficient than a radiant terminal (in terms of delivered energy). Regarding comfort, a similar global level has been observed for the radiant and air-based terminals in both numerical and experimental investigations. But the different terminals did...... not achieve the same uniformity in space. The active chilled beam theoretically achieves the most uniform comfort conditions (when disregarding the risk of draught), followed by the radiant ceiling. The least uniform conditions were obtained with the cooled floor due to large differences between the sitting...

  15. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    DEFF Research Database (Denmark)

    Le Dréau, Jérôme

    Heating and cooling terminals can be classified in two main categories: convective terminals (e.g air conditioning, active chilled beam, fan coil) and radiant terminals. The two terminals have different modes of heat transfer: the first one is mainly based on convection, whereas the second one...... is based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam...... losses, and an air-based terminal might be more energy-efficient than a radiant terminal (in terms of delivered energy). Regarding comfort, a similar global level has been observed for the radiant and air-based terminals in both numerical and experimental investigations. But the different terminals did...

  16. Solar–terrestrial radiant-energy regimes and temperature anomalies of natural and artificial turfs

    International Nuclear Information System (INIS)

    Jim, C.Y.

    2016-01-01

    Highlights: • Solar and terrestrial radian energy regimes affect temperature response of sports turfs. • Adjacent natural and artificial turfs were monitored with replications on sunny days. • Artificial turf has meager albedo, low specific heat and moisture to augment warming. • Artificial turf surface and substrate reach 70 °C but cool down effectively at night. • Artificial turf may induce heat stress on athletes in hot summer afternoon. - Abstract: Artificial turf can develop unusually high surface temperature on hot sunny days. Solar and terrestrial radiant energy regimes as key determinants of thermal performance deserve detailed investigation. This study evaluated six components of the radiant-energy environment of a natural turf (NT) and a contiguous artificial turf (AT) sports fields in Hong Kong: direct solar, reflected solar, net solar, sky thermal, ground thermal, and net thermal. Temperature was monitored at five positions: air at 150 cm, 50 cm and 15 cm height, turf surface, and substrate. The experiment included four replications, namely two summer sunny days, and two duplicated instrument sets at each turf site. The two sites reacted very differently to the same intense daily sum of solar radiation input of 23.70 MW m −2 with 9 h of bright sunshine (>120 W m −2 ), and daily sum of sky thermal radiation input of 38.59 MW m −2 . The maximum direct solar radiation reached 976.1 W m −2 at 1245 h. NT albedo of 0.23 vis-à-vis AT of merely 0.073, and higher moisture content and specific heat of NT materials, presented critical differences. The hydrophobic and generally dry plastic (polyethylene) pile-fibers and black rubber-granule infill materials have low specific heat. Intense incoming shortwave and longwave radiation absorbed readily by AT materials raised turf surface temperature to 70.2 °C and substrate 69.3 °C, in comparison with <40 °C at NT. A cascading warming effect was triggered, beginning with low albedo, high net solar

  17. Clouds and the Earth's Radiant Energy System (CERES) Data Products for Climate Research

    Science.gov (United States)

    Kato, Seiji; Loeb, Norman G.; Rutan, David A.; Rose, Fred G.

    2015-01-01

    NASA's Clouds and the Earth's Radiant Energy System (CERES) project integrates CERES, Moderate Resolution Imaging Spectroradiometer (MODIS), and geostationary satellite observations to provide top-of-atmosphere (TOA) irradiances derived from broadband radiance observations by CERES instruments. It also uses snow cover and sea ice extent retrieved from microwave instruments as well as thermodynamic variables from reanalysis. In addition, these variables are used for surface and atmospheric irradiance computations. The CERES project provides TOA, surface, and atmospheric irradiances in various spatial and temporal resolutions. These data sets are for climate research and evaluation of climate models. Long-term observations are required to understand how the Earth system responds to radiative forcing. A simple model is used to estimate the time to detect trends in TOA reflected shortwave and emitted longwave irradiances.

  18. Numerical study of influence of different dispersed components of crystal cloud on transmission of radiant energy

    Science.gov (United States)

    Shefer, Olga

    2017-11-01

    The calculated results of the transmission of visible and infrared radiation by an atmosphere layer involving ensembles of large preferentially oriented crystals and spherical particles are presented. To calculate extinction characteristics, the physical optics method and the Mie theory are applied. Among all atmospheric particles, both the small particles that are commensurable with the wavelength of the incident radiation and the large plates and the columns are distinguished by the most pronounced dependence of the transmission on spectra of radiant energy. The work illustrates features of influence of parameters of the particle size distribution, particle aspect ratios, orientation and particle refractive index, also polarization state of the incident radiation on the transmission. The predominant effect of the plates on the wavelength dependence of the transmission is shown. A separated and cooperative contributes of the large plates and the small volume shape particles to the common transmission by medium are considered.

  19. The Influence of a Radiant Panel System with Integrated Phase Change Material on Energy Use and Thermal Indoor Environment

    DEFF Research Database (Denmark)

    Nielsen, Lin Flemming; Bourdakis, Eleftherios; Kazanci, Ongun Berk

    2018-01-01

    This study examined the effect on energy use and thermal comfort when combining microencapsulated phase change material (PCM) with radiant ceiling panels in a two-person office. The performance of the system was studied during the cooling season in the climates of Copenhagen, Denmark, and Rome...

  20. Sensitivity analysis of the thermal performance of radiant and convective terminals for cooling buildings

    DEFF Research Database (Denmark)

    Le Dréau, J.; Heiselberg, P.

    2014-01-01

    Heating and cooling terminals can be classified in two main categories: convective terminals (e.g. active chilled beam, air conditioning) and radiant terminals. The mode of heat transfer of the two emitters is different: the first one is mainly based on convection, whereas the second one is based...... conducted to determine the parameters influencing their thermal performance the most. The air change rate, the outdoor temperature and the air temperature stratification have the largest effect on the cooling need (maintaining a constant operative temperature). For air change rates higher than 0.5 ACH...

  1. Climate Model Evaluation using New Datasets from the Clouds and the Earth's Radiant Energy System (CERES)

    Science.gov (United States)

    Loeb, Norman G.; Wielicki, Bruce A.; Doelling, David R.

    2008-01-01

    There are some in the science community who believe that the response of the climate system to anthropogenic radiative forcing is unpredictable and we should therefore call off the quest . The key limitation in climate predictability is associated with cloud feedback. Narrowing the uncertainty in cloud feedback (and therefore climate sensitivity) requires optimal use of the best available observations to evaluate and improve climate model processes and constrain climate model simulations over longer time scales. The Clouds and the Earth s Radiant Energy System (CERES) is a satellite-based program that provides global cloud, aerosol and radiative flux observations for improving our understanding of cloud-aerosol-radiation feedbacks in the Earth s climate system. CERES is the successor to the Earth Radiation Budget Experiment (ERBE), which has widely been used to evaluate climate models both at short time scales (e.g., process studies) and at decadal time scales. A CERES instrument flew on the TRMM satellite and captured the dramatic 1998 El Nino, and four other CERES instruments are currently flying aboard the Terra and Aqua platforms. Plans are underway to fly the remaining copy of CERES on the upcoming NPP spacecraft (mid-2010 launch date). Every aspect of CERES represents a significant improvement over ERBE. While both CERES and ERBE measure broadband radiation, CERES calibration is a factor of 2 better than ERBE. In order to improve the characterization of clouds and aerosols within a CERES footprint, we use coincident higher-resolution imager observations (VIRS, MODIS or VIIRS) to provide a consistent cloud-aerosol-radiation dataset at climate accuracy. Improved radiative fluxes are obtained by using new CERES-derived Angular Distribution Models (ADMs) for converting measured radiances to fluxes. CERES radiative fluxes are a factor of 2 more accurate than ERBE overall, but the improvement by cloud type and at high latitudes can be as high as a factor of 5

  2. Extinction of radiant energy by large atmospheric crystals with different shapes

    International Nuclear Information System (INIS)

    Shefer, Olga

    2016-01-01

    The calculated results of extinction characteristics of visible and infrared radiation for large semi-transparent crystals are obtained by hybrid technique, which is a combination of the geometric optics method and the physical optics method. Energy and polarization characteristics of the radiation extinction in terms of the elements of the extinction matrix for individual large crystals and ensemble of crystals are discussed. Influences of particle shapes, aspect ratios, parameters of size distribution, complex refractive index, orientation of crystals, wavelength, and the polarization state of an incident radiation on the extinction are illustrated. It is shown that the most expressive and stable features of energy and polarization characteristics of the extinction are observed in the midinfrared region, despite the fact that the ice particles significantly absorb the radiant energy of this spectrum. It is demonstrated that the polarized extinction characteristics can reach several tens of percent at IR wavelengths. For the large crystals, the conditions of occurrence of the spectral behavior of the extinction coefficient in the visible, near-IR, and mid-IR wavelength ranges are determined. - Highlights: • Method of physical optics is used at coherent sum of diffracted and refracted fields. • The extinction characteristics in terms of elements of extinction matrix are obtained. • Influence of shapes and sizes of large particles on the extinction is evaluated. • Conditions of occurrence of extinction features are determined.

  3. Clouds and Earth Radiant Energy System (CERES), a Review: Past, Present and Future

    Science.gov (United States)

    Smith, G. L.; Priestley, K. J.; Loeb, N. G.; Wielicki, B. A.; Charlock, T. P.; Minnis, P.; Doelling, D. R.; Rutan, D. A.

    2011-01-01

    The Clouds and Earth Radiant Energy System (CERES) project s objectives are to measure the reflected solar radiance (shortwave) and Earth-emitted (longwave) radiances and from these measurements to compute the shortwave and longwave radiation fluxes at the top of the atmosphere (TOA) and the surface and radiation divergence within the atmosphere. The fluxes at TOA are to be retrieved to an accuracy of 2%. Improved bidirectional reflectance distribution functions (BRDFs) have been developed to compute the fluxes at TOA from the measured radiances with errors reduced from ERBE by a factor of two or more. Instruments aboard the Terra and Aqua spacecraft provide sampling at four local times. In order to further reduce temporal sampling errors, data are used from the geostationary meteorological satellites to account for changes of scenes between observations by the CERES radiometers. A validation protocol including in-flight calibrations and comparisons of measurements has reduced the instrument errors to less than 1%. The data are processed through three editions. The first edition provides a timely flow of data to investigators and the third edition provides data products as accurate as possible with resources available. A suite of cloud properties retrieved from the MODerate-resolution Imaging Spectroradiometer (MODIS) by the CERES team is used to identify the cloud properties for each pixel in order to select the BRDF for each pixel so as to compute radiation fluxes from radiances. Also, the cloud information is used to compute radiation at the surface and through the atmosphere and to facilitate study of the relationship between clouds and the radiation budget. The data products from CERES include, in addition to the reflected solar radiation and Earth emitted radiation fluxes at TOA, the upward and downward shortwave and longwave radiation fluxes at the surface and at various levels in the atmosphere. Also at the surface the photosynthetically active radiation

  4. Radiant Energy Measurements from a Scaled Jet Engine Axisymmetric Exhaust Nozzle for a Baseline Code Validation Case

    Science.gov (United States)

    Baumeister, Joseph F.

    1994-01-01

    A non-flowing, electrically heated test rig was developed to verify computer codes that calculate radiant energy propagation from nozzle geometries that represent aircraft propulsion nozzle systems. Since there are a variety of analysis tools used to evaluate thermal radiation propagation from partially enclosed nozzle surfaces, an experimental benchmark test case was developed for code comparison. This paper briefly describes the nozzle test rig and the developed analytical nozzle geometry used to compare the experimental and predicted thermal radiation results. A major objective of this effort was to make available the experimental results and the analytical model in a format to facilitate conversion to existing computer code formats. For code validation purposes this nozzle geometry represents one validation case for one set of analysis conditions. Since each computer code has advantages and disadvantages based on scope, requirements, and desired accuracy, the usefulness of this single nozzle baseline validation case can be limited for some code comparisons.

  5. Numerical Modeling of Conjugate Thermogravitational Convection in a Closed System with a Radiant Energy Source in Conditions of Convective-Radiative Heat Exchange at the External Boundary

    Directory of Open Access Journals (Sweden)

    Nee Alexander

    2016-01-01

    Full Text Available Mathematical modeling of conjugate natural convection in a closed rectangular cavity with a radiant energy source in conditions of convective-radiative heat exchange at the external boundary was conducted. The radiant energy distribution was set by the Lambert’s law. Conduction and convection processes analysis showed that the air masses flow pattern is modified slightly over the time. The temperature increases in the gas cavity, despite the heat removal from the one of the external boundary. According to the results of the integral heat transfer analysis were established that the average Nusselt number (Nuav increasing occurs up to τ = 200 (dimensionless time. Further Nuav has changed insignificantly due to the temperature field equalization near the interfaces “gas – wall”.

  6. Modeling the transmitted and stored energy in multilayer protective clothing under low-level radiant exposure

    International Nuclear Information System (INIS)

    Su, Yun; He, Jiazhen; Li, Jun

    2016-01-01

    Highlights: • A numerical model from heating source to skin tissues through multilayer fabric system is developed. • The numerical model is comprehensively validated with experimental data. • The model is used to investigate the relationship between the transmitted and stored energy and the influencing factors. - Abstract: A finite difference model was introduced to simulate the transmitted and stored energy in firefighters' protective clothing exposed to low-level thermal radiation. The model domain consists of a three-layer fire-resistant fabric system (outer shell, moisture barrier, and thermal liner), the human skin, and the air gap between clothing and the skin. The model accounted for the relationship between the transmitted heat during the exposure and the discharged heat during the cooling-down period. The numerical model predictions were compared with experimental data. Additionally, the parameters that affect the transmitted and stored energy of protective clothing were investigated. The results demonstrate that for the typical multilayer firefighter protective clothing, the transmitted heat during exposure and the discharged heat after exposure totally determine the skin burn under low-level heat exposure, especially for third-degree skin burns. The findings obtained in this study can be used to engineer fabric systems that provide better protection for the stored thermal burn.

  7. Radiant energy dissipation during final storage of high-level radioactive waste in rock salt

    International Nuclear Information System (INIS)

    Ramthun, H.

    1981-08-01

    A final disposal concept is assumed where the high-active waste from 1400 t of uranium, remaining after conditioning, is solidified in borosilicate glass and distributed in 1.760 waste casks. These containers 1.2 m in height and 0.3 m in diameter are to be buried 10 years after the fuel is removed from the reactor in the 300 m deep boreholes of a salt dome. For this design the mean absorbed dose rates are calculated in the glass die (3.9 Gy/s), the steel mantle (0.26 Gy/s) and in the salt rock (0.12 Gy/s at a distance of 1 cm and 0.034 Gy/s at a distance of 9 cm from the container surface) valid at the beginning of disposal. The risk involved with these amounts of stored lattice energy is shortly discussed. (orig.) [de

  8. A determination of the absolute radiant energy of a Robertson-Berger meter sunburn unit

    Science.gov (United States)

    DeLuisi, John J.; Harris, Joyce M.

    Data from a Robertson-Berger (RB) sunburn meter were compared with concurrent measurements obtained with an ultraviolet double monochromator (DM), and the absolute energy of one sunburn unit measured by the RB-meter was determined. It was found that at a solar zenith angle of 30° one sunburn unit (SU) is equivalent to 35 ± 4 mJ cm -2, and at a solar zenith angle of 69°, one SU is equivalent to 20 ± 2 mJ cm -2 (relative to a wavelength of 297 nm), where the rate of change is non-linear. The deviation is due to the different response functions of the RB-meter and the DM system used to simulate the response of human skin to the incident u.v. solar spectrum. The average growth rate of the deviation with increasing solar zenith angle was found to be 1.2% per degree between solar zenith angles 30 and 50° and 2.3% per degree between solar zenith angles 50 and 70°. The deviations of response with solar zenith angle were found to be consistent with reported RB-meter characteristics.

  9. Mathematical modelling, variational formulation and numerical simulation of the energy transfer process in a gray plate in the presence of a thermal radiant source

    International Nuclear Information System (INIS)

    Gama, R.M.S. da.

    1992-05-01

    The energy transfer process in a gray, opaque and rigid plate, heated by an external thermal radiant source, is considered. The source is regarded as a spherical black body, with radius a (a → 0) and uniform heat generation, placed above the plate. A mathematical model is constructed, assuming that the heat transfer from/to the plate takes place by thermal radiation. The obtained mathematical model is nonlinear. Is presented a suitable variational principle which is employed for simulating some particular cases. (author)

  10. Advanced radiant combustion system. Final report, September 1989--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.D.; Carswell, M.G.; Long, F.S.

    1996-09-01

    Results of the Advanced Radiant Combustion System (ARCS) project are presented in this report. This work was performed by Alzeta Corporation as prime contractor under a contract to the U.S. Department of Energy Office of Industrial Technologies as part of a larger DOE program entitled Research Program for Advanced Combustion Systems. The goals of the Alzeta ARCS project were to (a) Improve the high temperature performance characteristics of porous surface ceramic fiber burners, (b) Develop an Advanced Radiant Combustion System (ARCS) that combines combustion controls with an advanced radiant burner, and (c) Demonstrate the advanced burner and controls in an industrial application. Prior to the start of this project, Alzeta had developed and commercialized a porous surface radiant burner, the Pyrocore{trademark} burner. The product had been commercially available for approximately 5 years and had achieved commercial success in a number of applications ranging from small burners for commercial cooking equipment to large burners for low temperature industrial fluid heating applications. The burner was not recommended for use in applications with process temperatures above 1000{degrees}F, which prevented the burner from being used in intermediate to high temperature processes in the chemical and petroleum refining industries. The interest in increasing the maximum use temperature of the burner was motivated in part by a desire to expand the number of applications that could use the Pyrocore product, but also because many of the fluid sensitive heating applications of interest would benefit from the distributed flux characteristic of porous surface burners. Background information on porous surface radiant burners, and a discussion of advantages that would be provided by an improved product, are presented in Section 2.

  11. Radiant cooling of an enclosure

    International Nuclear Information System (INIS)

    Chebihi, Abdeslam; Byun, Ki-Hong; Wen Jin; Smith, Theodore F.

    2006-01-01

    The purpose of this study is to analyze the potential for radiant cooling using the atmospheric sky window and to evaluate the desired characteristics of a radiant cooling material (RCM) applied to the ceiling window of a three-dimensional enclosure. The thermal characteristics of the system are governed by the geometry, ambient temperature, sky radiative temperature, amount of solar energy and its direction, heat transfer modes, wall radiative properties, and radiative properties of the RCMs. A semi-gray band analysis is utilized for the solar and infrared bands. The radiosity/irradiation method is used in each band to evaluate the radiant exchanges in the enclosure. The radiative properties for the RCM are varied in a parametric study to identify the desired properties of RCMs. For performance simulation of real RCMs, the radiative properties are calculated from spectral data. The desired solar property is a high reflectance for both opaque and semi-transparent RCMs. For a semi-transparent RCM, a low value of the solar transmittance is preferred. The desired infrared property is a high emittance for an opaque RCM. For a semi-transparent RCM, a high infrared transmittance is desired, and the emittance should be greater than zero

  12. Radiant heating of petroleum reservoirs; Aquecimento radiante de reservatorios petroliferos

    Energy Technology Data Exchange (ETDEWEB)

    Sidrim, Fernando A.C.

    1990-12-31

    This work presents a proposal of a simplified model for the enhanced oil recovery process through radiant heating of oil reservoirs. The resulting continuity, energy and motion equations were solved analytically for the prediction of the increase in well flow rates. The heat loss to adjacent formations and the necessary for the establishment of the temperature profile,which are transient terms of energy equation, have been neglected. Also, no temperature gradient in the axial direction has been modelled as a cylindrical wave propagating in a loss medium. It is concluded that: the inclusion of a radial conduction term in the energy equation led to higher flow rates than the ones predicted by the literature existing solution; if the absorption coefficient is too large, it is profitable to dry the reservoir around the well bore; the transient terms in the energy equation are significant for extended periods of well production. 47 refs., 18 figs., 4 tabs.

  13. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  14. Climate sensitivity of marine energy

    International Nuclear Information System (INIS)

    Harrison, G.P.; Wallace, A.R.

    2005-01-01

    Marine energy has a significant role to play in lowering carbon emissions within the energy sector. Paradoxically, it may be susceptible to changes in climate that will result from rising carbon emissions. Wind patterns are expected to change and this will alter wave regimes. Despite a lack of definite proof of a link to global warming, wind and wave conditions have been changing over the past few decades. Changes in the wind and wave climate will affect offshore wind and wave energy conversion: where the resource is constrained, production and economic performance may suffer; alternatively, stormier climates may create survival issues. Here, a relatively simple sensitivity study is used to quantify how changes in mean wind speed - as a proxy for wider climate change - influence wind and wave energy production and economics. (author)

  15. Clouds and the Earth's Radiant Energy System (CERES) algorithm theoretical basis document. volume 2; Geolocation, calibration, and ERBE-like analyses (subsystems 1-3)

    Science.gov (United States)

    Wielicki, B. A. (Principal Investigator); Barkstrom, B. R. (Principal Investigator); Charlock, T. P.; Baum, B. A.; Green, R. N.; Minnis, P.; Smith, G. L.; Coakley, J. A.; Randall, D. R.; Lee, R. B., III

    1995-01-01

    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 2 details the techniques used to geolocate and calibrate the CERES scanning radiometer measurements of shortwave and longwave radiance to invert the radiances to top-of-the-atmosphere (TOA) and surface fluxes following the Earth Radiation Budget Experiment (ERBE) approach, and to average the fluxes over various time and spatial scales to produce an ERBE-like product. Spacecraft ephemeris and sensor telemetry are used with calibration coefficients to produce a chronologically ordered data product called bidirectional scan (BDS) radiances. A spatially organized instrument Earth scan product is developed for the cloud-processing subsystem. The ERBE-like inversion subsystem converts BDS radiances to unfiltered instantaneous TOA and surface fluxes. The TOA fluxes are determined by using established ERBE techniques. Hourly TOA fluxes are computed from the instantaneous values by using ERBE methods. Hourly surface fluxes are estimated from TOA fluxes by using simple parameterizations based on recent research. The averaging process produces daily, monthly-hourly, and monthly means of TOA and surface fluxes at various scales. This product provides a continuation of the ERBE record.

  16. Influence of radiant energy exchange on the determination of convective heat transfer rates to Orbiter leeside surfaces during entry

    Science.gov (United States)

    Throckmorton, D. A.

    1982-01-01

    Temperatures measured at the aerodynamic surface of the Orbiter's thermal protection system (TPS), and calorimeter measurements, are used to determine heating rates to the TPS surface during atmospheric entry. On the Orbiter leeside, where convective heating rates are low, it is possible that a significant portion of the total energy input may result from solar radiation, and for the wing, cross radiation from the hot (relatively) Orbiter fuselage. In order to account for the potential impact of these sources, values of solar- and cross-radiation heat transfer are computed, based upon vehicle trajectory and attitude information and measured surface temperatures. Leeside heat-transfer data from the STS-2 mission are presented, and the significance of solar radiation and fuselage-to-wing cross-radiation contributions to total energy input to Orbiter leeside surfaces is assessed.

  17. PERFORMANCE EVALUATION OF CEILING RADIANT COOLING SYSTEM IN COMPOSITE CLIMATE

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Anuj [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2015-01-01

    Radiant cooling systems are proving to be an energy efficient solution due to higher thermal capacity of cooling fluid especially for the buildings that require individual zone controls and where the latent loads are moderate. The Conventional air conditioners work at very low temperature i.e.5-8 c (refrigerant evaporator inlet) while the radiant cooling systems, also referred as high temperature cooling system, work at high temperatures i.e. 14-18 c. The radiant cooling systems can maintain lower MRT (Mean Radiant Temperature) as ceiling panels maintain uniform temperature gradient inside room and provide higher human comfort. The radiant cooling systems are relatively new systems and their operation and energy savings potential are not quantified for a large number of buildings and operational parameters. Moreover, there are only limited numbers of whole building simulation studies have been carried out for these systems to have a full confidence in the capability of modelling tools to simulate these systems and predict the impact of various operating parameters. Theoretically, savings achieve due to higher temperature set point of chilled water, which reduces chiller-running time. However, conventional air conditioner runs continuously to maintain requisite temperature. In this paper, experimental study for performance evaluation of radiant cooling system carried out on system installed at Malaviya National Institute of Technology Jaipur. This paper quantifies the energy savings opportunities and effective temperature by radiant cooling system at different chilled water flow rates and temperature range. The data collected/ analysed through experimental study will used for calibration and validation of system model of building prepared in building performance simulation software. This validated model used for exploring optimized combinations of key parameters for composite climate. These optimized combinations will used in formulation of radiant cooling system

  18. Radiant absorption characteristics of corrugated curved tubes

    Directory of Open Access Journals (Sweden)

    Đorđević Milan Lj.

    2017-01-01

    Full Text Available The utilization of modern paraboloidal concentrators for conversion of solar radiation into heat energy requires the development and implementation of compact and efficient heat absorbers. Accurate estimation of geometry influence on absorption characteristics of receiver tubes is an important step in this process. This paper deals with absorption characteristics of heat absorber made of spirally coiled tubes with transverse circular corrugations. Detailed 3-D surface-to-surface Hemicube method was applied to compare radiation performances of corrugated and smooth curved tubes. The numerical results were obtained by varying the tube curvature ratio and incident radiant heat flux intensity. The details of absorption efficiency of corrugated tubes and the effect of curvature on absorption properties for both corrugated and smooth tubes were presented. The results may have significance to further analysis of highly efficient heat absorbers exposed to concentrated radiant heating. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 42006

  19. Radiant exchange in partially specular architectural environments

    Science.gov (United States)

    Beamer, C. Walter; Muehleisen, Ralph T.

    2003-10-01

    The radiant exchange method, also known as radiosity, was originally developed for thermal radiative heat transfer applications. Later it was used to model architectural lighting systems, and more recently it has been extended to model acoustic systems. While there are subtle differences in these applications, the basic method is based on solving a system of energy balance equations, and it is best applied to spaces with mainly diffuse reflecting surfaces. The obvious drawback to this method is that it is based around the assumption that all surfaces in the system are diffuse reflectors. Because almost all architectural systems have at least some partially specular reflecting surfaces in the system it is important to extend the radiant exchange method to deal with this type of surface reflection. [Work supported by NSF.

  20. Thermal model of attic systems with radiant barriers

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, K.E.

    1991-07-01

    This report summarizes the first phase of a project to model the thermal performance of radiant barriers. The objective of this phase of the project was to develop a refined model for the thermal performance of residential house attics, with and without radiant barriers, and to verify the model by comparing its predictions against selected existing experimental thermal performance data. Models for the thermal performance of attics with and without radiant barriers have been developed and implemented on an IBM PC/AT computer. The validity of the models has been tested by comparing their predictions with ceiling heat fluxes measured in a number of laboratory and field experiments on attics with and without radiant barriers. Cumulative heat flows predicted by the models were usually within about 5 to 10 percent of measured values. In future phases of the project, the models for attic/radiant barrier performance will be coupled with a whole-house model and further comparisons with experimental data will be made. Following this, the models will be utilized to provide an initial assessment of the energy savings potential of radiant barriers in various configurations and under various climatic conditions. 38 refs., 14 figs., 22 tabs.

  1. Climate sensitivity of marine energy

    OpenAIRE

    Harrison, Gareth; Wallace, Robin

    2005-01-01

    Marine energy has a significant role to play in lowering carbon emissions within the energy sector. Paradoxically, it may be susceptible to changes in climate that will result from rising carbon emissions. Wind patterns are expected to change and this will alter wave regimes. Despite a lack of definite proof of a link to global warming, wind and wave conditions have been changing over the past few decades. Changes in the wind and wave climate will affect offshore wind and wave energy conversi...

  2. A full-scale experimental set-up for assessing the energy performance of radiant wall and active chilled beam for cooling buildings

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    in decreasing the cooling need of the radiant wall compared to the active chilled beam. It has also been observed that the type and repartition of heat load have an influence on the cooling demand. Regarding the comfort level, both terminals met the general requirements, except at high solar heat gains......: overheating has been observed due to the absence of solar shading and the limited cooling capacity of the terminals. No local discomfort has been observed although some segments of the thermal manikin were slightly colder....

  3. Performance evaluation of radiant cooling system application on a university building in Indonesia

    Science.gov (United States)

    Satrio, Pujo; Sholahudin, S.; Nasruddin

    2017-03-01

    The paper describes a study developed to estimate the energy savings potential of a radiant cooling system installed in an institutional building in Indonesia. The simulations were carried out using IESVE to evaluate thermal performance and energy consumption The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption and temperature distribution to determine the proportional energy savings and occupant comfort under different systems. The result was radiant cooling which integrated with a Dedicated Outside Air System (DOAS) could make 41,84% energy savings compared to the installed cooling system. The Computational Fluid Dynamics (CFD) simulation showed that a radiant system integrated with DOAS provides superior human comfort than a radiant system integrated with Variable Air Volume (VAV). Percentage People Dissatisfied was kept below 10% using the proposed system.

  4. Radiant recuperator modelling and design

    Directory of Open Access Journals (Sweden)

    Knežević Suzana D.

    2017-01-01

    Full Text Available Recuperators are frequently used in glass production and metallurgical processes to preheat combustion air by heat exchange with high temperature flue gases. Mass and energy balances of a 15 m high, concurrent radiant recuperator used in a glass fiber production process are given. The balances are used: for validation of a cell modeling method that predicts the performance of different recuperator designs, and for finding a simple solution to improve the existing recuperator. Three possible solutions are analyzed: to use the existing recuperator as a countercurrent one, to add an extra cylinder over the existing construction, and to make a system that consists of a central pipe and two concentric annular ducts. In the latter, two air streams flow in opposite directions, whereas air in the inner annular passage flows concurrently or countercurrently to flue gases. Compared with the concurrent recuperator, the countercurrent has only one drawback: the interface temperature is higher at the bottom. The advantages are: lower interface temperature at the top where the material is under maximal load, higher efficiency, and smaller pressure drop. Both concurrent and countercurrent double pipe-in-pipe systems are only slightly more efficient than pure concurrent and countercurrent recuperators, respectively. Their advantages are smaller interface temperatures whereas the disadvantages are their costs and pressure drops. To implement these solutions, the average velocities should be: for flue gas around 5 m/s, for air in the first passage less than 2 m/s, and for air in the second passage more than 25 m/s. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. EE 33027

  5. Radiant Heating and Cooling Systems. Part one

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    The use of radiant heating systems has several thousand years of history.1,2 The early stage of radiant system application was for heating purposes, where hot air from flue gas (cooking, fires) was circulated under floors or in walls. After the introduction of plastic piping water-based radiant...

  6. Energy dependence corrections to MOSFET dosimetric sensitivity

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Illawarra Cancer Care Centre, Crown St, Wollongong

    2009-01-01

    Metal Oxide Semiconductor Field Effect Transistors (MOSFET's) are dosimeters which are now frequently utilized in radiotherapy treatment applications. An improved MOSFET, clinical semiconductor dosimetry system (CSDS) which utilizes improved packaging for the MOSFET device has been studied for energy dependence of sensitivity to x-ray radiation measurement. Energy dependence from 50 kVp to 10 MV x-rays has been studied and found to vary by up to a factor of 3.2 with 75 kVp producing the highest sensitivity response. The detectors average life span in high sensitivity mode is energy related and ranges from approximately 100 Gy for 75 kVp x-rays to approximately 300 Gy at 6MV x-ray energy. The MOSFET detector has also been studied for sensitivity variations with integrated dose history. It was found to become less sensitive to radiation with age and the magnitude of this effect is dependant on radiation energy with lower energies producing a larger sensitivity reduction with integrated dose. The reduction in sensitivity is however approximated reproducibly by a slightly non linear, second order polynomial function allowing corrections to be made to reading to account for this effect to provide more accurate dose assessments both in phantom and in-vivo.

  7. Energy dependence corrections to MOSFET dosimetric sensitivity.

    Science.gov (United States)

    Cheung, T; Butson, M J; Yu, P K N

    2009-03-01

    Metal Oxide Semiconductor Field Effect Transistors (MOSFET's) are dosimeters which are now frequently utilized in radiotherapy treatment applications. An improved MOSFET, clinical semiconductor dosimetry system (CSDS) which utilizes improved packaging for the MOSFET device has been studied for energy dependence of sensitivity to x-ray radiation measurement. Energy dependence from 50 kVp to 10 MV x-rays has been studied and found to vary by up to a factor of 3.2 with 75 kVp producing the highest sensitivity response. The detectors average life span in high sensitivity mode is energy related and ranges from approximately 100 Gy for 75 kVp x-rays to approximately 300 Gy at 6 MV x-ray energy. The MOSFET detector has also been studied for sensitivity variations with integrated dose history. It was found to become less sensitive to radiation with age and the magnitude of this effect is dependant on radiation energy with lower energies producing a larger sensitivity reduction with integrated dose. The reduction in sensitivity is however approximated reproducibly by a slightly non linear, second order polynomial function allowing corrections to be made to readings to account for this effect to provide more accurate dose assessments both in phantom and in-vivo.

  8. Energy privatization: sensitivities and realities

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, P. [University of Dundee, Dundee (United Kingdom). Centre for Petroleum and Mineral Law and Policy

    1997-12-31

    It is a commonly held belief at present that privatization will improve the efficiency of the state run energy sector, and benefit customers as well as the new owners, and the government selling the industry. Experience so far has been in well run Western economies, in particular in the UK, and even here many mistakes have been made, leading to increasingly strong intervention by regulators. In developing countries, where corruption is pervasive, efficient regulation is unlikely. Thus, privatisation may prove to be far worse for the consumer than the original state monopoly. The drive for privatization appears to be part ideological, part greed, as far as developing countries are considered. Certainly, political reform is needed before privatization can work in favour of the consumer. Examples are given from the UK electricity, gas, coal and rail industries.

  9. Radiant floor cooling coupled with dehumidification systems in residential buildings: A simulation-based analysis

    International Nuclear Information System (INIS)

    Zarrella, Angelo; De Carli, Michele; Peretti, Clara

    2014-01-01

    Highlights: • The floor radiant cooling in a typical apartment is analyzed. • Dehumidification devices, fan-coil and mechanical ventilation are compared. • The results are analyzed in terms of both thermal comfort and energy consumption. • The energy consumption of the dehumidifiers is higher than that of other systems. • The mechanical ventilation decreases the moisture level better than other systems. - Abstract: The development of radiant cooling has stimulated an interest in new systems based on coupling ventilation with radiant cooling. However, radiant cooling systems may cause condensation to form on an active surface under warm and humid conditions during the cooling season. This phenomenon occurs when surface temperature falls below dew point. To prevent condensation, air humidity needs to be reduced with a dehumidification device or a mechanical ventilation system. There are two main options to achieve this. The first is to use dehumidification devices that reduce humidity, but are not coupled with ventilation, i.e. devices that handle room air and leave air change to infiltrations. The second is to combine a mechanical ventilation system with dehumidifying finned coils. This study analyzes the floor radiant cooling of a typical residential apartment within a multi-storey building in three Italian climate zones by means of a detailed simulation tool. Five systems were compared in terms of both indoor thermal comfort and energy consumption: radiant cooling without dehumidification; radiant cooling with a soft dehumidification device; radiant cooling with a dehumidification device which also supplies sensible cooling; radiant cooling coupled with fan coils; and radiant cooling with a mechanical ventilation system which dehumidifies and cools

  10. Sensitivity of wave energy to climate change

    OpenAIRE

    Harrison, Gareth; Wallace, Robin

    2005-01-01

    Wave energy will have a key role in meeting renewable energy targets en route to a low carbon economy. However, in common with other renewables, it may be sensitive to changes in climate resulting from rising carbon emissions. Changes in wind patterns are widely anticipated and this will ultimately alter wave regimes. Indeed, evidence indicates that wave heights have been changing over the last 40 years, although there is no proven link to global warming. Changes in the wave climate will impa...

  11. The effects of different footprint sizes and cloud algorithms on the top-of-atmosphere radiative flux calculation from the Clouds and Earth's Radiant Energy System (CERES instrument on Suomi National Polar-orbiting Partnership (NPP

    Directory of Open Access Journals (Sweden)

    W. Su

    2017-10-01

    Full Text Available Only one Clouds and Earth's Radiant Energy System (CERES instrument is onboard the Suomi National Polar-orbiting Partnership (NPP and it has been placed in cross-track mode since launch; it is thus not possible to construct a set of angular distribution models (ADMs specific for CERES on NPP. Edition 4 Aqua ADMs are used for flux inversions for NPP CERES measurements. However, the footprint size of NPP CERES is greater than that of Aqua CERES, as the altitude of the NPP orbit is higher than that of the Aqua orbit. Furthermore, cloud retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS and the Moderate Resolution Imaging Spectroradiometer (MODIS, which are the imagers sharing the spacecraft with NPP CERES and Aqua CERES, are also different. To quantify the flux uncertainties due to the footprint size difference between Aqua CERES and NPP CERES, and due to both the footprint size difference and cloud property difference, a simulation is designed using the MODIS pixel-level data, which are convolved with the Aqua CERES and NPP CERES point spread functions (PSFs into their respective footprints. The simulation is designed to isolate the effects of footprint size and cloud property differences on flux uncertainty from calibration and orbital differences between NPP CERES and Aqua CERES. The footprint size difference between Aqua CERES and NPP CERES introduces instantaneous flux uncertainties in monthly gridded NPP CERES measurements of less than 4.0 W m−2 for SW (shortwave and less than 1.0 W m−2 for both daytime and nighttime LW (longwave. The global monthly mean instantaneous SW flux from simulated NPP CERES has a low bias of 0.4 W m−2 when compared to simulated Aqua CERES, and the root-mean-square (RMS error is 2.2 W m−2 between them; the biases of daytime and nighttime LW flux are close to zero with RMS errors of 0.8 and 0.2 W m−2. These uncertainties are within the uncertainties of CERES ADMs

  12. Radiant zone heated particulate filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-12-27

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  13. Subjective evaluation of different ventilation concepts combined with radiant heating and cooling

    DEFF Research Database (Denmark)

    Krajcik, Michal; Tomasi, Roberta; Simone, Angela

    2012-01-01

    Sixteen subjects evaluated the indoor environment in four experiments with different combinations of ventilation and radiant heating/cooling systems. Two test setups simulated a room in a low energy building with a single occupant during winter. The room was equipped either by a ventilation system...... supplying warm air space heating or by a combination of radiant floor heating and mixing ventilation system. Next two test setups simulated an office room with two occupants during summer, ventilated and cooled by a single displacement ventilation system or by a radiant floor cooling combined...

  14. Experimental evaluation of an active solar thermoelectric radiant wall system

    International Nuclear Information System (INIS)

    Liu, ZhongBing; Zhang, Ling; Gong, GuangCai; Han, TianHe

    2015-01-01

    Highlights: • A novel active solar thermoelectric radiant wall are proposed and tested. • The novel wall can control thermal flux of building envelope by using solar energy. • The novel wall can eliminate building envelop thermal loads and provide cooling capacity for space cooling. • Typical application issues including connection strategies, coupling with PV system etc. are discussed. - Abstract: Active solar thermoelectric radiant wall (ASTRW) system is a new solar wall technology which integrates thermoelectric radiant cooling and photovoltaic (PV) technologies. In ASTRW system, a PV system transfers solar energy directly into electrical energy to power thermoelectric cooling modes. Both the thermoelectric cooling modes and PV system are integrated into one enclosure surface as radiant panel for space cooling and heating. Hence, ASTRW system presents fundamental shift from minimizing building envelope energy losses by optimizing the insulation thickness to a new regime where active solar envelop is designed to eliminate thermal loads and increase the building’s solar gains while providing occupant comfort in all seasons. This article presents an experimental study of an ASTRW system with a dimension of 1580 × 810 mm. Experimental results showed that the inner surface temperature of the ASTRW is 3–8 °C lower than the indoor temperature of the test room, which indicated that the ASTRW system has the ability to control thermal flux of building envelope by using solar energy and reduce the air conditioning system requirements. Based on the optimal operating current of TE modules and the analysis based upon PV modeling theories, the number and type of the electrical connections for the TE modules in ASTRW system are discussed in order to get an excellent performance in the operation of the ASTRW system

  15. Global sensitivity analysis in wind energy assessment

    Science.gov (United States)

    Tsvetkova, O.; Ouarda, T. B.

    2012-12-01

    Wind energy is one of the most promising renewable energy sources. Nevertheless, it is not yet a common source of energy, although there is enough wind potential to supply world's energy demand. One of the most prominent obstacles on the way of employing wind energy is the uncertainty associated with wind energy assessment. Global sensitivity analysis (SA) studies how the variation of input parameters in an abstract model effects the variation of the variable of interest or the output variable. It also provides ways to calculate explicit measures of importance of input variables (first order and total effect sensitivity indices) in regard to influence on the variation of the output variable. Two methods of determining the above mentioned indices were applied and compared: the brute force method and the best practice estimation procedure In this study a methodology for conducting global SA of wind energy assessment at a planning stage is proposed. Three sampling strategies which are a part of SA procedure were compared: sampling based on Sobol' sequences (SBSS), Latin hypercube sampling (LHS) and pseudo-random sampling (PRS). A case study of Masdar City, a showcase of sustainable living in the UAE, is used to exemplify application of the proposed methodology. Sources of uncertainty in wind energy assessment are very diverse. In the case study the following were identified as uncertain input parameters: the Weibull shape parameter, the Weibull scale parameter, availability of a wind turbine, lifetime of a turbine, air density, electrical losses, blade losses, ineffective time losses. Ineffective time losses are defined as losses during the time when the actual wind speed is lower than the cut-in speed or higher than the cut-out speed. The output variable in the case study is the lifetime energy production. Most influential factors for lifetime energy production are identified with the ranking of the total effect sensitivity indices. The results of the present

  16. Radiant Heat Transfer in Reusable Surface Insulation

    Science.gov (United States)

    Hughes, T. A.; Linford, R. M. F.; Chmitt, R. J.; Christensen, H. E.

    1973-01-01

    During radiant testing of mullite panels, temperatures in the insulation and support structure exceeded those predicted on the basis of guarded hot plate thermal conductivity tests. Similar results were obtained during arc tunnel tests of mullite specimens. The differences between effective conductivity and guarded hot plate values suggested that radiant transfer through the mullite was occurring. To study the radiant transport, measurements were made of the infrared transmission through various insulating materials and fibers of interest to the shuttle program, using black body sources over the range of 780 to 2000 K. Experimental data were analyzed and scattering coefficients were derived for a variety of materials, fiber diameters, and source temperature.

  17. Sensitivity analysis of a modified energy model

    International Nuclear Information System (INIS)

    Suganthi, L.; Jagadeesan, T.R.

    1997-01-01

    Sensitivity analysis is carried out to validate model formulation. A modified model has been developed to predict the future energy requirement of coal, oil and electricity, considering price, income, technological and environmental factors. The impact and sensitivity of the independent variables on the dependent variable are analysed. The error distribution pattern in the modified model as compared to a conventional time series model indicated the absence of clusters. The residual plot of the modified model showed no distinct pattern of variation. The percentage variation of error in the conventional time series model for coal and oil ranges from -20% to +20%, while for electricity it ranges from -80% to +20%. However, in the case of the modified model the percentage variation in error is greatly reduced - for coal it ranges from -0.25% to +0.15%, for oil -0.6% to +0.6% and for electricity it ranges from -10% to +10%. The upper and lower limit consumption levels at 95% confidence is determined. The consumption at varying percentage changes in price and population are analysed. The gap between the modified model predictions at varying percentage changes in price and population over the years from 1990 to 2001 is found to be increasing. This is because of the increasing rate of energy consumption over the years and also the confidence level decreases as the projection is made far into the future. (author)

  18. Exergy metrication of radiant panel heating and cooling with heat pumps

    International Nuclear Information System (INIS)

    Kilkis, Birol

    2012-01-01

    Highlights: ► Rational Exergy Management Model analytically relates heat pumps and radiant panels. ► Heat pumps driven by wind energy perform better with radiantpanels. ► Better CO 2 mitigation is possible with wind turbine, heat pump, radiant panel combination. ► Energy savings and thermo-mechanical performance are directly linked to CO 2 emissions. - Abstract: Radiant panels are known to be energy efficient sensible heating and cooling systems and a suitable fit for low-exergy buildings. This paper points out the little known fact that this may not necessarily be true unless their low-exergy demand is matched with low-exergy waste and alternative energy resources. In order to further investigate and metricate this condition and shed more light on this issue for different types of energy resources and energy conversion systems coupled to radiant panels, a new engineering metric was developed. Using this metric, which is based on the Rational Exergy Management Model, true potential and benefits of radiant panels coupled to ground-source heat pumps were analyzed. Results provide a new perspective in identifying the actual benefits of heat pump technology in curbing CO 2 emissions and also refer to IEA Annex 49 findings for low-exergy buildings. Case studies regarding different scenarios are compared with a base case, which comprises a radiant panel system connected to a natural gas-fired condensing boiler in heating and a grid power-driven chiller in cooling. Results show that there is a substantial CO 2 emission reduction potential if radiant panels are optimally operated with ground-source heat pumps driven by renewable energy sources, or optimally matched with combined heat and power systems, preferably running on alternative fuels.

  19. Ten questions about radiant heating and cooling systems

    DEFF Research Database (Denmark)

    Rhee, Kyu-Nam; Olesen, Bjarne W.; Kim, Kwang Woo

    2017-01-01

    studies on RHC systems in terms of comfort, heat transfer analysis, energy simulation, control strategy, system configurations and so on. Many studies have demonstrated that the RHC system is a good solution to improve indoor environmental quality while reducing building energy consumption for heating......Radiant heating and cooling (RHC) systems are being increasingly applied not only in residential but also in non-residential buildings such as commercial buildings, education facilities, and even large scale buildings such as airport terminals. Furthermore, with the combined ventilation system used...

  20. Airflow and Heat Transfer in the Slot-Vented Room with Radiant Floor Heating Unit

    Directory of Open Access Journals (Sweden)

    Xiang-Long Liu

    2012-01-01

    Full Text Available Radiant floor heating has received increasing attention due to its diverse advantages, especially the energy saving as compared to the conventional dwelling heating system. This paper presents a numerical investigation of airflow and heat transfer in the slot-vented room with the radiant floor heating unit. Combination of fluid convection and thermal radiation has been implemented through the thermal boundary conditions. Spatial distributions of indoor air temperature and velocity, as well as the heat transfer rates along the radiant floor and the outer wall, have been presented and analyzed covering the domains from complete natural convection to forced convection dominated flows. The numerical results demonstrate that the levels of average temperature in the room with lateral slot-ventilation are higher than those without slot-ventilation, but lower than those in the room with ceiling slot-ventilation. Overall, the slot-ventilation room with radiant floor heating unit could offer better indoor air quality through increasing the indoor air temperature and fresh air exchanging rate simultaneously. Concerning the airborne pollutant transports and moisture condensations, the performance of radiant floor heating unit will be further optimized in our future researches.

  1. Numerical Model and Experimental Analysis of the Thermal Behavior of Electric Radiant Heating Panels

    Directory of Open Access Journals (Sweden)

    Giovanni Ferrarini

    2018-01-01

    Full Text Available Electric radiant heating panels are frequently selected during the design phase of residential and industrial heating systems, especially for retrofit of existing buildings, as an alternative to other common heating systems, such as radiators or air conditioners. The possibility of saving living and working space and the ease of installation are the main advantages of electric radiant solutions. This paper investigates the thermal performance of a typical electric radiant panel. A climatic room was equipped with temperature sensors and heat flow meters to perform a steady state experimental analysis. For the dynamic behavior, a mathematical model was created and compared to a thermographic measurement procedure. The results showed for the steady state an efficiency of energy transformation close to one, while in a transient thermal regime the time constant to reach the steady state condition was slightly faster than the typical ones of hydronic systems.

  2. Electric radiant heating : a hot profitable idea

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, G. [Britech Corp., Toronto, ON (Canada)

    2006-09-15

    Due to the high cost of heating oil, natural gas and propane, floor mounted radiant heating systems are now proving to be a cost effective method of heating homes. The systems provide evenly distributed heat across the entire floor area. Unlike hydronic floor systems, radiant floor systems require no maintenance, and are easy to control because no mechanical rooms or boilers are required. The system is comprised of a series of resistant heating cables, a thermostat, and a solid state relay. The cables are installed in a poured concrete pad. Separate temperature control devices are used to heat individual areas of floorspace. Building automation systems can also control the heating system by using simple ambient air- and floor-mounted sensors in conjunction with relays to energize the heating cables. The cost of thermostats and heating cables to heat a standard 2000 square foot home are estimated at $9000.00, with an additional 64 hours of installation costs. It was noted that the systems may prove to be less costly in the long-term than hydronic systems, which require additional boilers, pumps and water treatments. Electric radiant heating can be an even more cost-effective application when used with thermal storage heating applications that use lower-cost off-peak electricity to generate and store heat in concrete floor slabs or ceramic bricks contained in insulated cabinets. It was concluded that radiant heating systems are a viable and cost-effective alternative to expensive hydronic systems, which are costly to install and maintain. 4 figs.

  3. Measurement of radiant properties of ceramic foam

    International Nuclear Information System (INIS)

    Hoornstra, J.; Turecky, M.; Maatman, D.

    1994-07-01

    An experimental facility is described for the measurement of the normal spectral and total emissivity and transmissivity of semi-transparent materials in the temperature range of 600 C to 1200 C. The set-up was used for the measurement of radiation properties of highly porous ceramic foam which is used in low NO x radiant burners. Emissivity and transmissivity data were measured and are presented for coated and uncoated ceramic foam of different thicknesses. (orig.)

  4. Electric radiant heating or, why are plumbers getting our work?

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, G. [Britech, Toronto, ON (Canada)

    2009-02-15

    Electric radiant heating (ERH) technologies are now being installed in floors as a means of reducing heating costs. The radiant installations have seen a large increase in sales over the last decade, and are now being used in commercial applications. Sales of hydronic ERH systems have increased by 24 per cent over the last year. ERH systems are energy efficient and do not cause drafts. The systems consist of resistant heating cables installed within the floors of a room. The cables are supplied as loose cables and tracks with predetermined spacings or rugged, heavier cable that can be stapled onto wooden subfloors. Program temperature setbacks can be applied on a room-by-room basis. Electric thermal storage systems allow building owners to store heat in the floors and are ideal for use in combination with time-of-use electric metering. Some electric utilities are now promoting the use of electric thermal storage in order to reduce demand during peak times. Thermostats used with the systems should have floor sensors and ambient air sensors to control space heating in conjunction with the floor sensor. It was concluded that electrical contractors who gain knowledge in the application and installation of the systems will tap into a growing revenue stream. 5 figs.

  5. Electric radiant heating or, why are plumbers getting our work?

    International Nuclear Information System (INIS)

    Lemieux, G.

    2009-01-01

    Electric radiant heating (ERH) technologies are now being installed in floors as a means of reducing heating costs. The radiant installations have seen a large increase in sales over the last decade, and are now being used in commercial applications. Sales of hydronic ERH systems have increased by 24 per cent over the last year. ERH systems are energy efficient and do not cause drafts. The systems consist of resistant heating cables installed within the floors of a room. The cables are supplied as loose cables and tracks with predetermined spacings or rugged, heavier cable that can be stapled onto wooden subfloors. Program temperature setbacks can be applied on a room-by-room basis. Electric thermal storage systems allow building owners to store heat in the floors and are ideal for use in combination with time-of-use electric metering. Some electric utilities are now promoting the use of electric thermal storage in order to reduce demand during peak times. Thermostats used with the systems should have floor sensors and ambient air sensors to control space heating in conjunction with the floor sensor. It was concluded that electrical contractors who gain knowledge in the application and installation of the systems will tap into a growing revenue stream. 5 figs

  6. Towards a uniform specification of light therapy devices for the treatment of affective disorders and use for non-image forming effects: Radiant flux.

    Science.gov (United States)

    Aarts, M P J; Rosemann, A L P

    2018-08-01

    For treating affective disorders like SAD, light therapy is used although the underlying mechanism explaining this success remains unclear. To accelerate the research on defining the light characteristics responsible for inducing a specific effect a uniform manner for specifying the irradiance at the eye should be defined. This allows a genuine comparison between light-affect studies. An important factor impacting the irradiance at the eye are the radiant characteristics of the used light therapy device. In this study the radiant fluxes of five different light therapy devices were measured. The values were weighted against the spectral sensitivity of the five photopigments present in the human eye. A measurement was taken every five minutes to control for a potential stabilizing effect. The results show that all five devices show large differences in radiant flux. The devices equipped with blue LED lights have a much lower spectral radiant flux than the devices equipped with a fluorescent light source or a white LED. The devices with fluorescent lamps needed 30 min to stabilize to a constant radiant flux. In this study only five devices were measured. Radiant flux is just the first step to identify uniform specifications for light therapy devices. It is recommended to provide all five α-opic radiant fluxes. Preferably, the devices should come with a spectral power distribution of the radiant flux. For the devices equipped with a fluorescent lamp it is recommended to provide information on the stabilization time. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Dynamic heat transfer modeling and parametric study of thermoelectric radiant cooling and heating panel system

    International Nuclear Information System (INIS)

    Luo, Yongqiang; Zhang, Ling; Liu, Zhongbing; Wang, Yingzi; Wu, Jing; Wang, Xiliang

    2016-01-01

    Highlights: • Dynamic model of thermoelectric radiant panel system is established. • The internal parameters of thermoelectric module are dynamically calculated in simulation. • Both artificial neural networks model and system model are verified through experiment data. • Optimized system structure is obtained through parametric study. - Abstract: Radiant panel system can optimize indoor thermal comfort with lower energy consumption. The thermoelectric radiant panel (TERP) system is a new and effective prototype of radiant system using thermoelectric module (TEM) instead of conventional water pipes, as heat source. The TERP can realize more stable and easier system control as well as lower initial and operative cost. In this study, an improved system dynamic model was established by combining analytical system model and artificial neural networks (ANN) as well as the dynamic calculation functions of internal parameters of TEM. The double integral was used for the calculation of surface average temperature of TERP. The ANN model and system model were in good agreement with experiment data in both cooling and heating mode. In order to optimize the system design structure, parametric study was conducted in terms of the thickness of aluminum panel and insulation, as well as the arrangement of TEMs on the surface of radiant panel. It was found through simulation results that the optimum thickness of aluminum panel and insulation are respectively around 1–2 mm and 40–50 mm. In addition, TEMs should be uniformly installed on the surface of radiant panel and each TEM should stand at the central position of a square-shaped typical region with length around 0.387–0.548 m.

  8. Damage energy and displacement cross sections: survey and sensitivity. [Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Doran, D.G.; Parkin, D.M.; Robinson, M.T.

    1976-10-01

    Calculations of damage energy and displacement cross sections using the recommendations of a 1972 IAEA Specialists' Meeting are reviewed. The sensitivity of the results to assumptions about electronic energy losses in cascade development and to different choices respecting the nuclear cross sections is indicated. For many metals, relative uncertainties and sensitivities in these areas are sufficiently small that adoption of standard displacement cross sections for neutron irradiations can be recommended.

  9. Damage energy and displacement cross sections: survey and sensitivity

    International Nuclear Information System (INIS)

    Doran, D.G.; Parkin, D.M.; Robinson, M.T.

    1976-10-01

    Calculations of damage energy and displacement cross sections using the recommendations of a 1972 IAEA Specialists' Meeting are reviewed. The sensitivity of the results to assumptions about electronic energy losses in cascade development and to different choices respecting the nuclear cross sections is indicated. For many metals, relative uncertainties and sensitivities in these areas are sufficiently small that adoption of standard displacement cross sections for neutron irradiations can be recommended

  10. Use of local convective and radiant cooling at warm environment

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Krejcirikova, Barbora; Kaczmarczyk, Jan

    2012-01-01

    The effect of four local cooling devices (convective, radiant and combined) on SBS symptoms reported by 24 subjects at 28 ˚C and 50% RH was studied. The devices studied were: (1) desk cooling fan, (2) personalized ventilation providing clean air, (3) two radiant panels and (4) two radiant panels...... and with radiant panel with attached fans, which also helped people to feel less fatigue. The SBS symptoms increased the most when the cooling fan, generating movement of polluted room air, was used....

  11. Sensitivity to temperature of nuclear energy generation by hydrogen burning

    International Nuclear Information System (INIS)

    Mitalas, R.

    1981-01-01

    The sensitivity to temperature of nuclear energy generation by hydrogen burning is discussed. The complexity of the sensitivity is due to the different equilibration time-scales of the constituents of the p-p chain and CN cycle and the dependence of their abundances and time-scales on temperature. The time-scale of the temperature perturbation, compared to the equilibrium time-scale of a constituent, determines whether the constituent is in equilibrium and affects the sensitivity. The temperature sensitivity of the p-p chain for different values of hydrogen abundance, when different constituents come into equilibrium is presented, as well as its variation with 3 He abundance. The temperature sensitivity is drastically different from n 11 , the temperature sensitivity of the proton-proton reaction, unless the time-scale of temperature perturbation is long enough for 3 He to remain in equilibrium. Even in this case the sensitivity of the p-p chain differs significantly from n 11 , unless the temperature is so low that PP II and PP III chains can be neglected. The variation of the sensitivity of CN energy generation is small for different time-scales of temperature variation, because the temperature sensitivities of individual reactions are so similar. The combined sensitivity to temperature of energy generation by hydrogen burning is presented and shown to have a maximum of 16.4 at T 6 = 24.5. For T 6 > 25 the temperature sensitivity is given by the sensitivity of 14 N + p reaction. (author)

  12. Study on coal char ignition by radiant heat flux.

    Science.gov (United States)

    Korotkikh, A. G.; Slyusarskiy, K. V.

    2017-11-01

    The study on coal char ignition by CO2-continuous laser was carried out. The coal char samples of T-grade bituminous coal and 2B-grade lignite were studied via CO2-laser ignition setup. Ignition delay times were determined at ambient condition in heat flux density range 90-200 W/cm2. The average ignition delay time value for lignite samples were 2 times lower while this difference is larger in high heat flux region and lower in low heat flux region. The kinetic constants for overall oxidation reaction were determined using analytic solution of simplified one-dimensional heat transfer equation with radiant heat transfer boundary condition. The activation energy for lignite char was found to be less than it is for bituminous coal char by approximately 20 %.

  13. A RADIANT AIR-CONDITIONING SYSTEM USING SOLAR-DRIVEN

    Directory of Open Access Journals (Sweden)

    S. A. ABDALLA

    2006-12-01

    Full Text Available Every air-conditioning system needs some fresh air to provide adequate ventilation air required to remove moisture, gases like ammonia and hydrogen sulphide, disease organisms, and heat from occupied spaces. However, natural ventilation is difficult to control because urban areas outside air is often polluted and cannot be supplied to inner spaces before being filtered. Besides the high electrical demand of refrigerant compression units used by most air-conditioning systems, and fans used to transport the cool air through the thermal distribution system draw a significant amount of electrical energy in comparison with electrical energy used by the building thermal conditioning systems. Part of this electricity heats the cooled air; thereby add to the internal thermal cooling peak load. In addition, refrigerant compression has both direct and indirect negative effects on the environment on both local and global scales. In seeking for innovative air-conditioning systems that maintain and improve indoor air quality under potentially more demanding performance criteria without increasing environmental impact, this paper presents radiant air-conditioning system which uses a solar-driven liquid desiccant evaporative cooler. The paper describes the proposed solar-driven liquid desiccant evaporative cooling system and the method used for investigating its performance in providing cold water for a radiant air-conditioning system in Khartoum (Central Sudan. The results of the investigation show that the system can operate in humid as well as dry climates and that employing such a system reduces air-conditioning peak electrical demands as compared to vapour compression systems.

  14. Are inflationary predictions sensitive to very high energy physics?

    International Nuclear Information System (INIS)

    Burgess, C.P.; Lemieux, F.; Holman, R.; Cline, J.M.

    2003-01-01

    It has been proposed that the successful inflationary description of density perturbations on cosmological scales is sensitive to the details of physics at extremely high (trans-Planckian) energies. We test this proposal by examining how inflationary predictions depend on higher-energy scales within a simple model where the higher-energy physics is well understood. We find the best of all possible worlds: inflationary predictions are robust against the vast majority of high-energy effects, but can be sensitive to some effects in certain circumstances, in a way which does not violate ordinary notions of decoupling. This implies both that the comparison of inflationary predictions with CMB data is meaningful, and that it is also worth searching for small deviations from the standard results in the hopes of learning about very high energies. (author)

  15. Surface radiant flux densities inferred from LAC and GAC AVHRR data

    Science.gov (United States)

    Berger, F.; Klaes, D.

    To infer surface radiant flux densities from current (NOAA-AVHRR, ERS-1/2 ATSR) and future meteorological (Envisat AATSR, MSG, METOP) satellite data, the complex, modular analysis scheme SESAT (Strahlungs- und Energieflüsse aus Satellitendaten) could be developed (Berger, 2001). This scheme allows the determination of cloud types, optical and microphysical cloud properties as well as surface and TOA radiant flux densities. After testing of SESAT in Central Europe and the Baltic Sea catchment (more than 400scenes U including a detailed validation with various surface measurements) it could be applied to a large number of NOAA-16 AVHRR overpasses covering the globe.For the analysis, two different spatial resolutions U local area coverage (LAC) andwere considered. Therefore, all inferred results, like global area coverage (GAC) U cloud cover, cloud properties and radiant properties, could be intercompared. Specific emphasis could be made to the surface radiant flux densities (all radiative balance compoments), where results for different regions, like Southern America, Southern Africa, Northern America, Europe, and Indonesia, will be presented. Applying SESAT, energy flux densities, like latent and sensible heat flux densities could also be determined additionally. A statistical analysis of all results including a detailed discussion for the two spatial resolutions will close this study.

  16. Sensitivity analysis of energy demands on performance of CCHP system

    International Nuclear Information System (INIS)

    Li, C.Z.; Shi, Y.M.; Huang, X.H.

    2008-01-01

    Sensitivity analysis of energy demands is carried out in this paper to study their influence on performance of CCHP system. Energy demand is a very important and complex factor in the optimization model of CCHP system. Average, uncertainty and historical peaks are adopted to describe energy demands. The mix-integer nonlinear programming model (MINLP) which can reflect the three aspects of energy demands is established. Numerical studies are carried out based on energy demands of a hotel and a hospital. The influence of average, uncertainty and peaks of energy demands on optimal facility scheme and economic advantages of CCHP system are investigated. The optimization results show that the optimal GT's capacity and economy of CCHP system mainly lie on the average energy demands. Sum of capacities of GB and HE is equal to historical heating demand peaks, and sum of capacities of AR and ER are equal to historical cooling demand peaks. Maximum of PG is sensitive with historical peaks of energy demands and not influenced by uncertainty of energy demands, while the corresponding influence on DH is adverse

  17. Radiant non-catalytic recuperative reformer

    Energy Technology Data Exchange (ETDEWEB)

    Khinkis, Mark J.; Kozlov, Aleksandr P.

    2017-10-31

    A radiant, non-catalytic recuperative reformer has a flue gas flow path for conducting hot exhaust gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is positioned adjacent to the flue gas flow path to permit heat transfer from the hot exhaust gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, a portion of the reforming mixture flow path is positioned outside of flue gas flow path for a relatively large residence time.

  18. Validation of the uncertainty budget for soft X-ray radiant power measurement using a cryogenic radiometer

    International Nuclear Information System (INIS)

    Rabus, H.; Klein, R.; Scholze, F.; Thornagel, R.; Ulm, G.

    2002-01-01

    The cryogenic radiometer SYRES, a thermal detector based on the electrical substitution principle, has been used as the primary detector standard for radiant power measurement in the ultraviolet, vacuum ultraviolet and soft X-ray spectral ranges. In order to investigate the possibility of radiant energy being deposited in its absorber cavity without being transformed into heat when detecting soft X-rays, SYRES has been directly compared with the electron storage ring BESSY 1, a primary radiometric source standard of calculable spectral radiant power. To this end, the integral radiant power emitted by the storage ring,into a solid angle defined by a high-precision aperture was measured with SYRES. The experiments were conducted at two nominal energies of the circulating electrons, 800 MeV and 340 MeV, to study the influence of the different spectral distributions of the synchrotron radiation. For the original graphite-coated cavity absorber, significant discrepancies were found which could be traced back to the ablation of the graphite coating from the copper cavity body. In the case of the new gold-coated cavity absorber, the calculated and measured values of the radiant power agreed in all experiments within the combined relative uncertainties of typically 2.5 x 10 -3 (k = 1). (author)

  19. Price sensitivity of residential energy consumption in Norway

    International Nuclear Information System (INIS)

    Nesbakken, R.

