WorldWideScience

Sample records for radiant energy detector

  1. Nonimaging radiant energy device

    Science.gov (United States)

    Winston, Roland; Ning, Xiaohui

    1993-01-01

    A nonimaging radiant energy device may include a hyperbolically shaped reflective element with a radiant energy inlet and a radiant energy outlet. A convex lens is provided at the radiant energy inlet and a concave lens is provided at the radiant energy outlet. Due to the provision of the lenses and the shape of the walls of the reflective element, the radiant energy incident at the radiant energy inlet within a predetermined angle of acceptance is emitted from the radiant energy outlet exclusively within an acute exit angle. In another embodiment, the radiant energy device may include two interconnected hyperbolically shaped reflective elements with a respective convex lens being provided at each aperture of the device.

  2. Direct conversion of infrared radiant energy for space power applications

    Science.gov (United States)

    Finke, R. C.

    1982-01-01

    A proposed technology to convert the earth radiant energy (infrared albedo) for spacecraft power is presented. The resultant system would eliminate energy storage requirements and simplify the spacecraft design. The design and performance of a infrared rectenna is discussed.

  3. Radiant Barriers Save Energy in Buildings

    Science.gov (United States)

    2014-01-01

    Langley Research Center needed to coat the Echo 1 satellite with a fine mist of vaporized metal, and collaborated with industry to create "radiant barrier technology." In 2010, Ryan Garrett learned about a new version of the technology resistant to oxidation and founded RadiaSource in Ogden, Utah, to provide the NASA-derived technology for applications in homes, warehouses, gymnasiums, and agricultural settings.

  4. Design of energy efficient building with radiant slab cooling

    Science.gov (United States)

    Tian, Zhen

    2007-12-01

    Air-conditioning comprises a substantial fraction of commercial building energy use because of compressor-driven refrigeration and fan-driven air circulation. Core regions of large buildings require year-round cooling due to heat gains from people, lights and equipment. Negative environmental impacts include CO2 emissions from electric generation and leakage of ozone-depleting refrigerants. Some argue that radiant cooling simultaneously improves building efficiency and occupant thermal comfort, and that current thermal comfort models fail to reflect occupant experience with radiant thermal control systems. There is little field evidence to test these claims. The University of Calgary's Information and Communications Technology (ICT) Building, is a pioneering radiant slab cooling installation in North America. Thermal comfort and energy performance were evaluated. Measurements included: (1) heating and cooling energy use, (2) electrical energy use for lighting and equipment, and (3) indoor temperatures. Accuracy of a whole building energy simulation model was evaluated with these data. Simulation was then used to compare the radiant slab design with a conventional (variable air volume) system. The radiant system energy performance was found to be poorer mainly due to: (1) simultaneous cooling by the slab and heating by other systems, (2) omission of low-exergy (e.g., groundwater) cooling possible with the high cooling water temperatures possible with radiant slabs and (3) excessive solar gain and conductive heat loss due to the wall and fenestration design. Occupant thermal comfort was evaluated through questionnaires and concurrent measurement of workstation comfort parameters. Analysis of 116 sets of data from 82 occupants showed that occupant assessment was consistent with estimates based on current thermal comfort models. The main thermal comfort improvements were reductions in (1) local discomfort from draft and (2) vertical air temperature stratification. The

  5. Performance of Radiant Heating Systems of Low-Energy Buildings

    Science.gov (United States)

    Sarbu, Ioan; Mirza, Matei; Crasmareanu, Emanuel

    2017-10-01

    After the introduction of plastic piping, the application of water-based radiant heating with pipes embedded in room surfaces (i.e., floors, walls, and ceilings), has significantly increased worldwide. Additionally, interest and growth in radiant heating and cooling systems have increased in recent years because they have been demonstrated to be energy efficient in comparison to all-air distribution systems. This paper briefly describes the heat distribution systems in buildings, focusing on the radiant panels (floor, wall, ceiling, and floor-ceiling). Main objective of this study is the performance investigation of different types of low-temperature heating systems with different methods. Additionally, a comparative analysis of the energy, environmental, and economic performances of floor, wall, ceiling, and floor-ceiling heating using numerical simulation with Transient Systems Simulation (TRNSYS) software is performed. This study showed that the floor-ceiling heating system has the best performance in terms of the lowest energy consumption, operation cost, CO2 emission, and the nominal boiler power. The comparison of the room operative air temperatures and the set-point operative air temperature indicates also that all radiant panel systems provide satisfactory results without significant deviations.

  6. ''Super-radiant'' states in intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    Auerbach, N.

    1994-01-01

    A ''super-radiant'' state emerges when, under certain conditions, one or a few ''internal'' states acquire a large collective decay width due to the coupling to one or a few ''external'' decay channels. The rest of the internal states are ''stripped'' of their decay width and become long lived quasistationary states. The essentials of such mechanism and its possible role in intermediate energy nuclear physics are discussed in this work

  7. Radiant energy collection and conversion apparatus and method

    Science.gov (United States)

    Hunt, A.J.

    The apparatus for collecting radiant energy and converting to alternate energy forms includes a housing having an interior space and a radiation transparent window allowing solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past the window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  8. Radiant energy during infrared neural stimulation at the target structure

    Science.gov (United States)

    Richter, Claus-Peter; Rajguru, Suhrud; Stafford, Ryan; Stock, Stuart R.

    2013-03-01

    Infrared neural stimulation (INS) describes a method, by which an infrared laser is used to stimulate neurons. The major benefit of INS over stimulating neurons with electrical current is its spatial selectivity. To translate the technique into a clinical application it is important to know the energy required to stimulate the neural structure. With this study we provide measurements of the radiant exposure, at the target structure that is required to stimulate the auditory neurons. Flat polished fibers were inserted into scala tympani so that the spiral ganglion was in front of the optical fiber. Angle polished fibers were inserted along scala tympani, and rotating the beveled surface of the fiber allowed the radiation beam to be directed perpendicular to the spiral ganglion. The radiant exposure for stimulation at the modiolus for flat and angle polished fibers averaged 6.78+/-2.15 mJ/cm2. With the angle polished fibers, a 90º change in the orientation of the optical beam from an orientation that resulted in an INS-evoked maximum response, resulted in a 50% drop in the response amplitude. When the orientation of the beam was changed by 180º, such that it was directed opposite to the orientation with the maxima, minimum response amplitude was observed.

  9. Energy efficiency and indoor thermal perception. A comparative study between radiant panel and portable convective heaters

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed Hamza H.; Morsy, Mahmoud Gaber [Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut, 71516 (Egypt)

    2010-11-15

    This study investigates experimentally the thermal perception of indoor environment for evaluating the ability of radiant panel heaters to produce thermal comfort for space occupants as well as the energy consumption in comparison with conventional portable natural convective heaters. The thermal perception results show that, compared with conventional convection heater, a radiantly heated office room maintains a lower ambient air temperature while providing equal levels of thermal perception on the thermal dummy head as the convective heater and saves up to 39.1% of the energy consumption per day. However, for human subjects' vote experiments, the results show that for an environmentally controlled test room at outdoor environment temperatures of 0C and 5C, using two radiant panel heaters with a total capacity of 580 W leads to a better comfort sensation than the conventional portable natural convective heater with a 670 W capacity, with an energy saving of about 13.4%. In addition, for an outdoor environment temperature of 10C, using one radiant panel heater with a capacity of 290 W leads to a better comfort sensation than the conventional convection heater with a 670 W capacity, with an energy saving of about 56.7%. From the analytical results, it is found that distributing the radiant panel heater inside the office room, one on the wall facing the window and the other on the wall close to the window, provides the best operative temperature distribution within the room.

  10. Integrated application of combined cooling, heating and power poly-generation PV radiant panel system of zero energy buildings

    Science.gov (United States)

    Yin, Baoquan

    2018-02-01

    A new type of combined cooling, heating and power of photovoltaic radiant panel (PV/R) module was proposed, and applied in the zero energy buildings in this paper. The energy system of this building is composed of PV/R module, low temperature difference terminal, energy storage, multi-source heat pump, energy balance control system. Radiant panel is attached on the backside of the PV module for cooling the PV, which is called PV/R module. During the daytime, the PV module was cooled down with the radiant panel, as the temperature coefficient influence, the power efficiency was increased by 8% to 14%, the radiant panel solar heat collecting efficiency was about 45%. Through the nocturnal radiant cooling, the PV/R cooling capacity could be 50 W/m2. For the multifunction energy device, the system shows the versatility during the heating, cooling and power used of building utilization all year round.

  11. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  12. Influence of increment thickness on radiant energy and microhardness of bulk-fill resin composites.

    Science.gov (United States)

    Karacolak, Gamze; Turkun, L Sebnem; Boyacioglu, Hayal; Ferracane, Jack L

    2018-03-30

    Determining the energy transferred at the bottom of eleven bulk-fill resin composites, comparing top and bottom microhardness's and evaluating the correlation between microhardness and radiant energy were aimed. Samples were placed over the bottom sensor of a visible light transmission spectrophotometer and polymerized for 20 s. The bottom and top Knoop microhardness were measured. Paired t-test and correlation analysis were used for statistics (p≤0.05). In all groups, the bottom radiant energy decreased significantly with increasing thickness. For groups of Aura 2 mm, X-tra Fil 2 and 4 mm, SDR 2 and 4 mm, X-tra Base 2 mm no significant difference was found between top and bottom microhardness. For the bottom levels of Aura, X-tra Fil, Filtek Bulk-Fill Posterior, SDR, X-tra Base groups no significant difference was found between the microhardness's of 2 and 4 mm thicknesses. For X-tra Fil, Tetric Evo Ceram Bulk-Fill, Filtek Bulk-Fill Flowable and Z100 groups radiant energy affected positively the microhardness.

  13. Effects of Floor Covering Resistance of a Radiant Floor on System Energy and Exergy Performances

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    Floor covering resistance (material and thickness) can be influenced by subjective choices (architectural design, interior design, texture, etc.) with significant effects on the performance of a radiant heating and cooling system. To study the effects of floor covering resistance on system...... performance, a water-based radiant floor heating and cooling system (dry, wooden construction) was considered to be coupled to an air-to-water heat pump, and the effects of varying floor covering resistances (0.05 m2K/W, 0.09 m2K/W and 0.15 m2K/W) on system performance were analyzed in terms of energy...... and exergy. In order to achieve the same heating and cooling outputs, higher average water temperatures are required in the heating mode (and lower temperatures in the cooling mode) with increasing floor covering resistance. These temperature requirements decrease the heat pump’s performance (lower...

  14. Radiant Research. Institute for Energy Technology 1948-98

    International Nuclear Information System (INIS)

    Njoelstad, Olav

    1999-01-01

    Institutt for Atomenergi (IFA), or Institute for Atomic Energy, at Kjeller, Norway, was founded in 1948. The history of the institute as given in this book was published in 1999 on the occasion of the institute's 50th anniversary. The scope of the institute was to do research and development as a foundation for peaceful application of nuclear energy and radioactive substances in Norway. The book tells the story of how Norway in 1951 became the first country after the four superpowers and Canada to have its own research reactor. After the completion of the reactor, the institute experienced a long and successful period and became the biggest scientific and technological research institute in Norway. Three more reactors were built, one in Halden and two at Kjeller. Plans were developed to build nuclear powered ships and nuclear power stations. It became clear, however, in the 1970s, that there was no longer political support for nuclear power in Norway, and it was necessary for the institute to change its research profile. In 1980, the institute changed its name to Institutt for energiteknikk (IFE), or Institute for energy technology, to signal the broadened scope. The book describes this painful but successful readjustment and shows how IFE in the 1980s and 1990s succeeded in using its special competence from the nuclear field to establish special competence in new research fields with great commercial potential

  15. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    DEFF Research Database (Denmark)

    Le Dréau, Jérôme

    is based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam...... losses, and an air-based terminal might be more energy-efficient than a radiant terminal (in terms of delivered energy). Regarding comfort, a similar global level has been observed for the radiant and air-based terminals in both numerical and experimental investigations. But the different terminals did...... not achieve the same uniformity in space. The active chilled beam theoretically achieves the most uniform comfort conditions (when disregarding the risk of draught), followed by the radiant ceiling. The least uniform conditions were obtained with the cooled floor due to large differences between the sitting...

  16. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    DEFF Research Database (Denmark)

    Le Dréau, Jérôme

    Heating and cooling terminals can be classified in two main categories: convective terminals (e.g air conditioning, active chilled beam, fan coil) and radiant terminals. The two terminals have different modes of heat transfer: the first one is mainly based on convection, whereas the second one...... is based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam...... losses, and an air-based terminal might be more energy-efficient than a radiant terminal (in terms of delivered energy). Regarding comfort, a similar global level has been observed for the radiant and air-based terminals in both numerical and experimental investigations. But the different terminals did...

  17. Solar–terrestrial radiant-energy regimes and temperature anomalies of natural and artificial turfs

    International Nuclear Information System (INIS)

    Jim, C.Y.

    2016-01-01

    Highlights: • Solar and terrestrial radian energy regimes affect temperature response of sports turfs. • Adjacent natural and artificial turfs were monitored with replications on sunny days. • Artificial turf has meager albedo, low specific heat and moisture to augment warming. • Artificial turf surface and substrate reach 70 °C but cool down effectively at night. • Artificial turf may induce heat stress on athletes in hot summer afternoon. - Abstract: Artificial turf can develop unusually high surface temperature on hot sunny days. Solar and terrestrial radiant energy regimes as key determinants of thermal performance deserve detailed investigation. This study evaluated six components of the radiant-energy environment of a natural turf (NT) and a contiguous artificial turf (AT) sports fields in Hong Kong: direct solar, reflected solar, net solar, sky thermal, ground thermal, and net thermal. Temperature was monitored at five positions: air at 150 cm, 50 cm and 15 cm height, turf surface, and substrate. The experiment included four replications, namely two summer sunny days, and two duplicated instrument sets at each turf site. The two sites reacted very differently to the same intense daily sum of solar radiation input of 23.70 MW m −2 with 9 h of bright sunshine (>120 W m −2 ), and daily sum of sky thermal radiation input of 38.59 MW m −2 . The maximum direct solar radiation reached 976.1 W m −2 at 1245 h. NT albedo of 0.23 vis-à-vis AT of merely 0.073, and higher moisture content and specific heat of NT materials, presented critical differences. The hydrophobic and generally dry plastic (polyethylene) pile-fibers and black rubber-granule infill materials have low specific heat. Intense incoming shortwave and longwave radiation absorbed readily by AT materials raised turf surface temperature to 70.2 °C and substrate 69.3 °C, in comparison with <40 °C at NT. A cascading warming effect was triggered, beginning with low albedo, high net solar

  18. Clouds and the Earth's Radiant Energy System (CERES) Data Products for Climate Research

    Science.gov (United States)

    Kato, Seiji; Loeb, Norman G.; Rutan, David A.; Rose, Fred G.

    2015-01-01

    NASA's Clouds and the Earth's Radiant Energy System (CERES) project integrates CERES, Moderate Resolution Imaging Spectroradiometer (MODIS), and geostationary satellite observations to provide top-of-atmosphere (TOA) irradiances derived from broadband radiance observations by CERES instruments. It also uses snow cover and sea ice extent retrieved from microwave instruments as well as thermodynamic variables from reanalysis. In addition, these variables are used for surface and atmospheric irradiance computations. The CERES project provides TOA, surface, and atmospheric irradiances in various spatial and temporal resolutions. These data sets are for climate research and evaluation of climate models. Long-term observations are required to understand how the Earth system responds to radiative forcing. A simple model is used to estimate the time to detect trends in TOA reflected shortwave and emitted longwave irradiances.

  19. Numerical study of influence of different dispersed components of crystal cloud on transmission of radiant energy

    Science.gov (United States)

    Shefer, Olga

    2017-11-01

    The calculated results of the transmission of visible and infrared radiation by an atmosphere layer involving ensembles of large preferentially oriented crystals and spherical particles are presented. To calculate extinction characteristics, the physical optics method and the Mie theory are applied. Among all atmospheric particles, both the small particles that are commensurable with the wavelength of the incident radiation and the large plates and the columns are distinguished by the most pronounced dependence of the transmission on spectra of radiant energy. The work illustrates features of influence of parameters of the particle size distribution, particle aspect ratios, orientation and particle refractive index, also polarization state of the incident radiation on the transmission. The predominant effect of the plates on the wavelength dependence of the transmission is shown. A separated and cooperative contributes of the large plates and the small volume shape particles to the common transmission by medium are considered.

  20. The Influence of a Radiant Panel System with Integrated Phase Change Material on Energy Use and Thermal Indoor Environment

    DEFF Research Database (Denmark)

    Nielsen, Lin Flemming; Bourdakis, Eleftherios; Kazanci, Ongun Berk

    2018-01-01

    This study examined the effect on energy use and thermal comfort when combining microencapsulated phase change material (PCM) with radiant ceiling panels in a two-person office. The performance of the system was studied during the cooling season in the climates of Copenhagen, Denmark, and Rome...

  1. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging

    Science.gov (United States)

    Abu Anas, Emran Mohammad; Kim, Jae Gon; Lee, Soo Yeol; Kamrul Hasan, Md

    2011-10-01

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.

  2. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging

    International Nuclear Information System (INIS)

    Anas, Emran Mohammad Abu; Hasan, Md Kamrul; Kim, Jae Gon; Lee, Soo Yeol

    2011-01-01

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.

  3. Extinction of radiant energy by large atmospheric crystals with different shapes

    International Nuclear Information System (INIS)

    Shefer, Olga

    2016-01-01

    The calculated results of extinction characteristics of visible and infrared radiation for large semi-transparent crystals are obtained by hybrid technique, which is a combination of the geometric optics method and the physical optics method. Energy and polarization characteristics of the radiation extinction in terms of the elements of the extinction matrix for individual large crystals and ensemble of crystals are discussed. Influences of particle shapes, aspect ratios, parameters of size distribution, complex refractive index, orientation of crystals, wavelength, and the polarization state of an incident radiation on the extinction are illustrated. It is shown that the most expressive and stable features of energy and polarization characteristics of the extinction are observed in the midinfrared region, despite the fact that the ice particles significantly absorb the radiant energy of this spectrum. It is demonstrated that the polarized extinction characteristics can reach several tens of percent at IR wavelengths. For the large crystals, the conditions of occurrence of the spectral behavior of the extinction coefficient in the visible, near-IR, and mid-IR wavelength ranges are determined. - Highlights: • Method of physical optics is used at coherent sum of diffracted and refracted fields. • The extinction characteristics in terms of elements of extinction matrix are obtained. • Influence of shapes and sizes of large particles on the extinction is evaluated. • Conditions of occurrence of extinction features are determined.

  4. High energy radiation detector

    International Nuclear Information System (INIS)

    Vosburgh, K.G.

    1975-01-01

    The high energy radiation detector described comprises a set of closely spaced wedge reflectors. Each wedge reflector is composed of three sides forming identical isoceles triangles with a common apex and an open base forming an equilateral triangle. The length of one side of the base is less than the thickness of the coat of material sensitive to high energy radiation. The wedge reflectors reflect the light photons spreading to the rear of the coat in such a way that each reflected track is parallel to the incident track of the light photon spreading rearwards. The angle of the three isosceles triangles with a common apex is between 85 and 95 deg. The first main surface of the coat of high energy radiation sensitive material is in contact with the projecting edges of the surface of the wedge reflectors of the reflecting element [fr

  5. Clouds and Earth Radiant Energy System (CERES), a Review: Past, Present and Future

    Science.gov (United States)

    Smith, G. L.; Priestley, K. J.; Loeb, N. G.; Wielicki, B. A.; Charlock, T. P.; Minnis, P.; Doelling, D. R.; Rutan, D. A.

    2011-01-01

    The Clouds and Earth Radiant Energy System (CERES) project s objectives are to measure the reflected solar radiance (shortwave) and Earth-emitted (longwave) radiances and from these measurements to compute the shortwave and longwave radiation fluxes at the top of the atmosphere (TOA) and the surface and radiation divergence within the atmosphere. The fluxes at TOA are to be retrieved to an accuracy of 2%. Improved bidirectional reflectance distribution functions (BRDFs) have been developed to compute the fluxes at TOA from the measured radiances with errors reduced from ERBE by a factor of two or more. Instruments aboard the Terra and Aqua spacecraft provide sampling at four local times. In order to further reduce temporal sampling errors, data are used from the geostationary meteorological satellites to account for changes of scenes between observations by the CERES radiometers. A validation protocol including in-flight calibrations and comparisons of measurements has reduced the instrument errors to less than 1%. The data are processed through three editions. The first edition provides a timely flow of data to investigators and the third edition provides data products as accurate as possible with resources available. A suite of cloud properties retrieved from the MODerate-resolution Imaging Spectroradiometer (MODIS) by the CERES team is used to identify the cloud properties for each pixel in order to select the BRDF for each pixel so as to compute radiation fluxes from radiances. Also, the cloud information is used to compute radiation at the surface and through the atmosphere and to facilitate study of the relationship between clouds and the radiation budget. The data products from CERES include, in addition to the reflected solar radiation and Earth emitted radiation fluxes at TOA, the upward and downward shortwave and longwave radiation fluxes at the surface and at various levels in the atmosphere. Also at the surface the photosynthetically active radiation

  6. Climate Model Evaluation using New Datasets from the Clouds and the Earth's Radiant Energy System (CERES)

    Science.gov (United States)

    Loeb, Norman G.; Wielicki, Bruce A.; Doelling, David R.

    2008-01-01

    There are some in the science community who believe that the response of the climate system to anthropogenic radiative forcing is unpredictable and we should therefore call off the quest . The key limitation in climate predictability is associated with cloud feedback. Narrowing the uncertainty in cloud feedback (and therefore climate sensitivity) requires optimal use of the best available observations to evaluate and improve climate model processes and constrain climate model simulations over longer time scales. The Clouds and the Earth s Radiant Energy System (CERES) is a satellite-based program that provides global cloud, aerosol and radiative flux observations for improving our understanding of cloud-aerosol-radiation feedbacks in the Earth s climate system. CERES is the successor to the Earth Radiation Budget Experiment (ERBE), which has widely been used to evaluate climate models both at short time scales (e.g., process studies) and at decadal time scales. A CERES instrument flew on the TRMM satellite and captured the dramatic 1998 El Nino, and four other CERES instruments are currently flying aboard the Terra and Aqua platforms. Plans are underway to fly the remaining copy of CERES on the upcoming NPP spacecraft (mid-2010 launch date). Every aspect of CERES represents a significant improvement over ERBE. While both CERES and ERBE measure broadband radiation, CERES calibration is a factor of 2 better than ERBE. In order to improve the characterization of clouds and aerosols within a CERES footprint, we use coincident higher-resolution imager observations (VIRS, MODIS or VIIRS) to provide a consistent cloud-aerosol-radiation dataset at climate accuracy. Improved radiative fluxes are obtained by using new CERES-derived Angular Distribution Models (ADMs) for converting measured radiances to fluxes. CERES radiative fluxes are a factor of 2 more accurate than ERBE overall, but the improvement by cloud type and at high latitudes can be as high as a factor of 5

  7. Radiant Energy Measurements from a Scaled Jet Engine Axisymmetric Exhaust Nozzle for a Baseline Code Validation Case

    Science.gov (United States)

    Baumeister, Joseph F.

    1994-01-01

    A non-flowing, electrically heated test rig was developed to verify computer codes that calculate radiant energy propagation from nozzle geometries that represent aircraft propulsion nozzle systems. Since there are a variety of analysis tools used to evaluate thermal radiation propagation from partially enclosed nozzle surfaces, an experimental benchmark test case was developed for code comparison. This paper briefly describes the nozzle test rig and the developed analytical nozzle geometry used to compare the experimental and predicted thermal radiation results. A major objective of this effort was to make available the experimental results and the analytical model in a format to facilitate conversion to existing computer code formats. For code validation purposes this nozzle geometry represents one validation case for one set of analysis conditions. Since each computer code has advantages and disadvantages based on scope, requirements, and desired accuracy, the usefulness of this single nozzle baseline validation case can be limited for some code comparisons.

  8. Radiation energy detector and analyzer

    International Nuclear Information System (INIS)

    Roberts, T.G.

    1981-01-01

    A radiation detector array and a method for measuring the spectral content of radiation. The radiation sensor or detector is an array or stack of thin solid-electrolyte batteries. The batteries, arranged in a stack, may be composed of independent battery cells or may be arranged so that adjacent cells share a common terminal surface. This common surface is possible since the polarity of the batteries with respect to an adjacent battery is unrestricted, allowing a reduction in component parts of the assembly and reducing the overall stack length. Additionally, a test jig or chamber for allowing rapid measurement of the voltage across each battery is disclosed. A multichannel recorder and display may be used to indicate the voltage gradient change across the cells, or a small computer may be used for rapidly converting these voltage readings to a graph of radiation intensity versus wavelength or energy. The behavior of the batteries when used as a radiation detector and analyzer are such that the voltage measurements can be made at leisure after the detector array has been exposed to the radiation, and it is not necessary to make rapid measurements as is now done

  9. Research of high energy radioactivity identification detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Kyun; Lee, Yong Bum; Hwang, Jong Sun; Choi, Seok Ki

    1998-07-01

    {Delta} {Epsilon}-{Epsilon} telescope high radioactivity detector was designed, fabricated, and tested at the 35 MeV proton energy. We developed the computer code to calculate the energy loss of projectile ions in the matter. Using the code, we designed and fabricated a detector to measure 15-50 MeV protons. The detector was successfully tested to measure the energy of protons and deuterons and to identify the ions. In future, we would like to extend the present result to the development of a higher energy proton detector and a heavy ion detector. (author). 10 refs., 3 tabs., 14 figs

  10. Numerical Modeling of Conjugate Thermogravitational Convection in a Closed System with a Radiant Energy Source in Conditions of Convective-Radiative Heat Exchange at the External Boundary

    Directory of Open Access Journals (Sweden)

    Nee Alexander

    2016-01-01

    Full Text Available Mathematical modeling of conjugate natural convection in a closed rectangular cavity with a radiant energy source in conditions of convective-radiative heat exchange at the external boundary was conducted. The radiant energy distribution was set by the Lambert’s law. Conduction and convection processes analysis showed that the air masses flow pattern is modified slightly over the time. The temperature increases in the gas cavity, despite the heat removal from the one of the external boundary. According to the results of the integral heat transfer analysis were established that the average Nusselt number (Nuav increasing occurs up to τ = 200 (dimensionless time. Further Nuav has changed insignificantly due to the temperature field equalization near the interfaces “gas – wall”.

  11. Large solid angle detectors (low energy)

    International Nuclear Information System (INIS)

    L'Hote, D.

    1988-01-01

    This lecture deals with large solid angle detectors used in low energy experiments (mainly in Nuclear Physics). The reasons for using such detectors are discussed, and several basic principles of their design are presented. Finally, two examples of data analysis from such detectors are given [fr

  12. Modeling the transmitted and stored energy in multilayer protective clothing under low-level radiant exposure

    International Nuclear Information System (INIS)

    Su, Yun; He, Jiazhen; Li, Jun

    2016-01-01

    Highlights: • A numerical model from heating source to skin tissues through multilayer fabric system is developed. • The numerical model is comprehensively validated with experimental data. • The model is used to investigate the relationship between the transmitted and stored energy and the influencing factors. - Abstract: A finite difference model was introduced to simulate the transmitted and stored energy in firefighters' protective clothing exposed to low-level thermal radiation. The model domain consists of a three-layer fire-resistant fabric system (outer shell, moisture barrier, and thermal liner), the human skin, and the air gap between clothing and the skin. The model accounted for the relationship between the transmitted heat during the exposure and the discharged heat during the cooling-down period. The numerical model predictions were compared with experimental data. Additionally, the parameters that affect the transmitted and stored energy of protective clothing were investigated. The results demonstrate that for the typical multilayer firefighter protective clothing, the transmitted heat during exposure and the discharged heat after exposure totally determine the skin burn under low-level heat exposure, especially for third-degree skin burns. The findings obtained in this study can be used to engineer fabric systems that provide better protection for the stored thermal burn.

  13. Energy resolution of scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Moszyński, M., E-mail: M.Moszynski@ncbj.gov.pl; Syntfeld-Każuch, A.; Swiderski, L.; Grodzicka, M.; Iwanowska, J.; Sibczyński, P.; Szczęśniak, T.

    2016-01-01

    According to current knowledge, the non-proportionality of the light yield of scintillators appears to be a fundamental limitation of energy resolution. A good energy resolution is of great importance for most applications of scintillation detectors. Thus, its limitations are discussed below; which arise from the non-proportional response of scintillators to gamma rays and electrons, being of crucial importance to the intrinsic energy resolution of crystals. The important influence of Landau fluctuations and the scattering of secondary electrons (δ-rays) on intrinsic resolution is pointed out here. The study on undoped NaI and CsI at liquid nitrogen temperature with a light readout by avalanche photodiodes strongly suggests that the non-proportionality of many crystals is not their intrinsic property and may be improved by selective co-doping. Finally, several observations that have been collected in the last 15 years on the influence of the slow components of light pulses on energy resolution suggest that more complex processes are taking place in the scintillators. This was observed with CsI(Tl), CsI(Na), ZnSe(Te), and undoped NaI at liquid nitrogen temperature and, finally, for NaI(Tl) at temperatures reduced below 0 °C. A common conclusion of these observations is that the highest energy resolution, and particularly intrinsic resolution measured with the scintillators, characterized by two or more components of the light pulse decay, is obtainable when the spectrometry equipment integrates the whole light of the components. In contrast, the slow components observed in many other crystals degrade the intrinsic resolution. In the limiting case, afterglow could also be considered as a very slow component that spoils the energy resolution. The aim of this work is to summarize all of the above observations by looking for their origin.

  14. Radiant energy dissipation during final storage of high-level radioactive waste in rock salt

    International Nuclear Information System (INIS)

    Ramthun, H.

    1981-08-01

    A final disposal concept is assumed where the high-active waste from 1400 t of uranium, remaining after conditioning, is solidified in borosilicate glass and distributed in 1.760 waste casks. These containers 1.2 m in height and 0.3 m in diameter are to be buried 10 years after the fuel is removed from the reactor in the 300 m deep boreholes of a salt dome. For this design the mean absorbed dose rates are calculated in the glass die (3.9 Gy/s), the steel mantle (0.26 Gy/s) and in the salt rock (0.12 Gy/s at a distance of 1 cm and 0.034 Gy/s at a distance of 9 cm from the container surface) valid at the beginning of disposal. The risk involved with these amounts of stored lattice energy is shortly discussed. (orig.) [de

  15. A determination of the absolute radiant energy of a Robertson-Berger meter sunburn unit

    Science.gov (United States)

    DeLuisi, John J.; Harris, Joyce M.

    Data from a Robertson-Berger (RB) sunburn meter were compared with concurrent measurements obtained with an ultraviolet double monochromator (DM), and the absolute energy of one sunburn unit measured by the RB-meter was determined. It was found that at a solar zenith angle of 30° one sunburn unit (SU) is equivalent to 35 ± 4 mJ cm -2, and at a solar zenith angle of 69°, one SU is equivalent to 20 ± 2 mJ cm -2 (relative to a wavelength of 297 nm), where the rate of change is non-linear. The deviation is due to the different response functions of the RB-meter and the DM system used to simulate the response of human skin to the incident u.v. solar spectrum. The average growth rate of the deviation with increasing solar zenith angle was found to be 1.2% per degree between solar zenith angles 30 and 50° and 2.3% per degree between solar zenith angles 50 and 70°. The deviations of response with solar zenith angle were found to be consistent with reported RB-meter characteristics.

  16. Neutron energy response measurement of scintillation detectors

    International Nuclear Information System (INIS)

    Yang Hongqiong; Peng Taiping; Yang Jianlun; Tang Zhengyuan; Yang Gaozhao; Li Linbo; Hu Mengchun; Wang Zhentong; Zhang Jianhua; Li Zhongbao; Wang Lizong

    2004-01-01

    Neutron sensitivities of detectors composed of plastic scintillator ST401, ST1422, ST1423 and phyotomultiplier tube in primary energy range of fission neutron are calibrated by direct current. The energy response curve of the detectors is obtained in this experiment. The experimental result has been compared with the theoretical calculation and they are in agreement within measuring uncertainty. (authors)

  17. Photomask specifications for high energy physics detectors

    CERN Document Server

    Pindo, M

    2002-01-01

    Planar technologies used for radiation detector fabrication imply an extensive use of photomasks whose characteristics are critical in determining final detector performance. Compatibly with their manufacturing process, photomasks must satisfy the application-specific requirements dictated both by wafer manufacturers and detector final users. The design and realization of microstrip and pixel detectors, widely used in high energy physics experiments, ask for intensive scientific effort, advanced technology and important economical investments. Photomask specification definition is one of the fundamental steps to optimize detector fabrication processes and fulfill experimental requirements at the most appropriate cost.

  18. Mathematical modelling, variational formulation and numerical simulation of the energy transfer process in a gray plate in the presence of a thermal radiant source

    International Nuclear Information System (INIS)

    Gama, R.M.S. da.

    1992-05-01

    The energy transfer process in a gray, opaque and rigid plate, heated by an external thermal radiant source, is considered. The source is regarded as a spherical black body, with radius a (a → 0) and uniform heat generation, placed above the plate. A mathematical model is constructed, assuming that the heat transfer from/to the plate takes place by thermal radiation. The obtained mathematical model is nonlinear. Is presented a suitable variational principle which is employed for simulating some particular cases. (author)

  19. Validation of the uncertainty budget for soft X-ray radiant power measurement using a cryogenic radiometer

    International Nuclear Information System (INIS)

    Rabus, H.; Klein, R.; Scholze, F.; Thornagel, R.; Ulm, G.

    2002-01-01

    The cryogenic radiometer SYRES, a thermal detector based on the electrical substitution principle, has been used as the primary detector standard for radiant power measurement in the ultraviolet, vacuum ultraviolet and soft X-ray spectral ranges. In order to investigate the possibility of radiant energy being deposited in its absorber cavity without being transformed into heat when detecting soft X-rays, SYRES has been directly compared with the electron storage ring BESSY 1, a primary radiometric source standard of calculable spectral radiant power. To this end, the integral radiant power emitted by the storage ring,into a solid angle defined by a high-precision aperture was measured with SYRES. The experiments were conducted at two nominal energies of the circulating electrons, 800 MeV and 340 MeV, to study the influence of the different spectral distributions of the synchrotron radiation. For the original graphite-coated cavity absorber, significant discrepancies were found which could be traced back to the ablation of the graphite coating from the copper cavity body. In the case of the new gold-coated cavity absorber, the calculated and measured values of the radiant power agreed in all experiments within the combined relative uncertainties of typically 2.5 x 10 -3 (k = 1). (author)

  20. Radiant cooling of an enclosure

    International Nuclear Information System (INIS)

    Chebihi, Abdeslam; Byun, Ki-Hong; Wen Jin; Smith, Theodore F.

    2006-01-01

    The purpose of this study is to analyze the potential for radiant cooling using the atmospheric sky window and to evaluate the desired characteristics of a radiant cooling material (RCM) applied to the ceiling window of a three-dimensional enclosure. The thermal characteristics of the system are governed by the geometry, ambient temperature, sky radiative temperature, amount of solar energy and its direction, heat transfer modes, wall radiative properties, and radiative properties of the RCMs. A semi-gray band analysis is utilized for the solar and infrared bands. The radiosity/irradiation method is used in each band to evaluate the radiant exchanges in the enclosure. The radiative properties for the RCM are varied in a parametric study to identify the desired properties of RCMs. For performance simulation of real RCMs, the radiative properties are calculated from spectral data. The desired solar property is a high reflectance for both opaque and semi-transparent RCMs. For a semi-transparent RCM, a low value of the solar transmittance is preferred. The desired infrared property is a high emittance for an opaque RCM. For a semi-transparent RCM, a high infrared transmittance is desired, and the emittance should be greater than zero

  1. Liquid Scintillation Detectors for High Energy Neutrinos

    International Nuclear Information System (INIS)

    Smith, Stefanie N.; Learned, John G.

    2010-01-01

    Large open volume (not segmented) liquid scintillation detectors have been generally dedicated to low energy neutrino measurements, in the MeV energy region. We describe the potential employment of large detectors (>1 kiloton) for studies of higher energy neutrino interactions, such as cosmic rays and long-baseline experiments. When considering the physics potential of new large instruments the possibility of doing useful measurements with higher energy neutrino interactions has been overlooked. Here we take into account Fermat's principle, which states that the first light to reach each PMT will follow the shortest path between that PMT and the point of origin. We describe the geometry of this process, and the resulting wavefront, which we are calling the 'Fermat surface', and discuss methods of using this surface to extract directional track information and particle identification. This capability may be demonstrated in the new long-baseline neutrino beam from Jaeri accelerator to the KamLAND detector in Japan. Other exciting applications include the use of Hanohano as a movable long-baseline detector in this same beam, and LENA in Europe for future long-baseline neutrino beams from CERN. Also, this methodology opens up the question as to whether a large liquid scintillator detector should be given consideration for use in a future long-baseline experiment from Fermilab to the DUSEL underground laboratory at Homestake.

  2. Muon Energy Calibration of the MINOS Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Paul S. [Somerville College, Oxford (United Kingdom)

    2004-01-01

    MINOS is a long-baseline neutrino oscillation experiment designed to search for conclusive evidence of neutrino oscillations and to measure the oscillation parameters precisely. MINOS comprises two iron tracking calorimeters located at Fermilab and Soudan. The Calibration Detector at CERN is a third MINOS detector used as part of the detector response calibration programme. A correct energy calibration between these detectors is crucial for the accurate measurement of oscillation parameters. This thesis presents a calibration developed to produce a uniform response within a detector using cosmic muons. Reconstruction of tracks in cosmic ray data is discussed. This data is utilized to calculate calibration constants for each readout channel of the Calibration Detector. These constants have an average statistical error of 1.8%. The consistency of the constants is demonstrated both within a single run and between runs separated by a few days. Results are presented from applying the calibration to test beam particles measured by the Calibration Detector. The responses are calibrated to within 1.8% systematic error. The potential impact of the calibration on the measurement of oscillation parameters by MINOS is also investigated. Applying the calibration reduces the errors in the measured parameters by ~ 10%, which is equivalent to increasing the amount of data by 20%.

  3. Jet energy resolution of the SDC detector

    International Nuclear Information System (INIS)

    Para, A.; Beretvas, A.; Denisenko, K.; Denisenko, N.; Green, D.; Yeh, G.P.; Wu, W.; Iso, H.

    1990-01-01

    We have answered the PAC question (''Demonstrate the jet energy resolution of your proposed detector by studying decays Z → jet + jet and Z' → jet + jet, M Z' = 1 TeV.'') using a general program called SSCSIM. This program is a tool for investigating simple questions involving the relations between detector parameters and physics capabilities of a detector. A different package called ANLSIM developed by our colleagues at Argonne has also been used to answer this question. The results as expected are very similar. In this note we will try to document our procedures. Our tentative conclusion from this study is that physics induced effects, out-of-cone fluctuations and underlying event fluctuations, dominate the resolution. Pushing the detector performance to the limits of technology improves the effective resolution by at most 20%. 20 refs., 6 figs., 5 tabs

  4. Radiant heating of petroleum reservoirs; Aquecimento radiante de reservatorios petroliferos

    Energy Technology Data Exchange (ETDEWEB)

    Sidrim, Fernando A.C.

    1990-12-31

    This work presents a proposal of a simplified model for the enhanced oil recovery process through radiant heating of oil reservoirs. The resulting continuity, energy and motion equations were solved analytically for the prediction of the increase in well flow rates. The heat loss to adjacent formations and the necessary for the establishment of the temperature profile,which are transient terms of energy equation, have been neglected. Also, no temperature gradient in the axial direction has been modelled as a cylindrical wave propagating in a loss medium. It is concluded that: the inclusion of a radial conduction term in the energy equation led to higher flow rates than the ones predicted by the literature existing solution; if the absorption coefficient is too large, it is profitable to dry the reservoir around the well bore; the transient terms in the energy equation are significant for extended periods of well production. 47 refs., 18 figs., 4 tabs.

  5. The Simbol-X Low Energy Detector

    International Nuclear Information System (INIS)

    Lechner, Peter

    2009-01-01

    For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.

  6. The Simbol-X Low Energy Detector

    Science.gov (United States)

    Lechner, Peter

    2009-05-01

    For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.

  7. Semiconductor high-energy radiation scintillation detector

    International Nuclear Information System (INIS)

    Kastalsky, A.; Luryi, S.; Spivak, B.

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation generates electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. An important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombination time of minority carriers. Notably, the fast response comes without any degradation in brightness. When the scintillator is implemented in a qualified semiconductor material (such as InP or GaAs), the photo-detector and associated circuits can be epitaxially integrated on the scintillator slab and the structure can be stacked-up to achieve virtually any desired absorption capability

  8. Microfluidic Scintillation Detectors for High Energy Physics

    CERN Document Server

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  9. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  10. Validation of the uncertainty budget for soft X-ray radiant power measurement using a cryogenic radiometer

    CERN Document Server

    Rabus, H; Scholze, F; Thornagel, R; Ulm, G

    2002-01-01

    The cryogenic radiometer SYRES, a thermal detector based on the electrical substitution principle, has been used as the primary detector standard for radiant power measurement in the ultraviolet, vacuum ultraviolet and soft X-ray spectral ranges. In order to investigate the possibility of radiant energy being deposited in its absorber cavity without being transformed into heat when detecting soft X-rays, SYRES has been directly compared with the electron storage ring BESSY 1, a primary radiometric source standard of calculable spectral radiant power. To this end, the integral radiant power emitted by the storage ring,into a solid angle defined by a high-precision aperture was measured with SYRES. The experiments were conducted at two nominal energies of the circulating electrons, 800 MeV and 340 MeV, to study the influence of the different spectral distributions of the synchrotron radiation. For the original graphite-coated cavity absorber, significant discrepancies were found which could be traced back to th...

  11. Dual energy radiography using active detector technology

    International Nuclear Information System (INIS)

    Seibert, J.A.; Poage, T.F.; Alvarez, R.E.

    1996-01-01

    A new technology has been implemented using an open-quotes active-detectorclose quotes comprised of two computed radiography (CR) imaging plates in a sandwich geometry for dual-energy radiography. This detector allows excellent energy separation, short exposure time, and high signal to noise ratio (SNR) for clinically robust open-quotes bone-onlyclose quotes and open-quotes soft-tissue onlyclose quotes images with minimum patient motion. Energy separation is achieved by two separate exposures at widely different kVp's: the high energy (120 kVp + 1.5 mm Cu filter) exposure is initiated first, followed by a short burst of intense light to erase the latent image on the front plate, and then a 50 kVp (low energy) exposure. A personal computer interfaced to the x-ray generator, filter wheel, and active detector system orchestrates the acquisition sequence within a time period of 150 msec. The front and back plates are processed using a CR readout algorithm with fixed speed and wide dynamic range. open-quotes Bone-onlyclose quotes and open-quotes soft-tissue onlyclose quotes images are calculated by geometric alignment of the two images and application of dual energy decomposition algorithms on a pixel by pixel basis. Resultant images of a calibration phantom demonstrate an increase of SNR 2 / dose by ∼73 times when compared to a single exposure open-quotes passive-detectorclose quotes comprised of CR imaging plates, and an ∼8 fold increase compared to a screen-film dual-energy cassette comprised of different phosphor compounds. In conclusion, dual energy imaging with open-quotes active detectorclose quotes technology is clinically feasible and can provide substantial improvements over conventional methods for dual-energy radiography

  12. Diamond detectors for high energy physics experiments

    Science.gov (United States)

    Bäni, L.; Alexopoulos, A.; Artuso, M.; Bachmair, F.; Bartosik, M.; Beacham, J.; Beck, H.; Bellini, V.; Belyaev, V.; Bentele, B.; Berdermann, E.; Bergonzo, P.; Bes, A.; Brom, J.-M.; Bruzzi, M.; Cerv, M.; Chiodini, G.; Chren, D.; Cindro, V.; Claus, G.; Collot, J.; Cumalat, J.; Dabrowski, A.; D'Alessandro, R.; Dauvergne, D.; de Boer, W.; Dorfer, C.; Dünser, M.; Eremin, V.; Eusebi, R.; Forcolin, G.; Forneris, J.; Frais-Kölbl, H.; Gallin-Martel, L.; Gallin-Martel, M. L.; Gan, K. K.; Gastal, M.; Giroletti, C.; Goffe, M.; Goldstein, J.; Golubev, A.; Gorišek, A.; Grigoriev, E.; Grosse-Knetter, J.; Grummer, A.; Gui, B.; Guthoff, M.; Haughton, I.; Hiti, B.; Hits, D.; Hoeferkamp, M.; Hofmann, T.; Hosslet, J.; Hostachy, J.-Y.; Hügging, F.; Hutton, C.; Jansen, H.; Janssen, J.; Kagan, H.; Kanxheri, K.; Kasieczka, G.; Kass, R.; Kassel, F.; Kis, M.; Konovalov, V.; Kramberger, G.; Kuleshov, S.; Lacoste, A.; Lagomarsino, S.; Lo Giudice, A.; Lukosi, E.; Maazouzi, C.; Mandic, I.; Mathieu, C.; Menichelli, M.; Mikuž, M.; Morozzi, A.; Moss, J.; Mountain, R.; Murphy, S.; Muškinja, M.; Oh, A.; Oliviero, P.; Passeri, D.; Pernegger, H.; Perrino, R.; Picollo, F.; Pomorski, M.; Potenza, R.; Quadt, A.; Re, A.; Reichmann, M.; Riley, G.; Roe, S.; Sanz, D.; Scaringella, M.; Schaefer, D.; Schmidt, C. J.; Schnetzer, S.; Sciortino, S.; Scorzoni, A.; Seidel, S.; Servoli, L.; Smith, S.; Sopko, B.; Sopko, V.; Spagnolo, S.; Spanier, S.; Stenson, K.; Stone, R.; Sutera, C.; Tannenwald, B.; Taylor, A.; Traeger, M.; Tromson, D.; Trischuk, W.; Tuve, C.; Uplegger, L.; Velthuis, J.; Venturi, N.; Vittone, E.; Wagner, S.; Wallny, R.; Wang, J. C.; Weingarten, J.; Weiss, C.; Wengler, T.; Wermes, N.; Yamouni, M.; Zavrtanik, M.