    1999-01-01

    The main aim of this paper is to test the stability of the results of a model which focus on the relationship between the choice of heating equipment and the residential energy consumption. The results for the income and energy price variables are of special interest. Stability in the time dimension is tested by applying the model on micro data for each of the years 1993-1995. The parameter estimates are stable within a 95% confidence interval. However, the estimated impact of the energy price variable on energy consumption was considerably weaker in 1994 than in 1993 and 1995. The results for two different income groups in the pooled data set are also subject to stability testing. The energy price sensitivity in residential energy consumption is found to be higher for high-income households than for low-income households. 19 refs

  20. Long vs. short-term energy storage:sensitivity analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Inc., Menlo Park, CA); Hassenzahl, William V. (,Advanced Energy Analysis, Piedmont, CA)

    2007-07-01

    This report extends earlier work to characterize long-duration and short-duration energy storage technologies, primarily on the basis of life-cycle cost, and to investigate sensitivities to various input assumptions. Another technology--asymmetric lead-carbon capacitors--has also been added. Energy storage technologies are examined for three application categories--bulk energy storage, distributed generation, and power quality--with significant variations in discharge time and storage capacity. Sensitivity analyses include cost of electricity and natural gas, and system life, which impacts replacement costs and capital carrying charges. Results are presented in terms of annual cost, $/kW-yr. A major variable affecting system cost is hours of storage available for discharge.

  1. Numerical analysis of diffuse ceiling ventilation and its integration with a radiant ceiling system

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per Kvols; Chen, Qingyan

    2017-01-01

    A novel system combining diffuse ceiling ventilation and radiant ceiling was proposed recently, with the aim of providing energy efficient and comfort environment to office buildings. Designing of such a system is challenging because of complex interactions between the two subsystems and a large ......-uniformity air distribution and further led to the draught problem in the occupied zone. This system was recommended to apply in the small offices instead of large, open spaces....

  2. Error analysis of thermocouple measurements in the Radiant Heat Facility

    International Nuclear Information System (INIS)

    Nakos, J.T.; Strait, B.G.

    1980-12-01

    The measurement most frequently made in the Radiant Heat Facility is temperature, and the transducer which is used almost exclusively is the thermocouple. Other methods, such as resistance thermometers and thermistors, are used but very rarely. Since a majority of the information gathered at Radiant Heat is from thermocouples, a reasonable measure of the quality of the measurements made at the facility is the accuracy of the thermocouple temperature data

  3. Simplified Building Thermal Model Used for Optimal Control of Radiant Cooling System

    Directory of Open Access Journals (Sweden)

    Lei He

    2016-01-01

    Full Text Available MPC has the ability to optimize the system operation parameters for energy conservation. Recently, it has been used in HVAC systems for saving energy, but there are very few applications in radiant cooling systems. To implement MPC in buildings with radiant terminals, the predictions of cooling load and thermal environment are indispensable. In this paper, a simplified thermal model is proposed for predicting cooling load and thermal environment in buildings with radiant floor. In this thermal model, the black-box model is introduced to derive the incident solar radiation, while the genetic algorithm is utilized to identify the parameters of the thermal model. In order to further validate this simplified thermal model, simulated results from TRNSYS are compared with those from this model and the deviation is evaluated based on coefficient of variation of root mean square (CV. The results show that the simplified model can predict the operative temperature with a CV lower than 1% and predict cooling loads with a CV lower than 10%. For the purpose of supervisory control in HVAC systems, this simplified RC thermal model has an acceptable accuracy and can be used for further MPC in buildings with radiation terminals.

  4. Radiant heat testing of the H1224A shipping/storage container

    Energy Technology Data Exchange (ETDEWEB)

    Harding, D.C.; Bobbe, J.G.; Stenberg, D.R.; Arviso, M.

    1994-05-01

    H1224A weapons containers have been used for years by the Departments of Energy and Defense to transport and store W78 warhead midsections. Although designed to protect the midsections only from low-energy impacts, a recent transportation risk assessment effort has identified a need to evaluate the container`s ability to protect weapons in more severe accident environments. Four radiant heat tests were performed: two each on an H1224A container (with a Mk12a Mod 6c mass mock-up midsection inside) and two on a low-cost simulated H1224A container (with a hollow Mk12 aeroshell midsections inside). For each unit tested, temperatures were recorded at numerous points throughout the container and midsection during a 4-hour 121{degrees}C (250{degrees}F) and 30-minute 1010{degrees}C (1850{degrees}F) radiant environment. Measured peak temperatures experienced by the inner walls of the midsections as a result of exposure to the high-temperature radiant environment ranged from 650{degrees} C to 980{degrees} C (1200{degrees} F to 1800{degrees}F) for the H1224A container and 770 {degrees} to 990 {degrees}C (1420{degrees} F to 1810{degrees}F) for the simulated container. The majority of both containers were completely destroyed during the high-temperature test. Temperature profiles will be used to benchmark analytical models and predict warhead midsection temperatures over a wide range of the thermal accident conditions.

  5. Analysis of excimer laser radiant exposure effect toward corneal ablation volume at LASIK procedure

    Science.gov (United States)

    Adiati, Rima Fitria; Rini Rizki, Artha Bona; Kusumawardhani, Apriani; Setijono, Heru; Rahmadiansah, Andi

    2016-11-01

    LASIK (Laser Asissted In Situ Interlamelar Keratomilieusis) is a technique for correcting refractive disorders of the eye such as myopia and astigmatism using an excimer laser. This procedure use photoablation technique to decompose corneal tissues. Although preferred due to its efficiency, permanency, and accuracy, the inappropriate amount radiant exposure often cause side effects like under-over correction, irregular astigmatism and problems on surrounding tissues. In this study, the radiant exposure effect toward corneal ablation volume has been modelled through several processes. Data collecting results is laser data specifications with 193 nm wavelength, beam diameter of 0.065 - 0.65 cm, and fluence of 160 mJ/cm2. For the medical data, the myopia-astigmatism value, cornea size, corneal ablation thickness, and flap data are taken. The first modelling step is determining the laser diameter between 0.065 - 0.65 cm with 0.45 cm increment. The energy, power, and intensity of laser determined from laser beam area. Number of pulse and total energy is calculated before the radiant exposure of laser is obtained. Next is to determine the parameters influence the ablation volume. Regression method used to create the equation, and then the spot size is substituted to the model. The validation used is statistic correlation method to both experimental data and theory. By the model created, it is expected that any potential complications can be prevented during LASIK procedures. The recommendations can give the users clearer picture to determine the appropriate amount of radiant exposure with the corneal ablation volume necessary.

  6. Prediction of radiant heat flux from horizontal propane jet fire

    International Nuclear Information System (INIS)

    Zhou, Kuibin; Liu, Jiaoyan; Jiang, Juncheng

    2016-01-01

    Highlights: • Line source model for the radiant heat flux from horizontal jet fire is proposed. • A review on the difference between horizontal and vertical jet fires is conducted. • Effects of lift-off distance and flame shape are discussed for the line source model. • Line source model gives encouraging results relative to the validity of model system. - Abstract: Jet fires are often reported to occur in process industry with lots of hazardous heat energy released. A line source model describing the flame emissive power and subsequent heat flux radiated from a horizontal propane jet fire is evaluated through a testing against experimental fire data and comparison against other models. By a review on the jet flame behavior, the correlations of the lift-off distance, flame length and radiative fraction are proposed to close the line source model in theory. It is found that the fuel jet direction holds a considerable effect on the flame behavior by comparison between horizontal and vertical jet fires. Results indicate that the lift-off distance and the flame shape influence the model prediction to some extent. Comparison of model predictions against data collected in the near field and predictions from the point source model and multipoint source model gives encouraging results relative to the validity of model system.

  7. Radiant{trademark} Liquid Radioisotope Intravascular Radiation Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Eigler, N.; Whiting, J.; Chernomorsky, A.; Jackson, J.; Knapp, F.F., Jr.; Litvack, F.

    1998-01-16

    RADIANT{trademark} is manufactured by United States Surgical Corporation, Vascular Therapies Division, (formerly Progressive Angioplasty Systems). The system comprises a liquid {beta}-radiation source, a shielded isolation/transfer device (ISAT), modified over-the-wire or rapid exchange delivery balloons, and accessory kits. The liquid {beta}-source is Rhenium-188 in the form of sodium perrhenate (NaReO{sub 4}), Rhenium-188 is primarily a {beta}-emitter with a physical half-life of 17.0 hours. The maximum energy of the {beta}-particles is 2.1 MeV. The source is produced daily in the nuclear pharmacy hot lab by eluting a Tungsten-188/Rhenium-188 generator manufactured by Oak Ridge National Laboratory (ORNL). Using anion exchange columns and Millipore filters the effluent is concentrated to approximately 100 mCi/ml, calibrated, and loaded into the (ISAT) which is subsequently transported to the cardiac catheterization laboratory. The delivery catheters are modified Champion{trademark} over-the-wire, and TNT{trademark} rapid exchange stent delivery balloons. These balloons have thickened polyethylene walls to augment puncture resistance; dual radio-opaque markers and specially configured connectors.

  8. Validation of the uncertainty budget for soft X-ray radiant power measurement using a cryogenic radiometer

    CERN Document Server

    Rabus, H; Scholze, F; Thornagel, R; Ulm, G

    2002-01-01

    The cryogenic radiometer SYRES, a thermal detector based on the electrical substitution principle, has been used as the primary detector standard for radiant power measurement in the ultraviolet, vacuum ultraviolet and soft X-ray spectral ranges. In order to investigate the possibility of radiant energy being deposited in its absorber cavity without being transformed into heat when detecting soft X-rays, SYRES has been directly compared with the electron storage ring BESSY 1, a primary radiometric source standard of calculable spectral radiant power. To this end, the integral radiant power emitted by the storage ring,into a solid angle defined by a high-precision aperture was measured with SYRES. The experiments were conducted at two nominal energies of the circulating electrons, 800 MeV and 340 MeV, to study the influence of the different spectral distributions of the synchrotron radiation. For the original graphite-coated cavity absorber, significant discrepancies were found which could be traced back to th...

  9. Growth and solar energy conversion of Azolla sp., cultivated under four solar irradiance flux density; Crescimento e conversao da energia solar de Azolla sp. cultivada em quatro densidades do fluxo radiante

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, E.F. de [Acre Univ., Rio Branco, AC (Brazil); Lopes, N.F. [Vicosa Univ., MG (Brazil). Dept. de Biologia Vegetal

    1994-02-01

    Growth and solar energy conversion were studied in three Azolla species grown under four levels (30, 50, 70 and 100%) of solar radiation incidence under outdoor conditions. Under full sunlight, the specie A. microphylla showed higher crop growth rate, relative growth rate, net assimilation rate and efficiency of solar energy conversion than the other ones. (author). 8 figs., 23 refs.

  10. Experimental and Numerical Study of the Radiant Induction-Unit and the Induction Radiant Air-Conditioning System

    Directory of Open Access Journals (Sweden)

    Qiang Si

    2016-12-01

    Full Text Available In this paper we proposed the novel air-conditioning system which combined induction ventilation and radiant air-conditioning. The indoor terminal device is the radiant induction-unit (RIDU. The RIDU is the induction unit combined with the pore radiant panel on which the copper pipes with rigid aluminum diffusion fins are installed. The two-stage evaporator chiller with the non-azeotropic mixture refrigerant is utilized in the system to reduce the initial investment in equipment. With the performance test and the steady state heat transfer model based on the theory of radiative heat transfer, the relationship between the induction ratio of the RIDU and the characteristic of the air supply was studied. Based on this, it is verified that the RIDU has a lower dew-point temperature and better anti-condensation performance than a traditional plate-type radiant panel. The characteristics of the radiation and convection heat transfer of the RIDU were studied. The total heat exchange of the RIDU can be 16.5% greater than that of the traditional plate-type radiant terminal.

  11. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells

    KAUST Repository

    Hoke, Eric T.; Hardin, Brian E.; McGehee, Michael D.

    2010-01-01

    Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation

  12. Sensitivity analysis for the energy performance assessment of hybrid compressed air energy storage systems

    International Nuclear Information System (INIS)

    Briola, Stefano; Di Marco, Paolo; Gabbrielli, Roberto; Riccardi, Juri

    2017-01-01

    Highlights: •A sensitivity analysis and DOE of the complete hybrid CAES are carried out. •The influence of the storage site volume on performance indicators is negligible. •The performances increase with the decrease of the compressor outlet pressure. •The performances are correlated for each temperature increase in combustion chamber. •Hybridization of Huntorf implies a significant increase of its first law efficiency. -- Abstract: A detailed mathematical model was developed for the complete Hybrid Compressed Air Energy Storage (H-CAES) configuration with underground storage site and liquid thermal energy storage, operating with a sequence of processes (charging, holding and discharging with respective duration) in arbitrary order. A sensitivity analysis was carried out in order to calculate several performance indicators of the complete H-CAES configuration, in relation to the simultaneous change of several process parameters. The methodology “Design of Experiments” was applied to the results of the sensitivity analysis in order to calculate the main effects of each process parameter on each performance indicator. The influence of the storage site volume on each performance indicator is negligible. The reduction of the compressor group outlet pressure and of the turbine group power allows a more effective thermodynamic utilization both of the energy stored by the compressors and of the overall energy supplied to the plant. Furthermore, the former utilization is more effective by an increase of the gas temperature in the combustion chambers, whereas the latter utilization is worsened. Moreover, as case study, the existing diabatic CAES plant of Huntorf was modified by introducing a diathermic oil thermal storage. This plant is suitable to operate according to a partial hybrid configuration by the deactivation of the heat exchanger located upstream of the low pressure turbine. The thermodynamic utilization of the overall energy supplied to the plant

  13. Radiant smiles everywhere - before the Chernobyl accident

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The business reports presented by the Federal German electric utilities for 1985 are almost all simply brillant. Electricity consumption has been going up, some of the utilities even can boast about rates kept constant over the year. But before the printed business reports could be presented to the meetings of shareholders, a nasty cloud threw a dark shadow over all the brilliant results. The Chernobyl accident made some of the hymns over the nuclear electricity increases and nuclear power in general sound rather queer. Could we do without this energy source. Substituting nuclear power would yearly require: 28 million t of oil, or 41 million t of hard coal, or 142 million t of browncoal, or 38 thousand million cubic metres of natural gas. Extrapolating current conditions and assuming best achievements, renewable energy sources might be able to meet 6 p.c. of the primary energy demands by the year 2000. (orig./HP) [de

  14. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  15. Load calculations of radiant cooling systems for sizing the plant

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    The aim of this study was, by using a building simulation software, to prove that a radiant cooling system should not be sized based on the maximum cooling load but at a lower value. For that reason six radiant cooling models were simulated with two control principles using 100%, 70% and 50......% of the maximum cooling load. It was concluded that all tested systems were able to provide an acceptable thermal environment even when the 50% of the maximum cooling load was used. From all the simulated systems the one that performed the best under both control principles was the ESCS ceiling system. Finally...... it was proved that ventilation systems should be sized based on the maximum cooling load....

  16. Cooling load calculation by the radiant time series method - effect of solar radiation models

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Alexandre M.S. [Universidade Estadual de Maringa (UEM), PR (Brazil)], E-mail: amscosta@uem.br

    2010-07-01

    In this work was analyzed numerically the effect of three different models for solar radiation on the cooling load calculated by the radiant time series' method. The solar radiation models implemented were clear sky, isotropic sky and anisotropic sky. The radiant time series' method (RTS) was proposed by ASHRAE (2001) for replacing the classical methods of cooling load calculation, such as TETD/TA. The method is based on computing the effect of space thermal energy storage on the instantaneous cooling load. The computing is carried out by splitting the heat gain components in convective and radiant parts. Following the radiant part is transformed using time series, which coefficients are a function of the construction type and heat gain (solar or non-solar). The transformed result is added to the convective part, giving the instantaneous cooling load. The method was applied for investigate the influence for an example room. The location used was - 23 degree S and 51 degree W and the day was 21 of January, a typical summer day in the southern hemisphere. The room was composed of two vertical walls with windows exposed to outdoors with azimuth angles equals to west and east directions. The output of the different models of solar radiation for the two walls in terms of direct and diffuse components as well heat gains were investigated. It was verified that the clear sky exhibited the less conservative (higher values) for the direct component of solar radiation, with the opposite trend for the diffuse component. For the heat gain, the clear sky gives the higher values, three times higher for the peek hours than the other models. Both isotropic and anisotropic models predicted similar magnitude for the heat gain. The same behavior was also verified for the cooling load. The effect of room thermal inertia was decreasing the cooling load during the peak hours. On the other hand the higher thermal inertia values are the greater for the non peak hours. The effect

  17. Photosynthetic utilization of radiant energy by CAM Dendrobium flowers

    International Nuclear Information System (INIS)

    Khoo, G.H.; Hew, C.S.; He, J.

    1997-01-01

    14 CO 2 fixation was observed in orchid Dendrobium flowers; its rate decreased with the flower development. Chlorophyll (Chl) fluorescence in different developmental stages of flowers was compared to other green plant parts (leaf, inflorescence stalk, and fruit capsule). The photochemical efficiency of photosystem 2 (PS2) (Fv/Fm) of a leaf was 14-21 % higher than that of a mature flower perianth (sepal, petal, and labellum) which had a much lower total Chl content and Chl a/b ratio. A higher quantum yield of PS2 (ΦPS2) than in the mature flowers was observed in all green parts. Flower sepals had higher Chl content, Chl a/b ratio, and Fv/Fm values than the petal and labellum. During flower development the Chl content, Chl a/b ratio, Fv/Fm, and qN decreased while ΦPS2 and qP remained constant. An exposure of developing flowers to irradiances above 50 µmol m -2 s -1 resulted in a very drastic drop of ΦPS2 and qP, and a coherent increase of qN as compared to other green plant organs. A low saturation irradiance (PFD of 100 µmol m -2 s -1 ) and the increase in qN in the flower indicate that irradiation stress may occur since there is no further protection when the flower is exposed to irradiances above 100 µmol m -2 s -1 . A low Chl/carotenoid ratio in mature flower perianth as a consequence of Chl content reduction in the course of flower development suggests a relief of irradiation stress via this mean. (author)

  18. Electric radiant heating: A hot item in home comfort

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, G. [Britech Corp., Toronto, ON (Canada)

    2003-12-01

    Electric radiant heating as a floor warming system and its growing popularity in home comfort are discussed. Price can be as low as $2.00 per square foot; cost of operation may be as little as 30 cents per square foot per year, depending on time of use and local hydro rates. The use of radiant cable heating is said to have surged in popularity; it provides the same warmth and comfort as more expensive hydronic systems. Radiant cable is simple and inexpensive to install since unlike hydronic systems, it requires no complicated mechanical system with boiler, heat exchanger, valves, pumps and extensive controls. Nevertheless, prospective end users are warned to make sure that the cable is sturdy, tough, has multiple layers of protection with a thick grounding system and conductor core. In addition to heating floors, electric heating cables can also be used for snow and ice control and for melting in driveways and gutters. In these type of installations heavy duty cables are used which are installed under asphalt, concrete or interlocking stones. Thirty watts per square foot per hour is the typical requirement for melting snow and ice. Based on average electricity prices in Ontario, melting snow on an 800 square foot driveway would cost about $2.20 per hour. Assuming five hours for the system to clear the driveway, installing a heating system under the driveway could be an economically viable solution for the home owner, providing freedom from ice, the inconvenience of shovelling snow, and saving time and money.

  19. Radiant heat exchange measurements for Tore Supra

    International Nuclear Information System (INIS)

    Chatain, D.; Disdier, F.; Gauthier, A.; Raffin, M.; Renaud, M.

    1984-03-01

    In order to minimize the energy consumption of the low temperature cryogenic system connected to the superconducting magnet of TORE-SUPRA, heat exchange from thermal radiation between the vacuum vessels and the thermal shields has been studied. Accordingly large scale cold and hot walls of T.S. have been simulated in a model with reduced dimensions. In this model, the experiment consists in the measurement of the thermal radiated power between two concentric cylindrical surfaces of stainless steel under vacuum conditions. The temperature of the external cylinder was kept constant at 80 K. The internal cylinder was bakeable up to 250 0 C. Various surface treatments were applied on the two cylinders (mechanical polishing and metal deposition of Al, Ag, Ni) [fr

  20. Effects of radiant exposure and wavelength spectrum of light-curing units on chemical and physical properties of resin cements

    Directory of Open Access Journals (Sweden)

    Adriano Fonseca Lima

    2016-11-01

    Full Text Available Objectives In this study, we evaluated the influence of different radiant exposures provided by single-peak and polywave light-curing units (LCUs on the degree of conversion (DC and the mechanical properties of resin cements. Materials and Methods Six experimental groups were established for each cement (RelyX ARC, 3M ESPE; LuxaCore Dual, Ivoclar Vivadent; Variolink, DMG, according to the different radiant exposures (5, 10, and 20 J/cm2 and two LCUs (single-peak and polywave. The specimens were made (7 mm in length × 2 mm in width × 1 mm in height using silicone molds. After 24 hours of preparation, DC measurement was performed using Fourier transform infrared spectrometry. The same specimens were used for the evaluation of mechanical properties (flexural strength, FS; elastic modulus, E by a three-point bending test. Data were assessed for normality, after which two-way analysis of variance (ANOVA and post hoc Tukey's test were performed. Results No properties of the Variolink cement were influenced by any of the considered experimental conditions. In the case of the RelyX ARC cement, DC was higher when polywave LCU was used; FS and E were not influenced by the conditions evaluated. The LuxaCore cement showed greater sensitivity to the different protocols. Conclusions On the basis of these results, both the spectrum of light emitted and the radiant exposure used could affect the properties of resin cements. However, the influence was material-dependent.

  1. Sensitivity Analysis Applied in Design of Low Energy Office Building

    DEFF Research Database (Denmark)

    Heiselberg, Per; Brohus, Henrik

    2008-01-01

    satisfies the design requirements and objectives. In the design of sustainable Buildings it is beneficial to identify the most important design parameters in order to develop more efficiently alternative design solutions or reach optimized design solutions. A sensitivity analysis makes it possible...

  2. Incorporating Multiple Energy Relay Dyes in Liquid Dye-Sensitized Solar Cells

    KAUST Repository

    Yum, Jun-Ho

    2011-01-05

    Panchromatic response is essential to increase the light-harvesting efficiency in solar conversion systems. Herein we show increased light harvesting from using multiple energy relay dyes inside dye-sensitized solar cells. Additional photoresponse from 400-590 nm matching the optical window of the zinc phthalocyanine sensitizer was observed due to Förster resonance energy transfer (FRET) from the two energy relay dyes to the sensitizing dye. The complementary absorption spectra of the energy relay dyes and high excitation transfer efficiencies result in a 35% increase in photovoltaic performance. © 2011 Wiley-VCH Verlag GmbH& Co. KGaA.

  3. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells

    KAUST Repository

    Hoke, Eric T.

    2010-02-11

    Förster resonant energy transfer can improve the spectral breadth, absorption and energy conversion efficiency of dye sensitized solar cells. In this design, unattached relay dyes absorb the high energy photons and transfer the excitation to sensitizing dye molecules by Förster resonant energy transfer. We use an analytic theory to calculate the excitation transfer efficiency from the relay dye to the sensitizing dye accounting for dynamic quenching and relay dye diffusion. We present calculations for pores of cylindrical and spherical geometry and examine the effects of the Förster radius, the pore size, sensitizing dye surface concentration, collisional quenching rate, and relay dye lifetime. We find that the excitation transfer efficiency can easily exceed 90% for appropriately chosen dyes and propose two different strategies for selecting dyes to achieve record power conversion efficiencies. © 2010 Optical Society of America.

  4. Piezoelectric touch-sensitive flexible hybrid energy harvesting nanoarchitectures

    International Nuclear Information System (INIS)

    Choi, Dukhyun; Kim, Eok Su; Kim, Tae Sang; Lee, Sang Yoon; Choi, Jae-Young; Kim, Jong Min; Lee, Keun Young; Lee, Kang Hyuck; Kim, Sang-Woo

    2010-01-01

    In this work, we report a flexible hybrid nanoarchitecture that can be utilized as both an energy harvester and a touch sensor on a single platform without any cross-talk problems. Based on the electron transport and piezoelectric properties of a zinc oxide (ZnO) nanostructured thin film, a hybrid cell was designed and the total thickness was below 500 nm on a plastic substrate. Piezoelectric touch signals were demonstrated under independent and simultaneous operations with respect to photo-induced charges. Different levels of piezoelectric output signals from different magnitudes of touching pressures suggest new user-interface functions from our hybrid cell. From a signal controller, the decoupled performance of a hybrid cell as an energy harvester and a touch sensor was confirmed. Our hybrid approach does not require additional assembly processes for such multiplex systems of an energy harvester and a touch sensor since we utilize the coupled material properties of ZnO and output signal processing. Furthermore, the hybrid cell can provide a multi-type energy harvester by both solar and mechanical touching energies.

  5. Increased light harvesting in dye-sensitized solar cells with energy relay dyes

    KAUST Repository

    Hardin, Brian E.

    2009-06-21

    Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near-infrared domain and consequently have lower short-circuit photocurrent densities than inorganic photovoltaic devices. Here, we present a new design where high-energy photons are absorbed by highly photoluminescent chromophores unattached to the titania and undergo Förster resonant energy transfer to the sensitizing dye. This novel architecture allows for broader spectral absorption, an increase in dye loading, and relaxes the design requirements for the sensitizing dye. We demonstrate a 26% increase in power conversion efficiency when using an energy relay dye (PTCDI) with an organic sensitizing dye (TT1). We estimate the average excitation transfer efficiency in this system to be at least 47%. This system offers a viable pathway to develop more efficient dye-sensitized solar cells.

  6. Radiant science, dark politics: a memoir of the nuclear age

    International Nuclear Information System (INIS)

    Kamen, M.D.

    1985-01-01

    The reviewer describes Radiant Science, Dark Politics: A Memoir of the Nuclear Age in contrast to a memoir by James R. Killian, Jr., a contemporary of Kamen. Kamen, co-discoverer of carbon-14 and a valued member of the Berkeley Radiation Laboratory, was fired in 1944 and blackballed as a security risk. Rehabilitated by the end of the war, his continued fight against political injustice through the McCarthy era colors the book and, for the reviewer, makes it self-serving. Kamen's later scientific work reflected his desire to work alone rather than in collaboration

  7. Radiant coolers - Theory, flight histories, design comparisons and future applications

    Science.gov (United States)

    Donohoe, M. J.; Sherman, A.; Hickman, D. E.

    1975-01-01

    Radiant coolers have been developed for application to the cooling of infrared detectors aboard NASA earth observation systems and as part of the Defense Meteorological Satellite Program. The prime design constraints for these coolers are the location of the cooler aboard the satellite and the satellite orbit. Flight data from several coolers indicates that, in general, design temperatures are achieved. However, potential problems relative to the contamination of cold surfaces are also revealed by the data. A comparison among the various cooler designs and flight performances indicates design improvements that can minimize the contamination problem in the future.

  8. Sensitivity of molecular vibrational dynamics to energy exchange rate constants

    International Nuclear Information System (INIS)

    Billing, G D; Coletti, C; Kurnosov, A K; Napartovich, A P

    2003-01-01

    The sensitivity of molecular vibrational population dynamics, governing the CO laser operated in fundamental and overtone transitions, to vibration-to-vibration rate constants is investigated. With this aim, three rate constant sets have been used, differing in their completeness (i.e. accounting for single-quantum exchange only, or for multi-quantum exchange with a limited number of rate constants obtained by semiclassical calculations, and, finally, with an exhaustive set of rate constants including asymmetric exchange processes, as well) and in the employed interaction potential. The most complete set among these three is introduced in this paper. An existing earlier kinetic model was updated to include the latter new data. Comparison of data produced by kinetic modelling with the above mentioned sets of rate constants shows that the vibrational distribution function, and, in particular, the CO overtone laser characteristics, are very sensitive to the choice of the model. The most complete model predicts slower evolution of the vibrational distribution, in qualitative agreement with experiments

  9. An experimental study about effect of far infrared radiant ceramics on efficient methane fermentation

    International Nuclear Information System (INIS)

    Oda, A.; Yamazaki, M.; Oida, A.

    2003-01-01

    Methane fermentation, well known as one of the methods for organic wastes treatment, has been used as an energy production process in order to produce a gaseous fuel. But methane fermentation has some problems to be solved about gas production rate and volatile solids reduction efficiency. Simple methods to improve these problems are needed. In this study, we focused on far infrared radiant ceramics as a stimulating substance to activate methanogenic bacteria. Firstly, through the experiment of one batch fermentation, it was confirmed that the ceramics in the fermenter caused increase of total gas production. Next, even through the experiment of continuous fermentation, same stimulating effect was confirmed. It was considered that this effect was caused not only by a function of bio-contactor of the ceramics but also by far infrared radiation from ceramics. (author)

  10. Energy efficiency of electrical infrared heating elements

    International Nuclear Information System (INIS)

    Brown, K.J.; Farrelly, R.; O’Shaughnessy, S.M.; Robinson, A.J.

    2016-01-01

    Highlights: • Characterization of the radiant energy efficiency of infrared heating elements. • Performed for a commercially available ceramic heater element for two cases. • Total radiant power and net radiant efficiency is computed. • Radiant efficiencies are strongly dependant on the input power to the element. • In-plane efficiencies depend on the distance from the heater. - Abstract: A measurement system has been designed to characterize the radiant energy efficiency of infrared heating elements. The system also allows for measurement of the radiant heat flux distribution emitted from radiant heater assemblies. To facilitate these, a 6-axis robotic arm is fitted with a Schmidt–Boelter radiant heat flux gauge. A LabVIEW interface operates the robot and positions the sensor in the desired location and subsequently acquires the desired radiant heat flux measurement. To illustrate the functionality of the measurement system and methodology, radiant heat flux distributions and efficiency calculations are performed for a commercially available ceramic heater element for two cases. In the first, a spherical surface is traced around the entire heater assembly and the total radiant power and net radiant efficiency is computed. In the second, 50 cm × 50 cm vertical planes are traced parallel to the front face of the heater assembly at distances between 10 cm and 50 cm and the in-plane power and efficiencies are computed. The results indicate that the radiant efficiencies are strongly dependant on the input power to the element and, for the in-plane efficiencies, depend on the distance from the heater.

  11. Incorporating Multiple Energy Relay Dyes in Liquid Dye-Sensitized Solar Cells

    KAUST Repository

    Yum, Jun-Ho; Hardin, Brian E.; Hoke, Eric T.; Baranoff, Etienne; Zakeeruddin, Shaik M.; Nazeeruddin, Mohammad K.; Torres, Tomas; McGehee, Michael D.; Grä tzel, Michael

    2011-01-01

    Panchromatic response is essential to increase the light-harvesting efficiency in solar conversion systems. Herein we show increased light harvesting from using multiple energy relay dyes inside dye-sensitized solar cells. Additional photoresponse

  12. 16 CFR Figure 3 to Subpart A of... - Flooring Radiant Tester Schematic Side Elevation

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flooring Radiant Tester Schematic Side Elevation 3 Figure 3 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 3 Figure 3 to Subpart A of Part 1209—Flooring Radiant Tester Schematic Side...

  13. Human response to local convective and radiant cooling in a warm environment

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Krejcirikova, Barbora; Kaczmarczyk, Jan

    2013-01-01

    The response of 24 human subjects to local convective cooling, radiant cooling, and combined radiant and convective cooling was studied at 28°C and 50% relative humidity. The local cooling devices used were (1) a tabletop cooling fan, (2) personalized ventilation providing a stream of clean air, (3...

  14. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.; Yum, Jun-Ho; Hoke, Eric T.; Jun, Young Chul; Péchy, Peter; Torres, Tomás; Brongersma, Mark L.; Nazeeruddin, Md. Khaja; Grätzel, Michael; McGehee, Michael D.

    2010-01-01

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3

  15. A two-dimensional low energy gamma-ray position sensitive detector

    International Nuclear Information System (INIS)

    Charalambous, P.M.; Dean, A.J.; Drane, M.; Gil, A.; Stephen, J.B.; Young, N.G.S.; Barbareschi, L.; Perotti, F.; Villa, G.; Badiali, M.; La Padula, C.; Polcaro, F.; Ubertini, P.

    1984-01-01

    An array of 1-dimensional position sensitive detectors designed to operate over the photon energy range 0.2-10.0 MeV, so as to form an efficient 2-dimensional position sensitive detection plane is described. A series of experimental tests has been carried out to evaluate and confirm the computed capabilities. (orig.)

  16. Radiant-and-plasma technology for coal processing

    Directory of Open Access Journals (Sweden)

    Vladimir Messerle

    2012-12-01

    Full Text Available Radiant-and-plasma technology for coal processing is presented in the article. Thermodynamic computation and experiments on plasma processing of bituminous coal preliminary electron-beam activated were fulfilled in comparison with plasma processing of the coal. Positive influence of the preliminary electron-beam activation of coal on synthesis gas yield was found. Experiments were carried out in the plasma gasifier of 100 kW power. As a result of the measurements of material and heat balance of the process gave the following integral indicators: weight-average temperature of 2200-2300 K, and carbon gasification degree of 82,4-83,2%. Synthesis gas yield at thermochemical preparation of raw coal dust for burning was 24,5% and in the case of electron-beam activation of coal synthesis gas yield reached 36,4%, which is 48% higher.

  17. Results from radiant treatment in no Hodgkin's lymphomas of adults

    International Nuclear Information System (INIS)

    Alert, J.; Rodriguez, E.; Mesa, E.; Diaz, C.

    1982-01-01

    From 1973 to 1979, at the Institute of Oncology and Radiobiology, Havana City, 91 adults were irradiated because they underwent no Hodgkin's lymphomas at Stage I (located) and Stage II (regional extension) to whom radiant treatment was the basic therapeutic selection, with single or multiple fields and dose ranging between 3 500 and 4 000 rads-tumor, and some of them at Stage III, where primary treatment was chemotherapy. Present survival for all of them after 3 and 5 years is 55.7% and 54.7%, with 84.4% for patients at Stage I, 55.8% and 52.4% for Stage II and 33.8% for Stage III. Survival was similar for both sexes; in the same way ganglionar processes and those of extraganglionar localization presented no significant survival differences. Only to 7 patients (7.7%) modular forms were diagnosed. (author)

  18. Methods of total spectral radiant flux realization at VNIIOFI

    Science.gov (United States)

    Ivashin, Evgeniy; Lalek, Jan; Rybczyński, Andrzej; Ogarev, Sergey; Khlevnoy, Boris; Dobroserdov, Dmitry; Sapritsky, Victor

    2018-02-01

    VNIIOFI carries out works on realization of independent methods for realization of the total spectral radiant flux (TSRF) of incoherent optical radiation sources - reference high-temperature blackbodies (BB), halogen lamps, and LED with quasi-Lambert spatial distribution of radiance. The paper describes three schemes for measuring facilities using photometers, spectroradiometers and computer-controlled high class goniometer. The paper describes different approaches for TSRF realization at the VNIIOFI National radiometric standard on the basis of high-temperature BB and LED sources, and gonio-spectroradiometer. Further, they are planned to be compared, and the use of fixed-point cells (in particular, based on the high-temperature δ(MoC)-C metal-carbon eutectic with a phase transition temperature of 2583 °C corresponding to the metrological optical “source-A”) as an option instead of the BB is considered in order to enhance calibration accuracy.

  19. Finite-elements modeling of radiant heat transfers between mobile surfaces; Modelisation par elements finis de transferts radiatifs entre surfaces mobiles

    Energy Technology Data Exchange (ETDEWEB)

    Daurelle, J V; Cadene, V; Occelli, R [Universite de Provence, 13 - Marseille (France)

    1997-12-31

    In the numerical modeling of thermal industrial problems, radiant heat transfers remain difficult to take into account and require important computer memory and long computing time. These difficulties are enhanced when radiant heat transfers are coupled with finite-elements diffusive heat transfers because finite-elements architecture is complex and requires a lot of memory. In the case of radiant heat transfers along mobile boundaries, the methods must be optimized. The model described in this paper concerns the radiant heat transfers between diffuse grey surfaces. These transfers are coupled with conduction transfers in the limits of the diffusive opaque domain. 2-D and 3-D geometries are analyzed and two configurations of mobile boundaries are considered. In the first configuration, the boundary follows the deformation of the mesh, while in the second, the boundary moves along the fixed mesh. Matter displacement is taken into account in the term of transport of the energy equation, and an appropriate variation of the thermophysical properties of the transition elements between the opaque and transparent media is used. After a description of the introduction of radiative limit conditions in a finite-elements thermal model, the original methods used to optimize calculation time are explained. Two examples of application illustrate the approach used. The first concerns the modeling of radiant heat transfers between fuel rods during a reactor cooling accident, and the second concerns the study of heat transfers inside the air-gap of an electric motor. The method of identification of the mobile surface on the fixed mesh is described. (J.S.) 12 refs.

  20. Finite-elements modeling of radiant heat transfers between mobile surfaces; Modelisation par elements finis de transferts radiatifs entre surfaces mobiles

    Energy Technology Data Exchange (ETDEWEB)

    Daurelle, J.V.; Cadene, V.; Occelli, R. [Universite de Provence, 13 - Marseille (France)

    1996-12-31

    In the numerical modeling of thermal industrial problems, radiant heat transfers remain difficult to take into account and require important computer memory and long computing time. These difficulties are enhanced when radiant heat transfers are coupled with finite-elements diffusive heat transfers because finite-elements architecture is complex and requires a lot of memory. In the case of radiant heat transfers along mobile boundaries, the methods must be optimized. The model described in this paper concerns the radiant heat transfers between diffuse grey surfaces. These transfers are coupled with conduction transfers in the limits of the diffusive opaque domain. 2-D and 3-D geometries are analyzed and two configurations of mobile boundaries are considered. In the first configuration, the boundary follows the deformation of the mesh, while in the second, the boundary moves along the fixed mesh. Matter displacement is taken into account in the term of transport of the energy equation, and an appropriate variation of the thermophysical properties of the transition elements between the opaque and transparent media is used. After a description of the introduction of radiative limit conditions in a finite-elements thermal model, the original methods used to optimize calculation time are explained. Two examples of application illustrate the approach used. The first concerns the modeling of radiant heat transfers between fuel rods during a reactor cooling accident, and the second concerns the study of heat transfers inside the air-gap of an electric motor. The method of identification of the mobile surface on the fixed mesh is described. (J.S.) 12 refs.

  1. Evaluation of Various Retrofitting Concepts of Building Envelope for Offices Equipped with Large Radiant Ceiling Panels by Dynamic Simulations

    Directory of Open Access Journals (Sweden)

    Sabina Jordan

    2015-09-01

    Full Text Available In order to achieve significant savings in energy and an improved level of thermal comfort in retrofitted existing buildings, specific retrofitting concepts that combine new technologies and design need to be developed and implemented. Large radiant surfaces systems are now among the most promising future technologies to be used both in retrofitted and in new low-energy buildings. These kinds of systems have been the topic of several studies dealing with thermal comfort and energy utilization, but some specific issues concerning their possible use in various concepts for retrofitting are still poorly understood. In the present paper, some results of dynamic simulations, with the transient system simulation tool (TRNSYS model, of the retrofitted offices equipped with radiant ceiling panels are presented and thoroughly analysed. Based on a precise comparison of the results of these simulations with actual measurements in the offices, certain input data for the model were added, so that the model was consequently validated. The model was then applied to the evaluation of various concepts of building envelopes for office retrofitting. By means of dynamic simulations of indoor environment it was possible to determine the benefits and limitations of individual retrofitting concepts. Some specific parameters, which are relevant to these concepts, were also identified.

  2. Monte carlo calculation of energy-dependent response of high-sensitive neutron monitor, HISENS

    International Nuclear Information System (INIS)

    Imanaka, Tetsuji; Ebisawa, Tohru; Kobayashi, Keiji; Koide, Hiroaki; Seo, Takeshi; Kawano, Shinji

    1988-01-01

    A highly sensitive neutron monitor system, HISENS, has been developed to measure leakage neutrons from nuclear facilities. The counter system of HISENS contains a detector bank which consists of ten cylindrical proportional counters filled with 10 atm 3 He gas and a paraffin moderator mounted in an aluminum case. The size of the detector bank is 56 cm high, 66 cm wide and 10 cm thick. It is revealed by a calibration experiment using an 241 Am-Be neutron source that the sensitivity of HISENS is about 2000 times as large as that of a typical commercial rem-counter. Since HISENS is designed to have a high sensitivity in a wide range of neutron energy, the shape of its energy dependent response curve cannot be matched to that of the dose equivalent conversion factor. To estimate dose equivalent values from neutron counts by HISENS, it is necessary to know the energy and angular characteristics of both HISENS and the neutron field. The area of one side of the detector bank is 3700 cm 2 and the detection efficiency in the constant region of the response curve is about 30 %. Thus, the sensitivity of HISENS for this energy range is 740 cps/(n/cm 2 /sec). This value indicates the extremely high sensitivity of HISENS as compared with exsisting highly sensitive neutron monitors. (Nogami, K.)

  3. Sensitivity comparison of two L-alanine doped blends to different photon energies

    International Nuclear Information System (INIS)

    Chen, Felipe; Vega Ramirez, Jose; Nicolucci, Patricia; Baffa, Oswaldo

    2008-01-01

    Full text: Blends of L-alanine (85% weight proportion) with KI (10%) and with PbI 2 (10%), these last two compounds acting as dopants, and with PVA (5%) acting as binder, were prepared in water at 80 C degrees. A blend of pure L-alanine (95%) with PVA (5%) was also prepared. The three blends were irradiated with photon beams of different energies (120 kV, 60 Co and 10 MV) with a unique dose of 30 Gy to compare their sensitivities for those three energies. EPR spectra of the three irradiated blends were recorded in a K-Band spectrometer (24 GHz) taking aliquots of about 4 mg for each blend. The energy sensitivity of a blend was defined as the peak-to-peak amplitude of its EPR spectrum central line. For the 60 Co energy (1.25 MeV) the blends presented practically the same sensitivity indicating that the presence of the dopants does not affect the sensitivity of L-alanine. For 10 MV X-rays there was an increment (around 20% - 30 %) in sensitivity for the two L-alanine doped blends compared with the pure L-alanine blend (not doped). In the case of 120 kV X-rays, the blends ala+KI and ala+PbI 2 showed an increment of 10 and 20 times, respectively, more sensitivity than the pure L-alanine blend. It is concluded that the dopants KI and PbI 2 produce a great enhance of the L-alanine sensitivity to low-energy photons. For the same dopant's content (10%) in the blend, PbI 2 showed a better performance. These results encourage us to try to enhance the sensitivity of L-alanine even more increasing the dopant's content in the blend. Application of these L-alanine doped blends in the dosimetry in diagnostic radiology could be possible. (author)

  4. Modelling socio-environmental sensitivities: how public responses to low carbon energy technologies could shape the UK energy system.

    Science.gov (United States)

    Moran Jay, Brighid; Howard, David; Hughes, Nick; Whitaker, Jeanette; Anandarajah, Gabrial

    2014-01-01

    Low carbon energy technologies are not deployed in a social vacuum; there are a variety of complex ways in which people understand and engage with these technologies and the changing energy system overall. However, the role of the public's socio-environmental sensitivities to low carbon energy technologies and their responses to energy deployments does not receive much serious attention in planning decarbonisation pathways to 2050. Resistance to certain resources and technologies based on particular socio-environmental sensitivities would alter the portfolio of options available which could shape how the energy system achieves decarbonisation (the decarbonisation pathway) as well as affecting the cost and achievability of decarbonisation. Thus, this paper presents a series of three modelled scenarios which illustrate the way that a variety of socio-environmental sensitivities could impact the development of the energy system and the decarbonisation pathway. The scenarios represent risk aversion (DREAD) which avoids deployment of potentially unsafe large-scale technology, local protectionism (NIMBY) that constrains systems to their existing spatial footprint, and environmental awareness (ECO) where protection of natural resources is paramount. Very different solutions for all three sets of constraints are identified; some seem slightly implausible (DREAD) and all show increased cost (especially in ECO).

  5. Modelling Socio-Environmental Sensitivities: How Public Responses to Low Carbon Energy Technologies Could Shape the UK Energy System

    Directory of Open Access Journals (Sweden)

    Brighid Moran Jay

    2014-01-01

    Full Text Available Low carbon energy technologies are not deployed in a social vacuum; there are a variety of complex ways in which people understand and engage with these technologies and the changing energy system overall. However, the role of the public’s socio-environmental sensitivities to low carbon energy technologies and their responses to energy deployments does not receive much serious attention in planning decarbonisation pathways to 2050. Resistance to certain resources and technologies based on particular socio-environmental sensitivities would alter the portfolio of options available which could shape how the energy system achieves decarbonisation (the decarbonisation pathway as well as affecting the cost and achievability of decarbonisation. Thus, this paper presents a series of three modelled scenarios which illustrate the way that a variety of socio-environmental sensitivities could impact the development of the energy system and the decarbonisation pathway. The scenarios represent risk aversion (DREAD which avoids deployment of potentially unsafe large-scale technology, local protectionism (NIMBY that constrains systems to their existing spatial footprint, and environmental awareness (ECO where protection of natural resources is paramount. Very different solutions for all three sets of constraints are identified; some seem slightly implausible (DREAD and all show increased cost (especially in ECO.

  6. Radiometric measurements of wall temperatures in the 800 K to 1150 K range for a quartz radiant heating tube

    International Nuclear Information System (INIS)

    Blevins, L.G.; Sivathanu, Y.R.; Gore, J.P.; Shahien, M.A.

    1995-01-01

    Many industrial applications require heat transfer to a load in an inert environment, which can be achieved by using gas-fired radiant tubes. A radiant tube consists of a flame confined in a cylindrical metal or ceramic chamber. The flame heats the tube wall, which in turn radiates to the load. One important characteristic of radiant heating tubes is wall temperature uniformity. Numerical models of radiant tubes have been used to predict wall temperatures, but there is a lack of experimental data for validation. Recently, Namazian et al., Singh and Gorski, and Peters et al. have measured wall temperature profiles of radiant tubes using thermocouples. 13 refs., 3 figs

  7. Ultrafast electron and energy transfer in dye-sensitized iron oxide and oxyhydroxide nanoparticles

    DEFF Research Database (Denmark)

    Gilbert, Benjamin; Katz, Jordan E.; Huse, Nils

    2013-01-01

    photo-initiated interfacial electron transfer. This approach enables time-resolved study of the fate and mobility of electrons within the solid phase. However, complete analysis of the ultrafast processes following dye photoexcitation of the sensitized iron(iii) oxide nanoparticles has not been reported....... We addressed this topic by performing femtosecond transient absorption (TA) measurements of aqueous suspensions of uncoated and DCF-sensitized iron oxide and oxyhydroxide nanoparticles, and an aqueous iron(iii)–dye complex. Following light absorption, excited state relaxation times of the dye of 115...... a four-state model of the dye-sensitized system, finding electron and energy transfer to occur on the same ultrafast timescale. The interfacial electron transfer rates for iron oxides are very close to those previously reported for DCF-sensitized titanium dioxide (for which dye–oxide energy transfer...

  8. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    International Nuclear Information System (INIS)

    Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S.

    2011-01-01

    Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

  9. Investigation of energy inputs for peach production using sensitivity analysis in Iran

    International Nuclear Information System (INIS)

    Royan, Mahsa; Khojastehpour, Mehdi; Emadi, Bagher; Mobtaker, Hassan Ghasemi

    2012-01-01

    Highlights: ► We investigated energy use and inputs–output relationship in peach production. ► Total energy consumption in peach production was 37536.96 MJ ha −1 . ► Diesel fuel with about (26.32%) was the major energy consumer. ► Energy use efficiency and energy productivity were 0.55 and 0.29 kg MJ −1 . ► The machinery energy was the most significant input affecting the output level. - Abstract: The purpose of this research was to investigate the energy balance between the energy inputs and yield in peach production in Golestan province of Iran as a case study. The results showed that total energy consumption in peach production was 37536.96 MJ ha −1 where the diesel fuel with about (26.32%) was the major energy consumer. The direct energy shared about (50.98%) whereas the indirect energy did (49.02%). Energy use efficiency, energy productivity, specific energy and net energy were 0.55, 0.29 kg MJ −1 , 3.41 MJ kg −1 and −16642.03 MJ ha −1 , respectively. Econometric assessment results revealed that the energy inputs of human labor, machinery, diesel fuel, chemical fertilizers and farm yard manure had significant influence on the yield. The impact of human labor energy (1.36) was found as the highest among the other input parameters. Sensitivity analysis indicated that the MPP value of energy inputs was between −2.8 and 11.31. Also the MPP value of human labor was the highest, followed by diesel fuel and farm yard manure energy inputs, respectively.

  10. Relationship between the Bond dissociation energies and impact sensitivities of some nitro-explosives

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiao-Shu [School of Physics and Chemistry, Guizhou Normal University, Guiyang (China); Institute of Atomic and Molecular Physics, Sichuan University, Chengdu (China); Cheng, Xin-Lu; Yang, Xiang-Dong [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu (China); He, Bi [Institute of Chemical Materials, CAEP, Mianyang (China)

    2006-08-15

    The bond dissociation energy (BDE) for removal of the NO{sub 2} group for eleven CHNO nitro-containing explosive molecules is studied to find its correlation with impact sensitivity. The BDE for removal of the NO{sub 2} group in nitroaromatic molecules with nitro alkyl, and esters with nitro alkyl, is calculated using the B3LYP method of Density Functional Theory with the 6-31G* basis set. The relationship between the impact sensitivities and the weakest C-NO{sub 2} bond dissociation energy values is examined. The results indicate a nearly linear correlation between the impact sensitivity and the ratio of the BDE value to the total molecular energy. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  11. High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells

    KAUST Repository

    Hardin, Brian E.

    2010-08-11

    The energy relay dye, 4-(Dicyanomethylene)-2-methyl-6-(4- dimethylaminostyryl)-4H-pyran (DCM), was used with a near-infrared sensitizing dye, TT1, to increase the overall power conversion efficiency of a dye-sensitized solar cell (DSC) from 3.5% to 4.5%. The unattached DCM dyes exhibit an average excitation transfer efficiency (EÌ?TE) of 96% inside TT1-covered, mesostructured TiO2 films. Further performance increases were limited by the solubility of DCM in an acetonitrile based electrolyte. This demonstration shows that energy relay dyes can be efficiently implemented in optimized dye-sensitized solar cells, but also highlights the need to design highly soluble energy relay dyes with high molar extinction coefficients. © 2010 American Chemical Society.

  12. Analysis of directional radiative behavior and heating efficiency for a gas-fired radiant burner

    International Nuclear Information System (INIS)

    Li, B.X.; Lu, Y.P.; Liu, L.H.; Kudo, K.; Tan, H.P.

    2005-01-01

    For the purpose of energy conservation and uniform heating of object surface, a gas-fired porous radiant burner with a bundle of reflecting tubes is developed. A physical model is developed to simulate the directional radiative behavior of this heating device, in which the Monte Carlo method based on the concept of radiation distribution factor is used to compute the directional radiative behavior. The effects of relating parameters on the directional behavior of radiative heating and the heating efficiency are analyzed. With the increase of the length-to-radius ratio of tube, the radiation heating efficiency decreases, but the radiation energy incident on the object surface is more collimated. The radiation heating efficiency increases with the specular reflectivity. With the increase in length of tube segment with specular reflective surface, the radiation heating efficiency increases, but the extent of concentration and collimation of radiative energy decreases. For real design of the heating device, some trade-offs are needed to balance the radiation heating efficiency and the uniformity of radiative heating of object surface

  13. Improvement of the sensitivity of CdTe detectors in the high energy regions

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, Hiroshi; Ikegami, Kazunori; Takashima, Kazuo; Usami, Teruo [Mitsubishi Electric Corp., Tokyo (Japan); Yamamoto, Takayoshi

    1996-07-01

    In order to improve the efficiency of the full energy peak in the high energy regions, we had previously suggested a multi-layered structure of CdTe elements and have since confirmed the sensitivity improvement of the full energy peak. And furthermore, we have suggested a new type structure of multi-layered elements in this paper and we confirmed that the efficiency of the full energy peak became higher and that more proper energy spectra were obtained by our current experiment than by the detector with the conventional structure. This paper describes a simulation and experiment to improve the efficiency of the full energy peak and to obtain the more proper energy spectra of {sup 137}Cs (662keV) and {sup 60}Co (1.17 and 1.33MeV) using the new structure of CdTe detector. (J.P.N.)

  14. Transport energy demand in Andorra. Assessing private car futures through sensitivity and scenario analysis

    International Nuclear Information System (INIS)

    Travesset-Baro, Oriol; Gallachóir, Brian P.Ó.; Jover, Eric; Rosas-Casals, Marti

    2016-01-01

    This paper presents a model which estimates current car fleet energy consumption in Andorra and forecasts such consumption as a reference scenario. The base-year model is built through a bottom-up methodology using vehicle registration and technical inspection data. The model forecasts energy consumption up to 2050, taking into account the fleet structure, the car survival profile, trends in activity of the various car categories, and the fuel price and income elasticities that affect car stock and total fleet activity. It provides an initial estimate of private car energy demand in Andorra and charts a baseline scenario that describes a hypothetical future based on historical trends. A local sensitivity analysis is conducted to determine the most sensitive input parameters and study the effect of its variability. In addition, the scenario analysis explores the most uncertain future aspects which can cause important variability in the results with respect to the Reference scenario and provides a broad estimate of potential energy savings related to different policy strategies. - Highlights: •A private car energy model is built using aggregated available data. •Andorra's current car fleet energy consumption is estimated and forecasted to 2050. •Potential energy savings have been estimated using sensitivity and scenario analysis.

  15. The Energy Variation of the Sensitivity of a Polyethylene Moderated BF{sub 3} Proportional Counter

    Energy Technology Data Exchange (ETDEWEB)

    Fraeki, R; Leimdoerfer, M; Malmskog, S

    1962-11-15

    The variation with neutron energy of the sensitivity of a polyethylene moderated boron counter has been investigated experimentally at 2.3 MeV, 550 keV, 210 keV, 110 keV, 340 eV and 5 eV, and theoretically by the multigroup diffusion method in the same range. Different moderator thicknesses up to 10 cm were considered Results show good agreement between experimental and theoretical sensitivities for the keV and MeV energies, while a discrepancy of the order of a factor 2 at the most is obtained in the eV region.

  16. Energy partitioning at treeline forest and tundra sites and its sensitivity to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Lafleur, P.M. [Trent Univ., Peterborough, ON (Canada); Rouse, W.R. [McMaster Univ., Hamilton, ON (Canada)

    1995-12-31

    A study was conducted to examine the inter-annual variability in energy fluxes of treeline tundra and forest and to investigate the sensitivity of forest and tundra energy balances to climatic changes. A five year record of energy balance data from contiguous wetland tundra and subarctic forest sites near Churchill, Manitoba was analyzed. The data included snow free periods only. Wind direction was used as an analogue for changing climatic conditions where onshore winds are cooler and moister than offshore winds. Sensible and latent heat fluxes at both sites varied significantly between onshore and offshore wind regimes. The differences between onshore and offshore fluxes at the tundra site were larger than for the forest. The tundra-to-forest Bowen ratios decreased with increasing vapour pressure deficit and increasing air temperature. Results suggest that energy partitioning in the wetland tundra is more sensitive to climate change than in the treeline forests. 22 refs., 1 tab., 6 figs.

  17. An experimental study of thermal comfort at different combinations of air and mean radiant temperature

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.

    2009-01-01

    It is often discussed if a person prefers a low air temperature (ta) and a high mean radiant temperature (tr), vice-versa or it does not matter as long as the operative temperature is acceptable. One of the hypotheses is that it does not matter for thermal comfort but for perceived air quality......, a lower air temperature is preferred. This paper presents an experimental study with 30 human subjects exposed to three different combinations of air- and mean radiant temperature with an operative temperature around 23 °C. The subjects gave subjective evaluations of thermal comfort and perceived air...... quality during the experiments. The PMV-index gave a good estimation of thermal sensation vote (TSV) when the air and mean radiant temperature were the same. In the environment with different air- and mean radiant temperatures, a thermal comfort evaluation shows an error up to 1 scale unit on the 7-point...

  18. Ignition of Cellulosic Paper at Low Radiant Fluxes

    Science.gov (United States)

    White, K. Alan

    1996-01-01

    The ignition of cellulosic paper by low level thermal radiation is investigated. Past work on radiative ignition of paper is briefly reviewed. No experimental study has been reported for radiative ignition of paper at irradiances below 10 Watts/sq.cm. An experimental study of radiative ignition of paper at these low irradiances is reported. Experimental parameters investigated and discussed include radiant power levels incident on the sample, the method of applying the radiation (focussed vs. diffuse Gaussian source), the presence and relative position of a separate pilot ignition source, and the effects of natural convection (buoyancy) on the ignition process in a normal gravity environment. It is observed that the incident radiative flux (in W/sq.cm) has the greatest influence on ignition time. For a given flux level, a focussed Gaussian source is found to be advantageous to a more diffuse, lower amplitude, thermal source. The precise positioning of a pilot igniter relative to gravity and to the fuel sample affects the ignition process, but the precise effects are not fully understood. Ignition was more readily achieved and sustained with a horizontal fuel sample, indicating the buoyancy plays a role in the ignition process of cellulosic paper. Smoldering combustion of doped paper samples was briefly investigated, and results are discussed.

  19. Design and construction of a regenerative radiant tube burner

    International Nuclear Information System (INIS)

    Henao, Diego Alberto; Cano C, Carlos Andres; Amell Arrieta, Andres A.

    2002-01-01

    The technological development of the gas industry in Colombia, aiming at efficient and safe use of the natural gas, requires the assimilation and adaptation of new generation, technologies for this purpose in this article results are presented on the design, construction and characterization of a prototype of a burner of regenerative radiant robe with a thermal power of 9,94 kW and a factor of air 1,05. This system takes advantage of the high exit temperature of the combustion smokes, after they go trough a metallic robe where they transfer the heat by radiation, to heat a ceramic channel that has the capacity to absorbing a part of the heat of the smokes and then transferring them to a current of cold air. The benefits of air heating are a saving in fuel, compared with other processes that don't incorporate the recovery of heat from the combustion gases. In this work it was possible to probe a methodology for the design of this type of burners and to reach maximum temperatures of heating of combustion air of 377,9 centigrade degrees, using a material available in the national market, whose regenerative properties should be studied in depth

  20. Sensitivity Analysis as a Tool to assess Energy-Water Nexus in India

    Science.gov (United States)

    Priyanka, P.; Banerjee, R.

    2017-12-01

    Rapid urbanization, population growth and related structural changes with-in the economy of a developing country act as a stressor on energy and water demand, which forms a well-established energy-water nexus. Energy-water nexus is thoroughly studied at various spatial scales viz. city level, river basin level and national level- to guide different stakeholders for sustainable management of energy and water. However, temporal dimensions of energy-water nexus at national level have not been thoroughly investigated because of unavailability of relevant time-series data. In this study we investigated energy-water nexus at national level using environmentally-extended input-output tables for Indian economy (2004-2013) as provided by EORA database. Perturbation based sensitivity analysis is proposed to highlight the critical nodes of interactions among economic sectors which is further linked to detect the synergistic effects of energy and water consumption. Technology changes (interpreted as change in value of nodes) results in modification of interactions among economic sectors and synergy is affected through direct as well as indirect effects. Indirect effects are not easily understood through preliminary examination of data, hence sensitivity analysis within an input-output framework is important to understand the indirect effects. Furthermore, time series data helps in developing the understanding on dynamics of synergistic effects. We identified the key sectors and technology changes for Indian economy which will provide the better decision support for policy makers about sustainable use of energy-water resources in India.

  1. SENSITIVITY ANALYSIS OF BUILDING STRUCTURES WITHIN THE SCOPE OF ENERGY, ENVIRONMENT AND INVESTMENT

    Directory of Open Access Journals (Sweden)

    František Kulhánek

    2015-10-01

    Full Text Available The primary objective of this paper is to prove the feasibility of sensitivity analysis with dominant weight method for structure parts of envelope of buildings inclusive of energy; ecological and financial assessments, and determination of different designs for same structural part via multi-criteria assessment with theoretical example designs ancillary. Multi-criteria assessment (MCA of different structural designs or in other word alternatives aims to find the best available alternative. The application of sensitivity analysis technique in this paper bases on dominant weighting method. In this research, to choose the best thermal insulation design in the case of that more than one projection, simultaneously, criteria of total thickness (T; heat transfer coefficient (U through the cross section; global warming potential (GWP; acid produce (AP; primary energy content (PEI non renewable and cost per m2 (C are investigated for all designs via sensitivity analysis. Three different designs for external wall (over soil which are convenient with regard to globally suggested energy features for passive house design are investigated through the mentioned six projections. By creating a given set of scenarios; depending upon the importance of each criterion, sensitivity analysis is distributed. As conclusion, uncertainty in the output of model is attributed to different sources in the model input. In this manner, determination of the best available design is achieved. The original outlook and the outlook afterwards the sensitivity analysis are visualized, that enables easily to choose the optimum design within the scope of verified components.

  2. Automatic drawing and CAD actualization in processing data of radiant sampling in physics prospect

    International Nuclear Information System (INIS)

    Liu Jinsheng

    2010-01-01

    In this paper discussed a method of processing radiant sampling data with computer. By this method can get expain the curve of radiant sampling data, and we can combine mineral masses and analyse and calculate them, then record the result on Notebook. There are many merites of this method: easy to learn, simple to use, high efficient. It adapts to all sorts of mines. (authors)

  3. Automatic drawing and cad actualiztion in processing data of radiant sampling in physics prospect

    International Nuclear Information System (INIS)

    Liu Jinsheng

    2010-01-01

    In this paper discussed a method of processing radiant sampling data with computer. By this method can get explain the curve of radiant sampling data, and we can combine mineral masses and analyses and calculate them, then record the result on Notebook. There are many merites of this method: easy to learn, simple to use, high efficient. It adapts to all sorts of mines. (authors)

  4. General Relativistic Radiant Shock Waves in the Post-Quasistatic Approximation

    Energy Technology Data Exchange (ETDEWEB)

    H, Jorge A Rueda [Centro de Fisica Fundamental, Universidad de Los Andes, Merida 5101, Venezuela Escuela de Fisica, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); Nunez, L A [Centro de Fisica Fundamental, Universidad de Los Andes, Merida 5101, Venezuela Centro Nacional de Calculo Cientifico, Universidad de Los Andes, CeCalCULA, Corporacion Parque Tecnologico de Merida, Merida 5101, Venezuela (Venezuela)

    2007-05-15

    An evolution of radiant shock wave front is considered in the framework of a recently presented method to study self-gravitating relativistic spheres, whose rationale becomes intelligible and finds full justification within the context of a suitable definition of the post-quasistatic approximation. The spherical matter configuration is divided into two regions by the shock and each side of the interface having a different equation of state and anisotropic phase. In order to simulate dissipation effects due to the transfer of photons and/or neutrinos within the matter configuration, we introduce the flux factor, the variable Eddington factor and a closure relation between them. As we expected the strong of the shock increases the speed of the fluid to relativistic ones and for some critical values is larger than light speed. In addition, we find that energy conditions are very sensible to the anisotropy, specially the strong energy condition. As a special feature of the model, we find that the contribution of the matter and radiation to the radial pressure are the same order of magnitude as in the mant as in the core, moreover, in the core radiation pressure is larger than matter pressure.

  5. General Relativistic Radiant Shock Waves in the Post-Quasistatic Approximation

    International Nuclear Information System (INIS)

    H, Jorge A Rueda; Nunez, L A

    2007-01-01

    An evolution of radiant shock wave front is considered in the framework of a recently presented method to study self-gravitating relativistic spheres, whose rationale becomes intelligible and finds full justification within the context of a suitable definition of the post-quasistatic approximation. The spherical matter configuration is divided into two regions by the shock and each side of the interface having a different equation of state and anisotropic phase. In order to simulate dissipation effects due to the transfer of photons and/or neutrinos within the matter configuration, we introduce the flux factor, the variable Eddington factor and a closure relation between them. As we expected the strong of the shock increases the speed of the fluid to relativistic ones and for some critical values is larger than light speed. In addition, we find that energy conditions are very sensible to the anisotropy, specially the strong energy condition. As a special feature of the model, we find that the contribution of the matter and radiation to the radial pressure are the same order of magnitude as in the mant as in the core, moreover, in the core radiation pressure is larger than matter pressure

  6. High-sensitivity visualization of localized electric fields using low-energy electron beam deflection

    Science.gov (United States)

    Jeong, Samuel; Ito, Yoshikazu; Edwards, Gary; Fujita, Jun-ichi

    2018-06-01

    The visualization of localized electronic charges on nanocatalysts is expected to yield fundamental information about catalytic reaction mechanisms. We have developed a high-sensitivity detection technique for the visualization of localized charges on a catalyst and their corresponding electric field distribution, using a low-energy beam of 1 to 5 keV electrons and a high-sensitivity scanning transmission electron microscope (STEM) detector. The highest sensitivity for visualizing a localized electric field was ∼0.08 V/µm at a distance of ∼17 µm from a localized charge at 1 keV of the primary electron energy, and a weak local electric field produced by 200 electrons accumulated on the carbon nanotube (CNT) apex can be visualized. We also observed that Au nanoparticles distributed on a CNT forest tended to accumulate a certain amount of charges, about 150 electrons, at a ‑2 V bias.

  7. Radiant heat increases piglets’ use of the heated creep area on the critical days after birth

    DEFF Research Database (Denmark)

    Larsen, Mona Lilian Vestbjerg; Thodberg, Karen; Pedersen, Lene Juul

    2017-01-01

    The aim of the present study was to investigate how piglets’ use of a creep area is affected by using radiant heat compared to an incandescent light bulb. It was hypothesised that radiant heat would increase the use of the creep area. Twenty litters were randomly assigned to one of two heat sources...... in the creep area: (1) an incandescent light bulb (STANDARD, n=10) or (2) a radiant heat source (RADIANT, n=10) with five of each type of heat source in each of two batches. Observations on piglets’ position in the pen were made by scan sampling every ten minutes in a 4-hour period from 1100 to 1500 h on day 1......–7, 14 and 21 post partum. A higher percentage of piglets in the creep area was seen for RADIANT litters compared to STANDARD litters on day 2 (P=0.002) and day 3 (P=0.005), and percentage of piglets in the creep area increased for RADIANT litters from day 1 to 2 (P

  8. Sensitivity of energy-packed compounds based on superfine and nanoporous silicon to pulsed electrical treatments

    Energy Technology Data Exchange (ETDEWEB)

    Zegrya, G. G. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Savenkov, G. G. [Saint-Petersburg State Engineering Institute (Technical University) (Russian Federation); Morozov, V. A. [Saint-Petersburg State University (Russian Federation); Zegrya, A. G.; Ulin, N. V., E-mail: Ulin@mail.ioffe.ru; Ulin, V. P. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Lukin, A. A. [Saint-Petersburg State Engineering Institute (Technical University) (Russian Federation); Bragin, V. A.; Oskin, I. A. [AO Scientific Production Association Poisk (Russian Federation); Mikhailov, Yu. M. [Russian Academy of Sciences, Institute of Problems of Chemical Physics (Russian Federation)

    2017-04-15

    The sensitivity of an energy-packed compound based on nanoporous silicon and calcium perchlorate to a high-current electron beam is studied. The initiation of explosive transformations in a mixture of potassium picrate with a highly dispersed powder of boron-doped silicon by means of a high-voltage discharge is examined. It is shown that explosive transformation modes (combustion and explosion) appear in the energy-packed compound under study upon its treatment with an electron beam. A relationship is established between the explosive transformation modes and the density of the energy-packed compound and between the breakdown (initiation) voltage and the mass fraction of the silicon powder.

  9. A new integrating sphere design for spectral radiant flux determination of light-emitting diodes

    Science.gov (United States)

    Hanselaer, P.; Keppens, A.; Forment, S.; Ryckaert, W. R.; Deconinck, G.

    2009-09-01

    Light-emitting diode (LED) technology is developing very quickly and may be considered an alternative for traditional light sources. However, at this moment, manufacturers and end users of LEDs are facing a rather basic but major problem. The lack of standardization regarding optical and electrical characterization of LEDs appears to compromise a successful implementation. In particular, numbers quoted for the luminous flux, and consequently for the efficacy of LEDs, are very sensitive data because they are used to impress and push the LED market. In this paper, the most was made of the typical hemispherical radiation of high-power LEDs to increase the accuracy of the flux determination using a custom-made integrating sphere. Recently developed measurement techniques such as the use of an external spectral irradiance standard and an optimized spectral irradiance detection head are combined with a very particular port geometry and a minimized baffle area. This results in a uniform spatial response distribution function (SRDF), which guarantees an accurate radiant and luminous flux determination, irrespective of the spatial intensity distribution of the LED package or luminaire. The effect of the directional response of the detector head on the SRDF has been explored. Measurements on LED devices with and without external optics are presented, illustrating the possibilities of the measurement setup.

  10. A new integrating sphere design for spectral radiant flux determination of light-emitting diodes

    International Nuclear Information System (INIS)

    Hanselaer, P; Keppens, A; Forment, S; Ryckaert, W R; Deconinck, G

    2009-01-01

    Light-emitting diode (LED) technology is developing very quickly and may be considered an alternative for traditional light sources. However, at this moment, manufacturers and end users of LEDs are facing a rather basic but major problem. The lack of standardization regarding optical and electrical characterization of LEDs appears to compromise a successful implementation. In particular, numbers quoted for the luminous flux, and consequently for the efficacy of LEDs, are very sensitive data because they are used to impress and push the LED market. In this paper, the most was made of the typical hemispherical radiation of high-power LEDs to increase the accuracy of the flux determination using a custom-made integrating sphere. Recently developed measurement techniques such as the use of an external spectral irradiance standard and an optimized spectral irradiance detection head are combined with a very particular port geometry and a minimized baffle area. This results in a uniform spatial response distribution function (SRDF), which guarantees an accurate radiant and luminous flux determination, irrespective of the spatial intensity distribution of the LED package or luminaire. The effect of the directional response of the detector head on the SRDF has been explored. Measurements on LED devices with and without external optics are presented, illustrating the possibilities of the measurement setup

  11. Sensitivity Modulation of Upconverting Thermometry through Engineering Phonon Energy of a Matrix.

    Science.gov (United States)

    Suo, Hao; Guo, Chongfeng; Zheng, Jiming; Zhou, Bo; Ma, Chonggeng; Zhao, Xiaoqi; Li, Ting; Guo, Ping; Goldys, Ewa M

    2016-11-09

    Investigation of the unclear influential factors to thermal sensing capability is the only way to achieve highly sensitive thermometry, which is greatly needed to meet the growing demand for potential sensing applications. Here, the effect from the phonon energy of a matrix on the sensitivity of upconversion (UC) microthermometers is elaborately discussed using a controllable method. Uniform truncated octahedral YF 3 :Er 3+ /Yb 3+ microcrystals were prepared by a hydrothermal approach, and phase transformation from YF 3 to YOF and Y 2 O 3 with nearly unchanged morphology and size was successfully realized by controlling the annealing temperature. The phonon energies of blank matrixes were determined by FT-IR spectra and Raman scattering. Upon 980 nm excitation, phonon energy-dependent UC emitting color was finely tuned from green to yellow for three samples, and the mechanisms were proposed. Thermal sensing behaviors based on the TCLs ( 2 H 11/2 / 4 S 3/2 ) were evaluated, and the sensitivities gradually grew with the increase in the matrix's phonon energy. According to chemical bond theory and first-principle calculations, the most intrinsic factors associated with thermometric ability were qualitatively demonstrated through analyzing the inner relation between the phonon energy and bond covalency. The exciting results provide guiding insights into employing appropriate host materials with desired thermometric ability while offering the possibility of highly accurate measurement of temperature.

  12. Sensitivity analysis for daily building operation from the energy and thermal comfort standpoint

    Directory of Open Access Journals (Sweden)

    Ignjatović Marko G.

    2016-01-01

    Full Text Available Improving energy performance of buildings is one of the most important tasks for reaching sustainability. Assessing building energy consumption is performed more often with specialized simulation tools. Sensitivity analysis proved to be a valuable tool for creating more reliable and realistic building energy models and better buildings. This paper briefly describes the methodology for running global sensitivity analysis and tools that can be used, and presents the results of such an analysis conducted for winter period, daily, on input variables covering a real building's operation, control and occupant related parameters that affect both thermal comfort and heating energy consumption. Two sets of inputs were created. The only difference between these sets is an addition of clothing insulation and occupant heat gain as input variables. The reference building was simulated for three distinctive winter weeks. Two additional input variables have an effect especially on thermal comfort, but they do not disturb the relative order of other influential input variables. The common influential variables for both energy consumption and thermal comfort were identified and are: air handling unit sup-ply temperature and airflow rate and control system related parameters. This can help in future research into implementing the simulation-assisted optimized operation in real buildings. [Projekat Ministarstva nauke Republike Srbije, br. TR-33051: The concept of sustainable energy supply of settlements with energy efficient buildings

  13. Value of sensitive in-situ environmental assets in energy resource extraction

    International Nuclear Information System (INIS)

    Thampapillai, Dodo J.

    2011-01-01

    The extraction of energy resources and the preservation of sensitive in-situ environmental assets are invariably mutually exclusive alternatives. The opportunity cost value of preserving the environmental assets can be assessed by recourse to resource rent taxes, and threshold values. The case study analysis carried out in this paper suggests that the preservation of these assets could be justifiable on the grounds of “acceptable sacrifice”. - Highlights: ► Resource rents owed to the state from energy resource extraction can be significant. ► Benefits if mining energy resources are over-stated when the role of sensitive environmental assets is ignored. ► Threshold values could help to resolve conflicts between environmental preservation and resource extraction.

  14. The influence of internal variability on Earth's energy balance framework and implications for estimating climate sensitivity

    Science.gov (United States)

    Dessler, Andrew E.; Mauritsen, Thorsten; Stevens, Bjorn

    2018-04-01

    Our climate is constrained by the balance between solar energy absorbed by the Earth and terrestrial energy radiated to space. This energy balance has been widely used to infer equilibrium climate sensitivity (ECS) from observations of 20th-century warming. Such estimates yield lower values than other methods, and these have been influential in pushing down the consensus ECS range in recent assessments. Here we test the method using a 100-member ensemble of the Max Planck Institute Earth System Model (MPI-ESM1.1) simulations of the period 1850-2005 with known forcing. We calculate ECS in each ensemble member using energy balance, yielding values ranging from 2.1 to 3.9 K. The spread in the ensemble is related to the central assumption in the energy budget framework: that global average surface temperature anomalies are indicative of anomalies in outgoing energy (either of terrestrial origin or reflected solar energy). We find that this assumption is not well supported over the historical temperature record in the model ensemble or more recent satellite observations. We find that framing energy balance in terms of 500 hPa tropical temperature better describes the planet's energy balance.

  15. Sensitivity of the IceCube detector for ultra-high energy electron neutrino events

    International Nuclear Information System (INIS)

    Voigt, Bernhard

    2008-01-01

    IceCube is a neutrino telescope currently under construction in the glacial ice at South Pole. At the moment half of the detector is installed, when completed it will instrument 1 km 3 of ice providing a unique experimental setup to detect high energy neutrinos from astrophysical sources. In this work the sensitivity of the complete IceCube detector for a diffuse electron-neutrino flux is analyzed, with a focus on energies above 1 PeV. Emphasis is put on the correct simulation of the energy deposit of electromagnetic cascades from charged-current electron-neutrino interactions. Since existing parameterizations lack the description of suppression effects at high energies, a simulation of the energy deposit of electromagnetic cascades with energies above 1 PeV is developed, including cross sections which account for the LPM suppression of bremsstrahlung and pair creation. An attempt is made to reconstruct the direction of these elongated showers. The analysis presented here makes use of the full charge waveform recorded with the data acquisition system of the IceCube detector. It introduces new methods to discriminate efficiently between the background of atmospheric muons, including muon bundles, and cascade signal events from electron-neutrino interactions. Within one year of operation of the complete detector a sensitivity of 1.5.10 -8 E -2 GeVs -1 sr -1 cm -2 is reached, which is valid for a diffuse electron neutrino flux proportional to E -2 in the energy range from 16 TeV to 13 PeV. Sensitivity is defined as the upper limit that could be set in absence of a signal at 90% confidence level. Including all neutrino flavors in this analysis, an improvement of at least one order of magnitude is expected, reaching the anticipated performance of a diffuse muon analysis. (orig.)

  16. Sensitivity of the IceCube detector for ultra-high energy electron neutrino events

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, Bernhard

    2008-07-16

    IceCube is a neutrino telescope currently under construction in the glacial ice at South Pole. At the moment half of the detector is installed, when completed it will instrument 1 km{sup 3} of ice providing a unique experimental setup to detect high energy neutrinos from astrophysical sources. In this work the sensitivity of the complete IceCube detector for a diffuse electron-neutrino flux is analyzed, with a focus on energies above 1 PeV. Emphasis is put on the correct simulation of the energy deposit of electromagnetic cascades from charged-current electron-neutrino interactions. Since existing parameterizations lack the description of suppression effects at high energies, a simulation of the energy deposit of electromagnetic cascades with energies above 1 PeV is developed, including cross sections which account for the LPM suppression of bremsstrahlung and pair creation. An attempt is made to reconstruct the direction of these elongated showers. The analysis presented here makes use of the full charge waveform recorded with the data acquisition system of the IceCube detector. It introduces new methods to discriminate efficiently between the background of atmospheric muons, including muon bundles, and cascade signal events from electron-neutrino interactions. Within one year of operation of the complete detector a sensitivity of 1.5.10{sup -8}E{sup -2} GeVs{sup -1}sr{sup -1}cm{sup -2} is reached, which is valid for a diffuse electron neutrino flux proportional to E{sup -2} in the energy range from 16 TeV to 13 PeV. Sensitivity is defined as the upper limit that could be set in absence of a signal at 90% confidence level. Including all neutrino flavors in this analysis, an improvement of at least one order of magnitude is expected, reaching the anticipated performance of a diffuse muon analysis. (orig.)

  17. Potential development in dye-sensitized solar cells for renewable energy

    CERN Document Server

    Pandikumar, Alagarsamy

    2013-01-01

    The development of photovoltaic technology is expected to solve problems related to energy shortages and environmental pollution caused by the use of fossil fuels. Dye-sensitizedsolar cells (DSSCs) are promising next-generation alternatives to conventional silicon-based photovoltaic devices owing to their low manufacturing cost and potentially high conversion efficiency. This special topic volume addresses recent advances in the research on dye-sensitized solar cells. The focus of this special topic volume is on materials development (sensitizers, nanostructured oxide films, and electrolyte),

  18. Tunnel effect wave energy detection

    Science.gov (United States)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1995-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  19. Technique for sensitivity analysis of space- and energy-dependent burn-up calculations

    International Nuclear Information System (INIS)

    Williams, M.L.; White, J.R.

    1979-01-01

    A practical method is presented for sensitivity analysis of the very complex, space-energy dependent burn-up equations, in which the neutron and nuclide fields are coupled nonlinearly. The adjoint burn-up equations that are given are in a form which can be directly implemented into multi-dimensional depletion codes, such as VENTURE/BURNER. The data sensitivity coefficients can be used to determine the effect of data uncertainties on time-dependent depletion responses. Initial condition sensitivity coefficients provide a very effective method for computing the change in end of cycle parameters (such as k/sub eff/, fissile inventory, etc.) due to changes in nuclide concentrations at beginning of cycle

  20. Optimization of the alignment sensitivity and energy stability of the NIF regenerative amplifier cavity

    International Nuclear Information System (INIS)

    Hopps, N. W.

    1998-01-01

    The work to improve the energy stability of the regenerative amplifier ('regen') for the National Ignition Facility is described. This includes a fast feed-forward system, designed to regulate the output energy of the regen by monitoring how quickly a pulse builds up over many round trips. Shot-to-shot energy fluctuations of all elements prior to (and including) the regen may be compensated for in this way, at the expense of a loss of approximately 50%. Also included is a detailed study into the alignment sensitivity of the regen cavity, with the goal of quantifying the effect of misalignment on the output energy. This is done by calculating the displacement of the eigenmode by augmenting the cavity ABCD matrix with the misalignment matrix elements, E, F. In this way, cavity misalignment issues due to thermal loading of the gain medium are investigated. Alternative cavity designs, which reduce the alignment sensitivity and therefore the energy drift over periods of continuous operation, are considered. Alterations to the amplifier head design are also considered

  1. Analysis of painted arts by energy sensitive radiographic techniques with the Pixel Detector Timepix

    International Nuclear Information System (INIS)

    Zemlicka, J; Jakubek, J; Kroupa, M; Hradil, D; Hradilova, J; Mislerova, H

    2011-01-01

    Non-invasive techniques utilizing X-ray radiation offer a significant advantage in scientific investigations of painted arts and other cultural artefacts such as painted artworks or statues. In addition, there is also great demand for a mobile analytical and real-time imaging device given the fact that many fine arts cannot be transported. The highly sensitive hybrid semiconductor pixel detector, Timepix, is capable of detecting and resolving subtle and low-contrast differences in the inner composition of a wide variety of objects. Moreover, it is able to map the surface distribution of the contained elements. Several transmission and emission techniques are presented which have been proposed and tested for the analysis of painted artworks. This study focuses on the novel techniques of X-ray transmission radiography (conventional and energy sensitive) and X-ray induced fluorescence imaging (XRF) which can be realised at the table-top scale with the state-of-the-art pixel detector Timepix. Transmission radiography analyses the changes in the X-ray beam intensity caused by specific attenuation of different components in the sample. The conventional approach uses all energies from the source spectrum for the creation of the image while the energy sensitive alternative creates images in given energy intervals which enable identification and separation of materials. The XRF setup is based on the detection of characteristic radiation induced by X-ray photons through a pinhole geometry collimator. The XRF method is extremely sensitive to the material composition but it creates only surface maps of the elemental distribution. For the purpose of the analysis several sets of painted layers have been prepared in a restoration laboratory. The composition of these layers corresponds to those of real historical paintings from the 19 th century. An overview of the current status of our methods will be given with respect to the instrumentation and the application in the field of

  2. Analysis of painted arts by energy sensitive radiographic techniques with the Pixel Detector Timepix

    Energy Technology Data Exchange (ETDEWEB)

    Zemlicka, J; Jakubek, J; Kroupa, M [Institute of Experimental and Applied Physics, Czech Technical University Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Hradil, D [Institute of Inorganic Chemistry, AS CR, v.v.i., ALMA, 50 68 Husinec-Oeez (Czech Republic); Hradilova, J; Mislerova, H, E-mail: jan.zemlicka@utef.cvut.cz [Academy of Fine Arts in Prague, ALMA, U Akademie 4, 170 2, Prague 7 (Czech Republic)

    2011-01-15

    Non-invasive techniques utilizing X-ray radiation offer a significant advantage in scientific investigations of painted arts and other cultural artefacts such as painted artworks or statues. In addition, there is also great demand for a mobile analytical and real-time imaging device given the fact that many fine arts cannot be transported. The highly sensitive hybrid semiconductor pixel detector, Timepix, is capable of detecting and resolving subtle and low-contrast differences in the inner composition of a wide variety of objects. Moreover, it is able to map the surface distribution of the contained elements. Several transmission and emission techniques are presented which have been proposed and tested for the analysis of painted artworks. This study focuses on the novel techniques of X-ray transmission radiography (conventional and energy sensitive) and X-ray induced fluorescence imaging (XRF) which can be realised at the table-top scale with the state-of-the-art pixel detector Timepix. Transmission radiography analyses the changes in the X-ray beam intensity caused by specific attenuation of different components in the sample. The conventional approach uses all energies from the source spectrum for the creation of the image while the energy sensitive alternative creates images in given energy intervals which enable identification and separation of materials. The XRF setup is based on the detection of characteristic radiation induced by X-ray photons through a pinhole geometry collimator. The XRF method is extremely sensitive to the material composition but it creates only surface maps of the elemental distribution. For the purpose of the analysis several sets of painted layers have been prepared in a restoration laboratory. The composition of these layers corresponds to those of real historical paintings from the 19{sup th} century. An overview of the current status of our methods will be given with respect to the instrumentation and the application in the field

  3. Sensitivity analysis of recovery efficiency in high-temperature aquifer thermal energy storage with single well

    International Nuclear Information System (INIS)

    Jeon, Jun-Seo; Lee, Seung-Rae; Pasquinelli, Lisa; Fabricius, Ida Lykke

    2015-01-01

    High-temperature aquifer thermal energy storage system usually shows higher performance than other borehole thermal energy storage systems. Although there is a limitation in the widespread use of the HT-ATES system because of several technical problems such as clogging, corrosion, etc., it is getting more attention as these issues are gradually alleviated. In this study, a sensitivity analysis of recovery efficiency in two cases of HT-ATES system with a single well is conducted to select key parameters. For a fractional factorial design used to choose input parameters with uniformity, the optimal Latin hypercube sampling with an enhanced stochastic evolutionary algorithm is considered. Then, the recovery efficiency is obtained using a computer model developed by COMSOL Multiphysics. With input and output variables, the surrogate modeling technique, namely the Gaussian-Kriging method with Smoothly Clopped Absolute Deviation Penalty, is utilized. Finally, the sensitivity analysis is performed based on the variation decomposition. According to the result of sensitivity analysis, the most important input variables are selected and confirmed to consider the interaction effects for each case and it is confirmed that key parameters vary with the experiment domain of hydraulic and thermal properties as well as the number of input variables. - Highlights: • Main and interaction effects on recovery efficiency in HT-ATES was investigated. • Reliability depended on fractional factorial design and interaction effects. • Hydraulic permeability of aquifer had an important impact on recovery efficiency. • Site-specific sensitivity analysis of HT-ATES was recommended.

  4. New strategies of sensitivity analysis capabilities in continuous-energy Monte Carlo code RMC

    International Nuclear Information System (INIS)

    Qiu, Yishu; Liang, Jingang; Wang, Kan; Yu, Jiankai

    2015-01-01

    Highlights: • Data decomposition techniques are proposed for memory reduction. • New strategies are put forward and implemented in RMC code to improve efficiency and accuracy for sensitivity calculations. • A capability to compute region-specific sensitivity coefficients is developed in RMC code. - Abstract: The iterated fission probability (IFP) method has been demonstrated to be an accurate alternative for estimating the adjoint-weighted parameters in continuous-energy Monte Carlo forward calculations. However, the memory requirements of this method are huge especially when a large number of sensitivity coefficients are desired. Therefore, data decomposition techniques are proposed in this work. Two parallel strategies based on the neutron production rate (NPR) estimator and the fission neutron population (FNP) estimator for adjoint fluxes, as well as a more efficient algorithm which has multiple overlapping blocks (MOB) in a cycle, are investigated and implemented in the continuous-energy Reactor Monte Carlo code RMC for sensitivity analysis. Furthermore, a region-specific sensitivity analysis capability is developed in RMC. These new strategies, algorithms and capabilities are verified against analytic solutions of a multi-group infinite-medium problem and against results from other software packages including MCNP6, TSUANAMI-1D and multi-group TSUNAMI-3D. While the results generated by the NPR and FNP strategies agree within 0.1% of the analytic sensitivity coefficients, the MOB strategy surprisingly produces sensitivity coefficients exactly equal to the analytic ones. Meanwhile, the results generated by the three strategies in RMC are in agreement with those produced by other codes within a few percent. Moreover, the MOB strategy performs the most efficient sensitivity coefficient calculations (offering as much as an order of magnitude gain in FoMs over MCNP6), followed by the NPR and FNP strategies, and then MCNP6. The results also reveal that these

  5. Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower

    International Nuclear Information System (INIS)

    Ma, Peizheng; Wang, Lin-Shu; Guo, Nianhua

    2014-01-01

    Highlights: • Investigated cooling of thermally homeostatic buildings in 7 U.S. cities by modeling. • Natural energy is harnessed by cooling tower to extract heat for building cooling. • Systematically studied possibility and conditions of using cooling tower in buildings. • Diurnal ambient temperature amplitude is taken into account in cooling tower cooling. • Homeostatic building cooling is possible in locations with large ambient T amplitude. - Abstract: A case is made that while it is important to mitigate dissipative losses associated with heat dissipation and mechanical/electrical resistance for engineering efficiency gain, the “architect” of energy efficiency is the conception of best heat extraction frameworks—which determine the realm of possible efficiency. This precept is applied to building energy efficiency here. Following a proposed process assumption-based design method, which was used for determining the required thermal qualities of building thermal autonomy, this paper continues this line of investigation and applies heat extraction approach investigating the extent of building partial homeostasis and the possibility of full homeostasis by using cooling tower in one summer in seven selected U.S. cities. Cooling tower heat extraction is applied parametrically to hydronically activated radiant-surfaces model-buildings. Instead of sizing equipment as a function of design peak hourly temperature as it is done in heat balance design-approach of selecting HVAC equipment, it is shown that the conditions of using cooling tower depend on both “design-peak” daily-mean temperature and the distribution of diurnal range in hourly temperature (i.e., diurnal temperature amplitude). Our study indicates that homeostatic building with natural cooling (by cooling tower alone) is possible only in locations of special meso-scale climatic condition such as Sacramento, CA. In other locations the use of cooling tower alone can only achieve homeostasis

  6. KWISP: an ultra-sensitive force sensor for the Dark Energy sector

    CERN Document Server

    Karuza, M; Gardikiotis, A; Hoffmann, D H H; Semertzidis, Y K; Zioutas, K

    2016-01-01

    An ultra-sensitive opto-mechanical force sensor has been built and tested in the optics laboratory at INFN Trieste. Its application to experiments in the Dark Energy sector, such as those for Chameleon-type WISPs, is particularly attractive, as it enables a search for their direct coupling to matter. We present here the main characteristics and the absolute force calibration of the KWISP (Kinetic WISP detection) sensor. It is based on a thin Si3N4 micro-membrane placed inside a Fabry-Perot optical cavity. By monitoring the cavity characteristic frequencies it is possible to detect the tiny membrane displacements caused by an applied force. Far from the mechanical resonant frequency of the membrane, the measured force sensitivity is 5.0e-14 N/sqrt(Hz), corresponding to a displacement sensitivity of 2.5e-15 m/sqrt(Hz), while near resonance the sensitivity is 1.5e-14 N/sqrt(Hz), reaching the estimated thermal limit, or, in terms of displacement, 7.5e-16 N/sqrt(Hz). These displacement sensitivities are comparable...

  7. Application of Wielandt method in continuous-energy nuclear data sensitivity analysis with RMC code

    International Nuclear Information System (INIS)

    Qiu Yishu; Wang Kan; She Ding

    2015-01-01

    The Iterated Fission Probability (IFP) method, an accurate method to estimate adjoint-weighted quantities in the continuous-energy Monte Carlo criticality calculations, has been widely used for calculating kinetic parameters and nuclear data sensitivity coefficients. By using a strategy of waiting, however, this method faces the challenge of high memory usage to store the tallies of original contributions which size is proportional to the number of particle histories in each cycle. Recently, the Wielandt method, applied by Monte Carlo code McCARD to calculate kinetic parameters, estimates adjoint fluxes in a single particle history and thus can save memory usage. In this work, the Wielandt method has been applied in Rector Monte Carlo code RMC for nuclear data sensitivity analysis. The methodology and algorithm of applying Wielandt method in estimation of adjoint-based sensitivity coefficients are discussed. Verification is performed by comparing the sensitivity coefficients calculated by Wielandt method with analytical solutions, those computed by IFP method which is also implemented in RMC code for sensitivity analysis, and those from the multi-group TSUNAMI-3D module in SCALE code package. (author)

  8. Energy-sensitive imaging detector applied to the dissociative recombination of D2H+

    International Nuclear Information System (INIS)

    Buhr, H.; Schwalm, D.; Mendes, M. B.; Novotny, O.; Berg, M. H.; Bing, D.; Krantz, C.; Orlov, D. A.; Sorg, T.; Stuetzel, J.; Varju, J.; Wolf, A.; Heber, O.; Rappaport, M. L.; Zajfman, D.

    2010-01-01

    We report on an energy-sensitive imaging detector for studying the fragmentation of polyatomic molecules in the dissociative recombination of fast molecular ions with electrons. The system is based on a large area (10x10 cm 2 ) position-sensitive, double-sided Si-strip detector with 128 horizontal and 128 vertical strips, whose pulse height information is read out individually. The setup allows us to uniquely identify fragment masses and is thus capable of measuring branching ratios between different fragmentation channels, kinetic energy releases, and breakup geometries as a function of the relative ion-electron energy. The properties of the detection system, which has been installed at the Test Storage Ring (TSR) facility of the Max-Planck Institute for Nuclear Physics in Heidelberg, is illustrated by an investigation of the dissociative recombination of the deuterated triatomic hydrogen cation D 2 H + . A huge isotope effect is observed when comparing the relative branching ratio between the D 2 + H and the HD + D channel; the ratio 2B(D 2 + H)/B(HD + D), which is measured to be 1.27±0.05 at relative electron-ion energies around 0 eV, is found to increase to 3.7±0.5 at ∼5 eV.

  9. Energy-sensitive imaging detector applied to the dissociative recombination of D2H+

    Science.gov (United States)

    Buhr, H.; Mendes, M. B.; Novotný, O.; Schwalm, D.; Berg, M. H.; Bing, D.; Heber, O.; Krantz, C.; Orlov, D. A.; Rappaport, M. L.; Sorg, T.; Stützel, J.; Varju, J.; Wolf, A.; Zajfman, D.

    2010-06-01

    We report on an energy-sensitive imaging detector for studying the fragmentation of polyatomic molecules in the dissociative recombination of fast molecular ions with electrons. The system is based on a large area (10×10 cm2) position-sensitive, double-sided Si-strip detector with 128 horizontal and 128 vertical strips, whose pulse height information is read out individually. The setup allows us to uniquely identify fragment masses and is thus capable of measuring branching ratios between different fragmentation channels, kinetic energy releases, and breakup geometries as a function of the relative ion-electron energy. The properties of the detection system, which has been installed at the Test Storage Ring (TSR) facility of the Max-Planck Institute for Nuclear Physics in Heidelberg, is illustrated by an investigation of the dissociative recombination of the deuterated triatomic hydrogen cation D2H+. A huge isotope effect is observed when comparing the relative branching ratio between the D2 + H and the HD + D channel; the ratio 2B(D2 + H)/B(HD + D), which is measured to be 1.27±0.05 at relative electron-ion energies around 0 eV, is found to increase to 3.7±0.5 at ~5 eV.

  10. Relationship between the energy status of Daphnia magna and its sensitivity to environmental stress

    International Nuclear Information System (INIS)

    Smolders, Roel; Baillieul, Marc; Blust, Ronny

    2005-01-01

    This work tested the hypothesis that animals with a high energy status are more successful in dealing with stress than animals with a low energy status. Daphnids (Daphnia magna) were reared for 2 weeks in four different concentrations of food. Survival was not affected by food supply, and growth and reproduction increased with increasing food ration. This increase correlated well with the energy status, as was measured by scope for growth on day 15. After 2 weeks, the daphnids in the four different food ration groups were exposed for another 2 weeks to a range of increased salinities or cadmium concentrations, while remaining in their respective food concentrations. In the salinity groups, survival, growth, or reproduction were not influenced at low salinities. Exposure to higher salinity significantly decreased survival and reproduction, but this decrease was more pronounced in the highest food concentrations. In the cadmium exposed daphnids, cadmium content increased with increasing exposure concentrations, but accumulation was independent of food rations. Cadmium exposure significantly decreased survival, growth, and reproduction and this decrease again was more pronounced with increasing food concentration. Thus, the high energy status of the daphnids from the high food concentrations at the start of the exposure did not provide an increased capacity to cope with additional stress. Instead, the sensitivity of the daphnids to stress increased with increasing food ration. This increased sensitivity is likely to be the result of a change in life history from emphasizing survival at low food supply to stressing reproduction at high food supply

  11. Dynamic modeling and sensitivity analysis of solar thermal energy conversion systems

    Science.gov (United States)

    Hamilton, C. L.

    1977-01-01

    Since the energy input to solar thermal conversion systems is both time variant and probabilistic, it is unlikely that simple steady-state methods for estimating lifetime performance will provide satisfactory results. The work described here uses dynamic modeling to begin identifying what must be known about input radiation and system dynamic characteristics to estimate performance reliably. Daily operation of two conceptual solar energy systems was simulated under varying operating strategies with time-dependent radiation intensity ranging from smooth input of several magnitudes to input of constant total energy whose intensity oscillated with periods from 1/4 hour to 6 hours. Integrated daily system output and efficiency were functions of both level and dynamic characteristics of insolation. Sensitivity of output to changes in total input was greater than one.

  12. Energy Storage via Polyvinylidene Fluoride Dielectric on the Counterelectrode of Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Huang, Xuezhen; Zhang, Xi; Jiang, Hongrui

    2014-02-15

    To study the fundamental energy storage mechanism of photovoltaically self-charging cells (PSCs) without involving light-responsive semiconductor materials such as Si powder and ZnO nanowires, we fabricate a two-electrode PSC with the dual functions of photocurrent output and energy storage by introducing a PVDF film dielectric on the counterelectrode of a dye-sensitized solar cell. A layer of ultrathin Au film used as a quasi-electrode establishes a shared interface for the I - /I 3 - redox reaction and for the contact between the electrolyte and the dielectric for the energy storage, and prohibits recombination during the discharging period because of its discontinuity. PSCs with a 10-nm-thick PVDF provide a steady photocurrent output and achieve a light-to-electricity conversion efficiency ( η) of 3.38%, and simultaneously offer energy storage with a charge density of 1.67 C g -1 . Using this quasi-electrode design, optimized energy storage structures may be used in PSCs for high energy storage density.

  13. Charge and energy transfer interplay in hybrid sensitized solar cells mediated by graphene quantum dots

    International Nuclear Information System (INIS)

    Mihalache, Iuliana; Radoi, Antonio; Mihaila, Mihai; Munteanu, Cornel; Marin, Alexandru; Danila, Mihai; Kusko, Mihaela; Kusko, Cristian

    2015-01-01

    Highlights: • We report a one pot synthesis metod of GQD with controlled size and optoelectronic properties. • An improvement of common N3-DSSC characteristics is achieved when GQDs are used as co-sensitiser. • The role of GQD as cosensitisers in hybrid DSSC was investigated and the interplay between charge and energy transfer phenomena mediated by GQDs was demonstrated. • The GQDs presence determines an inhibition of the recombination processes at the TiO 2 /electrolyte interface. - Abstract: We explored the role of graphene quantum dots (GQDs) as co-sensitizers in hybrid dye sensitized solar cell (DSSC) architectures, focusing on various concurring mechanisms, such as: charge transfer, energy transfer and recombination rate, towards light harvesting improvement. GQDs were prepared by the hydrothermal method that allows the tuning of electronic levels and optical properties by employing appropriate precursors and synthesis conditions. The aim was to realize a type II alignment for TiO 2 /GQD/dye hybrid configuration, using standard N3 Ru-dye in order to improve charge transfer. When GQDs were used as co-sensitizers together with N3 Ru-dye, an improvement in power conversion efficiency was achieved, as shown by electrical measurements. The experimental analysis indicates that this improvement arises from the interplay of various mechanisms mediated by GQDs: (i) enhancement of charge separation and collection due to the cascaded alignment of the energy levels; (ii) energy transfer from GQDs to N3 Ru-dye due to the overlap between GQD photoluminescence and N3 Ru-dye absorption spectra; and (iii) reduction of the electron recombination to the redox couple due to the inhibition of the back electron transfer to the electrolyte by the GQDs

  14. Linearization of the interaction principle: Analytic Jacobians in the 'Radiant' model

    International Nuclear Information System (INIS)

    Spurr, R.J.D.; Christi, M.J.

    2007-01-01

    In this paper we present a new linearization of the Radiant radiative transfer model. Radiant uses discrete ordinates for solving the radiative transfer equation in a multiply-scattering anisotropic medium with solar and thermal sources, but employs the adding method (interaction principle) for the stacking of reflection and transmission matrices in a multilayer atmosphere. For the linearization, we show that the entire radiation field is analytically differentiable with respect to any surface or atmospheric parameter for which we require Jacobians (derivatives of the radiance field). Derivatives of the discrete ordinate solutions are based on existing methods developed for the LIDORT radiative transfer models. Linearization of the interaction principle is completely new and constitutes the major theme of the paper. We discuss the application of the Radiant model and its linearization in the Level 2 algorithm for the retrieval of columns of carbon dioxide as the main target of the Orbiting Carbon Observatory (OCO) mission

  15. Commensurate comparisons of models with energy budget observations reveal consistent climate sensitivities

    Science.gov (United States)

    Armour, K.

    2017-12-01

    Global energy budget observations have been widely used to constrain the effective, or instantaneous climate sensitivity (ICS), producing median estimates around 2°C (Otto et al. 2013; Lewis & Curry 2015). A key question is whether the comprehensive climate models used to project future warming are consistent with these energy budget estimates of ICS. Yet, performing such comparisons has proven challenging. Within models, values of ICS robustly vary over time, as surface temperature patterns evolve with transient warming, and are generally smaller than the values of equilibrium climate sensitivity (ECS). Naively comparing values of ECS in CMIP5 models (median of about 3.4°C) to observation-based values of ICS has led to the suggestion that models are overly sensitive. This apparent discrepancy can partially be resolved by (i) comparing observation-based values of ICS to model values of ICS relevant for historical warming (Armour 2017; Proistosescu & Huybers 2017); (ii) taking into account the "efficacies" of non-CO2 radiative forcing agents (Marvel et al. 2015); and (iii) accounting for the sparseness of historical temperature observations and differences in sea-surface temperature and near-surface air temperature over the oceans (Richardson et al. 2016). Another potential source of discrepancy is a mismatch between observed and simulated surface temperature patterns over recent decades, due to either natural variability or model deficiencies in simulating historical warming patterns. The nature of the mismatch is such that simulated patterns can lead to more positive radiative feedbacks (higher ICS) relative to those engendered by observed patterns. The magnitude of this effect has not yet been addressed. Here we outline an approach to perform fully commensurate comparisons of climate models with global energy budget observations that take all of the above effects into account. We find that when apples-to-apples comparisons are made, values of ICS in models are

  16. Energy efficient heating and ventilation of large halls

    CERN Document Server

    Hojer, Ondrej; Kabele, Karel; Kotrbaty, Miroslav; Sommer, Klaus; Petras, Dusan

    2011-01-01

    This guidebook is focused on modern methods for design, control and operation of energy efficient heating systems in large spaces and industrial halls. The book deals with thermal comfort, light and dark gas radiant heaters, panel radiant heating, floor heating and industrial air heating systems. Various heating systems are illustrated with case studies. Design principles, methods and modeling tools are presented for various systems.

  17. Experimental evaluation of heat transfer coefficients between radiant ceiling and room

    DEFF Research Database (Denmark)

    Causone, Francesco; Corgnati, Stefano P.; Filippi, Marco

    2009-01-01

    The heat transfer coefficients between radiant surfaces and room are influenced by several parameters: surfaces temperature distributions, internal gains, air movements. The aim of this paper is to evaluate the heat transfer coefficients between radiant ceiling and room in typical conditions...... of occupancy of an office or residential building. Internal gains were therefore simulated using heated cylinders and heat losses using cooled surfaces. Evaluations were developed by means of experimental tests in an environmental chamber. Heat transfer coefficient may be expressed separately for radiation...

  18. Thermal Conditions in a Simulated Office Environment with Convective and Radiant Cooling Systems

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Kostov, Kalin

    2013-01-01

    velocity and turbulent intensity were measured and draft rate levels calculated in the room. Manikin-based equivalent temperature (MBET) was determined by two thermal manikins to identify the impact of the local thermal conditions generated by the studied systems on occupants’ thermal comfort. The results......The thermal conditions in a two person office room were measured with four air conditioning systems: chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and four desk partition mounted local radiant cooling panels with mixing...

  19. Three-dimensional simulation of super-radiant Smith-Purcell radiation

    International Nuclear Information System (INIS)

    Li, D.; Imasaki, K.; Yang, Z.; Park, Gun-Sik

    2006-01-01

    A simulation of coherent and super-radiant Smith-Purcell radiation is performed in the gigahertz regime using a three-dimensional particle-in-cell code. The simulation model supposes a rectangular grating to be driven by a single electron bunch and a train of periodic bunches, respectively. The true Smith-Purcell radiation is distinguished from the evanescent wave, which has an angle independent frequency lower than the minimum allowed Smith-Purcell frequency. We also find that the super-radiant radiations excited by periodic bunches are emitted at higher harmonics of the bunching frequency and at the corresponding Smith-Purcell angles

  20. Cooling load calculations of radiant and all-air systems for commercial buildings

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Bauman, Fred; Schiavon, Stefano

    The authors simulated in TRNSYS three radiant systems coupled with a 50% sized variable air volume (VAV) system and a 50% sized all-air VAV system with night ventilation. The objective of this study was to identify the differences in the cooling load profiles of the examined systems when they are......The authors simulated in TRNSYS three radiant systems coupled with a 50% sized variable air volume (VAV) system and a 50% sized all-air VAV system with night ventilation. The objective of this study was to identify the differences in the cooling load profiles of the examined systems when...

  1. Ratio-metric sensor to detect riboflavin via fluorescence resonance energy transfer with ultrahigh sensitivity

    Science.gov (United States)

    Wang, Jilong; Su, Siheng; Wei, Junhua; Bahgi, Roya; Hope-Weeks, Louisa; Qiu, Jingjing; Wang, Shiren

    2015-08-01

    In this paper, a novel fluorescence resonance energy transfer (FRET) ration-metric fluorescent probe based on heteroatom N, S doped carbon dots (N, S-CDs) was developed to determine riboflavin in aqueous solutions. The ratio of two emission intensities at different wavelengths is applied to determine the concentration of riboflavin (RF). This method is more effective in reducing the background interference and fluctuation of diverse conditions. Therefore, this probe obtains high sensitivity with a low limit of detection (LOD) of 1.9 nM (0.7 ng/ml) which is in the highest level of all riboflavin detection approaches and higher than single wavelength intensity detection (1.9 μM). In addition, this sensor has a high selectivity of detecting riboflavin in deionized water (pH=7) with other biochemical like amino acids. Moreover, riboflavin in aqueous solution is very sensitive to sunlight and can be degraded to lumiflavin, which is toxic. Because the N, S doped carbon dots cannot serve as an energy donor for N, S doped carbon dots and lumiflavin system, this system makes it easy to determine whether the riboflavin is degraded or not, which is first to be reported. This platform may provide possibilities to build a new and facile fluorescence resonance energy transfer based sensor to detect analytes and metamorphous analytes in aqueous solution.

  2. An Energy-Efficient Virtualization-Based Secure Platform for Protecting Sensitive User Data

    Directory of Open Access Journals (Sweden)

    Kyung-Soo Lim

    2017-07-01

    Full Text Available Currently, the exchange cycles of various computers, smartphones, tablets, and others have become shorter, because new high-performance devices continue to roll out rapidly. However, existing legacy devices are not old-fashioned or obsolete to use. From the perspective of sustainable information technology (IT, energy-efficient virtualization can apply a way to increase reusability for special customized devices and enhance the security of existing legacy devices. It means that the virtualization can customize a specially designed purpose using the guest domain from obsolete devices. Thus, this could be a computing scheme that keeps energy supplies and demands in balance for future sustainable IT. Moreover, energy-efficient virtualization can be the long-term and self-sustainable solution such as cloud computing, big data and so forth. By separating the domain of the host device based on virtualization, the guest OS on the segmented domain can be used as a Trusted Execution Environment to perform security features. In this paper, we introduce a secure platform to protect sensitive user data by domain isolation utilizing virtualization. The sensitive user data on our secure platform can protect against the infringement of personal information by malicious attacks. This study is an effective solution in terms of sustainability by recycling them for special purposes or enhancing the security of existing devices.

  3. 14C autoradiography with an energy-sensitive silicon pixel detector.

    Science.gov (United States)

    Esposito, M; Mettivier, G; Russo, P

    2011-04-07

    The first performance tests are presented of a carbon-14 ((14)C) beta-particle digital autoradiography system with an energy-sensitive hybrid silicon pixel detector based on the Timepix readout circuit. Timepix was developed by the Medipix2 Collaboration and it is similar to the photon-counting Medipix2 circuit, except for an added time-based synchronization logic which allows derivation of energy information from the time-over-threshold signal. This feature permits direct energy measurements in each pixel of the detector array. Timepix is bump-bonded to a 300 µm thick silicon detector with 256 × 256 pixels of 55 µm pitch. Since an energetic beta-particle could release its kinetic energy in more than one detector pixel as it slows down in the semiconductor detector, an off-line image analysis procedure was adopted in which the single-particle cluster of hit pixels is recognized; its total energy is calculated and the position of interaction on the detector surface is attributed to the centre of the charge cluster. Measurements reported are detector sensitivity, (4.11 ± 0.03) × 10(-3) cps mm(-2) kBq(-1) g, background level, (3.59 ± 0.01) × 10(-5) cps mm(-2), and minimum detectable activity, 0.0077 Bq. The spatial resolution is 76.9 µm full-width at half-maximum. These figures are compared with several digital imaging detectors for (14)C beta-particle digital autoradiography.

  4. Polymeric reaction of polymer-monomer system for pressure sensitive adhesives by low energy electron beam

    International Nuclear Information System (INIS)

    Takiguchi, R.; Uryu, T.

    1985-01-01

    Application of low-energy electron beam to non-solvent type pressure sensitive adhesives is investigated. The adhesive properties such as peel strength and holding time (dead-load strength) were closely related to the reaction of acrylate polymer-monomer systems. The reaction behavior is elucidated by combining the measurement of gel fraction, infrared spectrum of gel, and the molecular weight distribution detected by gel permeation chromatography. It was important for the production of pressure sensitive adhesives by electron beam that the adhesive with high peel strength and long holding time is composed of a proper combination of three factors, that is, about 35% gel fraction, 25% monomer units in gel, and 15% graft efficiency by irradiating the polymer-monomer system containing low molecular weight poly (butyl acrylate). (author)

  5. Fixed, low radiant exposure vs. incremental radiant exposure approach for diode laser hair reduction: a randomized, split axilla, comparative single-blinded trial.

    Science.gov (United States)

    Pavlović, M D; Adamič, M; Nenadić, D

    2015-12-01

    Diode lasers are the most commonly used treatment modalities for unwanted hair reduction. Only a few controlled clinical trials but not a single randomized controlled trial (RCT) compared the impact of various laser parameters, especially radiant exposure, onto efficacy, tolerability and safety of laser hair reduction. To compare the safety, tolerability and mid-term efficacy of fixed, low and incremental radiant exposures of diode lasers (800 nm) for axillary hair removal, we conducted an intrapatient, left-to-right, patient- and assessor-blinded and controlled trial. Diode laser (800 nm) treatments were evaluated in 39 study participants (skin type II-III) with unwanted axillary hairs. Randomization and allocation to split axilla treatments were carried out by a web-based randomization tool. Six treatments were performed at 4- to 6-week intervals with study subjects blinded to the type of treatment. Final assessment of hair reduction was conducted 6 months after the last treatment by means of blinded 4-point clinical scale using photographs. The primary endpoint was reduction in hair growth, and secondary endpoints were patient-rated tolerability and satisfaction with the treatment, treatment-related pain and adverse effects. Excellent reduction in axillary hairs (≥ 76%) at 6-month follow-up visit after receiving fixed, low and incremental radiant exposure diode laser treatments was obtained in 59% and 67% of study participants respectively (Z value: 1.342, P = 0.180). Patients reported lower visual analogue scale (VAS) pain score on the fixed (4.26) than on the incremental radiant exposure side (5.64) (P diode laser treatments were less painful and better tolerated. © 2015 European Academy of Dermatology and Venereology.

  6. Multi-service highly sensitive rectifier for enhanced RF energy scavenging.

    Science.gov (United States)

    Shariati, Negin; Rowe, Wayne S T; Scott, James R; Ghorbani, Kamran

    2015-05-07

    Due to the growing implications of energy costs and carbon footprints, the need to adopt inexpensive, green energy harvesting strategies are of paramount importance for the long-term conservation of the environment and the global economy. To address this, the feasibility of harvesting low power density ambient RF energy simultaneously from multiple sources is examined. A high efficiency multi-resonant rectifier is proposed, which operates at two frequency bands (478-496 and 852-869 MHz) and exhibits favorable impedance matching over a broad input power range (-40 to -10 dBm). Simulation and experimental results of input reflection coefficient and rectified output power are in excellent agreement, demonstrating the usefulness of this innovative low-power rectification technique. Measurement results indicate an effective efficiency of 54.3%, and an output DC voltage of 772.8 mV is achieved for a multi-tone input power of -10 dBm. Furthermore, the measured output DC power from harvesting RF energy from multiple services concurrently exhibits a 3.14 and 7.24 fold increase over single frequency rectification at 490 and 860 MHz respectively. Therefore, the proposed multi-service highly sensitive rectifier is a promising technique for providing a sustainable energy source for low power applications in urban environments.

  7. Multi-Service Highly Sensitive Rectifier for Enhanced RF Energy Scavenging

    Science.gov (United States)

    Shariati, Negin; Rowe, Wayne S. T.; Scott, James R.; Ghorbani, Kamran

    2015-01-01

    Due to the growing implications of energy costs and carbon footprints, the need to adopt inexpensive, green energy harvesting strategies are of paramount importance for the long-term conservation of the environment and the global economy. To address this, the feasibility of harvesting low power density ambient RF energy simultaneously from multiple sources is examined. A high efficiency multi-resonant rectifier is proposed, which operates at two frequency bands (478–496 and 852–869 MHz) and exhibits favorable impedance matching over a broad input power range (−40 to −10 dBm). Simulation and experimental results of input reflection coefficient and rectified output power are in excellent agreement, demonstrating the usefulness of this innovative low-power rectification technique. Measurement results indicate an effective efficiency of 54.3%, and an output DC voltage of 772.8 mV is achieved for a multi-tone input power of −10 dBm. Furthermore, the measured output DC power from harvesting RF energy from multiple services concurrently exhibits a 3.14 and 7.24 fold increase over single frequency rectification at 490 and 860 MHz respectively. Therefore, the proposed multi-service highly sensitive rectifier is a promising technique for providing a sustainable energy source for low power applications in urban environments. PMID:25951137

  8. 16 CFR Figure 4 to Subpart A of... - Flooring Radiant Panel Tester Schematic Low Flux End, Elevation

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flooring Radiant Panel Tester Schematic Low Flux End, Elevation 4 Figure 4 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY... Standard Pt. 1209, Subpt. A, Fig. 4 Figure 4 to Subpart A of Part 1209—Flooring Radiant Panel Tester...

  9. Audit Report on "Protection of the Department of Energy's Unclassified Sensitive Electronic Information"

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-08-01

    The Department of Energy and its contractors store and process massive quantities of sensitive information to accomplish national security, energy, science, and environmental missions. Sensitive unclassified data, such as personally identifiable information (PII), official use only, and unclassified controlled nuclear information require special handling and protection to prevent misuse of the information for inappropriate purposes. Industry experts have reported that more than 203 million personal privacy records have been lost or stolen over the past three years, including information maintained by corporations, educational institutions, and Federal agencies. The loss of personal and other sensitive information can result in substantial financial harm, embarrassment, and inconvenience to individuals and organizations. Therefore, strong protective measures, including data encryption, help protect against the unauthorized disclosure of sensitive information. Prior reports involving the loss of sensitive information have highlighted weaknesses in the Department's ability to protect sensitive data. Our report on Security Over Personally Identifiable Information (DOE/IG-0771, July 2007) disclosed that the Department had not fully implemented all measures recommended by the Office of Management and Budget (OMB) and required by the National Institute of Standards and Technology (NIST) to protect PII, including failures to identify and encrypt PII maintained on information systems. Similarly, the Government Accountability Office recently reported that the Department had not yet installed encryption technology to protect sensitive data on the vast majority of laptop computers and handheld devices. Because of the potential for harm, we initiated this audit to determine whether the Department and its contractors adequately safeguarded sensitive electronic information. The Department had taken a number of steps to improve protection of PII. Our review, however

  10. Development of bubble chambers with enhanced stability and sensitivity to low-energy nuclear recoils

    International Nuclear Information System (INIS)

    Bolte, W.J.; Collar, J.I.; Crisler, M.; Hall, J.; Holmgren, D.; Nakazawa, D.; Odom, B.; O'Sullivan, K.; Plunkett, R.; Ramberg, E.; Raskin, A.; Sonnenschein, A.; Vieira, J.D.

    2007-01-01

    The viability of using Bubble Chambers as dark matter particle detectors is considered. Techniques leading to the enhanced chamber stability needed for this new application are described in detail. Prototype trials show that sensitivity to the low-energy nuclear recoils induced by Weakly Interacting Massive Particles (WIMP) is possible in conditions of extreme insensitivity to minimum ionizing backgrounds. An understanding of detector response is demonstrated using existing theoretical models. We briefly comment on the prospects for detection of supersymmetric dark matter with large CF 3 I chambers

  11. On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology.

    Science.gov (United States)

    Reddy, K Govardhan; Deepak, T G; Anjusree, G S; Thomas, Sara; Vadukumpully, Sajini; Subramanian, K R V; Nair, Shantikumar V; Nair, A Sreekumaran

    2014-04-21

    One of the major problems that humanity has to face in the next 50 years is the energy crisis. The rising population, rapidly changing life styles of people, heavy industrialization and changing landscape of cities have increased energy demands, enormously. The present annual worldwide electricity consumption is 12 TW and is expected to become 24 TW by 2050, leaving a challenging deficit of 12 TW. The present energy scenario of using fossil fuels to meet the energy demand is unable to meet the increase in demand effectively, as these fossil fuel resources are non-renewable and limited. Also, they cause significant environmental hazards, like global warming and the associated climatic issues. Hence, there is an urgent necessity to adopt renewable sources of energy, which are eco-friendly and not extinguishable. Of the various renewable sources available, such as wind, tidal, geothermal, biomass, solar, etc., solar serves as the most dependable option. Solar energy is freely and abundantly available. Once installed, the maintenance cost is very low. It is eco-friendly, safely fitting into our society without any disturbance. Producing electricity from the Sun requires the installation of solar panels, which incurs a huge initial cost and requires large areas of lands for installation. This is where nanotechnology comes into the picture and serves the purpose of increasing the efficiency to higher levels, thus bringing down the overall cost for energy production. Also, emerging low-cost solar cell technologies, e.g. thin film technologies and dye-sensitized solar cells (DSCs) help to replace the use of silicon, which is expensive. Again, nanotechnological implications can be applied in these solar cells, to achieve higher efficiencies. This paper vividly deals with the various available solar cells, choosing DSCs as the most appropriate ones. The nanotechnological implications which help to improve their performance are dealt with, in detail. Additionally, the

  12. Sensitivity of echo enabled harmonic generation to sinusoidal electron beam energy structure

    Directory of Open Access Journals (Sweden)

    E. Hemsing

    2017-06-01

    Full Text Available We analytically examine the bunching factor spectrum of a relativistic electron beam with sinusoidal energy structure that then undergoes an echo-enabled harmonic generation (EEHG transformation to produce high harmonics. The performance is found to be described primarily by a simple scaling parameter. The dependence of the bunching amplitude on fluctuations of critical parameters is derived analytically, and compared with simulations. Where applicable, EEHG is also compared with high gain harmonic generation (HGHG and we find that EEHG is generally less sensitive to several types of energy structure. In the presence of intermediate frequency modulations like those produced by the microbunching instability, EEHG has a substantially narrower intrinsic bunching pedestal.

  13. Improved sensitivity in patients with peripheral neuropathy: effects of monochromatic infrared photo energy.

    Science.gov (United States)

    DeLellis, Salvatore L; Carnegie, Dale H; Burke, Thomas J

    2005-01-01

    The medical records of 1,047 patients (mean age, 73 years) with established peripheral neuropathy were examined to determine whether treatment with monochromatic infrared photo energy was associated with increased foot sensitivity to the 5.07 Semmes-Weinstein monofilament. The peripheral neuropathy in 790 of these patients (75%) was due to diabetes mellitus. Before treatment with monochromatic infrared photo energy, of the ten tested sites (five on each foot), a mean +/- SD of 7.9 +/- 2.4 sites were insensitive to the 5.07 Semmes-Weinstein monofilament, and 1,033 patients exhibited loss of protective sensation. After treatment, the mean +/- SD number of insensate sites on both feet was 2.3 +/- 2.4, an improvement of 71%. Only 453 of 1,033 patients (43.9%) continued to have loss of protective sensation after treatment. Therefore, monochromatic infrared photo energy treatment seems to be associated with significant clinical improvement in foot sensation in patients, primarily Medicare aged, with peripheral neuropathy. Because insensitivity to the 5.07 Semmes-Weinstein monofilament has been reported to be a major risk factor for diabetic foot wounds, the use of monochromatic infrared photo energy may be associated with a reduced incidence of diabetic foot wounds and amputations.

  14. Temperature dependence of energy-transducing functions and inhibitor sensitivity in chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Schuurmans, J.J.; Veerman, E.C.I.; Francke, J.A.; Torres-Pereira, J.M.G.; Kraayenhof, R.

    1984-01-01

    A comparative analysis of the temperature dependence of energy-transducing reactions in spinach (Spinacia oleracea) chloroplasts and their sensitivity for uncouplers and energy-transfer inhibitors at different temperatures is presented. Arrhenius plots reveal two groups of transitions, around 19/sup 0/C and around 12/sup 0/C. Activities that show transitions around 19/sup 0/C include linear electron flow from water to ferricyanide, its coupled photophosphorylation, the dark-release of the fluorescent probe atebrin, and the slow component of the 515 nm (carotenoid) absorbance decay after a flash. The transitions around 12/sup 0/C are observed with pyocyanine-mediated cyclic photophosphorylation, light- and dithioerythritol-activated ATP hydrolysis, the dark-release of protons, and the fast 515 nm decay component. It is suggested that both groups of temperature transitions are determined by proton displacements in different domains of the exposed thylakoid membranes. The effects of various uncouplers and an energy-transfer inhibitor are temperature dependent. Some uncouplers also show a different relative inhibition of proton uptake and ATP synthesis at lower temperatures. The efficiency of energy transduction (ATP/e/sub 3/) varied with temperature and was optimal around 10/sup 0/C.

  15. Sensitivity analysis of synergistic collaborative scenarios towards sustainable nuclear energy systems

    International Nuclear Information System (INIS)

    Fesenko, G.; Kuznetsov, V.; Poplavskaya, E.

    2013-01-01

    The paper presents results of the study on the role of collaboration among countries towards sustainable global nuclear energy systems. The study explores various market shares for nuclear fuel cycle services, possible scale of collaboration among countries and assesses benefits and issues relevant for collaboration between suppliers and users of nuclear fuel cycle services. The approach used in the study is based on a heterogeneous world model with grouping of the non-personified nuclear energy countries according to different nuclear fuel cycle policies. The methodology applied in the analysis allocates a fraction of future global nuclear energy generation to each of such country-groups as a function of time. The sensitivity studies performed show the impacts of the group shares on the scope of collaboration among countries and on the resulting possible reactor mix and nuclear fuel cycle infrastructure versus time. The study quantitatively demonstrates that the synergistic approach to nuclear fuel cycle has a significant potential for offering a win-win collaborative strategy to both, technology holders and technology users on their joint way to future sustainable nuclear energy systems. The study also highlights possible issues on such a collaborative way. (authors)

  16. Radiant and convective heat transfer for flow of a transparent gas in a short tube with prescribed sinusoidal wall heat flux

    International Nuclear Information System (INIS)

    de Lemos, M.J.S.

    1982-01-01

    The present analysis accounts for radiant and convective heat transfer for a transparent fluid flowing in a short tube with prescribed wall heat flux. The heat flux distribution used was of sine shape with maximum at the middle of the tube. Such a solution is the approximate one for axial power in a nuclear reactor. The solutions for the tube wall and gas bulk temperatures were obtained by successive substitutions for the wall and gas balance energy equations. The results show a decrease of 30% for the maximum wall temperature using black surface (e = 1). In this same case, the increasing in the gas temperature shows a decrease of 58%

  17. Position, Energy, and Transit Time Distributions in a Hemispherical Deflector Analyzer with Position Sensitive Detector

    Directory of Open Access Journals (Sweden)

    Omer Sise

    2015-01-01

    Full Text Available Practical analytic equations, for the ideal field, and numerical results from SIMION simulations, for the fringing field, are presented for the exit radius rπ and transit time tπ of electrons in a hemispherical deflector analyzer (HDA over a wide range of analyzer parameters. Results are presented for a typically dimensioned HDA with mean radius R-=101.6 mm and interradial separation ΔR=R2-R1=58.4 mm able to accommodate a 40 mm diameter position sensitive detector (PSD. Results for three different entry positions R0 are compared: R0=R- (the conventional central entry and two displaced (paracentric entries: R0=82.55 mm and R0=116 mm. Exit spreads Δrπ, Δtπ and base energy resolution ΔEB are computed for HDA pass energies E0=10, 100, 500, and 1000 eV, entry aperture sizes Δr0≤1.5 mm, entry angular spreads |αmax|≤5°, and an electron beam with relative energy spread δE/E0≤0.4%. Overall, under realistic conditions, both paracentric entries demonstrate near ideal field behavior and clear superiority over the conventional entry at R0=R-. The R0=82.55 mm entry has better absolute energy and time spread resolutions, while the R0=116 mm has better relative energy resolutions, both offering attractive alternatives for time-of-flight and coincidence applications where both energy and timing resolutions are important.

  18. Efficient Energy Sensitization of C 60 and Application to Organic Photovoltaics

    KAUST Repository

    Trinh, Cong

    2013-08-14

    Fullerenes are currently the most popular electron-acceptor material used in organic photovoltaics (OPVs) due to their superior properties, such as good electron conductivity and efficient charge separation at the donor/acceptor interface. However, low absorptivity in the visible spectral region is a significant drawback of fullerenes. In this study, we have designed a zinc chlorodipyrrin derivative (ZCl) that absorbs strongly in the visible region (450-600 nm) with an optical density 7-fold higher than a C60 film. ZCl efficiently transfers absorbed photoenergy to C60 in mixed films. Application of ZCl as an energy sensitizer in OPV devices leads to an increase in the photocurrent from the acceptor layer, without changing the other device characteristics, i.e., open circuit voltage and fill factor. For example, C 60-based OPVs with and without the sensitizer give 4.03 and 3.05 mA/cm2, respectively, while both have VOC = 0.88 V and FF = 0.44. Our ZCl sensitization approach improves the absorbance of the electron-acceptor layer while still utilizing the beneficial characteristics of C60 in OPVs. © 2013 American Chemical Society.

  19. Efficient Energy Sensitization of C 60 and Application to Organic Photovoltaics

    KAUST Repository

    Trinh, Cong; Kirlikovali, Kent O.; Bartynski, Andrew N.; Tassone, Christopher J.; Toney, Michael F.; Burkhard, George F.; McGehee, Michael D.; Djurovich, Peter I.; Thompson, Mark E.

    2013-01-01

    Fullerenes are currently the most popular electron-acceptor material used in organic photovoltaics (OPVs) due to their superior properties, such as good electron conductivity and efficient charge separation at the donor/acceptor interface. However, low absorptivity in the visible spectral region is a significant drawback of fullerenes. In this study, we have designed a zinc chlorodipyrrin derivative (ZCl) that absorbs strongly in the visible region (450-600 nm) with an optical density 7-fold higher than a C60 film. ZCl efficiently transfers absorbed photoenergy to C60 in mixed films. Application of ZCl as an energy sensitizer in OPV devices leads to an increase in the photocurrent from the acceptor layer, without changing the other device characteristics, i.e., open circuit voltage and fill factor. For example, C 60-based OPVs with and without the sensitizer give 4.03 and 3.05 mA/cm2, respectively, while both have VOC = 0.88 V and FF = 0.44. Our ZCl sensitization approach improves the absorbance of the electron-acceptor layer while still utilizing the beneficial characteristics of C60 in OPVs. © 2013 American Chemical Society.

  20. Calculation codes for radiant heat transfers; Les codes de calcul de rayonnement thermique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This document reports on 12 papers about computerized simulation and modeling of radiant heat transfers and fluid flows in various industrial and domestic situations: space heating, metal industry (furnaces, boilers..), aerospace industry (turbojet engines, combustion chambers) etc.. This workshop was organized by the ``radiation`` section of the French society of thermal engineers. (J.S.)

  1. Present and projected future mean radiant temperature for three European cities

    Science.gov (United States)

    Thorsson, Sofia; Rayner, David; Lindberg, Fredrik; Monteiro, Ana; Katzschner, Lutz; Lau, Kevin Ka-Lun; Campe, Sabrina; Katzschner, Antje; Konarska, Janina; Onomura, Shiho; Velho, Sara; Holmer, Björn

    2017-09-01

    Present-day and projected future changes in mean radiant temperature, T mrt in one northern, one mid-, and one southern European city (represented by Gothenburg, Frankfurt, and Porto), are presented, and the concept of hot spots is adopted. Air temperature, T a , increased in all cities by 2100, but changes in solar radiation due to changes in cloudiness counterbalanced or exacerbated the effects on T mrt. The number of days with high T mrt in Gothenburg was relatively unchanged at the end of the century (+1 day), whereas it more than doubled in Frankfurt and tripled in Porto. The use of street trees to reduce daytime radiant heat load was analyzed using hot spots to identify where trees could be most beneficial. Hot spots, although varying in intensity and frequency, were generally confined to near sunlit southeast-southwest facing walls, in northeast corner of courtyards, and in open spaces in all three cities. By adding trees in these spaces, the radiant heat load can be reduced, especially in spaces with no or few trees. A set of design principles for reducing the radiant heat load is outlined based on these findings and existing literature.

  2. Calculation codes for radiant heat transfers; Les codes de calcul de rayonnement thermique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This document reports on 12 papers about computerized simulation and modeling of radiant heat transfers and fluid flows in various industrial and domestic situations: space heating, metal industry (furnaces, boilers..), aerospace industry (turbojet engines, combustion chambers) etc.. This workshop was organized by the ``radiation`` section of the French society of thermal engineers. (J.S.)

  3. Applicability of meteor radiant determination methods depending on orbit type. I. High-eccentric orbits

    Science.gov (United States)

    Svoren, J.; Neslusan, L.; Porubcan, V.