    2018-01-01

    Beam test results of the radiation tolerance study of chemical vapour deposition (CVD) diamond against different particle species and energies is presented. We also present beam test results on the independence of signal size on incident particle rate in charged particle detectors based on un-irradiated and irradiated poly-crystalline CVD diamond over a range of particle fluxes from 2 kHz/cm2 to 10 MHz/cm2. The pulse height of the sensors was measured with readout electronics with a peaking time of 6 ns. In addition functionality of poly-crystalline CVD diamond 3D devices was demonstrated in beam tests and 3D diamond detectors are shown to be a promising technology for applications in future high luminosity experiments.

  13. Clouds and the Earth's Radiant Energy System (CERES) algorithm theoretical basis document. volume 2; Geolocation, calibration, and ERBE-like analyses (subsystems 1-3)

    Science.gov (United States)

    Wielicki, B. A. (Principal Investigator); Barkstrom, B. R. (Principal Investigator); Charlock, T. P.; Baum, B. A.; Green, R. N.; Minnis, P.; Smith, G. L.; Coakley, J. A.; Randall, D. R.; Lee, R. B., III

    1995-01-01

    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 2 details the techniques used to geolocate and calibrate the CERES scanning radiometer measurements of shortwave and longwave radiance to invert the radiances to top-of-the-atmosphere (TOA) and surface fluxes following the Earth Radiation Budget Experiment (ERBE) approach, and to average the fluxes over various time and spatial scales to produce an ERBE-like product. Spacecraft ephemeris and sensor telemetry are used with calibration coefficients to produce a chronologically ordered data product called bidirectional scan (BDS) radiances. A spatially organized instrument Earth scan product is developed for the cloud-processing subsystem. The ERBE-like inversion subsystem converts BDS radiances to unfiltered instantaneous TOA and surface fluxes. The TOA fluxes are determined by using established ERBE techniques. Hourly TOA fluxes are computed from the instantaneous values by using ERBE methods. Hourly surface fluxes are estimated from TOA fluxes by using simple parameterizations based on recent research. The averaging process produces daily, monthly-hourly, and monthly means of TOA and surface fluxes at various scales. This product provides a continuation of the ERBE record.

  14. A detector for high-energy neutrino interactions

    International Nuclear Information System (INIS)

    Holder, M.; Knobloch, J.; Lacourt, A.; Laverriere, G.; May, J.; Paar, H.; Palazzi, P.; Ranjard, F.; Schilly, P.; Schlatter, D.; Steinberger, J.; Suter, H.; Wahl, H.; Williams, E.G.H.; Eisele, F.; Geweniger, G.; Kleinknecht, K.; Pollmann, O.; Spahn, G.; Willutzki, H.J.; Navarria, F.L.

    1978-01-01

    The authors describe the design, construction and performance of a large mass detector used at CERN to study high-energy neutrino interactions in iron. This detector combines magnetic spectrometry and hadron calorimetry techniques. (Auth.)

  15. Influence of radiant energy exchange on the determination of convective heat transfer rates to Orbiter leeside surfaces during entry

    Science.gov (United States)

    Throckmorton, D. A.

    1982-01-01

    Temperatures measured at the aerodynamic surface of the Orbiter's thermal protection system (TPS), and calorimeter measurements, are used to determine heating rates to the TPS surface during atmospheric entry. On the Orbiter leeside, where convective heating rates are low, it is possible that a significant portion of the total energy input may result from solar radiation, and for the wing, cross radiation from the hot (relatively) Orbiter fuselage. In order to account for the potential impact of these sources, values of solar- and cross-radiation heat transfer are computed, based upon vehicle trajectory and attitude information and measured surface temperatures. Leeside heat-transfer data from the STS-2 mission are presented, and the significance of solar radiation and fuselage-to-wing cross-radiation contributions to total energy input to Orbiter leeside surfaces is assessed.

  16. A time of flight detector for high energy heavy particles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z; O` Connor, D J [Newcastle Univ., NSW (Australia). Dept. of Physics

    1994-12-31

    As a commonly used method to measure the energy of a particle with known mass, the flight time of the particle travelling over a certain distance is measured. A detector based on this principle is called a time-of-flight (TOF) detector which has attracted interests constantly during the last 15 years. For high energy heavy particle energy detection, TOF detector is an appropriated choice and such a system, developed recently, is described in this paper. 8 refs., 3 figs.

  17. A time of flight detector for high energy heavy particles

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1993-12-31

    As a commonly used method to measure the energy of a particle with known mass, the flight time of the particle travelling over a certain distance is measured. A detector based on this principle is called a time-of-flight (TOF) detector which has attracted interests constantly during the last 15 years. For high energy heavy particle energy detection, TOF detector is an appropriated choice and such a system, developed recently, is described in this paper. 8 refs., 3 figs.

  18. Measurements for the energy calibration of the TANSY neutron detectors

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Hoek, M.; Aronsson, D.

    1990-05-01

    The report describes measurements performed for the energy calibration of the TANSY neutron detectors (two arrays of 16 detectors each one). The calibration procedure determines four calibration parameters for each detector. Results of the calibration measurements are given and test measurements are presented. A relation of the neutron detector calibration parameters to producer's data for the photomulipliers is analysed. Also the tests necessary during normal operation of the TANSY neutron spectrometer are elaborated (passive and active tests). A method how to quickly get the calibration parameters for a spare detector in an array of the neutron detectors is included

  19. PERFORMANCE EVALUATION OF CEILING RADIANT COOLING SYSTEM IN COMPOSITE CLIMATE

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Anuj [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2015-01-01

    Radiant cooling systems are proving to be an energy efficient solution due to higher thermal capacity of cooling fluid especially for the buildings that require individual zone controls and where the latent loads are moderate. The Conventional air conditioners work at very low temperature i.e.5-8 c (refrigerant evaporator inlet) while the radiant cooling systems, also referred as high temperature cooling system, work at high temperatures i.e. 14-18 c. The radiant cooling systems can maintain lower MRT (Mean Radiant Temperature) as ceiling panels maintain uniform temperature gradient inside room and provide higher human comfort. The radiant cooling systems are relatively new systems and their operation and energy savings potential are not quantified for a large number of buildings and operational parameters. Moreover, there are only limited numbers of whole building simulation studies have been carried out for these systems to have a full confidence in the capability of modelling tools to simulate these systems and predict the impact of various operating parameters. Theoretically, savings achieve due to higher temperature set point of chilled water, which reduces chiller-running time. However, conventional air conditioner runs continuously to maintain requisite temperature. In this paper, experimental study for performance evaluation of radiant cooling system carried out on system installed at Malaviya National Institute of Technology Jaipur. This paper quantifies the energy savings opportunities and effective temperature by radiant cooling system at different chilled water flow rates and temperature range. The data collected/ analysed through experimental study will used for calibration and validation of system model of building prepared in building performance simulation software. This validated model used for exploring optimized combinations of key parameters for composite climate. These optimized combinations will used in formulation of radiant cooling system

  20. Radiant absorption characteristics of corrugated curved tubes

    Directory of Open Access Journals (Sweden)

    Đorđević Milan Lj.

    2017-01-01

    Full Text Available The utilization of modern paraboloidal concentrators for conversion of solar radiation into heat energy requires the development and implementation of compact and efficient heat absorbers. Accurate estimation of geometry influence on absorption characteristics of receiver tubes is an important step in this process. This paper deals with absorption characteristics of heat absorber made of spirally coiled tubes with transverse circular corrugations. Detailed 3-D surface-to-surface Hemicube method was applied to compare radiation performances of corrugated and smooth curved tubes. The numerical results were obtained by varying the tube curvature ratio and incident radiant heat flux intensity. The details of absorption efficiency of corrugated tubes and the effect of curvature on absorption properties for both corrugated and smooth tubes were presented. The results may have significance to further analysis of highly efficient heat absorbers exposed to concentrated radiant heating. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 42006

  1. Radiant exchange in partially specular architectural environments

    Science.gov (United States)

    Beamer, C. Walter; Muehleisen, Ralph T.

    2003-10-01

    The radiant exchange method, also known as radiosity, was originally developed for thermal radiative heat transfer applications. Later it was used to model architectural lighting systems, and more recently it has been extended to model acoustic systems. While there are subtle differences in these applications, the basic method is based on solving a system of energy balance equations, and it is best applied to spaces with mainly diffuse reflecting surfaces. The obvious drawback to this method is that it is based around the assumption that all surfaces in the system are diffuse reflectors. Because almost all architectural systems have at least some partially specular reflecting surfaces in the system it is important to extend the radiant exchange method to deal with this type of surface reflection. [Work supported by NSF.

  2. A detector for use in high energy bremsstrahlung shielding studies

    International Nuclear Information System (INIS)

    Wilson, O.J.; Thomson, J.E.M.

    1983-01-01

    The design, development and calibration of a detector based on the principle of the Moxon-Rae detector is discussed. It is ideally suited to the measurement of the energy fluence of photons transmitted through a thick shield which has been irradiated with high energy bremsstrahlung. The detection sensitivity is 10 4 to 10 5 times that of the P2 ion chamber

  3. CZT drift strip detectors for high energy astrophysics

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Caroli, E.

    2010-01-01

    Requirements for X- and gamma ray detectors for future High Energy Astrophysics missions include high detection efficiency and good energy resolution as well as fine position sensitivity even in three dimensions.We report on experimental investigations on the CZT drift detector developed DTU Space...

  4. High Energy Electron Detectors on Sphinx

    Science.gov (United States)

    Thompson, J. R.; Porte, A.; Zucchini, F.; Calamy, H.; Auriel, G.; Coleman, P. L.; Bayol, F.; Lalle, B.; Krishnan, M.; Wilson, K.

    2008-11-01

    Z-pinch plasma radiation sources are used to dose test objects with K-shell (˜1-4keV) x-rays. The implosion physics can produce high energy electrons (> 50keV), which could distort interpretation of the soft x-ray effects. We describe the design and implementation of a diagnostic suite to characterize the electron environment of Al wire and Ar gas puff z-pinches on Sphinx. The design used ITS calculations to model detector response to both soft x-rays and electrons and help set upper bounds to the spurious electron flux. Strategies to discriminate between the known soft x-ray emission and the suspected electron flux will be discussed. H.Calamy et al, ``Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion,'' Phys Plasmas 15, 012701 (2008) J.A.Halbleib et al, ``ITS: the integrated TIGER series of electron/photon transport codes-Version 3.0,'' IEEE Trans on Nuclear Sci, 39, 1025 (1992)

  5. Low-energy CZT detector array for the ASIM mission

    DEFF Research Database (Denmark)

    Cenkeramaddi, Linga Reddy; Genov, Georgi; Kohfeldt, Anja

    2012-01-01

    In this article we introduce the low-energy CZT (CdZnTe) 16 384-pixel detector array on-board the Atmosphere Space Interaction Monitor (ASIM), funded by the European Space Agency. This detector is a part of the larger Modular X-and Gamma-ray sensor (MXGS). The CZT detector array is sensitive...... to photons with energies between 15 keV and 400 keV. The principal objective of the MXGS instrument is to detect Terrestrial Gamma ray Flashes (TGFs), which are related to thunderstorm activity. The concept of the detector array is presented, together with brief descriptions of its mechanical structure...

  6. Proceedings of the symposium on high energy detectors

    International Nuclear Information System (INIS)

    1980-02-01

    Since the study meeting on measuring instruments held three years ago, large change has arisen. Valuable experiences have been accumulated by the successful conclusion of the first term experiments in the National Laboratory for High Energy Physics. The improvement of detectors and the development of new detectors are strongly desired just before starting the future plans. In low energy field also, the steady advance has been accomplished. This symposium was held in such situation on September 18 and 19, 1979, at KEK, and aimed at clarifying the present status and accomplishment of high energy detectors, and setting forth the future prospect. On the first day, the review of recent topics concerning position detectors and particle-identifying detectors, and the reports on drift chambers, liquid wire chambers and the single wire chambers using charge division method were mainly presented. On the second day, the reports on the electronics related to position detectors, particle-identifying detectors, calorimeters, and the development of new detectors, the consideration on multiple tracks as the future plan, and the review of transition radiation detectors were presented. The results of this symposium will surely be utilized for the high energy experiments hereafter. The 26 papers presented are outlined. (Kako, I.)

  7. Thermal model of attic systems with radiant barriers

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, K.E.

    1991-07-01

    This report summarizes the first phase of a project to model the thermal performance of radiant barriers. The objective of this phase of the project was to develop a refined model for the thermal performance of residential house attics, with and without radiant barriers, and to verify the model by comparing its predictions against selected existing experimental thermal performance data. Models for the thermal performance of attics with and without radiant barriers have been developed and implemented on an IBM PC/AT computer. The validity of the models has been tested by comparing their predictions with ceiling heat fluxes measured in a number of laboratory and field experiments on attics with and without radiant barriers. Cumulative heat flows predicted by the models were usually within about 5 to 10 percent of measured values. In future phases of the project, the models for attic/radiant barrier performance will be coupled with a whole-house model and further comparisons with experimental data will be made. Following this, the models will be utilized to provide an initial assessment of the energy savings potential of radiant barriers in various configurations and under various climatic conditions. 38 refs., 14 figs., 22 tabs.

  8. Advanced Detectors for Nuclear, High Energy and Astroparticle Physics

    CERN Document Server

    Das, Supriya; Ghosh, Sanjay

    2018-01-01

    The book presents high-quality papers presented at a national conference on ‘Advanced Detectors for Nuclear, High Energy and Astroparticle Physics’. The conference was organized to commemorate 100 years of Bose Institute. The book is based on the theme of the conference and provides a clear picture of basics and advancement of detectors for nuclear physics, high-energy physics and astroparticle physics together. The topics covered in the book include detectors for accelerator-based high energy physics; detectors for non-accelerator particle physics; nuclear physics detectors; detection techniques in astroparticle physics and dark matter; and applications and simulations. The book will be a good reference for researchers and industrial personnel working in the area of nuclear and astroparticle physics.

  9. Dual concentric crystal low energy photon detector

    Science.gov (United States)

    Guilmette, R.A.

    A photon detector for biological samples includes a block of NaI(T1) having a hole containing a thin walled cylinder of CsI(T1). At least three photo multiplier tubes are evenly spaced around the parameter of the block. Biological samples are placed within the hole, and emissions which are sensed by at least two of the photo multipliers from only the NaI(T1) detector are counted.

  10. A full-scale experimental set-up for assessing the energy performance of radiant wall and active chilled beam for cooling buildings

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    in decreasing the cooling need of the radiant wall compared to the active chilled beam. It has also been observed that the type and repartition of heat load have an influence on the cooling demand. Regarding the comfort level, both terminals met the general requirements, except at high solar heat gains......: overheating has been observed due to the absence of solar shading and the limited cooling capacity of the terminals. No local discomfort has been observed although some segments of the thermal manikin were slightly colder....

  11. Performance evaluation of radiant cooling system application on a university building in Indonesia

    Science.gov (United States)

    Satrio, Pujo; Sholahudin, S.; Nasruddin

    2017-03-01

    The paper describes a study developed to estimate the energy savings potential of a radiant cooling system installed in an institutional building in Indonesia. The simulations were carried out using IESVE to evaluate thermal performance and energy consumption The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption and temperature distribution to determine the proportional energy savings and occupant comfort under different systems. The result was radiant cooling which integrated with a Dedicated Outside Air System (DOAS) could make 41,84% energy savings compared to the installed cooling system. The Computational Fluid Dynamics (CFD) simulation showed that a radiant system integrated with DOAS provides superior human comfort than a radiant system integrated with Variable Air Volume (VAV). Percentage People Dissatisfied was kept below 10% using the proposed system.

  12. Towards a large scale high energy cosmic neutrino undersea detector

    International Nuclear Information System (INIS)

    Azoulay, R.; Berthier, R.; Arpesella, C.

    1997-06-01

    ANTARES collaboration proposes to study high energy cosmic neutrinos by using a deep sea Cherenkov detector. The potential interest of such a study for astrophysicists and particle physicists is developed. The different origins of cosmic neutrinos are reviewed. In order to observe with relevant statistic the flux of neutrinos from extra-galactic sources, a km-scale detector is necessary. The feasibility of such a detector is studied. A variety of technical problems have been solved. Some of them are standard for particle physicists: choice of photo-multipliers, monitoring, trigger, electronics, data acquisition, detector optimization. Others are more specific of sea science engineering particularly: detector deployment in deep sea, data transmission through optical cables, bio-fouling, effect of sea current. The solutions are presented and the sea engineering part involving detector installation will be tested near French coasts. It is scheduled to build a reduced-scale demonstrator within the next 2 years. (A.C.)

  13. Towards a large scale high energy cosmic neutrino undersea detector

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, R.; Berthier, R. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere; Arpesella, C. [Centre National de la Recherche Scientifique (CNRS), 13 - Marseille (France). Centre de Physique Theorique] [and others

    1997-06-01

    ANTARES collaboration proposes to study high energy cosmic neutrinos by using a deep sea Cherenkov detector. The potential interest of such a study for astrophysicists and particle physicists is developed. The different origins of cosmic neutrinos are reviewed. In order to observe with relevant statistic the flux of neutrinos from extra-galactic sources, a km-scale detector is necessary. The feasibility of such a detector is studied. A variety of technical problems have been solved. Some of them are standard for particle physicists: choice of photo-multipliers, monitoring, trigger, electronics, data acquisition, detector optimization. Others are more specific of sea science engineering particularly: detector deployment in deep sea, data transmission through optical cables, bio-fouling, effect of sea current. The solutions are presented and the sea engineering part involving detector installation will be tested near French coasts. It is scheduled to build a reduced-scale demonstrator within the next 2 years. (A.C.) 50 refs.

  14. The low energy detector of Simbol-X

    Science.gov (United States)

    Lechner, P.; Andricek, L.; Briel, U.; Hasinger, G.; Heinzinger, K.; Herrmann, S.; Huber, H.; Kendziorra, E.; Lauf, T.; Lutz, G.; Richter, R.; Santangelo, A.; Schaller, G.; Schnecke, M.; Schopper, F.; Segneri, G.; Strüder, L.; Treis, J.

    2008-07-01

    Simbol-X is a French-Italian-German hard energy X-ray mission with a projected launch in 2014. Being sensitive in the energy range from 500 eV to 80 keV it will cover the sensitivity gap beyond the energy interval of today's telescopes XMM-Newton and Chandra. Simbol-X will use an imaging telescope of nested Wolter-I mirrors. To provide a focal length of 20 m it will be the first mission of two independent mirror and detector spacecrafts in autonomous formation flight. The detector spacecraft's payload is composed of an imaging silicon low energy detector in front of a pixelated cadmium-telluride hard energy detector. Both have a sensitive area of 8 × 8 cm2 to cover a 12 arcmin field of view and a pixel size of 625 × 625 μm2 adapted to the telescope's resolution of 20 arcsec. The additional LED specifications are: high energy resolution, high quantum efficiency, fast readout and optional window mode, monolithic device with 100 % fill factor and suspension mounting, and operation at warm temperature. To match these requirements the low energy detector is composed of 'active macro pixels', combining the large, scalable area of a Silicon Drift Detector and the low-noise, on-demand readout of an integrated DEPFET amplifier. Flight representative prototypes have been processed at the MPI semiconductor laboratory, and the prototype's measured performance demonstrates the technology readiness.

  15. Radiant recuperator modelling and design

    Directory of Open Access Journals (Sweden)

    Knežević Suzana D.

    2017-01-01

    Full Text Available Recuperators are frequently used in glass production and metallurgical processes to preheat combustion air by heat exchange with high temperature flue gases. Mass and energy balances of a 15 m high, concurrent radiant recuperator used in a glass fiber production process are given. The balances are used: for validation of a cell modeling method that predicts the performance of different recuperator designs, and for finding a simple solution to improve the existing recuperator. Three possible solutions are analyzed: to use the existing recuperator as a countercurrent one, to add an extra cylinder over the existing construction, and to make a system that consists of a central pipe and two concentric annular ducts. In the latter, two air streams flow in opposite directions, whereas air in the inner annular passage flows concurrently or countercurrently to flue gases. Compared with the concurrent recuperator, the countercurrent has only one drawback: the interface temperature is higher at the bottom. The advantages are: lower interface temperature at the top where the material is under maximal load, higher efficiency, and smaller pressure drop. Both concurrent and countercurrent double pipe-in-pipe systems are only slightly more efficient than pure concurrent and countercurrent recuperators, respectively. Their advantages are smaller interface temperatures whereas the disadvantages are their costs and pressure drops. To implement these solutions, the average velocities should be: for flue gas around 5 m/s, for air in the first passage less than 2 m/s, and for air in the second passage more than 25 m/s. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. EE 33027

  16. Application of imitation for energy calibration of silicon semiconductor detectors

    CERN Document Server

    Aivazyan, G M; Mikaelyan, M A

    2003-01-01

    An effective method is described for energy calibration of semiconductor detectors (SCD) with different thickness. The method is based on imitating the charge on the input of the preamplifier deposited in SCD by known energy ionizing particles, the imitation being performed by a pulser with a partial with use of alpha-active sources. The results of laboratory studies of the described method are given with detectors of either large, 50-1000 mu m, or small, 18-20 mu m, thickness

  17. Radiant Heating and Cooling Systems. Part one

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    The use of radiant heating systems has several thousand years of history.1,2 The early stage of radiant system application was for heating purposes, where hot air from flue gas (cooking, fires) was circulated under floors or in walls. After the introduction of plastic piping water-based radiant...

  18. The High Energy Detector of Simbol-X

    Science.gov (United States)

    Meuris, A.; Limousin, O.; Lugiez, F.; Gevin, O.; Blondel, C.; Le Mer, I.; Pinsard, F.; Cara, C.; Goetschy, A.; Martignac, J.; Tauzin, G.; Hervé, S.; Laurent, P.; Chipaux, R.; Rio, Y.; Fontignie, J.; Horeau, B.; Authier, M.; Ferrando, P.

    2009-05-01

    The High Energy Detector (HED) is one of the three detection units on board the Simbol-X detector spacecraft. It is placed below the Low Energy Detector so as to collect focused photons in the energy range from 8 to 80 keV. It consists of a mosaic of 64 independent cameras, divided in 8 sectors. Each elementary detection unit, called Caliste, is the hybridization of a 256-pixel Cadmium Telluride (CdTe) detector with full custom front-end electronics into a unique component. The status of the HED design will be reported. The promising results obtained from the first micro-camera prototypes called Caliste 64 and Caliste 256 will be presented to illustrate the expected performance of the instrument.

  19. The High Energy Detector of Simbol-X

    International Nuclear Information System (INIS)

    Meuris, A.; Limousin, O.; Blondel, C.; Le Mer, I.; Pinsard, F.; Cara, C.; Goetschy, A.; Martignac, J.; Laurent, P.; Chipaux, R.; Rio, Y.; Fontignie, J.; Horeau, B.; Ferrando, P.; Lugiez, F.; Gevin, O.; Tauzin, G.; Herve, S.; Authier, M.

    2009-01-01

    The High Energy Detector (HED) is one of the three detection units on board the Simbol-X detector spacecraft. It is placed below the Low Energy Detector so as to collect focused photons in the energy range from 8 to 80 keV. It consists of a mosaic of 64 independent cameras, divided in 8 sectors. Each elementary detection unit, called Caliste, is the hybridization of a 256-pixel Cadmium Telluride (CdTe) detector with full custom front-end electronics into a unique component. The status of the HED design will be reported. The promising results obtained from the first micro-camera prototypes called Caliste 64 and Caliste 256 will be presented to illustrate the expected performance of the instrument.

  20. An efficient energy response model for liquid scintillator detectors

    Science.gov (United States)

    Lebanowski, Logan; Wan, Linyan; Ji, Xiangpan; Wang, Zhe; Chen, Shaomin

    2018-05-01

    Liquid scintillator detectors are playing an increasingly important role in low-energy neutrino experiments. In this article, we describe a generic energy response model of liquid scintillator detectors that provides energy estimations of sub-percent accuracy. This model fits a minimal set of physically-motivated parameters that capture the essential characteristics of scintillator response and that can naturally account for changes in scintillator over time, helping to avoid associated biases or systematic uncertainties. The model employs a one-step calculation and look-up tables, yielding an immediate estimation of energy and an efficient framework for quantifying systematic uncertainties and correlations.

  1. Medipix 2 detector applied to low energy electron microscopy

    International Nuclear Information System (INIS)

    Gastel, R. van; Sikharulidze, I.; Schramm, S.; Abrahams, J.P.; Poelsema, B.; Tromp, R.M.; Molen, S.J. van der

    2009-01-01

    Low energy electron microscopy (LEEM) and photo-emission electron microscopy (PEEM) traditionally use microchannel plates (MCPs), a phosphor screen and a CCD-camera to record images and diffraction patterns. In recent years, however, MCPs have become a limiting factor for these types of microscopy. Here, we report on a successful test series using a solid state hybrid pixel detector, Medipix 2, in LEEM and PEEM. Medipix 2 is a background-free detector with an infinite dynamic range, making it very promising for both real-space imaging and spectroscopy. We demonstrate a significant enhancement of both image contrast and resolution, as compared to MCPs. Since aging of the Medipix 2 detector is negligible for the electron energies used in LEEM/PEEM, we expect Medipix to become the detector of choice for a new generation of systems.

  2. Medipix 2 detector applied to low energy electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gastel, R. van, E-mail: R.vanGastel@utwente.nl [University of Twente, MESA Institute for Nanotechnology, P.O. Box 217, NL-7500 AE Enschede (Netherlands); Sikharulidze, I. [Leiden University, Leiden Institute of Chemistry, P.O. Box 9502, NL-2300 RA Leiden (Netherlands); Schramm, S. [Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands); Abrahams, J.P. [Leiden University, Leiden Institute of Chemistry, P.O. Box 9502, NL-2300 RA Leiden (Netherlands); Poelsema, B. [University of Twente, MESA Institute for Nanotechnology, P.O. Box 217, NL-7500 AE Enschede (Netherlands); Tromp, R.M. [Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands); IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Molen, S.J. van der [Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands)

    2009-12-15

    Low energy electron microscopy (LEEM) and photo-emission electron microscopy (PEEM) traditionally use microchannel plates (MCPs), a phosphor screen and a CCD-camera to record images and diffraction patterns. In recent years, however, MCPs have become a limiting factor for these types of microscopy. Here, we report on a successful test series using a solid state hybrid pixel detector, Medipix 2, in LEEM and PEEM. Medipix 2 is a background-free detector with an infinite dynamic range, making it very promising for both real-space imaging and spectroscopy. We demonstrate a significant enhancement of both image contrast and resolution, as compared to MCPs. Since aging of the Medipix 2 detector is negligible for the electron energies used in LEEM/PEEM, we expect Medipix to become the detector of choice for a new generation of systems.

  3. Application of cadmium telluride detectors to high energy computed tomography

    International Nuclear Information System (INIS)

    Glasser, F.; Thomas, G.; Cuzin, M.; Verger, L.

    1991-01-01

    15 years ago, Cadmium Telluride detectors have been investigated in our laboratory as possible detectors for medical scanners [1]. Today most of these machines are using high pressure Xenon gas as multicells detectors, BGO or CdWO 4 scintillators for industrial computerized tomography. Xenon gas detectors are well suited for detection of 100 KeV X-rays and enables to build 1000 cells homogeneous detector with a dynamic range of 3 decades. BGO and CdWO 4 scintillators, associated with photomultipliers or photodiodes are used for higher energy (400 KeV). They present a low afterglow and a dynamic range of 4 to 5 decades. Non destructive testing of very absorbing objects (eg 2 m diameter solid rocket motor) by X-ray tomography requires much higher energy X-rays (16 MeV) and doses up to 12000 rads/min at 1 meter. For this application Cadmium Telluride detectors operating as photoconductors are well suited. A prototype of tomograph machine, able to scan 0.5 m diameter high density objects has been realized with 25 CdTe detectors (25x15x0.8 mm 3 ). It produces good quality 1024x1024 tomographic images

  4. High energy charged particle registration in CR-39 polycarbonated detector

    International Nuclear Information System (INIS)

    Abdel-Wahab, M.S.; El Enany, N.; El Fiki, S.; Eissa, H.M.; El-Adl, E.H.; El-Feky, M.A.

    1991-01-01

    Track etch rate characteristics of CR-39 plastic detector exposed to 28 Si ions of 670 MeV energy have been investigated. Experimental results were obtained in terms of frequency distribution of the track diameter, track density and bulk etching rate. A dependence of the mean track diameter on energy was found. The application of the radiation effect of heavy ions on CR-39 in the field of radiation detection and dosimetry are discussed. Results indicated that it is possible to produce etchable tracks of 28 Si in this energy range in CR-39. We also report the etching characteristics of these tracks in the CR-39 detector. (orig.) [de

  5. A novel iterative energy calibration method for composite germanium detectors

    International Nuclear Information System (INIS)

    Pattabiraman, N.S.; Chintalapudi, S.N.; Ghugre, S.S.

    2004-01-01

    An automatic method for energy calibration of the observed experimental spectrum has been developed. The method presented is based on an iterative algorithm and presents an efficient way to perform energy calibrations after establishing the weights of the calibration data. An application of this novel technique for data acquired using composite detectors in an in-beam γ-ray spectroscopy experiment is presented

  6. A novel iterative energy calibration method for composite germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pattabiraman, N.S.; Chintalapudi, S.N.; Ghugre, S.S. E-mail: ssg@alpha.iuc.res.in

    2004-07-01

    An automatic method for energy calibration of the observed experimental spectrum has been developed. The method presented is based on an iterative algorithm and presents an efficient way to perform energy calibrations after establishing the weights of the calibration data. An application of this novel technique for data acquired using composite detectors in an in-beam {gamma}-ray spectroscopy experiment is presented.

  7. Modeling indirect detectors for performance optimization of a digital mammographic detector for dual energy applications

    International Nuclear Information System (INIS)

    Martini, N; Koukou, V; Sotiropoulou, P; Nikiforidis, G; Kalyvas, N; Michail, C; Valais, I; Kandarakis, I; Fountos, G; Bakas, A

    2015-01-01

    Dual Energy imaging is a promising method for visualizing masses and microcalcifications in digital mammography. The advent of two X-ray energies (low and high) requires a suitable detector. The scope of this work is to determine optimum detector parameters for dual energy applications. The detector was modeled through the linear cascaded (LCS) theory. It was assumed that a phosphor material was coupled to a CMOS photodetector (indirect detection). The pixel size was 22.5 μm. The phosphor thickness was allowed to vary between 20mg/cm 2 and 160mg/cm 2 The phosphor materials examined where Gd 2 O 2 S:Tb and Gd 2 O 2 S:Eu. Two Tungsten (W) anode X-ray spectra at 35 kV (filtered with 100 μm Palladium (Pd)) and 70 kV (filtered with 800 pm Ytterbium (Yb)), corresponding to low and high energy respectively, were considered to be incident on the detector. For each combination the contrast- to-noise ratio (CNR) and the detector optical gain (DOG), showing the sensitivity of the detector, were calculated. The 40 mg/cm 2 and 70 mg/cm 2 Gd 2 O 2 S:Tb exhibited the higher DOG values for the low and high energy correspondingly. Higher CNR between microcalcification and mammary gland exhibited the 70mg/cm 2 and the 100mg/cm 2 Gd 2 O 2 S:Tb for the low and the high energy correspondingly

  8. Gaseous detectors for energy dispersive X-ray fluorescence analysis

    Science.gov (United States)

    Veloso, J. F. C. A.; Silva, A. L. M.

    2018-01-01

    The energy resolution capability of gaseous detectors is being used in the last years to perform studies on the detection of characteristic X-ray lines emitted by elements when excited by external radiation sources. One of the most successful techniques is the Energy Dispersive X-ray Fluorescence (EDXRF) analysis. Recent developments in the new generation of micropatterned gaseous detectors (MPGDs), triggered the possibility not only of recording the photon energy, but also of providing position information, extending their application to EDXRF imaging. The relevant features and strategies to be applied in gaseous detectors in order to better fit the requirements for EDXRF imaging will be reviewed and discussed, and some application examples will be presented.

  9. Application of imitation for energy calibration of silicon semiconductor detectors

    International Nuclear Information System (INIS)

    Aivazyan, G.M.; Badalyan, H.V.; Mikaelyan, M.A.

    2003-01-01

    An effective method is described for energy calibration of semiconductor detectors (SCD) with different thickness. The method is based on imitating the charge on the input of the preamplifier deposited in SCD by known energy ionizing particles, the imitation being performed by a pulser with a partial with use of α-active sources. The results of laboratory studies of the described method are given with detectors of either large, 50-1000μm, or small, 18-20 μm, thickness

  10. Energy calibration of a multilayer photon detector

    International Nuclear Information System (INIS)

    Johnson, R.A.

    1983-01-01

    The job of energy calibration was broken into three parts: gain normalization of all equivalent elements; determination of the functions for conversion of pulse height to energy; and gain stabilization. It is found that calorimeter experiments are no better than their calibration systems - calibration errors will be the major source of error at high energies. Redundance is found to be necessary - the system should be designed such that every element could be replaced during the life of the experiment. It is found to be important to have enough data taken during calibration runs and during the experiment to be able to sort out where the calibration problems were after the experiment is over. Each layer was normalized independently with electrons, and then the pulse height to energy conversion was determined with photons. The primary method of gain stabilization used the light flasher system

  11. Full energy peak efficiency of composite detectors for high energy gamma-rays

    International Nuclear Information System (INIS)

    Kshetri, Ritesh

    2015-01-01

    Experiments involving radioactive beams demand high detection efficiencies. One of the ways to obtain high detection efficiency without deteriorating the energy resolution or timing characteristics is the use of composite detectors which are composed of standard HPGe crystals arranged in a compact way. Two simplest composite detectors are the clover and cluster detectors. The TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS) comprises of 16 large volume, 32-fold segmented HPGe clover detectors, where each detector is shielded by a 20-fold segmented escape suppression shield (ESS)

  12. Radiant floor cooling coupled with dehumidification systems in residential buildings: A simulation-based analysis

    International Nuclear Information System (INIS)

    Zarrella, Angelo; De Carli, Michele; Peretti, Clara

    2014-01-01

    Highlights: • The floor radiant cooling in a typical apartment is analyzed. • Dehumidification devices, fan-coil and mechanical ventilation are compared. • The results are analyzed in terms of both thermal comfort and energy consumption. • The energy consumption of the dehumidifiers is higher than that of other systems. • The mechanical ventilation decreases the moisture level better than other systems. - Abstract: The development of radiant cooling has stimulated an interest in new systems based on coupling ventilation with radiant cooling. However, radiant cooling systems may cause condensation to form on an active surface under warm and humid conditions during the cooling season. This phenomenon occurs when surface temperature falls below dew point. To prevent condensation, air humidity needs to be reduced with a dehumidification device or a mechanical ventilation system. There are two main options to achieve this. The first is to use dehumidification devices that reduce humidity, but are not coupled with ventilation, i.e. devices that handle room air and leave air change to infiltrations. The second is to combine a mechanical ventilation system with dehumidifying finned coils. This study analyzes the floor radiant cooling of a typical residential apartment within a multi-storey building in three Italian climate zones by means of a detailed simulation tool. Five systems were compared in terms of both indoor thermal comfort and energy consumption: radiant cooling without dehumidification; radiant cooling with a soft dehumidification device; radiant cooling with a dehumidification device which also supplies sensible cooling; radiant cooling coupled with fan coils; and radiant cooling with a mechanical ventilation system which dehumidifies and cools

  13. Calorimetric energy-dispersive detectors for ion beam analysis

    International Nuclear Information System (INIS)

    Andersen, H.H.

    1985-01-01

    Energy-dispersive detectors for photons and alpha particles have recently been built. They are based on designs for infrared bolometric detectors working at liquid helium temperatures. For 5.5 Mev alpha particles the energy resolution (FWHM) has been published to be better than 35 keV in preliminary experiments, but thermodynamic limits to the resolution were calculated to be of the order of a few tens of eV. In the present paper limitations to the resolution caused by fluctuations in the processes converting particle energy to heat in the detectors will be calculated. It appears that an FWHM of a few hundred eV for MeV alphas may realistically be hoped for. As these detectors are windowless and may at the same time extend solid angles as large as surface-barrier detectors, be built in any desired geometrical shape, and work with count rates well above 10 3 Hz, exiting possibilities for ion beam analysis will open up through their realization. (orig.)

  14. Method of energy calibration of the TANSY neutron detectors

    International Nuclear Information System (INIS)

    Hoek, M.; Drozdowicz, K.; Aronsson, D.

    1990-03-01

    A method to calibrate an array of scintillation neutron detectors, using a γ source, is presented. The count rate is measured as a function of high voltage at a given discrimination level. The obtained distribution is differentiated and a maximum value is determined which corresponds to the voltage at which the gamma peak passes through the discrimination level. By repeating the measurement at different discrimination levels the experimental dependence between the discrimination level and the high voltage is found as a straight line in a log-log diagram. Two calibration parameter for each detector are determined from a fit of these straight lines. A recalculation from the energy of the used γ source to any other energy is then possible and the obtained relation can be used to calculate discrimination levels and high voltages for each detector. Verification procedures are described. (authors)

  15. Results from the AMANDA high-energy neutrino detector

    International Nuclear Information System (INIS)

    Biron, A.

    2001-01-01

    This paper briefly summarizes the search for astronomical sources of high-energy neutrinos using the AMANDA-B10 detector. The complete data set from 1997 was analyzed. For E μ > 10 TeV, the detector exceeds 10,000 m 2 in effective area between declinations of 25 and 90 degrees. Neutrinos generated in the atmosphere by cosmic ray interactions were used to verify the overall sensitivity of the coincident events between the SPASE air shower array and the AMANDA detector. Preliminary flux limits from point source candidates are presented. For declinations larger than +45 degrees, our results compare favourably to existing limits for sources in the Southern sky. We also present the current status of the searches for high-energy neutrino emission from diffusely distributed sources, GRBs, and WIMPs from the center of the Earth

  16. Energy response of neutron area monitor with silicon semiconductor detector

    International Nuclear Information System (INIS)

    Kitaguchi, Hiroshi; Izumi, Sigeru; Kobayashi, Kaoru; Kaihara, Akihisa; Nakamura, Takashi.

    1993-01-01

    A prototype neutron area monitor with a silicon semiconductor detector has been developed which has the energy response of 1 cm dose equivalent recommended by the ICRP-26. Boron and proton radiators are coated on the surface of the silicon semiconductor detector. The detector is set at the center of a cylindrical polyethylene moderator. This moderator is covered by a porous cadmium board which serves as the thermal neutron absorber. Neutrons are detected as α-particles generated by the nuclear reaction 10 B(n,α) 7 Li and as recoil protons generated by the interaction of fast neutrons with hydrogen. The neutron energy response of the monitor was measured using thermal neutrons and monoenergetic fast neutrons generated by an accelerator. The response was consistent with the 1 cm dose equivalent response required for the monitor within ±34% in the range of 0.025 - 15 Mev. (author)

  17. Charge-coupled device area detector for low energy electrons

    Czech Academy of Sciences Publication Activity Database

    Horáček, Miroslav

    2003-01-01

    Roč. 74, č. 7 (2003), s. 3379 - 3384 ISSN 0034-6748 R&D Projects: GA ČR GA102/00/P001 Institutional research plan: CEZ:AV0Z2065902 Keywords : low energy electrons * charged-coupled device * detector Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.343, year: 2003

  18. Energy response and compensation filters for pips detector

    International Nuclear Information System (INIS)

    Wang Lin; Ye Zhiyao; Dong Binjiang

    2007-01-01

    This paper introduces the analysis of energy response and the choice of proper compensation filters for PIPS detector. With PRESTA-CG program, filters conformed to the national standard of PRC were picked out by calculation. Then the chosen filters were tested through experiments. Good agreement was obtained between measured results and calculated values by Monte Carlo method. (authors)

  19. Fully integrated CMOS pixel detector for high energy particles

    International Nuclear Information System (INIS)

    Vanstraelen, G.; Debusschere, I.; Claeys, C.; Declerck, G.

    1989-01-01

    A novel type of position and energy sensitive, monolithic pixel array with integrated readout electronics is proposed. Special features of the design are a reduction of the number of output channels and of the amount of output data, and the use of transistors on the high resistivity silicon. The number of output channels for the detector array is reduced by handling in parallel a number of pixels, chosen as a function of the time resolution required for the system, and by the use of an address decoder. A further reduction of data is achieved by reading out only those pixels which have been activated. The pixel detector circuit will be realized in a 3 μm p-well CMOS process, which is optimized for the full integration of readout electronics and detector diodes on high resistivity Si. A retrograde well is formed by means of a high energy implantation, followed by the appropriate temperature steps. The optimization of the well shape takes into account the high substrate bias applied during the detector operation. The design is largely based on the use of MOS transistors on the high resistivity silicon itself. These have proven to perform as well as transistors on standard doped substrate. The basic building elements as well as the design strategy of the integrated pixel detector are presented in detail. (orig.)

  20. An energy-efficient failure detector for vehicular cloud computing.

    Science.gov (United States)

    Liu, Jiaxi; Wu, Zhibo; Dong, Jian; Wu, Jin; Wen, Dongxin

    2018-01-01

    Failure detectors are one of the fundamental components for maintaining the high availability of vehicular cloud computing. In vehicular cloud computing, lots of RSUs are deployed along the road to improve the connectivity. Many of them are equipped with solar battery due to the unavailability or excess expense of wired electrical power. So it is important to reduce the battery consumption of RSU. However, the existing failure detection algorithms are not designed to save battery consumption RSU. To solve this problem, a new energy-efficient failure detector 2E-FD has been proposed specifically for vehicular cloud computing. 2E-FD does not only provide acceptable failure detection service, but also saves the battery consumption of RSU. Through the comparative experiments, the results show that our failure detector has better performance in terms of speed, accuracy and battery consumption.

  1. Limitations on energy resolution of segmented silicon detectors

    Science.gov (United States)

    Wiącek, P.; Chudyba, M.; Fiutowski, T.; Dąbrowski, W.

    2018-04-01

    In the paper experimental study of charge division effects and energy resolution of X-ray silicon pad detectors are presented. The measurements of electrical parameters, capacitances and leakage currents, for six different layouts of pad arrays are reported. The X-ray spectra have been measured using a custom developed dedicated low noise front-end electronics. The spectra measured for six different detector layouts have been analysed in detail with particular emphasis on quantitative evaluation of charge division effects. Main components of the energy resolution due to Fano fluctuations, electronic noise, and charge division, have been estimated for six different sensor layouts. General recommendations regarding optimisation of pad sensor layout for achieving best possible energy resolution have been formulated.

  2. Charge-coupled device area detector for low energy electrons

    International Nuclear Information System (INIS)

    Horacek, Miroslav

    2003-01-01

    A fast position-sensitive detector was designed for the angle- and energy-selective detection of signal electrons in the scanning low energy electron microscope (SLEEM), based on a thinned back-side directly electron-bombarded charged-coupled device (CCD) sensor (EBCCD). The principle of the SLEEM operation and the motivation for the development of the detector are explained. The electronics of the detector is described as well as the methods used for the measurement of the electron-bombarded gain and of the dark signal. The EBCCD gain of 565 for electron energy 5 keV and dynamic range 59 dB for short integration time up to 10 ms at room temperature were obtained. The energy dependence of EBCCD gain and the detection efficiency are presented for electron energy between 2 and 5 keV, and the integration time dependence of the output signals under dark conditions is given for integration time from 1 to 500 ms

  3. Missing transverse energy performance of the CMS detector

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.

    2011-09-01

    During 2010 the LHC delivered pp collisions with a centre-of-mass energy of 7 TeV. In this paper, the results of comprehensive studies of missing transverse energy as measured by the CMS detector are presented. The results cover the measurements of the scale and resolution for missing transverse energy, and the effects of multiple pp interactions within the same bunch crossings on the scale and resolution. Anomalous measurements of missing transverse energy are studied, and algorithms for their identification are described. The performances of several reconstruction algorithms for calculating missing transverse energy are compared. An algorithm, called missing-transverse-energy significance, which estimates the compatibility of the reconstructed missing transverse energy with zero, is described, and its performance is demonstrated.

  4. Missing transverse energy performance of the CMS detector

    International Nuclear Information System (INIS)

    2011-01-01

    During 2010 the LHC delivered pp collisions with a centre-of-mass energy of 7 TeV. In this paper, the results of comprehensive studies of missing transverse energy as measured by the CMS detector are presented. The results cover the measurements of the scale and resolution for missing transverse energy, and the effects of multiple pp interactions within the same bunch crossings on the scale and resolution. Anomalous measurements of missing transverse energy are studied, and algorithms for their identification are described. The performance of several reconstruction algorithms for calculating missing transverse energy are compared. An algorithm, called missing-transverse-energy significance, which estimates the compatibility of the reconstructed missing transverse energy with zero, is described, and its performance is demonstrated.

  5. Development of decay energy spectroscopy using low temperature detectors.

    Science.gov (United States)

    Jang, Y S; Kim, G B; Kim, K J; Kim, M S; Lee, H J; Lee, J S; Lee, K B; Lee, M K; Lee, S J; Ri, H C; Yoon, W S; Yuryev, Y N; Kim, Y H

    2012-09-01

    We have developed a high-resolution detection technique for measuring the energy and activity of alpha decay events using low-temperature detectors. A small amount of source material containing alpha-emitting radionuclides was enclosed in a 4π metal absorber. The energy of the alpha particles as well as that of the recoiled nuclides, low-energy electrons, and low-energy x-rays and γ-rays was converted into thermal energy of the gold absorber. A metallic magnetic calorimeter serving as a fast and sensitive thermometer was thermally attached to the metal absorber. In the present report, experimental demonstrations of Q spectroscopy were made with a new meander-type magnetic calorimeter. The thermal connection between the temperature sensor and the absorber was established with annealed gold wires. Each alpha decay event in the absorber resulted in a temperature increase of the absorber and the temperature sensor. Using the spectrum measured for a drop of (226)Ra solution in a 4π gold absorber, all of the alpha emitters in the sample were identified with a demonstration of good detector linearity. The resolution of the (226)Ra spectrum showed a 3.3 keV FWHM at its Q value together with an expected gamma escape peak at the energy shifted by its γ-ray energy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Radiant zone heated particulate filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI

    2011-12-27

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  7. Subjective evaluation of different ventilation concepts combined with radiant heating and cooling

    DEFF Research Database (Denmark)

    Krajcik, Michal; Tomasi, Roberta; Simone, Angela

    2012-01-01

    Sixteen subjects evaluated the indoor environment in four experiments with different combinations of ventilation and radiant heating/cooling systems. Two test setups simulated a room in a low energy building with a single occupant during winter. The room was equipped either by a ventilation system...... supplying warm air space heating or by a combination of radiant floor heating and mixing ventilation system. Next two test setups simulated an office room with two occupants during summer, ventilated and cooled by a single displacement ventilation system or by a radiant floor cooling combined...

  8. Advanced radiant combustion system. Final report, September 1989--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J.D.; Carswell, M.G.; Long, F.S.

    1996-09-01

    Results of the Advanced Radiant Combustion System (ARCS) project are presented in this report. This work was performed by Alzeta Corporation as prime contractor under a contract to the U.S. Department of Energy Office of Industrial Technologies as part of a larger DOE program entitled Research Program for Advanced Combustion Systems. The goals of the Alzeta ARCS project were to (a) Improve the high temperature performance characteristics of porous surface ceramic fiber burners, (b) Develop an Advanced Radiant Combustion System (ARCS) that combines combustion controls with an advanced radiant burner, and (c) Demonstrate the advanced burner and controls in an industrial application. Prior to the start of this project, Alzeta had developed and commercialized a porous surface radiant burner, the Pyrocore{trademark} burner. The product had been commercially available for approximately 5 years and had achieved commercial success in a number of applications ranging from small burners for commercial cooking equipment to large burners for low temperature industrial fluid heating applications. The burner was not recommended for use in applications with process temperatures above 1000{degrees}F, which prevented the burner from being used in intermediate to high temperature processes in the chemical and petroleum refining industries. The interest in increasing the maximum use temperature of the burner was motivated in part by a desire to expand the number of applications that could use the Pyrocore product, but also because many of the fluid sensitive heating applications of interest would benefit from the distributed flux characteristic of porous surface burners. Background information on porous surface radiant burners, and a discussion of advantages that would be provided by an improved product, are presented in Section 2.

  9. A massive cryogenic particle detector with good energy resolution

    International Nuclear Information System (INIS)

    Ferger, P.; Colling, P.; Cooper, S.; Dummer, D.; Frank, M.; Nagel, U.; Nucciotti, A.; Proebst, F.; Seidel, W.

    1993-12-01

    Massive cryogenic particle detectors are being developed for use in a search for dark matter particles. Results with a 31 g sapphire crystal and a superconducting phase transition thermometer operated at 44 mK are presented. The observed signal includes a fast component which is significantly larger than the expected thermal pulse. The energy resolution is 210 eV (FWHM) for 6 keV X-rays. (orig.)

  10. Radiant coolers - Theory, flight histories, design comparisons and future applications

    Science.gov (United States)

    Donohoe, M. J.; Sherman, A.; Hickman, D. E.

    1975-01-01

    Radiant coolers have been developed for application to the cooling of infrared detectors aboard NASA earth observation systems and as part of the Defense Meteorological Satellite Program. The prime design constraints for these coolers are the location of the cooler aboard the satellite and the satellite orbit. Flight data from several coolers indicates that, in general, design temperatures are achieved. However, potential problems relative to the contamination of cold surfaces are also revealed by the data. A comparison among the various cooler designs and flight performances indicates design improvements that can minimize the contamination problem in the future.

  11. Muon energy estimate through multiple scattering with the MACRO detector

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G.C.; Barish, B.C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Candela, A.; Carboni, M.; Caruso, R.; Cassese, F.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B.C.; Coutu, S.; Cozzi, M.; De Cataldo, G.; De Deo, M.; Dekhissi, H.; De Marzo, C.; De Mitri, I.; Derkaoui, J.; De Vincenzi, M.; Di Credico, A.; Dincecco, M.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D.S.; Lindozzi, M.; Lipari, P.; Longley, N.P.; Longo, M.J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M.N.; Michael, D.G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolo, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C.W.; Perrone, L.; Petrera, S.; Pistilli, P.; Popa, V.; Raino, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E. E-mail: eugenio.scapparone@bo.infn.it; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M. E-mail: maximiliano.sioli@bo.infn.it; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J.L.; Sulak, L.R.; Surdo, A.; Tarle, G.; Tatananni, E.; Togo, V.; Vakili, M.; Walter, C.W.; Webb, R

    2002-10-21

    Muon energy measurement represents an important issue for any experiment addressing neutrino-induced up-going muon studies. Since the neutrino oscillation probability depends on the neutrino energy, a measurement of the muon energy adds an important piece of information concerning the neutrino system. We show in this paper how the MACRO limited streamer tube system can be operated in drift mode by using the TDCs included in the QTPs, an electronics designed for magnetic monopole search. An improvement of the space resolution is obtained, through an analysis of the multiple scattering of muon tracks as they pass through our detector. This information can be used further to obtain an estimate of the energy of muons crossing the detector. Here we present the results of two dedicated tests, performed at CERN PS-T9 and SPS-X7 beam lines, to provide a full check of the electronics and to exploit the feasibility of such a multiple scattering analysis. We show that by using a neural network approach, we are able to reconstruct the muon energy for E{sub {mu}}<40 GeV. The test beam data provide an absolute energy calibration, which allows us to apply this method to MACRO data.

  12. Experimental evaluation of an active solar thermoelectric radiant wall system

    International Nuclear Information System (INIS)

    Liu, ZhongBing; Zhang, Ling; Gong, GuangCai; Han, TianHe

    2015-01-01

    Highlights: • A novel active solar thermoelectric radiant wall are proposed and tested. • The novel wall can control thermal flux of building envelope by using solar energy. • The novel wall can eliminate building envelop thermal loads and provide cooling capacity for space cooling. • Typical application issues including connection strategies, coupling with PV system etc. are discussed. - Abstract: Active solar thermoelectric radiant wall (ASTRW) system is a new solar wall technology which integrates thermoelectric radiant cooling and photovoltaic (PV) technologies. In ASTRW system, a PV system transfers solar energy directly into electrical energy to power thermoelectric cooling modes. Both the thermoelectric cooling modes and PV system are integrated into one enclosure surface as radiant panel for space cooling and heating. Hence, ASTRW system presents fundamental shift from minimizing building envelope energy losses by optimizing the insulation thickness to a new regime where active solar envelop is designed to eliminate thermal loads and increase the building’s solar gains while providing occupant comfort in all seasons. This article presents an experimental study of an ASTRW system with a dimension of 1580 × 810 mm. Experimental results showed that the inner surface temperature of the ASTRW is 3–8 °C lower than the indoor temperature of the test room, which indicated that the ASTRW system has the ability to control thermal flux of building envelope by using solar energy and reduce the air conditioning system requirements. Based on the optimal operating current of TE modules and the analysis based upon PV modeling theories, the number and type of the electrical connections for the TE modules in ASTRW system are discussed in order to get an excellent performance in the operation of the ASTRW system

  13. Energy-loss measurement with the ZEUS Central Tracking Detector

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, D.

    2007-05-15

    The measurement of the specific energy loss due to ionisation, dE/dx, in a drift chamber is a very important tool for particle identification in final states of reactions between high energetic particles. Such identification requires a well understood dE/dx measurement including a precise knowledge of its uncertainties. Exploiting for the first time the full set of ZEUS data from the HERA operation between 1996 and 2005 twelve detector-related influences affecting the dE/dx measurement of the ZEUS Central Tracking Detector have been identified, separately studied and parameterised. A sophisticated iterative procedure has been developed to correct for these twelve effects, which takes into account the correlations between them. A universal parameterisation of the detector-specific Bethe-Bloch curve valid for all particle species has been extracted. In addition, the various contributions to the measurement uncertainty have been disentangled and determined. This yields the best achievable prediction for the single-track dE/dx resolution. For both the analysis of the measured data and the simulation of detector performance, the detailed understanding of the measurement and resolution of dE/dx gained in this work provides a tool with optimum power for particle identification in a physics studies. (orig.)

  14. Energy-loss measurement with the ZEUS Central Tracking Detector

    International Nuclear Information System (INIS)

    Bartsch, D.

    2007-05-01

    The measurement of the specific energy loss due to ionisation, dE/dx, in a drift chamber is a very important tool for particle identification in final states of reactions between high energetic particles. Such identification requires a well understood dE/dx measurement including a precise knowledge of its uncertainties. Exploiting for the first time the full set of ZEUS data from the HERA operation between 1996 and 2005 twelve detector-related influences affecting the dE/dx measurement of the ZEUS Central Tracking Detector have been identified, separately studied and parameterised. A sophisticated iterative procedure has been developed to correct for these twelve effects, which takes into account the correlations between them. A universal parameterisation of the detector-specific Bethe-Bloch curve valid for all particle species has been extracted. In addition, the various contributions to the measurement uncertainty have been disentangled and determined. This yields the best achievable prediction for the single-track dE/dx resolution. For both the analysis of the measured data and the simulation of detector performance, the detailed understanding of the measurement and resolution of dE/dx gained in this work provides a tool with optimum power for particle identification in a physics studies. (orig.)

  15. CVD Diamond Sensors In Detectors For High Energy Physics

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00334150; Trischuk, William

    At the end of the next decade an upgrade of the Large Hadron Collider (LHC) to High Luminosity LHC (HL-LHC) is planned which requires the development of new radiation tolerant sensor technology. Diamond is an interesting material for use as a particle detector in high radiation environments. The large band gap ($5.47\\,\\text{eV}$) and the large displacement energy suggest that diamond is a radiation tolerant detector material. In this Thesis the capability of Chemical Vapor Deposition (CVD) diamond as such a sensor technology is investigated. The radiation damage constant for $800\\,\\text{MeV}$ protons is measured using single crystalline CVD (scCVD) and polycrystalline CVD (pCVD) diamonds irradiated to particle fluences up to $12 \\times 10^{15}\\,\\text{p/cm}^2$. In addition the signal response of a pCVD diamond detector after an irradiation to $12 \\times 10^{15}\\,\\text{p/cm}^2$ is investigated to determine if such a detector can be operated efficiently in the expected HL-LHC environment. By using electrodes em...

  16. Radiant Heat Transfer in Reusable Surface Insulation

    Science.gov (United States)

    Hughes, T. A.; Linford, R. M. F.; Chmitt, R. J.; Christensen, H. E.

    1973-01-01

    During radiant testing of mullite panels, temperatures in the insulation and support structure exceeded those predicted on the basis of guarded hot plate thermal conductivity tests. Similar results were obtained during arc tunnel tests of mullite specimens. The differences between effective conductivity and guarded hot plate values suggested that radiant transfer through the mullite was occurring. To study the radiant transport, measurements were made of the infrared transmission through various insulating materials and fibers of interest to the shuttle program, using black body sources over the range of 780 to 2000 K. Experimental data were analyzed and scattering coefficients were derived for a variety of materials, fiber diameters, and source temperature.

  17. Dose energy dependence in proton imaging with thin detector

    Energy Technology Data Exchange (ETDEWEB)

    Denyak, V.V., E-mail: denyak@gmail.com [National Science Centre Kharkov Institute of Physics and Technology, St. Akademicheskaya 1, Kharkov 61108 (Ukraine); Federal University of Technology - Parana, Av. Sete de Setembro 3165, Curitiba 80230-901 (Brazil); Schelin, H.R. [Pele Pequeno Principe Research Institute, Av. Silva Jardim 1632, Curitiba 80250-200 (Brazil); Federal University of Technology - Parana, Av. Sete de Setembro 3165, Curitiba 80230-901 (Brazil); Silva, R.C.L.; Kozuki, C.; Paschuk, S.A.; Milhoretto, E. [Federal University of Technology - Parana, Av. Sete de Setembro 3165, Curitiba 80230-901 (Brazil)

    2012-07-15

    Since the earliest works proposing the use of protons for imaging, the main advantage of protons over X-rays was expected to be a result of the specific property of the proton flux dropping off very steeply at the end of the particle range. This idea was declared but was not checked. In the present work, this assumption was investigated using the Monte Carlo simulation for the case of registration of protons with a thin detector. - Highlights: Black-Right-Pointing-Pointer Principal idea of proton imaging 'to work at the end of the range' was tested. Black-Right-Pointing-Pointer The case of thin detector was investigated. Black-Right-Pointing-Pointer The dose energy dependence was calculated using computer simulation.

  18. Detectors and signal processing for high-energy physics

    International Nuclear Information System (INIS)

    Rehak, P.

    1981-01-01

    Basic principles of the particle detection and signal processing for high-energy physics experiments are presented. It is shown that the optimum performance of a properly designed detector system is not limited by incidental imperfections, but solely by more fundamental limitations imposed by the quantum nature and statistical behavior of matter. The noise sources connected with the detection and signal processing are studied. The concepts of optimal filtering and optimal detector/amplifying device matching are introduced. Signal processing for a liquid argon calorimeter is analyzed in some detail. The position detection in gas counters is studied. Resolution in drift chambers for the drift coordinate measurement as well as the second coordinate measurement is discussed

  19. Muon energy estimate through multiple scattering with the MACRO detector

    CERN Document Server

    Ambrosio, M; Auriemma, G; Bakari, D; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Candela, A; Carboni, M; Caruso, R; Cassese, F; Cecchini, S; Cei, F; Chiarella, V; Choudhary, B C; Coutu, S; Cozzi, M; De Cataldo, G; De Deo, M; Dekhissi, H; De Marzo, C; De Mitri, I; Derkaoui, J; De Vincenzi, M; Di Credico, A; Dincecco, M; Erriquez, O; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Gray, L; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lindozzi, M; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Pistilli, P; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Rrhioua, A; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Tatananni, E; Togo, V; Vakili, M; Walter, C W; Webb, R

    2002-01-01

    Muon energy measurement represents an important issue for any experiment addressing neutrino-induced up-going muon studies. Since the neutrino oscillation probability depends on the neutrino energy, a measurement of the muon energy adds an important piece of information concerning the neutrino system. We show in this paper how the MACRO limited streamer tube system can be operated in drift mode by using the TDCs included in the QTPs, an electronics designed for magnetic monopole search. An improvement of the space resolution is obtained, through an analysis of the multiple scattering of muon tracks as they pass through our detector. This information can be used further to obtain an estimate of the energy of muons crossing the detector. Here we present the results of two dedicated tests, performed at CERN PS-T9 and SPS-X7 beam lines, to provide a full check of the electronics and to exploit the feasibility of such a multiple scattering analysis. We show that by using a neural network approach, we are able to r...

  20. Low energy electron microscopy imaging using Medipix2 detector

    International Nuclear Information System (INIS)

    Sikharulidze, I.; Gastel, R. van; Schramm, S.; Abrahams, J.P.; Poelsema, B.; Tromp, R.M.; Molen, S.J. van der

    2011-01-01

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10-20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2 hybrid pixel detector using an Ir(1 1 1) sample with graphene flakes grown on its surface. We find that Medipix2 offers a number of advantages over the MCP. The adjustable threshold settings allow Medipix2 to operate as a noiseless detector, offering an improved signal-to-noise ratio for the same amount of signal compared to the MCP. At the same magnification Medipix2 images exhibit superior resolution and can handle significantly higher electron current densities than an MCP, offering the prospect of substantially higher frame rates in LEEM imaging. These factors make Medipix2 an excellent candidate to become the detector of choice for LEEM/PEEM applications.

  1. Low energy electron microscopy imaging using Medipix2 detector

    Energy Technology Data Exchange (ETDEWEB)

    Sikharulidze, I., E-mail: irakli@chem.leidenuniv.nl [Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300RA Leiden (Netherlands); Gastel, R. van [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Schramm, S. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands); Abrahams, J.P. [Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300RA Leiden (Netherlands); Poelsema, B. [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Tromp, R.M. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands); IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Molen, S.J. van der [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands)

    2011-05-15

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10-20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2 hybrid pixel detector using an Ir(1 1 1) sample with graphene flakes grown on its surface. We find that Medipix2 offers a number of advantages over the MCP. The adjustable threshold settings allow Medipix2 to operate as a noiseless detector, offering an improved signal-to-noise ratio for the same amount of signal compared to the MCP. At the same magnification Medipix2 images exhibit superior resolution and can handle significantly higher electron current densities than an MCP, offering the prospect of substantially higher frame rates in LEEM imaging. These factors make Medipix2 an excellent candidate to become the detector of choice for LEEM/PEEM applications.

  2. Exergy metrication of radiant panel heating and cooling with heat pumps

    International Nuclear Information System (INIS)

    Kilkis, Birol

    2012-01-01

    Highlights: ► Rational Exergy Management Model analytically relates heat pumps and radiant panels. ► Heat pumps driven by wind energy perform better with radiantpanels. ► Better CO 2 mitigation is possible with wind turbine, heat pump, radiant panel combination. ► Energy savings and thermo-mechanical performance are directly linked to CO 2 emissions. - Abstract: Radiant panels are known to be energy efficient sensible heating and cooling systems and a suitable fit for low-exergy buildings. This paper points out the little known fact that this may not necessarily be true unless their low-exergy demand is matched with low-exergy waste and alternative energy resources. In order to further investigate and metricate this condition and shed more light on this issue for different types of energy resources and energy conversion systems coupled to radiant panels, a new engineering metric was developed. Using this metric, which is based on the Rational Exergy Management Model, true potential and benefits of radiant panels coupled to ground-source heat pumps were analyzed. Results provide a new perspective in identifying the actual benefits of heat pump technology in curbing CO 2 emissions and also refer to IEA Annex 49 findings for low-exergy buildings. Case studies regarding different scenarios are compared with a base case, which comprises a radiant panel system connected to a natural gas-fired condensing boiler in heating and a grid power-driven chiller in cooling. Results show that there is a substantial CO 2 emission reduction potential if radiant panels are optimally operated with ground-source heat pumps driven by renewable energy sources, or optimally matched with combined heat and power systems, preferably running on alternative fuels.

  3. Resonance capture reactions with a total energy detector

    International Nuclear Information System (INIS)

    Macklin, R.L.

    1978-01-01

    The determination of nuclear reaction rates is considered; the Moxon--Rae detector and pulse height weighting are reviewed. This method has been especially useful in measuring (n,γ) cross sections. Strength functions and level spacing can be derived from (n,γ) yields. The relevance of neutron capture data to astrophysical nucleosynthesis is pointed out. The total gamma energy detection method has been applied successfully to radiative neutron capture cross section measurements. A bibliography of most of the published papers reporting neutron capture cross sections measured by the pulse height weighting technique is included. 55 references

  4. Theoretical Analysis of Interferometer Wave Front Tilt and Fringe Radiant Flux on a Rectangular Photodetector

    Directory of Open Access Journals (Sweden)

    Franz Konstantin Fuss

    2013-09-01

    Full Text Available This paper is a theoretical analysis of mirror tilt in a Michelson interferometer and its effect on the radiant flux over the active area of a rectangular photodetector or image sensor pixel. It is relevant to sensor applications using homodyne interferometry where these opto-electronic devices are employed for partial fringe counting. Formulas are derived for radiant flux across the detector for variable location within the fringe pattern and with varying wave front angle. The results indicate that the flux is a damped sine function of the wave front angle, with a decay constant of the ratio of wavelength to detector width. The modulation amplitude of the dynamic fringe pattern reduces to zero at wave front angles that are an integer multiple of this ratio and the results show that the polarity of the radiant flux changes exclusively at these multiples. Varying tilt angle causes radiant flux oscillations under an envelope curve, the frequency of which is dependent on the location of the detector with the fringe pattern. It is also shown that a fringe count of zero can be obtained for specific photodetector locations and wave front angles where the combined effect of fringe contraction and fringe tilt can have equal and opposite effects. Fringe tilt as a result of a wave front angle of 0.05° can introduce a phase measurement difference of 16° between a photodetector/pixel located 20 mm and one located 100 mm from the optical origin.

  5. Silicon surface barrier detector and study of energy spectrum of alpha particles from radioactive source

    International Nuclear Information System (INIS)

    Verma, S.D.; Sinha, Vijaya

    1986-01-01

    The principles of working of three commonly used radiation detectors, namely ionization chambers, scintillation counters with photomultiplier tube (PMT) systems and semiconductor detectors are briefly discussed. Out of the semiconductor detectors, the silicon surface barrier (SSB) detector has distinct advantages for detection of radiations, alpha particles in particular. The experimental setup to obtain the energy spectrum of alpha particles from 241 Am source using SSB fabricated in the Physics Department of Gujarat University, Ahmedabad is described. Its performance is compared with scintillation counter using PMT. SSB detector shows a sharp peak of #approx # 3 per cent energy resolution. The factors affecting the peak, namely, electronic noise, source dependent factors and detector-dependent factors are discussed. A method of calibrating SSB detectors based on energy loss mechanism of alpha particles in thin absorbers is described. Applications of such detectors are indicated. (M.G.B.)

  6. Summary of activity. Topic I: detectors and experiments. [High-energy detectors for use at ISABELLE

    Energy Technology Data Exchange (ETDEWEB)

    Marx, J; Ozaki, S

    1978-01-01

    Results of a workshop studying detectors for Isabelle experimental halls are described. The detectors must be very reliable. Spatial resolution of the tracking detectors must be high to provide accurate measurements of angle and momentum, retain a short resolving time, and show excellent multiparticle handling capability. Included in the study were hodoscopes, drift chambers, proportional chambers, time projection chambers, Cherenkov counters, electromagnetic shower detectors, and hadron calorimeters. Data handling methods were also included in the studies. (FS)

  7. Ten questions about radiant heating and cooling systems

    DEFF Research Database (Denmark)

    Rhee, Kyu-Nam; Olesen, Bjarne W.; Kim, Kwang Woo

    2017-01-01

    studies on RHC systems in terms of comfort, heat transfer analysis, energy simulation, control strategy, system configurations and so on. Many studies have demonstrated that the RHC system is a good solution to improve indoor environmental quality while reducing building energy consumption for heating......Radiant heating and cooling (RHC) systems are being increasingly applied not only in residential but also in non-residential buildings such as commercial buildings, education facilities, and even large scale buildings such as airport terminals. Furthermore, with the combined ventilation system used...

  8. A high energy photon detector system in compact form

    International Nuclear Information System (INIS)

    Kato, Sadayuki; Sugano, Katsuhito; Yoshioka, Masakazu.

    1975-01-01

    The development of a high energy photon detector system in compact form for use in experiments of high energy physics is described, and the results of its characteristics calibrated using converted electron beams and a pair spectrometer are reported. This system consists of a total absorption lead glass Cerenkov counter, twenty hodoscope arrays for the vertical and the horizontal directions respectively, a lead plate for the conversion of γ-rays into electron-positron pairs, veto counters, photon hardener, and lead blocks for shieldings and collimation. The spatial resolution of the hodoscope is 15 mm for each direction, covering 301 x 301 mm 2 area. The energy resolution of the total absorption lead glass Cerenkov counter, whose volume is 30 x 30 x 30 cm 3 , is typically 18 % (FWHM) for the incident electron energy of 500 MeV, and it can be expressed with a relation of ΔE/E = 3.94 Esup(-1/2). (E in MeV). (auth.)

  9. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy.

    Science.gov (United States)

    Ebenau, Melanie; Radeck, Désirée; Bambynek, Markus; Sommer, Holger; Flühs, Dirk; Spaan, Bernhard; Eichmann, Marion

    2016-08-01

    Plastic scintillation detectors are promising candidates for the dosimetry of low- to medium-energy photons but quantitative knowledge of their energy response is a prerequisite for their correct use. The purpose of this study was to characterize the energy dependent response of small scintillation detectors (active volume <1 mm(3)) made from the commonly used plastic scintillator BC400. Different detectors made from BC400 were calibrated at a number of radiation qualities ranging from 10 to 280 kV and at a (60)Co beam. All calibrations were performed at the Physikalisch-Technische Bundesanstalt, the National Metrology Institute of Germany. The energy response in terms of air kerma, dose to water, and dose to the scintillator was determined. Conversion factors from air kerma to dose to water and to dose to the scintillator were derived from Monte Carlo simulations. In order to quantitatively describe the energy dependence, a semiempirical model known as unimolecular quenching or Birks' formula was fitted to the data and from this the response to secondary electrons generated within the scintillator material BC400 was derived. The detector energy response in terms of air kerma differs for different scintillator sizes and different detector casings. It is therefore necessary to take attenuation within the scintillator and in the casing into account when deriving the response in terms of dose to water from a calibration in terms of air kerma. The measured energy response in terms of dose to water for BC400 cannot be reproduced by the ratio of mean mass energy-absorption coefficients for polyvinyl toluene to water but shows evidence of quenching. The quenching parameter kB in Birks' formula was determined to be kB = (12.3 ± 0.9) mg MeV(-1) cm(-2). The energy response was quantified relative to the response to (60)Co which is the common radiation quality for the calibration of therapy dosemeters. The observed energy dependence could be well explained with the

  10. Energy dependent response of plastic scintillation detectors to photon radiation of low to medium energy

    Energy Technology Data Exchange (ETDEWEB)

    Ebenau, Melanie, E-mail: melanie.ebenau@tu-dortmunde.de; Sommer, Holger; Spaan, Bernhard; Eichmann, Marion [Fakultät Physik, Technische Universität Dortmund, Otto-Hahn Str. 4a, 44221 Dortmund (Germany); Radeck, Désirée; Bambynek, Markus [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Flühs, Dirk [Universitätsklinikum Essen, Hufelandstr. 55, 45147 Essen (Germany)

    2016-08-15

    Purpose: Plastic scintillation detectors are promising candidates for the dosimetry of low- to medium-energy photons but quantitative knowledge of their energy response is a prerequisite for their correct use. The purpose of this study was to characterize the energy dependent response of small scintillation detectors (active volume <1 mm{sup 3}) made from the commonly used plastic scintillator BC400. Methods: Different detectors made from BC400 were calibrated at a number of radiation qualities ranging from 10 to 280 kV and at a {sup 60}Co beam. All calibrations were performed at the Physikalisch-Technische Bundesanstalt, the National Metrology Institute of Germany. The energy response in terms of air kerma, dose to water, and dose to the scintillator was determined. Conversion factors from air kerma to dose to water and to dose to the scintillator were derived from Monte Carlo simulations. In order to quantitatively describe the energy dependence, a semiempirical model known as unimolecular quenching or Birks’ formula was fitted to the data and from this the response to secondary electrons generated within the scintillator material BC400 was derived. Results: The detector energy response in terms of air kerma differs for different scintillator sizes and different detector casings. It is therefore necessary to take attenuation within the scintillator and in the casing into account when deriving the response in terms of dose to water from a calibration in terms of air kerma. The measured energy response in terms of dose to water for BC400 cannot be reproduced by the ratio of mean mass energy-absorption coefficients for polyvinyl toluene to water but shows evidence of quenching. The quenching parameter kB in Birks’ formula was determined to be kB = (12.3 ± 0.9) mg MeV{sup −1} cm{sup −2}. Conclusions: The energy response was quantified relative to the response to {sup 60}Co which is the common radiation quality for the calibration of therapy dosemeters. The

  11. A low-energy antiproton detector prototype for AFIS

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Lingxin; Greenwald, Daniel; Hahn, Alexander; Hauptmann, Philipp; Konorov, Igor; Losekamm, Martin; Paul, Stephan; Poeschl, Thomas; Renker, Dieter [Technische Universitaet Muenchen (Germany)

    2014-07-01

    Antiprotons are produced in interactions of primary cosmic rays with earth's exosphere, where a fraction of them will be confined in the geomagnetic field in the inner van Allen Belt. The antiproton-to-proton flux ratio predicted by theory is in good agreement with recent results from the South Atlantic Anomaly (SAA) published by the PAMELA collaboration. We have designed the AFIS (Antiproton Flux in Space) project in order to extend the measurable range of antiprotons towards the low-energy region. In scope of this project a small antiproton detector consisting of scintillating fibers and silicon photomultipliers is being developed as payload for a CubeSat traversing the SAA in Low Earth Orbit. For the proof of concept we have built a prototype called ''CubeZero'' which completed its first test using pion and proton beams at PSI, Switzerland. Our primary goal was to investigate on the performance of tracking and Bragg peak identification in hardware and software. Analysis of detector performance based on data taken during this beam test is presented in this talk.

  12. Energy loss and online directional track visualization of fast electrons with the pixel detector Timepix

    Czech Academy of Sciences Publication Activity Database

    Granja, C.; Krist, Pavel; Chvátil, David; Šolc, J.; Pospíšil, S.; Jakubek, J.; Opalka, L.

    2013-01-01

    Roč. 59, DEC (2013), s. 245-261 ISSN 1350-4487 Institutional support: RVO:61389005 Keywords : interaction of radiation with matter * dE/dx detectors * particle tracking detectors * hybrid pixel detectors * active nuclear emulsion * energy loss Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.140, year: 2013

  13. Experimental investigation of energy resolution in a semiconductor detector (surface barrier and Si (Li) detector) in the detection of protons

    International Nuclear Information System (INIS)

    Nordborg, C.

    1974-05-01

    The action of electronic effects on the energy resolution of the detector is investigated. The results are applicable not only to protons but also to heavier charged particles. It should be possible to reach a resolution of about 6 to 7 keV for 10 MeV protons with electronic detectors. Magnetic spectrometers could achieve a resolution of 2 to 3 keV. It is convenient to use Peltier elements for cooling semiconductor spectrometers. (Auth.)

  14. Precision Muon Tracking Detectors for High-Energy Hadron Colliders

    CERN Document Server

    Gadow, Philipp; Kroha, Hubert; Richter, Robert

    2016-01-01

    Small-diameter muon drift tube (sMDT) chambers with 15 mm tube diameter are a cost-effective technology for high-precision muon tracking over large areas at high background rates as expected at future high-energy hadron colliders including HL-LHC. The chamber design and construction procedures have been optimized for mass production and provide sense wire positioning accuracy of better than 10 ?m. The rate capability of the sMDT chambers has been extensively tested at the CERN Gamma Irradiation Facility. It exceeds the one of the ATLAS muon drift tube (MDT) chambers, which are operated at unprecedentedly high background rates of neutrons and gamma-rays, by an order of magnitude, which is sufficient for almost the whole muon detector acceptance at FCC-hh at maximum luminosity. sMDT operational and construction experience exists from ATLAS muon spectrometer upgrades which are in progress or under preparation for LHC Phase 1 and 2.

  15. An online, energy-resolving beam profile detector for laser-driven proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Metzkes, J.; Rehwald, M.; Obst, L.; Schramm, U. [Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany); Zeil, K.; Kraft, S. D.; Sobiella, M.; Schlenvoigt, H.-P. [Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Karsch, L. [OncoRay-National Center for Radiation Research in Oncology, Technische Universität Dresden, 01307 Dresden (Germany)

    2016-08-15

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.

  16. Cherenkov detectors for spatial imaging applications using discrete-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Paul B.; Erickson, Anna S., E-mail: erickson@gatech.edu [Georgia Institute of Technology, Nuclear and Radiological Engineering, G.W. Woodruff School of Mechanical Engineering, 770 State St., Atlanta, Georgia 30332 (United States)

    2016-08-14

    Cherenkov detectors can offer a significant advantage in spatial imaging applications when excellent timing response, low noise and cross talk, large area coverage, and the ability to operate in magnetic fields are required. We show that an array of Cherenkov detectors with crude energy resolution coupled with monochromatic photons resulting from a low-energy nuclear reaction can be used to produce a sharp image of material while providing large and inexpensive detector coverage. The analysis of the detector response to relative transmission of photons with various energies allows for reconstruction of material's effective atomic number further aiding in high-Z material identification.

  17. A scintillation detector set measuring the charge particle energy

    International Nuclear Information System (INIS)

    Dore, Chantal.

    1979-01-01

    The S143 experiment, at CERN in 1976, needed both the measurement and the identification of light nuclei, and especially the separation between 3 H and 3 He, over a large energy range. In the chosen solution, in addition to semiconductor detectors, some scintillation counters are used. The non-linearity of light versus energy of charged particles was complicated by the fact there was two different linear laws according to the charge of particles. To obtain good analogic signals over a dynamic range nearly equal to 200, the signals from several dynodes were used simultaneously. In the experimental setting up, each scintillator was put directly in contact with the corresponding photocathode. In spite of a special shielding, some perturbations due to the magnet placed close by required to bring important corrections to linear laws. Thanks to complementary informations from semiconductor counters, a full separation between charge 1 and charge 2 particles was possible. A suitable identification as guaranted among charge 1 particles, but only kinematic constraints gave the possibility to extract 4 He corresponding to the elastic scattering [fr

  18. Nuclear Material Accountability Applications of a Continuous Energy and Direction Gamma Ray Detector

    International Nuclear Information System (INIS)

    Gerts, David; Bean, Robert; Paff, Marc

    2010-01-01

    The Idaho National Laboratory has recently developed a detector system based on the principle of a Wilson cloud chamber that gives the original energy and direction to a gamma ray source. This detector has the properties that the energy resolution is continuous and the direction to the source can be resolved to desired fidelity. Furthermore, the detector has low power requirements, is durable, operates in widely varying environments, and is relatively cheap to produce. This detector is expected, however, to require significant time to perform measurements. To mitigate the significant time for measurements, the detector is expected to scale to very large sizes with a linear increase in cost. For example, the proof of principle detector is approximately 30,000 cm3. This work describes the technical results that lead to these assertions. Finally, the applications of this detector are described in the context of nuclear material accountability.

  19. Low energy neutrino astronomy with the large liquid-scintillation detector LENA

    International Nuclear Information System (INIS)

    Undagoitia, T Marrodan; Feilitzsch, F von; Goeger-Neff, M; Hochmuth, K A; Oberauer, L; Potzel, W; Wurm, M

    2006-01-01

    The detection of low energy neutrinos in a large liquid scintillation detector may provide further important information on astrophysical processes as supernova physics, solar physics and elementary particle physics as well as geophysics. In this contribution, a new project for Low Energy Neutrino Astronomy (LENA) consisting of a 50 kt scintillation detector is presented

  20. A BaF2-BGO detector for high-energy gamma rays

    International Nuclear Information System (INIS)

    Bargholtz, C.; Ritzen, B.; Tegner, P.E.

    1989-01-01

    A scintillation detector has been developed for gamma rays with energy between a few hundred keV and approximately 100 MeV. The detector comprises a BaF 2 and a BGO crystal giving it good timing properties and a reasonably good energy resolution in combination with compact size. (orig.)

  1. Development of neutron-monitor detectors applicable for energies up to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tatsuhiko; Endo, Akira; Yamaguchi, Yasuhiro; Kim, Eunjoo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakamura, Takashi [Tohoku Univ., Sendai, Miyagi (Japan)

    2003-03-01

    For the purpose of monitoring of neutron doses in high energy accelerator facilities, we have been developing neutron detectors which are applicable for neutron energies up to 100 MeV. The present paper reports characteristics of a phoswitch-type neutron detector which is composed of a liquid organic scintillator and {sup 6}Li+ZnS(Ag) sheets. (author)

  2. Energy dependent features of X-ray signals in a GridPix detector

    Science.gov (United States)

    Krieger, C.; Kaminski, J.; Vafeiadis, T.; Desch, K.

    2018-06-01

    We report on the calibration of an argon/isobutane (97.7%/2.3%)-filled GridPix detector with soft X-rays (277 eV to 8 keV) using the variable energy X-ray source of the CAST Detector Lab at CERN. We study the linearity and energy resolution of the detector using both the number of pixels hit and the total measured charge as energy measures. For the latter, the energy resolution σE / E is better than 10% (20%) for energies above 2 keV (0.5 keV). Several characteristics of the recorded events are studied.

  3. Energy deposition measurements in fast reactor safety experiments with fission thermocouple detectors

    International Nuclear Information System (INIS)

    Wright, S.A.; Scott, H.L.

    1979-01-01

    The investigation of phenomena occurring in in-pile fast reactor safety experiments requires an accurate measurement of the time dependent energy depositions within the fissile material. At Sandia Laboratories thin-film fission thermocouples are being developed for this purpose. These detectors have high temperature capabilities (400 to 500 0 C), are sodium compatible, and have milli-second time response. A significant advantage of these detectors for use as energy deposition monitors is that they produce an output voltage which is directly dependent on the temperature of a small chip of fissile material within the detectors. However, heat losses within the detector make it necessary to correct the response of the detector to determine the energy deposition. A method of correcting the detector response which uses an inverse convolution procedure has been developed and successfully tested with experimental data obtained in the Sandia Pulse Reactor (SPR-II) and in the Annular Core Research Reactor

  4. Cadmium telluride gamma-radiation detectors with a high energy resolution

    International Nuclear Information System (INIS)

    Alekseeva, L.A.; Dorogov, P.G.; Ivanov, V.I.; Khusainov, A.K.

    1985-01-01

    This paper considers the possibility of improving the energy resolution of cadmium telluride gamma-radiation detectors through the choice of the geometry and size of the sensitive region of the detector. The optimum ratio of the product of the mobility and lifetime for electrons to the same product for holes from the point of view of energy resolution is greater than or equal to 10 2 for a detector of spherical geometry and should be less than or equal to 10 for a cylindrical geometry and approximately 1 for a planar geometry. The optimum values of the major and minor radii of a spherical detector are calculated

  5. Experimental research of plastic scintillation detector loaded 6Li neutron energy response

    International Nuclear Information System (INIS)

    Wang Lizong; Zhang Chuanfei; Peng Taiping; Guo Cun; Yang Hongqiong; Zhang Jianhua

    2005-01-01

    A new plastic scintillator, plastic scintillator loaded 6 Li, is brought forward and developed in this paper in order to increase low energy neutron sensitivity. Neutron sensitivity of several plastic scintillation detectors loaded 6 Li new developed in neutron energy range 0.2 MeV-5.0 MeV are calibrated by direct current at serial accelerator. Energy response curves of the detectors are obtained in this experiment. It is shown that this new plastic scintillation detector can increase low energy neutron sensitivity in experimental results. (authors)

  6. Airflow and Heat Transfer in the Slot-Vented Room with Radiant Floor Heating Unit

    Directory of Open Access Journals (Sweden)

    Xiang-Long Liu

    2012-01-01

    Full Text Available Radiant floor heating has received increasing attention due to its diverse advantages, especially the energy saving as compared to the conventional dwelling heating system. This paper presents a numerical investigation of airflow and heat transfer in the slot-vented room with the radiant floor heating unit. Combination of fluid convection and thermal radiation has been implemented through the thermal boundary conditions. Spatial distributions of indoor air temperature and velocity, as well as the heat transfer rates along the radiant floor and the outer wall, have been presented and analyzed covering the domains from complete natural convection to forced convection dominated flows. The numerical results demonstrate that the levels of average temperature in the room with lateral slot-ventilation are higher than those without slot-ventilation, but lower than those in the room with ceiling slot-ventilation. Overall, the slot-ventilation room with radiant floor heating unit could offer better indoor air quality through increasing the indoor air temperature and fresh air exchanging rate simultaneously. Concerning the airborne pollutant transports and moisture condensations, the performance of radiant floor heating unit will be further optimized in our future researches.

  7. Numerical Model and Experimental Analysis of the Thermal Behavior of Electric Radiant Heating Panels

    Directory of Open Access Journals (Sweden)

    Giovanni Ferrarini

    2018-01-01

    Full Text Available Electric radiant heating panels are frequently selected during the design phase of residential and industrial heating systems, especially for retrofit of existing buildings, as an alternative to other common heating systems, such as radiators or air conditioners. The possibility of saving living and working space and the ease of installation are the main advantages of electric radiant solutions. This paper investigates the thermal performance of a typical electric radiant panel. A climatic room was equipped with temperature sensors and heat flow meters to perform a steady state experimental analysis. For the dynamic behavior, a mathematical model was created and compared to a thermographic measurement procedure. The results showed for the steady state an efficiency of energy transformation close to one, while in a transient thermal regime the time constant to reach the steady state condition was slightly faster than the typical ones of hydronic systems.

  8. Energy calibration of the barrel calorimeter of the CMD-3 detector

    International Nuclear Information System (INIS)

    Anisenkov, A.V.; Aulchenko, V.M.; Bashtovoy, N.S.; Bondar, A.E.; Grebenuk, A.A.; Epifanov, D.A.; Epshteyn, L.B.; Erofeev, A.L.; Kovalenko, O.A.; Kozyrev, A.N.; Kuzmin, A.S.; Mikhailov, K.Yu.; Logashenko, I.B.; Razuvaev, G.P.; Ruban, A.A.; Shebalin, V.E.; Shwartz, B.A.; Talyshev, A.A.; Titov, V.M.; Yudin, Yu.V.

    2017-01-01

    The VEPP-2000 e + e − collider has been operated in the Budker Institute of Nuclear Physics since 2010. Experiments are carried out with two detectors CMD-3 and SND. The calorimetry at the CMD-3 detector is based on three subsystems, two coaxial barrel calorimeters—Liquid Xenon calorimeter and crystal CsI calorimeter, and end cap calorimeter with BGO crystals. This paper describes the procedures of the energy calibration of the combined barrel calorimeter of the CMD-3 detector.

  9. Electric radiant heating : a hot profitable idea

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, G. [Britech Corp., Toronto, ON (Canada)

    2006-09-15

    Due to the high cost of heating oil, natural gas and propane, floor mounted radiant heating systems are now proving to be a cost effective method of heating homes. The systems provide evenly distributed heat across the entire floor area. Unlike hydronic floor systems, radiant floor systems require no maintenance, and are easy to control because no mechanical rooms or boilers are required. The system is comprised of a series of resistant heating cables, a thermostat, and a solid state relay. The cables are installed in a poured concrete pad. Separate temperature control devices are used to heat individual areas of floorspace. Building automation systems can also control the heating system by using simple ambient air- and floor-mounted sensors in conjunction with relays to energize the heating cables. The cost of thermostats and heating cables to heat a standard 2000 square foot home are estimated at $9000.00, with an additional 64 hours of installation costs. It was noted that the systems may prove to be less costly in the long-term than hydronic systems, which require additional boilers, pumps and water treatments. Electric radiant heating can be an even more cost-effective application when used with thermal storage heating applications that use lower-cost off-peak electricity to generate and store heat in concrete floor slabs or ceramic bricks contained in insulated cabinets. It was concluded that radiant heating systems are a viable and cost-effective alternative to expensive hydronic systems, which are costly to install and maintain. 4 figs.

  10. Measurement of radiant properties of ceramic foam

    International Nuclear Information System (INIS)

    Hoornstra, J.; Turecky, M.; Maatman, D.

    1994-07-01

    An experimental facility is described for the measurement of the normal spectral and total emissivity and transmissivity of semi-transparent materials in the temperature range of 600 C to 1200 C. The set-up was used for the measurement of radiation properties of highly porous ceramic foam which is used in low NO x radiant burners. Emissivity and transmissivity data were measured and are presented for coated and uncoated ceramic foam of different thicknesses. (orig.)

  11. High energy particle detectors utilizing cryogenic charge storage

    Energy Technology Data Exchange (ETDEWEB)

    Coon, D; Engels, E Jr; Plants, D; Shepard, P F; Yang, Y [Pittsburgh Univ., PA (USA); Sopira, M; Papania, R [Westinghouse Research and Development Labs., Monroeville, PA (USA)

    1984-09-15

    The mechanism of cryogenic charge storage as a method of particle detection is reviewed. A description of a simple multielement strip detector operated in this mode is given, and partial results on its operating characteristics presented.