    1993-07-01

    It is evident that there is no uniform method of calculating meteor radiants which would yield reliable results for all types of cometary orbits. In the present paper an analysis of this problem is presented, together with recommended methods for various types of orbits. Some additional methods resulting from mathematical modelling are presented and discussed together with Porter's, Steel-Baggaley's and Hasegawa's methods. In order to be able to compare how suitable the application of the individual radiant determination methods is, it is necessary to determine the accuracy with which they approximate real meteor orbits. To verify the accuracy with which the orbit of a meteoroid with at least one node at 1 AU fits the original orbit of the parent body, we applied the Southworth-Hawkins D-criterion (Southworth, R.B., Hawkins, G.S.: 1963, Smithson. Contr. Astrophys 7, 261). D0.2 the fit is rather poor and the change of orbit unrealistic. The optimal methods with the smallest values of D for given types of orbits are shown in two series of six plots. The new method of rotation around the line of apsides we propose is very appropriate in the region of small inclinations. There is no doubt that Hasegawa's omega-adjustment method (Hasegawa, I.: 1990, Publ. Astron. Soc. Japan 42, 175) has the widest application. A comparison of the theoretical radiants with the observed radiants of seven known meteor showers is also presented.

  4. Theoretical Analysis of Interferometer Wave Front Tilt and Fringe Radiant Flux on a Rectangular Photodetector

    Directory of Open Access Journals (Sweden)

    Franz Konstantin Fuss

    2013-09-01

    Full Text Available This paper is a theoretical analysis of mirror tilt in a Michelson interferometer and its effect on the radiant flux over the active area of a rectangular photodetector or image sensor pixel. It is relevant to sensor applications using homodyne interferometry where these opto-electronic devices are employed for partial fringe counting. Formulas are derived for radiant flux across the detector for variable location within the fringe pattern and with varying wave front angle. The results indicate that the flux is a damped sine function of the wave front angle, with a decay constant of the ratio of wavelength to detector width. The modulation amplitude of the dynamic fringe pattern reduces to zero at wave front angles that are an integer multiple of this ratio and the results show that the polarity of the radiant flux changes exclusively at these multiples. Varying tilt angle causes radiant flux oscillations under an envelope curve, the frequency of which is dependent on the location of the detector with the fringe pattern. It is also shown that a fringe count of zero can be obtained for specific photodetector locations and wave front angles where the combined effect of fringe contraction and fringe tilt can have equal and opposite effects. Fringe tilt as a result of a wave front angle of 0.05° can introduce a phase measurement difference of 16° between a photodetector/pixel located 20 mm and one located 100 mm from the optical origin.

  5. Experimental and numerical analysis of air and radiant cooling systems in offices

    DEFF Research Database (Denmark)

    Corgnati, S. P.; Perino, M.; Fracastoro, G. V.

    2009-01-01

    This paper analyses office cooling systems based on all air mixing ventilation systems alone or coupled with radiant ceiling panels. This last solution may be effectively applied to retrofit all air systems that are no longer able to maintain a suitable thermal comfort in the indoor environment, ...

  6. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition

    Energy Technology Data Exchange (ETDEWEB)

    Landry, Guillaume; Reniers, Brigitte; Murrer, Lars; Lutgens, Ludy; Bloemen-Van Gurp, Esther; Pignol, Jean-Philippe; Keller, Brian; Beaulieu, Luc; Verhaegen, Frank [Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Departement de Radio-Oncologie et Centre de Recherche en Cancerologie, de l' Universite Laval, CHUQ, Pavillon L' Hotel-Dieu de Quebec, Quebec G1R 2J6 (Canada) and Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec G1K 7P4 (Canada); Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands) and Medical Physics Unit, McGill University, Montreal General Hospital, Montreal, Quebec H3G 1A4 (Canada)

    2010-10-15

    Purpose: The objective of this work is to assess the sensitivity of Monte Carlo (MC) dose calculations to uncertainties in human tissue composition for a range of low photon energy brachytherapy sources: {sup 125}I, {sup 103}Pd, {sup 131}Cs, and an electronic brachytherapy source (EBS). The low energy photons emitted by these sources make the dosimetry sensitive to variations in tissue atomic number due to the dominance of the photoelectric effect. This work reports dose to a small mass of water in medium D{sub w,m} as opposed to dose to a small mass of medium in medium D{sub m,m}. Methods: Mean adipose, mammary gland, and breast tissues (as uniform mixture of the aforementioned tissues) are investigated as well as compositions corresponding to one standard deviation from the mean. Prostate mean compositions from three different literature sources are also investigated. Three sets of MC simulations are performed with the GEANT4 code: (1) Dose calculations for idealized TG-43-like spherical geometries using point sources. Radial dose profiles obtained in different media are compared to assess the influence of compositional uncertainties. (2) Dose calculations for four clinical prostate LDR brachytherapy permanent seed implants using {sup 125}I seeds (Model 2301, Best Medical, Springfield, VA). The effect of varying the prostate composition in the planning target volume (PTV) is investigated by comparing PTV D{sub 90} values. (3) Dose calculations for four clinical breast LDR brachytherapy permanent seed implants using {sup 103}Pd seeds (Model 2335, Best Medical). The effects of varying the adipose/gland ratio in the PTV and of varying the elemental composition of adipose and gland within one standard deviation of the assumed mean composition are investigated by comparing PTV D{sub 90} values. For (2) and (3), the influence of using the mass density from CT scans instead of unit mass density is also assessed. Results: Results from simulation (1) show that variations

  7. Characteristics of infrared thermometers manufactured in Japan and calibration methods for sky radiant emittance

    International Nuclear Information System (INIS)

    Wang, X.; Horiguchi, I.; Machimura, T.

    1993-01-01

    Infrared thermometers to measure surface temperature have been increasingly adopted in recent years. The characteristics of the IR thermometer, however, are not well known.IR thermometers manufactured in Japan systematically adjust for ambient radiation based on the internal temperature of the thermometer. If, therefore, there is a large difference between the internal temperature of the IR thermometer and the apparent temperature associated with the surrounding radiation, a large error will be induced into the measured surface temperature.The purpose of our research was to determine the characteristics and measurement errors of IR thermometers. Experiments were performed with regard to the following items: (1) Measurement errors related to the internal temperature of the IR thermometer. (2) Linearity of the output signal of the IR thermometer. (3) Response of the output signal to changes in the emissivity setting. (4) Effect of sky radiant emittance on the measured surface temperature. (5) Calibration method for the terrestrial surface.The following is a summary of the results: Measurement error is affected by the internal temperature of the IR thermometer. Measurement accuracy is improved with a controlled internal temperature of 20-30°C. The measurement error becomes larger at emissivity settings under 0.7.The measurement error outdoors was not proportional to the downward longwave radiation, but to the sky radiant temperature measured by the IR thermometer. Calibration for sky radiant emittance was improved by using the difference between sky radiant temperature and air temperature.When the surface temperature measured by the infrared thermometer is plotted against the surface temperature measured by thermocouple, the sky radiant emittance error is obtained from the Y intercept. Additionally, the difference between true temperature and output of the IR thermometer for a reference plate was compared to that obtained for vegetation, and the RMS obtained was

  8. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise.

    Science.gov (United States)

    Guéritée, Julien; Tipton, Michael J

    2015-02-01

    The aims of the present work were to investigate the relationships between radiant heat load, air velocity and body temperatures with or without coincidental exercise to determine the physiological mechanisms that drive thermal comfort and thermoregulatory behaviour. Seven male volunteers wearing swimming trunks in 18°C, 22°C or 26°C air were exposed to increasing air velocities up to 3 m s(-1) and self-adjusted the intensity of the direct radiant heat received on the front of the body to just maintain overall thermal comfort, at rest or when cycling (60 W, 60 rpm). During the 30 min of the experiments, skin and rectal temperatures were continuously recorded. We hypothesized that mean body temperature should be maintained stable and the intensity of the radiant heat and the mean skin temperatures would be lower when cycling. In all conditions, mean body temperature was lower when facing winds of 3 m s(-1) than during the first 5 min, without wind. When facing winds, in all but the 26°C air, the radiant heat was statistically higher at rest than when exercising. In 26°C air mean skin temperature was lower at rest than when exercising. No other significant difference was observed. In all air temperatures, high correlation coefficients were observed between the air velocity and the radiant heat load. Other factors that we did not measure may have contributed to the constant overall thermal comfort status despite dropping mean skin and body temperatures. It is suggested that the allowance to behaviourally adjust the thermal environment increases the tolerance of cold discomfort. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Environment sensitive embedding energies of impurities, and grain boundary stability in tantalum

    International Nuclear Information System (INIS)

    Krasko, G.L.

    1996-01-01

    Metalloid impurities have a very low solubility in tantalum, and therefore prefer to segregate at the grain boundaries (GBs). In order to analyze the energetics of the impurities on the tantalum GB, the LMTO calculations were performed on a simple 8-atom supercell emulating a typical (capped trigonal prism) GB environment. The so-called environment-sensitive embedding energies were calculated for hydrogen, boron, carbon, nitrogen, oxygen, phosphorus, and sulphur, as a function of the electron charge density due to the host atoms at the impurity site. The calculations showed that, at the electron density typical of a GB, carbon has the lowest energy (followed by Nitrogen and Boron) and thus would compete with the other impurities for the site on the GB, tending to displace them from the GB. The above energies were then used in a modified Finnis-Sinclair embedded atom approach for calculating the cohesive energies and the equilibrium interplanar distances in the vicinity of a (111) Σ3 tilt GB plane, both for the clean GB and that with an impurity. These distances were found to oscillate, returning to the value corresponding to the equilibrium spacing between (111) planes in bulk BCC tantalum by the 10th--12th plane off the GB. Carbon, nitrogen and boron somewhat dampen the deformation wave (making the oscillations less than in the clean GB), while oxygen, phosphorus and sulphur result in an increase of the oscillations. The cohesive energies follow the same trend, the GB with carbon being the most stable. Thus, carbon, nitrogen and boron may be thought of as being cohesion enhancers, while oxygen, phosphorus and sulphur result in decohesion effects

  10. High-sensitivity measurements of the excitation function for Bhabha scattering at MeV energies

    International Nuclear Information System (INIS)

    Tsertos, H.; Kozhuharov, C.; Armbruster, P.; Kienle, P.; Krusche, B.; Schreckenbach, K.

    1989-02-01

    Using a monochromatic e + beam scattered on a Be foil and a high-resolution detector device, the excitation function for elastic e + e - scattering was measured with a statistical accuracy of 0.25% in 1.4 keV steps in the c.m.-energy range between 770 keV and 840 keV (1.79 - 1.86 MeV/c 2 ) at c.m. scattering angles between 80 0 and 100 0 (FWHM). Within the experimental sensitivity of 0.5 b.eV/sr (c.m.) for the energy-integrated differential cross section no resonances were observed (97% CL). From this limit we infer that a hypothetical spinless resonant state should have a width of less than 1.9 meV corresponding to a lifetime limit of 3.5x10 -13 s. This limit establishes the most stringent bound for new particles in this mass range derived from Bhabha scattering and is independent of assumptions about the internal structure of the hypothetical particles. Less sensitivite limits were, in addition, derived around 520 keV c.m. energy (≅ 1.54 MeV/c 2 ) from an investigation with a thorium and a mylar foil as scatterers. (orig.)

  11. Behaviour of monolithic and laminated glass exposed to radiant heating

    NARCIS (Netherlands)

    Debuyser, M.; Sjöström, J.; Lange, D.; Honfi, D.; Sonck, D.; Belis, J.

    2017-01-01

    Glass is seeing a growing interest as a structural material as a result of its relatively good strength to weight ratio and the obvious aesthetic benefits of its use in buildings. However due to the sensitivity of glass to thermal shock and the considerably temperature-dependent behaviour of

  12. Comparison and Sensitivity Investigations of a CALM and SALM Type Mooring System for Wave Energy Converters

    Directory of Open Access Journals (Sweden)

    Arthur Pecher

    2014-02-01

    Full Text Available A quasi-static analysis and sensitivity investigation of two different mooring configurations—a single anchor leg mooring (SALM and a three-legged catenary anchor leg system (CALM—is presented. The analysis aims to indicate what can be expected in terms of requirements for the mooring system size and stiffness. The two mooring systems were designed for the same reference load case, corresponding to a horizontal design load at the wave energy converter (WEC of 2000 kN and a water depth of 30 m. This reference scenario seems to be representative for large WECs operating in intermediate water depths, such as Weptos, Wave Dragon and many others, including reasonable design safety factors. Around this reference scenario, the main influential parameters were modified in order to investigate their impact on the specifications of the mooring system, e.g. the water depth, the horizontal design load, and a mooring design parameter.

  13. Study of Charge Diffusion in a Silicon Detector Using an Energy Sensitive Pixel Readout Chip

    CERN Document Server

    Schioppa, E. J.; van Beuzekom, M.; Visser, J.; Koffeman, E.; Heijne, E.; Engel, K. J.; Uher, J.

    2015-01-01

    A 300 μm thick thin p-on-n silicon sensor was connected to an energy sensitive pixel readout ASIC and exposed to a beam of highly energetic charged particles. By exploiting the spectral information and the fine segmentation of the detector, we were able to measure the evolution of the transverse profile of the charge carriers cloud in the sensor as a function of the drift distance from the point of generation. The result does not rely on model assumptions or electric field calculations. The data are also used to validate numerical simulations and to predict the detector spectral response to an X-ray fluorescence spectrum for applications in X-ray imaging.

  14. Simulating occupant behaviour and energy performance of dwellings : A sensitivity analysis of presence patterns in different dwelling types

    NARCIS (Netherlands)

    Bedir, M.; Harputlugil, G.U.

    2011-01-01

    Influence of occupant behaviour on the energy performance of dwellings is an emerging research topic: Not only the amount of studies is insufficient, but also they provide contradictory results. The aim of this study is to reveal the sensitivity of dwelling energy performance to the presence of

  15. IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae

    Science.gov (United States)

    Stamatikos, M.; Abbasi, R.; Berghaus, P.; Chirkin, D.; Desiati, P.; Diaz-Velez, J.; Dumm, J. P.; Eisch, J.; Feintzeig, J.; Hanson, K.; hide

    2012-01-01

    This paper describes the response of the IceCube neutrino telescope located at the geographic South Pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of approx. 1 cu km in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak's released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube's capability for supernova detection.

  16. Optimizing SuperCDMS phonon energy sensitivity by studying quasiparticle transport in Al films

    Science.gov (United States)

    Yen, Jeffrey; Shank, Benjamin; Cabrera, Blas; Moffatt, Robert; Redl, Peter; Brink, Paul; Tomada, Astrid; Cherry, Matt; Young, Betty; Tortorici, Teddy; Kreikebaum, John Mark

    2014-03-01

    In order to further improve the phonon energy sensitivity of Cryogenic Dark Matter Search (CDMS) detectors, we studied quasiparticle transport at ~ 40 mK in superconducting Al films similar in geometry to those used for CDMS detectors. Test structures of Al were deposited and photolithographically patterned on Si wafers using the same production-line equipment used to fabricate kg-scale CDMS detectors. Three Al film lengths and two film thicknesses were used in this study. In the test experiments described here, an 55Fe source was used to excite a NaCl reflector, producing 2.6 keV x-rays that hit our test devices after passing through a collimator. The impinging x-rays broke Cooper pairs in the Al films, producing quasiparticles that propagated into W transition edge sensors (TESs) coupled to the ends of the Al films. In this talk, we will give the motivation behind these studies, describe our experimental setup, and compare our data to results obtained using signal processing models constructed from basic physical parameters. We show that a non-linear, non-stationary optimal filter applied to the data allows us to precisely measure quasiparticle diffusion and other aspects of energy transport in our thin-film Al-W test devices. These results are being used to further optimize next-generation CDMS detectors.

  17. Study of the effect of heavy ion energy on the sensitivity of electronic devices

    International Nuclear Information System (INIS)

    Raine, M.

    2011-01-01

    This thesis studies the sensitivity of advanced electronic devices in radiative environments. The work deals with the detailed modeling of the deposited energy induced by heavy-ion in matter, and the influence of taking it into account in the tools simulating the response of irradiated devices. To do so, a simulation chain was developed, combining different calculation codes at various scales. In a first step, the particle-matter interaction code Geant4 is used to model the heavy ion track. These tracks are then implemented in a TCAD simulator, in order to study the response of elementary transistors to these detailed energy deposits. This step is completed with experimental measurements. Finally, the study is extended to the circuit level, by interfacing the heavy ion tracks with a SEE prediction tool. These different steps evidence the need for taking into account the radial extension of the ion track to all simulation levels, to adequately model the response of advanced devices under heavy ion irradiations. (author) [fr

  18. Energy metabolism after U.V.-irradiation in a sensitive yeast strain

    International Nuclear Information System (INIS)

    Kiefer, J.

    1976-01-01

    Stationary-phase cells of an excision-repair deficient diploid yeast (strain 2094) were UV-irradiated at exposures of up to 440 erg mm -2 and then resuspended in fresh medium. Measurements of energy metabolism per cell at periods of up to 6 hours after irradiation showed that cellular respiration was increased for all doses tested from about 3 hours after exposure, whereas fermentation did not start before about 2 hours after irradiation, never significantly exceeded control values and was markedly inhibited by the higher doses. The results suggest that respiration is under nuclear control, since a mutation in one gene is thought to be the only difference between this strain and the wild-type. The D 0 value of about 360 erg mm -2 found for the relative cellular fermentation at 2 hours after irradiation was used to give an estimate of the size of the structural gene involved, of about 3000 nucleotides, or a protein with 1000 amino-acid residues, compatible with the molecular weight of alcohol dehydrogenase. Fermentation can therefore be inhibited in this sensitive strain by lesions in the structural gene of a key enzyme. Since respiration was increased even more in repair-deficient than in repair-proficient strains, it must be assumed that higher energy metabolism is not linked to the repair process, but rather reflects a general disturbance in cellular regulation. (U.K.)

  19. Triplet energy transfer and triplet exciton recycling in singlet fission sensitized organic heterojunctions

    Science.gov (United States)

    Hamid, Tasnuva; Yambem, Soniya D.; Crawford, Ross; Roberts, Jonathan; Pandey, Ajay K.

    2017-08-01

    Singlet exciton fission is a process where an excited singlet state splits into two triplets, thus leading to generation of multiple excitons per absorbed photon in organic semiconductors. Herein, we report a detailed exciton management approach for multiexciton harvesting over a broadband region of the solar spectrum in singlet fission sensitized organic photodiodes. Through systematic studies on the model cascade of pentacene/rubrene/C60, we found that efficient photocurrent generation from pentacene can still occur despite the presence of a >10nm thick interlayer of rubrene in between the pentacene/C60 heterojunction. Our results show that thin rubrene interlayers of thickness pentacene despite having a reasonably thick rubrene interlayer, that too with higher triplet energy (T1=1.12 eV) than pentacene (T1= 0.86 eV), makes its operation a rather interesting result. We discuss the role of rubrene interlayer film discontinuity, triplet exciton reflection from rubrene interlayer and triplet energy transfer from rubrene to pentacene layer followed by diffusion of triplet excitons through rubrene as plausible mechanisms that would enable triplet excitons from pentacene to generate significant photocurrent in a multilayer organic heterojunction.

  20. Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA

    Science.gov (United States)

    Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.

    2014-12-01

    The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the

  1. Measurement of home-made LaCl3 : Ce scintillation detector sensitivity with different energy points in range of fission energy

    International Nuclear Information System (INIS)

    Hu Mengchun; Li Rurong; Si Fenni

    2010-01-01

    Gamma rays of different energy were obtained in the range of fission energy by Compton scattering in intense 60 Co gamma source and the standard isotopic gamma sources which are 0.67 MeV 137 Cs and l.25 MeV 60 Co sources of point form. Sensitivity of LaCl 3 : Ce scintillator was measured in these gamma ray energy by a fast response scintillation detector with the home-made LaCl 3 : Ce scintillator. Results were normalized by the sensitivity to 0.67 MeV gamma ray. Sensitivity of LaCl 3 : Ce to 1.25 MeV gamma ray is about l.28. For ø40 mm × 2 mm LaCl 3 : Ce scintillator, the biggest sensitivity is l.18 and the smallest is 0.96 with gamma ray from 0.39 to 0.78 MeV. And for ø40 mm × 10 mm LaCl 3 : Ce scintillator, the biggest sensitivity is l.06 and the smallest is 0.98. The experimental results can provide references for theoretical study of the LaCl 3 : Ce scintillator and data to obtain the compounded sensitivity of LaCl 3 : Ce scintillator in the range of fission energy. (authors)

  2. Novel Methods to Explore Building Energy Sensitivity to Climate and Heat Waves Using PNNL's BEND Model

    Science.gov (United States)

    Burleyson, C. D.; Voisin, N.; Taylor, T.; Xie, Y.; Kraucunas, I.

    2017-12-01

    The DOE's Pacific Northwest National Laboratory (PNNL) has been developing the Building ENergy Demand (BEND) model to simulate energy usage in residential and commercial buildings responding to changes in weather, climate, population, and building technologies. At its core, BEND is a mechanism to aggregate EnergyPlus simulations of a large number of individual buildings with a diversity of characteristics over large spatial scales. We have completed a series of experiments to explore methods to calibrate the BEND model, measure its ability to capture interannual variability in energy demand due to weather using simulations of two distinct weather years, and understand the sensitivity to the number and location of weather stations used to force the model. The use of weather from "representative cities" reduces computational costs, but often fails to capture spatial heterogeneity that may be important for simulations aimed at understanding how building stocks respond to a changing climate (Fig. 1). We quantify the potential reduction in temperature and load biases from using an increasing number of weather stations across the western U.S., ranging from 8 to roughly 150. Using 8 stations results in an average absolute summertime temperature bias of 4.0°C. The mean absolute bias drops to 1.5°C using all available stations. Temperature biases of this magnitude translate to absolute summertime mean simulated load biases as high as 13.8%. Additionally, using only 8 representative weather stations can lead to a 20-40% bias of peak building loads under heat wave or cold snap conditions, a significant error for capacity expansion planners who may rely on these types of simulations. This analysis suggests that using 4 stations per climate zone may be sufficient for most purposes. Our novel approach, which requires no new EnergyPlus simulations, could be useful to other researchers designing or calibrating aggregate building model simulations - particularly those looking at

  3. Freeform Lens Design for Scattering Data with General Radiant Fields

    Science.gov (United States)

    Gutiérrez, Cristian E.; Sabra, Ahmad

    2018-05-01

    We show the existence of a lens, when its lower face is given, such that it refracts radiation emanating from a planar source, with a given field of directions, into the far field that preserves a given distribution of energies. Conditions are shown under which the lens obtained is physically realizable. It is shown that the upper face of the lens satisfies a pde of Monge-Ampère type.

  4. Super-radiant Smith–Purcell radiation from periodic line charges

    International Nuclear Information System (INIS)

    Li, D.; Hangyo, M.; Tsunawaki, Y.; Yang, Z.; Wei, Y.; Miyamoto, S; Asakawa, M.R.; Imasaki, K.

    2012-01-01

    Smith–Purcell radiation occurs when an electron passes close to the surface of a metallic grating. The radiation becomes coherent when the length of the electron bunch is smaller than the wavelength of the radiation. A train of periodic bunches can enhance the spectral intensity by changing the angular and spectral distribution of the radiation. This is called super-radiant Smith–Purcell radiation, and has been observed in experiments and particle-in-cell simulations. In this paper, we introduce a new method to study this effect by calculating the reflected waves of an incident evanescent wave from periodic line charges. The reflection coefficients are numerically computed, and the spectral distributions of the super-radiant radiation are demonstrated. These analytical results are in agreement with those obtained through part-in-cell simulations.

  5. Study of thermosiphon and radiant panel passive heating systems for metal buildings

    Energy Technology Data Exchange (ETDEWEB)

    Biehl, F.A.; Schnurr, N.M.; Wray, W.O.

    1983-01-01

    A study of passive-heating systems appropriate for use on metal buildings is being conducted at Los Alamos National Laboratory for the Naval Civil Engineering Laboratory, Port Hueneme, California. The systems selected for study were chosen on the basis of their appropriateness for retrofit applications, although they are also suitable for new construction: simple radiant panels that communicate directly with the building interior and a backflow thermosiphon that provides heat indirectly.

  6. Free of pollution gas - an utopia or attainable goal? Gas radiant burner with a small capacity

    International Nuclear Information System (INIS)

    Hofbauer, P.; Bornscheuer, W.

    1993-01-01

    The firm Viessmann has developed a gas radiant burner for boiler capacities up to 100 kN combusting gas with extremely low pollutant emissions. This is possible since from the reaction zone a considerable part of the combustion heat is delivered through radiation by means of a glowing special steel structure. The theoretical fundamentals are explained by means of considerations regarding the equilibrium and a reaction kinetic numerical model. (orig.) [de

  7. Sensitivity of the dispatch strategy in designing grid integrated hybrid energy systems

    OpenAIRE

    Perera, Amarasinghage Tharindu Dasun; Mauree, Dasaraden; Scartezzini, Jean-Louis; Nik, Vahid M.

    2016-01-01

    Integrating renewable energy technologies based on solar PV (SPV) and wind energy in the energy system is challenging due to time dependence of the energy potential for these energy sources. Grid integrated hybrid energy systems combining SPV panels, wind turbines, battery bank and internal combustion generators (ICG) can be used in this regard specially for distributed generation. Energy-economic dispatch strategy plays a vital role in managing the energy flow of the system. However, it is d...

  8. Effects of cryogen spray cooling and high radiant exposures on selective vascular injury during laser irradiation of human skin.

    Science.gov (United States)

    Tunnell, James W; Chang, David W; Johnston, Carol; Torres, Jorge H; Patrick, Charles W; Miller, Michael J; Thomsen, Sharon L; Anvari, Bahman

    2003-06-01

    Increasing radiant exposure offers a means to increase treatment efficacy during laser-mediated treatment of vascular lesions, such as port-wine stains; however, excessive radiant exposure decreases selective vascular injury due to increased heat generation within the epidermis and collateral damage to perivascular collagen. To determine if cryogen spray cooling could be used to maintain selective vascular injury (ie, prevent epidermal and perivascular collagen damage) when using high radiant exposures (16-30 J/cm2). Observational study. Academic hospital and research laboratory. Twenty women with normal abdominal skin (skin phototypes I-VI). Skin was irradiated with a pulsed dye laser (wavelength = 585 nm; pulse duration = 1.5 milliseconds; 5-mm-diameter spot) using various radiant exposures (8-30 J/cm2) without and with cryogen spray cooling (50- to 300-millisecond cryogen spurts). Hematoxylin-eosin-stained histologic sections from each irradiated site were examined for the degree of epidermal damage, maximum depth of red blood cell coagulation, and percentage of vessels containing perivascular collagen coagulation. Long cryogen spurt durations (>200 milliseconds) protected the epidermis in light-skinned individuals (skin phototypes I-IV) at the highest radiant exposure (30 J/cm2); however, epidermal protection could not be achieved in dark-skinned individuals (skin phototypes V-VI) even at the lowest radiant exposure (8 J/cm2). The red blood cell coagulation depth increased with increasing radiant exposure (to >2.5 mm for skin phototypes I-IV and to approximately 1.2 mm for skin phototypes V-VI). In addition, long cryogen spurt durations (>200 milliseconds) prevented perivascular collagen coagulation in all skin types. Cryogen spurt durations much longer than those currently used in therapy (>200 milliseconds) may be clinically useful for protecting the epidermis and perivascular tissues when using high radiant exposures during cutaneous laser therapies

  9. Inverse optimal design of the radiant heating in materials processing and manufacturing

    Science.gov (United States)

    Fedorov, A. G.; Lee, K. H.; Viskanta, R.

    1998-12-01

    Combined convective, conductive, and radiative heat transfer is analyzed during heating of a continuously moving load in the industrial radiant oven. A transient, quasi-three-dimensional model of heat transfer between a continuous load of parts moving inside an oven on a conveyor belt at a constant speed and an array of radiant heaters/burners placed inside the furnace enclosure is developed. The model accounts for radiative exchange between the heaters and the load, heat conduction in the load, and convective heat transfer between the moving load and oven environment. The thermal model developed has been used to construct a general framework for an inverse optimal design of an industrial oven as an example. In particular, the procedure based on the Levenberg-Marquardt nonlinear least squares optimization algorithm has been developed to obtain the optimal temperatures of the heaters/burners that need to be specified to achieve a prescribed temperature distribution of the surface of a load. The results of calculations for several sample cases are reported to illustrate the capabilities of the procedure developed for the optimal inverse design of an industrial radiant oven.

  10. Optimum pulse duration and radiant exposure for vascular laser therapy of dark port-wine skin: a theoretical study

    International Nuclear Information System (INIS)

    Tunnell, James W.; Anvari, Bahman; Wang, Lihong V.

    2003-01-01

    Laser therapy for cutaneous hypervascular malformations such as port-wine stain birthmarks is currently not feasible for dark-skinned individuals. We study the effects of pulse duration, radiant exposure, and cryogen spray cooling (CSC) on the thermal response of skin, using a Monte Carlo based optical-thermal model. Thermal injury to the epidermis decreases with increasing pulse duration during irradiation at a constant radiant exposure; however, maintaining vascular injury requires that the radiant exposure also increase. At short pulse durations, only a minimal increase in radiant exposure is necessary for a therapeutic effect to be achieved because thermal diffusion from the vessels is minimal. However, at longer pulse durations the radiant exposure must be greatly increased. There exists an optimum pulse duration at which minimal damage to the epidermis and significant injury within the targeted vasculature occur. For example, the model predicts optimum pulse durations of approximately 1.5, 6, and 20 ms for vessel diameters of 40, 80, and 120 μm, respectively. Optimization of laser pulse duration and radiant exposure in combination with CSC may offer a means to treat cutaneous lesions in dark-skinned individuals

  11. Energy sensitivity and variability analysis of Populus hybrid short-rotation plantations in northeastern United States. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bowersox, T.W.; Blankenhorn, P.R.

    1979-10-24

    Production of biomass by corn-like plantations has been demonstrated by a number of researchers. These forest analogs of agronomic cropping systems have the potential to yield substantially more biomass per unit area than traditional forests. Care is needed in choosing the appropriate sites, species, spacing, and harvesting strategies. Opportunities for increased yields have been suggested for fertilization and irrigation. Utilization of the biomass from these dense plantations for energy was the focus of this study. Although the amount of energy potential of the biomass is important, the energy output must be greater than the energy input for biomass to have a positive benefit to society. Further, in order to completely evaluate the net energy of the system it is necessary to examine the energy out-to-in ratios on the basis of usable energy (for example, usable heat, process steam and electricity), as well as all of the energies expended in producing, harvesting, transporting and processing the biomass. The objective of this study is to establish and analyze the energy inputs for selected management strategies in order to evaluate the sensitivity and variability of the energy inputs in the net energy analysis, and based on the net energy analysis to recommend a management strategy that minimizes energy inputs while maximizing biomass yield for short-rotation systems of Populus spp. in the northeastern United States.

  12. Increased light harvesting in dye-sensitized solar cells with energy relay dyes

    KAUST Repository

    Hardin, Brian E.; Hoke, Eric T.; Armstrong, Paul B.; Yum, Jun-Ho; Comte, Pascal; Torres, Tomá s; Fré chet, Jean M. J.; Nazeeruddin, Md Khaja; Grä tzel, Michael; McGehee, Michael D.

    2009-01-01

    Conventional dye-sensitized solar cells have excellent charge collection efficiencies, high open-circuit voltages and good fill factors. However, dye-sensitized solar cells do not completely absorb all of the photons from the visible and near

  13. Uncertainties propagation and global sensitivity analysis of the frequency response function of piezoelectric energy harvesters

    Science.gov (United States)

    Ruiz, Rafael O.; Meruane, Viviana

    2017-06-01

    The goal of this work is to describe a framework to propagate uncertainties in piezoelectric energy harvesters (PEHs). These uncertainties are related to the incomplete knowledge of the model parameters. The framework presented could be employed to conduct prior robust stochastic predictions. The prior analysis assumes a known probability density function for the uncertain variables and propagates the uncertainties to the output voltage. The framework is particularized to evaluate the behavior of the frequency response functions (FRFs) in PEHs, while its implementation is illustrated by the use of different unimorph and bimorph PEHs subjected to different scenarios: free of uncertainties, common uncertainties, and uncertainties as a product of imperfect clamping. The common variability associated with the PEH parameters are tabulated and reported. A global sensitivity analysis is conducted to identify the Sobol indices. Results indicate that the elastic modulus, density, and thickness of the piezoelectric layer are the most relevant parameters of the output variability. The importance of including the model parameter uncertainties in the estimation of the FRFs is revealed. In this sense, the present framework constitutes a powerful tool in the robust design and prediction of PEH performance.

  14. Levelized cost of energy and sensitivity analysis for the hydrogen-bromine flow battery

    Science.gov (United States)

    Singh, Nirala; McFarland, Eric W.

    2015-08-01

    The technoeconomics of the hydrogen-bromine flow battery are investigated. Using existing performance data the operating conditions were optimized to minimize the levelized cost of electricity using individual component costs for the flow battery stack and other system units. Several different configurations were evaluated including use of a bromine complexing agent to reduce membrane requirements. Sensitivity analysis of cost is used to identify the system elements most strongly influencing the economics. The stack lifetime and round-trip efficiency of the cell are identified as major factors on the levelized cost of electricity, along with capital components related to hydrogen storage, the bipolar plate, and the membrane. Assuming that an electrocatalyst and membrane with a lifetime of 2000 cycles can be identified, the lowest cost market entry system capital is 220 kWh-1 for a 4 h discharge system and for a charging energy cost of 0.04 kWh-1 the levelized cost of the electricity delivered is 0.40 kWh-1. With systems manufactured at large scales these costs are expected to be lower.

  15. Radiant heat loss, an unexploited path for heat stress reduction in shaded cattle.

    Science.gov (United States)

    Berman, A; Horovitz, T

    2012-06-01

    Reducing thermal radiation on shaded animals reduces heat stress independently of other means of stress relief. Radiant heat exchange was estimated as a function of climate, shade structure, and animal density. Body surface portion exposed to radiant sources in shaded environments was determined by geometrical relations to determine angles of view of radiation sources (roof underside, sky, sun-exposed ground, shaded ground) on the animal's surface. The relative representation of environment radiation sources on the body surface was determined. Animal thermal radiation balance was derived from radiant heat gained from radiation sources (including surrounding animals) and that lost from the animal surface. The animal environment was assumed to have different shade dimensions and temperatures. These were summed to the radiant heat balance of the cow. The data formed served to estimate the effect of changes in intensity of radiation sources, roof and shaded surface dimensions, and animal density on radiant heat balance (Rbal) of cattle. Roof height effect was expressed by effect of roof temperature on Rbal. Roof underside temperature (35 to 75°C) effect on Rbal was reduced by roof height. If roof height were 4m, an increase in its underside temperature from 35 to 75°C would increase mean Rbal from -63 to -2 W·m⁻², whereas if roof height were 10 m, Rbal would only increase from -99 to -88 W·m⁻². A hot ground temperature increase from 35 to 65°C reduced mean Rbal heat loss from -45 to 3 W·m⁻². Increasing the surface of the shaded area had only a minor effect on Rbal and on the effect of hot ground on Rbal. Increasing shade roof height reduced the effect of roof temperature on Rbal to minor levels when height was > 8m. Increasing the roof height from 4 to 10 m decreased Rbal from -32 to -94 W·m⁻². Increasing indirect radiation from 100 to 500 W·m⁻² was associated with an increase in Rbal from -135 to +23 W·m⁻². Their combined effects were lower

  16. Singlet Energy Transfer as the Main Pathway in the Sensitization of Near-Infrared Nd3+ Luminescence by Dansyl and Lissamine Dyes

    NARCIS (Netherlands)

    Hebbink, G.A.; Klink, S.I.; Grave, Lennart; Oude Alink, Patrick G.B.; van Veggel, F.C.J.M.

    2002-01-01

    general, sensitization of lanthanide(III) ions by organic sensitizers is regarded to take place via the triplet state of the sensitizers. Herein, we show that in dansyl- and lissamine-functionalized Nd3+ complexes energy transfer occurs from the singlet state of the sensitizers to the Nd3+ center.

  17. Sensitivity analysis of the energy demand of existing buildings based on the Danish Building and Dwelling Register (BBR)

    DEFF Research Database (Denmark)

    Nielsen, Anker; Wittchen, Kim Bjarne; Bertelsen, Niels Haldor

    2014-01-01

    performance certificate. The Danish Building Research Institute has described a method that can be applied for estimating the energy demand of dwellings. This is based on the information in the Danish Building and Dwelling Register and requirements in the Danish Building Regulations from the year......The EU Directive on the Energy Performance of Buildings requires that energy certification of buildings should be implemented in Denmark so that houses that are sold or let should have an energy performance certificate. The result is that only a small part of existing houses has an energy...... of construction of the house. The result is an estimate of the energy demand of each building with a variation. This makes it possible to make an automatic classification of all buildings. The paper discusses the uncertainties and makes a sensitivity analysis to find the important parameters. The variations...

  18. Sensitivity analysis of the energy demand of existing buildings based on the Danish Building and Dwelling Register

    DEFF Research Database (Denmark)

    Nielsen, Anker; Wittchen, Kim Bjarne; Bertelsen, Niels Haldor

    2014-01-01

    performance certificate. The Danish Building Research Institute has described a method that can be applied for estimating the energy demand of dwellings. This is based on the information in the Danish Building and Dwelling Register and requirements in the Danish Building Regulations from the year......The EU Directive on the Energy Performance of Buildings requires that energy certification of buildings should be implemented in Denmark so that houses that are sold or let should have an energy performance certificate. The result is that only a small part of existing houses has an energy...... of construction of the house. The result is an estimate of the energy demand of each building with a variation. This makes it possible to make an automatic classification of all buildings. The paper discusses the uncertainties and makes a sensitivity analysis to find the important parameters. The variations...

  19. The color of X-rays: Spectral X-ray computed tomography using energy sensitive pixel detectors

    NARCIS (Netherlands)

    Schioppa, E.J.

    2014-01-01

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray

  20. Approximate method in estimation sensitivity responses to variations in delayed neutron energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Shin, H. S.; Song, T. Y.; Park, W. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    Previous our numerical results in computing point kinetics equations show a possibility in developing approximations to estimate sensitivity responses of nuclear reactor. We recalculate sensitivity responses by maintaining the corrections with first order of sensitivity parameter. We present a method for computing sensitivity responses of nuclear reactor based on an approximation derived from point kinetics equations. Exploiting this approximation, we found that the first order approximation works to estimate variations in the time to reach peak power because of their linear dependence on a sensitivity parameter, and that there are errors in estimating the peak power in the first order approximation for larger sensitivity parameters. To confirm legitimacy of out approximation, these approximate results are compared with exact results obtained from out previous numerical study. 4 refs., 2 figs., 3 tabs. (Author)

  1. Approximate method in estimation sensitivity responses to variations in delayed neutron energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J; Shin, H S; Song, T Y; Park, W S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    Previous our numerical results in computing point kinetics equations show a possibility in developing approximations to estimate sensitivity responses of nuclear reactor. We recalculate sensitivity responses by maintaining the corrections with first order of sensitivity parameter. We present a method for computing sensitivity responses of nuclear reactor based on an approximation derived from point kinetics equations. Exploiting this approximation, we found that the first order approximation works to estimate variations in the time to reach peak power because of their linear dependence on a sensitivity parameter, and that there are errors in estimating the peak power in the first order approximation for larger sensitivity parameters. To confirm legitimacy of out approximation, these approximate results are compared with exact results obtained from out previous numerical study. 4 refs., 2 figs., 3 tabs. (Author)

  2. Modelling and Simulation of the Radiant Field in an Annular Heterogeneous Photoreactor Using a Four-Flux Model

    Directory of Open Access Journals (Sweden)

    O. Alvarado-Rolon

    2018-01-01

    Full Text Available This work focuses on modeling and simulating the absorption and scattering of radiation in a photocatalytic annular reactor. To achieve so, a model based on four fluxes (FFM of radiation in cylindrical coordinates to describe the radiant field is assessed. This model allows calculating the local volumetric rate energy absorption (LVREA profiles when the reaction space of the reactors is not a thin film. The obtained results were compared to radiation experimental data from other authors and with the results obtained by discrete ordinate method (DOM carried out with the Heat Transfer Module of Comsol Multiphysics® 4.4. The FFM showed a good agreement with the results of Monte Carlo method (MC and the six-flux model (SFM. Through this model, the LVREA is obtained, which is an important parameter to establish the reaction rate equation. In this study, the photocatalytic oxidation of benzyl alcohol to benzaldehyde was carried out, and the kinetic equation for this process was obtained. To perform the simulation, the commercial software COMSOL Multiphysics v. 4.4 was employed.

  3. Blanchability and sensory quality of large runner peanuts blanched in a radiant wall oven using infrared radiation.

    Science.gov (United States)

    Kettler, Katrina; Adhikari, Koushik; Singh, Rakesh K

    2017-10-01

    The main factors behind the growing popularity of infrared radiation heating in food processing include its energy efficiency, food quality retention and process speed, as well as the simplicity of equipment. Infrared radiation was employed as an alternative heat treatment to the conventional hot air method used in peanut blanching. The present study aimed to investigate the application of infrared heating for blanching peanuts and determine their blanchability and sensory quality under various processing conditions. The total blanchabilities (expressed as a percentage of total blanched) of the infrared radiation trials (radiant wall oven) at 343 °C for 1.5 min, 316 °C for 1.5 min, 288 °C for 1.5 min and 343 °C for 1 min did not differ significantly compared to the hot air control trials (impingement oven) at 100 °C for 30 and 20 min. All infrared trials had significantly lower (P infrared samples demonstrated the possible initiation of oxidation for the conventionally blanched sample at 18 weeks of storage at 24 °C (room temperature), with no indication of oxidation in the infrared samples stored at the same temperature. Infrared radiation peanut blanching is a viable alternative to conventional hot air blanching because of the shorter process time and longer shelf-life, as evident from the sensory storage study. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Investigation of sensitizer ions tunable-distribution in fluoride nanoparticles for efficient accretive three-center energy transfer

    International Nuclear Information System (INIS)

    Guo, Hui; Yu, Hua; Lao, Aiqing; Chang, Lifen; Gao, Shaohua; Zhang, Haoxiong; Zhou, Taojie; Zhao, Lijuan

    2014-01-01

    Cooperative upconversion luminescence of Yb 3+ -Yb 3+ couples and three-center energy transfer mechanisms have been deeply investigated in Yb 3+ doped and Yb 3+ -Tb 3+ co-doped β-PbF 2 nanoparticles. As sensitizer ions, the distribution of Yb 3+ ions, which is a key factor that affects the cooperative upconversion luminescence and three-center energy transfer processes, can be tuned by the structure of nanoparticles. Based on the three-center distributions in tetragonal PbYb x Tb 1−x F 5 nanoparticles, two different energy transfer models, Cooperative Energy Transfer (CET) and Accretive Energy Transfer (AET) mechanisms were established. Especially, AET model is observed and verified in this work for the first time. Experimental results obtained from photoluminescence spectroscopy study are in agreement with the theoretical calculations by applying rate equations in these models, strongly supporting the proposed three-center energy transfer mechanisms. The sensitization between Yb 3+ ions only existing in AET process can greatly improve the energy transfer rates, further to enhance the quantum efficiency. The results that the calculated luminescence quantum efficiency in AET quantum cutting process is much higher than that in CET process (134% and 104%, respectively), can benefit for further increasing the conversion efficiency of c-Si solar cells.

  5. Application of roof radiant burners in large pusher-type furnaces

    Directory of Open Access Journals (Sweden)

    A. Varga

    2009-07-01

    Full Text Available The paper deals with the application of roof flat-flame burners in the pusher-type steel slab reheating furnaces, after furnace reconstruction and replacement of conventional torch burners, with the objective to increase the efficiency of radiative heat transfer from the refractory roof to the charge. Based on observations and on measurements of the construction and process parameters under operating conditions, the advantages and disadvantages of indirectly oriented radiant heat transfer are analysed in relation to the heat transfer in classically fired furnaces.

  6. Comparison of radiant and convective cooling of office room: effect of workstation layout

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Rezgals, Lauris

    2014-01-01

    and compared. The room was furnished with two workstations, two laptops and two thermal manikins resembling occupants. Two heat load levels, design (65 W/m2) and usual (39 W/m2), were generated by adding heat from warm panels simulating solar radiation. Two set-ups were studied: occupants sitting......The impact of heat source location (room layout) on the thermal environment generated in a double office room with four cooling ventilation systems - overhead ventilation, chilled ceiling with overhead ventilation, active chilled beam and active chilled beam with radiant panels was measured...

  7. Three dimensional modelling and numerical analysis of super-radiant harmonic emission in FEL (optical klystron)

    International Nuclear Information System (INIS)

    Gover, A.; Friedman, A.; Luccio, A.

    1986-09-01

    A full 3-D Analysis of super-radiant (bunched electron) free electron harmonic radiation is presented. A generalized form of the FEL pendulum equation was derived and numerically solved. Both spectral and phasor formulation were developed to treat the radiation in the time domain. In space the radiation field is expanded in terms of either a set of free space discrete modes or plane waves. The numerical solutions reveal some new distinctly 3-D effects to which we provide a physical explanation. 12 refs., 9 figs., 5 tabs

  8. Perceived air quality, thermal comfort, and SBS symptoms at low air temperature and increased radiant temperature

    DEFF Research Database (Denmark)

    Toftum, Jørn; Reimann, Gregers Peter; Foldbjerg, P.

    2002-01-01

    source present at the low temperature. To maintain overall thermal neutrality, the low air temperature was partly compensated for by individually controlled radiant heating, and partly by allowing subjects to modify clothing insulation. A reduction of the air temperature from 23 deg.C to 18 deg.......C suggested an improvement of the perceived air quality, while no systematic effect on symptom intensity was observed. The overall indoor environment was evaluated equally acceptable at both temperatures due to local thermal discomfort at the low air temperature....

  9. Failure Investigation of Radiant Platen Superheater Tube of Thermal Power Plant Boiler

    Science.gov (United States)

    Ghosh, D.; Ray, S.; Mandal, A.; Roy, H.

    2015-04-01

    This paper highlights a case study of typical premature failure of a radiant platen superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement and chemical analysis, are conducted as part of the investigations. Apart from these, metallographic analysis and fractography are also conducted to ascertain the probable cause of failure. Finally it has been concluded that the premature failure of the super heater tube can be attributed to localized creep at high temperature. The corrective actions has also been suggested to avoid this type of failure in near future.

  10. Sensitivity of ion-induced sputtering to the radial distribution of energy transfers: A molecular dynamics study

    International Nuclear Information System (INIS)

    Mookerjee, S.; Khan, S. A.; Roy, A.; Beuve, M.; Toulemonde, M.

    2008-01-01

    Using different models for the deposition of energy on the lattice and a classical molecular dynamics approach to the subsequent transport, we evaluate how the details of the energy deposition model influence sputtering yield from a Lennard-Jones target irradiated with a MeV/u ion beam. Two energy deposition models are considered: a uniform, instantaneous deposition into a cylinder of fixed radius around the projectile ion track, used in earlier molecular dynamics and fluid dynamics simulations of sputtering yields; and an energy deposition distributed in time and space based on the formalism developed in the thermal spike model. The dependence of the sputtering yield on the total energy deposited on the target atoms is very sensitive to the energy deposition model. To clarify the origin of this strong dependence, we explore the role of the radial expansion of the electronic system prior to the transfer of its energy to the lattice. The results imply that observables such as the sputtering yield may be used as signatures of the fast electron-lattice energy transfer in the electronic energy-loss regime, and indicate the need for more experimental and theoretical investigations of these processes

  11. PhD Thesis Summary: Energy Efficient Multistage Zeolite Drying for Heat-Sensitive Products

    NARCIS (Netherlands)

    Djaeni, M.; Boxtel, van A.J.B.

    2009-01-01

    Although drying takes a significant part of the total energy usage in industry, currently available drying technology is often not efficient in terms of energy consumption. Generally, the energy efficiency for drying processes ranges between 20 and 60% depending on the dryer type and product to be

  12. Energy use pattern and sensitivity analysis of rice production: A case ...

    African Journals Online (AJOL)

    Rice is one of the most important crop supplying the world's population's food. Because of the direct links between energy and crop yields, and food supplies, rice energy analysis is essential. The objective of this study was to evaluate the energy balance between inputs and outputs of rice production in Guilane Province of ...

  13. Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes

    KAUST Repository

    Yum, Jun-Ho

    2009-11-23

    Running relay: Incorporating an energyrelay dye (ERD) into the hole transporter of a dye-sensitized solar cell increased power-conversion efficiency by 29% by extending light harvesting into the blue region. In the operating mechanism (see picture), absorption of red photons by the sensitizer transfers an electron into TiO2 and a hole into the electrolyte. Blue photons absorbed by the ERD are transferred by FRET to the sensitizer. Chemical Equitation Presentation © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

  14. Sensitivity analysis of recovery efficiency in high-temperature aquifer thermal energy storage with single well

    DEFF Research Database (Denmark)

    Jeon, Jun-Seo; Lee, Seung-Rae; Pasquinelli, Lisa

    2015-01-01

    ., it is getting more attention as these issues are gradually alleviated. In this study, a sensitivity analysis of recovery efficiency in two cases of HT-ATES system with a single well is conducted to select key parameters. For a fractional factorial design used to choose input parameters with uniformity...... with Smoothly Clopped Absolute Deviation Penalty, is utilized. Finally, the sensitivity analysis is performed based on the variation decomposition. According to the result of sensitivity analysis, the most important input variables are selected and confirmed to consider the interaction effects for each case...

  15. Sensitivity analysis and comparison of two methods of using heart rate to represent energy expenditure during walking.

    Science.gov (United States)

    Karimi, Mohammad Taghi

    2015-01-01

    Heart rate is an accurate and easy to use method to represent the energy expenditure during walking, based on physiological cost index (PCI). However, in some conditions the heart rate during walking does not reach to a steady state. Therefore, it is not possible to determine the energy expenditure by use of the PCI index. The total heart beat index (THBI) is a new method to solve the aforementioned problem. The aim of this research project was to find the sensitivity of both the physiological cost index (PCI) and total heart beat index (THBI). Fifteen normal subjects and ten patients with flatfoot disorder and two subjects with spinal cord injury were recruited in this research project. The PCI and THBI indexes were determined by use of heart beats with respect to walking speed and total distance walked, respectively. The sensitivity of PCI was more than that of THBI index in the three groups of subjects. Although the PCI and THBI indexes are easy to use and reliable parameters to represent the energy expenditure during walking, their sensitivity is not high to detect the influence of some orthotic interventions, such as use of insoles or using shoes on energy expenditure during walking.

  16. Literarily -radiant

    International Nuclear Information System (INIS)

    Halvorsen, Finn

    2008-01-01

    The article discusses radiation emissions from various every day appliances such as mobile telephones, wireless technologic aids, networks, radios and television sets. The health risks are mentioned (tk)

  17. Panchromatic Response in Solid-State Dye-Sensitized Solar Cells Containing Phosphorescent Energy Relay Dyes

    KAUST Repository

    Yum, Jun-Ho; Hardin, Brianâ E.; Moon, Soo-Jin; Baranoff, Etienne; Nà ¼ esch, Frank; McGehee, Michaelâ D.; Grà ¤ tzel, Michael; Nazeeruddin, Mohammadâ K.

    2009-01-01

    Running relay: Incorporating an energyrelay dye (ERD) into the hole transporter of a dye-sensitized solar cell increased power-conversion efficiency by 29% by extending light harvesting into the blue region. In the operating mechanism (see picture

  18. Forecast demand and supply of energy in the short period. Its forecast and sensitivity analysis until the 2004 fiscal year

    International Nuclear Information System (INIS)

    Yamashita, Yukari; Suehiro, Shigeru; Yanagisawa, Akira; Imaeda, Toshiya; Komiyama, Ryouichi

    2004-01-01

    The object of this report is forecast demand and supply of energy in the 2003 and 2004 fiscal year, which correspond to a business recovery period. A macroeconomics model and an energy supply model are calculated by changing actual GNP, crude oil rate and the rerunning period of nuclear power plants. The calculation results are compared with the reference case. In the first chapter, forecast Japanese economy until the 2004 fiscal year is explained. In the second chapter, the results of energy demand and supply in the first chapter are investigated by the home supply and consumption of primary energy (the reference case) and each energy resources. The sensitivity analytical results of actual GNP, consumer price index, home supply of the primary energy, energy expenditure, sales account of electric power, city gas and fuel by five cases such as reference, increase and decrease of oil cost and increase and decrease of economic growth are investigated. The effects of fast rerunning period of nuclear power plant and atmosphere temperature on these above demands of energies are indicated in the third chapter. (S.Y.)

  19. First Principle Modelling of Materials and Processes in Dye-Sensitized Photoanodes for Solar Energy and Solar Fuels

    Directory of Open Access Journals (Sweden)

    Mariachiara Pastore

    2017-01-01

    Full Text Available In the context of solar energy exploitation, dye-sensitized solar cells and dye-sensitized photoelectrosynthetic cells offer the promise of low-cost sunlight conversion and storage, respectively. In this perspective we discuss the main successes and limitations of modern computational methodologies, ranging from hybrid and long-range corrected density functionals, GW approaches and multi-reference perturbation theories, in describing the electronic and optical properties of isolated components and complex interfaces relevant to these devices. While computational modelling has had a crucial role in the development of the dye-sensitized solar cells technology, the theoretical characterization of the interface structure and interfacial processes in water splitting devices is still at its infancy, especially concerning the electron and hole transfer phenomena. Quantitative analysis of interfacial charge separation and recombination reactions in multiple metal-oxide/dye/catalyst heterointerfaces, thus, undoubtedly represents the compelling challenge in the field of modern computational material science.

  20. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

    2014-08-01

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

  1. Efficiency for close geometries and extended sources of a p-type germanium detector with low-energy sensitivity

    International Nuclear Information System (INIS)

    Keyser, R.M.; Twomey, T.R.

    2007-01-01

    Typically, germanium detectors designed to have good sensitivity to low-energy photons and good efficiency at high energies are constructed from n-type crystals with a boron-implanted outer contact. These detectors usually exhibit inferior resolution and peak shape compared to ones made from p-type crystals. To overcome the resolution and peak-shape deficiencies, a new method of construction of a germanium detector element was developed. This has resulted in a gamma-ray detector with high sensitivity to photon energies from 14 keV to 2 MeV, while maintaining good resolution and peak shape over this energy range. Efficiency measurements, done according to the draft IEEE 325-2004 standard, show efficiencies typical of a GMX or n-type detector at low energies. The detectors are of large diameter suitable for counting extended samples such as filter papers. The Gaussian peak shape and good resolution typical of a GEM or p-type are maintained for the high count rates and peak separation needed for activation analysis. (author)

  2. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity

    DEFF Research Database (Denmark)

    Shi, Hao; Munk, Alexander; Nielsen, Thomas Svava

    2018-01-01

    -GlcNAcylation, in skeletal muscle. METHODS: We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body...... of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated...

  3. Graphene oxide quantum dot-sensitized porous titanium dioxide microsphere: Visible-light-driven photocatalyst based on energy band engineering.

    Science.gov (United States)

    Zhang, Yu; Qi, Fuyuan; Li, Ying; Zhou, Xin; Sun, Hongfeng; Zhang, Wei; Liu, Daliang; Song, Xi-Ming

    2017-07-15

    We report a novel graphene oxide quantum dot (GOQD)-sensitized porous TiO 2 microsphere for efficient photoelectric conversion. Electro-chemical analysis along with the Mott-Schottky equation reveals conductivity type and energy band structure of the two semiconductors. Based on their energy band structures, visible light-induced electrons can transfer from the p-type GOQD to the n-type TiO 2 . Enhanced photocurrent and photocatalytic activity in visible light further confirm the enhanced separation of electrons and holes in the nanocomposite. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Dye-sensitized solar cell with energy storage function through PVDF/ZnO nanocomposite counter electrode.

    Science.gov (United States)

    Zhang, Xi; Huang, Xuezhen; Li, Chensha; Jiang, Hongrui

    2013-08-14

    Dye-sensitized solar cells with an energy storage function are demonstrated by modifying its counter electrode with a poly (vinylidene fluoride)/ZnO nanowire array composite. This simplex device could still function as an ordinary solar cell with a steady photocurrent output even after being fully charged. An energy storage density of 2.14 C g(-1) is achieved, while simultaneously a 3.70% photo-to-electric conversion efficiency is maintained. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Energy consumption in industry, 1990 - 2035 - Scenarios I to IV for various sensitivities

    International Nuclear Information System (INIS)

    Baumgartner, W.; Ebert, O.; Weber, F.

    2006-12-01

    This comprehensive, illustrated report for the Swiss Federal Office of Energy (SFOE) takes a look at the results of a study with respect to industrial energy consumption which provided scenarios for future Swiss energy consumption. Four scenarios were elaborated: Continuation of present policy, increased co-operation between state and industry, more ambitious energy policy priorities and a scenario with even more ambitious goals - the so-called '2000 Watt Society'. For each of these scenarios several variants and a selection of sub-variants were defined, including increased prices, higher gross domestic product GDP, warmer climate and various carbon levies. The specific energy consumption of 16 different industrial sectors is examined and the effects of the various scenarios on several factors are considered. Data and results are presented in tabular and graphical form. Various measures that could influence energy consumption are listed and discussed, as are the modelling methods employed and the plausibility of the results obtained

  6. The climate impact of energy peat utilisation - comparison and sensitivity analysis of Finnish and Swedish results

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, Kristina; Kirkinen, Johanna; Savolainen, Ilkka

    2006-06-15

    The climate impact of energy peat utilisation have been studied both in Finland by VTT Technical Research Centre and in Sweden by IVL Swedish Environmental Research Institute Ltd. The main objective of this study is to compare the results of earlier studies by VTT and IVL and to perform a sensitivity analysis of previous and new results. The scientific approach of the two studies is very similar. The climate impact of peat utilisation is considered from a life-cycle point of view by taking into account all phases of the peat utilisation chain. Peat reserves can be both sinks and sources of greenhouse gas emissions as well as there are both uptake and emissions of greenhouse gases during the utilisation chain. The net impact of the utilisation chain is assessed as the climate impact due to the utilisation chain minus the climate impact of non-utilisation chain. The instantaneous radiative forcing and accumulated radiative forcing are used in both studies as the indicator of the climate impact. Radiative forcing is calculated on the basis of the concentration changes due to emissions and uptake of greenhouse gases. The differences in the models for calculating concentrations and radiative forcing are minor. There are some differences in the definitions and boundaries of the considered peat utilisation chains, although the differences in the results due to differences in the chain definitions are small. The main reason for the differences in results between the two studies is differences in emission (and uptake) estimates for the after-treatment phase and the non-utilisation chain. Both Swedish and Finnish studies show that the use of cultivated peatland for energy peat utilisation results in lower climate impact than using coal (within 100 years). Both studies show that the use of pristine mires for peat production will result in larger climate impact than the use of already drained peatlands. The climate impact of peat utilisation chains where fens and forestry

  7. The climate impact of energy peat utilisation - comparison and sensitivity analysis of Finnish and Swedish results

    International Nuclear Information System (INIS)

    Holmgren, Kristina; Kirkinen, Johanna; Savolainen, Ilkka

    2006-06-01

    The climate impact of energy peat utilisation have been studied both in Finland by VTT Technical Research Centre and in Sweden by IVL Swedish Environmental Research Institute Ltd. The main objective of this study is to compare the results of earlier studies by VTT and IVL and to perform a sensitivity analysis of previous and new results. The scientific approach of the two studies is very similar. The climate impact of peat utilisation is considered from a life-cycle point of view by taking into account all phases of the peat utilisation chain. Peat reserves can be both sinks and sources of greenhouse gas emissions as well as there are both uptake and emissions of greenhouse gases during the utilisation chain. The net impact of the utilisation chain is assessed as the climate impact due to the utilisation chain minus the climate impact of non-utilisation chain. The instantaneous radiative forcing and accumulated radiative forcing are used in both studies as the indicator of the climate impact. Radiative forcing is calculated on the basis of the concentration changes due to emissions and uptake of greenhouse gases. The differences in the models for calculating concentrations and radiative forcing are minor. There are some differences in the definitions and boundaries of the considered peat utilisation chains, although the differences in the results due to differences in the chain definitions are small. The main reason for the differences in results between the two studies is differences in emission (and uptake) estimates for the after-treatment phase and the non-utilisation chain. Both Swedish and Finnish studies show that the use of cultivated peatland for energy peat utilisation results in lower climate impact than using coal (within 100 years). Both studies show that the use of pristine mires for peat production will result in larger climate impact than the use of already drained peatlands. The climate impact of peat utilisation chains where fens and forestry

  8. Solar radiation and cooling load calculation for radiant systems: Definition and evaluation of the Direct Solar Load

    DEFF Research Database (Denmark)

    Causone, Francesco; Corgnati, Stefano P.; Filippi, Marco

    2010-01-01

    The study of the influence of solar radiation on the built environment is a basic issue in building physics and currently it is extremely important because glazed envelopes are widely used in contemporary architecture. In the present study, the removal of solar heat gains by radiant cooling systems...... is investigated. Particular attention is given to the portion of solar radiation converted to cooling load, without taking part in thermal absorption phenomena due to the thermal mass of the room. This specific component of the cooling load is defined as the Direct Solar Load. A simplified procedure to correctly...... calculate the magnitude of the Direct Solar Load in cooling load calculations is proposed and it is implemented with the Heat Balance method and the Radiant Time Series method. The F ratio of the solar heat gains directly converted to cooling load, in the case of a low thermal mass radiant ceiling...

  9. Use of local convective and radiant cooling at warm environment: effect on thermal comfort and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Duszyk, Marcin; Krejcirikova, Barbora

    2012-01-01

    The effect of four local cooling devices (convective, radiant and combined) on thermal comfort and perceived air quality reported by 24 subjects at 28 ˚C and 50% RH was studied. The devices studied were: (1) desk cooling fan, (2) personalized ventilation providing clean air, (3) two radiant panels...... and (4) two radiant panels with one panel equipped with small fans. A reference condition without cooling was tested as well. The response of the subjects to the exposed conditions was collected by computerized questionnaires. The cooling devices significantly (pthermal comfort...... compared to without cooling. The acceptability of the thermal environment was similar for all cooling devices. The acceptability of air movement and PAQ increased when the local cooling methods were used. The best results were achieved with personalized ventilation and cooling fan. The improvement in PAQ...

  10. Dynamic behavior of radiant cooling system based on capillary tubes in walls made of high performance concrete

    DEFF Research Database (Denmark)

    Mikeska, Tomás; Svendsen, Svend

    2015-01-01

    elements made of high performance concrete. The influence of the radiant cooling system on the indoor climate of the test room in terms of the air, surface and operative temperatures and velocities was investigated.The results show that the temperature of the room air can be kept in a comfortable range...... using cooling water for the radiant cooling system with a temperature only about 4K lower than the temperature of the room air. The relatively high speed reaction of the designed system is a result of the slim construction of the sandwich wall elements made of high performance concrete. (C) 2015...... the small amount of fresh air required by standards to provide a healthy indoor environment.This paper reports on experimental analyses evaluating the dynamic behavior of a test room equipped with a radiant cooling system composed of plastic capillary tubes integrated into the inner layer of sandwich wall...

  11. Effect of radiant heat transfer on the performance of high temperature heat exchanger

    International Nuclear Information System (INIS)

    Mori, Yasuo; Hijikata, Kunio; Yamada, Yukio

    1975-01-01

    The development of high temperature gas-cooled reactors is motivated by the consideration of the application of nuclear heat for industrial uses or direct steelmaking and chemical processes. For these purposes, reliable and efficient heat exchangers should be developed. This report analyzes the effect of radiant heat transfer on the performance of high temperature heat exchangers. The heat transfer model is as follows: the channel composed with two parallel adiabatic walls is divided with one parallel plate between the walls. Non-radiative fluid flows in the two separated channels in opposite direction. Heat transfer equations for this system were obtained, and these equations were solved by some approximate method and numerical analysis. The effect of radiation on heat transfer became larger as the radiant heat transfer between two walls was larger. In the heat exchangers of counter flow type, the thermal efficiency is controlled with three parameters, namely radiation-convection parameter, Stanton number and temperature difference. The thermal efficiency was larger with the increase of these parameters. (Iwase, T.)

  12. Numerical Simulation of the Thermal Process in a W-Shape Radiant Tube Burner

    Science.gov (United States)

    Wang, Yi; Li, Jiyong; Zhang, Lifeng; Ling, Haitao; Li, Yanlong

    2014-07-01

    In the current work, three-dimensional mathematical models were developed for the heat transfer and combustion in a W-shape radiant tube burner (RTB) and were solved using Fluent software (ANSYS Inc., Canonsburg, PA). The standard k- ɛ model, nonpremixed combustion model, and the discrete ordinate model were used for the modeling of turbulence, combustion, and radiant heat transfer, respectively. In addition, the NO x postprocessor was used for the prediction of the NO emission. A corresponding experiment was performed for the validation of mathematical models. The details of fluid flow, heat transfer, and combustion in the RTB were investigated. Moreover, the effect of the air/fuel ratio (A/F) and air staging on the performance of RTB was studied with the reference indexes including heat efficiency, maximum temperature difference on shell wall, and NO emission at the outlet. The results indicated that a low speed zone formed in the vicinity of the combustion chamber outlet, and there were two relative high-temperature zones in the RTB, one in combustion chamber that favored the flame stability and the other from the main flame in the RTB. The maximum temperature difference was 95.48 K. As the A/F increased, the temperature increased first and then decreased. As the ratio of the primary to secondary air increased, the recirculation zone at the outlet of combustion chamber shrank gradually to disappear, and the flame length was longer and the temperature in flame decreased correspondingly.