  12. Calorimeter based detectors for high energy hadron colliders

    International Nuclear Information System (INIS)

    1993-01-01

    The work was directed in two complementary directions, the D0 experiment at Fermilab, and the GEM detector for the SSC. Efforts have been towards the data taking and analysis with the newly commissioned D0 detector at Fermilab in the bar pp Collider run that started in May 1992 and ended on June 1, 1993. We involved running and calibration of the calorimeter and tracking chambers, the second level trigger development, and various parts of the data analysis, as well as studies for the D0 upgrade planned in the second half of this decade. Another major accomplishment was the ''delivery'' of the Technical Design Report for the GEM SSC detector. Efforts to the overall detector and magnet design, design of the facilities, installation studies, muon system coordination, muon chamber design and tests, muon system simulation studies, and physics simulation studies. In this document we describe these activities separately

  13. A silicon strip detector array for energy verification and quality assurance in heavy ion therapy.

    Science.gov (United States)

    Debrot, Emily; Newall, Matthew; Guatelli, Susanna; Petasecca, Marco; Matsufuji, Naruhiro; Rosenfeld, Anatoly B

    2018-02-01

    The measurement of depth dose profiles for range and energy verification of heavy ion beams is an important aspect of quality assurance procedures for heavy ion therapy facilities. The steep dose gradients in the Bragg peak region of these profiles require the use of detectors with high spatial resolution. The aim of this work is to characterize a one dimensional monolithic silicon detector array called the "serial Dose Magnifying Glass" (sDMG) as an independent ion beam energy and range verification system used for quality assurance conducted for ion beams used in heavy ion therapy. The sDMG detector consists of two linear arrays of 128 silicon sensitive volumes each with an effective size of 2mm × 50μm × 100μm fabricated on a p-type substrate at a pitch of 200 μm along a single axis of detection. The detector was characterized for beam energy and range verification by measuring the response of the detector when irradiated with a 290 MeV/u 12 C ion broad beam incident along the single axis of the detector embedded in a PMMA phantom. The energy of the 12 C ion beam incident on the detector and the residual energy of an ion beam incident on the phantom was determined from the measured Bragg peak position in the sDMG. Ad hoc Monte Carlo simulations of the experimental setup were also performed to give further insight into the detector response. The relative response profiles along the single axis measured with the sDMG detector were found to have good agreement between experiment and simulation with the position of the Bragg peak determined to fall within 0.2 mm or 1.1% of the range in the detector for the two cases. The energy of the beam incident on the detector was found to vary less than 1% between experiment and simulation. The beam energy incident on the phantom was determined to be (280.9 ± 0.8) MeV/u from the experimental and (280.9 ± 0.2) MeV/u from the simulated profiles. These values coincide with the expected energy of 281 MeV/u. The sDMG detector

  14. The effects of different footprint sizes and cloud algorithms on the top-of-atmosphere radiative flux calculation from the Clouds and Earth's Radiant Energy System (CERES instrument on Suomi National Polar-orbiting Partnership (NPP

    Directory of Open Access Journals (Sweden)

    W. Su

    2017-10-01

    Full Text Available Only one Clouds and Earth's Radiant Energy System (CERES instrument is onboard the Suomi National Polar-orbiting Partnership (NPP and it has been placed in cross-track mode since launch; it is thus not possible to construct a set of angular distribution models (ADMs specific for CERES on NPP. Edition 4 Aqua ADMs are used for flux inversions for NPP CERES measurements. However, the footprint size of NPP CERES is greater than that of Aqua CERES, as the altitude of the NPP orbit is higher than that of the Aqua orbit. Furthermore, cloud retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS and the Moderate Resolution Imaging Spectroradiometer (MODIS, which are the imagers sharing the spacecraft with NPP CERES and Aqua CERES, are also different. To quantify the flux uncertainties due to the footprint size difference between Aqua CERES and NPP CERES, and due to both the footprint size difference and cloud property difference, a simulation is designed using the MODIS pixel-level data, which are convolved with the Aqua CERES and NPP CERES point spread functions (PSFs into their respective footprints. The simulation is designed to isolate the effects of footprint size and cloud property differences on flux uncertainty from calibration and orbital differences between NPP CERES and Aqua CERES. The footprint size difference between Aqua CERES and NPP CERES introduces instantaneous flux uncertainties in monthly gridded NPP CERES measurements of less than 4.0 W m−2 for SW (shortwave and less than 1.0 W m−2 for both daytime and nighttime LW (longwave. The global monthly mean instantaneous SW flux from simulated NPP CERES has a low bias of 0.4 W m−2 when compared to simulated Aqua CERES, and the root-mean-square (RMS error is 2.2 W m−2 between them; the biases of daytime and nighttime LW flux are close to zero with RMS errors of 0.8 and 0.2 W m−2. These uncertainties are within the uncertainties of CERES ADMs

  15. SU-F-T-561: Energy Dependence of a Scintillation Detector

    Energy Technology Data Exchange (ETDEWEB)

    Volotskova, O; Xu, A; Jozsef, G [NYU Medical Center, New York, NY (United States)

    2016-06-15

    Purpose: To investigate the response and dose rate dependence of a scintillation detector over a wide energy range. Methods: The energy dependence of W1 scintillation detector was tested with: 1) 50–225 keV beams generated by an animal irradiator, 2) a Leksell Gamma Knife Perfexion Co-60 source, 3) 6MV, 6FFF, 10FFF and 15MV photon beams, and 4) 6–20MeV electron beams from a linac. Calibrated linac beams were used to deliver 100 cGy to the detector at dmax in water under reference conditions. The gamma-knife measurement was performed in solid water (100 cGy with 16mm collimator). The low energy beams were calibrated with an ion chamber in air (TG-61), and the scintillation detector was placed at the same location as the ionization chamber during calibration. For the linac photon and electron beams, dose rate dependence was tested for 100–2400 and 100–800 MU/min. Results: The scintillation detector demonstrated strong energy dependence in the range of 50–225keV. The measured values were lower than the delivered dose and increased as the energy increased. Therapeutic photon beams showed energy independence with variations less than 1%. Therapeutic electron beams displayed the same sensitivity of ∼2–3% at their corresponding dmax depths. The change in dose-rate of photon and electron beams within the therapeutic energy range did not affect detector output (<0.5%). Measurements acquired with the gamma knife showed that the output data agreed with the delivered dose up to 3%. Conclusion: W1 scintillation detector output has a strong energy dependence in the diagnostic and orthovoltage energy range. Therapeutic photon beams exhibited energy independence with no observable dose-rate dependence. This study may aid in the implementation of a scintillation detector in QA programs by providing energy calibration factors.

  16. A design of energy detector for ArF excimer lasers

    Science.gov (United States)

    Feng, Zebin; Han, Xiaoquan; Zhou, Yi; Bai, Lujun

    2017-08-01

    ArF excimer lasers with short wavelength and high photon energy are widely applied in the field of integrated circuit lithography, material processing, laser medicine, and so on. Excimer laser single pulse energy is a very important parameter in the application. In order to detect the single pulse energy on-line, one energy detector based on photodiode was designed. The signal processing circuit connected to the photodiode was designed so that the signal obtained by the photodiode was amplified and the pulse width was broadened. The amplified signal was acquired by a data acquisition card and stored in the computer for subsequent data processing. The peak of the pulse signal is used to characterize the single pulse energy of ArF excimer laser. In every condition of deferent pulse energy value levels, a series of data about laser pulses energy were acquired synchronously using the Ophir energy meter and the energy detector. A data set about the relationship between laser pulse energy and the peak of the pulse signal was acquired. Then, by using the data acquired, a model characterizing the functional relationship between the energy value and the peak value of the pulse was trained based on an algorithm of machine learning, Support Vector Regression (SVR). By using the model, the energy value can be obtained directly from the energy detector designed in this project. The result shows that the relative error between the energy obtained by the energy detector and by the Ophir energy meter is less than 2%.

  17. Photon detector for high energy measurements in the SELEX spectrometer (Fermilab experiment E781)

    International Nuclear Information System (INIS)

    Goncharenko, Yu.M.; Grachov, O.A.; Kurshetsov, V.F.; Landsberg, L.G.; Nurushev, S.B.; Vasil'ev, A.N.

    1995-01-01

    A possibility to use one- or two-photon lead glass detectors for high energy measurements in the SELEX spectrometer with E γ up to 500 GeV is studied. It is shown that a single photon detector equipped with radiation-resistant lead glass counters is applicable for the experiment discussed. It is concluded that for the best energy resolution in the case of Primakoff effect like π - = γ * → π - + γ the combined method would be used with weighted combination of direct E γ measurement in the Photon-3 detector and the π - beam energy precise measurement. 11 refs., 4 tabs., 17 figs

  18. Application of machine learning techniques to lepton energy reconstruction in water Cherenkov detectors

    Science.gov (United States)

    Drakopoulou, E.; Cowan, G. A.; Needham, M. D.; Playfer, S.; Taani, M.

    2018-04-01

    The application of machine learning techniques to the reconstruction of lepton energies in water Cherenkov detectors is discussed and illustrated for TITUS, a proposed intermediate detector for the Hyper-Kamiokande experiment. It is found that applying these techniques leads to an improvement of more than 50% in the energy resolution for all lepton energies compared to an approach based upon lookup tables. Machine learning techniques can be easily applied to different detector configurations and the results are comparable to likelihood-function based techniques that are currently used.

  19. Measurement of β-decay end point energy with planar HPGe detector

    Science.gov (United States)

    Bhattacharjee, T.; Pandit, Deepak; Das, S. K.; Chowdhury, A.; Das, P.; Banerjee, D.; Saha, A.; Mukhopadhyay, S.; Pal, S.; Banerjee, S. R.

    2014-12-01

    The β - γ coincidence measurement has been performed with a segmented planar Hyper-Pure Germanium (HPGe) detector and a single coaxial HPGe detector to determine the end point energies of nuclear β-decays. The experimental end point energies have been determined for some of the known β-decays in 106Rh →106Pd. The end point energies corresponding to three weak branches in 106Rh →106Pd decay have been measured for the first time. The γ ray and β particle responses for the planar HPGe detector were simulated using the Monte Carlo based code GEANT3. The experimentally obtained β spectra were successfully reproduced with the simulation.

  20. Capabilities of silicon Shottki barriers and planar detectors in low-energy proton spectometry

    Energy Technology Data Exchange (ETDEWEB)

    Verbitskaya, E M; Eremin, V K; Malyarenko, A M; Sakharov, V I; Serenkov, I T; Strokan, N B; Sukhanov, V L

    1987-05-12

    Dependence of the resolution of surface barrier and planar diffusion silicon detectors on proton energy is investigated. The experiment was conducted at the device, representing the double mass spectrometer with the maximal energy of single-charged ions up to 200 keV. Two advantages of using planar diffusion detectors for light low-energy ion spectrometry is established: high energy resolution and independence of signal amplitude of bias voltage. Background noise represents the main factor dictaiting resolution, but fluctuations of losses in input window are sufficient as well. It was concluded that planar detector application for spectrometry of protons with energy of less than 200 keV would improve the resolution up to 2.2 keV without detector cooling.

  1. Study on the energy dependence of gamma radiation detectors for 137Cs and 60Co

    International Nuclear Information System (INIS)

    Nonato, Fernanda B.C.; Diniz, Raphael E.; Carvalho, Valdir S.; Vivolo, Vitor; Caldas, Linda V.E.

    2009-01-01

    38 Geiger-Mueller radiation detectors and 9 ionization chambers were calibrated, viewing to study the energy dependence of the monitor response for gamma radiation fields ( 137 Cs and 60 Co). The results were considered satisfactory only for ionization chambers and for some Geiger-Mueller detectors

  2. The vertex and large angle detectors of a spectrometer system for high energy muon physics

    International Nuclear Information System (INIS)

    Davis, A.; Dobinson, R.W.; Dosselli, U.; Edwards, A.; Gabathuler, E.; Kellner, G.; Montgomery, H.E.; Mueller, H.; Osborne, A.M.; Scaramelli, A.; Watson, E.; Brasse, F.W.; Falley, G.; Flauger, W.; Gayler, J.; Goessling, C.; Koll, J.; Korbel, V.; Nassalski, J.; Singer, G.; Thiele, K.; Zank, P.; Figiel, J.; Janata, F.; Rondio, E.; Studt, M.; Torre, A. de la; Bernaudin, B.; Blum, D.; Heusse, P.; Jaffre, M.; Noppe, J.M.; Pascaud, C.; Bertsch, Y.; Bouard, X. de; Broll, C.; Coignet, G.; Favier, J.; Jansco, G.; Lebeau, M.; Maire, M.; Minssieux, H.; Montanet, F.; Moynot, M.; Nagy, E.; Payre, P.; Perrot, G.; Pessard, H.; Ribarics, P.; Schneegans, M.; Thenard, J.M.; Botterill, D.; Carr, J.; Clifft, R.; Edwards, M.; Norton, P.R.; Rousseau, M.D.; Sproston, M.; Thompson, J.C.; Albanese, J.P.; Allkofer, O.C.; Arneodo, M.; Aubert, J.J.; Becks, K.H.; Bee, C.; Benchouk, C.; Bianchi, F.; Bibby, J.; Bird, I.; Boehm, E.; Braun, H.; Brown, S.; Brueck, H.; Callebaut, D.; Cobb, J.H.; Combley, F.; Cornelssen, M.; Costa, F.; Coughlan, J.; Court, G.R.; D'Agostini, G.; Dau, W.D.; Davies, J.K.; Dengler, F.; Derado, I.; Drees, J.; Dumont, J.J.; Eckardt, V.; Ferrero, M.I.; Gamet, R.; Gebauer, H.J.; Haas, J.; Hasert, F.J.; Hayman, P.; Johnson, A.S.; Kabuss, E.M.; Kahl, T.; Krueger, J.; Landgraf, U.; Lanske, D.; Loken, J.; Manz, A.; Mermet-Guyennet, M.; Mohr, W.; Moser, K.; Mount, R.P.; Paul, L.; Peroni, C.; Pettingale, J.; Poetsch, M.; Preissner, H.; Renton, P.; Rith, K.; Roehner, F.; Schlagboehmer, A.; Schmitz, N.; Schultze, K.; Shiers, J.; Sloan, T.; Smith, R.; Stier, H.E.; Stockhausen, W.; Wahlen, H.; Wallucks, W.; Whalley, M.; Williams, D.A.; Williams, W.S.C.; Wimpenny, S.; Windmolders, R.; Winkmueller, G.; Wolf, G.

    1983-01-01

    A description is given of the detector system which forms the large angle spectrometer and vertex detector of the EMC spectrometer. The apparatus is used in the NA9 experiment which studies the complete hadronic final state from the interaction of high energy muons. (orig.)

  3. Development of twin Ge detector for high energy photon measurement and its performance

    Energy Technology Data Exchange (ETDEWEB)

    Shigetome, Yoshiaki; Harada, Hideo [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-03-01

    Prototype twin HPGe detector composed of two large HPGe crystals was developed to obtain better detection efficiency ({epsilon}) and P/T ratio, which was required for high energy photon spectroscopy. In this work, the performances of the twin HPGe detector were evaluated by computer simulation employing EGS4 code. (author)

  4. One dimensional detector for X-ray diffraction with superior energy resolution based on silicon strip detector technology

    International Nuclear Information System (INIS)

    Dąbrowski, W; Fiutowski, T; Wiącek, P; Fink, J; Krane, H-G

    2012-01-01

    1-D position sensitive X-ray detectors based on silicon strip detector technology have become standard instruments in X-ray diffraction and are available from several vendors. As these devices have been proven to be very useful and efficient further improvement of their performance is investigated. The silicon strip detectors in X-ray diffraction are primarily used as counting devices and the requirements concerning the spatial resolution, dynamic range and count rate capability are of primary importance. However, there are several experimental issues in which a good energy resolution is important. The energy resolution of silicon strip detectors is limited by the charge sharing effects in the sensor as well as by noise of the front-end electronics. The charge sharing effects in the sensor and various aspects of the electronics, including the baseline fluctuations, which affect the energy resolution, have been analyzed in detail and a new readout concept has been developed. A front-end ASIC with a novel scheme of baseline restoration and novel interstrip logic circuitry has been designed. The interstrip logic is used to reject the events resulting in significant charge sharing between neighboring strips. At the expense of rejecting small fraction of photons entering the detector one can obtain single strip energy spectra almost free of charge sharing effects. In the paper we present the design considerations and measured performance of the detector being developed. The electronic noise of the system at room temperature is typically of the order of 70 el rms for 17 mm long silicon strips and a peaking time of about 1 μs. The energy resolution of 600 eV FWHM has been achieved including the non-reducible charge sharing effects and the electronic noise. This energy resolution is sufficient to address a common problem in X-ray diffraction, i.e. electronic suppression of the fluorescence radiation from samples containing iron or cobalt while irradiated with 8.04 ke

  5. Electric radiant heating or, why are plumbers getting our work?

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, G. [Britech, Toronto, ON (Canada)

    2009-02-15

    Electric radiant heating (ERH) technologies are now being installed in floors as a means of reducing heating costs. The radiant installations have seen a large increase in sales over the last decade, and are now being used in commercial applications. Sales of hydronic ERH systems have increased by 24 per cent over the last year. ERH systems are energy efficient and do not cause drafts. The systems consist of resistant heating cables installed within the floors of a room. The cables are supplied as loose cables and tracks with predetermined spacings or rugged, heavier cable that can be stapled onto wooden subfloors. Program temperature setbacks can be applied on a room-by-room basis. Electric thermal storage systems allow building owners to store heat in the floors and are ideal for use in combination with time-of-use electric metering. Some electric utilities are now promoting the use of electric thermal storage in order to reduce demand during peak times. Thermostats used with the systems should have floor sensors and ambient air sensors to control space heating in conjunction with the floor sensor. It was concluded that electrical contractors who gain knowledge in the application and installation of the systems will tap into a growing revenue stream. 5 figs.

  6. Electric radiant heating or, why are plumbers getting our work?

    International Nuclear Information System (INIS)

    Lemieux, G.

    2009-01-01

    Electric radiant heating (ERH) technologies are now being installed in floors as a means of reducing heating costs. The radiant installations have seen a large increase in sales over the last decade, and are now being used in commercial applications. Sales of hydronic ERH systems have increased by 24 per cent over the last year. ERH systems are energy efficient and do not cause drafts. The systems consist of resistant heating cables installed within the floors of a room. The cables are supplied as loose cables and tracks with predetermined spacings or rugged, heavier cable that can be stapled onto wooden subfloors. Program temperature setbacks can be applied on a room-by-room basis. Electric thermal storage systems allow building owners to store heat in the floors and are ideal for use in combination with time-of-use electric metering. Some electric utilities are now promoting the use of electric thermal storage in order to reduce demand during peak times. Thermostats used with the systems should have floor sensors and ambient air sensors to control space heating in conjunction with the floor sensor. It was concluded that electrical contractors who gain knowledge in the application and installation of the systems will tap into a growing revenue stream. 5 figs

  7. Radiation hardness of a single crystal CVD diamond detector for MeV energy protons

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yuki, E-mail: y.sato@riken.jp [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Shimaoka, Takehiro; Kaneko, Junichi H. [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Murakami, Hiroyuki [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Isobe, Mitsutaka; Osakabe, Masaki [National Institute for Fusion Science, 322-6, Oroshi-cho Toki-city, Gifu 509-5292 (Japan); Tsubota, Masakatsu [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Ochiai, Kentaro [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2015-06-01

    We have fabricated a particle detector using single crystal diamond grown by chemical vapor deposition. The irradiation dose dependence of the output pulse height from the diamond detector was measured using 3 MeV protons. The pulse height of the output signals from the diamond detector decreases as the amount of irradiation increases at count rates of 1.6–8.9 kcps because of polarization effects inside the diamond crystal. The polarization effect can be cancelled by applying a reverse bias voltage, which restores the pulse heights. Additionally, the radiation hardness performance for MeV energy protons was compared with that of a silicon surface barrier detector.

  8. Energy resolution of a four-layer depth of interaction detector block for small animal PET

    International Nuclear Information System (INIS)

    Tsuda, Tomoaki; Kawai, Hideyuki; Orita, Narimichi; Murayama, Hideo; Yoshida, Eiji; Inadama, Naoko; Yamaya, Taiga; Omura, Tomohide

    2004-01-01

    We are now planning to develop a positron emission tomograph dedicated to small animals such as rats and mice which meets the demand for higher sensitivity. We proposed a new depth of interaction (DOI) detector arrangement to obtain DOI information by using a four-layer detector with all the same crystal elements. In this DOI detector, we control the behavior of scintillation photons by inserting the reflectors between crystal elements so that the DOI information of four layers can be extracted from one two-dimensional (2D) position histogram made by Anger-type calculation. In this work, we evaluate the energy resolution of this four-layer DOI detector. (author)

  9. Dual-Energy Semiconductor Detector of X-rays and Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Brodyn, M.S.

    2014-03-01

    Full Text Available Analysis of the major types of ionizing radiation detectors, their advantages and disadvantages are presented. Application of ZnSe-based semiconductor detector in high temperature environment is substantiated. Different forms of ZnSe-based detector samples and double-crystal scheme for registration of X- and gamma rays in a broad energy range were used . Based on the manufactured simulator device, the study sustains the feasibility of the gamma quanta recording by a high-resistance ZnSe-based detector operating in a perpulse mode.

  10. [Calorimeter based detectors for high energy hadron colliders

    International Nuclear Information System (INIS)

    1992-01-01

    This document provides a progress report on research that has been conducted under DOE Grant DEFG0292ER40697 for the past year, and describes proposed work for the second year of this 8 year grant starting November 15, 1992. Personnel supported by the contract include 4 faculty, 1 research faculty, 4 postdocs, and 9 graduate students. The work under this grant has in the past been directed in two complementary directions -- DO at Fermilab, and the second SSC detector GEM. A major effort has been towards the construction and commissioning of the new Fermilab Collider detector DO, including design, construction, testing, the commissioning of the central tracking and the central calorimeters. The first DO run is now underway, with data taking and analysis of the first events. Trigger algorithms, data acquisition, calibration of tracking and calorimetry, data scanning and analysis, and planning for future upgrades of the DO detector with the advent of the FNAL Main Injector are all involved. The other effort supported by this grant has been towards the design of GEM, a large and general-purpose SSC detector with special emphasis on accurate muon measurement over a large solid angle. This effort will culminate this year in the presentation to the SSC laboratory of the GEM Technical Design Report. Contributions are being made to the detector design, coordination, and physics simulation studies with special emphasis on muon final states. Collaboration with the RD5 group at CERN to study muon punch through and to test cathode strip chamber prototypes was begun

  11. Dynamic heat transfer modeling and parametric study of thermoelectric radiant cooling and heating panel system

    International Nuclear Information System (INIS)

    Luo, Yongqiang; Zhang, Ling; Liu, Zhongbing; Wang, Yingzi; Wu, Jing; Wang, Xiliang

    2016-01-01

    Highlights: • Dynamic model of thermoelectric radiant panel system is established. • The internal parameters of thermoelectric module are dynamically calculated in simulation. • Both artificial neural networks model and system model are verified through experiment data. • Optimized system structure is obtained through parametric study. - Abstract: Radiant panel system can optimize indoor thermal comfort with lower energy consumption. The thermoelectric radiant panel (TERP) system is a new and effective prototype of radiant system using thermoelectric module (TEM) instead of conventional water pipes, as heat source. The TERP can realize more stable and easier system control as well as lower initial and operative cost. In this study, an improved system dynamic model was established by combining analytical system model and artificial neural networks (ANN) as well as the dynamic calculation functions of internal parameters of TEM. The double integral was used for the calculation of surface average temperature of TERP. The ANN model and system model were in good agreement with experiment data in both cooling and heating mode. In order to optimize the system design structure, parametric study was conducted in terms of the thickness of aluminum panel and insulation, as well as the arrangement of TEMs on the surface of radiant panel. It was found through simulation results that the optimum thickness of aluminum panel and insulation are respectively around 1–2 mm and 40–50 mm. In addition, TEMs should be uniformly installed on the surface of radiant panel and each TEM should stand at the central position of a square-shaped typical region with length around 0.387–0.548 m.

  12. Characterisation of a Compton suppressed Clover detector for high energy gamma rays (=<11MeV)

    International Nuclear Information System (INIS)

    Saha Sarkar, M.; Kshetri, Ritesh; Raut, Rajarshi; Mukherjee, A.; Sinha, Mandira; Ray, Maitreyi; Goswami, A.; Roy, Subinit; Basu, P.; Majumder, H.; Bhattacharya, S.; Dasmahapatra, B.

    2006-01-01

    Gamma ray spectra of two (p,γ) resonances have been utilised for the characterisation of the Clover detector at energies beyond 5MeV. Apart from the efficiency and the resolution of the detector, the shapes of the full energy peaks as well as the nature of the escape peaks which are also very crucial at higher energies have been analysed with special attention. Proper gain matching in software have checked deterioration in the energy resolution and distortion in the peak shape due to addback. The addback factors show sharp increasing trend even at energies around 11MeV

  13. Characterisation of a Compton suppressed Clover detector for high energy gamma rays (=<11MeV)

    Energy Technology Data Exchange (ETDEWEB)

    Saha Sarkar, M. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India)]. E-mail: maitrayee.sahasarkar@saha.ac.in; Kshetri, Ritesh [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Raut, Rajarshi [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Mukherjee, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Sinha, Mandira [Gurudas College, Narkeldanga, Kolkata-700054 (India); Ray, Maitreyi [Behala College, Parnashree, Kolkata-700060 (India); Goswami, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Roy, Subinit [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Basu, P. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Majumder, H. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Bhattacharya, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India); Dasmahapatra, B. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India)

    2006-01-01

    Gamma ray spectra of two (p,{gamma}) resonances have been utilised for the characterisation of the Clover detector at energies beyond 5MeV. Apart from the efficiency and the resolution of the detector, the shapes of the full energy peaks as well as the nature of the escape peaks which are also very crucial at higher energies have been analysed with special attention. Proper gain matching in software have checked deterioration in the energy resolution and distortion in the peak shape due to addback. The addback factors show sharp increasing trend even at energies around 11MeV.

  14. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response.

    Science.gov (United States)

    Troussel, Ph; Villette, B; Emprin, B; Oudot, G; Tassin, V; Bridou, F; Delmotte, F; Krumrey, M

    2014-01-01

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  15. Gas Pixel Detectors for low energy X-ray polarimetry

    International Nuclear Information System (INIS)

    Spandre, Gloria

    2007-01-01

    Gas Pixel Detectors are position-sensitive proportional counters in which a complete integration between the gas amplification structure and the read-out electronics has been reached. Various generation of Application-Specific Integrated Circuit (ASIC) have been designed in deep submicron CMOS technology to realize a monolithic device which is at the same time the charge collecting electrode and the analog amplifying and charge measuring front-end electronics. The experimental response of a detector with 22060 pixels at 80 μm pitch to polarized and un-polarized X-ray radiation is shown and the application of this device for Astronomical X-ray Polarimetry discussed

  16. Study of a spherical gaseous detector for research of rare events at low energy threshold

    International Nuclear Information System (INIS)

    Dastgheibi-Fard, Ali

    2014-01-01

    The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of a particle detector, with a broad range of applications. Its main features include a very low energy threshold which is independent of the volume (due to its very low capacitance), a good energy resolution, robustness and a single detection readout channel. SEDINE, a low background detector installed at the underground site of Laboratoire Souterrain de Modane is currently being operated and aims at measuring events at a very low energy threshold, around 40 eV. The sensitivity for the rare events detection at low energy is correlated to the detector background and to the decreasing the level of energy threshold, which was the main point of this thesis. A major effort has been devoted to the operating of the experimental detector. Several detection parameters were optimized: the electric field homogeneity in the sphere, keeping clear of sparks, the electronic noise level and the leak rate of the detector. The detector is optimized for operation with a high pressure stable gain. The modification of the shield, cleanings of the detector and the addition of an anti-Radon tent have significantly reduced the background of SEDINE. Progress has increased the sensitivity of the detector at low energy up to a value comparable to the results other underground research experiences for the low mass WIMPs. We will present the results with a measured background in the region of keV, which has allowed us to show a competitive figure of exclusion for the production of light dark matter. (author) [fr

  17. Research on influence of energy spectrum response of ICT detector arrays

    International Nuclear Information System (INIS)

    Zhou Rifeng; Gao Fuqiang; Zhang Ping

    2008-01-01

    The energy spectrum response is important characteristic for X-ray ICT detector. But there exist many difficulties to measure these parameters by experiments. The energy spectrum response of CdWO 4 detector was simulated by using the EGSnrc code. Meanwhile the effect of detection efficiency was analyzed by the distribution of accelerator bremsstrahlung spectra and the X-ray spectrum hardening, and some theoretic parameters were offered for the consistent and no-linearity correction of detector arrays. It was applied to ICT image correction, and a satisfying result was obtained. (authors)

  18. Construction of the TH-GEM detector components for metrology of low energy ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, N.F.; Castro, M.C.; Caldas, L.V.E., E-mail: nsilva@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Silva, T.F.; Luz, H. Natal da [Universidade de São Paulo (IF/USP), São Paulo, SP (Brazil). Instituto de Física

    2017-07-01

    The Gas Electron Multiplier (GEM) detector was originally proposed as a position sensitive detector to determine trajectories of particles prevenient from high energy collisions. In order to study the potential of TH-GEM type detectors in dosimetric applications for low energy X-rays, specifically for the mammography standard qualities, it was proposed to construct a prototype with characteristics suitable for such use. In this work the general, structural and material parameters applicable to the necessary conditions were defined, establishing the process of construction of the components of a prototype. (author)

  19. Construction of the TH-GEM detector components for metrology of low energy ionizing radiation

    International Nuclear Information System (INIS)

    Silva, N.F.; Castro, M.C.; Caldas, L.V.E.; Silva, T.F.; Luz, H. Natal da

    2017-01-01

    The Gas Electron Multiplier (GEM) detector was originally proposed as a position sensitive detector to determine trajectories of particles prevenient from high energy collisions. In order to study the potential of TH-GEM type detectors in dosimetric applications for low energy X-rays, specifically for the mammography standard qualities, it was proposed to construct a prototype with characteristics suitable for such use. In this work the general, structural and material parameters applicable to the necessary conditions were defined, establishing the process of construction of the components of a prototype. (author)

  20. Construction of the TH-GEM detector components for metrology of low energy ionizing radiation

    Science.gov (United States)

    Silva, N. F.; Silva, T. F.; Castro, M. C.; Natal da Luz, H.; Caldas, L. V. E.

    2018-03-01

    The Gas Electron Multiplier (GEM) detector was originally proposed as a position sensitive detector to determine trajectories of particles prevenient from high-energy collisions. In order to study the potential of TH-GEM type detectors in dosimetric applications for low energy X-rays, specifically for the mammography standard qualities, it was proposed to construct a prototype with characteristics suitable for such use. In this work the general, structural and material parameters applicable to the necessary conditions were defined, establishing the process of construction of the components of a prototype.

  1. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    International Nuclear Information System (INIS)

    Ding, Huanjun; Cho, Hyo-Min; Molloi, Sabee; Barber, William C.; Iwanczyk, Jan S.

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  2. Energy and resolution calibration of detectors for noble gas β-γ coincidence system

    International Nuclear Information System (INIS)

    Jia Huaimao; Wang Shilian; Li Qi; Wang Jun; Zhao Yungang; Zhang Xinjun; Fan Yuanqing

    2010-01-01

    The β-γ coincidence technique is a kind of important method to detect radioactive xenon isotopes for the Comprehensive Nuclear-Test-Ban Treaty(CTBT). The energy and resolution calibration of detectors is the first key technique. This paper describes in detail the energy and resolution calibration methods of NaI (Tl) and plastic scintillator detectors for the noble gas β-γ coincidence system SAUNA II-Lab. NaI (Tl) detector's energy and resolution for γ-ray were calibrated with γ radioactive point sources. Plastic scintillator detector's energy and resolution for β-ray were calibrated by Compton scattering electrons of 137 Cs 661.66 keV γ-ray. And the results of β-ray energy resolution calibrated by Compton scattering electrons of 137 Cs were compared with the results of conversion electron of 131 Xe m . In conclusion,it is an easy and feasible method of calibrating plastic scintillator detector's energy by Compton scattering electrons of 137 Cs,but detector's resolution calibrated by Compton scattering electrons is higher than factual result. (authors)

  3. Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Böhm, Jan; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Němeček, Stanislav; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav

    2014-01-01

    Roč. 74, č. 10 (2014), "3071-1"-"3071-48" ISSN 1434-6044 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : photon * energy * calibration * detector * resolution * showers * electromagnetic * electron * transverse energy * CERN LHC Coll * calorimeter Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.084, year: 2014

  4. Use of local convective and radiant cooling at warm environment

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Krejcirikova, Barbora; Kaczmarczyk, Jan

    2012-01-01

    The effect of four local cooling devices (convective, radiant and combined) on SBS symptoms reported by 24 subjects at 28 ˚C and 50% RH was studied. The devices studied were: (1) desk cooling fan, (2) personalized ventilation providing clean air, (3) two radiant panels and (4) two radiant panels...... and with radiant panel with attached fans, which also helped people to feel less fatigue. The SBS symptoms increased the most when the cooling fan, generating movement of polluted room air, was used....

  5. Measurement of high-energy electrons by means of a Cherenkov detector in ISTTOK tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Jakubowski, L., E-mail: lech.Jjakubowski@ipj.gov.p [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Zebrowski, J. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Plyusnin, V.V. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049 - 001 Lisboa (Portugal); Malinowski, K.; Sadowski, M.J.; Rabinski, M. [Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland); Fernandes, H.; Silva, C.; Duarte, P. [Association Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049 - 001 Lisboa (Portugal)

    2010-10-15

    The paper concerns detectors of the Cherenkov radiation which can be used to measure high-energy electrons escaping from short-living plasma. Such detectors have high temporal (about 1 ns) and spatial (about 1 mm) resolution. The paper describes a Cherenkov-type detector which was designed, manufactured and installed in the ISTTOK tokamak in order to measure fast runaway electrons. The radiator of that detector was made of an aluminium nitride (AlN) tablet with a light-tight filter on its front surface. Cherenkov signals from the radiator were transmitted through an optical cable to a fast photomultiplier. It made possible to perform direct measurements of the runaway electrons of energy above 80 keV. The measured energy values and spatial characteristics of the recorded electrons appeared to be consistent with results of numerical modelling of the runaway electron generation process in the ISTTOK tokamak.

  6. Monte Carlo calculation of the energy deposited in the KASCADE GRANDE detectors

    International Nuclear Information System (INIS)

    Mihai, Constantin

    2004-01-01

    The energy deposited by protons, electrons and positrons in the KASCADE GRANDE detectors is calculated with a simple and fast Monte Carlo method. The KASCADE GRANDE experiment (Forschungszentrum Karlsruhe, Germany), based on an array of plastic scintillation detectors, has the aim to study the energy spectrum of the primary cosmic rays around and above the 'knee' region of the spectrum. The reconstruction of the primary spectrum is achieved by comparing the data collected by the detectors with simulations of the development of the extensive air shower initiated by the primary particle combined with detailed simulations of the detector response. The simulation of the air shower development is carried out with the CORSIKA Monte Carlo code. The output file produced by CORSIKA is further processed with a program that estimates the energy deposited in the detectors by the particles of the shower. The standard method to calculate the energy deposit in the detectors is based on the Geant package from the CERN library. A new method that calculates the energy deposit by fitting the Geant based distributions with simpler functions is proposed in this work. In comparison with the method based on the Geant package this method is substantially faster. The time saving is important because the number of particles involved is large. (author)

  7. Silicon detectors

    International Nuclear Information System (INIS)

    Klanner, R.

    1984-08-01

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  8. Monte Carlo Simulations of Ultra-High Energy Resolution Gamma Detectors for Nuclear Safeguards

    International Nuclear Information System (INIS)

    Robles, A.; Drury, O.B.; Friedrich, S.

    2009-01-01

    Ultra-high energy resolution superconducting gamma-ray detectors can improve the accuracy of non-destructive analysis for unknown radioactive materials. These detectors offer an order of magnitude improvement in resolution over conventional high purity germanium detectors. The increase in resolution reduces errors from line overlap and allows for the identification of weaker gamma-rays by increasing the magnitude of the peaks above the background. In order to optimize the detector geometry and to understand the spectral response function Geant4, a Monte Carlo simulation package coded in C++, was used to model the detectors. Using a 1 mm 3 Sn absorber and a monochromatic gamma source, different absorber geometries were tested. The simulation was expanded to include the Cu block behind the absorber and four layers of shielding required for detector operation at 0.1 K. The energy spectrum was modeled for an Am-241 and a Cs-137 source, including scattering events in the shielding, and the results were compared to experimental data. For both sources the main spectral features such as the photopeak, the Compton continuum, the escape x-rays and the backscatter peak were identified. Finally, the low energy response of a Pu-239 source was modeled to assess the feasibility of Pu-239 detection in spent fuel. This modeling of superconducting detectors can serve as a guide to optimize the configuration in future spectrometer designs.

  9. Energy dependence evaluation of a ZnO detector for diagnostic X-ray beam

    International Nuclear Information System (INIS)

    Valença, C.P.V.; Silveira, M.A.L.; Macedo, M.A.; Santos, M.A.

    2015-01-01

    In the last decades the international organizations of human health and radiation protection have recommended certain care for using X-ray as a diagnosis tool. The current concern is to avoid any type of radiological accident or overdose to the patient. This can be done assessing the parameters of the X-ray equipment and there are various types of detectors available for that: ionizing chamber, semiconductor devices, etc. These detectors must be calibrated so that they can be used for any energy range and such a procedure is correlated with what is called the energy dependence of the detector. In accordance with the stated requirements of IEC 61267, the standard radiation quality beams and irradiation conditions (RQRs) are the tools and techniques for calibrating diagnostic X-Ray instruments and detectors. The purpose of this work is to evaluate the behavior of the energy dependence of a detector fabricated from a zinc oxide (ZnO) nanofilm. A Pantak industrial X-ray equipment was used to generate the RQR radiation quality beams and test three ZnO detector samples. A 6430 sub-femto-ammeter, Keithley, was used to bias the ZnO detector and simultaneously perform the output readings. The results showed that the ZnO device has some increase in its sensitivity to the ionizing radiation as the X-ray effective energy decreases unlike other types of semiconductor electronic devices typically used as an X-ray detector. We can be concluded that, after calibration, the ZnO device can be used as a diagnostic X-ray detector. (author)

  10. Evaluation of the energy dependence of a zinc oxide nanofilm X-ray detector

    International Nuclear Information System (INIS)

    Valenca, C.P.V.; Silveira, M.A.L.; Macedo, M.A.; Santos, L.A.P

    2015-01-01

    International organizations of human health and radiation protection have recommended certain care for using of the X-ray as a diagnosis tool to avoid any type of radiological accident or overdose to the patient. This can be done assessing the parameters of the X-ray equipment and there are various types of detectors available for that: ionizing chamber, electronic semiconductor devices, etc. These detectors must be calibrated so that they can be used for any energy range and such a procedure is correlated with what is called the energy dependence of the detector. In accordance with the stated requirements of IEC 61267, the standard radiation quality beams and irradiation conditions (RQRs) are the tools and techniques for calibrating diagnostic X-Ray instruments and detectors. The purpose of this work is to evaluate the behavior of the energy dependence of a detector fabricated from a zinc oxide (ZnO) nanofilm. A Pantak industrial X-ray equipment was used to generate the RQR radiation quality beams and test three ZnO detector samples. A 6430 sub-femto-ammeter, Keithley, was used to bias the ZnO detector and simultaneously perform the output readings. The results showed that the ZnO device has some increase in its sensitivity to the ionizing radiation as the X-ray effective energy decreases unlike other types of semiconductor electronic devices typically used as an X-ray detector. We can conclude that the ZnO device can be used as a diagnostic X-ray detector with an appropriate calibration. (author)

  11. High pressure argon detector of high energy neutrinos

    International Nuclear Information System (INIS)

    Vishnevskii, A.V.; Golutvin, I.A.; Sarantsev, V.L.; Sviridov, V.A.; Dolgoshein, B.A.; Kalinovskii, A.N.; Sosnovtsev, V.V.; Chernyatin, V.K.; Kaftanov, V.S.; Khovanskii, V.D.; Shevchenko, V.G.

    1979-01-01

    In the present paper, we suggest an electron neutrino detector of a new type where track information is available for all charged particles. As a working medium we use Argon compressed up to a pressure of 100 to 150 atm (approximately 0.2-0.3 g/cm 3 ). The spatial reconstruction of tracks are accomplished with an accuracy not inferior to that of bubble chambers. The detector has a high sensitivity in ionization measurements. An assembly with a working medium mass of approximately 100 tons seem to be realisable. This makes it possible to perform tasks with cross-sections of (10 -5 + 10 -3 ) x delty tot at an intensity of the neutrino beam which is available in present-day accelerators. (orig.)

  12. Study on coal char ignition by radiant heat flux.

    Science.gov (United States)

    Korotkikh, A. G.; Slyusarskiy, K. V.

    2017-11-01

    The study on coal char ignition by CO2-continuous laser was carried out. The coal char samples of T-grade bituminous coal and 2B-grade lignite were studied via CO2-laser ignition setup. Ignition delay times were determined at ambient condition in heat flux density range 90-200 W/cm2. The average ignition delay time value for lignite samples were 2 times lower while this difference is larger in high heat flux region and lower in low heat flux region. The kinetic constants for overall oxidation reaction were determined using analytic solution of simplified one-dimensional heat transfer equation with radiant heat transfer boundary condition. The activation energy for lignite char was found to be less than it is for bituminous coal char by approximately 20 %.

  13. An InGrid based Low Energy X-ray Detector

    CERN Document Server

    Krieger, Christoph; Kaminski, Jochen; Lupberger, Michael; Vafeiadis, Theodoros

    2014-01-01

    An X-ray detector based on the combination of an integrated Micromegas stage with a pixel chip has been built in order to be installed at the CERN Axion Solar Telescope. Due to its high granularity and spatial resolution this detector allows for a topological background suppression along with a detection threshold below $1\\,\\text{keV}$. Tests at the CAST Detector Lab show the detector's ability to detect X-ray photons down to an energy as low as $277\\,\\text{eV}$. The first background data taken after the installation at the CAST experiment underline the detector's performance with an average background rate of $5\\times10^{-5}\\,/\\text{keV}/\\text{cm}^2/\\text{s}$ between 2 and $10\\,\\text{keV}$ when using a lead shielding.

  14. Application of energy dispersive X-ray spectrometers with semiconductor detectors in radiometric analyses

    International Nuclear Information System (INIS)

    Jugelt, P.; Schieckel, M.

    1983-01-01

    Problems and possibilities of applying semiconductor detector spectrometers in radiometric analyses are described. A summary of the state of the art and tendencies of device engineering and spectra evaluation is given. Liquid-nitrogen cooled Li-drifted Si-detectors and high-purity Ge-detectors are compared. Semiconductor detectors working at room temperature are under development. In this connection CdTe and HgI 2 semiconductor detectors are compared. The use of small efficient computers in the spectrometer systems stimulates the development of algorithms for spectra analyses and for determining the concentration. Fields of application of energy dispersive X-ray spectrometers are X-ray diffraction and X-ray macroanalysis in investigating the structure of extensive surface regions

  15. A RADIANT AIR-CONDITIONING SYSTEM USING SOLAR-DRIVEN

    Directory of Open Access Journals (Sweden)

    S. A. ABDALLA

    2006-12-01

    Full Text Available Every air-conditioning system needs some fresh air to provide adequate ventilation air required to remove moisture, gases like ammonia and hydrogen sulphide, disease organisms, and heat from occupied spaces. However, natural ventilation is difficult to control because urban areas outside air is often polluted and cannot be supplied to inner spaces before being filtered. Besides the high electrical demand of refrigerant compression units used by most air-conditioning systems, and fans used to transport the cool air through the thermal distribution system draw a significant amount of electrical energy in comparison with electrical energy used by the building thermal conditioning systems. Part of this electricity heats the cooled air; thereby add to the internal thermal cooling peak load. In addition, refrigerant compression has both direct and indirect negative effects on the environment on both local and global scales. In seeking for innovative air-conditioning systems that maintain and improve indoor air quality under potentially more demanding performance criteria without increasing environmental impact, this paper presents radiant air-conditioning system which uses a solar-driven liquid desiccant evaporative cooler. The paper describes the proposed solar-driven liquid desiccant evaporative cooling system and the method used for investigating its performance in providing cold water for a radiant air-conditioning system in Khartoum (Central Sudan. The results of the investigation show that the system can operate in humid as well as dry climates and that employing such a system reduces air-conditioning peak electrical demands as compared to vapour compression systems.

  16. Research on multi-spectrum detector in high-energy dual-energy X-ray imaging system

    International Nuclear Information System (INIS)

    Li Qinghua; Wang Xuewu; Li Jianmin; Kang Kejun; Li Yuanjing; Zhong Huaqiang

    2008-01-01

    The high-energy dual-energy X-ray imaging system can discriminate the material of the objects inspected, but when the objects are too thin, the discrimination becomes very difficult. This paper proposes the use of multi-spectrum detector to improve the ability to discriminate thin material, and a series of simulation were done with the Monte Carlo method. Firstly the X-ray depositions in the detectors with different thickness were calculated, and then the discrimination effects with different detector structure and parameters were calculated. The simulation results validated that using appropriate multi-spectrum detector can improve the discrimination accuracy of thin material, particularly thin high-Z material. (authors)

  17. 14C autoradiography with an energy-sensitive silicon pixel detector.

    Science.gov (United States)

    Esposito, M; Mettivier, G; Russo, P

    2011-04-07

    The first performance tests are presented of a carbon-14 ((14)C) beta-particle digital autoradiography system with an energy-sensitive hybrid silicon pixel detector based on the Timepix readout circuit. Timepix was developed by the Medipix2 Collaboration and it is similar to the photon-counting Medipix2 circuit, except for an added time-based synchronization logic which allows derivation of energy information from the time-over-threshold signal. This feature permits direct energy measurements in each pixel of the detector array. Timepix is bump-bonded to a 300 µm thick silicon detector with 256 × 256 pixels of 55 µm pitch. Since an energetic beta-particle could release its kinetic energy in more than one detector pixel as it slows down in the semiconductor detector, an off-line image analysis procedure was adopted in which the single-particle cluster of hit pixels is recognized; its total energy is calculated and the position of interaction on the detector surface is attributed to the centre of the charge cluster. Measurements reported are detector sensitivity, (4.11 ± 0.03) × 10(-3) cps mm(-2) kBq(-1) g, background level, (3.59 ± 0.01) × 10(-5) cps mm(-2), and minimum detectable activity, 0.0077 Bq. The spatial resolution is 76.9 µm full-width at half-maximum. These figures are compared with several digital imaging detectors for (14)C beta-particle digital autoradiography.

  18. Numerical simulations on efficiency and measurement of capabilities of BGO detectors for high energy gamma ray

    CERN Document Server

    Wen Wan Xin

    2002-01-01

    The energy resolution and time resolution of two phi 75 x 100 BGO detectors for high energy gamma ray newly made were measured with sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co resources. The two characteristic gamma rays of high energy emitted from the thermal neutron capture of germanium in BGO crystal were used for the energy calibration of gamma spectra. The intrinsic photopeak efficiency, single escape probability and double escape probabilities of BGO detectors in photon energy range of 4-30 MeV are numerically calculated with GEANT code. The real count response and count ratio of the uniformly distributed incident photons in energy range of 0-30 MeV are also calculated. The distortion of gamma spectra caused by the photon energy loss extension to lower energy in detection medium is discussed

  19. K-edge energy-based calibration method for photon counting detectors

    Science.gov (United States)

    Ge, Yongshuai; Ji, Xu; Zhang, Ran; Li, Ke; Chen, Guang-Hong

    2018-01-01

    In recent years, potential applications of energy-resolved photon counting detectors (PCDs) in the x-ray medical imaging field have been actively investigated. Unlike conventional x-ray energy integration detectors, PCDs count the number of incident x-ray photons within certain energy windows. For PCDs, the interactions between x-ray photons and photoconductor generate electronic voltage pulse signals. The pulse height of each signal is proportional to the energy of the incident photons. By comparing the pulse height with the preset energy threshold values, x-ray photons with specific energies are recorded and sorted into different energy bins. To quantitatively understand the meaning of the energy threshold values, and thus to assign an absolute energy value to each energy bin, energy calibration is needed to establish the quantitative relationship between the threshold values and the corresponding effective photon energies. In practice, the energy calibration is not always easy, due to the lack of well-calibrated energy references for the working energy range of the PCDs. In this paper, a new method was developed to use the precise knowledge of the characteristic K-edge energy of materials to perform energy calibration. The proposed method was demonstrated using experimental data acquired from three K-edge materials (viz., iodine, gadolinium, and gold) on two different PCDs (Hydra and Flite, XCounter, Sweden). Finally, the proposed energy calibration method was further validated using a radioactive isotope (Am-241) with a known decay energy spectrum.

  20. Surface radiant flux densities inferred from LAC and GAC AVHRR data

    Science.gov (United States)

    Berger, F.; Klaes, D.

    To infer surface radiant flux densities from current (NOAA-AVHRR, ERS-1/2 ATSR) and future meteorological (Envisat AATSR, MSG, METOP) satellite data, the complex, modular analysis scheme SESAT (Strahlungs- und Energieflüsse aus Satellitendaten) could be developed (Berger, 2001). This scheme allows the determination of cloud types, optical and microphysical cloud properties as well as surface and TOA radiant flux densities. After testing of SESAT in Central Europe and the Baltic Sea catchment (more than 400scenes U including a detailed validation with various surface measurements) it could be applied to a large number of NOAA-16 AVHRR overpasses covering the globe.For the analysis, two different spatial resolutions U local area coverage (LAC) andwere considered. Therefore, all inferred results, like global area coverage (GAC) U cloud cover, cloud properties and radiant properties, could be intercompared. Specific emphasis could be made to the surface radiant flux densities (all radiative balance compoments), where results for different regions, like Southern America, Southern Africa, Northern America, Europe, and Indonesia, will be presented. Applying SESAT, energy flux densities, like latent and sensible heat flux densities could also be determined additionally. A statistical analysis of all results including a detailed discussion for the two spatial resolutions will close this study.

  1. Semiconductor devices as track detectors in high energy colliding beam experiments

    International Nuclear Information System (INIS)

    Ludlam, T.

    1980-01-01

    In considering the design of experiments for high energy colliding beam facilities one quickly sees the need for better detectors. The full exploitation of machines like ISABELLE will call for detector capabilities beyond what can be expected from refinements of the conventional approaches to particle detection in high energy physics experiments. Over the past year or so there has been a general realization that semiconductor device technology offers the possibility of position sensing detectors having resolution elements with dimensions of the order of 10 microns or smaller. Such a detector could offer enormous advantages in the design of experiments, and the purpose of this paper is to discuss some of the possibilities and some of the problems

  2. Semiconductor devices as track detectors in high energy colliding beam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ludlam, T

    1980-01-01

    In considering the design of experiments for high energy colliding beam facilities one quickly sees the need for better detectors. The full exploitation of machines like ISABELLE will call for detector capabilities beyond what can be expected from refinements of the conventional approaches to particle detection in high energy physics experiments. Over the past year or so there has been a general realization that semiconductor device technology offers the possibility of position sensing detectors having resolution elements with dimensions of the order of 10 microns or smaller. Such a detector could offer enormous advantages in the design of experiments, and the purpose of this paper is to discuss some of the possibilities and some of the problems.

  3. Optimized high energy resolution in γ-ray spectroscopy with AGATA triple cluster detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, Andreas

    2011-06-20

    The AGATA demonstrator consists of five AGATA Triple Cluster (ATC) detectors. Each triple cluster detector contains three asymmetric, 36-fold segmented, encapsulated high purity germanium detectors. The purpose of the demonstrator is to show the feasibility of position-dependent γ-ray detection by means of γ-ray tracking, which is based on pulse shape analysis. The thesis describes the first optimization procedure of the first triple cluster detectors. Here, a high signal quality is mandatory for the energy resolution and the pulse shape analysis. The signal quality was optimized and the energy resolution was improved through the modification of the electronic properties, of the grounding scheme of the detector in particular. The first part of the work was the successful installation of the first four triple cluster detectors at INFN (National Institute of Nuclear Physics) in Legnaro, Italy, in the demonstrator frame prior to the AGATA commissioning experiments and the first physics campaign. The four ATC detectors combine 444 high resolution spectroscopy channels. This number combined with a high density were achieved for the first time for in-beam γ-ray spectroscopy experiments. The high quality of the ATC detectors is characterized by the average energy resolutions achieved for the segments of each crystal in the range of 1.943 and 2.131 keV at a γ-ray energy of 1.33 MeV for the first 12 crystals. The crosstalk level between individual detectors in the ATC is negligible. The crosstalk within one crystal is at a level of 10{sup -3}. In the second part of the work new methods for enhanced energy resolution in highly segmented and position sensitive detectors were developed. The signal-to-noise ratio was improved through averaging of the core and the segment signals, which led to an improvement of the energy resolution of 21% for γ-energies of 60 keV to a FWHM of 870 eV. In combination with crosstalk correction, a clearly improved energy resolution was

  4. Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector.

    Science.gov (United States)

    Meng, L-J; Tan, J W; Spartiotis, K; Schulman, T

    2009-06-11

    In this paper, we present the design and preliminary performance evaluation of a novel energy-resolved photon-counting (ERPC) detector for gamma ray imaging applications. The prototype ERPC detector has an active area of 4.4 cm × 4.4 cm, which is pixelated into 128 × 128 square pixels with a pitch size of 350 µm × 350µm. The current detector consists of multiple detector hybrids, each with a CdTe crystal of 1.1 cm × 2.2 cm × 1 mm, bump-bonded onto a custom-designed application-specific integrated circuit (ASIC). The ERPC ASIC has 2048 readout channels arranged in a 32 × 64 array. Each channel is equipped with pre- and shaping-amplifiers, a discriminator, peak/hold circuitry and an analog-to-digital converter (ADC) for digitizing the signal amplitude. In order to compensate for the pixel-to-pixel variation, two 8-bit digital-to-analog converters (DACs) are implemented into each channel for tuning the gain and offset. The ERPC detector is designed to offer a high spatial resolution, a wide dynamic range of 12-200 keV and a good energy resolution of 3-4 keV. The hybrid detector configuration provides a flexible detection area that can be easily tailored for different imaging applications. The intrinsic performance of a prototype ERPC detector was evaluated with various gamma ray sources, and the results are presented.

  5. CDMS Detector Fabrication Improvements and Low Energy Nuclear Recoil Measurements in Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Jastram, Andrew [Texas A & M Univ., College Station, TX (United States)

    2015-12-01

    As the CDMS (Cryogenic Dark Matter Search) experiment is scaled up to tackle new dark matter parameter spaces (lower masses and cross-sections), detector production efficiency and repeatability becomes ever more important. A dedicated facility has been commissioned for SuperCDMS detector fabrication at Texas A&M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods, equipment, and tuning of process parameters. This work has demonstrated the capability for production of next generation CDMS SNOLAB detectors. Additionally, as the dark matter parameter space is probed further, careful calibrations of detector response to nuclear recoil interactions must be performed in order to extract useful information (in relation to dark matter particle characterzations) from experimental results. A neutron beam of tunable energy is used in conjunction with a commercial radiation detector to characterize ionization energy losses in germanium during nuclear recoil events. Data indicates agreement with values predicted by the Lindhard equation, providing a best-t k-value of 0.146.

  6. Investigating the response of Micromegas detector to low-energy neutrons using Monte Carlo simulation

    Science.gov (United States)

    Khezripour, S.; Negarestani, A.; Rezaie, M. R.

    2017-08-01

    Micromegas detector has recently been used for high-energy neutron (HEN) detection, but the aim of this research is to investigate the response of the Micromegas detector to low-energy neutron (LEN). For this purpose, a Micromegas detector (with air, P10, BF3, 3He and Ar/BF3 mixture) was optimized for the detection of 60 keV neutrons using the MCNP (Monte Carlo N Particle) code. The simulation results show that the optimum thickness of the cathode is 1 mm and the optimum of microgrid location is 100 μm above the anode. The output current of this detector for Ar (3%) + BF3 (97%) mixture is greater than the other ones. This mixture is considered as the appropriate gas for the Micromegas neutron detector providing the output current for 60 keV neutrons at the level of 97.8 nA per neutron. Consecuently, this detector can be introduced as LEN detector.

  7. Beam profile measurement with CR-39 track detector for low-energy ions

    CERN Document Server

    Sato, F; Tanaka, T; Iida, T; Yamauchi, T; Oda, K

    1999-01-01

    A CR-39 track detector was successfully used to measure the outline of thin low-energy ion beams. After the etching, the surface of the detector was examined with an observation system composed of a Normarski microscope, a CCD camera and a digital image processing computer. Beam images obtained with the system were in good agreement on the outline of the beam formed with a beam aperture. Also, the resolving power in the beam outline measurement was roughly explained from the consideration of the ion range and the etch-pit growth in the chemical etching for the CR-39 detector.

  8. AstroBox2 – Detector for low-energy β-delayed particle detection

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, A., E-mail: ajsaasta@comp.tamu.edu [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Pollacco, E. [IRFU, CEA Saclay, Gif-sur-Yvette (France); Roeder, B.T.; Spiridon, A.; Daq, M. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Trache, L.; Pascovici, G. [National Institute of Physics and Nuclear Engineering, Bucharest-Magurele RO-077125 (Romania); De Oliveira, R. [CERN, Geneva (Switzerland); Rodrigues, M.R.D. [Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, CEP 05314-970, São Paulo, SP (Brazil); Tribble, R.E. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States)

    2016-06-01

    Efficient suppression of β-background is essential for studies of low-energy β-delayed charged particle decays of astrophysical interest. A promising method for such studies has been a micro pattern gas amplifier detector where the sample is implanted into the gas volume and the decays that follow are observed with high gain and signal to noise ratio. An upgraded version of the original AstroBox detector has been built and commissioned at Texas A&M University. Here a description of the new AstroBox2 detector is given, selected results from the commissioning tests are presented, and future perspectives discussed.

  9. Prototypes of Self-Powered Radiation Detectors Employing Intrinsic High-Energy Current (HEC) (POSTPRINT)

    Science.gov (United States)

    2016-01-01

    neutron sensi- tivities of a Pt self - powered detector ,” IEEE Trans. Nucl. Sci. 25, 292–295 (1978). 6T. A. Dellin, R. E. Huddleston, and C. J...Gamma-sensitive self - powered detectors and their use for in-core flux -mapping,” IEEE Trans. Nucl. Sci. 28, 752–757 (1981). 9E. A. Burke and J. Wall...AFCEC-CX-TY-TP-2016-0006 PROTOTYPES OF SELF - POWERED RADIATION DETECTORS EMPLOYING INTRINSIC HIGH-ENERGY CURRENT (HEC) (POSTPRINT) Piotr

  10. Superconducting Cable Development for Future High Energy Physics Detector Magnets

    Science.gov (United States)

    Horvath, I. L.

    1995-11-01

    Under the leadership of the Swiss Federal Institute of Technology (ETHZ) an international ad hoc collaboration for superconducting cables developed an aluminium stabilised superconducting cable for future detector magnets. With the financial support of the Swiss government, this R&D work was carried out for the European Organisation for Nuclear Research (CERN). In this report the manufacturing process is described and results of the quality control measurements are summarised. These tests showed that the industrial manufacturing of an aluminium stabilised superconducting cable is feasible.

  11. A gas microstrip X-ray detector for soft energy fluorescence EXAFS

    CERN Document Server

    Smith, A D; Derbyshire, G E; Duxbury, D M; Lipp, J; Spill, E J; Stephenson, R

    2001-01-01

    Gas microstrip detectors have been previously developed by the particle physics community, where their robustness, compactness and high counting speed have been recognised. These features are particularly attractive to synchrotron radiation use. In this paper, we describe a gas microstrip detector employing multi-element readout and specifically developed for high count rate fluorescence EXAFS at soft X-ray energies below 4 keV.

  12. Bulk GaN alpha-particle detector with large depletion region and improved energy resolution

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiang; Mulligan, Padhraic [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 (United States); Wang, Jinghui [Department of Radiology, Stanford University, 1201 Welch Rd, Stanford, CA 94305 (United States); Chuirazzi, William [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 (United States); Cao, Lei, E-mail: cao.152@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 (United States)

    2017-03-21

    An alpha-particle detector was fabricated using a freestanding n-type bulk GaN wafer with a Au/Ni/GaN sandwich Schottky structure. Current–voltage measurements at room temperature revealed a Schottky contact with a leakage current of 7.53±0.3 nA at a reverse bias of 200 V. The detector had a large depletion depth that can capture much of the energy from 5.486 MeV alpha particles emitted from a {sup 241}Am source. The resolution of its alpha-particle energy spectrum was improved to 2.2±0.2% at 5.486 MeV under a bias of 550 V. This superior resolution was attributed to the shortening of the carrier transit time and the large energy deposition within the large depletion depth, i.e., 27 µm at −550 V, which all resulted in a more complete charge collection. A model developed using the ATLAS simulation framework from Silvaco Inc. was employed to study the charge collection process. The simulation results were found to agree closely with the experimental results. This detector will be beneficial for research at neutron scattering facilities, the International Thermonuclear Experimental Reactor, and the Large Hadron Collider, among other institutions, where the Si-based charged particle detectors could be quickly degraded in an intense radiation field. - Highlights: • An alpha-particle detector based on a Schottky-structured GaN wafer was tested. • The detector's large depletion depth enables fuller energy spectra to be obtained. • The best resolution yet attained in GaN alpha-particle spectrometry was achieved. • The detector's short carrier transit time resulted in improved charge collection. • This detector is usable in extreme conditions, including intense radiation fields.

  13. DAPHNE: A large-acceptance tracking detector for the study of photoreactions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Audit, G.; Bloch, A.; Hose, N. d' ; Isbert, V.; Martin, J.; Powers, R.; Sundermann, D.; Tamas, G.; Wallace, P.A.; Bechade, J.; Carton, P.H.; Conat, S.; Foucaud, D.; Goldsticker, M. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Physique Nucleaire); Altieri, S.; Pedroni, P. (Istituto Nazionale di Fisica Nucleare, Pavia (Italy)); Braghieri, A.; Fossati, F.; Pinelli, T. (Istituto Nazionale di Fisica Nucleare, Pavia (Italy) Pavia Univ. (Italy). Dipt. di Fisica Nucleare e Teorica)

    1991-03-15

    A large-acceptance (94% of 4{pi} sr) hadron detector capable of handling multiparticle final states is described. The track reconstruction capability, energy resolution, particle identification capability and neutral-particle detection efficiency of the detector are discussed and the results of tests shown. Tests have been performed both with cosmic rays and in a realistic experimental situation using a 500 MeV photon beam impinging on hydrogen and deuteron targets. (orig.).

  14. Scintillating plastic optical fiber radiation detectors in high energy particle physics

    International Nuclear Information System (INIS)

    Bross, A.D.

    1991-01-01

    We describe the application of scintillating optical fiber in instrumentation for high energy particle physics. The basic physics of the scintillation process in polymers is discussed first and then we outline the fundamentals of scintillating fiber technology. Fiber performance, optimization, and characterization measurements are given. Detector applications in the areas of particle tracking and particle energy determination are then described. 13 refs., 12 figs

  15. Multi-energy x-ray detectors to improve air-cargo security

    Science.gov (United States)

    Paulus, Caroline; Moulin, Vincent; Perion, Didier; Radisson, Patrick; Verger, Loïck

    2017-05-01

    X-ray based systems have been used for decades to screen luggage or cargo to detect illicit material. The advent of energy-sensitive photon-counting x-ray detectors mainly based on Cd(Zn)Te semi-conductor technology enables to improve discrimination between materials compared to single or dual energy technology. The presented work is part of the EUROSKY European project to develop a Single European Secure Air-Cargo Space. "Cargo" context implies the presence of relatively heavy objects and with potentially high atomic number. All the study is conducted on simulations with three different detectors: a typical dual energy sandwich detector, a realistic model of the commercial ME100 multi-energy detector marketed by MULTIX, and a ME100 "Cargo": a not yet existing modified multi-energy version of the ME100 more suited to air freight cargo inspection. Firstly, a comparison on simulated measurements shows the performances improvement of the new multi-energy detectors compared to the current dual-energy one. The relative performances are evaluated according to different criteria of separability or contrast-to-noise ratio and the impact of different parameters is studied (influence of channel number, type of materials and tube voltage). Secondly, performances of multi-energy detectors for overlaps processing in a dual-view system is accessed: the case of orthogonal projections has been studied, one giving dimensional values, the other one providing spectral data to assess effective atomic number. A method of overlap correction has been proposed and extended to multi-layer objects case. Therefore, Calibration and processing based on bi-material decomposition have been adapted for this purpose.

  16. Determination of the jet energy scale at the Collider Detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, A.; Hatakeyama, K. [Rockefeller Univ., New York, NY 10021 (United States); Canelli, F. [Univ. of California at Los Angeles, Los Angeles, CA 90024 (United States)]. E-mail: canelli@fnal.gov; Heinemann, B. [Univ. of Liverpool, Liverpool L69 7ZE (United Kingdom); Adelman, J.; Hoffman, D.; Kwang, S.; Malkus, A.; Shochet, M. [Enrico Fermi Inst., Univ. of Chicago, Chicago, IL 60637 (United States); Ambrose, D. [Univ. of Pennsylvania, Philadelphia, PA 19104 (United States); Arguin, J.-F. [Univ. of Toronto, Toronto, Canada M5S 1A7 (Canada); Barbaro-Galtieri, A.; Currat, C.; Gibson, A.; Movilla-Fernandez, P.A. [Ernest Orlando Lawrence Berkeley National Lab., Berkeley, CA 94720 (United States); Budd, H.; Chung, Y.S.; Sakumoto, W.; Yun, G. [Univ. of Rochester, Rochester, NY 14627 (United States); Chung, K. [Carnegie Mellon Univ., Pittsburgh, PA 15213 (United States); Cooper, B. [Univ. College London, London WC1E 6BT (United Kingdom); D' Onofrio, M. [Univ. of Geneva, CH-1211 Geneva 4 (Switzerland); Dorigo, T. [Univ. of Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova (Italy); Erbacher, R. [Fermi National Accelerator Lab., Batavia, IL 60510 (United States); Field, R. [Univ. of Florida, Gainesville, FL 32611 (United States); Flanagan, G. [Michigan State Univ., East Lansing, MI 48824 (United States); Happacher, F. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati (Italy); Introzzi, G. [Univ. of Pavia, Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, I-27100 Pavia (Italy); Kuhlmann, S.; Nodulman, L.; Proudfoot, J. [Argonne National Lab., Argonne, IL 60439 (United States); Jun, S.; Paulini, M.; Tiwari, V. [Carnegie Mellon Univ., Pittsburgh, PA 15213 (United States); Latino, G. [Istituto Nazionale di Fisica Nucleare Pisa, Univ. of Pisa, Siena and Scuola Normale Superiore of Pisa, I-56127 Pisa (Italy)] [and others

    2006-10-15

    A precise determination of the energy scale of jets at the Collider Detector at Fermilab at the Tevatron pp-bar collider is described. Jets are used in many analyses to estimate the energies of partons resulting from the underlying physics process. Several correction factors are developed to estimate the original parton energy from the observed jet energy in the calorimeter. The jet energy response is compared between data and Monte Carlo simulation for various physics processes, and systematic uncertainties on the jet energy scale are determined. For jets with transverse momenta above 50GeV the jet energy scale is determined with a 3% systematic uncertainty.

  17. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    CERN Document Server

    Zang, A; Ballabriga, R; Bisello, F; Campbell, M; Celi, J C; Fauler, A; Fiederle, M; Jensch, M; Kochanski, N; Llopart, X; Michel, N; Mollenhauer, U; Ritter, I; Tennert, F; Wölfel, S; Wong, W; Michel, T

    2015-01-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation wa...

  18. Low energy response calibration of the BATSE large area detectors onboard the Compton Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Laird, C.E. [Dept. of Physics and Astronomy, Eastern Kentucky University, Moore 351, 521 Lancaster Avenue, Richmond, KY 40475-3124 (United States)]. E-mail: Chris.Laird@eku.edu; Harmon, B.A. [XD12 NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Wilson, Colleen A. [XD12 NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Hunter, David [Dept. of Physics and Astronomy, Eastern Kentucky University, Moore 351, 521 Lancaster Avenue, Richmond, KY 40475-3124 (United States); Isaacs, Jason [Dept. of Physics and Astronomy, Eastern Kentucky University, Moore 351, 521 Lancaster Avenue, Richmond, KY 40475-3124 (United States)

    2006-10-15

    The low-energy attenuation of the covering material of the Burst and Transient Source Experiment (BATSE) large area detectors (LADs) on the Compton Gamma Ray Observatory as well as the small-angle response of the LADs have been studied. These effects are shown to be more significant than previously assumed. The LAD entrance window included layers of an aluminum-epoxy composite (hexel) that acted as a collimator for the lowest energy photons entering the detector just above threshold (20-50 keV). Simplifying assumptions made concerning the entrance window materials and the angular response at incident angles near normal to the detector face in the original BATSE response matrix formalism had little effect on {gamma}-ray burst measurements; however, these assumptions created serious errors in measured fluxes of galactic sources, whose emission is strongest near the LAD energy threshold. Careful measurements of the angular and low-energy dependence of the attenuation due to the hexel plates only partially improved the response. A systematic study of Crab Nebula spectra showed the need for additional corrections: an angular-dependent correction for all detectors and an angular-independent correction for each detector. These corrections have been applied as part of an overall energy and angular-dependent correction to the BATSE response matrices.

  19. Supernova pointing with low- and high-energy neutrino detectors

    CERN Document Server

    Tomás, R; Raffelt, Georg G; Kachelriess, M; Dighe, Amol S

    2003-01-01

    A future galactic SN can be located several hours before the optical explosion through the MeV-neutrino burst, exploiting the directionality of $nu$-$e$-scattering in a water Cherenkov detector such as Super-Kamiokande. We study the statistical efficiency of different methods for extracting the SN direction and identify a simple approach that is nearly optimal, yet independent of the exact SN neutrino spectra. We use this method to quantify the increase in the pointing accuracy by the addition of gadolinium to water, which tags neutrons from the inverse beta decay background. We also study the dependence of the pointing accuracy on neutrino mixing scenarios and initial spectra. We find that in the ``worst case'' scenario the pointing accuracy is $8^circ$ at 95% C.L. in the absence of tagging, which improves to $3^circ$ with a tagging efficiency of 95%. At a megaton detector, this accuracy can be as good as $0.6^circ$. A TeV-neutrino burst is also expected to be emitted contemporaneously with the SN optical ex...

  20. Improvement of the sensitivity of CdTe detectors in the high energy regions

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, Hiroshi; Ikegami, Kazunori; Takashima, Kazuo; Usami, Teruo [Mitsubishi Electric Corp., Tokyo (Japan); Yamamoto, Takayoshi

    1996-07-01

    In order to improve the efficiency of the full energy peak in the high energy regions, we had previously suggested a multi-layered structure of CdTe elements and have since confirmed the sensitivity improvement of the full energy peak. And furthermore, we have suggested a new type structure of multi-layered elements in this paper and we confirmed that the efficiency of the full energy peak became higher and that more proper energy spectra were obtained by our current experiment than by the detector with the conventional structure. This paper describes a simulation and experiment to improve the efficiency of the full energy peak and to obtain the more proper energy spectra of {sup 137}Cs (662keV) and {sup 60}Co (1.17 and 1.33MeV) using the new structure of CdTe detector. (J.P.N.)

  1. Numerical investigation of steady-state thermal behavior of an infrared detector cryo chamber

    Directory of Open Access Journals (Sweden)

    Singhal Mayank

    2017-01-01

    Full Text Available An infrared (IR detector is simply a transducer of radiant energy, converting radiant energy into a measurable form. Since radiation does not rely on visible light, it offers the possibility of seeing in the dark or through obscured conditions, by detecting the IR energy emitted by objects. One of the prime applications of IR detector systems for military use is in target acquisition and tracking of projectile systems. The IR detectors also have great potential in commercial market. Typically, IR detectors perform best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes makes the application of IR detectors extremely complex. Further, prior to proceeding on to a full blown transient thermal analysis it is worthwhile to perform a steady-state numerical analysis for ascertaining the effect of variation in viz., material, gas conduction coefficient, h, emissivity, ε, on the temperature profile along the cryo chamber length. This would enable understanding the interaction between the cryo chamber and its environment. Hence, the present work focuses on the development of steady-state numerical models for thermal analysis of IR cryo chamber using MATLAB. The numerical results show that gas conduction coefficient has marked influence on the temperature profile of the cryo chamber whereas the emissivity has a weak effect. The experimental validation of numerical results has also been presented.

  2. Energy response of detectors to alpha/beta particles and compatibility of the equivalent factors

    International Nuclear Information System (INIS)

    Lin Bingxing; Li Guangxian; Lin Lixiong

    2011-01-01

    By measuring detect efficiency and equivalent factors of alpha/beta radiation with different energies on three types of detectors, this paper compares compatibility of their equivalent factors and discusses applicability of detectors to measuring total alpha/beta radiation. The result shows the relationship between efficiency of alpha/beta radiation and their energies on 3 types of detectors, such as scintillation and proportional and semiconductor counters, are overall identical. Alpha count efficiency display exponential relation with alpha-particle energy. While beta count efficiency display logarithm relation with beta-particle energy, but the curves appears deflection at low energy. Comparison test of energy response also shows that alpha and beta equivalent factors of scintillation and proportional counters have a good compatibility, and alpha equivalent factors of the semiconductor counters are in good agreement with those of the above two types of counters, but beta equivalent factors have obvious difference, or equivalent factors of low energy beta-particle are lower than those of other detectors. So, the semiconductor counter can not be used for measuring total radioactivity or for the measurements for the purpose of food safety. (authors)

  3. Nuclear-Recoil Energy Scale in CDMS II Silicon Dark-Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; et al.

    2018-03-07

    The Cryogenic Dark Matter Search (CDMS II) experiment aims to detect dark matter particles that elastically scatter from nuclei in semiconductor detectors. The resulting nuclear-recoil energy depositions are detected by ionization and phonon sensors. Neutrons produce a similar spectrum of low-energy nuclear recoils in such detectors, while most other backgrounds produce electron recoils. The absolute energy scale for nuclear recoils is necessary to interpret results correctly. The energy scale can be determined in CDMS II silicon detectors using neutrons incident from a broad-spectrum $^{252}$Cf source, taking advantage of a prominent resonance in the neutron elastic scattering cross section of silicon at a recoil (neutron) energy near 20 (182) keV. Results indicate that the phonon collection efficiency for nuclear recoils is $4.8^{+0.7}_{-0.9}$% lower than for electron recoils of the same energy. Comparisons of the ionization signals for nuclear recoils to those measured previously by other groups at higher electric fields indicate that the ionization collection efficiency for CDMS II silicon detectors operated at $\\sim$4 V/cm is consistent with 100% for nuclear recoils below 20 keV and gradually decreases for larger energies to $\\sim$75% at 100 keV. The impact of these measurements on previously published CDMS II silicon results is small.

  4. Development of a fragment detector system for the study of peripheral collisions at high beam energies

    International Nuclear Information System (INIS)

    Spies, H.

    1992-06-01

    In the framework of the experimental program at the accelerator facilities SIS/ESR of the Society for Heavy-Ion research in Darmstadt one of the essential research aims of the LAND collaboration is the study of high-lying collective states after electromagnetic excitation in heavy-ion collisions at nearly relativistic beam energies. By the exchange of virtual photons with high energy giant resonances are excited with high probabilities. The main decay channel of giant resonances in heavy nuclei is the emission of neutrons as well as below the particle threshold the emission of γ radiation. For the study of these states a detector system was developed, which makes the kinematically complete measurement of all reaction partners possible. For the determination of the neutron energy serves the Large Area Neutron Detector LAND, a time-of-flight spectrometer for high-energetic neutrons. For the measurement of the γ radiation emitted by the excited projectile the target is surrounded by an array of 48 BaF 2 crystals. A radiation detector system consisting of 6 single detectors and further 5 help detectors allows together with the magnetic spectrometer ALADIN the identification of the heavy projectile fragments by charge, momentum, and mass. Four position-sensitive plastic scintillators serve for the measurement of the trajectory of the projectile respectively the projectile fragments in front and behind the deviating magnet. Additionally with these detectors the velocity is measured. For the determination of the nuclear charge of the projectile fragments serve a multiple-ionization chamber and a Cherenkov detector. In this thesis the development and taking into operation of the LAND radiation detector system is described. (orig./HSI) [de

  5. Radiant non-catalytic recuperative reformer

    Energy Technology Data Exchange (ETDEWEB)

    Khinkis, Mark J.; Kozlov, Aleksandr P.

    2017-10-31

    A radiant, non-catalytic recuperative reformer has a flue gas flow path for conducting hot exhaust gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is positioned adjacent to the flue gas flow path to permit heat transfer from the hot exhaust gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, a portion of the reforming mixture flow path is positioned outside of flue gas flow path for a relatively large residence time.

  6. Diamond particle detectors systems in high energy physics

    CERN Document Server

    Gan, Kock Kiam

    2015-01-01

    The measurement of luminosity at the Large Hadron Collider (LHC) using diamond detect or s has matured from devices based on a rather large pads to highly granular pixelated device s . The ATLAS experiment has recently installed a diamond pixel detector, the Diamond Beam Monitor (DBM), to measure the luminosity in the upgraded LHC with higher instantaneous luminosity. Polycrystalline diamonds were used to fabricate the diamond pixel modules. The design , production, and test beam result s are described. CMS also has a similar plan to construct a diamond based luminosity monitor, the Pixel Luminos ity Telescope s (PLT) . In a pilot run using single crystal diamond, the pulse height was found to depend on the luminosity . Consequently the collaboration decided to use silicon instead due to time constrain ts .

  7. Measurement of β-decay end point energy with planar HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, T., E-mail: btumpa@vecc.gov.in [Physics Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Pandit, Deepak [Physics Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Das, S.K. [RCD-BARC, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Chowdhury, A.; Das, P. [Physics Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Banerjee, D. [RCD-BARC, Variable Energy Cyclotron Centre, Kolkata 700 064 (India); Saha, A.; Mukhopadhyay, S.; Pal, S.; Banerjee, S.R. [Physics Group, Variable Energy Cyclotron Centre, Kolkata 700 064 (India)

    2014-12-11

    The β–γ coincidence measurement has been performed with a segmented planar Hyper-Pure Germanium (HPGe) detector and a single coaxial HPGe detector to determine the end point energies of nuclear β-decays. The experimental end point energies have been determined for some of the known β-decays in {sup 106}Rh→{sup 106}Pd. The end point energies corresponding to three weak branches in {sup 106}Rh→{sup 106}Pd decay have been measured for the first time. The γ ray and β particle responses for the planar HPGe detector were simulated using the Monte Carlo based code GEANT3. The experimentally obtained β spectra were successfully reproduced with the simulation.

  8. The color of X-rays: Spectral X-ray computed tomography using energy sensitive pixel detectors

    NARCIS (Netherlands)

    Schioppa, E.J.

    2014-01-01

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray

  9. Si(Li) detectors with thin dead layers for low energy x-ray detection

    International Nuclear Information System (INIS)

    Rossington, C.S.; Walton, J.T.; Jaklevic, J.M.

    1990-10-01

    Regions of incomplete charge collection, or ''dead layers'', are compared for Si(Li) detectors fabricated with Au and Pd entrance window electrodes. The dead layers were measured by characterizing the detector spectral response to x-ray energies above and below the Si Kα absorption edge. It was found that Si(Li) detectors with Pd electrodes exhibit consistently thinner effective Si dead layers than those with Au electrodes. Furthermore, it is demonstrated that the minimum thickness required for low resistivity Pd electrodes is thinner than that required for low resistivity Au electrodes, which further reduces the signal attenuation in Pd/Si(Li) detectors. A model, based on Pd compensation of oxygen vacancies in the SiO 2 at the entrance window Si(Li) surface, is proposed to explain the observed differences in detector dead layer thickness. Electrode structures for optimum Si(Li) detector performance at low x-ray energies are discussed. 18 refs., 8 figs., 1 tab

  10. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  11. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    International Nuclear Information System (INIS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-01-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  12. Output characteristics of piezoelectric lead zirconate titanate detector using high-energy heavy-ion beam

    International Nuclear Information System (INIS)

    Takechi, Seiji; Sekiguchi, Masahiro; Miyachi, Takashi; Kobayashi, Masanori; Hattori, Maki; Okudaira, Osamu; Shibata, Hiromi; Fujii, Masayuki; Okada, Nagaya; Murakami, Takeshi; Uchihori, Yukio

    2014-01-01

    A radiation detector fabricated using piezoelectric lead zirconate titanate (PZT) has been studied by irradiating it with a 400 MeV/n xenon (Xe) beam. The beam diameter was controlled to change the irradiation conditions. It was found that the magnitude of the output observed from the PZT detector may be related to the number of Xe ions per unit area per unit time within the limits of the experimental conditions. -- Highlights: • The performance of PZT detector was studied by irradiation of a 400 MeV/n Xe beam. • The beam diameter was controlled to change the irradiation conditions. • By the control, the number of Xe ions per one pulse was changed from ∼500 to ∼1500. • The output of the PZT detector was not always larger with more intense beam. • The energy of Xe ions per unit area per unit time may determine the output

  13. Magnetic Microcalorimeter (MMC) Gamma Detectors with Ultra-High Energy Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Stephen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-19

    The goal of this LCP is to develop ultra-high resolution gamma detectors based on magnetic microcalorimeters (MMCs) for accurate non-destructive analysis (NDA) of nuclear materials. For highest energy resolution, we will introduce erbium-doped silver (Ag:Er) as a novel sensor material, and implement several geometry and design changes to improve the signal-to-noise ratio. The detector sensitivity will be increased by developing arrays of 32 Ag:Er pixels read out by 16 SQUID preamplifiers, and by developing a cryogenic Compton veto to reduce the spectral background. Since best MMC performance requires detector operation at ~10 mK, we will purchase a dilution refrigerator with a base temperature <10 mK and adapt it for MMC operation. The detector performance will be tested with radioactive sources of interest to the safeguards community.

  14. A Fast Event Preprocessor and Sequencer for the Simbol-X Low Energy Detector

    Science.gov (United States)

    Schanz, T.; Tenzer, C.; Maier, D.; Kendziorra, E.; Santangelo, A.

    2009-05-01

    The Simbol-X Low Energy Detector (LED), a 128×128 pixel DEPFET (Depleted Field Effect Transistor) array, will be read out at a very high rate (8000 frames/second) and, therefore, requires a very fast on board electronics. We present an FPGA-based LED camera electronics consisting of an Event Preprocessor (EPP) for on board data preprocessing and filtering of the Simbol-X low-energy detector and a related Sequencer (SEQ) to generate the necessary signals to control the readout.

  15. A Fast Event Preprocessor and Sequencer for the Simbol-X Low Energy Detector

    International Nuclear Information System (INIS)

    Schanz, T.; Tenzer, C.; Maier, D.; Kendziorra, E.; Santangelo, A.

    2009-01-01

    The Simbol-X Low Energy Detector (LED), a 128x128 pixel DEPFET (Depleted Field Effect Transistor) array, will be read out at a very high rate (8000 frames/second) and, therefore, requires a very fast on board electronics. We present an FPGA-based LED camera electronics consisting of an Event Preprocessor (EPP) for on board data preprocessing and filtering of the Simbol-X low-energy detector and a related Sequencer (SEQ) to generate the necessary signals to control the readout.

  16. The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer

    International Nuclear Information System (INIS)

    Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N.J.; Schooneveld, E.M.

    2008-01-01

    The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10A -1 . This opens a still unexplored region of the kinematical (q,ω) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure

  17. The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Perelli Cippo, E.; Gorini, G.; Tardocchi, M. [Dipartimento di Fisica ' G. Occhialini' , Universita degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Pietropaolo, A. [Dipartimento di Fisica ' G. Occhialini' , CNISM-Universita degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); NAST Center - Nanoscienze-Nanotecnologie-Strumentazione, Universita degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy)], E-mail: antonino.pietropaolo@mib.infn.it; Andreani, C.; Senesi, R. [Dipartimento di Fisica and Centro NAST - Nanoscienze-Nanotecnologie-Strumentazione, Universita degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Roma (Italy); Rhodes, N.J.; Schooneveld, E.M. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire 0QX OX11 (United Kingdom)

    2008-05-01

    The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10A{sup -1}. This opens a still unexplored region of the kinematical (q,{omega}) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure.

  18. The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer

    Science.gov (United States)

    Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N. J.; Schooneveld, E. M.

    2008-05-01

    The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10Å-1. This opens a still unexplored region of the kinematical (q, ω) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure.

  19. Real-time adaptive spectrum sensing for cyclostationary and energy detectors

    DEFF Research Database (Denmark)

    Ivanov, Antoni; Mihovska, Albena; Tonchev, Krasimir

    2018-01-01

    In this article, we explore the details of some practical implementations of energy and cyclostationary detectors, which take into account the specific radio channel impairments (like noise uncertainty and fading), using the Universal Radio Serial Peripheral (USRP) hardware platform and the GNU...... Radio software. Both of these methods have straightforward analytical definitions and do not differ much in terms of implementational complexity. The energy detection method is known to be computationally light but lacking efficiency in very low SNRs. The cyclostationary detector has, in general...

  20. Miniaturization of high-energy physics detectors. Vol. 14

    International Nuclear Information System (INIS)

    Stefanini, A.

    1983-01-01

    Continued experimental research in high-energy physics requires the reduction in size and cost of the advanced technical equipment involved. A new technology is rapidly evolving that promises to replace today's massive high-energy physics instruments--which may be composed of several thousand tons of sensitive parts--with miniaturized equivalents. Smaller, less expensive apparatus would create more opportunities for research worldwide, and many types of experiments now considered impractical could then be carried out. Scientists and engineers from many countries have contributed to this volume to provide a broad panorama of the new miniaturization technology in high-energy physics. They describe a wide range of new instruments and their applications, discuss limitations and technological problems, and explore the connections between technology and progress in the field of high-energy physics

  1. Characterization of Compton-suppressed TIGRESS detectors for high energy gamma-rays

    International Nuclear Information System (INIS)

    Kshetri, R.; Andreoiu, C.; Cross, D.S.; Galinski, N.; Ball, G.C.; Djongolov, M.; Garnsworthy, A.B.; Hackman, G.; Orce, J.N.; Pearson, C.; Triambak, S.; Williams, S.J.; Drake, T.; Smalley, D.; Svensson, C.E.

    2009-01-01

    The TRIUMF-ISAC Gamma-Ray Escape- Suppressed Spectrometer (TIGRESS) will consist of 12 large-volume, 32-fold segmented HPGe clover detectors. Each detector is shielded by a 20-fold segmented Compton suppression shield. For performing discrete gamma-ray spectroscopy of light mass nuclei with TIGRESS, we need information about full energy peak efficiency, resolution and lineshape of full energy peaks for high energy gamma-rays. However, suitable radioactive sources having decay gamma-rays of energies greater than ∼ 3.5 MeV are not easily available. So the characteristics of gamma spectrometers at energies higher than 3.5 MeV are usually determined from simulation data. Predictions from GEANT4 simulations (experimentally validated from 0.3 to 3 MeV) indicate that TIGRESS will be capable for single 10 MeV gamma-rays of absolute detection efficiency of 1.5% for backward configuration of the array. It has been observed experimentally that simulation results work well up to certain energies and might deviate at higher energies. So, it is essential to check the validity of simulation results for energies above 3.3 MeV. We have investigated the high energy performance of seven TIGRESS detectors up to 8 MeV

  2. Crosstalk corrections for improved energy resolution with highly segmented HPGe-detectors

    International Nuclear Information System (INIS)

    Bruyneel, Bart; Reiter, Peter; Wiens, Andreas; Eberth, Juergen; Hess, Herbert; Pascovici, Gheorghe; Warr, Nigel; Aydin, Sezgin; Bazzacco, Dino; Recchia, Francesco

    2009-01-01

    Crosstalk effects of 36-fold segmented, large volume AGATA HPGe detectors cause shifts in the γ-ray energy measured by the inner core and outer segments as function of segment multiplicity. The positions of the segment sum energy peaks vary approximately linearly with increasing segment multiplicity. The resolution of these peaks deteriorates also linearly as a function of segment multiplicity. Based on single event treatment, two methods were developed in the AGATA Collaboration to correct for the crosstalk induced effects by employing a linear transformation. The matrix elements are deduced from coincidence measurements of γ-rays of various energies as recorded with digital electronics. A very efficient way to determine the matrix elements is obtained by measuring the base line shifts of untriggered segments using γ-ray detection events in which energy is deposited in a single segment. A second approach is based on measuring segment energy values for γ-ray interaction events in which energy is deposited in only two segments. After performing crosstalk corrections, the investigated detector shows a good fit between the core energy and the segment sum energy at all multiplicities and an improved energy resolution of the segment sum energy peaks. The corrected core energy resolution equals the segment sum energy resolution which is superior at all folds compared to the individual uncorrected energy resolutions. This is achieved by combining the two independent energy measurements with the core contact on the one hand and the segment contacts on the other hand.

  3. Wearable Fall Detector using Integrated Sensors and Energy Devices

    OpenAIRE

    Sungmook Jung; Seungki Hong; Jaemin Kim; Sangkyu Lee; Taeghwan Hyeon; Minbaek Lee; Dae-Hyeong Kim

    2015-01-01

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction wi...

  4. A novel transition radiation detector utilizing superconducting microspheres for measuring the energy of relativistic high-energy charged particles

    International Nuclear Information System (INIS)

    Yuan, Luke C.L.; Chen, C.P.; Huang, C.Y.; Lee, S.C.; Waysand, G.; Perrier, P.; Limagne, D.; Jeudy, V.; Girard, T.