  13. Radiative heat exchange of a meteor body in the approximation of radiant heat conduction

    International Nuclear Information System (INIS)

    Pilyugin, N.N.; Chernova, T.A.

    1986-01-01

    The problem of the thermal and dynamic destruction of large meteor bodies moving in planetary atmospheres is fundamental for the clarification of optical observations and anomalous phenomena in the atmosphere, the determination of the physicochemical properties of meteoroids, and the explanation of the fall of remnants of large meteorites. Therefore, it is important to calculate the coefficient of radiant heat exchange (which is the determining factor under these conditions) for large meteor bodies as they move with hypersonic velocities in an atmosphere. The solution of this problem enables one to find the ablation of a meteorite during its aerodynamic heating and to determine the initial conditions for the solution of problems of the breakup of large bodies and their subsequent motion and ablation. Hypersonic flow of an inviscid gas stream over an axisymmetric blunt body is analyzed with allowance for radiative transfer in a thick-thin approximation. The gas-dynamic problem of the flow of an optically thick gas over a large body is solved by the method of asymptotic joined expansions, using a hypersonic approximation and local self-similarity. An equation is obtained for the coefficient of radiant heat exchange and the peculiarities of such heat exchange for meteor bodies of large size are noted

  14. Non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner

    Energy Technology Data Exchange (ETDEWEB)

    Catapan, R.C.; Costa, M. [Mechanical Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal); Oliveira, A.A.M. [Mechanical Engineering Department, Federal University of Santa Catarina, Campus Universitario Professor Joao David Ferreira Lima, 88040-900 Florianopolis, SC (Brazil)

    2011-01-15

    Industrial processes where the heating of large surfaces is required lead to the possibility of using large surface porous radiant burners. This causes additional temperature uniformity problems, since it is increasingly difficult to evenly distribute the reactant mixture over a large burner surface while retaining its stability and keeping low pollutant emissions. In order to allow for larger surface area burners, a non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner using a single large injection hole is proposed and analyzed for a double-layered burner operating in open and closed hot (laboratory-scale furnace, with temperature-controlled, isothermal walls) environments. In both environments, local mean temperatures within the porous medium have been measured. For lower reactant flow rate and ambient temperature the flame shape is conical and anchored at the rim of the injection hole. As the volumetric flow rate or furnace temperature is raised, the flame undergoes a transition to a plane flame stabilized near the external burner surface. However, the stability range envelope remains the same in both regimes. (author)

  15. High-temperature process heat reactor with solid coolant and radiant heat exchange

    International Nuclear Information System (INIS)

    Alekseev, A.M.; Bulkin, Yu.M.; Vasil'ev, S.I.

    1984-01-01

    The high temperature graphite reactor with the solid coolant in which heat transfer is realized by radiant heat exchange is described. Neutron-physical and thermal-technological features of the reactor are considered. The reactor vessel is made of sheet carbon steel in the form of a sealed rectangular annular box. The moderator is a set of graphite blocks mounted as rows of arched laying Between the moderator rows the solid coolant annular layings made of graphite blocks with high temperature nuclear fuel in the form of coated microparticles are placed. The coolant layings are mounted onto ring movable platforms, the continuous rotation of which is realizod by special electric drives. Each part of the graphite coolant laying consecutively passes through the reactor core neutron cut-off zones and technological zone. In the core the graphite is heated up to the temperature of 1350 deg C sufficient for effective radiant heat transfer. In the neutron cut-off zone the chain reaction and further graphite heating are stopped. In the technological zone the graphite transfers the accumulated heat to the walls of technological channels in which the working medium moves. The described reactor is supposed to be used in nuclear-chemical complex for ammonia production by the method of methane steam catalytic conversion

  16. Development of the method of sensitivity improvement of photographic film applicable in high-energy physics experiments

    International Nuclear Information System (INIS)

    Gokieli, V.D.

    1986-01-01

    Sensitivity improvement of photographic films applicable in high-energy physics experiments is discussed. To get optimal operating conditions for photographic film PT-6 to check its physical properties on electron beam and in cosmic rays a set for film samples exposure in visible spectrum and in X-rays is constructed. The set includes a start up device, high-voltage pulse oscillator, shapers, a chamber for the sample exposure, voltage divider and electron oscillograph

  17. Sensitivity of the two-dimensional shearless mixing layer to the initial turbulent kinetic energy and integral length scale

    Science.gov (United States)

    Fathali, M.; Deshiri, M. Khoshnami

    2016-04-01

    The shearless mixing layer is generated from the interaction of two homogeneous isotropic turbulence (HIT) fields with different integral scales ℓ1 and ℓ2 and different turbulent kinetic energies E1 and E2. In this study, the sensitivity of temporal evolutions of two-dimensional, incompressible shearless mixing layers to the parametric variations of ℓ1/ℓ2 and E1/E2 is investigated. The sensitivity methodology is based on the nonintrusive approach; using direct numerical simulation and generalized polynomial chaos expansion. The analysis is carried out at Reℓ 1=90 for the high-energy HIT region and different integral length scale ratios 1 /4 ≤ℓ1/ℓ2≤4 and turbulent kinetic energy ratios 1 ≤E1/E2≤30 . It is found that the most influential parameter on the variability of the mixing layer evolution is the turbulent kinetic energy while variations of the integral length scale show a negligible influence on the flow field variability. A significant level of anisotropy and intermittency is observed in both large and small scales. In particular, it is found that large scales have higher levels of intermittency and sensitivity to the variations of ℓ1/ℓ2 and E1/E2 compared to the small scales. Reconstructed response surfaces of the flow field intermittency and the turbulent penetration depth show monotonic dependence on ℓ1/ℓ2 and E1/E2 . The mixing layer growth rate and the mixing efficiency both show sensitive dependence on the initial condition parameters. However, the probability density function of these quantities shows relatively small solution variations in response to the variations of the initial condition parameters.

  18. Performance Modeling of Mimosa pudica Extract as a Sensitizer for Solar Energy Conversion

    Directory of Open Access Journals (Sweden)

    M. B. Shitta

    2016-01-01

    Full Text Available An organic material is proposed as a sustainable sensitizer and a replacement for the synthetic sensitizer in a dye-sensitized solar cell technology. Using the liquid extract from the leaf of a plant called Mimosa pudica (M. pudica as a sensitizer, the performance characteristics of the extract of M. pudica are investigated. The photo-anode of each of the solar cell sample is passivated with a self-assembly monolayer (SAM from a set of four materials, including alumina, formic acid, gelatine, and oxidized starch. Three sets of five samples of an M. pudica–based solar cell are produced, with the fifth sample used as the control experiment. Each of the solar cell samples has an active area of 0.3848cm2. A two-dimensional finite volume method (FVM is used to model the transport of ions within the monolayer of the solar cell. The performance of the experimentally fabricated solar cells compares qualitatively with the ones obtained from the literature and the simulated solar cells. The highest efficiency of 3% is obtained from the use of the extract as a sensitizer. It is anticipated that the comparison of the performance characteristics with further research on the concentration of M. pudica extract will enhance the development of a reliable and competitive organic solar cell. It is also recommended that further research should be carried out on the concentration of the extract and electrolyte used in this study for a possible improved performance of the cell.

  19. Daytime relapse of the mean radiant temperature based on the six-directional method under unobstructed solar radiation.

    Science.gov (United States)

    Kántor, Noémi; Lin, Tzu-Ping; Matzarakis, Andreas

    2014-09-01

    This study contributes to the knowledge about the capabilities of the popular "six-directional method" describing the radiation fields outdoors. In Taiwan, measurements were carried out with three orthogonally placed net radiometers to determine the mean radiant temperature (T(mrt)). The short- and long-wave radiation flux densities from the six perpendicular directions were recorded in the daylight hours of 12 days. During unobstructed direct irradiation, a specific daytime relapse was found in the temporal course of the T(mrt) values referring to the reference shapes of a standing man and also of a sphere. This relapse can be related to the short-wave fluxes reaching the body from the lateral directions. Through deeper analysis, an instrumental shortcoming of the six-directional technique was discovered. The pyranometer pairs of the same net radiometer have a 10-15-min long "blind spot" when the sun beams are nearly perpendicular to them. The blind-spot period is supposed to be shorter with steeper solar azimuth curve on the daylight period. This means that the locations with lower geographical latitude, and the summertime measurements, are affected less by this instrumental problem. A methodological shortcoming of the six-directional technique was also demonstrated. Namely, the sum of the short-wave flux densities from the lateral directions is sensitive to the orientation of the radiometers, and therefore by deviating from the original directions, the T(mrt) decrease on clear sunny days will occur in different times and will be different in extent.

  20. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources.

    Science.gov (United States)

    Ganem, Joseph; Bowman, Steven R

    2013-11-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.

  1. Morteros acumuladores con parafinas microencapsuladas para el aprovechamiento de la energía solar en suelos radiantes

    OpenAIRE

    Zetola Vargas, Vicente Andrés

    2013-01-01

    Esta Tesis plantea la pregunta de si el uso de morteros con parafinas microencapsuladas combinado con colectores solares térmicos puede reducir el consumo de energías convencionales, en un sistema tradicional de suelo radiante. Se pretende contribuir al conocimiento acerca del efecto que produce en el edificio, el calor latente acumulado en suelos radiantes, utilizando morteros de cemento Portland con material de cambio de fase (PCM), en conjunto con la energía solar. Para cumplir con este pr...

  2. Thermal environment in simulated offices with convective and radiant cooling systems under cooling (summer) mode of operation

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Kostov, Kalin

    2016-01-01

    The thermal environment in a double office room and in a six-person meeting room obtained with chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and four desk partition-mounted local radiant cooling panels with mixing...... calculated. Manikin-based equivalent temperature (MBET) was determined by using two thermal manikins to identify the impact of the local thermal conditions generated by the studied systems on occupants' thermal perception. The results revealed that the differences in the thermal conditions achieved...

  3. Control characteristics and heating performance analysis of automatic thermostatic valves for radiant slab heating system in residential apartments

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byung-Cheon [Department of Building Equipment System Engineering, Kyungwon University, Seongnam City (Korea); Song, Jae-Yeob [Graduate School, Building Equipment System Engineering, Kyungwon University, Seongnam City (Korea)

    2010-04-15

    Computer simulations and experiments are carried out to research the control characteristics and heating performances for a radiant slab heating system with automatic thermostatic valves in residential apartments. An electrical equivalent R-C circuit is applied to analyze the unsteady heat transfer in the house. In addition, the radiant heat transfer between slabs, ceilings and walls in the room is evaluated by enclosure analysis method. Results of heating performance and control characteristics were determined from control methods such as automatic thermostatic valves, room air temperature-sensing method, water-temperature-sensing method, proportional control method, and On-Off control method. (author)

  4. Sensitive turn-on fluorescent detection of tartrazine based on fluorescence resonance energy transfer.

    Science.gov (United States)

    Huang, Sheng Tian; Shi, Yan; Li, Nian Bing; Luo, Hong Qun

    2012-01-18

    We introduce a sensitive, rapid, label-free and general fluorescent method for the determination of tartrazine by competitive binding to reduced graphene oxide (rGO) against fluorescein, and the fluorescence recovery upon fluorescein desorption from rGO provides a quantitative readout for tartrazine, giving a detection limit of 0.53 ng mL(-1).

  5. The color of X-rays Spectral X-ray computed tomography using energy sensitive pixel detectors

    CERN Document Server

    Schioppa, Enrico Junior

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray fluorescence. The charge transport properties of the sensor are characterized using a high energy beam of charged particles at the Super Proton Synchrotron (SPS) at the European Center for Nuclear Research (CERN). Monochromatic X-rays at the European Synchrotron Radiation Facility (ESRF) are used to determined the energy response function. These data are used to implement a physics-based CT projection operator that accounts for the transmission of the source spectrum through the sample and detector effects. Based on this projection operator, an iterative spectral CT reconstruction algorithm is developed by extending an Ordered Subset Expectation Maximization (OSEM) method. Subsequently, a maximum likelihood based algo...

  6. Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity.

    Science.gov (United States)

    Hart, James L; Lang, Andrew C; Leff, Asher C; Longo, Paolo; Trevor, Colin; Twesten, Ray D; Taheri, Mitra L

    2017-08-15

    In many cases, electron counting with direct detection sensors offers improved resolution, lower noise, and higher pixel density compared to conventional, indirect detection sensors for electron microscopy applications. Direct detection technology has previously been utilized, with great success, for imaging and diffraction, but potential advantages for spectroscopy remain unexplored. Here we compare the performance of a direct detection sensor operated in counting mode and an indirect detection sensor (scintillator/fiber-optic/CCD) for electron energy-loss spectroscopy. Clear improvements in measured detective quantum efficiency and combined energy resolution/energy field-of-view are offered by counting mode direct detection, showing promise for efficient spectrum imaging, low-dose mapping of beam-sensitive specimens, trace element analysis, and time-resolved spectroscopy. Despite the limited counting rate imposed by the readout electronics, we show that both core-loss and low-loss spectral acquisition are practical. These developments will benefit biologists, chemists, physicists, and materials scientists alike.

  7. Radiant heat transfers in turbojet engines. Two applications, three levels of modeling; Transferts radiatifs dans les foyers de turboreacteurs. Deux applications, trois niveaux de modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J L; Desaulty, M [SNECMA, Centre de Villaroche, 77 - Moissy-Cramayel (France); Taine, J [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France)

    1997-12-31

    Several applications linked with the dimensioning of turbojet engines require the use of modeling of radiant heat transfers. Two different applications are presented in this study: the modeling of heat transfers in the main combustion chamber, and modeling of the infrared signature of the post-combustion chamber of a military engine. In the first application, two types of radiant heat transfer modeling are presented: a global modeling based on empirical considerations and used in rapid pre-dimensioning methods, and a modeling based on a grey gases concept and combined to a ray shooting type technique allowing the determination of local radiant heat flux values. In the second application, a specific modeling of the radiant heat flux is used in the framework of a ray shooting method. Each model represents a different level of successive approximations of the radiant heat transfer adapted to flow specificities and to the performance requested. (J.S.) 16 refs.

  8. Radiant heat transfers in turbojet engines. Two applications, three levels of modeling; Transferts radiatifs dans les foyers de turboreacteurs. Deux applications, trois niveaux de modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, J.L.; Desaulty, M. [SNECMA, Centre de Villaroche, 77 - Moissy-Cramayel (France); Taine, J. [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France)

    1996-12-31

    Several applications linked with the dimensioning of turbojet engines require the use of modeling of radiant heat transfers. Two different applications are presented in this study: the modeling of heat transfers in the main combustion chamber, and modeling of the infrared signature of the post-combustion chamber of a military engine. In the first application, two types of radiant heat transfer modeling are presented: a global modeling based on empirical considerations and used in rapid pre-dimensioning methods, and a modeling based on a grey gases concept and combined to a ray shooting type technique allowing the determination of local radiant heat flux values. In the second application, a specific modeling of the radiant heat flux is used in the framework of a ray shooting method. Each model represents a different level of successive approximations of the radiant heat transfer adapted to flow specificities and to the performance requested. (J.S.) 16 refs.

  9. Smart Control of Air Climatization System in Function on the Values of Mean Local Radiant Temperature

    Directory of Open Access Journals (Sweden)

    Giuseppe Cannistraro

    2015-08-01

    Full Text Available The hygrothermal comfort indoor conditions are defined as: those environmental conditions in which an individual exposed, expresses a state of satisfaction. These conditions cannot always be achieved anywhere in an optimal way and economically; in some cases they can be obtained only in work environments specific areas. This could be explained because of air conditioning systems designing is generally performed both on the basis of the fundamental parameters’ average values, such as temperature, velocity and relative humidity (Ta, va e φa and derived parameters such as operating temperature and mean radiant one (Top eTmr. However, in some specific cases - large open-spaces or in case of radiating surfaces - the descriptors defining indoor comfort conditions, based on average values, do not provide the optimum values required during the air conditioning systems design phase. This is largely due to the variability of real environmental parameters values compared to the average ones taken as input in the calculation. The results obtained in previous scientific papers on the thermal comfort have been the driving element of this work. It offers a simple, original and clever way of thinking about the new domotic systems for air conditioning, based on the “local mean radiant temperature.” This is a very important parameter when one wants to analyze comfort in environments characterized by the presence of radiating surfaces, as will be seen hereinafter. In order to take into account the effects of radiative exchanges in the open-space workplace, where any occupant may find themselves in different temperature and humidity conditions, this paper proposes an action on the domotic climate control, with ducts and vents air distribution placed in different zones. Comparisons were performed between the parameters values representing the punctual thermal comfort, with the Predicted Mean Vote PMV, in an environment marked by radiating surfaces (i

  10. A multivariate relationship for the impact sensitivities of energetic N-nitrocompounds based on bond dissociation energy.

    Science.gov (United States)

    Li, Jinshan

    2010-02-15

    The ZPE-corrected N-NO(2) bond dissociation energies (BDEs(ZPE)) of a series of model N-nitrocompounds and typical energetic N-nitrocompounds have been calculated using density functional theory methods. Computed results show that using the 6-31G** basis set the UB3LYP calculated BDE(ZPE) is similar to the B3PW91 but is less than the UB3P86 and that for both UB3P86 and UB3PW91 methods the 6-31G(**) calculated BDE(ZPE) is close to the 6-31++G(**). For the series of model N-nitrocompounds it is drawn from the NBO analysis that at the UB3LYP/6-31G(**) level the order of BDE(ZPE) is not only in line with that of bond order but also with that of the energy gap between N-NO(2) bond and antibond orbitals. For the typical energetic N-nitrocompounds the impact sensitivity is strongly related to the BDE(ZPE) indeed, and based on the BDEs(ZPE) calculated at different density functional theory levels this work has established a good multivariate correlation of impact sensitivity with molecular parameters, which provides a method to address the sensitivity problem.

  11. A sensitive search for dark energy through chameleon scalar fields using neutron interferometry

    International Nuclear Information System (INIS)

    Snow, W M; Li, K; Skavysh, V; Arif, M; Huber, M; Heacock, B; Young, A R; Pushin, D

    2015-01-01

    The physical origin of the dark energy, which is postulated to cause the accelerated expansion rate of the universe, is one of the major open questions of cosmology. A large subset of theories postulate the existence of a scalar field with a nonlinear coupling to matter chosen so that the effective range and/or strength of the field is greatly suppressed unless the source is placed in vacuum. We describe a measurement using neutron interferometry which can place a stringent upper bound on chameleon fields proposed as a solution to the problem of the origin of dark energy of the universe in the regime with a strongly-nolinear coupling term. In combination with other experiments searching for exotic short-range forces and laser-based measurements, slow neutron experiments are capable of eliminating this and many similar types of scalar-field-based dark energy models by laboratory experiments

  12. Sensitivity of energy and exergy performances of heating and cooling systems to auxiliary components

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2017-01-01

    . Different forms of energy (electricity and heat) are used in heating and cooling systems, and therefore, a holistic approach to system design and analysis is needed. In particular, distribution systems use electricity as a direct input to pumps and fans, and to other components. Therefore, exergy concept......Heating and cooling systems in buildings consist of three main subsystems: heating/cooling plant, distribution system, and indoor terminal unit. The choice of indoor terminal unit determines the characteristics of the distribution system and the heating and cooling plants that can be used...... should be used in design and analysis of the whole heating and cooling systems, in addition to the energy analysis. In this study, water-based (floor heating and cooling, and radiator heating) and air-based (air heating and cooling) heating and cooling systems were compared in terms of their energy use...

  13. Complementarity among climate related energy sources: Sensitivity study to climate characteristics across Europe

    Science.gov (United States)

    Francois, Baptiste; Hingray, Benoit; Creutin, Jean-Dominique; Raynaud, Damien; Borga, Marco; Vautard, Robert

    2015-04-01

    Climate related energy sources like solar-power, wind-power and hydro-power are important contributors to the transitions to a low-carbon economy. Past studies, mainly based on solar and wind powers, showed that the power from such energy sources fluctuates in time and space following their driving climatic variables. However, when combining different energy sources together, their intermittent feature is smoothed, resulting to lower time variability of the produced power and to lower storage capacity required for balancing. In this study, we consider solar, wind and hydro energy sources in a 100% renewable Europe using a set of 12 regions following two climate transects, the first one going from the Northern regions (Norway, Finland) to the Southern ones (Greece, Andalucía, Tunisia) and the second one going from the oceanic climate (West of France, Galicia) to the continental one (Romania, Belorussia). For each of those regions, we combine wind and solar irradiance data from the Weather Research and Forecasting Model (Vautard et al., 2014), temperature data from the European Climate Assessment & Dataset (Haylock et al., 2008) and runoff from the Global Runoff Data Center (GRDC, 1999) for estimating solar-power, wind-power, run-of-the-river hydro-power and the electricity demand over a time period of 30 years. The use of this set of 12 regions across Europe allows integrating knowledge about time and space variability for each different energy sources. We then assess the optimal share of each energy sources, aiming to decrease the time variability of the regional energy balance at different time scales as well as the energy storage required for balancing within each region. We also evaluate how energy transport among regions contributes for smoothing out both the energy balance and the storage requirement. The strengths of this study are i) to handle with run-of-the-river hydro power in addition to wind and solar energy sources and ii) to carry out this analysis

  14. The sensitivity of LaBr{sub 3}:Ce scintillation detectors to low energy neutrons: Measurement and Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tain, J.L., E-mail: tain@ific.uv.es [Instituto de Física Corpuscular, CSIC–Universidad de Valencia, Apdo. Correos 22085, E-46071 Valencia (Spain); Agramunt, J.; Algora, A. [Instituto de Física Corpuscular, CSIC–Universidad de Valencia, Apdo. Correos 22085, E-46071 Valencia (Spain); Aprahamian, A. [University of Notre Dame, Department of Physics, IN 46556, Notre Dame (United States); Cano-Ott, D. [Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, E-28040 Madrid (Spain); Fraile, L.M. [Universidad Complutense, Grupo de Fisica Nuclear, CEI Moncloa, E-28040 Madrid (Spain); Guerrero, C. [CERN, Geneva (Switzerland); Jordan, M.D. [Instituto de Física Corpuscular, CSIC–Universidad de Valencia, Apdo. Correos 22085, E-46071 Valencia (Spain); Mach, H. [University of Notre Dame, Department of Physics, IN 46556, Notre Dame (United States); Universidad Complutense, Grupo de Fisica Nuclear, CEI Moncloa, E-28040 Madrid (Spain); Martinez, T.; Mendoza, E. [Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, E-28040 Madrid (Spain); Mosconi, M.; Nolte, R. [Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig (Germany)

    2015-02-21

    The neutron sensitivity of a cylindrical ⊘1.5 in.×1.5 in. LaBr{sub 3}:Ce scintillation detector was measured using quasi-monoenergetic neutron beams in the energy range from 40 keV to 2.5 MeV. In this energy range the detector is sensitive to γ-rays generated in neutron inelastic and capture processes. The experimental energy response was compared with Monte Carlo simulations performed with the Geant4 simulation toolkit using the so-called High Precision Neutron Models. These models rely on relevant information stored in evaluated nuclear data libraries. The performance of the Geant4 Neutron Data Library as well as several standard nuclear data libraries was investigated. In the latter case this was made possible by the use of a conversion tool that allowed the direct use of the data from other libraries in Geant4. Overall it was found that there was good agreement with experiment for some of the neutron data bases like ENDF/B-VII.0 or JENDL-3.3 but not with the others such as ENDF/B-VI.8 or JEFF-3.1.

  15. Flexible Semitransparent Energy Harvester with High Pressure Sensitivity and Power Density Based on Laterally Aligned PZT Single-Crystal Nanowires.

    Science.gov (United States)

    Zhao, Quan-Liang; He, Guang-Ping; Di, Jie-Jian; Song, Wei-Li; Hou, Zhi-Ling; Tan, Pei-Pei; Wang, Da-Wei; Cao, Mao-Sheng

    2017-07-26

    A flexible semitransparent energy harvester is assembled based on laterally aligned Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) single-crystal nanowires (NWs). Such a harvester presents the highest open-circuit voltage and a stable area power density of up to 10 V and 0.27 μW/cm 2 , respectively. A high pressure sensitivity of 0.14 V/kPa is obtained in the dynamic pressure sensing, much larger than the values reported in other energy harvesters based on piezoelectric single-crystal NWs. Furthermore, theoretical and finite element analyses also confirm that the piezoelectric voltage constant g 33 of PZT NWs is competitive to the lead-based bulk single crystals and ceramics, and the enhanced pressure sensitivity and power density are substantially linked to the flexible structure with laterally aligned PZT NWs. The energy harvester in this work holds great potential in flexible and transparent sensing and self-powered systems.

  16. Monte Carlo modeling of a High-Sensitivity MOSFET dosimeter for low- and medium-energy photon sources

    International Nuclear Information System (INIS)

    Wang, Brian; Kim, C.-H.; Xu, X. George

    2004-01-01

    Metal-oxide-semiconductor field effect transistor (MOSFET) dosimeters are increasingly utilized in radiation therapy and diagnostic radiology. While it is difficult to characterize the dosimeter responses for monoenergetic sources by experiments, this paper reports a detailed Monte Carlo simulation model of the High-Sensitivity MOSFET dosimeter using Monte Carlo N-Particle (MCNP) 4C. A dose estimator method was used to calculate the dose in the extremely thin sensitive volume. Efforts were made to validate the MCNP model using three experiments: (1) comparison of the simulated dose with the measurement of a Cs-137 source, (2) comparison of the simulated dose with analytical values, and (3) comparison of the simulated energy dependence with theoretical values. Our simulation results show that the MOSFET dosimeter has a maximum response at about 40 keV of photon energy. The energy dependence curve is also found to agree with the predicted value from theory within statistical uncertainties. The angular dependence study shows that the MOSFET dosimeter has a higher response (about 8%) when photons come from the epoxy side, compared with the kapton side for the Cs-137 source

  17. Sensitivity analysis of efficiency thermal energy storage on selected rock mass and grout parameters using design of experiment method

    International Nuclear Information System (INIS)

    Wołoszyn, Jerzy; Gołaś, Andrzej

    2014-01-01

    Highlights: • Paper propose a new methodology to sensitivity study of underground thermal storage. • Using MDF model and DOE technique significantly shorter of calculations time. • Calculation of one time step was equal to approximately 57 s. • Sensitivity study cover five thermo-physical parameters. • Conductivity of rock mass and grout material have a significant impact on efficiency. - Abstract: The aim of this study was to investigate the influence of selected parameters on the efficiency of underground thermal energy storage. In this paper, besides thermal conductivity, the effect of such parameters as specific heat, density of the rock mass, thermal conductivity and specific heat of grout material was investigated. Implementation of this objective requires the use of an efficient computational method. The aim of the research was achieved by using a new numerical model, Multi Degree of Freedom (MDF), as developed by the authors and Design of Experiment (DoE) techniques with a response surface. The presented methodology can significantly reduce the time that is needed for research and to determine the effect of various parameters on the efficiency of underground thermal energy storage. Preliminary results of the research confirmed that thermal conductivity of the rock mass has the greatest impact on the efficiency of underground thermal energy storage, and that other parameters also play quite significant role

  18. Where the Solar system meets the solar neighbourhood: patterns in the distribution of radiants of observed hyperbolic minor bodies

    Science.gov (United States)

    de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl; Aarseth, Sverre J.

    2018-05-01

    Observed hyperbolic minor bodies might have an interstellar origin, but they can be natives of the Solar system as well. Fly-bys with the known planets or the Sun may result in the hyperbolic ejection of an originally bound minor body; in addition, members of the Oort cloud could be forced to follow inbound hyperbolic paths as a result of secular perturbations induced by the Galactic disc or, less frequently, due to impulsive interactions with passing stars. These four processes must leave distinctive signatures in the distribution of radiants of observed hyperbolic objects, both in terms of coordinates and velocity. Here, we perform a systematic numerical exploration of the past orbital evolution of known hyperbolic minor bodies using a full N-body approach and statistical analyses to study their radiants. Our results confirm the theoretical expectations that strong anisotropies are present in the data. We also identify a statistically significant overdensity of high-speed radiants towards the constellation of Gemini that could be due to the closest and most recent known fly-by of a star to the Solar system, that of the so-called Scholz's star. In addition to and besides 1I/2017 U1 (`Oumuamua), we single out eight candidate interstellar comets based on their radiants' velocities.

  19. A METHOD FOR EVALUATION OF NON-UNIFORM RADIANT-CONVECTIVE LOAD ON HUMAN BODY DURING MENTAL WORK

    Directory of Open Access Journals (Sweden)

    Lenka Prokšová Zuská

    2017-10-01

    Full Text Available The objective of this study was to develop a documentation for the amendment of the microclimatic part of the Czech Government Regulation, particularly in a non-uniform radiant-convective load evaluation. Changes in regulation were made based on experimental data obtained on a group of experimental individuals in a climatic chamber. One of the objectives of the climatic chamber experiments was to evaluate whether there was a possibility to use an alternative method, which utilizes a new value – stereotemperature, for the assessment. A group of 24 women was exposed to a non-uniform radiant-convective load in a climatic chamber for 1 hour during their computer work. Measurements were divided according to the globe temperature into 3 stages. The physical parameters of air were continuously measured: the air temperature, globe temperature, air velocity, radiant temperature, relative humidity, stereotemperature and physiological parameters. Thermal sensations of experimental subjects were expressed in the seven-point scale according to EN ISO 7730. The thermal sensation correlated very well with the difference of stereotemperature and the globe temperature. The stereotemperature correlated very well with the radiant temperature. In this work, the composed equations were used to develop the limit values for the thermal stress evaluation in the uniform and non-uniform thermal environment at workplaces. It is possible to determine how the body of an exposed person perceives the non-uniform climatic conditions in the indoor environment, by adding the stereotemperature to government regulations.

  20. Experimental study including subjective evaluations of mixing and displacement ventilation combined with radiant floor heating/cooling system

    DEFF Research Database (Denmark)

    Krajcik, Michal; Tomasi, Roberta; Simone, Angela

    2013-01-01

    Sixteen subjects evaluated the indoor environment in four experiments with different combinations of ventilation systems and radiant heating/cooling systems. In the first two tests, the simulated residential room was equipped either by a mixing ventilation system supplying warm air for space heat...

  1. Radiant heating tests of several liquid metal heat-pipe sandwich panels

    International Nuclear Information System (INIS)

    Camarda, C.J.; Basiulis, A.

    1983-08-01

    Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors

  2. The Super-Radiant Mechanism and the Widths of Compound Nuclear States

    International Nuclear Information System (INIS)

    Auerbach, N

    2012-01-01

    In the introduction I will present the theory of the super-radiant mechanism as applied to various phenomena. I will then discuss the statistics of resonance widths in a many-body Fermi system with open decay channels. Depending on the strength of the coupling to the continuum such systems show deviations from the standard Porter-Thomas distribution. The deviations result from the process of increasing interaction of the intrinsic states through the common decay channels. In the limit of very strong coupling this leads to super-radiance. The results I will present are important for the understanding of recent experimental data concerning the width distribution of compound neutron resonances in nuclei.

  3. A critical examination of the validity of simplified models for radiant heat transfer analysis.

    Science.gov (United States)

    Toor, J. S.; Viskanta, R.

    1972-01-01

    Examination of the directional effects of the simplified models by comparing the experimental data with the predictions based on simple and more detailed models for the radiation characteristics of surfaces. Analytical results indicate that the constant property diffuse and specular models do not yield the upper and lower bounds on local radiant heat flux. In general, the constant property specular analysis yields higher values of irradiation than the constant property diffuse analysis. A diffuse surface in the enclosure appears to destroy the effect of specularity of the other surfaces. Semigray and gray analyses predict the irradiation reasonably well provided that the directional properties and the specularity of the surfaces are taken into account. The uniform and nonuniform radiosity diffuse models are in satisfactory agreement with each other.

  4. Thermal Texture Selection and Correction for Building Facade Inspection Based on Thermal Radiant Characteristics

    Science.gov (United States)

    Lin, D.; Jarzabek-Rychard, M.; Schneider, D.; Maas, H.-G.

    2018-05-01

    An automatic building façade thermal texture mapping approach, using uncooled thermal camera data, is proposed in this paper. First, a shutter-less radiometric thermal camera calibration method is implemented to remove the large offset deviations caused by changing ambient environment. Then, a 3D façade model is generated from a RGB image sequence using structure-from-motion (SfM) techniques. Subsequently, for each triangle in the 3D model, the optimal texture is selected by taking into consideration local image scale, object incident angle, image viewing angle as well as occlusions. Afterwards, the selected textures can be further corrected using thermal radiant characteristics. Finally, the Gauss filter outperforms the voted texture strategy at the seams smoothing and thus for instance helping to reduce the false alarm rate in façade thermal leakages detection. Our approach is evaluated on a building row façade located at Dresden, Germany.

  5. Radiant thinking and the use of the mind map in nurse practitioner education.

    Science.gov (United States)

    Spencer, Julie R; Anderson, Kelley M; Ellis, Kathryn K

    2013-05-01

    The concept of radiant thinking, which led to the concept of mind mapping, promotes all aspects of the brain working in synergy, with thought beginning from a central point. The mind map, which is a graphical technique to improve creative thinking and knowledge attainment, utilizes colors, images, codes, and dimensions to amplify and enhance key ideas. This technique augments the visualization of relationships and links between concepts, which aids in information acquisition, data retention, and overall comprehension. Faculty can promote students' use of the technique for brainstorming, organizing ideas, taking notes, learning collaboratively, presenting, and studying. These applications can be used in problem-based learning, developing plans of care, health promotion activities, synthesizing disease processes, and forming differential diagnoses. Mind mapping is a creative way for students to engage in a unique method of learning that can expand memory recall and help create a new environment for processing information. Copyright 2013, SLACK Incorporated.

  6. Revenue maximisation and storage utilisation for the Ocean Grazer wave energy converter : A sensitivity analysis

    NARCIS (Netherlands)

    Barradas Berglind, Jose de Jesus; Dijkstra, H.T.; Wei, Yanji; van Rooij, Marijn; Meijer, Harmen; Prins, Wouter; Vakis, Antonis I.; Jayawardhana, Bayu

    2018-01-01

    This paper presents a revenue maximisation strategy for market integration of a novel wave energy converter (WEC), part of the Ocean Grazer platform. In particular, we evaluate and validate the aforementioned revenue maximisation model predictive control (MPC) strategy through extensive simulations

  7. Renewable Energy Deployment in Colorado and the West: Extended Policy Sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, Clayton P. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stoll, Brady [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mooney, Meghan E. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-11

    The Resource Planning Model is a capacity expansion model designed for a regional power system, such as a utility service territory, state, or balancing authority. We apply a geospatial analysis to Resource Planning Model renewable energy capacity expansion results to understand the likelihood of renewable development on various lands within Colorado.

  8. Renewable Energy Deployment in Colorado and the West: A Modeling Sensitivity and GIS Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, Clayton [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Haase, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melius, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mooney, Meghan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-01

    The Resource Planning Model is a capacity expansion model designed for a regional power system, such as a utility service territory, state, or balancing authority. We apply a geospatial analysis to Resource Planning Model renewable energy capacity expansion results to understand the likelihood of renewable development on various lands within Colorado.

  9. Intermediate Energies for Nuclear Astrophysics and the Development of a Position Sensitive Microstrip Detector System

    Energy Technology Data Exchange (ETDEWEB)

    Sobotka, Lee G. [Washington Univ., St. Louis, MO (United States); Blackmon, J. [Louisiana State Univ., Baton Rouge, LA (United States); Bertulani, C. [Texas A & M Univ., College Station, TX (United States)

    2015-12-30

    The chemical elements are made at astrophysical sites through a sequence of nuclear reactions often involving unstable nuclei. The overarching aim of this project is to construct a system that allows for the inverse process of nucleosynthesis (i.e. breakup of heavier nuclei into lighter ones) to be studied in high efficiency. The specific problem to be overcome with this grant is inadequate dynamic range and (triggering) threshold to detect the products of the breakup which include both heavy ions (with large energy and large deposited energy in a detector system) and protons (with little energy and deposited energy.) Early on in the grant we provided both TAMU and RIKEN (the site of the eventual experiments) with working systems based on the existing technology. This technology could be used with either an external preamplifier that was to be designed and fabricated by our RIKEN collaborators or upgraded by replacing the existing chip with one we designed. The RIKEN external preamplifier project never can to completion but our revised chip was designed, fabricated, used in a test experiment and performs as required.

  10. Energy expenditure and bone formation share a common sensitivity to AP-1 transcription in the hypothalamus

    DEFF Research Database (Denmark)

    Rowe, Glenn C; Vialou, Vincent; Sato, Kazusa

    2012-01-01

    ) whether these effects were due to antagonism to AP1. Our results show that stereotactic injection of an adeno-associated virus vector to restrict overexpression of ¿FosB to the ventral hypothalamus of wildtype mice induced a profound increase in both energy expenditure and bone formation and bone mass...

  11. Fusion burn equilibria sensitive to the ratio between energy and helium transport

    NARCIS (Netherlands)

    Jakobs, M.A.; Lopes Cardozo, N.J.; Jaspers, R.J.E.

    2014-01-01

    An analysis of the burn equilibria of fusion reactors of the tokamak family is presented. The global (zero-dimensional) analysis is self-consistent in that it takes into account the dependence of the energy confinement on the variables of the burning plasma, such as temperature and density.

  12. Sensitivity of an autoradiographic film to ionizing radiation of different types and energies

    International Nuclear Information System (INIS)

    Kras, A.B.; Lutzke-Birk, A.; Kalicki, A.

    1984-01-01

    The ORWO-AF3 autoradiographic film has been studied with regard to its sensitivity to beta radiation (E/sub max/ = 0.155 and 0.306 MeV, resp.), gamma radiation of more than 1 MeV and K/sub α/ and K/sub β/ radiation of about 5.9 KeV. The obtained data can be used for the correction of depth distribution profiles if elements are labelled with radioisotopes emitting mixed radiation, e.g., beta and gamma radiation

  13. Influence of the beam energy on the sensitivity of the PIXE methods applied to the detection of Pb in air

    International Nuclear Information System (INIS)

    Caridi, Aurora; Debray, Mario; Hojman, Daniel; Kreiner, A.J.; Santos, Daniel

    1989-01-01

    The air pollution by lead at the downtown area of Buenos Aires city was studied applying the PIXE method. The samples were collected at different seasons of the year. An appreciable reduction of the Pb content was observed on holidays and in summer when there is a lot less of cars in the streets. The influence of the beam energy on the Bremsstrahlung background was studied in order to optimize the sensitivity of the method. The C-12 beam energy was varied from 54 MeV to 30 MeV. The maximum Bremsstrahlung energy of secondary electrons decreased from 10 keV to 5.5 keV. Simultaneously the background radiation was appreciably reduced in the whole spectrum for the lowest beam energy whereas the values for the cross section of X ray production in the Pb L shell were no substantially modified. It is concluded that it is possible to analyze those elements whose characteristic X rays have an energy larger than 5.5 keV. (Author) [es

  14. The development in energy consumption, price sensitivity and allocation of power; Utviklingen i stroemforbruket, prisfoelsomheten og stroemmarkedet

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Bente

    2012-11-15

    This report discusses the development in energy consumption in households, service industries, primary industries and other small industries, both in the short run (hour to hour, day by day) and over a longer period, back to the 1960. The report discusses the main driving forces behind this development, as well as the demand price sensitivity and its role in the allocation of power between customers and over time. The analysis shows that for the short-term fluctuations in consumption from hour to hour, the temperature of the main driver, while price changes have less influence. For the long-term trend, however, changes in relative energy prices are a key driver, along with population and income growth. Even if the short term price sensitivity is low for end-users, it may still have a big influence on the short-term clearance of the market (from hour to hour), as it affects the short term price sensitivity in the spot market. The long-term price elasticities in the retail markets is more important for determining consumption over a time period, and is important in allocating energy resources over time in the spot market, e.g. over the winter months. Empirical analyses show that the Norwegian demand responds to price changes, both in the short term in the spot market and in the longer term in the retail market. It takes a few weeks before the price signals from spot market affects the consumer prise for most end-users, but by then, most of the price signal has been transmitted. It also follows from the analysis that it is important to let prices vary between regions of the market in the event of scarcity, so customers in regions where shortages occur, have the incentive to change their demand. The faster these price signals affect consumer prices, the more efficient the market will be able to handle a tight power situation.(Author)

  15. Rhodanine dyes for dye-sensitized solar cells : spectroscopy, energy levels and photovoltaic performance.

    Science.gov (United States)

    Marinado, Tannia; Hagberg, Daniel P; Hedlund, Maria; Edvinsson, Tomas; Johansson, Erik M J; Boschloo, Gerrit; Rensmo, Håkan; Brinck, Tore; Sun, Licheng; Hagfeldt, Anders

    2009-01-07

    Three new sensitizers for photoelectrochemical solar cells were synthesized consisting of a triphenylamine donor, a rhodanine-3-acetic acid acceptor and a polyene connection. The conjugation length was systematically increased, which resulted in two effects: first, it led to a red-shift of the optical absorption of the dyes, resulting in an improved spectral overlap with the solar spectrum. Secondly, the oxidation potential decreased systematically. The excited state levels were, however, calculated to be nearly stationary. The experimental trends were in excellent agreement with density functional theory (DFT) computations. The photovoltaic performance of this set of dyes as sensitizers in mesoporous TiO2 solar cells was investigated using electrolytes containing the iodide/triiodide redox couple. The dye with the best absorption characteristics showed the poorest solar cell efficiency, due to losses by recombination of electrons in TiO2 with triiodide. Addition of 4-tert butylpyridine to the electrolyte led to a strongly reduced photocurrent for all dyes due to a reduced electron injection efficiency, caused by a 0.15 V negative shift of the TiO2 conduction band potential.

  16. Research on the Improvement of a Natural Gas Fired Burner for the CHP Application in a Central Heating Boiler using Radiant Burner Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bieleveld, T.

    2010-08-15

    These days, the reduction of CO2 emissions from combustion devices is one of the main priorities for each design improvement. For the domestic use of the central heating boiler, Microgen Engine Corporation produces free piston Stirling engines for the Combined Heat and Power (CHP) application in these central heating boilers (Dutch: 'HRe ketel'). With CHP, the generation of electricity and heat are combined to increase overall efficiency, as heat is generally a waste product from the combustion to electric generation process. In this application, the Stirling engine, which can be defined as an external combustion engine, is heated by a natural gas fired engine-burner and cooled by a coolant flow. The heat transfer into the engine is converted into mechanical work and a heat flux from the engine. The mechanical work is used to produce electricity via a linear alternator. Heat in the flue gasses from the engine-burner is reused in a secondary burner and condensing heat exchanger. The coolant flow from the engine, after passing the secondary burner, is used for heating purposes. The heat transfer from engine-burner to the Stirling engine is analyzed and via several motivations it is found that it is favorable to improve fuel to electric conversion efficiency, for which the heat transfer efficiency of the engine-burner to the Stirling engine should be improved, as the engine design is not to be altered. From an initially developed linear free piston Stirling engine model and measurements performed at Microgen Engine Corporation, St. Petersborough, (UK), the engine power demand and engine-burner performance are found. The results are used to visualize the current energy flows of the Stirling engine and engine burner subsystem. The heat transfer to the engine is analyzed to find possible heat transfer improvements. It is concluded that heat transfer from the engine-burner to the engine can be approved if the flue losses due to convective heat transfer are

  17. Newborns' temperature submitted to radiant heat and to the Top Maternal device at birth.

    Science.gov (United States)

    Albuquerque, Rosemeire Sartori de; Mariani, Corintio; Bersusa, Ana Aparecida Sanches; Dias, Vanessa Macedo; Silva, Maria Izabel Mota da

    2016-08-08

    to compare the axillar temperatures of newborns that are put immediately after birth in skin-to-skin contact under the Top Maternal device, as compared to those in a radiant heat crib. comparatives observational study of the case-control type about temperature of 60 babies born at the Obstetric Center and Normal Delivery Center of a public hospital of the municipality of Sao Paulo, being them: 29 receiving assistance in heated crib and 31 in skin-to skin contact, shielded by a cotton tissue placed on mother's thorax, called Top Maternal. the temperature of the babies of the skin-to-skin contact group presented higher values in a larger share of the time measures verified, as compared to those that were placed in radiant heat crib, independently from the place of birth. Differences between the two groups were not statistically significant. the study contributes to generate new knowledge, supporting the idea of keeping babies with their mothers immediately after birth protected with the Maternal Top, without harming their wellbeing, as it keeps the axillar temperature in recommendable levels. comparar a temperatura axilar dos recém-nascidos acomodados - imediatamente após o nascimento - em contato pele a pele, sob o Top Maternal, em berço de calor radiante. estudo comparativo observacional do tipo Caso-Controle sobre a temperatura de 60 bebês nascidos no Centro Obstétrico e Centro de Parto Normal de um hospital público do município de São Paulo, sendo: 29 assistidos em berço aquecido e 31 em contato pele a pele, protegidos por uma malha de algodão colocada sobre o tórax da mãe, denominada Top Maternal. a temperatura dos bebês do grupo de contato pele a pele teve maior valor na maioria dos tempos verificados comparada à dos que foram colocados em berço de calor radiante, independentemente do local de nascimento. A diferença entre os grupos não foi estatisticamente significante. o estudo contribui com a geração de um novo conhecimento que sustenta a

  18. Mapping temperature and radiant geothermal heat flux anomalies in the Yellowstone geothermal system using ASTER thermal infrared data

    Science.gov (United States)

    Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.

  19. Solar ultraviolet and the occupational radiant exposure of Queensland school teachers: A comparative study between teaching classifications and behavior patterns.

    Science.gov (United States)

    Downs, Nathan J; Harrison, Simone L; Chavez, Daniel R Garzon; Parisi, Alfio V

    2016-05-01

    Classroom teachers located in Queensland, Australia are exposed to high levels of ambient solar ultraviolet as part of the occupational requirement to provide supervision of children during lunch and break times. We investigated the relationship between periods of outdoor occupational radiant exposure and available ambient solar radiation across different teaching classifications and schools relative to the daily occupational solar ultraviolet radiation (HICNIRP) protection standard of 30J/m(2). Self-reported daily sun exposure habits (n=480) and personal radiant exposures were monitored using calibrated polysulphone dosimeters (n=474) in 57 teaching staff from 6 different schools located in tropical north and southern Queensland. Daily radiant exposure patterns among teaching groups were compared to the ambient UV-Index. Personal sun exposures were stratified among teaching classifications, school location, school ownership (government vs non-government), and type (primary vs secondary). Median daily radiant exposures were 15J/m(2) and 5J/m(2)HICNIRP for schools located in northern and southern Queensland respectively. Of the 474 analyzed dosimeter-days, 23.0% were found to exceed the solar radiation protection standard, with the highest prevalence found among physical education teachers (57.4% dosimeter-days), followed by teacher aides (22.6% dosimeter-days) and classroom teachers (18.1% dosimeter-days). In Queensland, peak outdoor exposure times of teaching staff correspond with periods of extreme UV-Index. The daily occupational HICNIRP radiant exposure standard was exceeded in all schools and in all teaching classifications. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Parameter Estimation and Sensitivity Analysis of an Urban Surface Energy Balance Parameterization at a Tropical Suburban Site

    Science.gov (United States)

    Harshan, S.; Roth, M.; Velasco, E.

    2014-12-01

    Forecasting of the urban weather and climate is of great importance as our cities become more populated and considering the combined effects of global warming and local land use changes which make urban inhabitants more vulnerable to e.g. heat waves and flash floods. In meso/global scale models, urban parameterization schemes are used to represent the urban effects. However, these schemes require a large set of input parameters related to urban morphological and thermal properties. Obtaining all these parameters through direct measurements are usually not feasible. A number of studies have reported on parameter estimation and sensitivity analysis to adjust and determine the most influential parameters for land surface schemes in non-urban areas. Similar work for urban areas is scarce, in particular studies on urban parameterization schemes in tropical cities have so far not been reported. In order to address above issues, the town energy balance (TEB) urban parameterization scheme (part of the SURFEX land surface modeling system) was subjected to a sensitivity and optimization/parameter estimation experiment at a suburban site in, tropical Singapore. The sensitivity analysis was carried out as a screening test to identify the most sensitive or influential parameters. Thereafter, an optimization/parameter estimation experiment was performed to calibrate the input parameter. The sensitivity experiment was based on the "improved Sobol's global variance decomposition method" . The analysis showed that parameters related to road, roof and soil moisture have significant influence on the performance of the model. The optimization/parameter estimation experiment was performed using the AMALGM (a multi-algorithm genetically adaptive multi-objective method) evolutionary algorithm. The experiment showed a remarkable improvement compared to the simulations using the default parameter set. The calibrated parameters from this optimization experiment can be used for further model

  1. Performance evaluation and parameter sensitivity of energy-harvesting shock absorbers on different vehicles

    Science.gov (United States)

    Guo, Sijing; Liu, Yilun; Xu, Lin; Guo, Xuexun; Zuo, Lei

    2016-07-01

    Traditional shock absorbers provide favourable ride comfort and road handling by dissipating the suspension vibration energy into heat waste. In order to harvest this dissipated energy and improve the vehicle fuel efficiency, many energy-harvesting shock absorbers (EHSAs) have been proposed in recent years. Among them, two types of EHSAs have attracted much attention. One is a traditional EHSA which converts the oscillatory vibration into bidirectional rotation using rack-pinion, ball-screw or other mechanisms. The other EHSA is equipped with a mechanical motion rectifier (MMR) that transforms the bidirectional vibration into unidirectional rotation. Hereinafter, they are referred to as NonMMR-EHSA and MMR-EHSA, respectively. This paper compares their performances with the corresponding traditional shock absorber by using closed-form analysis and numerical simulations on various types of vehicles, including passenger cars, buses and trucks. Results suggest that MMR-EHSA provides better ride performances than NonMMR-EHSA, and that MMR-EHSA is able to improve both the ride comfort and road handling simultaneously over the traditional shock absorber when installed on light-damped, heavy-duty vehicles. Additionally, the optimal parameters of MMR-EHSA are obtained for ride comfort. The optimal solutions ('Pareto-optimal solutions') are also obtained by considering the trade-off between ride comfort and road handling.

  2. Radiation-tolerant, red-sensitive CCDs for dark energy investigations

    International Nuclear Information System (INIS)

    Roe, N.A.; Bebek, C.J.; Dawson, K.S.; Emes, J.H.; Fabricius, M.H.; Fairfield, J.A.; Groom, D.E.; Holland, S.E.; Karcher, A.; Kolbe, W.F.; Palaio, N.P.; Wang, G.

    2007-01-01

    We describe the development of thick (200-300 μm), fully depleted p-channel, charge-coupled devices (CCDs). The advantages of these CCDs relative to conventional thin, n-channel CCDs include: high quantum efficiency over a wide range of wavelengths, extending into the near-infrared; negligible fringing at long (∼900-1000 nm) wavelengths; improved radiation tolerance; and a small point-spread function controlled through the application of the bias voltage. These visible-to-near-infrared light detectors are good candidates for the next generation of large focal-plane mosaics under development for dark energy measurements. The Dark Energy Survey has selected these CCDs for the focal plane of a new camera being designed for the Blanco 4 m telescope at CTIO in Chile. They also meet all the requirements for the visible-light detectors for the SuperNova/Acceleration Probe, a satellite-based experiment designed to make precision measurements of dark energy

  3. Relationships for the impact sensitivities of energetic C-nitro compounds based on bond dissociation energy.

    Science.gov (United States)

    Li, Jinshan

    2010-02-18

    The ZPE-corrected C-NO(2) bond dissociation energies (BDEs(ZPE)) of a series of model C-nitro compounds and 26 energetic C-nitro compounds have been calculated using density functional theory methods. Computed results show that for C-nitro compounds the UB3LYP calculated BDE(ZPE) is less than the UB3P86 using the 6-31G** basis set, and the UB3P86 BDE(ZPE) changes slightly with the basis set varying from 6-31G** to 6-31++G**. For the series of model C-nitro compounds with different chemical skeletons, it is drawn from NBO analysis that the order of BDE(ZPE) is not only in line with that of the NAO bond order but also with that of the energy gap between C-NO(2) bonding and antibonding orbitals. It is found that for the energetic C-nitro compounds whose drop energies (Es(dr)) are below 24.5 J a good linear correlation exists between E(dr) and BDE(ZPE), implying that these compounds ignite through the C-NO(2) dissociation mechanism. After excluding the so-called trinitrotoluene mechanism compounds, a polynomial correlation of ln(E(dr)) with the BDE(ZPE) calculated at density functional theory levels has been established successfully for the 18 C-NO(2) dissociation energetic C-nitro compounds.

  4. Upconversion luminescence resonance energy transfer-based aptasensor for the sensitive detection of oxytetracycline.

    Science.gov (United States)

    Zhang, Hui; Fang, Congcong; Wu, Shijia; Duan, Nuo; Wang, Zhouping

    2015-11-15

    In this work, a biosensor based on luminescence resonance energy transfer (LRET) from NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) to SYBR Green I has been developed. The aptamers are covalently linked to UCNPs and hybridized with their complementary strands. The subsequent addition of SYBR Green allows SYBR Green I to insert into the formed double-stranded DNA (dsDNA) duplex and brings the energy donor and acceptor into close proximity, leading to the fluorescence of UCNPs transferred to SYBR Green I. When excited at 980 nm, the UCNPs emit luminescence at 477 nm, and this energy is transferred to SYBR Green I, which emits luminescence at 530 nm. In the presence of oxytetracycline (OTC), the aptamers prefer to bind to its corresponding analyte and dehybridize with the complementary DNA. This dehybridization leads to the liberation of SYBR Green I, which distances SYBR Green I from the UCNPs and recovers the UCNPs' luminescence. Under optimal conditions, a linear calibration is obtained between the ratio of I530 to I477 nm (I530/I477) and the OTC concentration, which ranges from 0.1 to 10 ng/ml with a limit of detection (LOD) of 0.054 ng/ml. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Energy-level alignment in organic dye-sensitized TiO2 from GW calculations.

    Science.gov (United States)

    Umari, P; Giacomazzi, L; De Angelis, F; Pastore, M; Baroni, Stefano

    2013-07-07

    The electronic energy levels of some representative isolated and oxide-supported organic dyes, relevant for photovoltaic applications, are investigated using many-body perturbation theory within the GW approximation. We consider a set of all-organic dyes (denominated L0, L2, L3, and L4) featuring the same donor and anchor groups and differing for the linker moieties. We first calculate the energy levels of the isolated molecules, thus allowing us to address the effects of the different linker groups, and resulting in good agreement with photo-electron spectroscopic and electrochemical data. We then consider the L0 dye adsorbed on the (101) surface of anatase-TiO2. We find a density of occupied states in agreement with experimental photo-electron data. The HOMO-LUMO energy gap of the L0 dye is found to be reduced by ~1 eV upon adsorption. Our results validate the reliability of GW calculations for photovoltaic applications and point to their potential as a powerful tool for the screening and rational design of new components of electrochemical solar cells.

  6. Scattering-layer-induced energy storage function in polymer-based quasi-solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Zhang, Xi; Jiang, Hongrui

    2015-03-09

    Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.

  7. Spatial profile measurements of ion-confining potentials using novel position-sensitive ion-energy spectrometer arrays

    International Nuclear Information System (INIS)

    Yoshida, M.; Cho, T.; Hirata, M.; Ito, H.; Kohagura, J.; Yatsu, K.; Miyoshi, S.

    2003-01-01

    The first experimental demonstration of simultaneous measurements of temporally and spatially resolved ion-confining potentials phi c and end-loss-ion fluxes I ELA has been carried out during a single plasma discharge alone by the use of newly designed ion-energy-spectrometer arrays installed in both end regions of the GAMMA 10 tandem mirror. This position-sensitive ion-detector structure is proposed to obtain precise ion-energy spectra without any perturbations from simultaneously incident energetic electrons into the arrays. The relation between phi c and I ELA is physically interpreted in terms of Pastukhov's potential confinement theory. In particular, the importance of axisymmetric phi c formation is found for the plasma confinement

  8. Assessment of decision making models in sensitive technology: the nuclear energy case

    International Nuclear Information System (INIS)

    Silva, Eduardo Ramos Ferreira da

    2007-01-01

    In this paper a bibliographic review is proceeded on the decision making processes approaching the sensitive technologies (the military and civilian uses as well), and the nuclear technology herself. It is made a correlation among the development of the nuclear technology and the decision making processes, showing that from 70 decade on, such processes are connected to the national security doctrines influenced by the Brazilian War College. So, every time that the national security is altered, so is the master line of the decision making process altered. In the Brazil case, the alteration appeared from the World War II up to the new proposals coming out from the Ministry of Defense are shown related to the nuclear technology. The existent models are analysed with a conclusion that such models are unveiling at the present situation of the moment, concerning to the nuclear technology

  9. Modeling the energy balance in Marseille: Sensitivity to roughness length parameterizations and thermal admittance

    Science.gov (United States)

    Demuzere, M.; De Ridder, K.; van Lipzig, N. P. M.

    2008-08-01

    During the ESCOMPTE campaign (Experience sur Site pour COntraindre les Modeles de Pollution atmospherique et de Transport d'Emissions), a 4-day intensive observation period was selected to evaluate the Advanced Regional Prediction System (ARPS), a nonhydrostatic meteorological mesoscale model that was optimized with a parameterization for thermal roughness length to better represent urban surfaces. The evaluation shows that the ARPS model is able to correctly reproduce temperature, wind speed, and direction for one urban and two rural measurements stations. Furthermore, simulated heat fluxes show good agreement compared to the observations, although simulated sensible heat fluxes were initially too low for the urban stations. In order to improve the latter, different roughness length parameterization schemes were tested, combined with various thermal admittance values. This sensitivity study showed that the Zilitinkevich scheme combined with and intermediate value of thermal admittance performs best.

  10. Spectrum sensitivity, energy yield, and revenue prediction of PV and CPV modules

    Energy Technology Data Exchange (ETDEWEB)

    Kinsey, Geoffrey S., E-mail: Geoffrey.kinsey@ee.doe.gov [U.S. Department of Energy, 950 L’Enfant Plaza, Washington, DC 20024 (United States)

    2015-09-28

    Impact on module performance of spectral irradiance variation has been determined for III-V multijunctions compared against the four most common flat-plate module types (cadmium telluride, multicrystalline silicon, copper indium gallium selenide, and monocrystalline silicon. Hour-by-hour representative spectra were generated using atmospheric variables for Albuquerque, New Mexico, USA. Convolution with published values for external quantum efficiency gave the predicted current output. When combined with specifications of commercial PV modules, energy yield and revenue were predicted. This approach provides a means for optimizing PV module design based on various site-specific temporal variables.

  11. Electrochemiluminescence resonance energy transfer between graphene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Ru-Ping; Qiu, Wei-Bin; Zhao, Hui-Fang; Xiang, Cai-Yun; Qiu, Jian-Ding, E-mail: jdqiu@ncu.edu.cn

    2016-01-21

    Herein, a novel electrochemiluminescence resonance energy transfer (ECL-RET) biosensor using graphene quantum dots (GQDs) as donor and graphene oxide (GO) as acceptor for monitoring the activity of protein kinase was presented for the first time. Anti-phosphoserine antibody conjugated graphene oxide (Ab-GO) nonocomposite could be captured onto the phosphorylated peptide/GQDs modified electrode surface through antibody–antigen interaction in the presence of casein kinase II (CK2) and adenosine 5′-triphosphate (ATP), resulting in ECL from the GQDs quenching by closely contacting GO. This ECL quenching degree was positively correlated with CK2 activity. Therefore, on the basis of ECL-RET between GQDs and GO, the activity of protein kinase can be detected sensitively. This biosensor can also be used for quantitative analysis CK2 activity in serum samples and qualitative screening kinase inhibition, indicating the potential application of the developed method in biochemical fundamental research and clinical diagnosis. - Highlights: • We reported a novel ECL-RET biosensor for sensitive analysis of casein kinase II activity. • The successful ECL-RET between GQDs and GO could be established. • GQDs was employed for casein kinase II activity monitoring and inhibition assay. • Highly sensitive detection of CK2 activity and inhibition was achieved.

  12. Dosimetric properties of new formulation of PRESAGE® with tin organometal catalyst: Development of sensitivity and stability to megavoltage energy.

    Science.gov (United States)

    Khezerloo, Davood; Nedaie, Hassan Ali; Takavar, Abbas; Zirak, Alireza; Farhood, Bagher; Banaee, Nooshin; Alidokht, Eisa

    2018-01-01

    Tin-base catalyst is one of the widely used organometallic catalysts in polyurethane technology. The purpose of this study was to evaluate the effect of tin organometallic catalyst in the radiation response and radiological properties of a new formula of PRESAGE ® . In the study, two types of PRESAGE were fabricated. A very little amount of dibutyltindillaurate (DBTDL) (0.07% weight) was used as a catalyst in the fabrication of new PRESAGE (i.e., PRESAGE with catalyst), which components were: 93.93% weight polyurethane, 5% weight tetrachloride, and 1% weight leucomalachite green (LMG). For PRESAGE without catalyst, 94% weight polyurethane, 4% weight tetrachloride, and 2% weight LMG were used. Radiochromic response and postirradiation stability of PRESAGEs were determined. Also, radiological characteristics of PRESAGEs, such as mass density, electron density, mass attenuation coefficient, and mass stopping power in different photon energies were assessed and compared with water. The absorption peak of new PRESAGE compared to PRESAGE without catalyst was observed without change. Sensitivity of new PRESAGE was higher than PRESAGE without catalyst and its stability after the first 1 h was relatively constant. Also, Mass attenuation coefficient of new PRESAGE in energy ranges catalyst in very low concentration can be used in fabrication of radiochromic polymer gel to achieve high sensitivity and stability as well as good radiological properties in the megavoltage photon beam.

  13. Determination of the interatomic potential from elastic differential cross sections at fixed energy: Functional sensitivity analysis approach

    International Nuclear Information System (INIS)

    Ho, T.; Rabitz, H.

    1989-01-01

    Elastic differential cross sections in atomic crossed beam experiments contain detailed information about the underlying interatomic potentials. The functional sensitivity density of the cross sections with respect to the potential δσ(θ)/δV(R) reveals such information and has been implemented in an iterative inversion procedure, analogous to that of the Newton--Raphson technique. The stability of the inversion is achieved with the use of the regularization method of Tikhonov and Miller. It is shown that given a set of well resolved and noise-free differential cross section data within a limited angular range and given a reasonable starting reference potential, the recovered potential accurately resembles the desired one in the important region, i.e., the region to which the scattering data are sensitive. The region of importance depends upon the collision energy relative to the well depth of the potential under study; usually a higher collision energy penetrates deeper into the repulsive part of the potential and thus accordingly yields a more accurate potential in that part. The inversion procedure produces also a quality function indicating the well determined radial region. Moreover, the extracted potential is quite independent of the functional form of the reference potential in contrast to curve fitting approaches. As illustrations, the model inert gas systems He--Ne and Ne--Ar have been considered. For collision energies within an order of magnitude of the associated potential well depth, the attractive part of the potential can be determined to high precision provided that scattering data at small enough angles are available

  14. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity.

    Science.gov (United States)

    Shi, Hao; Munk, Alexander; Nielsen, Thomas S; Daughtry, Morgan R; Larsson, Louise; Li, Shize; Høyer, Kasper F; Geisler, Hannah W; Sulek, Karolina; Kjøbsted, Rasmus; Fisher, Taylor; Andersen, Marianne M; Shen, Zhengxing; Hansen, Ulrik K; England, Eric M; Cheng, Zhiyong; Højlund, Kurt; Wojtaszewski, Jørgen F P; Yang, Xiaoyong; Hulver, Matthew W; Helm, Richard F; Treebak, Jonas T; Gerrard, David E

    2018-05-01

    Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle. We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2). Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  15. Performance Evaluation of Radiator and Radiant Floor Heating Systems for an Office Room Connected to a Ground-Coupled Heat Pump

    Directory of Open Access Journals (Sweden)

    Ioan Sarbu

    2016-03-01

    Full Text Available A ground-coupled heat pump (GCHP system used to provide the space heating for an office room is a renewable, high performance technology. This paper discusses vapour compression-based HP systems, briefly describing the thermodynamic cycle calculations, as well as the coefficient of performance (COP and CO2 emissions of a HP with an electro-compressor and compares different heating systems in terms of energy consumption, thermal comfort and environmental impact. It is focused on an experimental study performed to test the energy efficiency of the radiator or radiant floor heating system for an office room connected to a GCHP. The main performance parameters (COP and CO2 emissions are obtained for one month of operation of the GCHP system, and a comparative analysis of these parameters is presented. Additionally, two numerical simulation models of useful thermal energy and the system COP in heating mode are developed using the Transient Systems Simulation (TRNSYS software. Finally, the simulations obtained from TRNSYS software are analysed and compared to the experimental data, showing good agreement and thus validating the simulation models.