    2000-01-01

    A novel transition radiation detector (TRD) utilizing superheated superconducting microspheres of tin of 22-26, 27-32 and 32-38 μm in diameter, respectively, has been constructed which is capable of measuring accurately the energy of relativistic high-energy charged particles. The test has been conducted in a high-energy electron beam facility at the CERN PS in the energy range of 1-10 GeV showing an energy dependence of the TR X-ray photon produced and hence the value γ=E/mc 2 of the charged particle

  5. Improved fission neutron energy discrimination with {sup 4}He detectors through pulse filtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ting, E-mail: ting.zhu@ufl.edu [University of Florida, Gainesville, FL (United States); Liang, Yinong; Rolison, Lucas; Barker, Cathleen; Lewis, Jason; Gokhale, Sasmit [University of Florida, Gainesville, FL (United States); Chandra, Rico [Arktis Radiation Detectors Ltd., Räffelstrasse 11, Zürich (Switzerland); Kiff, Scott [Sandia National Laboratories, CA (United States); Chung, Heejun [Korean Institute for Nuclear Nonproliferation and Control, 1534 Yuseong-daero, Yuseong-gu, Daejeon (Korea, Republic of); Ray, Heather; Baciak, James E.; Enqvist, Andreas; Jordan, Kelly A. [University of Florida, Gainesville, FL (United States)

    2017-03-11

    This paper presents experimental and computational techniques implemented for {sup 4}He gas scintillation detectors for induced fission neutron detection. Fission neutrons are produced when natural uranium samples are actively interrogated by 2.45 MeV deuterium-deuterium fusion reaction neutrons. Fission neutrons of energies greater than 2.45 MeV can be distinguished by their different scintillation pulse height spectra since {sup 4}He detectors retain incident fast neutron energy information. To enable the preferential detection of fast neutrons up to 10 MeV and suppress low-energy event counts, the detector photomultiplier gain is lowered and trigger threshold is increased. Pile-up and other unreliable events due to the interrogating neutron flux and background radiation are filtered out prior to the evaluation of pulse height spectra. With these problem-specific calibrations and data processing, the {sup 4}He detector's accuracy at discriminating fission neutrons up to 10 MeV is improved and verified with {sup 252}Cf spontaneous fission neutrons. Given the {sup 4}He detector's ability to differentiate fast neutron sources, this proof-of-concept active-interrogation measurement demonstrates the potential of special nuclear materials detection using a {sup 4}He fast neutron detection system.

  6. A theoretical investigation of spectra utilization for a CMOS based indirect detector for dual energy applications

    International Nuclear Information System (INIS)

    Kalyvas, N; Michail, C; Valais, I; Kandarakis, I; Fountos, G; Martini, N; Koukou, V; Sotiropoulou, P

    2015-01-01

    Dual Energy imaging is a promising method for visualizing masses and microcalcifications in digital mammography. Currently commercially available detectors may be suitable for dual energy mammographic applications. The scope of this work was to theoretically examine the performance of the Radeye CMOS digital indirect detector under three low- and high-energy spectral pairs. The detector was modeled through the linear system theory. The pixel size was equal to 22.5μm and the phosphor material of the detector was a 33.9 mg/cm 2 Gd 2 O 2 S:Tb phosphor screen. The examined spectral pairs were (i) a 40kV W/Ag (0.01cm) and a 70kV W/Cu (0.1cm) target/filter combinations, (ii) a 40kV W/Cd (0.013cm) and a 70kV W/Cu (0.1cm) target/filter combinations and (iii) a 40kV W/Pd (0.008cm) and a 70kV W/Cu (0.1cm) target/filter combinations. For each combination the Detective Quantum Efficiency (DQE), showing the signal to noise ratio transfer, the detector optical gain (DOG), showing the sensitivity of the detector and the coefficient of variation (CV) of the detector output signal were calculated. The second combination exhibited slightly higher DOG (326 photons per X-ray) and lower CV (0.755%) values. In terms of electron output from the RadEye CMOS, the first two combinations demonstrated comparable DQE values; however the second combination provided an increase of 6.5% in the electron output. (paper)

  7. Energy Reconstruction for Events Detected in TES X-ray Detectors

    Science.gov (United States)

    Ceballos, M. T.; Cardiel, N.; Cobo, B.

    2015-09-01

    The processing of the X-ray events detected by a TES (Transition Edge Sensor) device (such as the one that will be proposed in the ESA AO call for instruments for the Athena mission (Nandra et al. 2013) as a high spectral resolution instrument, X-IFU (Barret et al. 2013)), is a several step procedure that starts with the detection of the current pulses in a noisy signal and ends up with their energy reconstruction. For this last stage, an energy calibration process is required to convert the pseudo energies measured in the detector to the real energies of the incoming photons, accounting for possible nonlinearity effects in the detector. We present the details of the energy calibration algorithm we implemented as the last part of the Event Processing software that we are developing for the X-IFU instrument, that permits the calculation of the calibration constants in an analytical way.

  8. THE COSMIC-RAY ENERGY SPECTRUM OBSERVED WITH THE SURFACE DETECTOR OF THE TELESCOPE ARRAY EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Zayyad, T.; Allen, M.; Anderson, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Hanlon, W. [High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah (United States); Aida, R. [University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi (Japan); Azuma, R.; Fukuda, T. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo (Japan); Cheon, B. G.; Cho, E. J. [Department of Physics and Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Chiba, J. [Department of Physics, Tokyo University of Science, Noda, Chiba (Japan); Chikawa, M. [Department of Physics, Kinki University, Higashi Osaka, Osaka (Japan); Cho, W. R. [Department of Physics, Yonsei University, Seodaemun-gu, Seoul (Korea, Republic of); Fujii, H. [Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki (Japan); Fujii, T. [Graduate School of Science, Osaka City University, Osaka, Osaka (Japan); Fukushima, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); and others

    2013-05-01

    The Telescope Array (TA) collaboration has measured the energy spectrum of ultra-high energy cosmic rays (UHECRs) with primary energies above 1.6 Multiplication-Sign 10{sup 18} eV. This measurement is based upon four years of observation by the surface detector component of TA. The spectrum shows a dip at an energy of 4.6 Multiplication-Sign 10{sup 18} eV and a steepening at 5.4 Multiplication-Sign 10{sup 19} eV which is consistent with the expectation from the GZK cutoff. We present the results of a technique, new to the analysis of UHECR surface detector data, that involves generating a complete simulation of UHECRs striking the TA surface detector. The procedure starts with shower simulations using the CORSIKA Monte Carlo program where we have solved the problems caused by use of the ''thinning'' approximation. This simulation method allows us to make an accurate calculation of the acceptance of the detector for the energies concerned.

  9. Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Horii, Yasuyuki; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonhardt, Kathrin; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Struebig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-10-01

    This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb$^{-1}$ of LHC proton--proton collision data taken at centre-of-mass energies of $\\sqrt{s}$ = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the $Z$ resonance is used to set the absolute energy scale. For electrons from $Z$ decays, the achieved calibration is typically accurate to 0.05% in most of the detector acceptance, rising to 0.2% in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2-1% for electrons with a transverse energy of 10 GeV, and is on average 0.3% for photons. The detector resolution is determined with a relative in...

  10. Numerical analysis of diffuse ceiling ventilation and its integration with a radiant ceiling system

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per Kvols; Chen, Qingyan

    2017-01-01

    A novel system combining diffuse ceiling ventilation and radiant ceiling was proposed recently, with the aim of providing energy efficient and comfort environment to office buildings. Designing of such a system is challenging because of complex interactions between the two subsystems and a large ......-uniformity air distribution and further led to the draught problem in the occupied zone. This system was recommended to apply in the small offices instead of large, open spaces....

  11. Real-time energy detector for relativistic charged particles

    International Nuclear Information System (INIS)

    Piestrup, A.

    1988-01-01

    The objective of the research is to investigate the use of coherent transition radiation to measure the energy of ultra-relativistic charged particles. The research has possible applications for the detection and identification of these particles. It can also be used for beam diagnostics for both high-repetition-rate and single-pulse, high-current accelerators. The device is low cost and can operate in situ while causing little or no perturbation to the beam. Three such coherent radiators have been constructed and tested at two accelerators using electron beam energies ranging from 50 to 228 MeV. Soft x-ray emission (1 keV to 4 keV) was emitted in a circularly symmetrical annulus with half-angle divergence of 2.5 to 9.0 mr. By selecting foil thickness and spacing, it is possible to design radiators whose angle of emission varies radically over a range of charge-particle energies

  12. Experiments and detectors for high energy heavy ion colliders

    Energy Technology Data Exchange (ETDEWEB)

    Ludlam, T.

    1984-01-01

    Problems and possibilities are discussed for experiments at the highest collision energies achievable in man-made accelerators; i.e., colliding beams of heavy nuclei at cm energies greater than or equal to 100 GeV/amu, well beyond the threshold of nuclear transparency. Here the final state consists of two hot, dense, baryon-rich fireballs flying away from each other at large rapidity (the fragmentation regions), and thermally-produced particles with near-zero net baryon number populating the central rapidity range. The matter produced at central rapidity (the lab frame for a collider) may reach extremely high temperatures and energy densities, and it is here that one expects to produce thermodynamic conditions similar to those which existed when the early universe condensed from a plasma of quarks and gluons to a gas of hadrons. The problem of tracking, lepton measurements, and calorimeters are discussed. (WHK)

  13. Characterization of Monoenergetic Low Energy Neutron Fields with the {mu}TPC Detector

    Energy Technology Data Exchange (ETDEWEB)

    Golabek, C.; Lebreton, L.; Petit, M. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Billard, J.; Grignon, C.; Bosson, G.; Bourrion, O.; Guillaudin, O.; Mayet, F.; Richer, J.-P.; Santos, D. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph (France)

    2011-12-13

    The AMANDE facility produces monoenergetic neutron fields from 2 keV to 20 MeV for metrological purposes. To be considered as a reference facility, fluence and energy distributions of neutron fields have to be determined by primary measurement standards. For this purpose, a micro Time Projection Chamber is being developed to be dedicated to measure neutron fields with energy ranging from 2 keV up to 1 MeV. We present simulations showing that such a detector, which allows the measurement of the ionization energy and the 3D reconstruction of the recoil nucleus, provides the determination of neutron energy and fluence of such low energy neutron fields.

  14. Determination of Proper Peaking Time for Ultra Lege detector at Medium Energies

    International Nuclear Information System (INIS)

    Karabidak, S. M.

    2008-01-01

    Reducing count losses and pile-up pulse effects in quantitative and qualitative analysis is necessary for accuracy of analysis. Therefore, the optimum peaking time for particular detector systems is important. For this purpose, pure Se and Zn elements were excited by 59.5 keV γ-rays from a 50 mCi 241 A m annular radioactive source in this study. The characteristic x-rays emitted from pure Se and Zn elements were detected by using an ultra low energy Ge (Ultra-LEGe) detector connecting Tennelec TC 244 spectroscopy amplifier at different peaking time modes. Overall pulse widths were determined by HM 203-7 oscilloscope connecting amplifier. The proper peaking time for ultra low energy germanium detector (Ultra-LEGe) is determined about 4 μs

  15. Directional gamma sensing from covariance processing of inter-detector Compton crosstalk energy asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Trainham, R., E-mail: trainhcp@nv.doe.gov; Tinsley, J. [Special Technologies Laboratory of National Security Technologies, LLC, 5520 Ekwill Street, Santa Barbara, California 93111 (United States)

    2014-06-15

    Energy asymmetry of inter-detector crosstalk from Compton scattering can be exploited to infer the direction to a gamma source. A covariance approach extracts the correlated crosstalk from data streams to estimate matched signals from Compton gammas split over two detectors. On a covariance map the signal appears as an asymmetric cross diagonal band with axes intercepts at the full photo-peak energy of the original gamma. The asymmetry of the crosstalk band can be processed to determine the direction to the radiation source. The technique does not require detector shadowing, masking, or coded apertures, thus sensitivity is not sacrificed to obtain the directional information. An angular precision of better than 1° of arc is possible, and processing of data streams can be done in real time with very modest computing hardware.

  16. Wearable Fall Detector using Integrated Sensors and Energy Devices

    Science.gov (United States)

    Jung, Sungmook; Hong, Seungki; Kim, Jaemin; Lee, Sangkyu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2015-11-01

    Wearable devices have attracted great attentions as next-generation electronic devices. For the comfortable, portable, and easy-to-use system platform in wearable electronics, a key requirement is to replace conventional bulky and rigid energy devices into thin and deformable ones accompanying the capability of long-term energy supply. Here, we demonstrate a wearable fall detection system composed of a wristband-type deformable triboelectric generator and lithium ion battery in conjunction with integrated sensors, controllers, and wireless units. A stretchable conductive nylon is used as electrodes of the triboelectric generator and the interconnection between battery cells. Ethoxylated polyethylenimine, coated on the surface of the conductive nylon electrode, tunes the work function of a triboelectric generator and maximizes its performance. The electrical energy harvested from the triboelectric generator through human body motions continuously recharges the stretchable battery and prolongs hours of its use. The integrated energy supply system runs the 3-axis accelerometer and related electronics that record human body motions and send the data wirelessly. Upon the unexpected fall occurring, a custom-made software discriminates the fall signal and an emergency alert is immediately sent to an external mobile device. This wearable fall detection system would provide new opportunities in the mobile electronics and wearable healthcare.

  17. The TUS Detector of Extreme Energy Cosmic Rays on Board the Lomonosov Satellite

    Science.gov (United States)

    Klimov, P. A.; Panasyuk, M. I.; Khrenov, B. A.; Garipov, G. K.; Kalmykov, N. N.; Petrov, V. L.; Sharakin, S. A.; Shirokov, A. V.; Yashin, I. V.; Zotov, M. Y.; Biktemerova, S. V.; Grinyuk, A. A.; Grebenyuk, V. M.; Lavrova, M. V.; Tkachev, L. G.; Tkachenko, A. V.; Park, I. H.; Lee, J.; Jeong, S.; Martinez, O.; Salazar, H.; Ponce, E.; Saprykin, O. A.; Botvinko, A. A.; Senkovsky, A. N.; Puchkov, A. E.

    2017-11-01

    The origin and nature of extreme energy cosmic rays (EECRs), which have energies above the 5\\cdot10^{19} eV—the Greisen-Zatsepin-Kuzmin (GZK) energy limit, is one of the most interesting and complicated problems in modern cosmic-ray physics. Existing ground-based detectors have helped to obtain remarkable results in studying cosmic rays before and after the GZK limit, but have also produced some contradictions in our understanding of cosmic ray mass composition. Moreover, each of these detectors covers only a part of the celestial sphere, which poses problems for studying the arrival directions of EECRs and identifying their sources. As a new generation of EECR space detectors, TUS (Tracking Ultraviolet Set-up), KLYPVE and JEM-EUSO, are intended to study the most energetic cosmic-ray particles, providing larger, uniform exposures of the entire celestial sphere. The TUS detector, launched on board the Lomonosov satellite on April 28, 2016 from Vostochny Cosmodrome in Russia, is the first of these. It employs a single-mirror optical system and a photomultiplier tube matrix as a photo-detector and will test the fluorescent method of measuring EECRs from space. Utilizing the Earth's atmosphere as a huge calorimeter, it is expected to detect EECRs with energies above 10^{20} eV. It will also be able to register slower atmospheric transient events: atmospheric fluorescence in electrical discharges of various types including precipitating electrons escaping the magnetosphere and from the radiation of meteors passing through the atmosphere. We describe the design of the TUS detector and present results of different ground-based tests and simulations.

  18. Evaluation of signal energy calculation methods for a light-sharing SiPM-based PET detector

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qingyang [School of Automation and Electrical Engineering, University of Science & Technology Beijing, Beijing 100083 (China); Beijing Engineering Research Center of Industrial Spectrum Imaging, University of Science and Technology Beijing, Beijing 100083 (China); Ma, Tianyu; Xu, Tianpeng; Liu, Yaqiang; Wang, Shi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Gu, Yu, E-mail: guyu@ustb.edu.cn [School of Automation and Electrical Engineering, University of Science & Technology Beijing, Beijing 100083 (China)

    2017-03-11

    Signals of a light-sharing positron emission tomography (PET) detector are commonly multiplexed to three analog pulses (E, X, and Y) and then digitally sampled. From this procedure, the signal energy that are critical to detector performance are obtained. In this paper, different signal energy calculation strategies for a self-developed SiPM-based PET detector, including pulse height and different integration methods, are evaluated in terms of energy resolution and spread of the crystal response in the flood histogram using a root-mean-squared (RMS) index. Results show that integrations outperform the pulse height. Integration using the maximum derivative value of the pulse E as the landmark point and 28 integrated points (448 ns) has the best performance in these evaluated methods for our detector. Detector performance in terms of energy and position is improved with this integration method. The proposed methodology is expected to be applicable for other light-sharing PET detectors.

  19. Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection

    International Nuclear Information System (INIS)

    Cardani, L.; Colantoni, I.; Coppolecchia, A.; Cruciani, A.; Vignati, M.; Bellini, F.; Casali, N.; Cosmelli, C.; Di Domizio, S.; Castellano, M. G.; Tomei, C.

    2015-01-01

    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm 2 are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2 × 2 cm 2 silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σ E  = 154 ± 7 eV and an (18 ± 2)% efficiency

  20. Energy resolution and efficiency of phonon-mediated kinetic inductance detectors for light detection

    Energy Technology Data Exchange (ETDEWEB)

    Cardani, L., E-mail: laura.cardani@roma1.infn.it [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Physics Department, Princeton University, Washington Road, 08544, Princeton, New Jersey (United States); Colantoni, I.; Coppolecchia, A. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Cruciani, A.; Vignati, M.; Bellini, F.; Casali, N.; Cosmelli, C. [Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); INFN - Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy); Di Domizio, S. [Dipartimento di Fisica, Università degli Studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Castellano, M. G. [Istituto di Fotonica e Nanotecnologie - CNR, Via Cineto Romano 42, 00156 Roma (Italy); Tomei, C. [INFN - Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma (Italy)

    2015-08-31

    The development of sensitive cryogenic light detectors is of primary interest for bolometric experiments searching for rare events like dark matter interactions or neutrino-less double beta decay. Thanks to their good energy resolution and the natural multiplexed read-out, Kinetic Inductance Detectors (KIDs) are particularly suitable for this purpose. To efficiently couple KIDs-based light detectors to the large crystals used by the most advanced bolometric detectors, active surfaces of several cm{sup 2} are needed. For this reason, we are developing phonon-mediated detectors. In this paper, we present the results obtained with a prototype consisting of four 40 nm thick aluminum resonators patterned on a 2 × 2 cm{sup 2} silicon chip, and calibrated with optical pulses and X-rays. The detector features a noise resolution σ{sub E} = 154 ± 7 eV and an (18 ± 2)% efficiency.

  1. Energy Calibration of the Pixels of Spectral X-ray Detectors

    CERN Document Server

    Panta, Raj Kumar; Bell, Stephen T; Anderson, Nigel G; Butler, Anthony P; Butler, Philip H

    2015-01-01

    The energy information acquired using spectral X-ray detectors allows noninvasive identification and characterization of chemical components of a material. To achieve this, it is important that the energy response of the detector is calibrated. The established techniques for energy calibration are not practical for routine use in pre-clinical or clinical research environment. This is due to the requirements of using monochromatic radiation sources such as synchrotron, radio-isotopes, and prohibitively long time needed to set up the equipment and make measurements. To address these limitations, we have developed an automated technique for calibrating the energy response of the pixels in a spectral X-ray detector that runs with minimal user intervention. This technique uses the X-ray tube voltage (kVp) as a reference energy, which is stepped through an energy range of interest. This technique locates the energy threshold where a pixel transitions from not-counting (off) to counting (on). Similarly, we have deve...

  2. Energy resolution and charge identification efficiency of muons in INO ICAL detector

    International Nuclear Information System (INIS)

    Behera, S.P.; Mohanty, A.K.; Datar, V.M.; Meghna, K.K.

    2013-01-01

    The motivation for the design of the Iron Calorimeter (ICAL) detector at the India based Neutrino Observatory (INO) is to make precise measurements of neutrino (ν) parameters using atmospheric νs. It is crucial to know the energy and direction of incoming νs

  3. A two-dimensional low energy gamma-ray position sensitive detector

    International Nuclear Information System (INIS)

    Charalambous, P.M.; Dean, A.J.; Drane, M.; Gil, A.; Stephen, J.B.; Young, N.G.S.; Barbareschi, L.; Perotti, F.; Villa, G.; Badiali, M.; La Padula, C.; Polcaro, F.; Ubertini, P.

    1984-01-01

    An array of 1-dimensional position sensitive detectors designed to operate over the photon energy range 0.2-10.0 MeV, so as to form an efficient 2-dimensional position sensitive detection plane is described. A series of experimental tests has been carried out to evaluate and confirm the computed capabilities. (orig.)

  4. Technology developments and first measurements of Low Gain Avalanche Detectors (LGAD) for high energy physics applications

    International Nuclear Information System (INIS)

    Pellegrini, G.; Fernández-Martínez, P.; Baselga, M.; Fleta, C.; Flores, D.; Greco, V; Hidalgo, S.; Mandić, I.; Kramberger, G.; Quirion, D.; Ullan, M.

    2014-01-01

    This paper introduces a new concept of silicon radiation detector with intrinsic multiplication of the charge, called Low Gain Avalanche Detector (LGAD). These new devices are based on the standard Avalanche Photo Diodes (APD) normally used for optical and X-ray detection applications. The main differences to standard APD detectors are the low gain requested to detect high energy charged particles, and the possibility to have fine segmentation pitches: this allows fabrication of microstrip or pixel devices which do not suffer from the limitations normally found [1] in avalanche detectors. In addition, a moderate multiplication value will allow the fabrication of thinner devices with the same output signal of standard thick substrates. The investigation of these detectors provides important indications on the ability of such modified electrode geometry to control and optimize the charge multiplication effect, in order to fully recover the collection efficiency of heavily irradiated silicon detectors, at reasonable bias voltage, compatible with the voltage feed limitation of the CERN High Luminosity Large Hadron Collider (HL-LHC) experiments [2]. For instance, the inner most pixel detector layers of the ATLAS tracker will be exposed to fluences up to 2×10 16 1 MeV n eq /cm 2 , while for the inner strip detector region fluences of 1×10 15 n eq /cm 2 are expected. The gain implemented in the non-irradiated devices must retain some effect also after irradiation, with a higher multiplication factor with respect to standard structures, in order to be used in harsh environments such those expected at collider experiments

  5. LET spectrometry with track etch detectors-Use in high-energy radiation fields

    International Nuclear Information System (INIS)

    Jadrnickova, I.; Spurny, F.

    2008-01-01

    For assessing the risk from ionizing radiation it is necessary to know not only the absorbed dose but also the quality of the radiation; radiation quality is connected with the physical quantity linear energy transfer (LET). One of the methods of determination of LET is based on chemically etched track detectors. This contribution concerns with a spectrometer of LET based on the track detectors and discusses some results obtained at: ·high-energy radiation reference field created at the SPS accelerator at CERN; and ·onboard of International Space Station where track-etch based LET spectrometer has been exposed 273 days during 'Matrjoshka - R' experiment. Results obtained are compared with the results of studies at some lower-energy neutron sources; some conclusions on the registrability of neutrons and the ability of this spectrometer to determine dose equivalent in high-energy radiation fields are formulated

  6. A coincidence-type ion-electron converter detector for low-energy protons

    International Nuclear Information System (INIS)

    Benka, O.; Weinzierl, P.; Dobrozemsky, R.; Stratowa, C.

    1981-04-01

    A coincidence type ion-electron converter detector has been developed and used - together with an electrostatic energy-analyser - for precision measurements of the energy distribution of recoil protons from free-neutron decay. The most important aspect of the development was, besides keeping the background below 0,2 counts/sec in the presence of a certain radiation background, to achieve a high and energy-independent counting probability for protons with energies between 100 and 1000 eV. With an acceleration voltage of about 25 kV and Al-foils (20 to 35 ug/cmsup2) as converter, we obtained counting efficiences of 70 to 85 percent. The design and performance of the detector system, employing six foils with different sensitive areas, are described and discussed in detail. (author)

  7. Scanning of irradiated silicon detectors using $\\alpha$ particles and low energy protons

    CERN Document Server

    Casse, G L; Glaser, M; Kohout, Z; Konícek, J; Lemeilleur, F; Leroy, C; Linhart, V; Mares, J J; Pospísil, S; Roy, P; Sopko, B; Sinor, M; Svejda, J; Vorobel, V; Wilhelm, I

    1999-01-01

    In a spectroscopic study of non-irradiated and proton-irradiated silicon diodes, the detectors were illuminated from the front side and from the rear side by various alpha particle sources (mainly ThC') and by monoenergetic protons with energies from 1.0 to 2.5~MeV. Their response characteristics have been studied as a function of the incoming particle energy and the applied bias voltage. The charge collection efficiency was determined as a function of fluence

  8. Systematic measurements of the gain and the energy resolution of single and double mask GEM detectors

    International Nuclear Information System (INIS)

    Biswas, S.; Schmidt, D.J.; Abuhoza, A.; Frankenfeld, U.; Garabatos, C.; Hehner, J.; Kleipa, V.; Morhardt, T.; Schmidt, C.J.; Schmidt, H.R.; Wiechula, J.

    2016-01-01

    Systematic studies on the gain and the energy resolution have been carried out by varying the voltage across the GEM foils for both single mask and double mask triple GEM detector prototypes. Variation of the gain and the energy resolution has also been measured by varying either the drift voltage, transfer voltage and induction voltage keeping other voltages constant. The results of the systematic measurements have been presented.

  9. A gamma-Ray spectrometer system for low energy photons by coupling two detectors

    International Nuclear Information System (INIS)

    Martinez, A.; Palomares, J.; Romero, L.; Travesi, A.

    1986-01-01

    This report describes the study performed to obtain a composite (sun uma) spectrum from a Low Energy Gamma Spectrometry System by coupling two planar Germanium detectors. This disposition allows to obtain a high counting efficiency for the total system. It shows the improvement achieved by the synthetic spectrum which is obtained by adding the two original spectra through the LULEPS code. This code corrects the differences (channel/energy) between both two spectra before performing the addition. (Author) 6 refs

  10. Error analysis of thermocouple measurements in the Radiant Heat Facility

    International Nuclear Information System (INIS)

    Nakos, J.T.; Strait, B.G.

    1980-12-01

    The measurement most frequently made in the Radiant Heat Facility is temperature, and the transducer which is used almost exclusively is the thermocouple. Other methods, such as resistance thermometers and thermistors, are used but very rarely. Since a majority of the information gathered at Radiant Heat is from thermocouples, a reasonable measure of the quality of the measurements made at the facility is the accuracy of the thermocouple temperature data

  11. Improvement of the GERDA Ge Detectors Energy Resolution by an Optimized Digital Signal Processing

    Science.gov (United States)

    Benato, G.; D'Andrea, V.; Cattadori, C.; Riboldi, S.

    GERDA is a new generation experiment searching for neutrinoless double beta decay of 76Ge, operating at INFN Gran Sasso Laboratories (LNGS) since 2010. Coaxial and Broad Energy Germanium (BEGe) Detectors have been operated in liquid argon (LAr) in GERDA Phase I. In the framework of the second GERDA experimental phase, both the contacting technique, the connection to and the location of the front end readout devices are novel compared to those previously adopted, and several tests have been performed. In this work, starting from considerations on the energy scale stability of the GERDA Phase I calibrations and physics data sets, an optimized pulse filtering method has been developed and applied to the Phase II pilot tests data sets, and to few GERDA Phase I data sets. In this contribution the detector performances in term of energy resolution and time stability are here presented. The improvement of the energy resolution, compared to standard Gaussian shaping adopted for Phase I data analysis, is discussed and related to the optimized noise filtering capability. The result is an energy resolution better than 0.1% at 2.6 MeV for the BEGe detectors operated in the Phase II pilot tests and an improvement of the energy resolution in LAr of about 8% achieved on the GERDA Phase I calibration runs, compared to previous analysis algorithms.

  12. Photon counting and energy discriminating X-ray detectors. Benefits and applications

    International Nuclear Information System (INIS)

    Walter, David; Zscherpel, Uwe; Ewert, Uwe

    2016-01-01

    Since a few years the direct detection of X-ray photons into electrical signals is possible by usage of highly absorbing photo conducting materials (e.g. CdTe) as detection layer of an underlying CMOS semiconductor X-ray detector. Even NDT energies up to 400 keV are possible today, as well. The image sharpness and absorption efficiency is improved by the replacement of the unsharp scintillation layer (as used at indirect detecting detectors) by a photo conducting layer of much higher thickness. If the read-out speed is high enough (ca. 50 - 100 ns dead time) single X-ray photons can be counted and their energy measured. Read-out noise and dark image correction can be avoided. By setting energy thresholds selected energy ranges of the X-ray spectrum can be detected or suppressed. This allows material discrimination by dual-energy techniques or the reduction of image contributions of scattered radiation, which results in an enhanced contrast sensitivity. To use these advantages in an effective way, a special calibration procedure has to be developed, which considers also time dependent processes in the detection layer. This contribution presents some of these new properties of direct detecting digital detector arrays (DDAs) and shows first results on testing fiber reinforced composites as well as first approaches to dual energy imaging.

  13. Measurement of detector neutron energy response using time-of-flight techniques

    International Nuclear Information System (INIS)

    Janee, H.S.

    1973-09-01

    The feasibility of using time-of-flight techniques at the EG and G/AEC linear accelerator for measuring the neutron response of relatively sensitive detectors over the energy range 0.5 to 14 MeV has been demonstrated. The measurement technique is described in detail as are the results of neutron spectrum measurements from beryllium and uranium photoneutron targets. The sensitivity of a fluor photomultiplier LASL detector with a 2- by 1-inch NE-111 scintillator was determined with the two targets, and agreement in the region of overlap was very good. (U.S.)

  14. Simplified Building Thermal Model Used for Optimal Control of Radiant Cooling System

    Directory of Open Access Journals (Sweden)

    Lei He

    2016-01-01

    Full Text Available MPC has the ability to optimize the system operation parameters for energy conservation. Recently, it has been used in HVAC systems for saving energy, but there are very few applications in radiant cooling systems. To implement MPC in buildings with radiant terminals, the predictions of cooling load and thermal environment are indispensable. In this paper, a simplified thermal model is proposed for predicting cooling load and thermal environment in buildings with radiant floor. In this thermal model, the black-box model is introduced to derive the incident solar radiation, while the genetic algorithm is utilized to identify the parameters of the thermal model. In order to further validate this simplified thermal model, simulated results from TRNSYS are compared with those from this model and the deviation is evaluated based on coefficient of variation of root mean square (CV. The results show that the simplified model can predict the operative temperature with a CV lower than 1% and predict cooling loads with a CV lower than 10%. For the purpose of supervisory control in HVAC systems, this simplified RC thermal model has an acceptable accuracy and can be used for further MPC in buildings with radiation terminals.

  15. Radiant heat testing of the H1224A shipping/storage container

    Energy Technology Data Exchange (ETDEWEB)

    Harding, D.C.; Bobbe, J.G.; Stenberg, D.R.; Arviso, M.

    1994-05-01

    H1224A weapons containers have been used for years by the Departments of Energy and Defense to transport and store W78 warhead midsections. Although designed to protect the midsections only from low-energy impacts, a recent transportation risk assessment effort has identified a need to evaluate the container`s ability to protect weapons in more severe accident environments. Four radiant heat tests were performed: two each on an H1224A container (with a Mk12a Mod 6c mass mock-up midsection inside) and two on a low-cost simulated H1224A container (with a hollow Mk12 aeroshell midsections inside). For each unit tested, temperatures were recorded at numerous points throughout the container and midsection during a 4-hour 121{degrees}C (250{degrees}F) and 30-minute 1010{degrees}C (1850{degrees}F) radiant environment. Measured peak temperatures experienced by the inner walls of the midsections as a result of exposure to the high-temperature radiant environment ranged from 650{degrees} C to 980{degrees} C (1200{degrees} F to 1800{degrees}F) for the H1224A container and 770 {degrees} to 990 {degrees}C (1420{degrees} F to 1810{degrees}F) for the simulated container. The majority of both containers were completely destroyed during the high-temperature test. Temperature profiles will be used to benchmark analytical models and predict warhead midsection temperatures over a wide range of the thermal accident conditions.

  16. High energy astrophysics with ground-based gamma ray detectors

    International Nuclear Information System (INIS)

    Aharonian, F; Buckley, J; Kifune, T; Sinnis, G

    2008-01-01

    Recent advances in ground-based gamma ray astronomy have led to the discovery of more than 70 sources of very high energy (E γ ≥ 100 GeV) gamma rays, falling into a number of source populations including pulsar wind nebulae, shell type supernova remnants, Wolf-Rayet stars, giant molecular clouds, binary systems, the Galactic Center, active galactic nuclei and 'dark' (yet unidentified) galactic objects. We summarize the history of TeV gamma ray astronomy up to the current status of the field including a description of experimental techniques and highlight recent astrophysical results. We also discuss the potential of ground-based gamma ray astronomy for future discoveries and describe possible directions for future instrumental developments

  17. Detectors for low energy electron cooling in RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, F. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-15

    Low-energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS, the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions between the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted, turned by 180-degrees, and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.

  18. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector

    International Nuclear Information System (INIS)

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-01-01

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97–1.01 and NRMSEs of 0.20–4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17–0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  19. Bulk GaN alpha-particle detector with large depletion region and improved energy resolution

    Science.gov (United States)

    Xu, Qiang; Mulligan, Padhraic; Wang, Jinghui; Chuirazzi, William; Cao, Lei

    2017-03-01

    An alpha-particle detector was fabricated using a freestanding n-type bulk GaN wafer with a Au/Ni/GaN sandwich Schottky structure. Current-voltage measurements at room temperature revealed a Schottky contact with a leakage current of 7.53±0.3 nA at a reverse bias of 200 V. The detector had a large depletion depth that can capture much of the energy from 5.486 MeV alpha particles emitted from a 241Am source. The resolution of its alpha-particle energy spectrum was improved to 2.2±0.2% at 5.486 MeV under a bias of 550 V. This superior resolution was attributed to the shortening of the carrier transit time and the large energy deposition within the large depletion depth, i.e., 27 μm at -550 V, which all resulted in a more complete charge collection. A model developed using the ATLAS simulation framework from Silvaco Inc. was employed to study the charge collection process. The simulation results were found to agree closely with the experimental results. This detector will be beneficial for research at neutron scattering facilities, the International Thermonuclear Experimental Reactor, and the Large Hadron Collider, among other institutions, where the Si-based charged particle detectors could be quickly degraded in an intense radiation field.

  20. Sensitivity of the IceCube detector for ultra-high energy electron neutrino events

    International Nuclear Information System (INIS)

    Voigt, Bernhard

    2008-01-01

    IceCube is a neutrino telescope currently under construction in the glacial ice at South Pole. At the moment half of the detector is installed, when completed it will instrument 1 km 3 of ice providing a unique experimental setup to detect high energy neutrinos from astrophysical sources. In this work the sensitivity of the complete IceCube detector for a diffuse electron-neutrino flux is analyzed, with a focus on energies above 1 PeV. Emphasis is put on the correct simulation of the energy deposit of electromagnetic cascades from charged-current electron-neutrino interactions. Since existing parameterizations lack the description of suppression effects at high energies, a simulation of the energy deposit of electromagnetic cascades with energies above 1 PeV is developed, including cross sections which account for the LPM suppression of bremsstrahlung and pair creation. An attempt is made to reconstruct the direction of these elongated showers. The analysis presented here makes use of the full charge waveform recorded with the data acquisition system of the IceCube detector. It introduces new methods to discriminate efficiently between the background of atmospheric muons, including muon bundles, and cascade signal events from electron-neutrino interactions. Within one year of operation of the complete detector a sensitivity of 1.5.10 -8 E -2 GeVs -1 sr -1 cm -2 is reached, which is valid for a diffuse electron neutrino flux proportional to E -2 in the energy range from 16 TeV to 13 PeV. Sensitivity is defined as the upper limit that could be set in absence of a signal at 90% confidence level. Including all neutrino flavors in this analysis, an improvement of at least one order of magnitude is expected, reaching the anticipated performance of a diffuse muon analysis. (orig.)

  1. Sensitivity of the IceCube detector for ultra-high energy electron neutrino events

    Energy Technology Data Exchange (ETDEWEB)

    Voigt, Bernhard

    2008-07-16

    IceCube is a neutrino telescope currently under construction in the glacial ice at South Pole. At the moment half of the detector is installed, when completed it will instrument 1 km{sup 3} of ice providing a unique experimental setup to detect high energy neutrinos from astrophysical sources. In this work the sensitivity of the complete IceCube detector for a diffuse electron-neutrino flux is analyzed, with a focus on energies above 1 PeV. Emphasis is put on the correct simulation of the energy deposit of electromagnetic cascades from charged-current electron-neutrino interactions. Since existing parameterizations lack the description of suppression effects at high energies, a simulation of the energy deposit of electromagnetic cascades with energies above 1 PeV is developed, including cross sections which account for the LPM suppression of bremsstrahlung and pair creation. An attempt is made to reconstruct the direction of these elongated showers. The analysis presented here makes use of the full charge waveform recorded with the data acquisition system of the IceCube detector. It introduces new methods to discriminate efficiently between the background of atmospheric muons, including muon bundles, and cascade signal events from electron-neutrino interactions. Within one year of operation of the complete detector a sensitivity of 1.5.10{sup -8}E{sup -2} GeVs{sup -1}sr{sup -1}cm{sup -2} is reached, which is valid for a diffuse electron neutrino flux proportional to E{sup -2} in the energy range from 16 TeV to 13 PeV. Sensitivity is defined as the upper limit that could be set in absence of a signal at 90% confidence level. Including all neutrino flavors in this analysis, an improvement of at least one order of magnitude is expected, reaching the anticipated performance of a diffuse muon analysis. (orig.)

  2. Analysis of excimer laser radiant exposure effect toward corneal ablation volume at LASIK procedure

    Science.gov (United States)

    Adiati, Rima Fitria; Rini Rizki, Artha Bona; Kusumawardhani, Apriani; Setijono, Heru; Rahmadiansah, Andi

    2016-11-01

    LASIK (Laser Asissted In Situ Interlamelar Keratomilieusis) is a technique for correcting refractive disorders of the eye such as myopia and astigmatism using an excimer laser. This procedure use photoablation technique to decompose corneal tissues. Although preferred due to its efficiency, permanency, and accuracy, the inappropriate amount radiant exposure often cause side effects like under-over correction, irregular astigmatism and problems on surrounding tissues. In this study, the radiant exposure effect toward corneal ablation volume has been modelled through several processes. Data collecting results is laser data specifications with 193 nm wavelength, beam diameter of 0.065 - 0.65 cm, and fluence of 160 mJ/cm2. For the medical data, the myopia-astigmatism value, cornea size, corneal ablation thickness, and flap data are taken. The first modelling step is determining the laser diameter between 0.065 - 0.65 cm with 0.45 cm increment. The energy, power, and intensity of laser determined from laser beam area. Number of pulse and total energy is calculated before the radiant exposure of laser is obtained. Next is to determine the parameters influence the ablation volume. Regression method used to create the equation, and then the spot size is substituted to the model. The validation used is statistic correlation method to both experimental data and theory. By the model created, it is expected that any potential complications can be prevented during LASIK procedures. The recommendations can give the users clearer picture to determine the appropriate amount of radiant exposure with the corneal ablation volume necessary.

  3. High-accuracy X-ray detector calibration based on cryogenic radiometry

    Science.gov (United States)

    Krumrey, M.; Cibik, L.; Müller, P.

    2010-06-01

    Cryogenic electrical substitution radiometers (ESRs) are absolute thermal detectors, based on the equivalence of electrical power and radiant power. Their core piece is a cavity absorber, which is typically made of copper to achieve a short response time. At higher photon energies, the use of copper prevents the operation of ESRs due to increasing transmittance. A new absorber design for hard X-rays has been developed at the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the electron storage ring BESSY II. The Monte Carlo simulation code Geant4 was applied to optimize its absorptance for photon energies of up to 60 keV. The measurement of the radiant power of monochromatized synchrotron radiation was achieved with relative standard uncertainties of less than 0.2 %, covering the entire photon energy range of three beamlines from 50 eV to 60 keV. Monochromatized synchrotron radiation of high spectral purity is used to calibrate silicon photodiodes against the ESR for photon energies up to 60 keV with relative standard uncertainties below 0.3 %. For some silicon photodiodes, the photocurrent is not linear with the incident radiant power.

  4. High-accuracy X-ray detector calibration based on cryogenic radiometry

    International Nuclear Information System (INIS)

    Krumrey, M.; Cibik, L.; Mueller, P.

    2010-01-01

    Cryogenic electrical substitution radiometers (ESRs) are absolute thermal detectors, based on the equivalence of electrical power and radiant power. Their core piece is a cavity absorber, which is typically made of copper to achieve a short response time. At higher photon energies, the use of copper prevents the operation of ESRs due to increasing transmittance. A new absorber design for hard X-rays has been developed at the laboratory of the Physikalisch-Technische Bundesanstalt (PTB) at the electron storage ring BESSY II. The Monte Carlo simulation code Geant4 was applied to optimize its absorptance for photon energies of up to 60 keV. The measurement of the radiant power of monochromatized synchrotron radiation was achieved with relative standard uncertainties of less than 0.2 %, covering the entire photon energy range of three beamlines from 50 eV to 60 keV. Monochromatized synchrotron radiation of high spectral purity is used to calibrate silicon photodiodes against the ESR for photon energies up to 60 keV with relative standard uncertainties below 0.3 %. For some silicon photodiodes, the photocurrent is not linear with the incident radiant power.

  5. A self-powered thin-film radiation detector using intrinsic high-energy current

    Energy Technology Data Exchange (ETDEWEB)

    Zygmanski, Piotr, E-mail: pzygmanski@LROC.HARVARD.EDU, E-mail: Erno-Sajo@uml.edu [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Sajo, Erno, E-mail: pzygmanski@LROC.HARVARD.EDU, E-mail: Erno-Sajo@uml.edu [Department of Physics and Applied Physics, Medical Physics Program, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States)

    2016-01-15

    Purpose: The authors introduce a radiation detection method that relies on high-energy current (HEC) formed by secondary charged particles in the detector material, which induces conduction current in an external readout circuit. Direct energy conversion of the incident radiation powers the signal formation without the need for external bias voltage or amplification. The detector the authors consider is a thin-film multilayer device, composed of alternating disparate electrically conductive and insulating layers. The optimal design of HEC detectors consists of microscopic or nanoscopic structures. Methods: Theoretical and computational developments are presented to illustrate the salient properties of the HEC detector and to demonstrate its feasibility. In this work, the authors examine single-sandwiched and periodic layers of Cu and Al, and Au and Al, ranging in thickness from 100 nm to 300 μm and separated by similarly sized dielectric gaps, exposed to 120 kVp x-ray beam (half-value thickness of 4.1 mm of Al). The energy deposition characteristics and the high-energy current were determined using radiation transport computations. Results: The authors found that in a dual-layer configuration, the signal is in the measurable range. For a defined total detector thickness in a multilayer structure, the signal sharply increases with decreasing thickness of the high-Z conductive layers. This paper focuses on the computational results while a companion paper reports the experimental findings. Conclusions: Significant advantages of the device are that it does not require external power supply and amplification to create a measurable signal; it can be made in any size and geometry, including very thin (sub-millimeter to submicron) flexible curvilinear forms, and it is inexpensive. Potential applications include medical dosimetry (both in vivo and external), radiation protection, and other settings where one or more of the above qualities are desired.

  6. Large-area imaging micro-well detectors for high-energy astrophysics

    CERN Document Server

    Deines-Jones, P; Hunter, S D; Jahoda, K; Owens, S M

    2002-01-01

    Micro-well detectors are pixelized imaging sensors that can be inexpensively fabricated in very large arrays. Owing to their intrinsic gain and operation at room temperature, they can be instrumented at very low power, per unit area, making them valuable for a variety of space-flight applications where wide-angle X-ray imaging or large-area particle tracking is required. For example, micro-well detectors have been chosen as the focal plane imager for Lobster-ISS, a proposed soft X-ray all-sky monitor. We have fabricated detectors which image X-rays with 200 mu m FWHM resolution at 3 keV. In agreement with other groups using similar geometries, we find nominal proportional counter energy resolution (20% at 6 keV in P-10), and stable operation at gas gains up to 30,000.

  7. Simulation of backgrounds in detectors and energy deposition in superconducting magnets at μ+μ- colliders

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Striganov, S.I.

    1996-01-01

    A calculational approach is described to study beam induced radiation effects in detector and storage ring components at high-energy high-luminosity μ + μ - colliders. The details of the corresponding physics process simulations used in the MARS code are given. Contributions of electromagnetic showers, synchrotron radiation, hadrons and daughter muons to the background rates in a generic detector for a 2 x 2 TeV μ + μ - collider are investigated. Four configurations of the inner triplet and a detector are examined for two sources: muon decays and beam halo interactions in the lattice elements. The beam induced power density in superconducting magnets is calculated and ways to reduce it are proposed

  8. Current problems in semiconductor detectors for high energy physics after particle irradiations

    International Nuclear Information System (INIS)

    Lazanu, Ionel

    2002-01-01

    The use of semiconductor materials as detectors in high radiation environments, as expected in future high energy accelerators or in space missions, poses severe problems in long-time operations, due to changes in the properties of the material, and consequently in the performances of detectors. This talk presents the major theoretical areas of current problems, reviews the works in this field and the stage of their understanding, including author's contributions The mechanisms of interaction of the projectile with the semiconductor, the production of primary defects, the physical quantities and the equations able to characterise and describe the radiation effects, and the equations of kinetics of defects are considered. Correlation between microscopic damage and detector performances and the possible ways to optimise the radiation hardness of materials are discussed. (author)

  9. Track etch parameters and annealing kinetics assessment of protons of low energy in CR-39 detector

    International Nuclear Information System (INIS)

    Jain, R.K.; Kumar, Ashok; Singh, B.K.