  16. Effects of retarded electrical fields on observables sensitive to the high-density behavior of the nuclear symmetry energy in heavy-ion collisions at intermediate energies

    Science.gov (United States)

    Wei, Gao-Feng; Li, Bao-An; Yong, Gao-Chan; Ou, Li; Cao, Xin-Wei; Liu, Xu-Yang

    2018-03-01

    Within the isospin- and momentum-dependent transport model IBUU11, we examine the relativistic retardation effects of electrical fields on the π-/π+ ratio and neutron-proton differential transverse flow in heavy-ion collisions at intermediate energies. Compared to the static Coulomb fields, the retarded electric fields of fast-moving charges are known to be anisotropic and the associated relativistic corrections can be significant. They are found to increase the number of energetic protons in the participant region at the maximum compression by as much as 25% but that of energetic neutrons by less than 10% in 197Au+197Au reactions at a beam energy of 400 MeV/nucleon. Consequently, more π+ and relatively fewer π- mesons are produced, leading to an appreciable reduction of the π-/π+ ratio compared to calculations with the static Coulomb fields. Also, the neutron-proton differential transverse flow, as another sensitive probe of high-density symmetry energy, is also decreased appreciably due to the stronger retarded electrical fields in directions perpendicular to the velocities of fast-moving charges compared to calculations using the isotropic static electrical fields. Moreover, the retardation effects on these observables are found to be approximately independent of the reaction impact parameter.

  17. Low and high linear energy transfer radiation sensitization of HCC cells by metformin

    International Nuclear Information System (INIS)

    Kim, Eun Ho; Jung, Won-Gyun; Kim, Mi-Sook; Cho, Chul-Koo; Jeong, Youn Kyoung; Jeong, Jae-Hoon

    2014-01-01

    The purpose of this study was to investigate the efficacy of metformin as a radiosensitizer for use in combination therapy for human hepatocellular carcinoma (HCC). Three human HCC cell lines (Huh7, HepG2, Hep3B) and a normal human hepatocyte cell line were treated with metformin alone or with radiation followed by metformin. In vitro tests were evaluated by clonogenic survival assay, FACS analysis, western blotting, immunofluorescence and comet assay. Metformin significantly enhanced radiation efficacy under high and low Linear Energy Transfer (LET) radiation conditions in vitro. In combination with radiation, metformin abrogated G2/M arrest and increased the cell population in the sub-G1 phase and the ROS level, ultimately increasing HCC cellular apoptosis. Metformin inhibits the repair of DNA damage caused by radiation. The radiosensitizing effects of metformin are much higher in neutron (high LET)-irradiated cell lines than in γ (low LET)-irradiated cell lines. Metformin only had a moderate effect in normal hepatocytes. Metformin enhances the radiosensitivity of HCC, suggesting it may have clinical utility in combination cancer treatment with high-LET radiation. (author)

  18. Sensitivity of a low energy Ge detector system for in vivo monitoring in the framework of ICRP 78 applications.

    Science.gov (United States)

    Lopez, M A; Navarro, T

    2003-01-01

    In in vivo detection of internal contamination by actinides the minimum detectable activities (MDAs) correspond to significant doses, so the sensitivity of the detection system is the key to establishing adequate individual monitoring programmes for internal exposure to these radionuclides. The whole body counting (WBC) faculty at CIEMAT uses a low-energy Ge detector system with different available counting geometries to estimate the retention of actinides in the lungs and evaluate 125I in thyroid and 241Am in bone (skull and knee). A study of the factors and uncertainties involved in estimations of MDA is presented for lung and thyroid monitoring. The dependence of detection limits on counting efficiency in the measurement of low-energy emitters in the lungs has been carefully studied, carrying out a comparison among different biometric equations obtained by ultrasound techniques for estimations of chest wall thickness. Dosimetric implications of the estimated MDAs are taken into account in the framework of ICRP 78 application and considering Spanish regulations. The main interest in lung measurements is for the assessment of occupational exposure. This work confirms the low-energy Ge detector system to be an adequate in vivo technique for the routine monitoring of internal exposure to most insoluble uranium compounds (detection of 3% enriched uranium in lungs), and also to be useful in special monitoring programmes or in the case of incidents when the detection of 241Am is required.

  19. Sensitivity of Mission Energy Consumption to Turboelectric Distributed Propulsion Design Assumptions on the N3-X Hybrid Wing Body Aircraft

    Science.gov (United States)

    Felder, James L.; Tong, Michael T.; Chu, Julio

    2012-01-01

    In a previous study by the authors it was shown that the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with a turboelectric distributed propulsion (TeDP) system, was able to meet the NASA Subsonic Fixed Wing (SFW) project goal for N+3 generation aircraft of at least a 60% reduction in total energy consumption as compared to the best in class current generation aircraft. This previous study combined technology assumptions that represented the highest anticipated values that could be matured to technology readiness level (TRL) 4-6 by 2030. This paper presents the results of a sensitivity analysis of the total mission energy consumption to reductions in each key technology assumption. Of the parameters examined, the mission total energy consumption was most sensitive to changes to total pressure loss in the propulsor inlet. The baseline inlet internal pressure loss is assumed to be an optimistic 0.5%. An inlet pressure loss of 3% increases the total energy consumption 9%. However changes to reduce inlet pressure loss can result in additional distortion to the fan which can reduce fan efficiency or vice versa. It is very important that the inlet and fan be analyzed and optimized as a single unit. The turboshaft hot section is assumed to be made of ceramic matrix composite (CMC) with a 3000 F maximum material temperature. Reducing the maximum material temperature to 2700 F increases the mission energy consumption by only 1.5%. Thus achieving a 3000 F temperature in CMCs is important but not central to achieving the energy consumption objective of the N3-X/TeDP. A key parameter in the efficiency of superconducting motors and generators is the size of the superconducting filaments in the stator. The size of the superconducting filaments in the baseline model is assumed to be 10 microns. A 40 micron filament, which represents current technology, results in a 200% increase in AC losses in the motor and generator stators. This analysis shows that for a system with 40

  20. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity

    Directory of Open Access Journals (Sweden)

    Hao Shi

    2018-05-01

    Full Text Available Objective: Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT, the enzyme that mediates O-GlcNAcylation, in skeletal muscle. Methods: We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. Results: We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2. Conclusions: Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders. Keywords: O-GlcNAc signaling, Type 2 diabetes, N

  1. Sensitivity of low-energy incomplete fusion to various entrance-channel parameters

    Science.gov (United States)

    Kumar, Harish; Tali, Suhail A.; Afzal Ansari, M.; Singh, D.; Ali, Rahbar; Kumar, Kamal; Sathik, N. P. M.; Ali, Asif; Parashari, Siddharth; Dubey, R.; Bala, Indu; Kumar, R.; Singh, R. P.; Muralithar, S.

    2018-03-01

    The disentangling of incomplete fusion dependence on various entrance channel parameters has been made from the forward recoil range distribution measurement for the 12C+175Lu system at ≈ 88 MeV energy. It gives the direct measure of full and/or partial linear momentum transfer from the projectile to the target nucleus. The comparison of observed recoil ranges with theoretical ranges calculated using the code SRIM infers the production of evaporation residues via complete and/or incomplete fusion process. Present results show that incomplete fusion process contributes significantly in the production of α xn and 2α xn emission channels. The deduced incomplete fusion probability (F_{ICF}) is compared with that obtained for systems available in the literature. An interesting behavior of F_{ICF} with ZP ZT is observed in the reinvestigation of incomplete fusion dependency with the Coulomb factor (ZPZT), contrary to the recent observations. The present results based on (ZPZT) are found in good agreement with recent observations of our group. A larger F_{ICF} value for 12C induced reactions is found than that for 13C, although both have the same ZPZT. A nonsystematic behavior of the incomplete fusion process with the target deformation parameter (β2) is observed, which is further correlated with a new parameter (ZP ZT . β2). The projectile α -Q-value is found to explain more clearly the discrepancy observed in incomplete fusion dependency with parameters ( ZPZT) and (ZP ZT . β2). It may be pointed out that any single entrance channel parameter (mass-asymmetry or (ZPZT) or β2 or projectile α-Q-value) may not be able to explain completely the incomplete fusion process.

  2. Sensitivity of Key Parameters in Aerodynamic Wind Turbine Rotor Design on Power and Energy Performance

    International Nuclear Information System (INIS)

    Bak, Christian

    2007-01-01

    In this paper the influence of different key parameters in aerodynamic wind turbine rotor design on the power efficiency, C p , and energy production has been investigated. The work was divided into an analysis of 2D airfoils/blade sections and of entire rotors. In the analysis of the 2D airfoils it was seen that there was a maximum of the local C p for airfoils with finite maximum C l /C d values. The local speed ratio should be between 2.4 and 3.8 for airfoils with maximum c l /c d between 50 and 200, respectively, to obtain maximum local C p . Also, the investigation showed that Re had a significant impact on CP and especially for Re p for rotors was made with three blades and showed that with the assumption of constant maximum c l /c d along the entire blade, the design tip speed ratio changed from X=6 to X=12 for c l /cd=50 and c l /c d =200, respectively, with corresponding values of maximum c p of 0.46 and 0.525. An analysis of existing rotors re-designed with new airfoils but maintaining the absolute thickness distribution to maintain the stiffness showed that big rotors are more aerodynamic efficient than small rotors caused by higher Re. It also showed that the design tip speed ratio was very dependent on the rotor size and on the assumptions of the airfoil flow being fully turbulent (contaminated airfoil) or free transitional (clean airfoil). The investigations showed that rotors with diameter D=1.75m, should be designed for X around 5.5, whereas rotors with diameter D=126m, should be designed for Xbetween 6.5 and 8.5, depending on the airfoil performance

  3. Sensitivity to Nuclear Data and Neutron Source Type in Calculations of Transmutation Capabilities of the Energy Amplifier Demonstration Facility

    International Nuclear Information System (INIS)

    Dahlfors, Marcus

    2003-05-01

    This text is a summary of two studies the author has performed within the field of 3-D Monte Carlo calculations of Accelerator Driven Systems (ADS) for transmutation of nuclear waste. The simulations were carried out with the state-of-the-art computer code package EA-MC, developed by C. Rubbia and his group at CERN. The concept studied is ANSALDOs 80 MWth Energy Amplifier Demonstration Facility based on classical MOX-fuel technology and on molten Lead-Bismuth Eutectic cooling. A review of neutron cross section sensitivity in numerical calculations of an ADS and a comparative assessment relevant to the transmutation efficiency of plutonium and minor actinides in fusion/fission hybrids and ADS are presented

  4. Sensitivity to Nuclear Data and Neutron Source Type in Calculations of Transmutation Capabilities of the Energy Amplifier Demonstration Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dahlfors, Marcus

    2003-05-01

    This text is a summary of two studies the author has performed within the field of 3-D Monte Carlo calculations of Accelerator Driven Systems (ADS) for transmutation of nuclear waste. The simulations were carried out with the state-of-the-art computer code package EA-MC, developed by C. Rubbia and his group at CERN. The concept studied is ANSALDOs 80 MWth Energy Amplifier Demonstration Facility based on classical MOX-fuel technology and on molten Lead-Bismuth Eutectic cooling. A review of neutron cross section sensitivity in numerical calculations of an ADS and a comparative assessment relevant to the transmutation efficiency of plutonium and minor actinides in fusion/fission hybrids and ADS are presented.

  5. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 2: Radiation Dose and Iodine Sensitivity.

    Science.gov (United States)

    Foley, W Dennis; Shuman, William P; Siegel, Marilyn J; Sahani, Dushyant V; Boll, Daniel T; Bolus, David N; De Cecco, Carlo N; Kaza, Ravi K; Morgan, Desiree E; Schoepf, U Joseph; Vrtiska, Terri J; Yeh, Benjamin M; Berland, Lincoln L

    This is the second of a series of 4 white papers that represent Expert Consensus Documents developed by the Society of Computed Body Tomography and Magnetic Resonance through its task force on dual-energy computed tomography. This paper, part 2, addresses radiation dose and iodine sensitivity in dual-energy computed tomography.

  6. Radiant Ceiling Panels Combined with Localized Methods for Improved Thermal Comfort of Both Patient and Medical Staff in Patient Room

    DEFF Research Database (Denmark)

    Mori, Sakura; Barova, Mariya; Bolashikov, Zhecho Dimitrov

    2012-01-01

    The objectives were to identify whether ceiling installed radiant heating panels can provide thermal comfort to the occupants in a patient room, and to determine a method for optimal thermal environment to both patient and medical staff simultaneously. The experiments were performed in a climate...... mattress were used to provide local heating for the patient. The effects of the methods were identified by comparing the manikin based equivalent temperatures. The optimal thermal comfort level for both patient and medical staff would obtained when two conventional cotton blankets were used with extra...... chamber resembling a single-bed patient room under convective air conditioning alone or combined with the ceiling installed radiant heating panels. Two thermal manikins simulated a patient lying in the bed and a doctor standing next to the patient. Conventional cotton blanket, electric blanket, electric...

  7. Effect of radiant heat at the birth site in farrowing crates on hypothermia and behaviour in neonatal piglets

    DEFF Research Database (Denmark)

    Andersen, Heidi Mai-Lis; Pedersen, Lene Juul

    2016-01-01

    It has been documented that floor heating of the farrowing area in loose housed sows improves survival of piglets significantly. However, today, the majority of farrowing pens are designed with crating of sows and slatted floor at the birth site. The aim of this study was to investigate whether...... providing radiant heat at the birth site to new-born piglets in pens with crated sows reduced hypothermia, time to first milk intake and growth of the piglets during the 1st week. Second parity Danish Landrace×Yorkshire sows (n=36) were randomly divided into two groups: Control (CG) and heat (HG......). In the area behind the sow (zone 1), two radiant heat panels were mounted above the slatted floor in the HG. The farrowings were attended, and the heaters were turned on at birth of first piglet and turned off 12 h after. Birth time, time to leave zone 1, time to first contact with udder and time to first...

  8. Palladium Nanoparticles-Based Fluorescence Resonance Energy Transfer Aptasensor for Highly Sensitive Detection of Aflatoxin M₁ in Milk.

    Science.gov (United States)

    Li, Hui; Yang, Daibin; Li, Peiwu; Zhang, Qi; Zhang, Wen; Ding, Xiaoxia; Mao, Jin; Wu, Jing

    2017-10-13

    A highly sensitive aptasensor for aflatoxin M₁ (AFM₁) detection was constructed based on fluorescence resonance energy transfer (FRET) between 5-carboxyfluorescein (FAM) and palladium nanoparticles (PdNPs). PdNPs (33 nm) were synthesized through a seed-mediated growth method and exhibited broad and strong absorption in the whole ultraviolet-visible (UV-Vis) range. The strong coordination interaction between nitrogen functional groups of the AFM₁ aptamer and PdNPs brought FAM and PdNPs in close proximity, which resulted in the fluorescence quenching of FAM to a maximum extent of 95%. The non-specific fluorescence quenching caused by PdNPs towards fluorescein was negligible. After the introduction of AFM₁ into the FAM-AFM₁ aptamer-PdNPs FRET system, the AFM₁ aptamer preferentially combined with AFM₁ accompanied by conformational change, which greatly weakened the coordination interaction between the AFM₁ aptamer and PdNPs. Thus, fluorescence recovery of FAM was observed and a linear relationship between the fluorescence recovery and the concentration of AFM₁ was obtained in the range of 5-150 pg/mL in aqueous buffer with the detection limit of 1.5 pg/mL. AFM₁ detection was also realized in milk samples with a linear detection range from 6 pg/mL to 150 pg/mL. The highly sensitive FRET aptasensor with simple configuration shows promising prospect in detecting a variety of food contaminants.

  9. Photoinduced proton transfer coupled with energy transfer: Mechanism of sensitized luminescence of terbium ion by salicylic acid doped in polymer.

    Science.gov (United States)

    Misra, Vinita; Mishra, Hirdyesh

    2008-06-28

    In the present work, excited state intramolecular proton transfer (ESIPT) in salicylic acid (SA) monoanion and subsequent sensitization of Tb(3+) ion in polyvinyl alcohol (PVA) have been studied. The study has been carried out both by steady state and time domain fluorescence measurement techniques at room temperature. It is found that the SA completely ionizes and exists as monoanion in PVA. It exhibits a large Stokes shifted blue emission (10 000 cm(-1)) due to ESIPT and shows a decay time of 6.85 ns. On the other hand, Tb(3+) ion shows a very weak green emission and a decay time of approximately 641 mus in PVA film. Upon incorporating Tb(3+) ion in SA doped PVA film, both intensity and decay time of SA decrease and sensitized emission from Tb(+3) ion along with 3.8 mus rise time is observed. Energy transfer is found to take place both from excited singlet as well as triplet states. A brief description of the properties of the present system from the viewpoint of luminescent solar collector material is addressed.

  10. Experimental research on the indoor temperature and humidity fields in radiant ceiling air-conditioning system under natural ventilation

    Science.gov (United States)

    Huang, Tao; Xiang, Yutong; Wang, Yonghong

    2017-05-01

    In this paper, the indoor temperature and humidity fields of the air in a metal ceiling radiant panel air conditioning system with fresh air under natural ventilation were researched. The temperature and humidity distributions at different height and different position were compared. Through the computation analysis of partial pressure of water vapor, the self-recovery characteristics of humidity after the natural ventilation was discussed.

  11. Solar radiation, phytoplankton pigments and the radiant heating of the equatorial Pacific warm pool

    Science.gov (United States)

    Siegel, David A.; Ohlmann, J. Carter; Washburn, Libe; Bidigare, Robert R.; Nosse, Craig T.; Fields, Erik; Zhou, Yimei

    1995-01-01

    Recent optical, physical, and biological oceanographic observations are used to assess the magnitude and variability of the penetrating flux of solar radiation through the mixed layer of the warm water pool (WWP) of the western equatorial Pacific Ocean. Typical values for the penetrative solar flux at the climatological mean mixed layer depth for the WWP (30 m) are approx. 23 W/sq m and are a large fraction of the climatological mean net air-sea heat flux (approx. 40 W/sq m). The penetrating solar flux can vary significantly on synoptic timescales. Following a sustained westerly wind burst in situ solar fluxes were reduced in response to a near tripling of mixed layer phytoplankton pigment concentrations. This results in a reduction in the penetrative flux at depth (5.6 W/sq m at 30 m) and corresponds to a biogeochemically mediated increase in the mixed layer radiant heating rate of 0.13 C per month. These observations demonstrate a significant role of biogeochemical processes on WWP thermal climate. We speculate that this biogeochemically mediated feedback process may play an important role in enhancing the rate at which the WWP climate system returns to normal conditions following a westerly wind burst event.

  12. EXPERIMENTAL INVESTIGATION OF THE CONVECTIVE HEAT TRANSFER IN A SPIRALLY COILED CORRUGATED TUBE WITH RADIANT HEATING

    Directory of Open Access Journals (Sweden)

    Milan Đorđević

    2017-12-01

    Full Text Available The Archimedean spiral coil made of a transversely corrugated tube was exposed to radiant heating in order to represent a heat absorber of the parabolic dish solar concentrator. The main advantage of the considered innovative design solution is a coupling effect of the two passive methods for heat transfer enhancement - coiling of the flow channel and changes in surface roughness. The curvature ratio of the spiral coil varies from 0.029 to 0.234, while water and a mixture of propylene glycol and water are used as heat transfer fluids. The unique focus of this study is on specific boundary conditions since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but in the axial direction as well. Instrumentation of the laboratory model of the heat absorber mounted in the radiation field includes measurement of inlet fluid flow rate, pressure drop, inlet and outlet fluid temperature and 35 type K thermocouples welded to the coil surface. A thermal analysis of the experimentally obtained data implies taking into consideration the externally applied radiation field, convective and radiative heat losses, conduction through the tube wall and convection to the internal fluid. The experimental results have shown significant enhancement of the heat transfer rate compared to spirally coiled smooth tubes, up to 240% in the turbulent flow regime.

  13. Evolution of arbitrary moments of radiant intensity distribution for partially coherent general beams in atmospheric turbulence

    Science.gov (United States)

    Dan, Youquan; Xu, Yonggen

    2018-04-01

    The evolution law of arbitrary order moments of the Wigner distribution function, which can be applied to the different spatial power spectra, is obtained for partially coherent general beams propagating in atmospheric turbulence using the extended Huygens-Fresnel principle. A coupling coefficient of radiant intensity distribution (RID) in turbulence is introduced. Analytical expressions of the evolution of the first five-order moments, kurtosis parameter, coupling coefficient of RID for general beams in turbulence are derived, and the formulas are applied to Airy beams. Results show that there exist two types for general beams in turbulence. A larger value of kurtosis parameter for Airy beams also reveals that coupling effect due to turbulence is stronger. Both theoretical analysis and numerical results show that the maximum value of kurtosis parameter for an Airy beam in turbulence is independent of turbulence strength parameter and is only determined by inner scale of turbulence. Relative angular spread, kurtosis and coupling coefficient are less influenced by turbulence for Airy beams with a smaller decay factor and a smaller initial width of the first lobe.

  14. Mathematical Modeling of Radiant Heat Transfer in Mirror Systems Considering Deep Reflecting Surface Defects

    Directory of Open Access Journals (Sweden)

    V. V. Leonov

    2014-01-01

    Full Text Available When designing large-sized mirror concentrating systems (MCS for high-temperature solar power plants, one must have at disposal reasonably reliable and economical methods and tools, making it possible to analyze its characteristics, to predict them depending on the operation conditions and accordingly to choose the most suitable system for the solution of particular task.Experimental determination of MCS characteristics requires complicated and expensive experimentation, having significant limitations on interpretation of the results, as well as limitations imposed due to the size of the structure. Therefore it is of particular interest to develop a mathematical model capable of estimating power characteristics of MCS considering the influence of operating conditions, design features, roughness and other surface defects.For efficient solution of the tasks the model must ensure simulation of solar radiant flux as well as simulation of geometrical and optical characteristics of reflection surface and their interaction. In this connection a statistical mathematical model of radiation heat exchange based on use of Monte Carlo methods and Finite Element Method was developed and realized in the software complex, making it possible to determine main characteristics of the MCS.In this paper the main attention is given to definition of MCS radiation characteristics with account for deep reflecting surface defects (cavities, craters. Deep cavities are not typical for MCS, but their occurrence is possible during operation as a result of erosion or any physical damage. For example, for space technology it is primarily micrometeorite erosion.

  15. Numerical investigation on the convective heat transfer in a spiral coil with radiant heating

    Directory of Open Access Journals (Sweden)

    Đorđević Milan Lj.

    2016-01-01

    Full Text Available The objective of this study was to numerically investigate the heat transfer in spiral coil tube in the laminar, transitional, and turbulent flow regimes. The Archimedean spiral coil was exposed to radiant heating and should represent heat absorber of parabolic dish solar concentrator. Specific boundary conditions represent the uniqueness of this study, since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but also in the axial direction. The curvature ratio of spiral coil varies from 0.029 at the flow inlet to 0.234 at the flow outlet, while the heat transfer fluid is water. The 3-D steady-state transport equations were solved using the Reynolds stress turbulence model. Results showed that secondary flows strongly affect the flow and that the heat transfer is strongly asymmetric, with higher values near the outer wall of spiral. Although overall turbulence levels were lower than in a straight pipe, heat transfer rates were larger due to the curvature-induced modifications of the mean flow and temperature fields. [Projekat Ministarstva nauke Republike Srbije, br. 42006

  16. Dependence of calculus retropulsion dynamics on fiber size and radiant exposure during Ho:YAG lithotripsy.

    Science.gov (United States)

    Lee, Ho; Ryan, Robert T; Kim, Jeehyun; Choi, Bernard; Arakeri, Navanit V; Teichman, Joel M H; Welch, A J

    2004-08-01

    During pulsed laser lithotripsy, the calculus is subject to a strong recoil momentum which moves the calculus away from laser delivery and prolongs the operation. This study was designed to quantify the recoil momentum during Ho:YAG laser lithotripsy. The correlation among crater shape, debris trajectory, laser-induced bubble and recoil momentum was investigated. Calculus phantoms made from plaster of Paris were ablated with free running Ho:YAG lasers. The dynamics of recoil action of a calculus phantom was monitored by a high-speed video camera and the laser ablation craters were examined with Optical Coherent Tomography (OCT). Higher radiant exposure resulted in larger ablation volume (mass) which increased the recoil momentum. Smaller fibers produced narrow craters with a steep contoured geometry and decreased recoil momentum compared to larger fibers. In the presence of water, recoil motion of the phantom deviated from that of phantom in air. Under certain conditions, we observed the phantom rocking towards the fiber after the laser pulse. The shape of the crater is one of the major contributing factors to the diminished recoil momentum of smaller fibers. The re-entrance flow of water induced by the bubble collapse is considered to be the cause of the rocking of the phantom.

  17. Influence on living body by radiant rays produced in low power reactor

    International Nuclear Information System (INIS)

    Ogura, Isao; Nakamura, Katsuichi; Usuyama, Hideo; Usui, Akinori; Hosomi, Takashi; Yoshimura, Yoshinao; Nakai, Takahide; Egashira, Masamichi

    1984-01-01

    There is possibility of a risk that a living body is irradiated by those for slightly indifference to radiant rays, radiation source or devices of low level dose or dose rate. Accordingly, a low power reactor (UTR-KINKI) was utilized for a observation of influence by radiation of low level dose or dose rate, the rabbits were irradiated in it at output 1 w. The large influence was not expected for the low level dose rate of 1.313 Rad/hr even if they were irradiated for the several hours, but in a part of blood components a slight change was recognized. The change of M pattern in white blood corpuscle number was indicated likewise as irradiation of 500R X-ray, reported from Jacobson and others, by irradiation to about 13 Rads. In addition, lymphocyte number was increased considerably in an early stage. This fact will be useful for a recovery of an injury as mentioned by Lucky. The rabbits of alloxan diabetes mellitus and hepatitis were irradiated in the same way as above, but they scarcely showed the alterations. However, numerous rabbits can't be used in this experiment for the equipment and others. (author)

  18. Assessing the accuracy of globe thermometer method in predicting outdoor mean radiant temperature under Malaysia tropical microclimate

    Science.gov (United States)

    Khrit, N. G.; Alghoul, M. A.; Sopian, K.; Lahimer, A. A.; Elayeb, O. K.

    2017-11-01

    Assessing outdoor human thermal comfort and urban climate quality require experimental investigation of microclimatic conditions and their variations in open urban spaces. For this, it is essential to provide quantitative information on air temperature, humidity, wind velocity and mean radiant temperature. These parameters can be quantified directly except mean radiant temperature (Tmrt). The most accurate method to quantify Tmrt is integral radiation measurements (3-D shortwave and long-wave) which require using expensive radiometer instruments. To overcome this limitation the well-known globe thermometer method was suggested to calculate Tmrt. The aim of this study was to assess the possibility of using indoor globe thermometer method in predicting outdoor mean radiant temperature under Malaysia tropical microclimate. Globe thermometer method using small and large sizes of black-painted copper globes (50mm, 150mm) were used to estimate Tmrt and compare it with the reference Tmrt estimated by integral radiation method. The results revealed that the globe thermometer method considerably overestimated Tmrt during the middle of the day and slightly underestimated it in the morning and late evening. The difference between the two methods was obvious when the amount of incoming solar radiation was high. The results also showed that the effect of globe size on the estimated Tmrt is mostly small. Though, the estimated Tmrt by the small globe showed a relatively large amount of scattering caused by rapid changes in radiation and wind speed.

  19. PAIR INFLUENCE OF WIND SPEED AND MEAN RADIANT TEMPERATURE ON OUTDOOR THERMAL COMFORT OF HUMID TROPICAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Sangkertadi Sangkertadi

    2016-01-01

    Full Text Available The purposes of this article is to explore knowledge of outdoor thermal comfort in humid tropical environment for urban activities especially for people in walking activity, and those who stationary/seated with moderate action. It will be characterized the pair influence of wind speed and radiant temperature on the outdoor thermal comfort. Many of researchers stated that those two microclimate variables give significant role on outdoor thermal comfort in tropical humid area. Outdoor Tropical Comfort (OTC model was used for simulation in this study. The model output is comfort scale that refers on ASHRAE definition. The model consists of two regression equations with variables of air temperature, globe temperature, wind speed, humidity and body posture, for two types of activity: walking and seated. From the results it can be stated that there is significant role of wind speed to reduce mean radiant temperature and globe temperature, when the velocity is elevated from 0.5 m/s to 2 m/s. However, the wind has not play significant role when the speed is changed from 2 m/s to 3.5 m/s. The results of the study may inspire us to implement effectiveness of electrical-fan equipment for outdoor space in order to get optimum wind speed, coupled with optimum design of shading devices to minimize radiant temperature for thermal comfort.

  20. The efficacy of radiant heat controls on workers' heat stress around the blast furnace of a steel industry.

    Science.gov (United States)

    Giahi, Omid; Darvishi, Ebrahim; Aliabadi, Mohsen; Khoubi, Jamshid

    2015-01-01

    Workers' exposure to excessive heat in molten industries is mainly due to radiant heat from hot sources. The aim of this study was to evaluate the efficacy of radiant heat controls on workers heat stress around a typical blast furnace. Two main interventions were applied for reducing radiant heat around the blast furnace of a steel industry located in western Iran. These included using a heat absorbing system in the furnace body and installing reflective aluminum barrier in the main workstation. Heat stress indexes were measured before and after each intervention using the digital WBGT-meter. The results showed MRT and WBGT indexes decreased by 20 °C and 3.9 °C, respectively after using heat absorbing system and also decreased by 18.6 °C and 2.5 °C, respectively after installing a reflective barrier. These indexes decrease by 26.5 °C and 5.2 °C, respectively due to the simultaneous application of the two interventions which were statistically significant (p steel industries.

  1. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response.

    Science.gov (United States)

    Troussel, Ph; Villette, B; Emprin, B; Oudot, G; Tassin, V; Bridou, F; Delmotte, F; Krumrey, M

    2014-01-01

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  2. Regulation of energy substrate utilization and hepatic insulin sensitivity by phosphatidylcholine transfer protein/StarD2.

    Science.gov (United States)

    Scapa, Erez F; Pocai, Alessandro; Wu, Michele K; Gutierrez-Juarez, Roger; Glenz, Lauren; Kanno, Keishi; Li, Hua; Biddinger, Sudha; Jelicks, Linda A; Rossetti, Luciano; Cohen, David E

    2008-07-01

    Phosphatidylcholine transfer protein (PC-TP, also known as StarD2) is a highly specific intracellular lipid binding protein with accentuated expression in oxidative tissues. Here we show that decreased plasma concentrations of glucose and free fatty acids in fasting PC-TP-deficient (Pctp(-/-)) mice are attributable to increased hepatic insulin sensitivity. In hyperinsulinemic-euglycemic clamp studies, Pctp(-/-) mice exhibited profound reductions in hepatic glucose production, gluconeogenesis, glycogenolysis, and glucose cycling. These changes were explained in part by the lack of PC-TP expression in liver per se and in part by marked alterations in body fat composition. Reduced respiratory quotients in Pctp(-/-) mice were indicative of preferential fatty acid utilization for energy production in oxidative tissues. In the setting of decreased hepatic fatty acid synthesis, increased clearance rates of dietary triglycerides and increased hepatic triglyceride production rates reflected higher turnover in Pctp(-/-) mice. Collectively, these data support a key biological role for PC-TP in the regulation of energy substrate utilization.

  3. Highly sensitive panchromatic ternary polymer photodetectors enabled by Förster resonance energy transfer and post solvent treatment

    Science.gov (United States)

    Wang, Hanyu; Zheng, Yifan; Qin, Ruiheng; Yu, Junsheng

    2018-03-01

    A panchromatic ternary polymer photodetector (PPD) with broadband response from 300 to 1000 nm is fabricated via incorporating poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-bʹ]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}) (PTB7) as the third component in poly(diketopyrrolopyrrole-terthiophene) (PDPP3T) [6]:-phenyl-C71-butyric acid methyl ester (PC71BM), revealing a high detectivity (D *) of 7.02  ×  1011 Jones at 850 nm. Through the analysis of photoluminescence and external quantum efficiency spectroscopy, we find that PTB7 can not only improve the absorption between 500-750 nm to induce more excitons, but also provide non-radiative transfer energy to PDPP3T via Förster resonance energy transfer (FRET). Moreover, we employ post solvent treatment (PST) to rectify the morphology of ternary blends, thus reducing charge recombination, suppressing dark current, and boosting the D * to 1.57  ×  1012 Jones at 850 nm, which is 2.34 folds higher than that of the untreated PPDs. This work indicates that the incorporation of FRET donor and PST in ternary blends is an effective way to develop highly sensitive panchromatic PPDs.

  4. Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: energy transfer vs. optical coupling effects.

    Science.gov (United States)

    Hoang, Son; Ashraf, Ahsan; Eisaman, Matthew D; Nykypanchuk, Dmytro; Nam, Chang-Yong

    2016-03-21

    Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from the OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. These results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices.

  5. Sensitivity of Technical Choices on the GHG Emissions and Expended Energy of Hydrotreated Renewable Jet Fuel from Microalgae

    Directory of Open Access Journals (Sweden)

    Patouillard Laure

    2016-01-01

    Full Text Available Taking into account the environmental impacts of biofuel production is essential to develop new and innovative low-emission processes. The assessment of life cycle GreenHouse Gas (GHG emissions of biofuel is mandatory for the countries of the European Union. New biomass resources that hardly compete with food crops are been developed increasingly. Microalgae are an interesting alternative to terrestrial biomass thanks to their high photosynthetic efficiency and their ability to accumulate lipids. This article provides an analysis of potential environmental impacts of the production of algal biofuel for aviation using the Life Cycle Assessment (LCA. Evaluated impacts are GHG emissions and the primary energy consumption, from extraction of raw materials to final waste treatment. This study compared two management choices for oilcakes generated after oil extraction from microalgae. In the first system, these cakes are treated by energetic allocation and in the second by anaerobic digestion. In both cases, the steps of cultivation and harvesting have the highest impact on the results. Sensitivity analyzes are performed on technical choices of operating systems (choice of the type of nutrients, mode of harvesting, drying and oil extraction as well as a Monte-Carlo analysis on key parameter values for GHG emissions (concentration of microalgae in ponds, productivity and oil content. The results highlight the impact of the use of chemical fertilizers and the importance of the concentration of algae on GHG emissions and energy consumption.

  6. Insulin sensitivity is normalized in the third generation (F3 offspring of developmentally programmed insulin resistant (F2 rats fed an energy-restricted diet

    Directory of Open Access Journals (Sweden)

    Martin John F

    2008-10-01

    Full Text Available Abstract Background/Aims The offspring and grandoffspring of female rats fed low protein diets during pregnancy and lactation, but fed nutritionally adequate diets thereafter, have been shown to exhibit altered insulin sensitivity in adulthood. The current study investigates the insulin sensitivity of the offspring and grandoffspring of female rats fed low protein diets during pregnancy, and then maintained on energy-restricted diets post weaning over three generations. Methods Female Sprague Dawley rats (F0 were mated with control males and protein malnourished during pregnancy/lactation. F1 offspring were then weaned to adequate but energy-restricted diets into adulthood. F1 dams were fed energy-restricted diets throughout pregnancy/lactation. F2 offspring were also fed energy-restricted diets post weaning. F2 pregnant dams were maintained as described above. Their F3 offspring were split into two groups; one was maintained on the energy-restricted diet, the other was maintained on an adequate diet consumed ad libitum post weaning. Results F2 animals fed energy-restricted diets were insulin resistant (p ad libitum postweaning diets (p Conclusion Maternal energy-restriction did not consistently program reduced insulin sensitivity in offspring over three consecutive generations. The reasons for this remain unclear. It is possible that the intergenerational transmission of developmentally programmed insulin resistance is determined in part by the relative insulin sensitivity of the mother during pregnancy/lactation.

  7. Modular assembly of a photovoltaic solar energy receiver

    Science.gov (United States)

    Graven, Robert M.; Gorski, Anthony J.; Schertz, William W.; Graae, Johan E. A.

    1978-01-01

    There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.

  8. The energy balance of the earth's surface : a practical approach

    NARCIS (Netherlands)

    Bruin, de H.A.R.

    1982-01-01

    This study is devoted to the energy balance of the earth's surface with a special emphasis on practical applications. A simple picture of the energy exchange processes that take place at the ground is the following. Per unit time and area an amount of radiant energy is supplied to the surface. This

  9. Techno-economic and sensitivity analysis for grid-connected renewable energy electric boat charging station in Terengganu

    Directory of Open Access Journals (Sweden)

    Salleh N. A. S.

    2017-01-01

    Full Text Available In order to encourage the eco-friendly technologies in transportation sector, the reliance on fuel need to be reduced and the use of renewable energy (RE technology as energy source are widely explored by researchers. Thus, this study focus on the feasibility of developing grid-connected renewable energy electric boat charging station for the fishermen in Terengganu using simulation-based method by HOMER software. Five year solar radiation and wind speed data were collected at Universiti Sultan Zainal Abidin (UNISZA weather station. For load profile, the information about fishing activities and the amount of subsidy spent by the government were obtained from the interview session with the fishermen and validated with Lembaga Kemajuan Ikan Malaysia (LKIM. The results acquired are compared between grid-only and grid-connected RE systems in term of net present cost (NPC, operational cost and payback period. A sensitivity analysis is done to find the minimal Feed-in Tariff (FiT rate that can be implemented in order to encourage the use of RE system in this sector. Then, the relationship between FiT and NPC, payback period and emission of pollutants are analyzed. At current FiT rates RM 0.813/kWh, hybrid grid-PV system manages to achieve its optimal in generating high income from selling the power to the grid with convincing amount of electricity production and short payback period. It is concluded at minimum RM 0.56/kWh of FiT, the grid-connected RE system is possible to be developed because its performance shows better outcome compared to the grid-only system.

  10. Modeling of radiant heat transfers in non-grey gases using the discrete ordinate method in association with a narrow bands statistical model; Modelisation des transferts radiatifs dans des gaz non gris par la methode des ordonnees discretes associee a un modele statistique a bandes etroites

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, A.B. de; Delmas, A; Sacadura, J F [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France)

    1997-12-31

    A formulation based on the use of the discrete ordinate method applied to the integral form of the radiant heat transfer equation is proposed for non-grey gases. The correlations between transmittances are neglected and no explicit wall reflexion is considered. The configuration analyzed consists in a flat layer of non-isothermal steam-nitrogen mixture. Cavity walls are grey with diffuse reflexion and emission. A narrow band statistical model is used to represent the radiative properties of the gas. The distribution of the radiative source term inside the cavity is calculated along two temperature profiles in a uniform steam concentration. Results obtained using this simplified approach are in good agreement with those found in the literature for the same temperature and concentration distributions. This preliminary study seems to indicate that the algorithm based on the integration of radiant heat transfer along the luminance path is less sensitive to de-correlation effects than formulations based on the differential form the the radiant heat transfer. Thus, a more systematic study of the influence of the neglecting of correlations on the integral approach is analyzed in this work. (J.S.) 16 refs.

  11. Modeling of radiant heat transfers in non-grey gases using the discrete ordinate method in association with a narrow bands statistical model; Modelisation des transferts radiatifs dans des gaz non gris par la methode des ordonnees discretes associee a un modele statistique a bandes etroites

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, A.B. de; Delmas, A.; Sacadura, J.F. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France)

    1996-12-31

    A formulation based on the use of the discrete ordinate method applied to the integral form of the radiant heat transfer equation is proposed for non-grey gases. The correlations between transmittances are neglected and no explicit wall reflexion is considered. The configuration analyzed consists in a flat layer of non-isothermal steam-nitrogen mixture. Cavity walls are grey with diffuse reflexion and emission. A narrow band statistical model is used to represent the radiative properties of the gas. The distribution of the radiative source term inside the cavity is calculated along two temperature profiles in a uniform steam concentration. Results obtained using this simplified approach are in good agreement with those found in the literature for the same temperature and concentration distributions. This preliminary study seems to indicate that the algorithm based on the integration of radiant heat transfer along the luminance path is less sensitive to de-correlation effects than formulations based on the differential form the the radiant heat transfer. Thus, a more systematic study of the influence of the neglecting of correlations on the integral approach is analyzed in this work. (J.S.) 16 refs.

  12. A simple global carbon and energy coupled cycle model for global warming simulation: sensitivity to the light saturation effect

    International Nuclear Information System (INIS)

    Ichii, Kazuhito; Murakami, Kazutaka; Mukai, Toshikazu; Yamaguchi, Yasushi; Ogawa, Katsuro

    2003-01-01

    A simple Earth system model, the Four-Spheres Cycle of Energy and Mass (4-SCEM) model, has been developed to simulate global warming due to anthropogenic CO 2 emission. The model consists of the Atmosphere-Earth Heat Cycle (AEHC) model, the Four Spheres Carbon Cycle (4-SCC) model, and their feedback processes. The AEHC model is a one-dimensional radiative convective model, which includes the greenhouse effect of CO 2 and H 2 O, and one cloud layer. The 4-SCC model is a box-type carbon cycle model, which includes biospheric CO 2 fertilization, vegetation area variation, the vegetation light saturation effect and the HILDA oceanic carbon cycle model. The feedback processes between carbon cycle and climate considered in the model are temperature dependencies of water vapor content, soil decomposition and ocean surface chemistry. The future status of the global carbon cycle and climate was simulated up to the year 2100 based on the 'business as usual' (IS92a) emission scenario, followed by a linear decline in emissions to zero in the year 2200. The atmospheric CO 2 concentration reaches 645 ppmv in 2100 and a peak of 760 ppmv approximately in the year 2170, and becomes a steady state with 600 ppmv. The projected CO 2 concentration was lower than those of the past carbon cycle studies, because we included the light saturation effect of vegetation. The sensitivity analysis showed that uncertainties derived from the light saturation effect of vegetation and land use CO 2 emissions were the primary cause of uncertainties in projecting future CO 2 concentrations. The climate feedback effects showed rather small sensitivities compared with the impacts of those two effects. Satellite-based net primary production trends analyses can somewhat decrease the uncertainty in quantifying CO 2 emissions due to land use changes. On the other hand, as the estimated parameter in vegetation light saturation was poorly constrained, we have to quantify and constrain the effect more

  13. Study and realization of pixelated APD Geiger photodetectors of very high sensitivity for Very High Energy gamma astronomy

    International Nuclear Information System (INIS)

    Jradi, K.

    2010-07-01

    Very High Energy gamma ray astronomy uses till now exclusively as detector the Photomultiplier Tube (PMT) to collect weak light flux of atmospheric showers. But an alternative is now emerging: Avalanche Photodiodes polarized in Geiger mode called 'Geiger-APD'. The PMT is a detector designed in the 70's which presents many advantages but also suffers from several drawbacks: size, weight, cost, sensitivity to magnetic field but especially difficulty to realize its pixelation in matrix. Geiger-APDs are semi-conductor devices made of PN junction integrated in a special technology to detect very low light flux, thanks to the polarization beyond the avalanche voltage. Geiger-APD presents very high photoelectron gain (∼106) strongly dependant on the polarization voltage beyond avalanche. These photodiodes present many advantages with respect to PMT, mainly as concerns miniaturization for applications based on imaging, such as the detection of Cerenkov flashes in gamma ray astronomy. In this thesis, we present the study, the design and the realization of a technological structure, based on Silicon. This structure has shown reliability to detect weak luminous flux with breakdown voltage at 12 V and dark current below 10 pA at breakdown. We also developed several models, physical and electrical, necessary to the technological optimization, as well to the development of control and readout circuits, i.e. the basis of any imaging technology. The work presented here consists in the study, the design and the realization of a matrix of high sensitivity pixels. A project of a Cerenkov telescope based on this innovative technology is also presented. (author)

  14. Highly Controlled Synthesis and Super-Radiant Photoluminescence of Plasmonic Cube-in-Cube Nanoparticles.

    Science.gov (United States)

    Park, Jeong-Eun; Kim, Sungi; Son, Jiwoong; Lee, Yeonhee; Nam, Jwa-Min

    2016-12-14

    The plasmonic properties of metal nanostructures have been heavily utilized for surface-enhanced Raman scattering (SERS) and metal-enhanced fluorescence (MEF), but the direct photoluminescence (PL) from plasmonic metal nanostructures, especially with plasmonic coupling, has not been widely used as much as SERS and MEF due to the lack of understanding of the PL mechanism, relatively weak signals, and the poor availability of the synthetic methods for the nanostructures with strong PL signals. The direct PL from metal nanostructures is beneficial if these issues can be addressed because it does not exhibit photoblinking or photobleaching, does not require dye-labeling, and can be employed as a highly reliable optical signal that directly depends on nanostructure morphology. Herein, we designed and synthesized plasmonic cube-in-cube (CiC) nanoparticles (NPs) with a controllable interior nanogap in a high yield from Au nanocubes (AuNCs). In synthesizing the CiC NPs, we developed a galvanic void formation (GVF) process, composed of replacement/reduction and void formation steps. We unraveled the super-radiant character of the plasmonic coupling-induced plasmon mode which can result in highly enhanced PL intensity and long-lasting PL, and the PL mechanisms of these structures were analyzed and matched with the plasmon hybridization model. Importantly, the PL intensity and quantum yield (QY) of CiC NPs are 31 times and 16 times higher than those of AuNCs, respectively, which have shown the highest PL intensity and QY reported for metallic nanostructures. Finally, we confirmed the long-term photostability of the PL signal, and the signal remained stable for at least 1 h under continuous illumination.

  15. Pollutant emissions reduction and performance optimization of an industrial radiant tube burner

    Energy Technology Data Exchange (ETDEWEB)

    Scribano, Gianfranco; Solero, Giulio; Coghe, Aldo [Dipartimento di Energetica, Politecnico di Milano, via La Masa, 34, 20156 Milano (Italy)

    2006-07-15

    This paper presents the results of an experimental investigation performed upon a single-ended self-recuperative radiant tube burner fuelled by natural gas in the non-premixed mode, which is used in the steel industry for surface treatment. The main goal of the research activity was a systematic investigation of the burner aimed to find the best operating conditions in terms of optimum equivalence ratio, thermal power and lower pollutant emissions. The analysis, which focused on the main parameters influencing the thermal efficiency and pollutant emissions at the exhaust (NO{sub x} and CO), has been carried out for different operating conditions of the burner: input thermal powers from 12.8 up to 18kW and equivalence ratio from 0.5 (very lean flame) to 0.95 (quasi-stoichiometric condition). To significantly reduce pollutant emissions ensuring at the same time the thermal requirements of the heating process, it has been developed a new burner configuration, in which a fraction of the exhaust gases recirculates in the main combustion region through a variable gap between the burner efflux and the inner flame tube. This internal recirculation mechanism (exhaust gases recirculation, EGR) has been favoured through the addition of a pre-combustion chamber terminated by a converging nozzle acting as a mixing/ejector to promote exhaust gas entrainment into the flame tube. The most important result of this solution was a decrease of NO{sub x} emissions at the exhaust of the order of 50% with respect to the original burner geometry, for a wide range of thermal power and equivalence ratio. (author)

  16. Experimental and modelling analysis of an office building HVAC system based in a ground-coupled heat pump and radiant floor

    International Nuclear Information System (INIS)

    Villarino, José Ignacio; Villarino, Alberto; Fernández, Francisco Ángel

    2017-01-01

    Highlights: • A case study of a geothermal heat pump in an office building. • A numerical model in EnergyPlus is validated by experimental results. • An energy, economic and environmental analysis is presented. • A comparison with other technologies demonstrates the potential of the system. - Abstract: This paper shows the evaluation of the performance of a ground-coupled heat pump system monitored building providing heating, ventilating and air conditioning to an office building located in Madrid, in Spain. The system consists of one borehole exchanger, heat pump unit, radiant floor system, mechanical ventilation and data control system. A simulation model was performed with EnergyPlus software and validated. The analyzed period corresponds to the most unfavorable weather conditions in heating and cooling mode. The coefficient of performance obtained in heating and cooling mode was 3.86/5.29, considering all the energy consumption elements of the building and the thermal demand corresponding to an office operation. The CO_2 emissions obtained with a value of 34.68 kg corresponding to the period analyzed represents a low CO_2 emission system. The monitored temperatures reached set point values of 22 °C/25 °C, considered as acceptable comfort temperatures. The values obtained in the validated simulation model presented a deviation of 2% respected experimental results in heating and cooling mode. A comparative of COP_s_y_s and CO_2 emissions with other technologies is performed in order to analyze GCHP compared to other available technologies. The GCHP system is presented as a technology that can fully supply the HVAC conditions for a building and environmentally friendly.

  17. Short-term bulk energy storage system scheduling for load leveling in unit commitment: modeling, optimization, and sensitivity analysis.

    Science.gov (United States)

    Hemmati, Reza; Saboori, Hedayat

    2016-05-01

    Energy storage systems (ESSs) have experienced a very rapid growth in recent years and are expected to be a promising tool in order to improving power system reliability and being economically efficient. The ESSs possess many potential benefits in various areas in the electric power systems. One of the main benefits of an ESS, especially a bulk unit, relies on smoothing the load pattern by decreasing on-peak and increasing off-peak loads, known as load leveling. These devices require new methods and tools in order to model and optimize their effects in the power system studies. In this respect, this paper will model bulk ESSs based on the several technical characteristics, introduce the proposed model in the thermal unit commitment (UC) problem, and analyze it with respect to the various sensitive parameters. The technical limitations of the thermal units and transmission network constraints are also considered in the model. The proposed model is a Mixed Integer Linear Programming (MILP) which can be easily solved by strong commercial solvers (for instance CPLEX) and it is appropriate to be used in the practical large scale networks. The results of implementing the proposed model on a test system reveal that proper load leveling through optimum storage scheduling leads to considerable operation cost reduction with respect to the storage system characteristics.

  18. Short-term bulk energy storage system scheduling for load leveling in unit commitment: modeling, optimization, and sensitivity analysis

    Science.gov (United States)

    Hemmati, Reza; Saboori, Hedayat

    2016-01-01

    Energy storage systems (ESSs) have experienced a very rapid growth in recent years and are expected to be a promising tool in order to improving power system reliability and being economically efficient. The ESSs possess many potential benefits in various areas in the electric power systems. One of the main benefits of an ESS, especially a bulk unit, relies on smoothing the load pattern by decreasing on-peak and increasing off-peak loads, known as load leveling. These devices require new methods and tools in order to model and optimize their effects in the power system studies. In this respect, this paper will model bulk ESSs based on the several technical characteristics, introduce the proposed model in the thermal unit commitment (UC) problem, and analyze it with respect to the various sensitive parameters. The technical limitations of the thermal units and transmission network constraints are also considered in the model. The proposed model is a Mixed Integer Linear Programming (MILP) which can be easily solved by strong commercial solvers (for instance CPLEX) and it is appropriate to be used in the practical large scale networks. The results of implementing the proposed model on a test system reveal that proper load leveling through optimum storage scheduling leads to considerable operation cost reduction with respect to the storage system characteristics. PMID:27222741

  19. Electrochemiluminescence resonance energy transfer between graphene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing.

    Science.gov (United States)

    Liang, Ru-Ping; Qiu, Wei-Bin; Zhao, Hui-Fang; Xiang, Cai-Yun; Qiu, Jian-Ding

    2016-01-21

    Herein, a novel electrochemiluminescence resonance energy transfer (ECL-RET) biosensor using graphene quantum dots (GQDs) as donor and graphene oxide (GO) as acceptor for monitoring the activity of protein kinase was presented for the first time. Anti-phosphoserine antibody conjugated graphene oxide (Ab-GO) nonocomposite could be captured onto the phosphorylated peptide/GQDs modified electrode surface through antibody-antigen interaction in the presence of casein kinase II (CK2) and adenosine 5'-triphosphate (ATP), resulting in ECL from the GQDs quenching by closely contacting GO. This ECL quenching degree was positively correlated with CK2 activity. Therefore, on the basis of ECL-RET between GQDs and GO, the activity of protein kinase can be detected sensitively. This biosensor can also be used for quantitative analysis CK2 activity in serum samples and qualitative screening kinase inhibition, indicating the potential application of the developed method in biochemical fundamental research and clinical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Highly Sensitive Fluorescent Sensor for Cartap Based on Fluorescence Resonance Energy Transfer Between Gold Nanoparticles and Rhodamine B.

    Science.gov (United States)

    Dong, Liang; Hou, Changjun; Fa, Huanbao; Yang, Mei; Wu, Huixiang; Zhang, Liang; Huo, Danqun

    2018-04-01

    Cartap residue poses a great threat to human health and its derivatives would remain in soils, natural waters and other environmental domains for a long time. Herein, a simple, rapid and ultrasensitive analytical method for the determination of cartap based on fluorescence resonance energy transfer (FRET) between Au nanoparticles (AuNPs) and rhodamine B (RB) is first described. With the presence of citrate-stabilized AuNPs, the fluorescence of RB was remarkably quenched by AuNPs via FRET. The fluorescence of the AuNPs-RB system was recovered upon addition of cartap, cartap can be adsorbed on the surface of AuNPs due to its amino group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the FRET between AuNPs and RB was weakened and the PL intensity of RB was recovered accordingly. A good linear correlation for detection of RB was exhibited from 1 nM to 180 nM, and the detection limit reached 0.88 nM, which was much lower than the safety limit required by USA, UK and China. To the best of our knowledge, it has been the lowest detection ever without the aid of costly instrumentation. This method was successfully carried out for the assessment of cartap in real samples with satisfactory results, which revealed many advantages such as high sensitivity, low cost and non-time-consuming compared with traditional methods.

  1. Tropical Ocean Evaporation/SST Sensitivity and It's Link to Water and Energy Budget Variations During ENSO

    Science.gov (United States)

    Robertson, Franklin R.; Marshall, Susan; Oglesby, Robert; Roads, John; Sohn, Byung-Ju; Arnold, James E. (Technical Monitor)

    2001-01-01

    The continuing debate over feedback mechanisms governing tropical sea surface temperatures (SSTs) and tropical climate in general has highlighted the diversity of potential checks and balances within the climate system. Competing feedbacks due to changes in surface evaporation, water vapor, and cloud long- and shortwave radiative properties each may serve critical roles in stabilizing or destabilizing the climate system. It is also intriguing that even those climate variations having origins internal to the climate system - changes in ocean heat transport for example, apparently require complementary equilibrating effects by changes in atmospheric energy fluxes. Perhaps the best observational evidence of this is the relatively invariant nature of tropically averaged net radiation exiting the top-of-atmosphere (TOA) as measured by broadband satellite sensors over the past two decades. Thus, analyzing how these feedback mechanisms are operating within the context of current interannual variability may offer considerable insight for anticipating future climate change. In this paper we focus primarily on interannual variations of ocean evaporative fluxes and their significance for coupled water and energy cycles within the tropical climate system. In particular, we use both the da Silva estimates of surface fluxes (based on the Comprehensive Ocean Atmosphere Data Set, COADS) and numerical simulations from several global climate models to examine evaporation sensitivity to perturbations in SST associated with warm and cold ENSO events. The specific questions we address are as follows: (1) What recurring patterns of surface wind and humidity anomalies are present during ENSO and how do they combine to yield systematic evaporation anomalies?, (2) What is the resulting tropical ocean mean evaporation-SST sensitivity associated with this climate perturbation?, and (3) What role does this evaporation play in tropical heat and water balance over tropical oceanic regions? We

  2. Potency of Solar Energy Applications in Indonesia

    OpenAIRE

    Handayani, Noer Abyor; Ariyanti, Dessy

    2012-01-01

    Currently, 80% of conventional energy is used to fulfill general public's needs andindustries. The depletion of oil and gas reserves and rapid growth in conventional energyconsumption have continuously forced us to discover renewable energy sources, like solar, wind,biomass, and hydropower, to support economic development in the future. Solar energy travels at aspeed of 186,000 miles per second. Only a small part of the radiant energy that the sun emits intospace ever reaches the Earth, but t...

  3. Radiant heat transfer during the natural evaporation from free surfaces exposed to solar radiation; Transferencia de calor radiante durante a evaporacao natural em superficies livres expostas a radiacao solar

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, C O.M. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Hackenberg, C M [Universidade Federal do Rio de Janeiro, RJ (Brazil). Escola de Quimica

    1985-12-31

    In this work a conductive-convective-radiant model which includes phase change behavior, is developed in order to determine the rate of evaporation from free surface exposed to solar radiation and consequently the most important parameters, and their effects, on the design of salt solutions concentrating natural evaporation reservoirs may be analysed. The numerical solutions of the resulting of system of equations are shown to represent very well the experimental results measured on evaporation chambers specially built for daily operations. The thermal effect of spectrally selective surfaces as coating agents for the reservoir is also analysed. (author). 11 refs., 8 figs

  4. Experimental investigation and feasibility analysis on a capillary radiant heating system based on solar and air source heat pump dual heat source

    International Nuclear Information System (INIS)

    Zhao, M.; Gu, Z.L.; Kang, W.B.; Liu, X.; Zhang, L.Y.; Jin, L.W.; Zhang, Q.L.

    2017-01-01

    Graphical abstract: (a) Vertical temperature gradient in Case 3, (b) PMV and PPD of the test room in Case 3, (c) operating time of SPCTS and ASHP systems in Case 3 and (d) the proportion of SPCTS operating time. - Highlights: • A capillary heating system based on solar and air source heat pump was developed. • Influence of supply water temperature on solar energy saving rate was investigated. • Heating performance and thermal comfort of capillary heating system were analyzed. • Low temperature heating with capillary is suitable for solar heating system. - Abstract: Due to sustainable development, solar energy has drawn much attention and been widely applied in buildings. However, the application of solar energy is limited because of its instability, intermittency and low energy density in winter. In order to use low density and instable solar energy source for heating and improve the utilization efficiency of solar energy, a solar phase change thermal storage (SPCTS) heating system using a radiant-capillary-terminal (RCT) to effectively match the low temperature hot water, a phase change thermal storage (PCTS) to store and continuously utilize the solar energy, and an air source heat pump (ASHP) as an alternate energy, was proposed and set up in this research. Series of experiments were conducted to obtain the relation between the solar radiation utilization rate and the heating supply temperatures, and to evaluate the performance of the RCT module and the indoor thermal environment of the system for its practical application in a residential building in the north-western City of Xi’an, China. The results show that energy saving of the solar heating system can be significantly improved by reducing the supplied water temperature, and the supplied water temperature of the RCT would be no more than 35 °C. The capillary radiation heating can adopt a lower water temperature and create a good thermal comfort environment as well. These results may lead to the

  5. Everolimus in advanced, progressive, well-differentiated, non-functional neuroendocrine tumors: RADIANT-4 lung subgroup analysis.

    Science.gov (United States)

    Fazio, Nicola; Buzzoni, Roberto; Delle Fave, Gianfranco; Tesselaar, Margot E; Wolin, Edward; Van Cutsem, Eric; Tomassetti, Paola; Strosberg, Jonathan; Voi, Maurizio; Bubuteishvili-Pacaud, Lida; Ridolfi, Antonia; Herbst, Fabian; Tomasek, Jiri; Singh, Simron; Pavel, Marianne; Kulke, Matthew H; Valle, Juan W; Yao, James C

    2018-01-01

    In the phase III RADIANT-4 study, everolimus improved median progression-free survival (PFS) by 7.1 months in patients with advanced, progressive, well-differentiated (grade 1 or grade 2), non-functional lung or gastrointestinal neuroendocrine tumors (NETs) vs placebo (hazard ratio, 0.48; 95% confidence interval [CI], 0.35-0.67; P < .00001). This exploratory analysis reports the outcomes of the subgroup of patients with lung NETs. In RADIANT-4, patients were randomized (2:1) to everolimus 10 mg/d or placebo, both with best supportive care. This is a post hoc analysis of the lung subgroup with PFS, by central radiology review, as the primary endpoint; secondary endpoints included objective response rate and safety measures. Ninety of the 302 patients enrolled in the study had primary lung NET (everolimus, n = 63; placebo, n = 27). Median PFS (95% CI) by central review was 9.2 (6.8-10.9) months in the everolimus arm vs 3.6 (1.9-5.1) months in the placebo arm (hazard ratio, 0.50; 95% CI, 0.28-0.88). More patients who received everolimus (58%) experienced tumor shrinkage compared with placebo (13%). Most frequently reported (≥5% incidence) grade 3-4 drug-related adverse events (everolimus vs. placebo) included stomatitis (11% vs. 0%), hyperglycemia (10% vs. 0%), and any infections (8% vs. 0%). In patients with advanced, progressive, well-differentiated, non-functional lung NET, treatment with everolimus was associated with a median PFS improvement of 5.6 months, with a safety profile similar to that of the overall RADIANT-4 cohort. These results support the use of everolimus in patients with advanced, non-functional lung NET. The trial is registered with ClinicalTrials.gov (no. NCT01524783). © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  6. Poster - 24: Characterization of the energy dependence of high-sensitivity MCP-N TLD and Al2O3:C OSLD in-vivo dosimetry systems for 40–100 kVp energies

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Yannick; Kuznetsova, Svetlana; Barajas, Eduardo Villarreal [Tom Baker Cancer Centre, Calgary AB, University of Calgary, Calgary AB, Tom Baker Cancer Center/University of Calgary, Calgary AB (Canada)

    2016-08-15

    Purpose: To characterize the energy dependence of high-sensitivity MCP-N TLD and Al{sub 2}O{sub 3}:C OSLD dosimetry systems at low (40–100 kVp) energies for in-vivo dosimetry. Methods: We assessed the variation of response with energy of two detectors in the 40–100 kVp energy range: high-sensitivity MCP-N TLDs (LiF:Mg,Cu,P) and OSLDs (Al{sub 2}O{sub 3}:C). The detectors were irradiated with an XRad 320ix biological irradiator under reference conditions. The delivered dose was 10 cGy for 7 beam qualities ranging from 40–100 kVp, 1.7–4.0 mm Al, and effective energies 26.9–37.9 keV. Both sets of detectors were also irradiated under reference conditions at 6 MV using a Varian Clinac 21Ex to assess the change in response from high-energy beams. Results: The MCP-N high-sensitivity TLDs were relatively insensitive to energies in the kV range, as their response varied by ±5%, i.e. well within the reproducibility limits of these detectors. However, the OSLDs exhibited a linearly-decreasing response with energy with a response 18.7% higher at 40 kVp than at 100 kVp for the same nominal dose. Compared to the 6 MV beams used in conventional radiotherapy, OSLDs responded 3.3–3.9 times higher depending on beam quality while the MCP-N TLD response was unchanged within experimental uncertainty. Conclusions: Unlike the more commonly used TLD-100, the high-sensitivity MCP-N TLDs exhibit little to no energy response. OSLDs are shown to be highly energy-dependent, both from MV to kV and within the kV range.

  7. Direct evaluation of reflector effects on radiant flux from InGaN-based light-emitting diodes

    Science.gov (United States)

    Masui, Hisashi; Fellows, Natalie N.; Sato, Hitoshi; Asamizu, Hirokuni; Nakamura, Shuji; Denbaars, Steven P.

    2007-08-01

    A metal layer formed on the backside of InGaN/sapphire-based light-emitting diodes deteriorates the inherent optical power output. An experimental approach of a suspended die is employed to study the effects of such metal layers via a direct comparison in radiant flux from a discrete die with and without a reflector. A sphere package that employs no reflector is proposed and fabricated. Light extraction of the sphere design is discussed; a light source in the sphere package would not have to be either an ideal point or placed at the center of the sphere, due to a finite critical angle at the sphere/air interface.

  8. Integrated thermal infrared imaging and Structure-from-Motion photogrametry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA USA

    Science.gov (United States)

    Lewis, Aaron; George Hilley,; Lewicki, Jennifer L.

    2015-01-01

    This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the Structure-from-Motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 oC and 450 W m-2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.

  9. Standard Terminology Relating to Photovoltaic Solar Energy Conversion

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This terminology pertains to photovoltaic (radiant-to-electrical energy conversion) device performance measurements and is not a comprehensive list of terminology for photovoltaics in general. 1.2 Additional terms used in this terminology and of interest to solar energy may be found in Terminology E 772.

  10. Impact of prior therapies on everolimus activity: an exploratory analysis of RADIANT-4.

    Science.gov (United States)

    Buzzoni, Roberto; Carnaghi, Carlo; Strosberg, Jonathan; Fazio, Nicola; Singh, Simron; Herbst, Fabian; Ridolfi, Antonia; Pavel, Marianne E; Wolin, Edward M; Valle, Juan W; Oh, Do-Youn; Yao, James C; Pommier, Rodney

    2017-01-01

    Recently, everolimus was shown to improve median progression-free survival (PFS) by 7.1 months in patients with advanced, progressive, well-differentiated, nonfunctional neuroendocrine tumors (NET) of lung or gastrointestinal (GI) tract compared with placebo (HR, 0.48; 95% CI, 0.35-0.67; P <0.00001) in the Phase III, RADIANT-4 study. This post hoc analysis evaluates the impact of prior therapies (somatostatin analogs [SSA], chemotherapy, and radiotherapy) on everolimus activity. ClinicalTrials.gov identifier: NCT01524783. Patients were randomized (2:1) to everolimus 10 mg/day or placebo, both with best supportive care. Subgroups of patients who received prior SSA, chemotherapy, or radiotherapy (including peptide receptor radionuclide therapy) were analyzed and reported. A total of 302 patients were enrolled, of whom, 163 (54%) had any prior SSA use (mostly for tumor control), 77 (25%) received chemotherapy, and 63 (21%) were previously exposed to radiotherapy. Patients who received everolimus had longer median PFS compared with placebo, regardless of previous SSA (with SSA: 11.1 vs 4.5 months [HR, 0.56 {95% CI, 0.37-0.85}]; without SSA: 9.5 vs 3.7 months [0.57 {0.36-0.89}]), chemotherapy (with chemotherapy: 9.2 vs 2.1 months [0.35 {0.19-0.64}]; without chemotherapy: 11.2 vs 5.4 months [0.60 {0.42-0.86}]), or radiotherapy (with radiotherapy: 9.2 vs 3.0 months [0.47 {0.24-0.94}]; without radiotherapy: 11 vs 5.1 months [0.59 {0.42-0.83}]) exposure. The most frequent drug-related adverse events included stomatitis (59%-65%), fatigue (27%-35%), and diarrhea (24%-34%) among the subgroups. These results suggest that everolimus improves PFS in patients with advanced, progressive lung or GI NET, regardless of prior therapies. Safety findings were consistent with the known safety profile of everolimus in NET.

  11. A Energy Balance Analysis of the Climate Sensitivity to Variations in the Rate of Upwelling in the World Oceans.

    Science.gov (United States)

    Morantine, Michael Creighton

    -scale to be the source of the dynamic interaction responsible for this abrupt climatic event. The process employed in the dimension reduction used in the formulation of lower-order EBM's will be illustrated through the development of the equations, pointing out the inherent assumptions which must be made when developing one- and two-dimensional models as they are required. One -, two- and three-dimensional energy balance models will be analyzed and the results of climate sensitivity to upwelling variations will be presented graphically for each case.

  12. Toward a Spatial Perspective on Business Sustainability: The Role of Central Urban and Environmentally Sensitive Areas in Energy Corporates’ Green Behaviours

    Science.gov (United States)

    Wang, Teng; Liu, Zongrui; Zhou, Li

    2018-02-01

    As one of the most concerned topics in strategic management research, the motivations of energy corporates’ green behaviours are extensively explored by scholars, however, only a few noticed the role of geographic antecedents. To bridge this gap, we argue that energy firms’ green behaviours will be greatly predicted by its location, more specifically, proximity to environmentally sensitive areas and central urban areas. Draw on neo-institutional theory and stakeholder theory, we argue that institutional forces mediate the links between energy corporates’ green behaviours and proximities, while different proximity affects via different institutional logics. The results are discussed along with managerial implications.

  13. A position sensitive detector using a NaI(Tl)/photomultiplier tube combination for the energy range 200 keV to 10 MeV

    International Nuclear Information System (INIS)

    Court, A.J.; Dean, A.J.; Yearworth, M.; Younis, F.; Chiappetti, L.; Perotti, F.; Villa, G.; Ubertini, P.; La Padula, C.

    1988-01-01

    The performance of the position sensitive detector for the ZEBRA low energy gamma-ray imaging telescope is described. The detector consists of 9 position sensitive NaI(Tl) elements each 5.8x5.0x56.0 cm viewed at either end of the long axis by 2 in. photomultiplier tubes. The total active area is 2470 cm 2 with an average positional resolution of 2.1 cm and energy resolution of 15% FWHM at 661.6 keV. The method of flight calibration is described together with the provision within the on-board electronics to correct for sources of error in the calculation of event energy loss and position. The results presented are obtained from the calibration phase of the ZEBRA telescope project. (orig.)

  14. Reducing heat loss from the energy absorber of a solar collector

    Science.gov (United States)

    Chao, Bei Tse; Rabl, Ari

    1976-01-01

    A device is provided for reducing convective heat loss in a cylindrical radiant energy collector. It includes a curved reflective wall in the shape of the arc of a circle positioned on the opposite side of the exit aperture from the reflective side walls of the collector. Radiant energy exiting the exit aperture is directed by the curved wall onto an energy absorber such that the portion of the absorber upon which the energy is directed faces downward to reduce convective heat loss from the absorber.

  15. Optimal design approach for heating irregular-shaped objects in three-dimensional radiant furnaces using a hybrid genetic algorithm-artificial neural network method

    Science.gov (United States)

    Darvishvand, Leila; Kamkari, Babak; Kowsary, Farshad

    2018-03-01

    In this article, a new hybrid method based on the combination of the genetic algorithm (GA) and artificial neural network (ANN) is developed to optimize the design of three-dimensional (3-D) radiant furnaces. A 3-D irregular shape design body (DB) heated inside a 3-D radiant furnace is considered as a case study. The uniform thermal conditions on the DB surfaces are obtained by minimizing an objective function. An ANN is developed to predict the objective function value which is trained through the data produced by applying the Monte Carlo method. The trained ANN is used in conjunction with the GA to find the optimal design variables. The results show that the computational time using the GA-ANN approach is significantly less than that of the conventional method. It is concluded that the integration of the ANN with GA is an efficient technique for optimization of the radiant furnaces.

  16. The effects of radiant cooling versus convective cooling on human eye tear film stability and blinking rate

    DEFF Research Database (Denmark)

    Nygaard, Linette; Uth, Simon C.; Bolashikov, Zhecho Dimitrov

    2014-01-01

    The effect of indoor temperature, radiant and convective cooling on tear film stability and eye blink frequency was examined. 24 human subjects were exposed to the non-uniform environment generated by localised chilled beam and a chilled ceiling combined with overhead mixing ventilation. The subj......The effect of indoor temperature, radiant and convective cooling on tear film stability and eye blink frequency was examined. 24 human subjects were exposed to the non-uniform environment generated by localised chilled beam and a chilled ceiling combined with overhead mixing ventilation....... The subjects participated in four two-hour experiments. The room air temperature was kept at 26 °C or 28 °C. Tear film samples were collected after 30 min of acclimatisation and at the end of the exposures. Eye blinking frequency was analysed for the first and last 15 min of each exposure. The tear film...... stability decreased as the temperature increased. The highest number of subjects with unchanged or improved tear film quality was observed with the localised chilled beam at 26 °C. A trend was found between subjects who reported eye irritation and had a bad tear film quality....

  17. Comparison of indoor air distribution and thermal environment for different combinations of radiant heating systems with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Fang, Lei; Olesen, Bjarne W.

    2018-01-01

    A hybrid system with a radiant heating system and a mechanical ventilation system, which is regarded as an advanced heating, ventilation and air-conditioning (HVAC) system, has been applied in many modern buildings worldwide. To date, almost no studies focused on comparative analysis of the indoor...... air distribution and the thermal environment for all combinations of radiant heating systems with mechanical ventilation systems. Therefore, in this article, the indoor air distribution and the thermal environment were comparatively analyzed in a room with floor heating (FH) or ceiling heating (CH......) and mixing ventilation (MV) or displacement ventilation (DV) when the supply air temperature ranged from 15.0°C to 19.0°C. The results showed that the temperature effectiveness values were 1.05–1.16 and 0.95–1.02 for MV+ FH and MV+ CH, respectively, and they were 0.78–0.91 and 0.51–0.67 for DV + FH and DV...

  18. A search for space energy alternatives

    Science.gov (United States)

    Gilbreath, W. P.; Billman, K. W.

    1978-01-01

    This paper takes a look at a number of schemes for converting radiant energy in space to useful energy for man. These schemes are possible alternatives to the currently most studied solar power satellite concept. Possible primary collection and conversion devices discussed include the space particle flux devices, solar windmills, photovoltaic devices, photochemical cells, photoemissive converters, heat engines, dielectric energy conversion, electrostatic generators, plasma solar collectors, and thermionic schemes. Transmission devices reviewed include lasers and masers.

  19. Uncertainty and sensitivity analyses of energy and visual performances of office building with external venetian blind shading in hot-dry climate

    International Nuclear Information System (INIS)

    Singh, Ramkishore; Lazarus, I.J.; Kishore, V.V.N.

    2016-01-01

    Highlights: • Various alternatives of glazing and venetian blind were simulated for office space. • Daylighting and energy performances were assessed for each alternative. • Large uncertainties were estimated in the energy consumptions and UDI values. • Glazing design parameters were prioritised by performing sensitivity analysis. • WWR, glazing type, blind orientation and slat angle were identified top in priority. - Abstract: Fenestration has become an integral part of the buildings and has a significant impact on the energy and indoor visual performances. Inappropriate design of the fenestration component may lead to low energy efficiency and visual discomfort as a result of high solar and thermal heat gains, excessive daylight and direct sunlight. External venetian blind has been identified as one of the effective shading devices for controlling the heat gains and daylight through fenestration. This study explores uncertainty and sensitivity analyses to identify and prioritize the most influencing parameters for designing glazed components that include external shading devices for office buildings. The study was performed for hot-dry climate of Jodhpur (Latitude 26° 180′N, longitude 73° 010′E) using EnergyPlus, a whole building energy simulation tool providing a large number of inputs for eight façade orientations. A total 150 and 845 data points (for each orientation) for input variables were generated using Hyper Cubic Sampling and extended FAST methods for uncertainty and sensitivity analyses respectively. Results indicated a large uncertainty in the lighting, HVAC, source energy consumptions and useful daylight illuminance (UDI). The estimated coefficients of variation were highest (up to 106%) for UDI, followed by lighting energy (up to 45%) and HVAC energy use (around 33%). The sensitivity analysis identified window to wall ratio, glazing type, blind type (orientation of slats) and slat angle as highly influencing factors for energy and

  20. Impact of prior therapies on everolimus activity: an exploratory analysis of RADIANT-4

    Directory of Open Access Journals (Sweden)

    Buzzoni R

    2017-10-01

    Full Text Available Roberto Buzzoni,1 Carlo Carnaghi,2 Jonathan Strosberg,3 Nicola Fazio,4 Simron Singh,5 Fabian Herbst,6 Antonia Ridolfi,7 Marianne E Pavel,8 Edward M Wolin,9 Juan W Valle,10 Do-Youn Oh,11 James C Yao,12 Rodney Pommier13 1IRCCS Foundation, National Institute of Tumors, Milan, Italy; 2Humanitas Clinical and Research Center, Rozzano, Italy; 3Moffitt Cancer Center, Tampa, FL, USA; 4European Institute of Oncology, Milan, Italy; 5Sunnybrook Health Sciences Centre, Toronto, ON, Canada; 6Novartis AG, Basel, Switzerland; 7Novartis Pharma S.A.S., Rueil-Malmaison, France; 8Medizinische Klinik 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; 9Montefiore Einstein Center for Cancer Care, Bronx, NY, USA; 10Institute of Cancer Sciences, University of Manchester, The Christie Hospital, Manchester, UK; 11Seoul National University Hospital, Seoul, Republic of Korea; 12University of Texas M.D. Anderson Cancer Center, Houston, TX, USA; 13Oregon Health & Science University, Portland, OR, USA Background: Recently, everolimus was shown to improve median progression-free survival (PFS by 7.1 months in patients with advanced, progressive, well-differentiated, nonfunctional neuroendocrine tumors (NET of lung or gastrointestinal (GI tract compared with placebo (HR, 0.48; 95% CI, 0.35–0.67; P<0.00001 in the Phase III, RADIANT-4 study. This post hoc analysis evaluates the impact of prior therapies (somatostatin analogs [SSA], chemotherapy, and radiotherapy on everolimus activity. Trial registration: ClinicalTrials.gov identifier: NCT01524783. Patients and methods: Patients were randomized (2:1 to everolimus 10 mg/day or placebo, both with best supportive care. Subgroups of patients who received prior SSA, chemotherapy, or radiotherapy (including peptide receptor radionuclide therapy were analyzed and reported. Results: A total of 302 patients were enrolled, of whom, 163 (54% had any prior SSA use (mostly for tumor control, 77 (25% received

  1. Three-in-one approach towards efficient organic dye-sensitized solar cells: aggregation suppression, panchromatic absorption and resonance energy transfer

    Directory of Open Access Journals (Sweden)

    Jayita Patwari

    2017-08-01

    Full Text Available In the present study, protoporphyrin IX (PPIX and squarine (SQ2 have been used in a co-sensitized dye-sensitized solar cell (DSSC to apply their high absorption coefficients in the visible and NIR region of the solar spectrum and to probe the possibility of Förster resonance energy transfer (FRET between the two dyes. FRET from the donor PPIX to acceptor SQ2 was observed from detailed investigation of the excited-state photophysics of the dye mixture, using time-resolved fluorescence decay measurements. The electron transfer time scales from the dyes to TiO2 have also been characterized for each dye. The current–voltage (I–V characteristics and the wavelength-dependent photocurrent measurements of the co-sensitized DSSCs reveal that FRET between the two dyes increase the photocurrent as well as the efficiency of the device. From the absorption spectra of the co-sensitized photoanodes, PPIX was observed to be efficiently acting as a co-adsorbent and to reduce the dye aggregation problem of SQ2. It has further been proven by a comparison of the device performance with a chenodeoxycholic acid (CDCA added to a SQ2-sensitized DSSC. Apart from increasing the absorption window, the FRET-induced enhanced photocurrent and the anti-aggregating behavior of PPIX towards SQ2 are crucial points that improve the performance of the co-sensitized DSSC.

  2. Lower-energy neutron sources for increasing the sensitivity of nuclear gages for measuring the water content of bulk materials

    International Nuclear Information System (INIS)

    Bailey, S.M.

    1977-01-01

    The sensitivity of a gage using a nuclear source for measuring the water content of bulk materials, such as plastic concrete, is increased by use of a lithium or fluorine neutron nuclear source. 3 figures

  3. Dosimetric properties of new formulation of PRESAGE® with tin organometal catalyst: Development of sensitivity and stability to megavoltage energy

    Directory of Open Access Journals (Sweden)

    Davood Khezerloo

    2018-01-01

    Conclusions: Tin organometallic catalyst in very low concentration can be used in fabrication of radiochromic polymer gel to achieve high sensitivity and stability as well as good radiological properties in the megavoltage photon beam.

  4. Applicability of the two-angle differential method to response measurement of neutron-sensitive devices at the RCNP high-energy neutron facility

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Akihiko, E-mail: aki-masuda@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Matsumoto, Tetsuro [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Iwamoto, Yosuke [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195 (Japan); Hagiwara, Masayuki [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Satoh, Daiki; Sato, Tatsuhiko [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195 (Japan); Iwase, Hiroshi [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Yashima, Hiroshi [Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori, Sennan, Osaka 590-0494 (Japan); Nakane, Yoshihiro [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai, Naka, Ibaraki 319-1195 (Japan); Nishiyama, Jun [Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550 (Japan); Shima, Tatsushi; Tamii, Atsushi; Hatanaka, Kichiji [Research Center for Nuclear Physics (RCNP), Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Harano, Hideki [National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Nakamura, Takashi [Cyclotron and Radioisotope Center (CYRIC), Tohoku University, 6-3 Aramaki, Aoba, Sendai, Miyagi 980-8578 (Japan)

    2017-03-21

    Quasi-monoenergetic high-energy neutron fields induced by {sup 7}Li(p,n) reactions are used for the response evaluation of neutron-sensitive devices. The quasi-monoenergetic high-energy field consists of high-energy monoenergetic peak neutrons and unwanted continuum neutrons down to the low-energy region. A two-angle differential method has been developed to compensate for the effect of the continuum neutrons in the response measurements. In this study, the two-angle differential method was demonstrated for Bonner sphere detectors, which are typical examples of moderator-based neutron-sensitive detectors, to investigate the method's applicability and its dependence on detector characteristics. Experiments were performed under 96–387 MeV quasi-monoenergetic high-energy neutron fields at the Research Center for Nuclear Physics (RCNP), Osaka University. The measurement results for large high-density polyethylene (HDPE) sphere detectors agreed well with Monte Carlo calculations, which verified the adequacy of the two-angle differential method. By contrast, discrepancies were observed in the results for small HDPE sphere detectors and metal-induced sphere detectors. The former indicated that detectors that are particularly sensitive to low-energy neutrons may be affected by penetrating neutrons owing to the geometrical features of the RCNP facility. The latter discrepancy could be consistently explained by a problem in the evaluated cross-section data for the metals used in the calculation. Through those discussions, the adequacy of the two-angle differential method was experimentally verified, and practical suggestions were made pertaining to this method.

  5. Techno-economic and sensitivity analysis for grid-connected renewable energy electric boat charging station in Terengganu

    OpenAIRE

    Salleh N. A. S.; Muda W. M. W.

    2017-01-01

    In order to encourage the eco-friendly technologies in transportation sector, the reliance on fuel need to be reduced and the use of renewable energy (RE) technology as energy source are widely explored by researchers. Thus, this study focus on the feasibility of developing grid-connected renewable energy electric boat charging station for the fishermen in Terengganu using simulation-based method by HOMER software. Five year solar radiation and wind speed data were collected at Universiti Sul...

  6. Energy-Info barometer by the national mediator of energy, Wave 9 - 2015. 2015 Energy-Info barometer: a high sensitivity of consumers to the cost of energy, despite a soft winter

    International Nuclear Information System (INIS)

    Keller, Caroline

    2015-10-01

    This publication comments the results of a survey on the relationship between French people and energy. It first outlines that energy expenses and consumption are always an important matter of concern: energy expenses remain high, the reduction of heating has been slightly lower, the anticipation to energy price increase is less pronounced. It appears that the knowledge of market opening for competition is slowly progressing, i.e. the knowledge of the possibility to change of electricity or natural gas provider, but that market understanding remains limited, that the opinion about this opening is somehow inconsistent, and that there is a poor feeling about the information on energy consumer rights. However, even the process for changing provider remains fuzzy, always more people go for it. The knowledge of the existence and role of the mediator has been assessed. It also appears that people are rather often contacted as prospects for insulation works, renewable energy installations, and energy supply. People have also been surveyed regarding their opinion on an energy check, and on their knowledge about communicating counters. A shorter text proposes a synthetic report on the survey with a focus on some key figures

  7. Field tests on human tolerance to (LNG) fire radiant heat exposure, and attenuation effects of clothing and other objects

    International Nuclear Information System (INIS)

    Raj, Phani K.

    2008-01-01

    A series of field tests exposing mannequins clothed with civilian clothing to a 3 m x 3 m square liquefied natural gas (LNG) pool fire was conducted. Both single layer clothing and double layer clothing were used. The radiant heat flux incident outside the clothing and incident on the skin covered by clothing were measured using wide-angle radiometers, for durations of 100-200 s (per test). The levels of heat flux incident on the clothing were close to 5 kW/m 2 . The magnitude of the radiant heat attenuation factor (AF) across the thickness was determined. AF varies between 2 and higher for cotton and polyester clothing (thickness 0.286-1.347 mm); AF value of 6 was measured for 1.347 mm thickness. Single sheet newspaper held about 5 cm in front of mannequins and exposed to incident flux of 5 kW/m 2 resulted in AF of 5, and AF of 8 with double sheets. AF decreases linearly with increasing heat flux values and linearly increases with thickness. The author exposed himself, in normal civilian clothing (of full sleeve cotton/polyester shirt and jean pants), to radiant heat from a LNG fire. The exposure was for several tens of seconds to heat flux levels ranging from 3.5 kW/m 2 to 5 + kW/m 2 (exposure times from 25 s to 97 s at average heat flux values in the 4 kW/m 2 and 5 kW/m 2 range). Occasionally, he was exposed to (as high as) 7 kW/m 2 for durations of several seconds. He did not suffer any unbearable or even severe pain nor did he experience blisters or burns or any other injury on the unprotected skin of his body. The incident heat fluxes on the author were measured by a hand-held radiometer (with digital display) as well as by strapped on wide-angle radiometers connected to a computer. He could withstand the US regulatory criterion of 5 kW/m 2 (for 30 s) without suffering any damage or burns. Temperature measured on author's skin covered by clothing did not rise above the normal body temperature even after 200 s of exposure to 4 kW/m 2 average heat flux

  8. Feasibility study of a highly sensitive LaBr{sub 3} PET scanner based on the DOI-dependent extended-energy window

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji [Naitonal Institute of Radiological Sciences, Chiba (Japan)], E-mail: rush@nirs.go.jp; Kitamura, Keishi [Shimadzu Corporation, Kyoto (Japan); Nishikido, Fumihiko; Shibuya, Kengo [Naitonal Institute of Radiological Sciences, Chiba (Japan); Hasegawa, Tomoyuki [Kitasato University, Kanagawa (Japan); Yamaya, Taiga; Inadama, Naoko; Murayama, Hideo [Naitonal Institute of Radiological Sciences, Chiba (Japan)

    2009-06-01

    Conventionally, positron emission tomograph (PET) scanners use scintillators which have a high effective atomic number. Recently, novel scintillators like LaBr{sub 3} have been developed which have excellent timing and energy resolutions. LaBr{sub 3} has a high performance for PET scanner use, but its effective atomic number is lower than that of lutetium oxyorthosilicate (LSO). As an alternative, we have developed a scatter reduction method using depth-of-interaction (DOI) information and energy information to increase the sensitivity. The sensitivity of the PET scanner with LaBr{sub 3} can be improved using the DOI-dependent extended-energy window (DEEW) method. In this work, our method is applied to the whole-body LSO/LaBr{sub 3} PET scanner using the GATE simulation toolkit. Simulation results show the number of true coincidences can be increased while minimizing the scatter and random coincidences by using the DEEW method. Noise equivalent count rate (NECR) can be improved by 20-70% for the whole-body DOI-PET scanner. Sensitivity of the PET scanner with a scintillator of low-effective atomic number can be improved by the DEEW method.

  9. Design optimization and sensitivity analysis of a biomass-fired combined cooling, heating and power system with thermal energy storage systems

    International Nuclear Information System (INIS)

    Caliano, Martina; Bianco, Nicola; Graditi, Giorgio; Mongibello, Luigi

    2017-01-01

    Highlights: • A novel operation strategy for biomass-fired combined cooling, heating and power system is presented. • A design optimization of the system is conducted. • The effects of variation of the incentive for the electricity generation are evaluated. • The effects of the variation of the absorption chiller size and the thermal energy storage system one are evaluated. • The inclusion of a cold storage system into the combined cooling, heating and power system is also analyzed. - Abstract: In this work, an operation strategy for a biomass-fired combined cooling, heating and power system, composed of a cogeneration unit, an absorption chiller, and a thermal energy storage system, is formulated in order to satisfy time-varying energy demands of an Italian cluster of residential multi-apartment buildings. This operation strategy is adopted for performing the economical optimization of the design of two of the devices composing the combined cooling, heating and power system, namely the absorption chiller and the storage system. A sensitivity analysis is carried out in order to evaluate the impact of the incentive for the electricity generation on the optimized results, and also to evaluate, separately, the effects of the variation of the absorption chiller size, and the effects of the variation of the thermal energy storage system size on the system performance. In addition, the inclusion into the system of a cold thermal energy storage system is analyzed, as well, assuming different possible values for the cold storage system cost. The results of the sensitivity analysis indicate that the most influencing factors from the economical point of view are represented by the incentive for the electricity generation and the absorption chiller power. Results also show that the combined use of a thermal energy storage and of a cold thermal energy storage during the hot season could represent a viable solution from the economical point of view.

  10. Disseny de calefacció amb terra radiant d'una casa a l'horta de Lleida mitjançant energia geotèrmica

    OpenAIRE

    Fillat Sobrino, Jordi

    2008-01-01

    S'ha realitzat el disseny de calefacció d'una vivenda mitjançant energia geotèrmica de baixa temperatura, amb un bescanviador vertical de 80 m de profunditat. El sistema de calefacció és de terra radiant en forma d'espiral.

  11. Full Scale Measurements and CFD Investigations of a Wall Radiant Cooling System Based on Plastic Capillary Tubes in Thin Concrete Walls

    DEFF Research Database (Denmark)

    Mikeska, Tomás; Fan, Jianhua; Svendsen, Svend

    2017-01-01

    Densely occupied spaces such as classrooms can very often have problems with overheating. It can be difficult to cool such spaces by means of a ventilation system without creating draughts and causing discomfort for occupants. The use of a wall radiant cooling system is a suitable option for spaces...

  12. The effects of mixing air distribution and heat load arrangement on the performance of ceiling radiant panels under cooling mode of operation

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Kosonen, Risto; Melikov, Arsen Krikor

    2016-01-01

    arrangement and air distribution generated in a room by linear slot diffuser, radial multi-nozzle diffuser and radial swirl induction unit on the cooling power of radiant panels was compared. The impact on the thermal environment was also studied. Measurements were carried out without and with supply air...

  13. A Simulation Study on the Performance of Radiant Ceilings Combined with Free-Hanging Horizontal Sound Absorbers

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Domínguez, L. Marcos; Rage, Niels

    2018-01-01

    using TABS, most building simulation models assume an uncovered ceiling; however, this might not be the case in practice, due to the use of free-hanging horizontal (or vertical) sound absorbers for the control of room acoustic conditions. The use of sound absorbers will decrease the performance...... of radiant ceiling cooling systems. Therefore, the quantification of the effects during the design phase is important for predicting the resulting thermal indoor environment and for system dimensioning. In this study, a two-person office room equipped with TABS was simulated using a commercially available...... simulation software with a recently developed plug-in that allows simulating the effects of horizontal sound absorbers on the performance of TABS and on the thermal indoor environment. The change in thermal indoor environment and in performance of TABS were quantified, and the simulation results were...

  14. Process evaluation of the RaDIANT community study: a dialysis facility-level intervention to increase referral for kidney transplantation.

    Science.gov (United States)

    Hamoda, Reem E; Gander, Jennifer C; McPherson, Laura J; Arriola, Kimberly J; Cobb, Loren; Pastan, Stephen O; Plantinga, Laura; Browne, Teri; Hartmann, Erica; Mulloy, Laura; Zayas, Carlos; Krisher, Jenna; Patzer, Rachel E

    2018-01-15

    The Reducing Disparities in Access to kidNey Transplantation Community Study (RaDIANT) was an End-Stage Renal Disease (ESRD) Network 6-developed, dialysis facility-level randomized trial testing the effectiveness of a 1-year multicomponent education and quality improvement intervention in increasing referral for kidney transplant evaluation among selected Georgia dialysis facilities. To assess implementation of the RaDIANT intervention, we conducted a process evaluation at the conclusion of the intervention period (January-December 2014). We administered a 20-item survey to the staff involved with transplant education in 67 dialysis facilities randomized to participate in intervention activities. Survey items assessed facility participation in the intervention (fidelity and reach), helpfulness and willingness to continue intervention activities (sustainability), suggestions for improving intervention components (sustainability), and factors that may have influenced participation and study outcomes (context). We defined high fidelity to the intervention as completing 11 or more activities, and high participation in an activity as having at least 75% participation across intervention facilities. Staff from 65 of the 67 dialysis facilities completed the questionnaire, and more than half (50.8%) reported high adherence (fidelity) to RaDIANT intervention requirements. Nearly two-thirds (63.1%) of facilities reported that RaDIANT intervention activities were helpful or very helpful, with 90.8% of facilities willing to continue at least one intervention component beyond the study period. Intervention components with high participation emphasized staff and patient-level education, including in-service staff orientations, patient and family education programs, and patient educational materials. Suggested improvements for intervention activities emphasized addressing financial barriers to transplantation, with financial education materials perceived as most helpful among RaDIANT

  15. Everolimus for Advanced Pancreatic Neuroendocrine Tumours: A Subgroup Analysis Evaluating Japanese Patients in the RADIANT-3 Trial

    Science.gov (United States)

    Ito, Tetsuhide; Okusaka, Takuji; Ikeda, Masafumi; Igarashi, Hisato; Morizane, Chigusa; Nakachi, Kohei; Tajima, Takeshi; Kasuga, Akio; Fujita, Yoshie; Furuse, Junji

    2012-01-01

    Objective Everolimus, an inhibitor of the mammalian target of rapamycin, has recently demonstrated efficacy and safety in a Phase III, double-blind, randomized trial (RADIANT-3) in 410 patients with low- or intermediate-grade advanced pancreatic neuroendocrine tumours. Everolimus 10 mg/day provided a 2.4-fold improvement compared with placebo in progression-free survival, representing a 65% risk reduction for progression. The purpose of this analysis was to investigate the efficacy and safety of everolimus in the Japanese subgroup enrolled in the RADIANT-3 study. Methods Subgroup analysis of the Japanese patients was performed comparing efficacy and safety between everolimus 10 mg/day orally (n = 23) and matching placebo (n = 17). The primary endpoint was progression-free survival. Safety was evaluated on the basis of the incidence of adverse drug reactions. Results Progression-free survival was significantly prolonged with everolimus compared with placebo. The median progression-free survival was 19.45 months (95% confidence interval, 8.31–not available) with everolimus vs 2.83 months (95% confidence interval, 2.46–8.34) with placebo, resulting in an 81% risk reduction in progression (hazard ratio, 0.19; 95% confidence interval, 0.08–0.48; P< 0.001). Adverse drug reactions occurred in all 23 (100%) Japanese patients receiving everolimus and in 13 (77%) patients receiving placebo; most were grade 1/2 in severity. The most common adverse drug reactions in the everolimus group were rash (n = 20; 87%), stomatitis (n = 17; 74%), infections (n = 15; 65%), nail disorders (n = 12; 52%), epistaxis (n = 10; 44%) and pneumonitis (n = 10; 44%). Conclusions These results support the use of everolimus as a valuable treatment option for Japanese patients with advanced pancreatic neuroendocrine tumours. PMID:22859827

  16. Development and demonstration of a gas-fired recuperative confined radiant burner (deliverable 42/43). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    The objective of the project was to develop and demonstrate an innovative, efficient, low-pollutant, recuperative gas-fired IR-system (infrared radiation) for industrial processes (hereafter referred to as the CONRAD-system). The CONRAD-system is confined, so flue gases from the combustion can be kept separated from the product. The gas/air mixture to the burner is preheated by means of the flue gas, which increases the radiant efficiency of the CONRAD-system significantly over traditional gas-fired IR burners. During the first phase of the project, the CONRAD-system was designed and developed. The conducted work included a survey on suitable burner materials, modelling of the burner system, basic design of burner construction, control etc., experimental characterisation of several preprototypes and detailed design of the internal heat exchanger in the burner. The result is a cost effective burner system with a documented radiant efficiency up to 66% and low emissions (NO{sub x} and CO) all in accordance with the criteria of success set up at the start of the project. In the second phase of the project, the burner system was established and tested in laboratory and in four selected industrial applications: 1) Drying of coatings on sand cores in the automotive industry. 2) Baking of bread/cake. 3) General purpose painting/powder curing process 4. Curing of powder paint on wood components. The results from the preliminary tests Overe used to optimise the CONRAD-system, before it was applied in the industrial processes and demonstrated. However, the optimised burners manufactured for demonstration suffered from different 'infant failures', which made the installation in an industrial environment very cumbersome, and even impossible in the food industry and the automotive industry. In the latter cases realistic laboratory tests Overe carried out and the established know how reported for use when the burner problems are overcome.(au)

  17. Prediction of liquid metal alloy radiant properties from measurements of the Hall coefficient and the direct current resistivity

    International Nuclear Information System (INIS)

    Havstad, M.A.; Qiu, T.

    1995-04-01

    The thermal radiative properties of high temperature solid and liquid metal alloys are particularly useful to research and development efforts in laser cladding and machining, electron beam welding and laser isotope separation. However the cost, complexity, and difficulty of measuring these properties have forced the use of crude estimates from the Hagen-Rubens relation, the Drude relations, or extrapolation from low temperature or otherwise flawed data (e.g., oxidized). The authors have found in this work that published values for the Hall coefficient and the electrical resistivity of liquid metal alloys can provide useful estimates of the reflectance and emittance of some groups of binary liquid metal and high temperature solid alloys. The estimation method computes the Drude free electron parameters, and thence the optical constants and the radiant properties from the dependence of the Hall coefficient and direct current resistivity on alloy composition (the Hall coefficient gives the free electron density and the resistivity gives the average time between collisions). They find that predictions of the radiant properties of molten cerium-copper alloy, which use the measured variations in the Hall coefficient and resistivity (both highly nonlinear) as a function of alloy fraction (rather than linear combinations of the values of the pure elements) yield a good comparison to published measurements of the variation of the normal spectral emittance (a different but also nonlinear function) of cerium-copper alloy at the single wavelength available for comparison, 0.645 μm. The success of the approach in the visible range is particularly notable because one expects a Drude based approach to improve with increasing wavelength from the visible into the infrared. Details of the estimation method, the comparison between the calculation and the measured emittance, and a discussion of what groups of elements may also provide agreement is given

  18. Sensitivity analysis in molecular dynamics and chemical kinetics and a theory of intramolecular energy transfer in the presence of intense radiation fields

    International Nuclear Information System (INIS)

    Eslava, L.A.

    1983-01-01

    This thesis is an investigation of two topics in the area of molecular and chemical dynamics phenomena. The first topic, Sensitivity Analysis in Molecular Dynamics and Chemical Kinetics, explores the response of the numerical solutions to variation in the input information. After a brief consideration of elementary sensitivity coefficients (i.e. partial derivatives of observables with respect to model parameters), attention is focused on an entire new family of derived coefficients capable of exhibiting important aspects of the underlying dynamics. Each derived sensitivity coefficient has a unique physical interpretation in terms of an experiment or modeling calculation. Also, a fitting model for rotationally inelastic cross sections that accurately predicts cross sections away from the region of parameter space used in the fitting is presented. The global behavior of cross sections in parameter space is examined, and a nonlinear interpolation formula is suggested which utilizes sensitivity information. The second topic, A Theory of Intramolecular Energy Transfer in the Presence of Intense Radiation Fields, represents a theoretical formulation of energy redistribution based on stochastic considerations. The fundamental assumption is that a random phase approximation is valid at specific time intervals. This results in the replacement of the Schrodinger equation by a master-type equation, which is further approximated by a Fokker-Planck diffusion like equation. Energy transfer is described as a flow of probability among the quantum states, and the dissociation of dynamics are embodied in the boundary conditions. By virtue of the continuous character of the Fokker-Planck equation, the computational difficulty of its numerical solution depends only on the number of degrees of freedom and not on the number of states

  19. Documentation associated with the WESF preparation for receiving 25 cesium capsules from the Applied Radiant Energy Corporation (ARECO)

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, M.W.

    1996-10-21

    The purpose of this report is to compile all documentation associated with facility preparation of WESF to receive 25 cesium capsules from ARECO. The WESF validated it`s preparedness by completing a facility preparedness review using a performance indicator checklist.

  20. Means of increasing efficiency of CPC solar energy collector

    Science.gov (United States)

    Chao, B.T.; Rabl, A.

    1975-06-27

    A device is provided for improving the thermal efficiency of a cylindrical radiant energy collector. A channel is placed next to and in close proximity to the nonreflective side of an energy reflective wall of a cylindrical collector. A coolant is piped through the channel and removes a portion of the nonreflective energy incident on the wall which is absorbed by the wall. The energy transferred to the coolant may be utilized in a useful manner.

  1. Thermal environment in a simulated double office room with convective and radiant cooling systems

    DEFF Research Database (Denmark)

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Rezgals, Lauris

    2017-01-01

    anddraught rate was calculated. Manikin-based equivalent temperature (MBET) was determined by using two thermal manikins. CCMV provided slightly more uniform thermal environment and the least sensitive to different workstation layouts than the other systems. CB provided a bit higher draught rate levels than...

  2. Energy

    International Nuclear Information System (INIS)

    Meister, F.; Ott, F.

    2002-01-01

    This chapter gives an overview of the current energy economy in Austria. The Austrian political aims of sustainable development and climate protection imply a reorientation of the Austrian energy policy as a whole. Energy consumption trends (1993-1998), final energy consumption by energy carrier (indexed data 1993-1999), comparative analysis of useful energy demand (1993 and 1999) and final energy consumption of renewable energy sources by sector (1996-1999) in Austria are given. The necessary measures to be taken in order to reduce the energy demand and increased the use of renewable energy are briefly mentioned. Figs. 5. (nevyjel)

  3. The storm tracks and the energy cycle of the Southern Hemisphere: sensitivity to sea-ice boundary conditions

    Directory of Open Access Journals (Sweden)

    C. G. Menéndez

    1999-11-01

    Full Text Available The effect of sea-ice on various aspects of the Southern Hemisphere (SH extratropical climate is examined. Two simulations using the LMD GCM are performed: a control run with the observed sea-ice distribution and an anomaly run in which all SH sea-ice is replaced by open ocean. When sea-ice is removed, the mean sea level pressure displays anomalies predominantly negatives near the Antarctic coast. In general, the meridional temperature gradient is reduced over most of the Southern Ocean, the polar jet is weaker and the sea level pressure rises equatorward of the control ice edge. The high frequency filtered standard deviation of both the sea level pressure and the 300-hPa geopotential height decreases over the southern Pacific and southwestern Atlantic oceans, especially to the north of the ice edge (as prescribed in the control. In contrast, over the Indian Ocean the perturbed simulation exhibits less variability equatorward of about 50°S and increased variability to the south. The zonal averages of the zonal and eddy potential and kinetic energies were evaluated. The effect of removing sea-ice is to diminish the available potential energy of the mean zonal flow, the available potential energy of the perturbations, the kinetic energy of the growing disturbances and the kinetic energy of the mean zonal flow over most of the Southern Ocean. The zonally averaged intensity of the subpolar trough and the rate of the baroclinic energy conversions are also weaker.Key words. Air-sea interactions · Meteorology and atmospheric dynamics (climatology; ocean · atmosphere interactions

  4. The storm tracks and the energy cycle of the Southern Hemisphere: sensitivity to sea-ice boundary conditions

    Directory of Open Access Journals (Sweden)

    C. G. Menéndez

    Full Text Available The effect of sea-ice on various aspects of the Southern Hemisphere (SH extratropical climate is examined. Two simulations using the LMD GCM are performed: a control run with the observed sea-ice distribution and an anomaly run in which all SH sea-ice is replaced by open ocean. When sea-ice is removed, the mean sea level pressure displays anomalies predominantly negatives near the Antarctic coast. In general, the meridional temperature gradient is reduced over most of the Southern Ocean, the polar jet is weaker and the sea level pressure rises equatorward of the control ice edge. The high frequency filtered standard deviation of both the sea level pressure and the 300-hPa geopotential height decreases over the southern Pacific and southwestern Atlantic oceans, especially to the north of the ice edge (as prescribed in the control. In contrast, over the Indian Ocean the perturbed simulation exhibits less variability equatorward of about 50°S and increased variability to the south. The zonal averages of the zonal and eddy potential and kinetic energies were evaluated. The effect of removing sea-ice is to diminish the available potential energy of the mean zonal flow, the available potential energy of the perturbations, the kinetic energy of the growing disturbances and the kinetic energy of the mean zonal flow over most of the Southern Ocean. The zonally averaged intensity of the subpolar trough and the rate of the baroclinic energy conversions are also weaker.

    Key words. Air-sea interactions · Meteorology and atmospheric dynamics (climatology; ocean · atmosphere interactions

  5. Heavy-quark production as a sensitive test for an improved description of high-energy hadron collisions

    CERN Document Server

    Hagler, P; Schäfer, A; Szymanowski, L; Teryaev, O V

    2000-01-01

    QCD dynamics at small quark and gluon momentum fractions or large total energy, which plays a major role for DESY HERA, the Fermilab Tevatron, BNL RHIC and CERN LHC physics, is still poorly understood. For one of the simplest processes, namely bb production, next-to- leading-order perturbation theory fails. We show that the combination of two recently developed theoretical concepts, the k/sub perpendicular to / factorization and the next-to-leading-logarithmic- approximation Balitskii-Fadin-Kuraev-Lipatov vertex, gives perfect agreement with data. One can therefore hope that these concepts provide a valuable foundation for the description of other high energy processes. (18 refs).

  6. Integration of biomass into urban energy systems for heat and power. Part II: Sensitivity assessment of main techno-economic factors

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Giarola, Sara; Bauen, Ausilio; Shah, Nilay

    2014-01-01

    Highlights: • Application of a MILP tool for optimal sizing and location of heating and CHP plants to serve residential energy demand. • Trade-offs between local vs centralized heat generation, district heating vs natural gas distribution systems. • Assessment of the key factors influencing the use of biomass and district heating in residential areas. - Abstract: The paper presents the application of a mixed integer linear programming (MILP) methodology to optimize multi-biomass and natural gas supply chain strategic design for heat and power generation in urban areas. The focus is on spatial and temporal allocation of biomass supply, storage, processing, transport and energy conversion (heat and CHP) to match the heat demand of residential end users. The main aim lies on the assessment of the trade-offs between centralized district heating plants and local heat generation systems, and on the decoupling of the biomass processing and biofuel energy conversion steps. After a brief description of the methodology, which is presented in detail in Part I of the research, an application to a generic urban area is proposed. Moreover, the influence of energy demand typologies (urban areas energy density, heat consumption patterns, buildings energy efficiency levels, baseline energy costs and available infrastructures) and specific constraints of urban areas (transport logistics, air emission levels, space availability) on the selection of optimal bioenergy pathways for heat and power is assessed, by means of sensitivity analysis. On the basis of these results, broad considerations about the key factors influencing the use of bioenergy into urban energy systems are proposed. Potential further applications of this model are also described, together with main barriers for development of bioenergy routes for urban areas

  7. Energy

    International Nuclear Information System (INIS)

    Meister, F.

    2001-01-01

    This chapter of the environmental control report deals with the environmental impact of energy production, energy conversion, atomic energy and renewable energy. The development of the energy consumption in Austria for the years 1993 to 1999 is given for the different energy types. The development of the use of renewable energy sources in Austria is given, different domestic heat-systems are compared, life cycles and environmental balance are outlined. (a.n.)

  8. Comparison of sensitivities and detection limits between direct excitation and secondary excitation modes in energy dispersive x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Artz, B.E.; Short, M.A.

    1976-01-01

    A comparison was made between the direct tube excitation mode and the secondary target excitation mode using a Kevex 0810 energy dispersive x-ray fluorescence system. Relative sensitivities and detection limits were determined with two system configurations. The first configuration used a standard, high power, x-ray fluorescence tube to directly excite the specimen. Several x-ray tubes, including chromium, molybdenum, and tungsten, both filtered and not filtered, were employed. The second configuration consisted of using the x-ray tube to excite a secondary target which in turn excited the specimen. Appropriate targets were compared to the direct excitation results. Relative sensitivities and detection limits were determined for K-series lines for elements from magnesium to barium contained in a low atomic number matrix and in a high atomic number matrix

  9. Climate sensitivity of glaciers in southern Norway: application of an energy-balance model to Nigardsbreen, Hellstugubreen and Alfotbreen

    NARCIS (Netherlands)

    Oerlemans, J.

    1992-01-01

    Three glaciers in southern Norway, with very different massbalance characteristics, are studied with an energy-balance model of the ice/snow surface. The model simulates the observed mass-balance profiles in a satisfactory way, and can thus be used with some confidence in a study of climate

  10. A three-layer model of self-assembly induced surface-energy variation experimentally extracted by using nanomechanically sensitive cantilevers

    International Nuclear Information System (INIS)

    Zuo Guomin; Li Xinxin

    2011-01-01

    This research is aimed at elucidating surface-energy (or interfacial energy) variation during the process of molecule-layer self-assembly on a solid surface. A quasi-quantitative plotting model is proposed and established to distinguish the surface-energy variation contributed by the three characteristic layers of a thiol-on-gold self-assembled monolayer (SAM), namely the assembly-medium correlative gold/head-group layer, the chain/chain interaction layer and the tail/medium layer, respectively. The data for building the model are experimentally extracted from a set of correlative thiol self-assemblies in different media. The variation in surface-energy during self-assembly is obtained by in situ recording of the self-assembly induced nanomechanical surface-stress using integrated micro-cantilever sensors. Based on the correlative self-assembly experiment, and by using the nanomechanically sensitive self-sensing cantilevers to monitor the self-assembly induced surface-stressin situ, the experimentally extracted separate contributions of the three layers to the overall surface-energy change aid a comprehensive understanding of the self-assembly mechanism. Moreover, the quasi-quantitative modeling method is helpful for optimal design, molecule synthesis and performance evaluation of molecule self-assembly for application-specific surface functionalization.

  11. Eigenvalue sensitivity analysis and uncertainty quantification in SCALE6.2.1 using continuous-energy Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Labarile, A.; Barrachina, T.; Miró, R.; Verdú, G., E-mail: alabarile@iqn.upv.es, E-mail: tbarrachina@iqn.upv.es, E-mail: rmiro@iqn.upv.es, E-mail: gverdu@iqn.upv.es [Institute for Industrial, Radiophysical and Environmental Safety - ISIRYM, Valencia (Spain); Pereira, C., E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    The use of Best-Estimate computer codes is one of the greatest concerns in the nuclear industry especially for licensing analysis. Of paramount importance is the estimation of the uncertainties of the whole system to establish the safety margins based on highly reliable results. The estimation of these uncertainties should be performed by applying a methodology to propagate the uncertainties from the input parameters and the models implemented in the code to the output parameters. This study employs two different approaches for the Sensitivity Analysis (SA) and Uncertainty Quantification (UQ), the adjoint-based perturbation theory of TSUNAMI-3D, and the stochastic sampling technique of SAMPLER/KENO. The cases studied are two models of Light Water Reactors in the framework of the OECD/NEA UAM-LWR benchmark, a Boiling Water Reactor (BWR) and a Pressurized Water Reactor (PWR). Both of them at Hot Full Power (HFP) and Hot Zero Power (HZP) conditions, with and without control rod. This work presents the results of k{sub eff} from different simulation, and discuss the comparison of the two methods employed. In particular, a list of the major contributors to the uncertainty of k{sub eff} in terms of microscopic cross sections; their sensitivity coefficients; a comparison between the results of the two modules and with reference values; statistical information from the stochastic approach, and the probability and statistical confidence reached in the simulations. The reader will find all these information discussed in this paper. (author)

  12. Surface Grafting of Ru(II) Diazonium-Based Sensitizers on Metal Oxides Enhances Alkaline Stability for Solar Energy Conversion.

    Science.gov (United States)

    Bangle, Rachel; Sampaio, Renato N; Troian-Gautier, Ludovic; Meyer, Gerald J

    2018-01-24

    The electrografting of [Ru(ttt)(tpy-C 6 H 4 -N 2 + )] 3+ , where "ttt" is 4,4',4″-tri-tert-butyl-2,2':6',2″-terpyridine, was investigated on several wide band gap metal oxide surfaces (TiO 2 , SnO 2 , ZrO 2 , ZnO, In 2 O 3 :Sn) and compared to structurally analogous sensitizers that differed only by the anchoring group, i.e., -PO 3 H 2 and -COOH. An optimized procedure for diazonium electrografting to semiconductor metal oxides is presented that allowed surface coverages that ranged between 4.7 × 10 -8 and 10.6 × 10 -8 mol cm -2 depending on the nature of the metal oxide. FTIR analysis showed the disappearance of the diazonium stretch at 2266 cm -1 after electrografting. XPS analysis revealed a characteristic peak of Ru 3d at 285 eV as well as a peak at 531.6 eV that was attributed to O 1s in Ti-O-C bonds. Photocurrents were measured to assess electron injection efficiency of these modified surfaces. The electrografted sensitizers exhibited excellent stability across a range of pHs spanning from 1 to 14, where classical binding groups such as carboxylic and phosphonic derivatives were hydrolyzed.

  13. Phase-Change Thermal Energy Storage

    Science.gov (United States)

    1989-11-01

    The goal of this program is to advance the engineering and scientific understanding of solar thermal technology and to establish the technology base from which private industry can develop solar thermal power production options for introduction into the competitive energy market. Solar thermal technology concentrates the solar flux using tracking mirrors or lenses onto a receiver where the solar energy is absorbed as heat and converted into electricity or incorporated into products as process heat. The two primary solar thermal technologies, central receivers and distributed receivers, employ various point and line-focus optics to concentrate sunlight. Current central receiver systems use fields of heliostats (two-axes tracking mirrors) to focus the sun's radiant energy onto a single, tower-mounted receiver. Point focus concentrators up to 17 meters in diameter track the sun in two axes and use parabolic dish mirrors or Fresnel lenses to focus radiant energy onto a receiver. Troughs and bowls are line-focus tracking reflectors that concentrate sunlight onto receiver tubes along their focal lines. Concentrating collector modules can be used alone or in a multimodule system. The concentrated radiant energy absorbed by the solar thermal receiver is transported to the conversion process by a circulating working fluid. Receiver temperatures range from 100 C in low-temperature troughs to over 1500 C in dish and central receiver systems.

  14. A highly sensitive CaF{sub 2}:Dy nanophosphor as an efficient low energy ion dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bhadane, Mahesh S.; Hareesh, K.; Dahiwale, S.S.; Sature, K.R. [Microtron Accelerator Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Patil, B.J. [Department of Physics, Abasaheb Garware College, Pune 411004 (India); Asokan, K.; Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Bhoraskar, V.N. [Microtron Accelerator Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Microtron Accelerator Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-11-01

    Highlights: • CaF{sub 2}:Dy nanophosphor synthesized by chemical co-precipitation route. • Phosphors are irradiated by H, Ar and N low energy ions at different fluences. • LEBI irradiated phosphors are characterized by XRD, TEM, FTIR and PL spectroscopy. • First time report to LEIB irradiated for thermoluminescence dosimetric applications. - Abstract: Dysprosium doped calcium fluoride (CaF{sub 2}:Dy) powers synthesized by co-precipitation method were irradiated with low energy ion beams (LEIB) viz. 100 keV H, 200 keV Ar and 350 keV N beams at different fluences and demonstrated for low energy ion dosimetric application. X-ray Diffraction and Transmission electron microscopy revealed the formation of highly crystalline cubic structured particles with size ∼45–50 nm. FTIR spectra of the CaF{sub 2}:Dy samples show changes of some bonds such as N–O asymmetric, C–F bonding and C–H aromatic contain stretching mode after LEIB irradiation. The thermoluminescence (TL) glow curve peaks were observed at 207 °C for Ar ion, at 203 °C for H ion and at 216 °C and 270 °C for N ion. It has been found that CaF{sub 2}:Dy nanophosphor shows a linear response with minimum fading for all the ion species. Computerized Glow Curve Deconvolution was performed for TL curve of high fluence ion irradiated nanophosphor to estimate the trapping parameters and the respective figure of merit (FOM) found to be very appropriate for all the nanophosphor. These results indicated that the CaF{sub 2}:Dy can be used as a low energy ion detector or dose.

  15. Insulin Sensitivity in Adipose and Skeletal Muscle Tissue of Dairy Cows in Response to Dietary Energy Level and 2,4-Thiazolidinedione (TZD.

    Directory of Open Access Journals (Sweden)

    Afshin Hosseini

    Full Text Available The effects of dietary energy level and 2,4-thiazolidinedione (TZD injection on feed intake, body fatness, blood biomarkers and TZD concentrations, genes related to insulin sensitivity in adipose tissue (AT and skeletal muscle, and peroxisome proliferator-activated receptor gamma (PPARG protein in subcutaneous AT (SAT were evaluated in Holstein cows. Fourteen nonpregnant nonlactating cows were fed a control low-energy (CON, 1.30 Mcal/kg diet to meet 100% of estimated nutrient requirements for 3 weeks, after which half of the cows were assigned to a higher-energy diet (OVE, 1.60 Mcal/kg and half of the cows continued on CON for 6 weeks. All cows received an intravenous injection of TZD starting 2 weeks after initiation of dietary treatments and for an additional 2 weeks, which served as the washout period. Cows fed OVE had greater energy intake and body mass than CON, and TZD had no effect during the administration period. The OVE cows had greater TZD clearance rate than CON cows. The lower concentration of nonesterified fatty acids (NEFA and greater concentration of insulin in blood of OVE cows before TZD injection indicated positive energy balance and higher insulin sensitivity. Administration of TZD increased blood concentrations of glucose, insulin, and beta-hydroxybutyrate (BHBA at 2 to 4 weeks after diet initiation, while the concentration of NEFA and adiponectin (ADIPOQ remained unchanged during TZD. The TZD upregulated the mRNA expression of PPARG and its targets FASN and SREBF1 in SAT, but also SUMO1 and UBC9 which encode sumoylation proteins known to down-regulate PPARG expression and curtail adipogenesis. Therefore, a post-translational response to control PPARG gene expression in SAT could be a counteregulatory mechanism to restrain adipogenesis. The OVE cows had greater expression of the insulin sensitivity-related genes IRS1, SLC2A4, INSR, SCD, INSIG1, DGAT2, and ADIPOQ in SAT. In skeletal muscle, where PPARA and its targets

  16. Insulin Sensitivity in Adipose and Skeletal Muscle Tissue of Dairy Cows in Response to Dietary Energy Level and 2,4-Thiazolidinedione (TZD).

    Science.gov (United States)

    Hosseini, Afshin; Tariq, Muhammad Rizwan; Trindade da Rosa, Fernanda; Kesser, Julia; Iqbal, Zeeshan; Mora, Ofelia; Sauerwein, Helga; Drackley, James K; Trevisi, Erminio; Loor, Juan J

    2015-01-01

    The effects of dietary energy level and 2,4-thiazolidinedione (TZD) injection on feed intake, body fatness, blood biomarkers and TZD concentrations, genes related to insulin sensitivity in adipose tissue (AT) and skeletal muscle, and peroxisome proliferator-activated receptor gamma (PPARG) protein in subcutaneous AT (SAT) were evaluated in Holstein cows. Fourteen nonpregnant nonlactating cows were fed a control low-energy (CON, 1.30 Mcal/kg) diet to meet 100% of estimated nutrient requirements for 3 weeks, after which half of the cows were assigned to a higher-energy diet (OVE, 1.60 Mcal/kg) and half of the cows continued on CON for 6 weeks. All cows received an intravenous injection of TZD starting 2 weeks after initiation of dietary treatments and for an additional 2 weeks, which served as the washout period. Cows fed OVE had greater energy intake and body mass than CON, and TZD had no effect during the administration period. The OVE cows had greater TZD clearance rate than CON cows. The lower concentration of nonesterified fatty acids (NEFA) and greater concentration of insulin in blood of OVE cows before TZD injection indicated positive energy balance and higher insulin sensitivity. Administration of TZD increased blood concentrations of glucose, insulin, and beta-hydroxybutyrate (BHBA) at 2 to 4 weeks after diet initiation, while the concentration of NEFA and adiponectin (ADIPOQ) remained unchanged during TZD. The TZD upregulated the mRNA expression of PPARG and its targets FASN and SREBF1 in SAT, but also SUMO1 and UBC9 which encode sumoylation proteins known to down-regulate PPARG expression and curtail adipogenesis. Therefore, a post-translational response to control PPARG gene expression in SAT could be a counteregulatory mechanism to restrain adipogenesis. The OVE cows had greater expression of the insulin sensitivity-related genes IRS1, SLC2A4, INSR, SCD, INSIG1, DGAT2, and ADIPOQ in SAT. In skeletal muscle, where PPARA and its targets orchestrate

  17. Highly sensitive x-ray detectors in the low-energy range on n-type 4H-SiC epitaxial layers

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Krishna C.; Muzykov, Peter G. [Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208 (United States); Russell Terry, J. [Space Science and Applications Group (ISR-1), Intelligence and Space Research Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-30

    Schottky diodes on n-type 4H-SiC epitaxial layers have been fabricated for low-energy x-ray detection. The detectors were highly sensitive to soft x-rays and showed improved response compared to the commercial SiC UV photodiodes. Current-voltage characteristics at 475 K showed low leakage current revealing the possibility of high temperature operation. The high quality of the epi-layer was confirmed by x-ray diffraction and chemical etching. Thermally stimulated current measurements performed at 94-550 K revealed low density of deep levels which may cause charge trapping. No charge trapping on detectors' responsivity in the low x-ray energy was found.

  18. CFD simulation on use of polyethylene single bubble to reduce radiant heat on lecture hall

    International Nuclear Information System (INIS)

    Muhieldeen, M.W.; Adam, N.M.; Elias Salleh; Tang, S.H.; Ghezavati, H.

    2009-01-01

    Full text: In recent years, Malaysia energy consumption has increased and become comparable to larger consumers worldwide. The increased demand for artificial cooling through the use of air conditioning units in other to provide comfort would also mean increased energy usage and increased electricity cost to the occupants. This paper reviews the results from a field survey of saving energy within one type of buildings lecture theater, in Universiti Putra Malaysia. The thermal insulation material established (polyethylene single bubble) and putting on the wall which separate between the lecture theater and the exterior. The survey was undertaken at January until April in 2008. In a 3D occupant Lecture hall (L: 15 m, W: 12 m, and H: 6.6 m). In addition the environmental parameters were measured in class room to calculate the boundary condition for using CFD to compare saving energy. The results show that by using polyethylene single bubble insulation in each condition, a reduction of 2.2 degree Celsius was achieved. (author)

  19. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  20. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group; German, A. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group; Dakin, B. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group; Springer, D. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  1. The effect of urban geometry on mean radiant temperature under future climate change: a study of three European cities.

    Science.gov (United States)

    Lau, Kevin Ka-Lun; Lindberg, Fredrik; Rayner, David; Thorsson, Sofia

    2015-07-01

    Future anthropogenic climate change is likely to increase the air temperature (T(a)) across Europe and increase the frequency, duration and magnitude of severe heat stress events. Heat stress events are generally associated with clear-sky conditions and high T(a), which give rise to high radiant heat load, i.e. mean radiant temperature (T(mrt)). In urban environments, T mrt is strongly influenced by urban geometry. The present study examines the effect of urban geometry on daytime heat stress in three European cities (Gothenburg in Sweden, Frankfurt in Germany and Porto in Portugal) under present and future climates, using T(mrt) as an indicator of heat stress. It is found that severe heat stress occurs in all three cities. Similar maximum daytime T(mrt) is found in open areas in all three cities despite of the latitudinal differences in average daytime T(mrt). In contrast, dense urban structures like narrow street canyons are able to mitigate heat stress in the summer, without causing substantial changes in T(mrt) in the winter. Although the T(mrt) averages are similar for the north-south and east-west street canyons in each city, the number of hours when T(mrt) exceeds the threshold values of 55.5 and 59.4 °C-used as indicators of moderate and severe heat stress-in the north-south canyons is much higher than that in the east-west canyons. Using statistically downscaled data from a regional climate model, it is found that the study sites were generally warmer in the future scenario, especially Porto, which would further exacerbate heat stress in urban areas. However, a decrease in solar radiation in Gothenburg and Frankfurt reduces T(mrt) in the spring, while the reduction in T(mrt) is somewhat offset by increasing T(a) in other seasons. It suggests that changes in the T(mrt) under the future scenario are dominated by variations in T(a). Nonetheless, the intra-urban differences remain relatively stable in the future. These findings suggest that dense urban

  2. Applying Fibre-Optic Distributed Temperature Sensing to Near-surface Temperature Dynamics of Broadacre Cereals During Radiant Frost Events.

    Science.gov (United States)

    Stutsel, B.; Callow, J. N.

    2017-12-01

    Radiant frost events, particularly those during the reproductive stage of winter cereal growth, cost growers millions of dollars in lost yield. Whilst synoptic drivers of frost and factors influencing temperature variation at the landscape scale are relatively well understood, there is a lack of knowledge surrounding small-scale temperature dynamics within paddocks and plot trials. Other work has also suggested a potential significant temperature gradient (several degrees) vertically from ground to canopy, but this is poorly constrained experimentally. Subtle changes in temperature are important as frost damage generally occurs in a very narrow temperature range (-2 to -5°C). Once a variety's damage threshold is reached, a 1°C difference in minimum temperature can increase damage from 10 to 90%. This study applies Distributed Temperature Sensing (DTS) using fibre optics to understand how minimum temperature evolves during a radiant frost. DTS assesses the difference in attenuation of Raman scattering of a light pulse travelling along a fibre optic cable to measure temperature. A bend insensitive multimode fibre was deployed in a double ended duplex configuration as a "fence" run through four times of sowing at a trial site in the Western Australian Wheatbelt. The fibre optic fence was 160m long and 800mm tall with the fibre optic cable spaced 100mm apart vertically, and calibrated in ambient water ( 10 to 15oC) and a chilled glycol ( -8 to-10 oC) baths. The temperature measurements had a spatial resolution of 0.65m and temporal resolution of 60s, providing 2,215 measurements every minute. The results of this study inform our understanding of the subtle temperature changes from the soil to canopy, providing new insight into how to place traditional temperature loggers to monitor frost damage. It also addresses questions of within-trial temperature variability, and provides an example of how novel techniques such as DTS can be used to improve the way temperature

  3. Using Satellites to Investigate the Sensitivity of Longwave Downward Radiation to Water Vapor at High Elevations

    Science.gov (United States)

    Naud, Catherine M.; Miller, James R.; Landry, Chris

    2012-01-01

    Many studies suggest that high-elevation regions may be among the most sensitive to future climate change. However, in situ observations in these often remote locations are too sparse to determine the feedbacks responsible for enhanced warming rates. One of these feedbacks is associated with the sensitivity of longwave downward radiation (LDR) to changes in water vapor, with the sensitivity being particularly large in many high-elevation regions where the average water vapor is often low. We show that satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) can be used to expand the current ground-based observational database and that the monthly averaged clear-sky satellite estimates of humidity and LDR are in good agreement with the well-instrumented Center for Snow and Avalanche Studies ground-based site in the southwestern Colorado Rocky Mountains. The relationship between MODIS-retrieved precipitable water vapor and surface specific humidity across the contiguous United States was found to be similar to that previously found for the Alps. More important, we show that satellites capture the nonlinear relationship between LDR and water vapor and confirm that LDR is especially sensitive to changes in water vapor at high elevations in several midlatitude mountain ranges. Because the global population depends on adequate fresh water, much of which has its source in high mountains, it is critically important to understand how climate will change there. We demonstrate that satellites can be used to investigate these feedbacks in high-elevation regions where the coverage of surface-based observations is insufficient to do so.

  4. A hybrid strain and thermal energy harvester based on an infra-red sensitive Er3+ modified poly(vinylidene fluoride) ferroelectret structure.

    Science.gov (United States)

    Ghosh, Sujoy Kumar; Xie, Mengying; Bowen, Christopher Rhys; Davies, Philip R; Morgan, David J; Mandal, Dipankar

    2017-12-01

    In this paper, a novel infra-red (IR) sensitive Er 3+ modified poly(vinylidene fluoride) (PVDF) (Er-PVDF) film is developed for converting both mechanical and thermal energies into useful electrical power. The addition of Er 3+ to PVDF is shown to improve piezoelectric properties due to the formation of a self-polarized ferroelectric β-phase and the creation of an electret-like porous structure. In addition, we demonstrate that Er 3+ acts to enhance heat transfer into the Er-PVDF film due to its excellent infrared absorbance, which, leads to rapid and large temperature fluctuations and improved pyroelectric energy transformation. We demonstrate the potential of this novel material for mechanical energy harvesting by creating a durable ferroelectret energy harvester/nanogenerator (FTNG). The high thermal stability of the β-phase enables the FTNG to harvest large temperature fluctuations (ΔT ~ 24 K). Moreover, the superior mechanosensitivity, S M  ~ 3.4 VPa -1 of the FTNG enables the design of a wearable self-powered health-care monitoring system by human-machine integration. The combination of rare-earth ion, Er 3+ with the ferroelectricity of PVDF provides a new and robust approach for delivering smart materials and structures for self-powered wireless technologies, sensors and Internet of Things (IoT) devices.

  5. The effect of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Woloszyn, Monika [Universite de Lyon, Lyon F-69003 (France); Universite Lyon1, Villeurbanne F-69622 (France); INSA-Lyon, CETHIL UMR CNRS 5008, bat. Sadi Carnot, F-69621 Villeurbanne cedex (France); Kalamees, Targo [Chair of Building Physics and Architecture, Tallinn University of Technology, Ehiteja tee 5 19086 (Estonia); Olivier Abadie, Marc [Pontifical Catholic University of Parana - PUCPR/CCET-Thermal Systems Laboratory, Rua Imaculada Conceicao, 1155 Curitiba, PR 80215-901 (Brazil); LEPTIAB-University of La Rochelle, Avenue M. Crepeau, 17000 La Rochelle (France); Steeman, Marijke [Department of Architecture and Urban Planning, UGENT-Ghent University, J. Plateaustraat 22, 9000 Ghent (Belgium); Sasic Kalagasidis, Angela [Department of Building Technology, Chalmers University of Technology, Sven Hultins gata 8, 412 96 Gothenburg (Sweden)

    2009-03-15

    Indoor moisture management, which means keeping the indoor relative humidity (RH) at correct levels, is very important for whole building performance in terms of indoor air quality (IAQ), energy performance and durability of the building. In this study, the effect of combining a relative-humidity-sensitive (RHS) ventilation system with indoor moisture buffering materials was investigated. Four comprehensive heat-air-moisture (HAM) simulation tools were used to analyse the performance of different moisture management strategies in terms of IAQ and of energy efficiency. Despite some differences in results, a good agreement was found and similar trends were detected from the results, using the four different simulation tools. The results from simulations demonstrate that RHS ventilation reduces the spread between the minimum and maximum values of the RH in the indoor air and generates energy savings. Energy savings are achieved while keeping the RH at target level, not allowing for possible risk of condensations. The disadvantage of this type of demand controlled-ventilation is that other pollutants (such as CO{sub 2}) may exceed target values. This study also confirmed that the use of moisture-buffering materials is a very efficient way to reduce the amplitude of daily moisture variations. It was possible, by the combined effect of ventilation and wood as buffering material, to keep the indoor RH at a very stable level. (author)

  6. Simulated Real-World Energy Impacts of a Thermally Sensitive Powertrain Considering Viscous Losses and Enrichment (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Gonder, J.; Lopp, S.; Jehlik, F.