    2012-01-01

    Highlights: ► We calibrate CR-39 detector with very low energy protons. ► We establish linear relationship between track diameter and time/energy up to 200 keV. ► We determine activation energy of annealing using different models. ► We justify concept of single annealing activation energy in CR-39. - Abstract: In this paper threshold of the registration sensitivity of very low energy proton in CR-39 is investigated. Irradiation of CR-39 (poly-allyl-diglycol carbonate) was carried out with very low energy mono energetic protons of 20–60 keV from a mini proton accelerator. Nearly 10 4 /cm 2 fluence of protons was used. The variation of track diameter with etching time as well as proton energy response curve was carefully calibrated. The bulk and track etch rates were measured by using proton track diameters. Bulk etch rate was also measured by the thickness of removed surface layer. The thermal annealing of proton track at temperatures ranging from 100 to 200 °C in CR-39 was studied by several models. Activation energy of annealed CR-39 detectors was calculated by slope of track etch rate and temperature plot. The data of proton tracks of 200, 250 and 300 keV from 400 kV Van-de-Graaff accelerator was also used and compared with the track diameters of different energies of proton.

  10. Low energy neutrino astrophysics with the large liquid-scintillator detector LENA

    International Nuclear Information System (INIS)

    Wurm, M.; Feilitzsch, F. von; Goeger-Neff, M.; Undagoitia, T. Marrodan; Oberauer, L.; Potzel, W.; Winter, J.

    2007-01-01

    The large-volume liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) will cover a broad field of physics. Apart from the detection of terrestrial and artificial neutrinos, and the search for proton decay, important contributions can be made to the astrophysics of stars by high-precision spectroscopy of low-energetic solar neutrinos and by the observation of neutrinos emitted by a galactic supernova. Moreover, the detection of the diffuse supernova neutrino background in LENA will offer the opportunity of studying both supernova core-collapse models and the supernova rate on cosmological timescales (z e events in an almost background-free energy window from ∼10 to 25 MeV. The search for such rare low-energetic events takes advantage of the high energy resolution and excellent background rejection possible in the LENA detector

  11. Energy and time of flight measurements of REX-ISOLDE stable beams using Si detectors

    CERN Document Server

    Cantero, E D; Fraser, M A; Lanaia, D; Sosa, A; Voulot, D; Zocca, F

    2014-01-01

    In this paper we present energy and time spectroscopy measurements for the stable beams of REX-ISOLDE obtained using Si detectors. By using an alpha source as a calibration reference, the absolute energy E of stable beam particles (A/q = 4) was determined in spectroscopy mode in the energy range 1 MeV < E < 8 MeV (0.30 MeV/u < E/A < 1.87 MeV/u). The time of flight of the beam particles (2.18 MeV/u < E/A < 2.27 MeV/u) was determined by installing identical Si detectors in two diagnostic boxes separated by 7.7 m. The results obtained with these two techniques are compared with the values obtained by dipole scans using a bending magnet. The measurements took place between January and February of 2013.

  12. Modification of coaxial Ge/Li detector for low-energy gamma radiation

    International Nuclear Information System (INIS)

    Skrivankova, M.; Seda, J.

    1992-01-01

    A modification is described of a coaxial Ge/Li type ionizing radiation detector which makes possible the detection and spectrometry not only of medium- and high-energy gamma rays but also of low-energy (above 5 keV) X-rays and gamma rays. The modification consists in grinding down a thick diffuse layer of the face, which is subsequently etched in a mixture of nitric and hydrofluoric acids (ratio 5:2 to 1:5). Phosphorus or arsenic is subsequently implanted at an energy of 5 to 30 keV and in a dose of 10 14 to 10 15 ions/cm 2 . The detector is then drifted at 30 to 50 degC for 2 to 20 hours, encased in a cryostat, and submerged into liquid nitrogen. (Z.S.)

  13. A Thin detector with ionization tubes for high energy electrons and photons

    International Nuclear Information System (INIS)

    Amatuni, Ts. A.; Denisov, S.P.; Krasnokutsky, R.N.; Lebedenko, V.N.; Shuvalov, R.S.

    1981-01-01

    A possibility to measure the energy of electrons and photons with a simple detector, consisting of a lead convertor and ionization tubes filled with pure argon, has been studied. The measurements have been performed in a 26.6 GeV electron beam. The best energy resolution approximately 16% was achieved for the convertor thickness 40 mm and argon pressure > 20 atm. The performance of the detector in magnetic field up to 16 kGs has been also studied. It turned out that the mean pulse height rises approximately linearly with increasing magnetic field and becomes flat at H approximately 10 kGs. This behaviour is the same for magnetic field perpendicular and parallel with respect to the ionization tubes. The energy resolution depends weakly on the magnetic field. Ionization tubes filled with argon or xenon under high pressure may be used for minimum ionizing particle detection [ru

  14. Large-area atmospheric Cherenkov detectors for high-energy gamma-ray astronomy

    International Nuclear Information System (INIS)

    Ong, R.A.

    1996-01-01

    This paper describes the development of new ground-based gamma-ray detectors to explore the energy region between 20 and 200 GeV. This region in energy is interesting because it is currently unexplored by any experiment. The proposed detectors use the atmospheric Cherenkov technique, in which Cherenkov radiation produced in the gamma-ray air showers is detected using mirrors and light-sensitive devices. The important feature of the proposed experiments is the use of large mirror collection areas, which should allow for a significant improvement (i.e. reduction) in energy threshold over existing experiments. Large mirror areas are available for relatively low cost at central tower solar power plants, and there are two groups developing gamma-ray experiments using solar heliostat arrays. This paper summarizes the progress in the design of experiments using this novel approach

  15. Energy spectrum of iron nuclei measured inside the MIR space craft using CR-39 track detectors

    International Nuclear Information System (INIS)

    Guenther, W.; Leugner, D.; Becker, E.; Flesch, F.; Heinrich, W.; Huentrup, G.; Reitz, G.; Roecher, H.; Streibel, T.

    1999-01-01

    We have exposed stacks of CR-39 plastic nuclear track detectors inside the MIR space craft during the EUROMIR95 space mission for almost 6 months. Over this long period a large number of tracks of high LET events was accumulated in the detector foils. The etching and measuring conditions for this experiment were optimized to detect tracks of stopping iron nuclei. We found 185 stopping iron nuclei inside the stack and identified their trajectories through the material of the experiment. Based on the energy-range relation the energy at the surface of the stack was determined. These particles allow the determination of the low energy part of the spectrum of iron nuclei behind shielding material inside the MIR station

  16. High Energy Performance Tests of Large Volume LaBr{sub 3}:Ce Detector

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A.; Gondal, M.A.; Khiari, F.Z.; Dastageer, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Maslehuddin, M.M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2015-07-01

    High energy prompt gamma ray tests of a large volume cylindrical 100 mm x 100 mm (height x diameter) LaBr{sub 3}:Ce detector were carried out using a portable neutron generator-based Prompt Gamma Neutron Activation Analysis (PGNAA) setup. In this study prompt gamma-rays yield were measured from water samples contaminated with toxic elements such nickel, chromium and mercury compounds with gamma ray energies up to 10 MeV. The experimental yield of prompt gamma-rays from toxic elements were compared with the results of Monte Carlo calculations. In spite of its higher intrinsic background due to its larger volume, an excellent agreement between the experimental and calculated yields of high energy gamma-rays from Ni, Cr and Hg samples has been achieved for the large volume LaBr{sub 3}:Ce detector. (authors)

  17. CR-39 nuclear track detector application for the diagnostics of low energy high power ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Opekounov, M S; Pechenkin, S A; Remnev, G E [Nuclear Physics Institute, Tomsk (Russian Federation); Ivonin, I V [Siberian Physical-Technical Institute, Tomsk (Russian Federation)

    1997-12-31

    The results of investigation of the spectral composition of ion beams generated by the magneto-insulated ion diode of the MUK-M and TEMP accelerators. The energy and mass characteristics of the accelerated ion beam were determined by a Thomson spectrometer with a CR-39 plate detector (MOM - Atomki Nuclear Track Detector, Type MA-ND/p). The accelerated ion energy was from 40 to 240 keV. The ion current density range was from 1 to 10 A/cm{sup 2}. The mass composition contained hydrogen, nitrogen, carbon and aluminum ions. The individual track analysis showed the track form, depth and diameter in dependence on the ion mass and energy. (author). 2 figs., 5 refs.

  18. Effect of energy deposited by cosmic-ray particles on interferometric gravitational wave detectors

    International Nuclear Information System (INIS)

    Yamamoto, Kazuhiro; Hayakawa, Hideaki; Okada, Atsushi; Uchiyama, Takashi; Miyoki, Shinji; Ohashi, Masatake; Kuroda, Kazuaki; Kanda, Nobuyuki; Tatsumi, Daisuke; Tsunesada, Yoshiki

    2008-01-01

    We investigated the noise of interferometric gravitational wave detectors due to heat energy deposited by cosmic-ray particles. We derived a general formula that describes the response of a mirror against a cosmic-ray passage. We found that there are differences in the comic-ray responses (the dependence of temperature and cosmic-ray track position) in cases of interferometric and resonant gravitational wave detectors. The power spectral density of vibrations caused by low-energy secondary muons is 100 times smaller than the goal sensitivity of future second-generation interferometer projects, such as LCGT and Advanced LIGO. The arrival frequency of high-energy cosmic-ray muons that generate enough large showers inside mirrors of LCGT and Advanced LIGO is one per a millennium. We also discuss the probability of exotic-particle detection with interferometers.

  19. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    Science.gov (United States)

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-03-08

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.

  20. Measuring the low-energy cosmic ray spectrum with the AFIS detector

    Energy Technology Data Exchange (ETDEWEB)

    Losekamm, Martin [Physics Department E18, Technische Universitaet Muenchen (Germany); Institute of Astronautics, Technische Universitaet Muenchen (Germany); Gaisbauer, Dominic; Greenwald, Daniel; Hahn, Alexander; Hauptmann, Philipp; Konorov, Igor; Meng, Lingxin; Paul, Stephan; Poeschl, Thomas [Physics Department E18, Technische Universitaet Muenchen (Germany); Renker, Dieter [Physics Department E17, Technische Universitaet Muenchen (Germany)

    2014-07-01

    High-energy cosmic rays interact with Earth's upper atmosphere and produce antiprotons, which can be trapped in Earth's magnetic field. The Antiproton Flux in Space (AFIS) Mission will measure the flux of trapped antiprotons with energies less than 100 MeV aboard the nanosatellite MOVE 2. An active-target tracking detector comprised of scintillating plastic fibers and silicon photomultipliers is already under construction at the Technische Universitaet Muenchen. As a precursor to the space-bound mission, a prototype version of the detector will be launched aboard a balloon from Kiruna, Sweden as part of the REXUS/BEXUS student program by the German Aerospace Center (DLR). Named AFIS-P, it will be used to measure the low-energy part of the cosmic-ray spectrum for energies less than 100 MeV-per-nucleon. Spectrometers in previous balloon missions were not sensitive in this low-energy region. Thus AFIS-P will deliver unprecedented data, while simultaneously allowing us to field-test the AFIS detector.

  1. CMOS Active Pixel Sensors as energy-range detectors for proton Computed Tomography

    International Nuclear Information System (INIS)

    Esposito, M.; Waltham, C.; Allinson, N.M.; Anaxagoras, T.; Evans, P.M.; Poludniowski, G.; Green, S.; Parker, D.J.; Price, T.; Manolopoulos, S.; Nieto-Camero, J.

    2015-01-01

    Since the first proof of concept in the early 70s, a number of technologies has been proposed to perform proton CT (pCT), as a means of mapping tissue stopping power for accurate treatment planning in proton therapy. Previous prototypes of energy-range detectors for pCT have been mainly based on the use of scintillator-based calorimeters, to measure proton residual energy after passing through the patient. However, such an approach is limited by the need for only a single proton passing through the energy-range detector in a read-out cycle. A novel approach to this problem could be the use of pixelated detectors, where the independent read-out of each pixel allows to measure simultaneously the residual energy of a number of protons in the same read-out cycle, facilitating a faster and more efficient pCT scan. This paper investigates the suitability of CMOS Active Pixel Sensors (APSs) to track individual protons as they go through a number of CMOS layers, forming an energy-range telescope. Measurements performed at the iThemba Laboratories will be presented and analysed in terms of correlation, to confirm capability of proton tracking for CMOS APSs

  2. CMOS Active Pixel Sensors as energy-range detectors for proton Computed Tomography.

    Science.gov (United States)

    Esposito, M; Anaxagoras, T; Evans, P M; Green, S; Manolopoulos, S; Nieto-Camero, J; Parker, D J; Poludniowski, G; Price, T; Waltham, C; Allinson, N M

    2015-06-03

    Since the first proof of concept in the early 70s, a number of technologies has been proposed to perform proton CT (pCT), as a means of mapping tissue stopping power for accurate treatment planning in proton therapy. Previous prototypes of energy-range detectors for pCT have been mainly based on the use of scintillator-based calorimeters, to measure proton residual energy after passing through the patient. However, such an approach is limited by the need for only a single proton passing through the energy-range detector in a read-out cycle. A novel approach to this problem could be the use of pixelated detectors, where the independent read-out of each pixel allows to measure simultaneously the residual energy of a number of protons in the same read-out cycle, facilitating a faster and more efficient pCT scan. This paper investigates the suitability of CMOS Active Pixel Sensors (APSs) to track individual protons as they go through a number of CMOS layers, forming an energy-range telescope. Measurements performed at the iThemba Laboratories will be presented and analysed in terms of correlation, to confirm capability of proton tracking for CMOS APSs.

  3. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    Science.gov (United States)

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  4. Development of High Energy Particle Detector for the Study of Space Radiation Storm

    Directory of Open Access Journals (Sweden)

    Gyeong-Bok Jo

    2014-09-01

    Full Text Available Next Generation Small Satellite-1 (NEXTSat-1 is scheduled to launch in 2017 and Instruments for the Study of Space Storm (ISSS is planned to be onboard the NEXTSat-1. High Energy Particle Detector (HEPD is one of the equipment comprising ISSS and the main objective of HEPD is to measure the high energy particles streaming into the Earth radiation belt during the event of a space storm, especially, electrons and protons, to obtain the flux information of those particles. For the design of HEPD, the Geometrical Factor was calculated to be 0.05 to be consistent with the targets of measurement and the structure of telescope with field of view of 33.4° was designed using this factor. In order to decide the thickness of the detector sensor and the classification of the detection channels, a simulation was performed using GEANT4. Based on the simulation results, two silicon detectors with 1 mm thickness were selected and the aluminum foil of 0.05 mm is placed right in front of the silicon detectors to shield low energy particles. The detection channels are divided into an electron channel and two proton channels based on the measured LET of the particle. If the measured LET is less than 0.8 MeV, the particle belongs to the electron channel, otherwise it belongs to proton channels. HEPD is installed in the direction of 0°,45°,90° against the along-track of a satellite to enable the efficient measurement of high energy particles. HEPD detects electrons with the energy of 0.1 MeV to several MeV and protons with the energy of more than a few MeV. Thus, the study on the dynamic mechanism of these particles in the Earth radiation belt will be performed.

  5. Development of Si-based detectors for intermediate energy heavy-ion physics at a storage-ring accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H.J.; Jaworowski, J.; Leandersson, M.; El Bouanani, M. [Lund Institute of Technology, Solvegatan Lund, (Sweden). Department of Nuclear Physics; Jakobsson, B. [Lund Univ. (Sweden). Dept. of Cosmic and Subatomic Physics; Romanski, J.; Westerberg, L.; Van Veldhuizen, E.J. [Uppsala Univ. (Sweden); The Chicsi Collaboration

    1996-12-31

    Ultrahigh vacuum (UHV) compatible Si detectors are being developed by the CELSIUS Heavy lon Collaboration (CHIC) for measuring the energy and identity of Intermediate Mass Fragments (IMF) with Z {approx} 3 - 12 and energies of 0.7 - I 0 A MeV. Here we give an overview of the development of Si {delta}E-E detector telescopes and investigations on IMF identification based on the pulse shape from Si-detectors where the particles impinge on the rear-face of the detector. 9 refs., 4 figs.

  6. Development of Si-based detectors for intermediate energy heavy-ion physics at a storage-ring accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, H J; Jaworowski, J; Leandersson, M; El Bouanani, M [Lund Institute of Technology, Solvegatan Lund, (Sweden). Department of Nuclear Physics; Jakobsson, B [Lund Univ. (Sweden). Dept. of Cosmic and Subatomic Physics; Romanski, J; Westerberg, L; Van Veldhuizen, E J [Uppsala Univ. (Sweden); The Chicsi Collaboration

    1997-12-31

    Ultrahigh vacuum (UHV) compatible Si detectors are being developed by the CELSIUS Heavy lon Collaboration (CHIC) for measuring the energy and identity of Intermediate Mass Fragments (IMF) with Z {approx} 3 - 12 and energies of 0.7 - I 0 A MeV. Here we give an overview of the development of Si {delta}E-E detector telescopes and investigations on IMF identification based on the pulse shape from Si-detectors where the particles impinge on the rear-face of the detector. 9 refs., 4 figs.

  7. Rhodium self-powered detector for monitoring neutron fluence, energy production, and isotopic composition of fuel

    International Nuclear Information System (INIS)

    Sokolov, A.P.; Pochivalin, G.P.; Shipovskikh, Yu.M.; Garusov, Yu.V.; Chernikov, O.G.; Shevchenko, V.G.

    1993-01-01

    The use of self-powered detectors (SPDs) with a rhodium emitter customarily involves monitoring of neutron fields in the core of a nuclear reactor. Since current in an SPD is generated primarily because of the neutron flux, which is responsible for the dynamics of particular nuclear transformations, including fission reactions of heavy isotopes, the detector signal can be attributed unambiguously to energy release at the location of the detector. Computation modeling performed with the KOMDPS package of programs of the current formation in a rhodium SPD along with the neutron-physical processes that occur in the reactor core makes it possible to take account of the effect of the principal factors characterizing the operating conditions and the design features of the fuel channel and the detector, reveal quantitative relations between the generated signal and individual physical parameters, and determine the metrological parameters of the detector. The formation and transport of changed particles in the sensitive part of the SPC is calculated by the Monte Carlo method. The emitter activation, neutron transport, and dynamics of the isotopic composition in the fuel channel containing the SPD are determined by solving the kinetic equation in the multigroup representation of the neutron spectrum, using the discrete ordinate method. In this work the authors consider the operation of a rhodium SPD in a bundle of 49 fuel channels of the RBMK-1000 reactor with a fuel enrichment of 2.4% from the time it is inserted into a fresh channel

  8. Evaluation of the Neutron Detector Response for Cosmic Ray Energy Spectrum by Monte Carlo Transport Simulation

    International Nuclear Information System (INIS)

    Pazianotto, Mauricio T.; Carlson, Brett V.; Federico, Claudio A.; Gonzalez, Odair L.

    2011-01-01

    Neutrons generated by the interaction of cosmic rays with the atmosphere make an important contribution to the dose accumulated in electronic circuits and aircraft crew members at flight altitude. High-energy neutrons are produced in spallation reactions and intranuclear cascade processes by primary cosmic-ray particle interactions with atoms in the atmosphere. These neutrons can produce secondary neutrons and also undergo a moderation process due to atmosphere interactions, resulting in a wider energy spectrum, ranging from thermal energies (0.025 eV) to energies of several hundreds of MeV. The Long-Counter (LC) detector is a widely used neutron detector designed to measure the directional flux of neutrons with about constant response over a wide energy range (thermal to 20 MeV). ). Its calibration process and the determination of its energy response for the wide-energy of cosmic ray induced neutron spectrum is a very difficult process due to the lack of installations with these capabilities. The goal of this study is to assess the behavior of the response of a Long Counter using the Monte Carlo (MC) computational code MCNPX (Monte Carlo N-Particle eXtended). The dependence of the Long Counter response on the angle of incidence, as well as on the neutron energy, will be carefully investigated, compared with the experimental data previously obtained with 241 Am-Be and 252 Cf neutron sources and extended to the neutron spectrum produced by cosmic rays. (Author)

  9. Detector trends

    International Nuclear Information System (INIS)

    Charpak, G.

    1986-01-01

    The author describes briefly the development of detectors for high energy physics experiments. Especially considered are semiconductor microstrip detectors, drift tubes, holographic bubble chambers, scintillating fiber optics, and calorimeters. (HSI).

  10. Energy measurement and fragment identification using digital signals from partially depleted Si detectors

    International Nuclear Information System (INIS)

    Pasquali, G.; Pastore, G.; Barlini, S.; Bini, M.; Poggi, G.; Stefanini, A.A.; Valdre, S.; Le Neindre, N.; Bougault, R.; Lopez, O.; Vient, E.; Ademard, G.; Borderie, B.; Edelbruck, P.; Rivet, M.F.; Salomon, F.; Bonnet, E.; Chbihi, A.; Frankland, J.D.; Gruyer, D.; Casini, G.; Olmi, A.; Piantelli, S.; Cinausero, M.; Gramegna, F.; Marchi, T.; Duenas, J.A.; Kordyasz, A.; Kozik, T.; Twarog, T.; Morelli, L.; Ordine, A.; Parlog, M.; Rosato, E.; Spadaccini, G.; Alba, R.; Maiolino, C.; Santonocito, D.

    2014-01-01

    A study of identification properties of a Si-Si ΔE-E telescope exploiting an underdepleted residual-energy detector has been performed. Five different bias voltages have been used, one corresponding to full depletion, the others associated with a depleted layer ranging from 90% to 60% of the detector thickness. Fragment identification has been performed using either the ΔE-E technique or the Pulse Shape Analysis (PSA). Both detectors are reverse mounted: particles enter from the low field side, to enhance the PSA performance. The achieved charge and mass resolution has been quantitatively expressed using a Figure of Merit (FoM). Charge collection efficiency has been evaluated and the possibility of energy calibration corrections has been considered. We find that the ΔE-E performance is not affected by incomplete depletion even when only 60% of the wafer is depleted. Isotopic separation capability improves at lower bias voltages with respect to full depletion, though charge identification thresholds are higher than at full depletion. Good isotopic identification via PSA has been obtained from a partially depleted detector, whose doping uniformity is not good enough for isotopic identification at full depletion. (orig.)

  11. Energy and angular responses of the criticality accident detector using a plastic scintillator

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Yoshida, Tadayoshi

    2006-01-01

    The Japan Atomic Energy Agency (JAEA), Nuclear Fuel Cycle Engineering Laboratories, operates a spent fuel reprocessing plant and MOX (Plutonium-Uranium Mixed Oxide) fuel fabrication plants. Criticality accident detectors have been installed in these facilities. The detector, the Toshiba RD120, is composed of a plastic scintillator coupled to a photomultiplier tube, and an operational amplifier. The alarm triggering point is set to 1.0-3.6 mGy·h -1 in photon dose rate to detect the minimum accident of concern. However, a plastic scintillator is principally sensitive not only to primary photons but also to neutrons by secondary photons and heavy charged particles produced in the detector itself. The authors calculated energy and angular responses of the RD120 criticality accident detector to photons and neutrons using Monte Carlo computer codes. The response to primary photons was evaluated with the MCNP-4B and EGS4 calculations, and photon and X-ray irradiation experiments. The response to neutrons that produce secondary photons and heavy charged particles from neutron interactions was computed using the MCNP-4B and SCINFUL, respectively. As a result, reliable response functions were obtained. These results will be a great help in reassessing the coverage area and in determining the appropriate triggering dose rate level in criticality accidents. (author)

  12. Energy measurement and fragment identification using digital signals from partially depleted Si detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pasquali, G.; Pastore, G.; Barlini, S.; Bini, M.; Poggi, G.; Stefanini, A.A.; Valdre, S. [Universita di Firenze, Dipartimento di Fisica, Sesto Fiorentino (Italy); INFN, Sezione di Firenze, Sesto Fiorentino (Italy); Le Neindre, N.; Bougault, R.; Lopez, O.; Vient, E. [ENSICAEN et Universite de Caen, LPC, IN2P3-CNRS, Caen-Cedex (France); Ademard, G.; Borderie, B.; Edelbruck, P.; Rivet, M.F.; Salomon, F. [Universite Paris-Sud 11, Institut de Physique Nucleaire, CNRS/IN2P3, Orsay cedex (France); Bonnet, E.; Chbihi, A.; Frankland, J.D.; Gruyer, D. [CEA/DSM-CNRS/IN2P3, GANIL, B.P. 5027, Caen cedex (France); Casini, G.; Olmi, A.; Piantelli, S. [INFN, Sezione di Firenze, Sesto Fiorentino (Italy); Cinausero, M.; Gramegna, F.; Marchi, T. [INFN-LNL Legnaro, Legnaro (Padova) (Italy); Duenas, J.A. [FCCEE Universidad de Huelva, Departamento de Fisica Aplicada, Huelva (Spain); Kordyasz, A. [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Kozik, T.; Twarog, T. [Institute of Nuclear Physics IFJ-PAN, Jagiellonian University, Krakow (Poland); Morelli, L. [INFN, Bologna (Italy); Universita di Bologna, Bologna (Italy); Ordine, A. [INFN, Sezione di Napoli, Napoli (Italy); Parlog, M. [ENSICAEN et Universite de Caen, LPC, IN2P3-CNRS, Caen-Cedex (France); ' ' Horia Hulubei' ' National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Rosato, E.; Spadaccini, G. [INFN, Sezione di Napoli, Napoli (Italy); Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica, Napoli (Italy); Alba, R.; Maiolino, C.; Santonocito, D. [INFN-LNS Catania, Catania (Italy); Collaboration: FAZIA Collaboration

    2014-05-15

    A study of identification properties of a Si-Si ΔE-E telescope exploiting an underdepleted residual-energy detector has been performed. Five different bias voltages have been used, one corresponding to full depletion, the others associated with a depleted layer ranging from 90% to 60% of the detector thickness. Fragment identification has been performed using either the ΔE-E technique or the Pulse Shape Analysis (PSA). Both detectors are reverse mounted: particles enter from the low field side, to enhance the PSA performance. The achieved charge and mass resolution has been quantitatively expressed using a Figure of Merit (FoM). Charge collection efficiency has been evaluated and the possibility of energy calibration corrections has been considered. We find that the ΔE-E performance is not affected by incomplete depletion even when only 60% of the wafer is depleted. Isotopic separation capability improves at lower bias voltages with respect to full depletion, though charge identification thresholds are higher than at full depletion. Good isotopic identification via PSA has been obtained from a partially depleted detector, whose doping uniformity is not good enough for isotopic identification at full depletion. (orig.)

  13. New estimates of extensive-air-shower energies on the basis of signals in scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Anyutin, N. V.; Dedenko, L. G., E-mail: ddn@dec1.sinp.msu.ru [Moscow State University, Faculty of Physics (Russian Federation); Roganova, T. M.; Fedorova, G. F. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2017-03-15

    New formulas for estimating the energy of inclined extensive air showers (EASs) on the basis of signals in detectors by means of an original method and detailed tables of signals induced in scintillation detectors by photons, electrons, positrons, and muons and calculated with the aid of the GEANT4 code package were proposed in terms of the QGSJETII-04, EPOS LHC, and GHEISHA models. The parameters appearing in the proposed formulas were calculated by employing the CORSIKA code package. It is shown that, for showers of zenith angles in the range of 20◦–45◦, the standard constant-intensity-cut method, which is used to interpret data from the Yakutsk EAS array, overestimates the shower energy by a factor of 1.2 to 1.5. It is proposed to employ the calculated VEM (Vertical Equivalent Muon) signal units of 10.8 and 11.4 MeV for, respectively, ground-based and underground scintillation detectors and to take into account the dependence of signals on the azimuthal angle of the detector position and fluctuations in the development of showers.

  14. Prediction of radiant heat flux from horizontal propane jet fire

    International Nuclear Information System (INIS)

    Zhou, Kuibin; Liu, Jiaoyan; Jiang, Juncheng

    2016-01-01

    Highlights: • Line source model for the radiant heat flux from horizontal jet fire is proposed. • A review on the difference between horizontal and vertical jet fires is conducted. • Effects of lift-off distance and flame shape are discussed for the line source model. • Line source model gives encouraging results relative to the validity of model system. - Abstract: Jet fires are often reported to occur in process industry with lots of hazardous heat energy released. A line source model describing the flame emissive power and subsequent heat flux radiated from a horizontal propane jet fire is evaluated through a testing against experimental fire data and comparison against other models. By a review on the jet flame behavior, the correlations of the lift-off distance, flame length and radiative fraction are proposed to close the line source model in theory. It is found that the fuel jet direction holds a considerable effect on the flame behavior by comparison between horizontal and vertical jet fires. Results indicate that the lift-off distance and the flame shape influence the model prediction to some extent. Comparison of model predictions against data collected in the near field and predictions from the point source model and multipoint source model gives encouraging results relative to the validity of model system.

  15. Radiant{trademark} Liquid Radioisotope Intravascular Radiation Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Eigler, N.; Whiting, J.; Chernomorsky, A.; Jackson, J.; Knapp, F.F., Jr.; Litvack, F.

    1998-01-16

    RADIANT{trademark} is manufactured by United States Surgical Corporation, Vascular Therapies Division, (formerly Progressive Angioplasty Systems). The system comprises a liquid {beta}-radiation source, a shielded isolation/transfer device (ISAT), modified over-the-wire or rapid exchange delivery balloons, and accessory kits. The liquid {beta}-source is Rhenium-188 in the form of sodium perrhenate (NaReO{sub 4}), Rhenium-188 is primarily a {beta}-emitter with a physical half-life of 17.0 hours. The maximum energy of the {beta}-particles is 2.1 MeV. The source is produced daily in the nuclear pharmacy hot lab by eluting a Tungsten-188/Rhenium-188 generator manufactured by Oak Ridge National Laboratory (ORNL). Using anion exchange columns and Millipore filters the effluent is concentrated to approximately 100 mCi/ml, calibrated, and loaded into the (ISAT) which is subsequently transported to the cardiac catheterization laboratory. The delivery catheters are modified Champion{trademark} over-the-wire, and TNT{trademark} rapid exchange stent delivery balloons. These balloons have thickened polyethylene walls to augment puncture resistance; dual radio-opaque markers and specially configured connectors.

  16. Detection of low-energy antinuclei in space using an active-target particle detector

    Energy Technology Data Exchange (ETDEWEB)

    Poeschl, Thomas; Greenwald, Daniel; Konorov, Igor; Paul, Stephan [Physics Department E18, Technische Universitaet Muenchen (Germany); Losekamm, Martin [Physics Department E18, Technische Universitaet Muenchen (Germany); Institute of Astronautics, Technische Universitaet Muenchen (Germany)

    2015-07-01

    Measuring antimatter in space excellently probes various astrophysical processes. The abundances and energy spectra of antiparticles reveal a lot about the creation and propagation of cosmic-ray particles in the universe. Abnormalities in their spectra can reveal exotic sources or inaccuracies in our understanding of the involved processes. The measurement of antiprotons and the search for antideuterons and antihelium are optimal at low kinetic energies since background from high-energy cosmic-ray collisions is low. For this reason, we are developing an active-target particle detector capable of detecting ions and anti-ions in the energy range of 30-100 MeV per nucleon. The detector consists of 900 scintillating fibers coupled to silicon photomultipliers and is designed to operate on nanosatellites. The primary application of the detector will be the Antiproton Flux in Space (AFIS) mission, whose goal is the measurement of geomagnetically trapped antiprotons inside Earth's inner radiation belt. In this talk, we explain our particle identification technique and present results from first in-beam measurements with a prototype.

  17. Development of the MICROMEGAS Detector for Measuring the Energy Spectrum of Alpha Particles by using a 241-Am Source

    CERN Document Server

    Kim, Do Yoon; Shin, Jae Won; Park, Tae-Sun; Hong, Seung-Woo; Andriamonje, Samuel; Kadi, Yacine; Tenreiro, Claudio

    2016-01-01

    We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting {\\alpha} particles emitted from an 241-Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of {\\alpha} particles from the 241-Am source can be varied by changing the flight path of the {\\alpha} particle from the 241 Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the {\\alpha} particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for {\\alpha} particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that {\\alpha} particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGA...

  18. Calibration of PM-355 nuclear track detectors for low-energy deuterons

    International Nuclear Information System (INIS)

    Malinowski, K.; Skladnik-Sadowska, E.; Sadowski, M.J.; Czaus, K.

    2008-01-01

    A dependence of track diameters on deuteron energy was investigated for PM-355 nuclear track detectors. Deuteron streams were obtained from RPI-IBIS facility at the pulsed injection of deuterium. Mass and energy analysis was performed with a Thomson-type spectrometer and PM-355 samples. An etched deuteron parabola extended from about 20 keV to about 500 keV. The energy resolution of measurements on the parabola at 20 keV was ±0.2keV, and at 500 keV amounted to ±50keV. Accuracy of the determination of deuteron energies decreased for higher energy values. Results are presented in diagrams showing the track diameters as a function of deuteron energy for chosen etching times (1-8 h)

  19. Monte Carlo simulation of MOSFET detectors for high-energy photon beams using the PENELOPE code

    Science.gov (United States)

    Panettieri, Vanessa; Amor Duch, Maria; Jornet, Núria; Ginjaume, Mercè; Carrasco, Pablo; Badal, Andreu; Ortega, Xavier; Ribas, Montserrat

    2007-01-01

    The aim of this work was the Monte Carlo (MC) simulation of the response of commercially available dosimeters based on metal oxide semiconductor field effect transistors (MOSFETs) for radiotherapeutic photon beams using the PENELOPE code. The studied Thomson&Nielsen TN-502-RD MOSFETs have a very small sensitive area of 0.04 mm2 and a thickness of 0.5 µm which is placed on a flat kapton base and covered by a rounded layer of black epoxy resin. The influence of different metallic and Plastic water™ build-up caps, together with the orientation of the detector have been investigated for the specific application of MOSFET detectors for entrance in vivo dosimetry. Additionally, the energy dependence of MOSFET detectors for different high-energy photon beams (with energy >1.25 MeV) has been calculated. Calculations were carried out for simulated 6 MV and 18 MV x-ray beams generated by a Varian Clinac 1800 linear accelerator, a Co-60 photon beam from a Theratron 780 unit, and monoenergetic photon beams ranging from 2 MeV to 10 MeV. The results of the validation of the simulated photon beams show that the average difference between MC results and reference data is negligible, within 0.3%. MC simulated results of the effect of the build-up caps on the MOSFET response are in good agreement with experimental measurements, within the uncertainties. In particular, for the 18 MV photon beam the response of the detectors under a tungsten cap is 48% higher than for a 2 cm Plastic water™ cap and approximately 26% higher when a brass cap is used. This effect is demonstrated to be caused by positron production in the build-up caps of higher atomic number. This work also shows that the MOSFET detectors produce a higher signal when their rounded side is facing the beam (up to 6%) and that there is a significant variation (up to 50%) in the response of the MOSFET for photon energies in the studied energy range. All the results have shown that the PENELOPE code system can

  20. Monte Carlo simulation of MOSFET detectors for high-energy photon beams using the PENELOPE code.

    Science.gov (United States)

    Panettieri, Vanessa; Duch, Maria Amor; Jornet, Núria; Ginjaume, Mercè; Carrasco, Pablo; Badal, Andreu; Ortega, Xavier; Ribas, Montserrat

    2007-01-07

    The aim of this work was the Monte Carlo (MC) simulation of the response of commercially available dosimeters based on metal oxide semiconductor field effect transistors (MOSFETs) for radiotherapeutic photon beams using the PENELOPE code. The studied Thomson&Nielsen TN-502-RD MOSFETs have a very small sensitive area of 0.04 mm(2) and a thickness of 0.5 microm which is placed on a flat kapton base and covered by a rounded layer of black epoxy resin. The influence of different metallic and Plastic water build-up caps, together with the orientation of the detector have been investigated for the specific application of MOSFET detectors for entrance in vivo dosimetry. Additionally, the energy dependence of MOSFET detectors for different high-energy photon beams (with energy >1.25 MeV) has been calculated. Calculations were carried out for simulated 6 MV and 18 MV x-ray beams generated by a Varian Clinac 1800 linear accelerator, a Co-60 photon beam from a Theratron 780 unit, and monoenergetic photon beams ranging from 2 MeV to 10 MeV. The results of the validation of the simulated photon beams show that the average difference between MC results and reference data is negligible, within 0.3%. MC simulated results of the effect of the build-up caps on the MOSFET response are in good agreement with experimental measurements, within the uncertainties. In particular, for the 18 MV photon beam the response of the detectors under a tungsten cap is 48% higher than for a 2 cm Plastic water cap and approximately 26% higher when a brass cap is used. This effect is demonstrated to be caused by positron production in the build-up caps of higher atomic number. This work also shows that the MOSFET detectors produce a higher signal when their rounded side is facing the beam (up to 6%) and that there is a significant variation (up to 50%) in the response of the MOSFET for photon energies in the studied energy range. All the results have shown that the PENELOPE code system can successfully

  1. True coincidence summing corrections for an extended energy range HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Venegas-Argumedo, Y. [Centro de Investigación en Materiales Avanzados (CIMAV), Miguel de Cervantes 120, Chihuahua, Chih 31109 (Mexico); M.S. Student at CIMAV (Mexico); Montero-Cabrera, M. E., E-mail: elena.montero@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Miguel de Cervantes 120, Chihuahua, Chih 31109 (Mexico)

    2015-07-23

    True coincidence summing (TCS) effect for natural radioactive families of U-238 and Th-232 represents a problem when an environmental sample with a close source-detector geometry measurement is performed. By using a certified multi-nuclide standard source to calibrate an energy extended range (XtRa) HPGe detector, it is possible to obtain an intensity spectrum slightly affected by the TCS effect with energies from 46 to 1836 keV. In this work, the equations and some other considerations required to calculate the TCS correction factor for isotopes of natural radioactive chains are described. It is projected a validation of the calibration, performed with the IAEA-CU-2006-03 samples (soil and water)

  2. DINS measurements on VESUVIO in the Resonance Detector configuration: proton mean kinetic energy in water

    Science.gov (United States)

    Pietropaolo, Antonino; Andreani, Carla; Filabozzi, Alessandra; Senesi, Roberto; Gorini, Giuseppe; Perelli-Cippo, Enrico; Tardocchi, Marco; Rhodes, Nigel J.; Schooneveld, Erik M.

    2006-04-01

    Deep Inelastic Neutron Scattering (DINS) measurements have been performed on a liquid water sample at two different temperatures and pressures. The experiments were carried out using the VESUVIO spectrometer at the ISIS spallation neutron source. This experiment represents the first DINS measurement from water using the Resonance Detector configuration, employing yttrium-aluminum-perovskite scintillator and a 238U analyzer foil. The maximum energy of the scattered neutrons was about 70 eV, allowing to access an extended kinematic space with energy and wave vector transfers at the proton recoil peak in the range 1 eV <= hbarω <= 20 eV and 25 Å-1 <= q <= 90 Å-1, respectively. Comparison with DINS measurements on water performed in the standard Resonance Filter configuration indicates the potential advantages offered by the use of Resonance Detector approach for DINS measurements at forward scattering angles.

  3. Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector

    International Nuclear Information System (INIS)

    Ahrens, J.; Bai, X.; Barwick, S.W.; Bay, R.C.; Becka, T.; Becker, K.-H.; Bernardini, E.; Bertrand, D.; Binon, F.; Boeser, S.; Botner, O.; Bouchta, A.; Bouhali, O.; Burgess, T.; Carius, S.; Castermans, T.; Chirkin, D.; Conrad, J.; Cooley, J.; Cowen, D.F.; Davour, A.; De Clercq, C.; DeYoung, T.; Desiati, P.; Doksus, P.; Ekstrom, P.; Feser, T.; Gaisser, T.K.; Ganugapati, R.; Gaug, M.; Geenen, H.; Gerhardt, L.; Goldschmidt, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Hardtke, R.; Hauschildt, T.; Hellwig, M.; Herquet, P.; Hill, G.C.; Hulth, P.O.; Hughey, B.; Hultqvist, K.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Kuehn, K.; Kim, J.; Kopke, L.; Kowalski, M.; Lamoureux, J.I.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Madsen, J.; Mandli, K.; Marciniewski, P.; Matis, H.S.; McParland, C.P.; Messarius, T.; Miller, T.C.; Minaeva, Y.; Miocinovic, P.; Mock, P.C.; Morse, R.; Neunhoffer, T.; Niessen, P.; Nygren, D.R.; Ogelman, H.; Olbrechts, P.; Perez de los Heros, C.; Pohl, A.C.; Porrata, R.; Price, P.B.; Przybylski, G.T.; Rawlins, K.; Resconi, E.; Rhode, W.; Ribordy, M.; Richter, S.; Rodriguez Martino, J.; Romenesko, P.; Ross, D.; Sander, H.-G.; Schlenstedt, S.; Schinarakis, K.; Schmidt, T.; Schneider, D.; Schwarz, R.; Silvestri, A.; Solarz, M.; Stamatikos, M.; Spiczak, G.M.; Spiering, C.; Steele, D.; Steffen, P.; Stokstad, R.G.; Sulanke, K.-H.; Taboada, I.; Tilav, S.; Wagner, W.; Walck, C.; Wang, Y.-R.; Wiebusch, C.H.; Wiedemann, C.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    2003-01-01

    Data from the AMANDA-B10 detector taken during the austral winter of 1997 have been searched for a diffuse flux of high energy extraterrestrial muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the universe. This search yielded no excess events above those expected from the background atmospheric neutrinos, leading to upper limits on the extraterrestrial neutrino flux. For an assumed E -2 spectrum, a 90 percent classical confidence level upper limit has been placed at a level E 2 Phi(E) = 8.4 x 10 -7 GeV cm -2 s -1 1 sr -1 (for a predominant neutrino energy range 6-1000 TeV) which is the most restrictive bound placed by any neutrino detector. When specific predicted spectral forms are considered, it is found that some are excluded

  4. Radiation hardness of silicon detectors - a challenge from high-energy physics

    CERN Document Server

    Lindström, G; Fretwurst, E

    1999-01-01

    An overview of the radiation-damage-induced problems connected with the application of silicon particle detectors in future high-energy physics experiments is given. Problems arising from the expected hadron fluences are summarized and the use of the nonionizing energy loss for normalization of bulk damage is explained. The present knowledge on the deterioration effects caused by irradiation is described leading to an appropriate modeling. Examples are given for a correlation between the change in the macroscopic performance parameters and effects to be seen on the microscopic level by defect analysis. Finally possible ways are out-lined for improving the radiation tolerance of silicon detectors either by operational conditions, process technology or defect engineering.

  5. The acceptance of surface detector arrays for high energy cosmological muon neutrinos

    International Nuclear Information System (INIS)

    Vo Van Thuan; Hoang Van Khanh

    2011-01-01

    In order to search for ultra-high energy cosmological earth-skimming muon neutrinos by the surface detector array (SD) similar to one of the Pierre Auger Observatory (PAO), we propose to use the transition electromagnetic radiation at the medium interface induced by earth-skimming muons for triggering a few of aligned neighboring Cherenkov SD stations. Simulations of the acceptance of a modeling SD array have been done to estimate the detection probability of earth-skimming muon neutrinos.

  6. Search for low energy quasi-vertical muons with an underwater cosmic neutrino detector, environmental study of the detector setting

    International Nuclear Information System (INIS)

    Blondeau, F.

    1999-06-01

    The European collaboration named ANTARES aims at operating a large submarine neutrino telescope. Mooring lines make up this detector. Each is about four hundred metres high and equipped with photomultiplier tubes. These tubes record the Cherenkov light emitted by muons resulting from the interaction of neutrinos with matter. It was chosen to install the telescope in the Mediterranean, off the shore of Toulon, by a depth of twenty-three hundred metres. One chapter of this dissertation is devoted to the environment parameters of this site: amount of natural light, fouling of glass elements and water transparency is reviewed. Such a disposal is originally designed to look for possible astronomic neutrino sources emitting neutrinos, thus being complementary with the study of our Universe relying on gamma rays. It is shown in this dissertation that two other current riddles in physics can be investigated by ANTARES, when a specific analysis is taken into account: what is the mass of the neutrinos on the one hand (via the phenomenon called neutrino oscillations), and in the other hand the evidence for a new particle which could participate to the nature of the dark matter in the Universe. This analysis is based upon the detection of nearly vertical muons (zenith angle less than fifteen degrees), with an energy lower than 100 GeV. (author)

  7. Measurement and analysis of high energy radiation through activation detectors. Application in dosimetry

    International Nuclear Information System (INIS)

    Sklavenitis, L.