    2014-09-01

    It is widely understood that cold-temperature engine operation negatively impacts vehicle fuel use due to a combination of increased friction (high-viscosity engine oil) and temporary enrichment (accelerated catalyst heating). However, relatively little effort has been dedicated to thoroughly quantifying these impacts across a large number of driving cycles and ambient conditions. This work leverages high-quality dynamometer data collected at various ambient conditions to develop a modeling framework for quantifying engine cold-start fuel penalties over a wide array of real-world usage profiles. Additionally, mitigation strategies including energy retention and exhaust heat recovery are explored with benefits quantified for each approach.

  7. Energy

    International Nuclear Information System (INIS)

    Bobin, J.L.

    1996-01-01

    Object of sciences and technologies, energy plays a major part in economics and relations between nations. Jean-Louis Bobin, physicist, analyses the relations between man and energy and wonders about fears that delivers nowadays technologies bound to nuclear energy and about the fear of a possible shortage of energy resources. (N.C.). 17 refs., 14 figs., 2 tabs

  8. Revealing energy level structure of individual quantum dots by tunneling rate measured by single-electron sensitive electrostatic force spectroscopy.

    Science.gov (United States)

    Roy-Gobeil, Antoine; Miyahara, Yoichi; Grutter, Peter

    2015-04-08

    We present theoretical and experimental studies of the effect of the density of states of a quantum dot (QD) on the rate of single-electron tunneling that can be directly measured by electrostatic force microscopy (e-EFM) experiments. In e-EFM, the motion of a biased atomic force microscope cantilever tip modulates the charge state of a QD in the Coulomb blockade regime. The charge dynamics of the dot, which is detected through its back-action on the capacitavely coupled cantilever, depends on the tunneling rate of the QD to a back-electrode. The density of states of the QD can therefore be measured through its effect on the energy dependence of tunneling rate. We present experimental data on individual 5 nm colloidal gold nanoparticles that exhibit a near continuous density of state at 77 K. In contrast, our analysis of already published data on self-assembled InAs QDs at 4 K clearly reveals discrete degenerate energy levels.

  9. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2.

    Science.gov (United States)

    Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng

    2016-01-01

    A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02-0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe.

  10. A simple and sensitive immunoassay for the determination of human chorionic gonadotropin by graphene-based chemiluminescence resonance energy transfer.

    Science.gov (United States)

    Lei, Jiuqian; Jing, Tao; Zhou, Tingting; Zhou, Yusun; Wu, Wei; Mei, Surong; Zhou, Yikai

    2014-04-15

    In this study, we report a strategy of chemiluminescence resonance energy transfer (CRET) using graphene as an efficient long-range energy acceptor. Magnetic nanoparticles were also used in CRET for simple magnetic separation and immobilization of horseradish peroxidase (HRP)-labeled anti-HCG antibody. In the design of CRET system, the sandwich-type immunocomplex was formed between human chorionic gonadotropin (HCG, antigen) and two different antibodies bridged the magnetic nanoparticles and graphene (acceptors), which led to the occurrence of CRET from chemiluminescence light source to graphene. After optimizing the experimental conditions, the quenching of chemiluminescence signal depended linearly on the concentration of HCG in the range of 0.1 mIU mL(-1)-10 mIU mL(-1) and the detection limit was 0.06 mIU mL(-1). The proposed method was successfully applied for the determination of HCG levels in saliva and serum samples, and the results were in good agreement with the plate ELISA with colorimetric detection. It could also be developed for detection of other antigen-antibody immune complexes by using the corresponding antigens and respective antibodies. © 2013 Published by Elsevier B.V.

  11. Energy

    CERN Document Server

    Foland, Andrew Dean

    2007-01-01

    Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.

  12. Doorway states in nuclear reactions as a manifestation of the 'super-radiant' mechanism

    International Nuclear Information System (INIS)

    Auerbach, N.; Zelevinsky, V.

    2007-01-01

    A mechanism is considered for generating doorway states and intermediate structure in low-energy nuclear reactions as a result of collectivization of widths of unstable intrinsic states coupled to common decay channels. At the limit of strong continuum coupling, the segregation of broad ('super-radiating') and narrow ('trapped') states occurs revealing the separation of direct and compound processes. We discuss the conditions for the appearance of intermediate structure in this process and doorways related to certain decay channels

  13. Experimental investigation of the influence of the air jet trajectory on convective heat transfer in buildings equipped with air-based and radiant cooling systems

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    -state and dynamic conditions. With the air-based cooling system, a dependency of the convective heat transfer on the air jet trajectory has been observed. New correlations have been developed, introducing a modified Archimedes number to account for the air flow pattern. The accuracy of the new correlations has been...... evaluated to±15%. Besides the study with an air-based cooling system, the convective heat transfer with a radiant cooling system has also been investigated. The convective flow at the activated surface is mainly driven by natural convection. For other surfaces, the complexity of the flow and the large......The complexity and diversity of airflow in buildings make the accurate definition of convective heat transfer coefficients (CHTCs) difficult. In a full-scale test facility, the convective heat transfer of two cooling systems (active chilled beam and radiant wall) has been investigated under steady...

  14. Highly Sensitive and Selective Sensing of Free Bilirubin Using Metal-Organic Frameworks-Based Energy Transfer Process.

    Science.gov (United States)

    Du, Yaran; Li, Xiqian; Lv, Xueju; Jia, Qiong

    2017-09-13

    Free bilirubin, a key biomarker for jaundice, was detected with a newly designed fluorescent postsynthetically modified metal organic framework (MOF) (UIO-66-PSM) sensor. UiO-66-PSM was prepared based on the aldimine condensation reaction of UiO-66-NH 2 with 2,3,4-trihydroxybenzaldehyde. The fluorescence of UIO-66-PSM could be effectively quenched by free bilirubin via a fluorescent resonant energy transfer process, thus achieving its recognition of free bilirubin. It was the first attempt to design a MOF-based fluorescent probe for sensing free bilirubin. The probe exhibited fast response time, low detection limit, wide linear range, and high selectivity toward free bilirubin. The sensing system enabled the monitor of free bilirubin in real human serum. Hence, the reported free bilirubin sensing platform has potential applications for clinical diagnosis of jaundice.

  15. Simulated Real-World Energy Impacts of a Thermally Sensitive Powertrain Considering Viscous Losses and Enrichment: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Gonder, J.; Lopp, S.; Jehlik, F.

    2015-02-01

    It is widely understood that cold ambient temperatures increase vehicle fuel consumption due to heat transfer losses, increased friction (increased viscosity lubricants), and enrichment strategies (accelerated catalyst heating). However, relatively little effort has been dedicated to thoroughly quantifying these impacts across a large set of real world drive cycle data and ambient conditions. This work leverages experimental dynamometer vehicle data collected under various drive cycles and ambient conditions to develop a simplified modeling framework for quantifying thermal effects on vehicle energy consumption. These models are applied over a wide array of real-world usage profiles and typical meteorological data to develop estimates of in-use fuel economy. The paper concludes with a discussion of how this integrated testing/modeling approach may be applied to quantify real-world, off-cycle fuel economy benefits of various technologies.

  16. Quantifying the radiant exposure and effective dose in patients treated for actinic keratoses with topical photodynamic therapy using daylight and LED white light

    Science.gov (United States)

    Manley, M.; Collins, P.; Gray, L.; O'Gorman, S.; McCavana, J.

    2018-02-01

    Daylight photodynamic therapy (dl-PDT) is as effective as conventional PDT (c-PDT) for treating actinic keratoses but has the advantage of reducing patient discomfort significantly. Topical dl-PDT and white light-PDT (wl-PDT) differ from c-PDT by way of light sources and methodology. We measured the variables associated with light dose delivery to skin surface and influence of geometry using a radiometer, a spectral radiometer and an illuminance meter. The associated errors of the measurement methods were assessed. The spectral and spatial distribution of the radiant energy from the LED white light source was evaluated in order to define the maximum treatment area, setup and treatment protocol for wl-PDT. We compared the data with two red LED light sources we use for c-PDT. The calculated effective light dose is the product of the normalised absorption spectrum of the photosensitizer, protoporphyrin IX (PpIX), the irradiance spectrum and the treatment time. The effective light dose from daylight ranged from 3  ±  0.4 to 44  ±  6 J cm-2due to varying weather conditions. The effective light dose for wl-PDT was reproducible for treatments but it varied across the treatment area between 4  ±  0.1 J cm-2 at the edge and 9  ±  0.1 J cm-2 centrally. The effective light dose for the red waveband (615-645 nm) was 0.42  ±  0.05 J cm-2 on a clear day, 0.05  ±  0.01 J cm-2 on an overcast day and 0.9  ±  0.01 J cm-2 using the white light. This compares with 0.95  ±  0.01 and 0.84  ±  0.01 J cm-2 for c-PDT devices. Estimated errors associated with indirect determination of daylight effective light dose were very significant, particularly for effective light doses less than 5 J cm-2 (up to 83% for irradiance calculations). The primary source of error is in establishment of the relationship between irradiance or illuminance and effective dose. Use of the O’Mahoney model is recommended using a

  17. Modeling of mean radiant temperature based on comparison of airborne remote sensing data with surface measured data

    Science.gov (United States)

    Chen, Yu-Cheng; Chen, Chih-Yu; Matzarakis, Andreas; Liu, Jin-King; Lin, Tzu-Ping

    2016-06-01

    Assessment of outdoor thermal comfort is becoming increasingly important due to the urban heat island effect, which strongly affects the urban thermal environment. The mean radiant temperature (Tmrt) quantifies the effect of the radiation environment on humans, but it can only be estimated based on influencing parameters and factors. Knowledge of Tmrt is important for quantifying the heat load on human beings, especially during heat waves. This study estimates Tmrt using several methods, which are based on climatic data from a traditional weather station, microscale ground surface measurements, land surface temperature (LST) and light detection and ranging (LIDAR) data measured using airborne devices. Analytical results reveal that the best means of estimating Tmrt combines information about LST and surface elevation information with meteorological data from the closest weather station. The application in this method can eliminate the inconvenience of executing a wide range ground surface measurement, the insufficient resolution of satellite data and the incomplete data of current urban built environments. This method can be used to map a whole city to identify hot spots, and can be contributed to understanding human biometeorological conditions quickly and accurately.

  18. Improved foot sensitivity and pain reduction in patients with peripheral neuropathy after treatment with monochromatic infrared photo energy--MIRE.

    Science.gov (United States)

    Harkless, Lawrence B; DeLellis, Salvatore; Carnegie, Dale H; Burke, Thomas J

    2006-01-01

    The medical records of 2239 patients (mean age=73 years) with established peripheral neuropathy (PN) were examined to determine whether treatment with MIRE was, in fact, associated with increased foot sensitivity to the Semmes Weinstein monofilament (SWM) 5.07 and a reduction in neuropathic pain. The PN in 1395 of these patients (62%) was due to diabetes. Prior to treatment with MIRE, of the 10 tested sites (5 on each foot), 7.1+/-2.9 were insensitive to the SWM 5.07, and 2078 patients (93%) exhibited loss of protective sensation defined by Medicare as a loss of sensation at two or more sites on either foot. After treatment, the number of insensate sites on both feet decreased to 2.4+/-2.6, an improvement of 66%. Of the 2078 (93%) patients initially presenting with loss of protective sensation, 1106 (53%) no longer had loss of protective sensation after treatment (P<.0001); 1563 patients (70%) also exhibited neuropathic pain in addition to sensory impairment. Prior to treatment with MIRE, pain measured on the 11-point visual analogue scale (VAS) was 7.2+/-2.2 points, despite the use of a variety of pain-relieving therapeutic agents. After treatment with MIRE, pain was reduced by 4.8+/-2.4 points, a 67% reduction. Therefore, MIRE appears to be associated with significant clinical improvement in foot sensation and, simultaneously, a reduction in neuropathic pain in a large cohort of primarily Medicare aged, community-dwelling patients, initially diagnosed with PN. The quality of life associated with these two outcomes cannot be underappreciated.

  19. Internalized insulin-receptor complexes are unidirectionally translocated to chloroquine-sensitive degradative sites. Dependence on metabolic energy

    International Nuclear Information System (INIS)

    Berhanu, P.

    1988-01-01

    Insulin receptors on the surface of isolated rat adipocytes were photoaffinity labeled at 12 degrees C with the iodinated photoreactive insulin analogue, 125I-B2 (2-nitro-4-azidophenylacetyl)-des-PheB1-insulin, and the pathways in the intracellular processing of the labeled receptors were studied at 37 degrees C. During 37 degrees C incubations, the labeled 440-kDa insulin receptors were continuously internalized (as assessed by trypsin inaccessibility) and degraded such that up to 50% of the initially labeled receptors were lost by 120 min. Metabolic poisons (0.125-0.75 mM 2,4-dinitrophenol (DNP) and 1-10 mM NaF), which led to dose-dependent depletion of adipocyte ATP pools, inhibited receptor loss, and caused up to 3-fold increase in intracellular receptor accumulation. This effect was due to inhibition of intracellular receptor degradation, and there was no apparent effect of the metabolic poisons on initial internalization of the receptors. Following maximal intracellular accumulation of labeled insulin receptors in the presence of NaF or DNP, removal of these agents resulted in a subsequent, time-dependent degradation of the accumulated receptors. However, when the lysosomotropic agent, chloroquine (0.2 mM), was added immediately following removal of the metabolic poisons, further degradation of the intracellularly accumulated receptors was prevented, suggesting that the chloroquine-sensitive degradation of insulin receptors occurs distal to the site of inhibition by NaF or DNP. To confirm this, maximal intracellular accumulation of labeled receptors was first allowed to occur in the presence of chloroquine and the cells were then washed and reincubated in chloroquine-free media in the absence or presence of NaF or DNP. Under these conditions, degradation of the intracellularly accumulated receptors continued to occur, and NaF or DNP failed to block the degradation

  20. Effects of blue diode laser (445 nm) and LED (430-480 nm) radiant heat treatments on dental glass ionomer restoratives

    Science.gov (United States)

    Dionysopoulos, Dimitrios; Tolidis, Kosmas; Strakas, Dimitrios; Gerasimou, Paris; Sfeikos, Thrasyvoulos; Gutknecht, Norbert

    2018-02-01

    The purpose of this in vitro study was to evaluate the effect of two radiant heat treatments on water sorption, solubility and surface roughness of three conventional glass ionomer cements by using a blue diode laser (445 nm) and a light emitting diode (LED) unit (430-480 nm). Thirty disk-shaped specimens were prepared for each tested GIC (Equia Fil, Ketac Universal Aplicap and Riva Self Cure). The experimental groups (n = 10) of the study were as follows: Group 1 was the control group, in Group 2 the specimens were irradiated for 60 s at the top surface using a LED light-curing unit and in Group 3 the specimens were irradiated for 60 s at the top surface using a blue light diode laser. Statistical analysis was performed using one-way ANOVA and Tukey post hoc tests at a level of significance of a = 0.05. Radiant heat treatments with both laser and LED devices significantly decreased water sorption and solubility (p tested GICs. Blue diode laser treatment was seemed to be more effective compared to LED treatment for some of the tested materials. There were no changes in surface roughness of the GICs after the treatments (p > 0.05). Among the tested materials there were differences in water sorption and solubility (p 0.05). The use of the blue diode laser for this radiant heat treatment was harmless for the surface of the tested GICs and may be advantageous for the longevity of their restorations.

  1. High-Energy 3D Calorimeter based on position-sensitive virtual Frisch-grid CdZnTe detectors for use in Gamma-ray Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, Alexey [Brookhaven National Lab. (BNL), Upton, NY (United States); De Geronimo, GianLuigi [Brookhaven National Lab. (BNL), Upton, NY (United States); Vernon, Emerson [Brookhaven National Lab. (BNL), Upton, NY (United States); Hays, Elizabeth [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Thompson, David [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); James, Ralph [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Moiseev, Alexander [Center for Research and Exploration; Technology, NASA Goddard Space Flight Center (GSFC) and Univ. of Maryland, Greenbelt, MD (United States)

    2017-08-12

    We present a concept for a calorimeter based on a novel approach of 3D position-sensitive virtual Frischgrid CZT detectors. This calorimeter aims to measure photons with energies from ~100 keV to 10 (goal 50) MeV. The expected energy resolution at 662 keV is ~1% FWHM, and the photon interaction positionmeasurement accuracy is ~1 mm in all 3 dimensions. Each CZT bar is a rectangular prism with typical cross-section of 6x6 mm2 and length of 2-4 cm. The bars are arranged in modules of 4 x 4 bars, and the modules themselves can be assembled into a larger array. The 3D virtual voxel approach solves a long-standing problem with CZT detectors associated with material imperfections that limit the performance and usefulness of relatively thick detectors (i.e., > 1 cm). Also, it allows us to relax the requirements on the quality of the crystals, maintaining good energy resolution and significantly reducing the instrument cost. Such a calorimeter can be successfully used in space telescopes that use Compton scattering of γ rays, such as AMEGO, serving as part of its calorimeter and providing the position and energy measurement for Compton-scattered photons. Also, it could provide suitable energy resolution to allow for spectroscopic measurements of γ-ray lines from nuclear decays. Another viable option is to use this calorimeter as a focal plane to conduct spectroscopic measurements of cosmic γ-ray events. In combination with a coded-aperture mask, it potentially could provide mapping of the 511-keV radiation from the Galactic Center region.

  2. Experimental and Theoretical Investigation of the Function of 4- tert-Butyl Pyridine for Interface Energy Level Adjustment in Efficient Solid-State Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Yang, Lei; Lindblad, Rebecka; Gabrielsson, Erik; Boschloo, Gerrit; Rensmo, Håkan; Sun, Licheng; Hagfeldt, Anders; Edvinsson, Tomas; Johansson, Erik M J

    2018-04-11

    4- tert-Butylpyridine ( t-BP) is commonly used in solid state dye-sensitized solar cells (ssDSSCs) to increase the photovoltaic performance. In this report, the mechanism how t-BP functions as a favorable additive is investigated comprehensively. ssDSSCs were prepared with different concentrations of t-BP, and a clear increase in efficiency was observed up to a maximum concentration and for higher concentrations the efficiency thereafter decreases. The energy level alignment in the complete devices was measured using hard X-ray photoelectron spectroscopy (HAXPES). The results show that the energy levels of titanium dioxide are shifted further away from the energy levels of spiro-OMeTAD as the t-BP concentration is increased. This explains the higher photovoltage obtained in the devices with higher t-BP concentration. In addition, the electron lifetime was measured for the devices and the electron lifetime was increased when adding t-BP, which can be explained by the recombination blocking effect at the surface of TiO 2 . The results from the HAXPES measurements agree with those obtained from density functional theory calculations and give an understanding of the mechanism for the improvement, which is an important step for the future development of solar cells including t-BP.

  3. Investigation of radiant millimeter wave/terahertz radiation from low-infrared signature targets

    Science.gov (United States)

    Aytaç, B.; Alkuş, Ü.; Sivaslıgil, M.; Şahin, A. B.; Altan, H.

    2017-10-01

    Millimeter (mm) and sub-mm wave radiation is increasingly becoming a region of interest as better methods are developed to detect in this wavelength range. The development of sensitive focal plane array (FPA) architectures as well as single pixel scanners has opened up a new field of passive detection and imaging. Spectral signatures of objects, a long standing area of interest in the Short Wave Infrared (SWIR), Mid-Wave (MWIR) and Long Wave-IR (LWIR) bands can now be assessed in the mm-wave/terahertz (THz) region. The advantage is that this form of radiation is not as adversely affected by poor atmospheric conditions compared to other bands. In this study, a preliminary experiment in a laboratory environment is performed to assess the radiance from targets with low infrared signatures in the millimeter wave/terahertz (THz) band (<1 THz). The goal of this approach is to be able to model the experimental results to better understand the mm-wave/THz signature of targets with low observability in the IR bands.

  4. Effects of concentrate type and chromium propionate on insulin sensitivity, productive and reproductive parameters of lactating dairy cows consuming excessive energy.

    Science.gov (United States)

    Leiva, T; Cooke, R F; Brandão, A P; Pardelli, U; Rodrigues, R O; Corrá, F N; Vasconcelos, J L M

    2017-03-01

    This experiment compared insulin sensitivity parameters, milk production and reproductive outcomes in lactating dairy cows consuming excessive energy, and receiving in a 2×2 factorial arrangement design: (1) concentrate based on ground corn (CRN; n=13) or citrus pulp (PLP; n=13), and (2) supplemented (n=14) or not (n=12) with 2.5 g/day of chromium (Cr)-propionate. During the experiment (day 0 to 182), 26 multiparous, non-pregnant, lactating Gir×Holstein cows (initial days in milk=80±2) were offered corn silage for ad libitum consumption, and individually received concentrate formulated to allow diets to provide 160% of their daily requirements of net energy for lactation. Cow BW and body condition score (BCS) were recorded weekly. Milk production was recorded daily and milk samples collected weekly. Blood samples were collected weekly before the morning concentrate feeding. Glucose tolerance tests (GTT; 0.5 g of glucose/kg of BW) were performed on days -3, 60, 120 and 180. Follicle aspiration for in vitro embryo production was performed via transvaginal ovum pick-up on days -1, 82 and 162. No treatment differences were detected (P⩾0.25) for BW and BCS change during the experiment. Within weekly blood samples, concentrations of serum insulin and glucose, as well as insulin : glucose ratio were similar among treatments (P⩾0.19), whereas CRN had less (Pinsulin : glucose ratio. Serum insulin concentrations were less (P=0.04) in CRN supplemented with Cr-propionate compared with non-supplemented CRN (8.2 v. 13.5 µIU/ml, respectively; SEM=1.7), whereas Cr-propionate supplementation did not impact (P=0.70) serum insulin within PLP cows. Milk production, milk fat and solid concentrations were similar (P⩾0.48) between treatments. However, CRN had greater (Pdairy cows consuming excessive energy did not improve insulin sensitivity, milk production and reproductive outcomes, whereas Cr-propionate supplementation only enhanced insulin sensitivity in cows receiving a

  5. Energy

    CERN Document Server

    Robertson, William C

    2002-01-01

    Confounded by kinetic energy? Suspect that teaching about simple machines isn t really so simple? Exasperated by electricity? If you fear the study of energy is beyond you, this entertaining book will do more than introduce you to the topic. It will help you actually understand it. At the book s heart are easy-to-grasp explanations of energy basics work, kinetic energy, potential energy, and the transformation of energy and energy as it relates to simple machines, heat energy, temperature, and heat transfer. Irreverent author Bill Robertson suggests activities that bring the basic concepts of energy to life with common household objects. Each chapter ends with a summary and an applications section that uses practical examples such as roller coasters and home heating systems to explain energy transformations and convection cells. The final chapter brings together key concepts in an easy-to-grasp explanation of how electricity is generated. Energy is the second book in the Stop Faking It! series published by NS...

  6. Cloud Impacts on Pavement Temperature in Energy Balance Models

    Science.gov (United States)

    Walker, C. L.

    2013-12-01

    Forecast systems provide decision support for end-users ranging from the solar energy industry to municipalities concerned with road safety. Pavement temperature is an important variable when considering vehicle response to various weather conditions. A complex, yet direct relationship exists between tire and pavement temperatures. Literature has shown that as tire temperature increases, friction decreases which affects vehicle performance. Many forecast systems suffer from inaccurate radiation forecasts resulting in part from the inability to model different types of clouds and their influence on radiation. This research focused on forecast improvement by determining how cloud type impacts the amount of shortwave radiation reaching the surface and subsequent pavement temperatures. The study region was the Great Plains where surface solar radiation data were obtained from the High Plains Regional Climate Center's Automated Weather Data Network stations. Road pavement temperature data were obtained from the Meteorological Assimilation Data Ingest System. Cloud properties and radiative transfer quantities were obtained from the Clouds and Earth's Radiant Energy System mission via Aqua and Terra Moderate Resolution Imaging Spectroradiometer satellite products. An additional cloud data set was incorporated from the Naval Research Laboratory Cloud Classification algorithm. Statistical analyses using a modified nearest neighbor approach were first performed relating shortwave radiation variability with road pavement temperature fluctuations. Then statistical associations were determined between the shortwave radiation and cloud property data sets. Preliminary results suggest that substantial pavement forecasting improvement is possible with the inclusion of cloud-specific information. Future model sensitivity testing seeks to quantify the magnitude of forecast improvement.

  7. A quantitative relationship for the shock sensitivities of energetic compounds based on X-NO(2) (X=C, N, O) bond dissociation energy.

    Science.gov (United States)

    Li, Jinshan

    2010-08-15

    The ZPE-corrected X-NO(2) (X=C, N, O) bond dissociation energies (BDEs(ZPE)) of 11 energetic nitrocompounds of different types have been calculated employing density functional theory methods. Computed results show that using the 6-31G** basis set the UB3LYP calculated BDE(ZPE) is less than the UB3P86. For these typical energetic nitrocompounds the shock-initiated pressure (P(98)) is strongly related to the BDE(ZPE) indeed, and a polynomial correlation of ln(P(98)) with the BDE(ZPE) has been established successfully at different density functional theory levels, which provides a method to address the shock sensitivity problem. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Applying an energy balance model of a debris covered glacier through the Himalayan seasons - insights from the field and sensitivity analysis

    Science.gov (United States)

    Steiner, Jakob; Pellicciotti, Francesca; Buri, Pascal; Brock, Ben

    2016-04-01

    Although some recent studies have attempted to model melt below debris cover in the Himalaya as well as the European Alps, field measurements remain rare and uncertainties of a number of parameters are difficult to constrain. The difficulty of accurately measuring sub-debris melt at one location over a longer period of time with stakes adds to the challenge of calibrating models adequately, as moving debris tends to tilt stakes. Based on measurements of sub-debris melt with stakes as well as air and surface temperature at the same location during three years from 2012 to 2014 at Lirung Glacier in the Nepalese Himalaya, we investigate results with the help of an earlier developed energy balance model. We compare stake readings to cumulative melt as well as observed to modelled surface temperatures. With timeseries stretching through the pre-Monsoon, Monsoon and post-Monsoon of different years we can show the difference of sensitive parameters during these seasons. Using radiation measurements from the AWS we can use a temporarily variable time series of albedo. A thorough analysis of thermistor data showing the stratigraphy of the temperature through the debris layer allows a detailed discussion of the variability as well as the uncertainty range of thermal conductivity. Distributed wind data as well as results from a distributed surface roughness assessment allows to constrain variability of turbulent fluxes between the different locations of the stakes. We show that model results are especially sensitive to thermal conductivity, a value that changes substantially between the seasons. Values obtained from the field are compared to earlier studies, which shows large differences within locations in the Himalaya. We also show that wind varies with more than a factor two between depressions and on debris mounds which has a significant influence on turbulent fluxes. Albedo decreases from the dry to the wet season and likely has some spatial variability that is

  9. Origins of the debate on the life-cycle greenhouse gas emissions and energy consumption of first-generation biofuels – A sensitivity analysis approach

    International Nuclear Information System (INIS)

    Benoist, Anthony; Dron, Dominique; Zoughaib, Assaad

    2012-01-01

    Available results about energy and GreenHouse Gases (GHG) balances of biofuels from Life-Cycle Assessment (LCA) or life-cycle based studies present large discrepancies and thus, may lead to contradictory policy-making measures. This work reviewed seven important European LCA studies in a sensitivity analysis approach in order to get a better understanding of the roots of such a debate for three major biofuels in European production: rape methyl ester and ethanol from wheat and sugar beet. Global trends and variability of energy and GHG balances were depicted and completed with a sensitivity analysis carried out for each methodological and data parameter, which allowed making recommendations on the carrying out of LCA in a policy-making or a biofuels comparison context. Methodological choices, and especially allocation rule, appeared as key elements for results variation with influences on balances up to 149%; system expansion approach was identified as the most relevant rule since it integrates the market potential and the environmental interest of by-products promotion, which was pointed out as a crucial point for biofuels sustainability. The influence of local specificity for cultivation data was evaluated up to 167%, which puts too large geographical coverage in question. Modelling uncertainties due to N 2 O emissions from soils showed influences from 17 to 46%, which represents a crucial challenge for research and for LCA results accuracy. Approximations evaluation pointed out the need to integrate agricultural machinery into the assessment. Finally, land-use issue revealed its dramatic importance for LCA results and the need to define explicit scenarios for land-use alternatives.

  10. Warmer winters modulate life history and energy storage but do not affect sensitivity to a widespread pesticide in an aquatic insect.

    Science.gov (United States)

    Arambourou, Hélène; Stoks, Robby

    2015-10-01

    Despite the increased attention for the effects of pesticides under global warming no studies tested how winter warming affects subsequent sensitivity to pesticides. Winter warming is expected to cause delayed negative effects when it increases metabolic rates and thereby depletes energy reserves. Using a common-garden experiment, we investigated the combined effect of a 4 °C increase in winter temperature and subsequent exposure to chlorpyrifos in the aquatic larvae of replicated low- and high-latitude European populations of the damselfly Ischnura elegans. The warmer winter (8 °C) resulted in a higher winter survival and higher growth rates compared to the cold winter (4 °C) commonly experienced by European high-latitude populations. Low-latitude populations were better at coping with the warmer winter, indicating thermal adaptation to the local winter temperatures. Subsequent chlorpyrifos exposure at 20 °C induced strong negative effects on survival, growth rate, lipid content and acetylcholinesterase activity while phenoloxidase activity increased. These pesticide effects were not affected by winter warming. Our results suggest that for species where winter warming has positive effects on life history, no delayed effects on the sensitivity to subsequent pesticide exposure should be expected. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Sigmund Freud: pioneer in energy healing.

    Science.gov (United States)

    Edwards, Stephen D; Edwards, David J

    2010-02-01

    Energy healing is a popular contemporary term for forms of healing that facilitate a natural healing process through harmonizing, rebalancing, and releasing energy flow disturbed or blocked by disease and illness. Biographical evidence indicates that Freud used physical, suggestive, and radiant forms of energy healing, and that his personal life, metapsychology, and psychoanalysis were founded on dynamic, energetic experiences and conceptualizations. Analysis of Freud's life and work leads to the conclusion that in experience, theory, and practice, Freud typified the traditional role of therapist and was a pioneer in modern forms of energy healing.

  12. Energy

    International Nuclear Information System (INIS)

    1975-10-01

    On the occasion of the World Environment Day the Norwegian Ministry for the Environment held a conference on growth problems in energy consumption. The themes which were treated were energy conservation, hydroelectric power, the role of nuclear power, radioactive waste disposal, fossil fuel resources, ecological limits, pollution and international aspects. Nuclear energy forms the main theme of one lecture and an aspect of several others. (JIW)

  13. Energy

    OpenAIRE

    Torriti, Jacopo

    2016-01-01

    The impact of energy policy measures has been assessed with various appraisal and evaluation tools since the 1960s. Decision analysis, environmental impact assessment and strategic environmental assessment are all notable examples of progenitors of Regulatory Impact Assessment (RIA) in the assessment of energy policies, programmes and projects. This chapter provides overview of policy tools which have been historically applied to assess the impacts of energy policies, programmes and projects....

  14. Solar heating by radiant floor: Experimental results and emission reduction obtained with a micro photovoltaic–heat pump system

    International Nuclear Information System (INIS)

    Izquierdo, M.; Agustín-Camacho, P. de

    2015-01-01

    Highlights: • This work presents a PVT multicrystalline solar heating system for buildings. • The PV DC electricity generated was converted to AC to drive an air–water heat pump. • Experimental results obtained from December 1, 2012 to April 30, 2013 are detailed. • An environmental study is also presented. - Abstract: An experimental research with a solar photovoltaic thermal (PVT) micro grid feeding a reversible air–water, 6 kW heating capacity heat pump, has been carried out from December 2012 to April 2013. Its purpose is to heat a laboratory that is used as a house prototype for the study of heating/cooling systems. It was built in accordance with the 2013 Spanish CTE, and has an area of 35 m 2 divided into two internal rooms: one of them housing the storage system, the solar controller, the inverter and the control system; the other one is occupied by three people. Its main thermal characteristics are: UA = 125 W/°C and a maximum thermal load about 6.0 kW at the initial time. The PVT field consists of 12 modules, with a total area of 15.7 m 2 and useful area of 14 m 2 . Each module is composed of 48 polycrystalline silicon cells of 243.4 cm 2 , which with a nominal efficiency 14% can generate a power of 180 W, being the total nominal power installed 2.16 kW. The PV system stores electricity in 250 Ah batteries from where is converted from DC to AC through a 3.0 kW inverter that feeds the heat pump. This works supplying 840 l/h of hot water at 35–45 °C to the radiant floor. The data storing system is recording variables such as solar radiation; temperatures; input power to batteries; heat produced; heat transferred by the radiant floor; heat pump’s COP; isolated ratio; and solar fraction. The objective of this work is to present and discuss the experimental results and the emission reduction of CO 2 obtained during the period from 01/12/2012 to 30/04/2013, including the detailed results of two representative days of Madrid’s climate: 28

  15. Energies

    International Nuclear Information System (INIS)

    2003-01-01

    In the framework of the National Debate on the energies in a context of a sustainable development some associations for the environment organized a debate on the nuclear interest facing the renewable energies. The first part presents the nuclear energy as a possible solution to fight against the greenhouse effect and the associated problem of the wastes management. The second part gives information on the solar energy and the possibilities of heat and electric power production. A presentation of the FEE (French wind power association) on the situation and the development of the wind power in France, is also provided. (A.L.B.)

  16. DOE Zero Energy Ready Home Case Study: Amaris Homes, Afton Model

    Energy Technology Data Exchange (ETDEWEB)

    Pacific Northwest National Laboratory

    2017-09-01

    Amaris Homes built this 3,734-ft2 home in Afton, Minnesota, to the performance criteria of the DOE Zero Energy Ready Home (ZERH) program. A high-efficiency gas boiler provides hot water for the zoned radiant floor system as well as for faucets and showers. A high-efficiency heat pump provides zoned cooling.

  17. Operation of heat pumps for smart grid integrated buildings with thermal energy storage

    NARCIS (Netherlands)

    Finck, C.J.; Li, R.; Zeiler, W.

    2017-01-01

    A small scale office building consisting of radiant heating, a heat pump, and a water thermal energy storage tank is implemented in an optimal control framework. The optimal control aims to minimize operational electricity costs of the heat pump based on real-time power spot market prices. Optimal

  18. A sensitive and selective fluorescence assay for metallothioneins by exploiting the surface energy transfer between rhodamine 6G and gold nanoparticles

    International Nuclear Information System (INIS)

    Yan, Yu-Qian; Tang, Xian; Wang, Yong-Sheng; Li, Ming-Hui; Cao, Jin-Xiu; Chen, Si-Han; Zhu, Yu-Feng; Wang, Xiao-Feng; Huang, Yan-Qin

    2015-01-01

    We report on a sensitive and selective strategy for the determination of metallothioneins (MTs). The assay is based on the suppression of the surface energy transfer that occurs between rhodamine 6G (Rh6G) and gold nanoparticles (AuNPs). If Rh6G is adsorbed onto the surface of AuNPs in water solution of pH 3.0, its fluorescence is quenched due to surface energy transfer. However, on addition of MTs to the Rh6G-AuNPs system, fluorescence is recovered owing to the formation of the MTs-AuNPs complex and the release of Rh6G into the solution. Under optimized conditions, the increase in fluorescence intensity is directly proportional to the concentration of the MTs in the range from 9.68 to 500 ng mL −1 , with a detection limit as low as 2.9 ng mL −1 . The possible mechanism of this assay is discussed. The method was successfully applied to the determination of MTs in (spiked) human urine. (author)

  19. Dual-energy CT based vascular iodine analysis improves sensitivity for peripheral pulmonary artery thrombus detection: An experimental study in canines

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chun Xiang [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002 (China); Zhang, Long Jiang, E-mail: kevinzhlj@163.com [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002 (China); Han, Zong Hong; Zhou, Chang Sheng [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002 (China); Krazinski, Aleksander W.; Silverman, Justin R. [Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Schoepf, U. Joseph [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002 (China); Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC (United States); Lu, Guang Ming, E-mail: cjr.luguangming@vip.163.com [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, Jiangsu 210002 (China)

    2013-12-01

    Purpose: To evaluate the performance of dual-energy CT (DECT) based vascular iodine analysis for the detection of acute peripheral pulmonary thrombus (PE) in a canine model with histopathological findings as the reference standard. Materials and methods: The study protocol was approved by our institutional animal committee. Thrombi (n = 12) or saline (n = 4) were intravenously injected via right femoral vein in sixteen dogs, respectively. CT pulmonary angiography (CTPA) in DECT mode was performed and conventional CTPA images and DECT based vascular iodine studies using Lung Vessels application were reconstructed. Two radiologists visually evaluated the number and location of PEs using conventional CTPA and DECT series on a per-animal and a per-clot basis. Detailed histopathological examination of lung specimens and catheter angiography served as reference standard. Sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) of DECT and CTPA were calculated on a segmental and subsegmental or more distal pulmonary artery basis. Weighted κ values were computed to evaluate inter-modality and inter-reader agreement. Results: Thirteen dogs were enrolled for final image analysis (experimental group = 9, control group = 4). Histopathological results revealed 237 emboli in 45 lung lobes in 9 experimental dogs, 11 emboli in segmental pulmonary arteries, 49 in subsegmental pulmonary arteries, 177 in fifth-order or more distal pulmonary arteries. Overall sensitivity, specificity, accuracy, PPV, and NPV for CTPA plus DECT were 93.1%, 76.9%, 87.8%, 89.4%, and 84.2% for the detection of pulmonary emboli. With CTPA versus DECT, sensitivities, specificities, accuracies, PPVs, and NPVs are all 100% for the detection of pulmonary emboli on a segmental pulmonary artery basis, 88.9%, 100%, 96.0%, 100%, and 94.1% for CTPA and 90.4%, 93.0%, 92.0%, 88.7%, and 94.1% for DECT on a subsegmental pulmonary artery basis; 23.8%, 96.4%, 50.4%, 93

  20. Determination of the energy efficiency of sensitized solar cells with pigments obtained from natural extracts, and microbiological processes and nanoparticles of germanium

    International Nuclear Information System (INIS)

    Flores Diaz, Natalie

    2014-01-01

    ,124 ± 1,689 mA/cm 2 , V OC 0,483 ± 0,019 V, P max 1,405 ± 0,422 W/m 2 , FF 0,575 ± 0,063 and %η 0,140 ± 0,042%. The extracts of caimito have obtained J SC 5,229 ± 0,882 mA/cm 2 , V OC 0,477 ± 0,007 V, P max 1,716 ± 0,288 W/m 2 , FF 0,688 ± 0,018 and %η 0,172 ± 0,029%. For the pigment of rosa de jamaica has obtained J SC 5,235 ± 1,360 mA/cm 2 , V OC 0,499 ± 0,013 V, P max 1,892 ± 0,525 W/m 2 , FF 0,723 ± 0,050 and %η 0,189 ± 0,052%. An analysis of variance ANOVA was realized to determine the contribution of each source of variation in the the total observed variation in the energy conversion efficiency of the sensitized solar cells with said pigments. The variability in efficiency data of the cells is due to treatment (pigments) and without random error. A very small value is obtained from the mean square error and indicates that the variability within each treatment has been small and the assembly process of the cells has been reproducible. 6 sensitized cells are assembled with dye Z907 and co-sensitized with nanoparticles of germanium have obtained the characteristic parameters J SC 6,64 ± 0,90 mA/cm 2 , V OC 0,67 ± 0,01 V, P max 28,75 ± 4,8 W/m 2 , FF 0,63 ± 0,02 and %η 2,897 ± 0,48%. These values have been lower than the obtained for the dye Z907, almost 50% for all parameters. The use of the nanoparticle remains without improving the behavior of the cell, affecting him significantly, because without a good anchorage of the nanoparticles to TIO 2 with the bifunctional molecule, cysteine, may affect the injection of electrons to the semiconductor. The pigments obtained from actinomycetes and bacteria, A9, A11, 8, 4.3 and 10.2 to sensitize TIO 2 electrodes are used, however, these remain without be adsorbed in appreciable amount to the semiconductor, and without being used for cells. The lack of adequate functional groups for anchoring may be the main reason for this behavior. The economic cost is estimated from the production of each cell

  1. Opportunities for Joint Water–Energy Management: Sensitivity of the 2010 Western U.S. Electricity Grid Operations to Climate Oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, N. [Pacific Northwest National Laboratory, Richland, Washington; Kintner-Meyer, M. [Pacific Northwest National Laboratory, Richland, Washington; Wu, D. [Pacific Northwest National Laboratory, Richland, Washington; Skaggs, R. [Pacific Northwest National Laboratory, Richland, Washington; Fu, T. [Pacific Northwest National Laboratory, Richland, Washington; Zhou, T. [Pacific Northwest National Laboratory, Richland, Washington; Nguyen, T. [Pacific Northwest National Laboratory, Richland, Washington; Kraucunas, I. [Pacific Northwest National Laboratory, Richland, Washington

    2018-02-01

    The 2016 SECURE Water Act report’s natural water availability benchmark, combined with the 2010 level of water demand from an integrated assessment model, is used as input to drive a large-scale water management model. The regulated flow at hydropower plants and thermoelectric plants in the Western U.S. electricity grid (WECC) is translated into potential hydropower generation and generation capacity constraints. The impact on reliability (unserved energy, reserve margin) and cost (production cost, carbon emissions) of water constraints on 2010-level WECC power system operations is assessed using an electricity production cost model (PCM). Use of the PCM reveals the changes in generation dispatch that reflect the inter-regional interdependencies in water-constrained generation and the ability to use other generation resources to meet all electricity loads in the WECC. August grid operational benchmarks show a range of sensitivity in production cost (-8 to +11%) and carbon emissions (-7 to 11%). The reference reserve margin threshold of 15% above peak load is maintained in the scenarios analyzed, but in 5 out of 55 years unserved energy is observed when normal operations are maintained. There is 1 chance in 10 that a year will demonstrate unserved energy in August, which defines the system’s historical performance threshold to support impact, vulnerability, and adaptation analysis. For seasonal and longer term planning, i.e., multi-year drought, we demonstrate how the Water Scarcity Grid Impact Factor and climate oscillations (ENSO, PDO) can be used to plan for joint water-electricity management to maintain grid reliability.

  2. Study of the ANTARES detector sensitivity to a diffuse high-energy cosmic neutrino flux; Etude de la sensibilite du detecteur ANTARES a un flux diffus de neutrinos cosmiques de haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Romeyer, A

    2003-04-01

    The ANTARES collaboration aims to built an underwater neutrino telescope, 2 400 m deep, 40 km from Toulon (France). This detector is constituted by 12 strings, each one comprising 90 photomultipliers. Neutrinos are detected through their charged current interaction in the medium surrounding the detector (water or rock) leading to the production of a muon in the final state. Its Cherenkov light emitted all along its travel is detected by a three dimensional array of photomultipliers. The diffuse neutrino flux is constituted by the addition of the neutrino emission of sources. Only astrophysical ones have been discussed. The different theoretical models predicting such a flux have been listed and added to the simulation possibilities. As the muon energy reconstruction was a crucial parameter in this analysis, a new energy estimator has been developed. It gives a resolution of a factor three on the muon energy above 1 TeV. Discriminant variables have been also developed in order to reject the atmospheric muon background. Including all these developments, the ANTARES sensitivity is found to be around 8.10{sup -8} GeV-cm{sup -2}-s{sup -1}-sr{sup -1} after one year of data taking for an E{sup -2} spectrum and a 10 string detector. (author)

  3. Structure sensitivity in adsorption

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Nielsen, Ole Holm; Nørskov, Jens Kehlet

    1997-01-01

    The structure sensitivity of CO adsorption on different flat, stepped, kinked and reconstructed Pt surfaces is studied using large-scale density-functional calculations. We find an extremely strong structure sensitivity in the adsorption energy with variations up to 1 eV (or 100%) from one...... structure to the next. We propose a model to explain this behavior, and use it to discuss more generally the origin of structure sensitivity in heterogeneous catalysis....

  4. Electron Injection from Copper Diimine Sensitizers into TiO 2 : Structural Effects and Their Implications for Solar Energy Conversion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Mara, Michael W. [Department; Bowman, David N. [Department; Buyukcakir, Onur [Graduate; Shelby, Megan L. [Department; Haldrup, Kristoffer [Centre; Huang, Jier; Harpham, Michael R.; Stickrath, Andrew B.; Zhang, Xiaoyi; Stoddart, J. Fraser [Department; Coskun, Ali [Graduate; Jakubikova, Elena [Department; Chen, Lin X. [Department

    2015-07-21

    Copper(I) diimine complexes have emerged as low cost replacements for ruthenium complexes as light sensitizers and electron donors, but their shorter metal-to-ligand-charge-transfer (MLCT) states lifetimes and lability of transient Cu(II) species impede their intended functions. Two carboxylated Cu(I) bis-2,9-diphenylphenanthroline (dpp) complexes [Cu(I)(dpp-O(CH2CH2O)(5))(dpp-(COOH)(2))](+) and [Cu(I)(dpp-O(CH2CH2O)(5))(dpp-(F-COOH)(2))](+) (F = tolyl) with different linker lengths were synthesized in which the MLCT-state solvent quenching pathways are effectively blocked, the lifetime of the singlet MLCT state is prolonged, and the transient Cu(II) ligands are stabilized. Aiming at understanding the mechanisms of structural influence to the interfacial charge transfer in the dye-sensitized solar cell mimics, electronic and geometric structures as well as dynamics for the MLCT state of these complexes and their hybrid with TiO2 nanoparticles were investigated using optical transient spectroscopy, X-ray transient absorption spectroscopy, time-dependent density functional theory, and quantum dynamics simulations. The combined results show that these complexes exhibit strong absorption throughout the visible spectrum due to the severely flattened ground state, and a long-lived charge-separated Cu(II) has been achieved via ultrafast electron injection (<300 fs) from the 1MLCT state into TiO2 nanoparticles. The results also indicate that the TiO2-phen distance in these systems does not have significant effect on the efficiency of the interfacial electron-transfer process. The mechanisms for electron transfer in these systems are discussed and used to develop new strategies in optimizing copper(I) diimine complexes in solar energy conversion devices.

  5. Thermal inertia and radiating average Temperature. A brief analysis of some causes of discomfort; Inercia Termica y Temperatura media radiante. Un breve analisis de algunas causas de disconfort

    Energy Technology Data Exchange (ETDEWEB)

    Arroba, M.

    2008-07-01

    Radiant average temperature in walls is as important as dry air temperature to achieve thermal comfort of users of a local. An excessive discrepancy between these levels, or an asymmetric distribution of the surface temperature of fences, may cause localized thermal discomfort, an effect impossible to compensate by rising dry air temperature. Thermal inertia and its concentration must be properly studied in order to handle this parameters, inside or outside the building, on both sides of the cladding or none depending on the weather, the bio climatic strategies used, heating and air conditioning systems and planned use of the building. (Author)

  6. Parameter optimization through performance analysis of model based control of a batch heat treatment furnace with low NO x radiant tube burner

    International Nuclear Information System (INIS)

    Tiwari, Manish Kumar; Mukhopadhyay, Achintya; Sanyal, Dipankar

    2005-01-01

    A model based control structure for heat treating a 0.5% C steel slab in a batch furnace with low NO x radiant tube burner is designed and tested for performance to yield optimal parameter values using the model developed in the companion paper. Combustion is considered in a highly preheated and product gas diluted mode. Controlled combustion with a proposed arrangement for preheating and diluting the air by recirculating the exhaust gas that can be retrofitted with an existing burner yields satisfactory performance and emission characteristics. Finally, the effect of variable property considerations are presented and critically analyzed

  7. Wide Dynamic Range Multiband Infrared Radiometer for In-Fire Measurements of Wildland Fire Radiant Flux Density

    Science.gov (United States)

    Kremens, R.; Dickinson, M. B.; Hardy, C.; Skowronski, N.; Ellicott, E. A.; Schroeder, W.

    2016-12-01

    We have developed a wide dynamic range (24-bit) data acquisition system for collection of radiant flux density (FRFD) data from wildland fires. The data collection subsystem was designed as an Arduino `shield' and incorporates a 24-bit analog-to-digital converter, precision voltage reference, real time clock, microSD card interface, audible annuciator and interface for various digital communication interfaces (RS232, I2C, SPI, etc.). The complete radiometer system consists of our custom-designed `shield', a commercially available Arduino MEGA computer circuit board and a thermopile sensor -amplifier daughter board. Software design and development is greatly assisted by the availability of a library of public-domain, user-implemented software. The daughter board houses a 5-band radiometer using thermopiles designed for this experiment (Dexter Research Corp., Dexter, MI) to allow determination of the total FRFD from the fire (using a wide band thermopile with a KRS-5 window, 0.1 - 30 um), the FRFD as would be received by an orbital asset like MODIS (3.95 um center wavelength (CWL) and 10.95 CWL, corresponding to MODIS bands 21/22 and 31, respectively) and wider bandpass (0.1-5.5 um and 8-14 um) corresponding to the FRFD recorded by `MWIR' and `LWIR' imaging systems. We required a very wide dynamic range system in order to be able to record the flux density from `cold' ground before the fire, through the `hot' flaming combustion stage, to the `cool' phase after passage of the fire front. The recording dynamic range required (with reasonable resolution at the lowest temperatures) is on the order of 106, which is not currently available in commercial instrumentation at a price point, size or feature set that is suitable for wildland fire investigations. The entire unit, along with rechargeable battery power supply is housed in a fireproof aluminum chassis box, which is then mounted on a mast at a height of 5 - 7 m above the fireground floor. We will report initial

  8. A radiant black market

    International Nuclear Information System (INIS)

    Roser, T.

    1993-01-01

    On the 13 October the Bavarian police seized 2.2kg of uranium and arrested a group of seven people who had offered to sell it for $500.000. The existence of a black market for uranium may be a proliferation risk but it is not a serious health hazard - even if the material is negligently packed, as it seems to have been in all the recent cases. The situation is quite different when it comes to dealing with highly radioactive materials such as fission productions. Two such cases have been reported this summer involving Cs-137 and Sr-90, both emitters of hard beta rays. Little is known about the provenance of the radioactive and fissile material discovered. Obviously it originates from the ex-USSR, and the absence of highly enriched material suggests a civil rather than a military source. The governments of ex-Soviet states have apparently tried to intercept smugglers at their western frontiers, but have so far been unable to pinpoint the breaches in their security. It is also uncertain whether the occurrences discovered and reported are merely the tip of an iceberg. (author)

  9. Surface radiation budget in the Clouds and the Earth's Radiant Energy System (CERES) effort and in the Global Energy and Water Cycle Experiment (GEWEX)

    Science.gov (United States)

    Charlock, Thomas P.; Smith, G. L.; Rose, Fred G.

    1990-01-01

    The surface radiation budget (SRB) and the atmospheric radiative flux divergence (ARD) are vital components of the weather and climate system. The importance of radiation in a complex international scientific endeavor, the GEWEX of the World Climate Research Programme is explained. The radiative transfer techniques and satellite instrumentation that will be used to retrieve the SRB and ARD later in this decade with the CERES are discussed; CERES is a component of the Earth Observing System satellite program. Examples of consistent SRB and ARD retrievals made with Nimbus-7 and International Satellite Cloud Climatology Project data from July 1983 are presented.

  10. A simple and sensitive resonance Rayleigh scattering-energy transfer method for amino acids coupling its Ruhemann's purple and graphene oxide probe

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yanghe [School of Food and Bioengineering, Hezhou University, Hezhou 542899 (China); Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004 (China); Li, Chongnin; Qin, Aimian [Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004 (China); Liang, Aihui, E-mail: ahliang2008@163.com [Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004 (China); Jiang, Zhiliang, E-mail: zljiang@mailbox.gxnu.edu.cn [School of Food and Bioengineering, Hezhou University, Hezhou 542899 (China); Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004 (China)

    2017-05-15

    In pH 7.2 KH{sub 2}PO{sub 4}-NaOH buffer solution, graphene oxide (GO) has strong resonance Rayleigh scattering (RRS) effect at 400 nm, and amino acid reacted with ninhydrin to form blue-violet complex Ruhemann's purple (RP) with a absorption peak at 400 nm. RPs can strongly adsorbed on the surface of GO, and the RRS donor of GO probes coupled with the receptor of RP that reduced the RRS intensity at 400 nm due to the RRS-energy transfer (RRS-ET) from the GO to RP. With the increase of amino acid concentration, the RRS intensity quenched linearly at 400 nm due to the RRS-ET enhancing. The quenched intensity responds linearly with glutamic acid concentration in the range of 0.2–200 μmol L{sup −1}, with a detection limit of 0.08 µmol L{sup −1}. This simple and sensitive RRS-ET method was used to detect the content of amino acid in oral liquid, with satisfactory results.

  11. Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas.

    Science.gov (United States)

    Lima Neto, Milton C; Lobo, Ana K M; Martins, Marcio O; Fontenele, Adilton V; Silveira, Joaquim Albenisio G

    2014-01-01

    The relationships between salt tolerance and photosynthetic mechanisms of excess energy dissipation were assessed using two species that exhibit contrasting responses to salinity, Ricinus communis (tolerant) and Jatropha curcas (sensitive). The salt tolerance of R. communis was indicated by unchanged electrolyte leakage (cellular integrity) and dry weight in leaves, whereas these parameters were greatly affected in J. curcas. The leaf Na+ content was similar in both species. Photosynthesis was intensely decreased in both species, but the reduction was more pronounced in J. curcas. In this species biochemical limitations in photosynthesis were more prominent, as indicated by increased C(i) values and decreased Rubisco activity. Salinity decreased both the V(cmax) (in vivo Rubisco activity) and J(max) (maximum electron transport rate) more significantly in J. curcas. The higher tolerance in R. communis was positively associated with higher photorespiratory activity, nitrate assimilation and higher cyclic electron flow. The high activity of these alternative electron sinks in R. communis was closely associated with a more efficient photoprotection mechanism. In conclusion, salt tolerance in R. communis, compared with J. curcas, is related to higher electron partitioning from the photosynthetic electron transport chain to alternative sinks. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Time-Resolved Analysis of a Highly Sensitive Förster Resonance Energy Transfer Immunoassay Using Terbium Complexes as Donors and Quantum Dots as Acceptors

    Directory of Open Access Journals (Sweden)

    Niko Hildebrandt

    2007-01-01

    Full Text Available CdSe/ZnS core/shell quantum dots (QDs are used as efficient Förster Resonance Energy Transfer (FRET acceptors in a time-resolved immunoassays with Tb complexes as donors providing a long-lived luminescence decay. A detailed decay time analysis of the FRET process is presented. QD FRET sensitization is evidenced by a more than 1000-fold increase of the QD luminescence decay time reaching ca. 0.5 milliseconds, the same value to which the Tb donor decay time is quenched due to FRET to the QD acceptors. The FRET system has an extremely large Förster radius of approx. 100 Å and more than 70% FRET efficiency with a mean donor-acceptor distance of ca. 84 Å, confirming the applied biotin-streptavidin binding system. Time-resolved measurement allows for suppression of short-lived emission due to background fluorescence and directly excited QDs. By this means a detection limit of 18 attomol QDs within the immunoassay is accomplished, an improvement of more than two orders of magnitude compared to commercial systems.

  13. Custom design of a hanging cooling water power generating system applied to a sensitive cooling water discharge weir in a seaside power plant: A challenging energy scheme

    International Nuclear Information System (INIS)

    Tian, Chuan Min; Jaffar, Mohd Narzam; Ramji, Harunal Rejan; Abdullah, Mohammad Omar

    2015-01-01

    In this study, an innovative design of hydro-electricity system was applied to an unconventional site in an attempt to generate electricity from the exhaust cooling water of a coal-fired power plant. Inspired by the idea of micro hydro, present study can be considered new in three aspects: design, resource and site. This system was hung at a cooling water discharge weir, where all sorts of civil work were prohibited and sea water was used as the cooling water. It was designed and fabricated in the university's mechanical workshop and transported to the site for installation. The system was then put into proof run for a three-month period and achieved some success. Due to safety reasons, on-site testing was prohibited by the power plant authority. Hence, most data was acquired from the proof run. The driving system efficiency was tested in the range of 25% and 45% experimentally while modeling results came close to experimental results. Payback period for the system is estimated to be about 4.23 years. Result obtained validates the feasibility of the overall design under the sensitive site application. - Highlights: • Challenging energy scheme via a hanging cooling water power generating system. • Driving system efficiency was tested in the range of 25% and 45%. • Payback period for the system is estimated to be about 4.2 years

  14. High Energy Conversion Efficiency with 3-D Micro-Patterned Photoanode for Enhancement Diffusivity and Modification of Photon Distribution in Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Yun, Min Ju; Sim, Yeon Hyang; Cha, Seung I; Seo, Seon Hee; Lee, Dong Y

    2017-11-08

    Dye sensitize solar cells (DSSCs) have been considered as the promising alternatives silicon based solar cell with their characteristics including high efficiency under weak illumination and insensitive power output to incident angle. Therefore, many researches have been studied to improve the energy conversion efficiency of DSSCs. However the efficiency of DSSCs are still trapped at the around 10%. In this study, micro-scale hexagonal shape patterned photoanode have proposed to modify light distribution of photon. In the patterned electrode, the appearance efficiency have been obtained from 7.1% to 7.8% considered active area and the efficiency of 12.7% have been obtained based on the photoanode area. Enhancing diffusion of electrons and modification of photon distribution utilizing the morphology of the electrode are major factors to improving the performance of patterned electrode. Also, finite element method analyses of photon distributions were conducted to estimate morphological effect that influence on the photon distribution and current density. From our proposed study, it is expecting that patterned electrode is one of the solution to overcome the stagnant efficiency and one of the optimized geometry of electrode to modify photon distribution. Process of inter-patterning in photoanode has been minimized.

  15. The influence of tetrapod-like ZnO morphology and electrolytes on energy conversion efficiency of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Lee, Chia-Hua; Chiu, Wei-Hao; Lee, Kun-Mu; Yen, Wen-Hsiang; Lin, Hsiu-Fen; Hsieh, Wen-Feng; Wu, Jenn-Ming

    2010-01-01

    Tetrapod-like ZnO nanostructures prepared by dc plasma technology were used as photoelectrodes in dye-sensitized solar cells (DSSCs). Each of the tetrapod-like ZnO possesses four extended arms that offer improved electron transport properties. Tetrapod-like ZnO with short (S-ZnO) and long arms (L-ZnO) were synthesized by controlling the plasma gas flow and the input power. Between these two tetrapod-like ZnO nanopowders, the DSSCs using S-ZnO showed higher energy conversion efficiency than using L-ZnO. This is due to the resulting increase in dye adsorption and enhanced short-circuit current density, using S-ZnO. Electrochemical impedance spectroscopy (EIS) shows that the properties of electron transport of S-ZnO are superior to that of the L-ZnO. We investigated the effect of the redox electrolytes (I 2 ) and the additives (LiI and TBP) on the performance of the DSSCs by intensity-modulated photovoltage spectroscopy and EIS.

  16. Highly sensitive and selective cartap nanosensor based on luminescence resonance energy transfer between NaYF4:Yb,Ho nanocrystals and gold nanoparticles.

    Science.gov (United States)

    Wang, Zhijiang; Wu, Lina; Shen, Baozhong; Jiang, Zhaohua

    2013-09-30

    Fluorescent detection is an attractive method for the detection of toxic chemicals. However, most chemosensors that are currently utilized in fluorescent detection are based on organic dyes or quantum dots, which suffer from instability, high background noise and interference from organic impurities in solution, which can also be excited by UV radiation. In the present research, we developed a novel NaYF4:Yb,Ho/Au nanocomposite-based chemosensor with high sensitivity (10 ppb) and selectivity over competing analytes for the detection of the insecticide cartap. This nanosensor is excited with a 970-nm laser instead of UV radiation to give an emission peak at 541 nm. In the presence of cartap, the nanocomposites aggregate, resulting in enhanced luminescence resonance energy transfer between the NaYF4:Yb,Ho nanocrystals and the gold nanoparticles, which decreases the emission intensity at 541 nm. The relative luminescence intensity at 541 nm has a linear relationship with the concentration of cartap in the solution. Based on this behavior, the developed nanosensor successfully detected cartap in farm produce and water samples with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Uncertainty and sensitivity analysis of the effect of the mean energy and FWHM of the initial electron fluence on the Bremsstrahlung photon spectra of linear accelerators

    International Nuclear Information System (INIS)

    Juste, B.; Miró, R.; Verdú, G.; Macián, R.

    2012-01-01

    A calculation of the correct dose in radiation therapy requires an accurate description of the radiation source because uncertainties in characterization of the linac photon spectrum are propagated through the dose calculations. Unfortunately, detailed knowledge of the initial electron beam parameters is not readily available, and many researchers adjust the initial electron fluence values by trial-and-error methods. The main goal of this work was to develop a methodology to characterize the fluence of initial electrons before they hit the tungsten target of an Elekta Precise medical linear accelerator. To this end, we used a Monte Carlo technique to analyze the influence of the characteristics of the initial electron beam on the distribution of absorbed dose from a 6 MV linac photon beam in a water phantom. The technique is based on calculations with Software for Uncertainty and Sensitivity Analysis (SUSA) and Monte Carlo simulations with the MCNP5 transport code. The free parameters used in the SUSA calculations were the mean energy and full-width-at-half-maximum (FWHM) of the initial electron distribution. A total of 93 combinations of these parameters gave initial electron fluence configurations. The electron spectra thus obtained were used in a simulation of the electron transport through the target of the linear accelerator, which produced different photon (Bremsstrahlung) spectra. The simulated photon spectra were compared with the 6-MV photon spectrum provided by the linac manufacturer (Elekta). This comparison revealed how the mean energy and FWHM of the initial electron fluence affect the spectrum of the generated photons. This study has made it possible to fine-tune the examined electron beam parameters to obtain the resulted absorbed doses with acceptable accuracy (error <1%). - Highlights: ► Mean energy and radial spread are important parameters for simulating the incident electron beam in radiation therapy. ► Errors in determining the electron

  18. IT support of energy-sensitive product development. Energy-efficient product and process innovations in production engineering. Virtual product development for energy-efficient products and processes; IT-Unterstuetzung zur energiesensitiven Produktentwicklung. Energieeffiziente Produkt- und Prozessinnovationen in der Produktionstechnik. Handlungsfeld virtuelle Produktentwicklung fuer energieeffiziente Produkte und Prozesse (PE)

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, Thomas; Ruenger, Gudula; Steger, Daniel; Xu, Haibin

    2010-07-07

    The development of low-cost, energy-saving and resources-saving products is increasingly important. Thecalculation of the life cycle cost is an important basis for this. For this, it is necessary to extract empirical, decision-relevant data from IT systems of product development (e.g. product data management systems) and operation (e.g. enterprise resource planning systems), and to give the planner appropriate methods for data aggregation. Life cycle data are particularly important for optimising energy efficiency, which may be achieved either by enhanced productivity at constant energy consumption or by reduced energy consumption at constant productivity. The report presents an IT view of the product development process. First, modern methods of product development are analysed including IT support and IT systems. Requirements on IT systems are formulated which enable energy efficiency assessment and optimisation in all phases of product development on the basis of the IT systems used. IT systems for energy-sensitive product development will support the construction engineer in the development of energy-efficient products. For this, the functionalities of existing PDM systems must be enhanced by methods of analysis, synthesis and energy efficiency assessment. Finally, it is shown how the methods for analyzing energy-relevant data can be integrated in the work flow.

  19. Coupling of a discrete ordinate 3-D radiant heat transfer model with the PHOENICS fluid mechanics software; Couplage d`un modele radiatif tridimensionnel aux ordonnees discretes au logiciel de mecanique des fluides phoenics

    Energy Technology Data Exchange (ETDEWEB)

    Muller, J [IRSID, Institut de Recherches Siderurgie, 57 - Maizieres-les-Metz (France)

    1997-12-31

    Radiant heat transfer is the main solution retained in many iron and steel metallurgy installations (re-heating and annealing furnaces etc..). Today, it has become important to dispose of performing radiant heat transfer models in heat transfer and fluid mechanics simulation softwares, and well adapted to multidimensional industrial problems. This work presents the discrete ordinate radiant heat transfer model developed at the IRSID (the French institute of research in iron and steel metallurgy) and coupled with the PHOENICS heat transfer-fluid mechanics software. Three modeling approaches are presented concerning the radiative properties of gases (H{sub 2}O-CO{sub 2}). A ``weighted grey gases sum`` model gives satisfactory results for several 1-D validation cases. (J.S.) 20 refs.

  20. Coupling of a discrete ordinate 3-D radiant heat transfer model with the PHOENICS fluid mechanics software; Couplage d`un modele radiatif tridimensionnel aux ordonnees discretes au logiciel de mecanique des fluides phoenics

    Energy Technology Data Exchange (ETDEWEB)

    Muller, J. [IRSID, Institut de Recherches Siderurgie, 57 - Maizieres-les-Metz (France)

    1996-12-31

    Radiant heat transfer is the main solution retained in many iron and steel metallurgy installations (re-heating and annealing furnaces etc..). Today, it has become important to dispose of performing radiant heat transfer models in heat transfer and fluid mechanics simulation softwares, and well adapted to multidimensional industrial problems. This work presents the discrete ordinate radiant heat transfer model developed at the IRSID (the French institute of research in iron and steel metallurgy) and coupled with the PHOENICS heat transfer-fluid mechanics software. Three modeling approaches are presented concerning the radiative properties of gases (H{sub 2}O-CO{sub 2}). A ``weighted grey gases sum`` model gives satisfactory results for several 1-D validation cases. (J.S.) 20 refs.