    1967-10-01

    This work is concerned with the possibility of measurement and analysis of radiation fluences within objects of small volume submitted to a high energy proton beam. The first part, consecrated to the establishment of a method of analysis, comprises a detailed study of the radiation nature and energy spectra as well as of the various dosimetry methods. In order to select a group of detectors, high energy nuclear reactions were systematically studied and for some of them cross sections were measured or calculated: for example the cross section of the reaction 11 B (p,n) 11 C between 150 and 3000 MeV and of the reaction 34 S (p,2pn) 32 P between 50 and 3000 MeV. The second part is relative to the application of the fore-mentioned analysis to radiation within a tissue equivalent phantom irradiated by 3 GeV protons. This analysis is sufficiently detailed to allow the reconstitution of the absorbed doses, the dose equivalent and, contingent on a better knowledge of the dose due to heavy particles, the quality factors. It allowed also to follow the evolution of the various dosimetric data as a function of the depth inside the phantom and to verify calculations already done by other researchers. The comparison of the measured doses and the corresponding detector activities revealed the possibility that some detectors could give directly the absorbed dose, or even the dose equivalent, by a simple activity measurement. (author) [fr

  8. Energy Calibration of a Silicon Detector Using Pure Beta-Emitters

    International Nuclear Information System (INIS)

    Borras, C.; Arcos, J. M. los

    1992-01-01

    Energy calibration of SI detectors used in electron spectroscopy 13 commonly performed with conversion electron sources or monoenergetic electrons beams, which are preferred against beta emitters due to the problems arising from their continuous spectra. This paper presents a simple calibration procedure for a PIP-type silicon detector, using 14C, 147Pm, 99 T c and 45Ca sources, that is based on the correspondence between the average channel observed in the experimental spectrum and the mean energy evaluated from the theoretical Fermi distribution for each nuclide. First, a method for evaluating the average channel in the experimental spectrum distorted by the electronic noise is described and its uncertainty estimated. Then, the channel-energy relation ship is established by least squares fitting modified to account for uncertainties in both variables.The calibration has been successfully verified with 147Pm and '09cd sources, showing discrepaneles not greater than 2.5%, within the uncertainties due to the detector resolution and the sources features. (Author)

  9. Pulse-height response of silicon surface-barrier detectors to high-energy heavy ions

    International Nuclear Information System (INIS)

    Smith, G.D.

    1973-01-01

    The pulse-height defect (PHD) of high-energy heavy ions in silicon surface-barrier detectors can be divided into three components: (1) energy loss in the gold-surface layer, (2) a nuclear-stopping defect, and (3) a defect due to recombination of electron-hole pairs in the plasma created by the heavy ion. The plasma recombination portion of the PHD was the subject of this study using the variation of the PHD with (1) the angle of incidence of incoming heavy ions, and (2) changes in the detector bias. The Tandem Van de Graaff accelerator at Argonne National Laboratory was used to produce scattered beam ions ( 32 S, 35 Cl) and heavy target recoils (Ni, Cu, 98 Mo, Ag, Au) at sufficient energies to produce a significant recombination defect. The results confirm the existence of a recombination zone at the front surface of these detectors and the significance of plasma recombination as a portion of the pulse-height defect. (Diss. Abstr. Int., B)

  10. Energy calibration of a silicon detector using pure beta-emitters

    International Nuclear Information System (INIS)

    Borras, C.; Los Arcos, J.M.

    1992-01-01

    Energy calibration of Si detectors used in electron spectroscopy is commonly performed with conversion electron sources or monoenergetic electrons beams, which are preferred against beta emitters due to the problems arising from their continuous spectra. This paper presents a simple calibration procedure for a PIP-type silicon detector, using 1 4C, 1 47m, 9 9Tc and 4 5Ca, that is based on the correspondence between the average channel observed in the experimental spectrum and the mean energy evaluated from the theoretical Fermi distribution for each nuclide. First, a method for evaluating the average channel in the experimental spectrum distorted by the electronic noise is described and its uncertainty estimated. Then, the channel-energy relation ship is established by least squares fitting modified to account for uncertainties in both variables. The calibration has been successfully verified with 147Pm and 109Cs source, showing discrepancies not greater than 2.5%, within the uncertainties due to the detector resolution and the sources features. (author)

  11. Optimizing detector thickness in dual-shot dual-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Woon; Kam, Soohwa; Youn, Hanbean; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2015-05-15

    As a result, there exist apparent limitations in the conventional two-dimensional (2D) radiography: One is that the contrast between the structure of interest and the background in a radiograph is much less than the intrinsic subject contrast (i.e. the difference between their attenuation coefficients; Another is that the superimposed anatomical structures in the 2D radiograph results in an anatomical background clutter that may decrease the conspicuity of subtle underlying features. These limitations in spatial and material discrimination are important motivations for the recent development of 3D (e.g. tomosynthesis) and dual energy imaging (DEI) systems. DEI technique uses a combination of two images obtained at two different energies in successive x-ray exposures by rapidly switching the kilovolage (kV) applied to the x-ray tube. Commercial DEI systems usually employ a 'single' of flat-panel detector (FPD) to obtain two different kV images. However, we have a doubt in the use of the same detector for acquiring two different projections for the low- and high-kV setups because it is typically known that there exists an optimal detector thickness regarding specific imaging tasks or energies used.

  12. Growth and solar energy conversion of Azolla sp., cultivated under four solar irradiance flux density; Crescimento e conversao da energia solar de Azolla sp. cultivada em quatro densidades do fluxo radiante

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, E.F. de [Acre Univ., Rio Branco, AC (Brazil); Lopes, N.F. [Vicosa Univ., MG (Brazil). Dept. de Biologia Vegetal

    1994-02-01

    Growth and solar energy conversion were studied in three Azolla species grown under four levels (30, 50, 70 and 100%) of solar radiation incidence under outdoor conditions. Under full sunlight, the specie A. microphylla showed higher crop growth rate, relative growth rate, net assimilation rate and efficiency of solar energy conversion than the other ones. (author). 8 figs., 23 refs.

  13. Consistency check of pulse shape discrimination for broad energy germanium detectors using double beta decay data

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Heng-Ye [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    The Gerda (GERmanium Detector Array) experiment was built to study fundamental neutrino properties via neutrinoless double beta decay (0νββ). 0νββ events are single-site events (SSE) confined to a scale about millimeter. However, most of backgrounds are multi-site events (MSE). Broad Energy Germanium detectors (BEGes) offer the potential merits of improved pulse shape recognition efficiencies of SSE/MSE. They allow us to reach the goal of Phase II with a background index of 10{sup -3} cts/(keV.kg.yr) in the ROI. BEGe detectors with a total target mass of 3.63 kg have been installed to the Gerda setup in the Laboratori Nazionali del Gran Sasso (LNGS) in July 2012 and are collecting data since. A consistency check of the pulse shape discrimination (PSD) efficiencies by comparison of calibration data and 2νββ data will be presented. The PSD power of these detectors is demonstrated.

  14. Astroparticle physics with a customized low-background broad energy Germanium detector

    Energy Technology Data Exchange (ETDEWEB)

    Aalseth, Craig E.; Amman, M.; Avignone, Frank T.; Back, Henning O.; Barabash, Alexander S.; Barbeau, P. S.; Bergevin, M.; Bertrand, F.; Boswell, M.; Brudanin, V.; Bugg, William; Burritt, Tom H.; Busch, Matthew; Capps, Greg L.; Chan, Yuen-Dat; Collar, J. I.; Cooper, R. J.; Creswick, R.; Detwiler, Jason A.; Diaz, J.; Doe, Peter J.; Efremenko, Yuri; Egorov, Viatcheslav; Ejiri, H.; Elliott, Steven R.; Ely, James H.; Esterline, James H.; Farach, H. A.; Fast, James E.; Fields, N.; Finnerty, P.; Fujikawa, Brian; Fuller, Erin S.; Gehman, Victor M.; Giovanetti, G. K.; Guiseppe, Vincente; Gusey, K.; Hallin, A. L.; Harper, Gregory; Hazama, R.; Henning, Reyco; Hime, Andrew; Hoppe, Eric W.; Hossbach, Todd W.; Howe, M. A.; Johnson, R. A.; Keeter, K.; Keillor, Martin E.; Keller, C.; Kephart, Jeremy D.; Kidd, Mary; Knecht, A.; Kochetov, Oleg; Konovalov, S.; Kouzes, Richard T.; Leviner, L.; Loach, J. C.; Luke, P.; MacMullin, S.; Marino, Michael G.; Martin, R. D.; Mei, Dong-Ming; Miley, Harry S.; Miller, M. L.; Mizouni, Leila; Myers, Allan W.; Nomachi, Masaharu; Orrell, John L.; Peterson, David; Phillips, D.; Poon, Alan; Prior, Gersende; Qian, J.; Radford, D. C.; Rielage, Keith; Robertson, R. G. H.; Rodriguez, Larry; Rykaczewski, Krzysztof P.; Salazar, Harold; Schubert, Alexis G.; Shima, T.; Shirchenko, M.; Steele, David; Strain, J.; Swift, Gary; Thomas, K.; Timkin, V.; Tornow, W.; Van Wechel, T. D.; Vanyushin, I.; Varner, R. L.; Vetter, Kai; Wilkerson, J. F.; Wolfe, B. A.; Xiang, W.; Yakushev, E.; Yaver, Harold; Young, A.; Yu, Chang-Hong; Yumatov, Vladimir; Zhang, C.; Zimmerman, S.

    2011-10-01

    The Majorana Collaboration is building the Majorana Demonstrator, a 60 kg array of high purity germanium detectors housed in an ultra-low background shield at the Sanford Underground Laboratory in Lead, SD. The Majorana Demonstrator will search for neutrinoless double-beta decay of 76Ge while demonstrating the feasibility of a tonne-scale experiment. It may also carry out a dark matter search in the 1-10 GeV/c² mass range. We have found that customized Broad Energy Germanium (BEGe) detectors produced by Canberra have several desirable features for a neutrinoless double-beta decay experiment, including low electronic noise, excellent pulse shape analysis capabilities, and simple fabrication. We have deployed a customized BEGe, the Majorana Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and shield at the Kimballton Underground Research Facility in Virginia. This paper will focus on the detector characteristics and measurements that can be performed with such a radiation detector in a low-background environment.

  15. Material specific X-ray imaging using an energy-dispersive pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Egan, Christopher K., E-mail: christopher.egan@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Wilson, Matthew D.; Veale, Matthew C.; Seller, Paul [STFC Rutherford Appleton Laboratory, Harwell, Didcot, Oxfordshire OX11 0QX (United Kingdom); Jacques, Simon D.M.; Cernik, Robert J. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2014-04-01

    By imaging the X-ray spectral properties or ‘colours’ we have shown how material specific imaging can be performed. Using a pixelated energy-dispersive X-ray detector we record the absorbed and emitted hard X-radiation and measure the energy (colour) and intensity of the photons. Using this technology, we are not only able to obtain attenuation contrast but also to image chemical (elemental) variations inside objects, potentially opening up a very wide range of applications from materials science to medical diagnostics.

  16. Low-energy X-ray detection in cryogenic detectors with tungsten thermometers

    International Nuclear Information System (INIS)

    Colling, P.; Nucciotti, A.; Bucci, C.; Cooper, S.; Ferger, P.; Frank, M.; Nagel, U.; Proebst, F.; Seidel, W.

    1994-08-01

    In the course of our development of calorimetric particle detectors with superconducting phase transition thermometers, we have succeeded in depositing epitaxial α-tungsten films on sapphire which have critical temperatures T c near 15 mK. To our knowledge this is the first time that the T c of bulk tungsten has been observed in thin films. Such films used as thermometers are very sensitive and provide good energy resolution: with 4 g and 32 g sapphire crystals energy resolutions of better than 100eV (FWHM) for 1.5 KeV X-rays have been achieved. (orig.)

  17. The calibration and electron energy reconstruction of the BGO ECAL of the DAMPE detector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiyong; Wang, Chi; Dong, Jianing; Wei, Yifeng [State Key Laboratory of Particle Detection and Electronics (IHEP-USTC), University of Science and Technology of China, Hefei 230026 (China); Wen, Sicheng [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210000 (China); Zhang, Yunlong, E-mail: ylzhang@ustc.edu.cn [State Key Laboratory of Particle Detection and Electronics (IHEP-USTC), University of Science and Technology of China, Hefei 230026 (China); Li, Zhiying; Feng, Changqing; Gao, Shanshan; Shen, ZhongTao; Zhang, Deliang; Zhang, Junbin; Wang, Qi; Ma, SiYuan; Yang, Di; Jiang, Di [State Key Laboratory of Particle Detection and Electronics (IHEP-USTC), University of Science and Technology of China, Hefei 230026 (China); Chen, Dengyi; Hu, Yiming [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210000 (China); Huang, Guangshun; Wang, Xiaolian [State Key Laboratory of Particle Detection and Electronics (IHEP-USTC), University of Science and Technology of China, Hefei 230026 (China); and others

    2016-11-11

    The DArk Matter Particle Explorer (DAMPE) is a space experiment designed to search for dark matter indirectly by measuring the spectra of photons, electrons, and positrons up to 10 TeV. The BGO electromagnetic calorimeter (ECAL) is its main sub-detector for energy measurement. In this paper, the instrumentation and development of the BGO ECAL is briefly described. The calibration on the ground, including the pedestal, minimum ionizing particle (MIP) peak, dynode ratio, and attenuation length with the cosmic rays and beam particles is discussed in detail. Also, the energy reconstruction results of the electrons from the beam test are presented.

  18. Search for high energy skimming neutrinos at a surface detector array

    International Nuclear Information System (INIS)

    Vo Van Thuan; Hoang Van Khanh; Pham Ngoc Diep

    2010-01-01

    In the present study we propose a new method for detection of high energy cosmological muon neutrinos by transition radiations at a medium interface. The emerging electro-magnetic radiations induced by earth-skimming heavy charged leptons are able to trigger a few of aligned neighboring local water Cherenkov stations at a surface detector array similar to the Pierre Auger Observatory. The estimation applied to the model of Gamma Ray Burst induced neutrino fluxes and the spherical earth surface shows a competitive rate of muon neutrino events in the energy range below the GZK cut-off. (author)

  19. Further development of a track detector as the spectrometer of linear energy transfer

    International Nuclear Information System (INIS)

    Spurny, F.; Bednar, J.; Vlcek, B.; Botollier-Depois, J.F.

    1998-01-01

    Track revealing in a track etch detector is a phenomenon related to the linear energy transfer (LET) of the particle registered. The measurements of track parameters permit to determine the LET corresponding to each revealed track, i.e. LET spectrum. We have recently developed a spectrometer of LET based on the chemically etched polyallyldiglycolcarbonate (PADC). In this contribution the results obtained with such spectrometer in some neutron fields are presented, analyzed and discussed. Several radionuclide neutron sources have been used, LET spectrometer has been also exposed in high energy neutron reference fields at CERN and JINR Dubna, and on board aircraft. (author)

  20. Experimental and Numerical Study of the Radiant Induction-Unit and the Induction Radiant Air-Conditioning System

    Directory of Open Access Journals (Sweden)

    Qiang Si

    2016-12-01

    Full Text Available In this paper we proposed the novel air-conditioning system which combined induction ventilation and radiant air-conditioning. The indoor terminal device is the radiant induction-unit (RIDU. The RIDU is the induction unit combined with the pore radiant panel on which the copper pipes with rigid aluminum diffusion fins are installed. The two-stage evaporator chiller with the non-azeotropic mixture refrigerant is utilized in the system to reduce the initial investment in equipment. With the performance test and the steady state heat transfer model based on the theory of radiative heat transfer, the relationship between the induction ratio of the RIDU and the characteristic of the air supply was studied. Based on this, it is verified that the RIDU has a lower dew-point temperature and better anti-condensation performance than a traditional plate-type radiant panel. The characteristics of the radiation and convection heat transfer of the RIDU were studied. The total heat exchange of the RIDU can be 16.5% greater than that of the traditional plate-type radiant terminal.

  1. Efficiency calibration of x-ray HPGe detectors for photons with energies above the Ge K binding energy

    Energy Technology Data Exchange (ETDEWEB)

    Maidana, Nora L., E-mail: nmaidana@if.usp.br [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Vanin, Vito R.; Jahnke, Viktor [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Fernández-Varea, José M. [Facultat de Física (ECM and ICC), Universitat de Barcelona, Diagonal 645, E-08028 Barcelona (Spain); Martins, Marcos N. [Instituto de Física, Universidade de São Paulo, Travessa R 187, Cidade Universitária, CEP:05508-900 São Paulo, SP (Brazil); Brualla, Lorenzo [NCTeam, Strahlenklinik, Universitätsklinikum Essen, Hufelandstraße 55, D-45122 Essen (Germany)

    2013-11-21

    We report on the efficiency calibration of a HPGe x-ray detector using radioactive sources and an analytical expression taken from the literature, in two different arrangements, with and without a broad-angle collimator. The frontal surface of the Ge crystal was scanned with pencil beams of photons. The Ge dead layer was found to be nonuniform, with central and intermediate regions that have thin (μm range) and thick (mm range) dead layers, respectively, surrounded by an insensitive ring. We discuss how this fact explains the observed efficiency curves and generalize the adopted model. We show that changes in the thickness of the Ge-crystal dead layer affect the efficiency of x-ray detectors, but the use of an appropriate broad-beam external collimator limiting the photon flux to the thin dead layer in the central region leads to the expected efficiency dependence with energy and renders the calibration simpler.

  2. Charge collection characteristics of a super-thin diamond membrane detector measured with high-energy heavy ions

    International Nuclear Information System (INIS)

    Iwamoto, N.; Makino, T.; Onoda, S.; Ohshima, T.; Kamiya, T.; Kada, W.; Skukan, N.; Grilj, V.; Jaksic, M.; Pomorski, M.

    2014-01-01

    A transmission particle detector based on a super-thin diamond membrane film which can also be used simultaneously as a vacuum window for ion beam extraction has been developed. Charge collection characteristics of a μ-thick diamond membrane detector for high-energy heavy ions including 75 MeV Ne, 150 MeV Ar, 322 MeV Kr, and 454 MeV Xe have been investigated for the first time. Charge collection signals under single particle flux from the thin part are stable and are well distinguishable from background signals. This behavior suggests that the diamond membrane detector could be used for counting single ions. On the other hand, charge collection efficiency is found to decrease with increasing of charge generated in the diamond membrane detector. This suggests that the pulse height defect, which has been previously reported for Si and SiC detectors, also occurs in the diamond membrane detector. (authors)

  3. Energy dependence of commercially available diode detectors for in-vivo dosimetry

    International Nuclear Information System (INIS)

    Saini, Amarjit S.; Zhu, Timothy C.

    2007-01-01

    The energy dependence of commercially available diode detectors was measured for nominal accelerating potential ranging between Co-60 and 17 MV. The measurements were performed in a liquid water phantom at 5 cm depth for 10x10 cm 2 collimator setting and source-to-detector distance of 100 cm. The response (nC/Gy) was normalized to Co-60 beam after corrections for the dose rate and temperature dependences for each diode. The energy dependence, calculated by taking the percent difference between the maximum and minimum sensitivity normalized to Co-60 beam, varied by 39% for the n-type Isorad Red, 26% for the n-type Isorad Electron, 19% for the QED Red (p-type), 15% for the QED Electron (p-type), 11% for the QED Blue (p-type), and 6% for the EDP10 diode for nominal accelerating potential between Co-60 and 17 MV. It varied by 34% for the Isorad-3 Gold 1 and 2, 35% for the Veridose Green, 15% for the Veridose Yellow, 9% for the Veridose Electron, 21% for the n-type QED Gold, 24% for the n-type QED Red, 3% for the EDP2 3G , 2% for the PFD (photon field detector), 7% for the EDP10 3G , and 16% for the EDP20 3G for nominal accelerating potential between Co-60 and 15 MV. The magnitude of the energy dependence is verified by Monte Carlo simulation. We concluded that the energy dependence does not depend on whether the diode is n- or p-type but rather depends mainly on the material around the die such as the buildup and the geometry of the buildup material. As a result, the value of the energy dependence can vary for each individual diode depending on the actual geometry and should be used with caution

  4. Design of dual energy x-ray detector for conveyor belt with steel wire ropes

    Science.gov (United States)

    Dai, Yue; Miao, Changyun; Rong, Feng

    2009-07-01

    A dual energy X-ray detector for conveyor belt with steel wire ropes is researched in the paper. Conveyor belt with steel wire ropes is one of primary transfer equipments in modern production. The traditional test methods like electromagnetic induction principle could not display inner image of steel wire ropes directly. So X-ray detection technology has used to detect the conveyor belt. However the image was not so clear by the interference of the rubber belt. Therefore, the dualenergy X-ray detection technology with subtraction method is developed to numerically remove the rubber belt from radiograph, thus improving the definition of the ropes image. The purpose of this research is to design a dual energy Xray detector that could make the operator easier to found the faulty of the belt. This detection system is composed of Xray source, detector controlled by FPGA chip, PC for running image processing system and so on. With the result of the simulating, this design really improved the capability of the staff to test the conveyor belt.

  5. Dual-energy radiography of bone tissues using ZnSe-based scintielectronic detectors

    International Nuclear Information System (INIS)

    Grinyov, B.; Ryzhikov, V.; Lecoq, P.; Naydenov, S.; Opolonin, A.; Lisetskaya, E.; Galkin, S.; Shumeiko, N.

    2007-01-01

    Detectors of the scintillator-photodiode type were obtained on the basis of CsI(Tl), CdWO 4 and ZnSe(Te) crystals, and their comparative study was carried out, aiming at their use in X-ray computer tomography (CT). Because of their low afterglow level (10 ppm after 10 ms), CWO and ZnSe crystals are preferable for this application. A drawback of CWO is its lower (by 3 times) light output as compared with CsI(Tl). ZnSe has low transparence to intrinsic radiation; however, up to energies of 60-70 keV it is superior, as for the whole complex of its parameter, to materials traditionally used for CT detectors. The use of a dual-energy receiving-detecting circuit with a detector pair ZnSe/CsI or ZnSe/CdWO allows efficient distinction between muscular and bone tissues, which supports our earlier theoretical assumptions that this method could be successfully used for separate detection of materials differing in their effective atomic number Z eff and local density (e.g., calcium contents in bone densitometry)

  6. Testing and Comparison of Imaging Detectors for Electrons in the Energy Range 10-20 keV

    Science.gov (United States)

    Matheson, J.; Moldovan, G.; Kirkland, A.; Allinson, N.; Abrahams, J. P.

    2017-11-01

    Interest in direct detectors for low-energy electrons has increased markedly in recent years. Detection of electrons in the energy range up to low tens of keV is important in techniques such as photoelectron emission microscopy (PEEM) and electron backscatter diffraction (EBSD) on scanning electron microscopes (SEMs). The PEEM technique is used both in the laboratory and on synchrotron light sources worldwide. The ubiquity of SEMs means that there is a very large market for EBSD detectors for materials studies. Currently, the most widely used detectors in these applications are based on indirect detection of incident electrons. Examples include scintillators or microchannel plates (MCPs), coupled to CCD cameras. Such approaches result in blurring in scintillators/phosphors, distortions in optical systems, and inefficiencies due the limited active area of MCPs. In principle, these difficulties can be overcome using direct detection in a semiconductor device. Growing out of a feasibility study into the use of a direct detector for use on an XPEEM, we have built at Rutherford Appleton Laboratory a system to illuminate detectors with an electron beam of energy up to 20 keV . We describe this system in detail. It has been used to measure the performance of a custom back-thinned monolithic active pixel sensor (MAPS), a detector based on the Medipix2 chip, and a commercial detector based on MCPs. We present a selection of the results from these measurements and compare and contrast different detector types.

  7. A {mu}TPC detector for the characterization of low energy neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Golabek, C., E-mail: cedric.golabek@irsn.fr [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Billard, J. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble (France); Allaoua, A. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Bosson, G.; Bourrion, O.; Grignon, C.; Guillaudin, O. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble (France); Lebreton, L., E-mail: lena.lebreton@irsn.fr [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Mayet, F. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble (France); Petit, M. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN Cadarache, 13115 Saint-Paul-Lez-Durance (France); Richer, J.-P.; Santos, D. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38026 Grenoble (France)

    2012-06-21

    The AMANDE facility produces monoenergetic neutron fields from 2 keV to 20 MeV for metrological purposes. To be considered as a reference facility, fluence and energy distributions of neutron fields have to be determined by primary measurement standards. For this purpose, a micro Time Projection Chamber is being developed to be dedicated to measure neutron fields with energy ranging from 8 keV up to 1 MeV. In this work we present simulations showing that such a detector, which allows the measurement of the ionization energy and the 3D reconstruction of the recoil nucleus, provides the determination of neutron energy and fluence of these neutron fields.

  8. Charge collection efficiency of GaAs detectors studied with low-energy heavy charged particles

    CERN Document Server

    Bates, R; Linhart, V; O'Shea, V; Pospísil, S; Raine, C; Smith, K; Sinor, M; Wilhelm, I

    1999-01-01

    Epitaxially grown GaAs layers have recently been produced with sufficient thickness and low enough free carrier concentration to permit their use as radiation detectors. Initial tests have shown that the epi-material behaves as a classical semiconductor as the depletion behaviour follows the square root dependency on the applied bias. This article presents the results of measurements of the growth of the active depletion depth with increasing bias using low-energy protons and alpha particles as probes for various depths and their comparison to values extrapolated from capacitance measurements. From the proton and alpha particle spectroscopic measurements, an active depth of detector material that collects 100% of the charge generated inside it was determined. The consistency of these results with independent capacitance measurements supports the idea that the GaAs epi-material behaves as a classical semiconductor. (author)

  9. Study of Charge Diffusion in a Silicon Detector Using an Energy Sensitive Pixel Readout Chip

    CERN Document Server

    Schioppa, E. J.; van Beuzekom, M.; Visser, J.; Koffeman, E.; Heijne, E.; Engel, K. J.; Uher, J.

    2015-01-01

    A 300 μm thick thin p-on-n silicon sensor was connected to an energy sensitive pixel readout ASIC and exposed to a beam of highly energetic charged particles. By exploiting the spectral information and the fine segmentation of the detector, we were able to measure the evolution of the transverse profile of the charge carriers cloud in the sensor as a function of the drift distance from the point of generation. The result does not rely on model assumptions or electric field calculations. The data are also used to validate numerical simulations and to predict the detector spectral response to an X-ray fluorescence spectrum for applications in X-ray imaging.

  10. Alpha particle spectroscopy for CR-39 detector utilizing matrix of energy equations

    Energy Technology Data Exchange (ETDEWEB)

    Awad, E.M. [Department of General Sciences, Yanbu Industrial College, PO Box 30436, Madinat Yanbu Al-Sinaiya (Saudi Arabia); Physics Department, Faculty of Science, Menofia University, Shebin El-Koom (Egypt)], E-mail: ayawad@yahoo.com; Soliman, A.A. [Department of Mathematics, Faculty of Education (AL-Arish), Suez Canal University, AL-Arish 45111 (Egypt); Department of Mathematics, Teacher' s College (Bisha), King Khalid University, Bisha, PO Box 551 (Saudi Arabia)], E-mail: asoliman_99@yahoo.com; Rammah, Y.S. [Physics Department, Faculty of Science, Menofia University, Shebin El-Koom (Egypt)

    2007-10-01

    A method for determining alpha-particle energy using CR-39 detector by utilizing matrix of energy equation was described. The matrix was composed from two axes; the track minor axis (m) and diameter of etched out track end (d) axis of some selected elliptical tracks. The energy E in (m,d) coordinate was approximated by matrix of energy equations given by: E{sub k}={sigma}{sub i,j=0}{sup 2}a{sub ij}d{sub k}{sup i}m{sub k}{sup j}, which was identified using two different approaches. First, i and j were treated as power exponents for d and m. The adjusting parameters values a{sub ij} were obtained and the energy of a given track was deduced directly from it. Second, i and j were treated as indices of some chosen tracks that were fitted to obtain iso-energy curves that were superimposed on m-d scatter plot as calibration curves. The energy between any two successive iso-energy curves in this case was assumed varied linearly with d for a given m. The energy matrix in both cases was solved numerically. Results of the two approaches were compared.

  11. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Matthew D., E-mail: Matt.Wilson@stfc.ac.uk; Seller, Paul; Veale, Matthew C. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus,UK (United Kingdom); Connolley, Thomas [Diamond Light Source, I12 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal [Diamond Light Source, B16 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Grant, Patrick S.; Liotti, Enzo; Lui, Andrew [Department of Materials, University of Oxford Parks Road, Oxford (United Kingdom)

    2016-07-27

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm{sup 2} with one of the 80×80 pixels imaging an area equivalent to 13µm{sup 2}. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  12. Algorithms for spectral calibration of energy-resolving small-pixel detectors

    International Nuclear Information System (INIS)

    Scuffham, J; Veale, M C; Wilson, M D; Seller, P

    2013-01-01

    Small pixel Cd(Zn)Te detectors often suffer from inter-pixel variations in gain, resulting in shifts in the individual energy spectra. These gain variations are mainly caused by inclusions and defects within the crystal structure, which affect the charge transport within the material causing a decrease in the signal pulse height. In imaging applications, spectra are commonly integrated over a particular peak of interest. This means that the individual pixels must be accurately calibrated to ensure that the same portion of the spectrum is integrated in every pixel. The development of large-area detectors with fine pixel pitch necessitates automated algorithms for this spectral calibration, due to the very large number of pixels. Algorithms for automatic spectral calibration require accurate determination of characteristic x-ray or photopeak positions on a pixelwise basis. In this study, we compare two peak searching spectral calibration algorithms for a small-pixel CdTe detector in gamma spectroscopic imaging. The first algorithm uses rigid search ranges to identify peaks in each pixel spectrum, based on the average peak positions across all pixels. The second algorithm scales the search ranges on the basis of the position of the highest-energy peak relative to the average across all pixels. In test spectra acquired with Tc-99m, we found that the rigid search algorithm failed to correctly identify the target calibraton peaks in up to 4% of pixels. In contrast, the scaled search algorithm failed in only 0.16% of pixels. Failures in the scaled search algorithm were attributed to the presence of noise events above the main photopeak, and possible non-linearities in the spectral response in a small number of pixels. We conclude that a peak searching algorithm based on scaling known peak spacings is simple to implement and performs well for the spectral calibration of pixellated radiation detectors

  13. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Wilson, Matthew D.; Seller, Paul; Veale, Matthew C.; Connolley, Thomas; Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal; Grant, Patrick S.; Liotti, Enzo; Lui, Andrew

    2016-01-01

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm"2 with one of the 80×80 pixels imaging an area equivalent to 13µm"2. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  14. Energy-sensitive imaging detector applied to the dissociative recombination of D2H+

    International Nuclear Information System (INIS)

    Buhr, H.; Schwalm, D.; Mendes, M. B.; Novotny, O.; Berg, M. H.; Bing, D.; Krantz, C.; Orlov, D. A.; Sorg, T.; Stuetzel, J.; Varju, J.; Wolf, A.; Heber, O.; Rappaport, M. L.; Zajfman, D.

    2010-01-01

    We report on an energy-sensitive imaging detector for studying the fragmentation of polyatomic molecules in the dissociative recombination of fast molecular ions with electrons. The system is based on a large area (10x10 cm 2 ) position-sensitive, double-sided Si-strip detector with 128 horizontal and 128 vertical strips, whose pulse height information is read out individually. The setup allows us to uniquely identify fragment masses and is thus capable of measuring branching ratios between different fragmentation channels, kinetic energy releases, and breakup geometries as a function of the relative ion-electron energy. The properties of the detection system, which has been installed at the Test Storage Ring (TSR) facility of the Max-Planck Institute for Nuclear Physics in Heidelberg, is illustrated by an investigation of the dissociative recombination of the deuterated triatomic hydrogen cation D 2 H + . A huge isotope effect is observed when comparing the relative branching ratio between the D 2 + H and the HD + D channel; the ratio 2B(D 2 + H)/B(HD + D), which is measured to be 1.27±0.05 at relative electron-ion energies around 0 eV, is found to increase to 3.7±0.5 at ∼5 eV.

  15. Energy-sensitive imaging detector applied to the dissociative recombination of D2H+

    Science.gov (United States)

    Buhr, H.; Mendes, M. B.; Novotný, O.; Schwalm, D.; Berg, M. H.; Bing, D.; Heber, O.; Krantz, C.; Orlov, D. A.; Rappaport, M. L.; Sorg, T.; Stützel, J.; Varju, J.; Wolf, A.; Zajfman, D.

    2010-06-01

    We report on an energy-sensitive imaging detector for studying the fragmentation of polyatomic molecules in the dissociative recombination of fast molecular ions with electrons. The system is based on a large area (10×10 cm2) position-sensitive, double-sided Si-strip detector with 128 horizontal and 128 vertical strips, whose pulse height information is read out individually. The setup allows us to uniquely identify fragment masses and is thus capable of measuring branching ratios between different fragmentation channels, kinetic energy releases, and breakup geometries as a function of the relative ion-electron energy. The properties of the detection system, which has been installed at the Test Storage Ring (TSR) facility of the Max-Planck Institute for Nuclear Physics in Heidelberg, is illustrated by an investigation of the dissociative recombination of the deuterated triatomic hydrogen cation D2H+. A huge isotope effect is observed when comparing the relative branching ratio between the D2 + H and the HD + D channel; the ratio 2B(D2 + H)/B(HD + D), which is measured to be 1.27±0.05 at relative electron-ion energies around 0 eV, is found to increase to 3.7±0.5 at ~5 eV.

  16. Comparison of HPGe detector response data for low energy photons using MCNP, EGS, and its codes

    International Nuclear Information System (INIS)

    Kim, Soon Young; Kim, Jong Kyung

    1995-01-01

    In this study, the photopeak efficiency, K α and K β escape fractions of HPGe detector(100mm 2 X 10mm) are calculated and tabulated as a function of incident X-ray energies from 12 to 60keV in 2-keV increments. Compton, elastic, and penetration fractions are not tabulated from this work since they are negligible amounts in this energy range. The results calculated from this work are compared with earlier Monte Carlo results which had been carried out by Chin-Tu Chen et al.. From the comparison, it is found that the results calculated from each code show a large difference when the incident photon energy approaches to 12keV as compared with energy ranges from 50 to 60keV. In X-ray dosimetry and diagnostic radiology, it is essential to have accurate knowledge of X-ray spectra for studies of patient dose and image quality. Being X-ray spectra measured with a detection system, some distortions due to the incomplete absorption of primary photon or escape before interacting with the detector which have finite dimension can take place

  17. The technique of obtaining single-energy γ-rays in calibrating energy response of detector

    International Nuclear Information System (INIS)

    Li Rurong; Peng Taiping; Hu Mengchun; Li Zhongbao

    2004-01-01

    This paper introduces the principle of transforming γ-rays from 60 Co into a series of single-energy γ-rays and stresses the technique of shielding radiation-interfere and reducing energy-dispersion. The Single-energy γ-rays of any energy in the range of 0.36-1.02 MeV may be obtained by means of this technique. (authors)

  18. The color of X-rays Spectral X-ray computed tomography using energy sensitive pixel detectors

    CERN Document Server

    Schioppa, Enrico Junior

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray fluorescence. The charge transport properties of the sensor are characterized using a high energy beam of charged particles at the Super Proton Synchrotron (SPS) at the European Center for Nuclear Research (CERN). Monochromatic X-rays at the European Synchrotron Radiation Facility (ESRF) are used to determined the energy response function. These data are used to implement a physics-based CT projection operator that accounts for the transmission of the source spectrum through the sample and detector effects. Based on this projection operator, an iterative spectral CT reconstruction algorithm is developed by extending an Ordered Subset Expectation Maximization (OSEM) method. Subsequently, a maximum likelihood based algo...

  19. Calibration efficiency of HPGe detector in the 50-1800 KeV energy range

    International Nuclear Information System (INIS)

    Venturini, Luzia

    1996-01-01

    This paper describes the efficiency of an HPGe detector in the 50 - 1800 keV energy range, for two geometries for water measurements: Marinelli breaker (850 ml) and a polyethylene flask (100 ml). The experimental data were corrected for the summing effect and fitted to a continuous, differentiable and energy dependent function given by 1n(ε)=b 0 +b 1 .1n(E/E 0 )+ β.1n(E/E 0 ) 2 , where β = b 2 if E>E 0 and β =a 2 if E ≤E 0 ; ε = the full absorption peak efficiency; E is the gamma-ray energy and {b 0 , b 1 , b 2 , a 2 , E 0 } is the parameter set to be fitted. (author)

  20. Efficiency for close geometries and extended sources of a p-type germanium detector with low-energy sensitivity

    International Nuclear Information System (INIS)

    Keyser, R.M.; Twomey, T.R.

    2007-01-01

    Typically, germanium detectors designed to have good sensitivity to low-energy photons and good efficiency at high energies are constructed from n-type crystals with a boron-implanted outer contact. These detectors usually exhibit inferior resolution and peak shape compared to ones made from p-type crystals. To overcome the resolution and peak-shape deficiencies, a new method of construction of a germanium detector element was developed. This has resulted in a gamma-ray detector with high sensitivity to photon energies from 14 keV to 2 MeV, while maintaining good resolution and peak shape over this energy range. Efficiency measurements, done according to the draft IEEE 325-2004 standard, show efficiencies typical of a GMX or n-type detector at low energies. The detectors are of large diameter suitable for counting extended samples such as filter papers. The Gaussian peak shape and good resolution typical of a GEM or p-type are maintained for the high count rates and peak separation needed for activation analysis. (author)

  1. Energy dependent charge spread function in a dedicated synchrotron beam pnCCD detector

    International Nuclear Information System (INIS)

    Yousef, Hazem

    2011-01-01

    A scan on the pixel edges is the method which is used to resolve the electron cloud size in the pixel array of the pnCCD detector. The EDR synchrotron radiation in BESSY is the source of the X-ray photons which are used in the scans. The radius of the electron cloud as a function of the impinging photon energy is analyzed. The angle of incidence of the X-ray beam is employed in the measurements. The measurements are validated by the numerical simulation models. The inclined X-ray track leads to distribute the electron clouds in a certain number of pixels according to the incident angle of the X-ray beam. The pixels detect different electron clouds according to their generation position in the detector bulk. A collimated X-ray beam of 12.14 keV is used in the measurements with 30 and 40 entrance angles. It is shown that the two factors that leads to expand the electron clouds namely the diffusion and the mutual electrostatic repulsion can be separated from the measured electron clouds. It is noticed as well that the influence of the mutual electrostatic repulsion dominates the cloud expansion over the diffusion process in the collection time of the detector. The perpendicular X-ray track leads to determine the average radius of the electron cloud per photon energy. The results show that the size of the electron clouds (RMS) in the energy range of [5.0-21.6] keV is smaller than the pixel size. (orig.)

  2. Energy dependent charge spread function in a dedicated synchrotron beam pnCCD detector

    Energy Technology Data Exchange (ETDEWEB)

    Yousef, Hazem

    2011-05-20

    A scan on the pixel edges is the method which is used to resolve the electron cloud size in the pixel array of the pnCCD detector. The EDR synchrotron radiation in BESSY is the source of the X-ray photons which are used in the scans. The radius of the electron cloud as a function of the impinging photon energy is analyzed. The angle of incidence of the X-ray beam is employed in the measurements. The measurements are validated by the numerical simulation models. The inclined X-ray track leads to distribute the electron clouds in a certain number of pixels according to the incident angle of the X-ray beam. The pixels detect different electron clouds according to their generation position in the detector bulk. A collimated X-ray beam of 12.14 keV is used in the measurements with 30 and 40 entrance angles. It is shown that the two factors that leads to expand the electron clouds namely the diffusion and the mutual electrostatic repulsion can be separated from the measured electron clouds. It is noticed as well that the influence of the mutual electrostatic repulsion dominates the cloud expansion over the diffusion process in the collection time of the detector. The perpendicular X-ray track leads to determine the average radius of the electron cloud per photon energy. The results show that the size of the electron clouds (RMS) in the energy range of [5.0-21.6] keV is smaller than the pixel size. (orig.)

  3. Future high energy physics experiments using RICH detectors: The next generation

    International Nuclear Information System (INIS)

    Ratcliff, B.N.

    1995-08-01

    This report describes some features of the new detectors now being constructed for use in high energy physics experiments that utilize RICH counters as a central element. The scope of this discussion is limited only to experiments which have been formally approved for construction as follows: (1) BaBar at PEP-II, which contains a quartz radiator DIRC counter; (2) CLEO III at the CESR upgrade, which utilizes a LiF/TEA Fast RICH; and (3) HERA-B at HERA, which uses a gas radiator RICH with either a TMAE- or a CsI-based photon detector. These experiments have much in common; all emphasize B-physics, run at the luminosity frontier, and plan to take first data either in 1998 or 1999. This review begins with a discussion of the physics goals and experimental context, and then explore the designs which have been chosen to confront the experimental issues. Particular emphasis is placed on the design and expected performance of the RICH detectors in these systems. Due to space limitations, only a few of the recent R and D results not covered elsewhere at the conference can be presented

  4. Precise measurement of internal sense-wire locations in high-energy physics detectors

    International Nuclear Information System (INIS)

    Dunn, W.L.; O'Foghludha, F.; Yacount, A.M.

    1992-01-01

    Cylindrical straw tubes that contain central sense wires (as anodes) are commonly employed in high-energy and nuclear physics experiments to track charged particles through regions of large detectors. The outer tracking region of the proposed Solenoidal Detector Collaboration (SDC) detector for future experiments at the Superconducting Super Collider (SSC), for instance, is expected to contain more than a hundred thousand 4-mm-diam straw tube drift cells arranged in five cylindrically concentric superlayers. The superlayers will be made up of modules having roughly trapezoidal cross sections. The modules will be up to 4 m long and will contain ∼200 straws each, arranged in either six or eight layers. The module shells are expected to be made of thin but nontransparent carbon/epoxy composite material and the straws of mylar or kapton, which has been coated on the inside with a thin (∼0.15-μm) layer of copper. A precise knowledge of the locations of the sense wires in these modules is crucial to the intended particle tracking

  5. Measurements of low energy observables in proton-proton collisions with the ATLAS Detector.

    CERN Document Server

    Myska, Miroslav; The ATLAS collaboration

    2017-01-01

    Low energy phenomena have been studied in detail at the LHC, providing important input for improving models of non-perturbative QCD effects. The ATLAS collaboration has performed several new measurements in this sector: We present charged-particle distributions sensitive to the underlying event, measured by the ATLAS detector in proton--proton collisions at a centre-of-mass energy of 13 TeV. The results are corrected for detector effects and compared to predictions from various Monte Carlo generators. ATLAS has also studied the correlated hadron production. In particular, an analysis of the momentum difference between charged hadrons in high–energy proton–proton collisions is performed and the results are compared to the predictions of a helical QCD string fragmentation model. New results in forward physics are expected to be available soon. We close this presentation with the measurement of the exclusive "\\gamma\\gamma \\rightarrow \\mu^{+}\\mu^{-}" production in proton-proton collisions at a center-of-mass ...

  6. Study on the energy response to neutrons for a new scintillating-fiber-array neutron detector

    CERN Document Server

    Zhang Qi; Wang Qun; Xie Zhong Shen

    2003-01-01

    The energy response of a new scintillating-fiber-array neutron detector to neutrons in the energy range 0.01 MeV<=E sub n<=14 MeV was modeled by combining a simplified Monte Carlo model and the MCNP 4b code. In order to test the model and get the absolute sensitivity of the detector to neutrons, one experiment was carried out for 2.5 and 14 MeV neutrons from T(p,n) sup 3 He and T(d,n) sup 4 He reactions at the Neutron Generator Laboratory at the Institute of Modern Physics, the Chinese Academy of Science. The absolute neutron fluence was obtained with a relative standard uncertainty 4.5% or 2.0% by monitoring the associated protons or sup 4 He particles, respectively. Another experiment was carried out for 0.5, 1.0, 1.5, 2.0, 2.5 MeV neutrons from T(p,n) sup 3 He reaction, and for 3.28, 3.50, 4.83, 5.74 MeV neutrons from D(d,n) sup 3 He reaction on the Model 5SDH-2 accelerator at China Institute of Atomic Energy. The absolute neutron fluence was obtained with a relative standard uncertainty 5.0% by usin...

  7. Solar panels as air Cherenkov detectors for extremely high energy cosmic rays

    International Nuclear Information System (INIS)

    Cecchini, S.; D'Antone, I.; Degli Esposti, L.; Giacomelli, G.; Guerra, M.; Lax, I.; Mandrioli, G.; Parretta, A.; Sarno, A.; Schioppo, R.; Sorel, M.; Spurio, M.

    2000-01-01

    Increasing interest towards the observation of the highest energy cosmic rays has motivated the development of new detection techniques. The properties of the Cherenkov photon pulse emitted in the atmosphere by these very rare particles indicate low-cost semiconductor detectors as good candidates for their optical read-out. The aim of this paper is to evaluate the viability of solar panels for this purpose. The experimental framework resulting from measurements performed with suitably-designed solar cells and large conventional photovoltaic areas is presented. A discussion on the obtained and achievable sensitivities follows

  8. A BGO detector array and its application in intermediate energy heavy ion experiments

    International Nuclear Information System (INIS)

    Li Zuyu; Jin Genming; He Zhiyong; Duan Limin; Wu Heyu; Qi Yujin; Luo Qingzheng; Zhang Baoguo; Wen Wanxin; Dai Guangxi

    1996-01-01

    A BGO crystal (Bi 4 Ge 3 O 12 ) as the E detector of ΔE-E for identification of reaction products has been used for detecting the charged particles emitting from the 25 MeV 40 Ar induced reaction. The responses of the BGO crystal to various light charged particles were measured. A close-packed hexagonal array consisting of thirteen ΔE-E telescopes (Si-BGO) has been developed to detect the light charged particles interfering with each other in intermediate-energy heavy-ion induced reactions. Some applications of this telescope array are also described. (orig.)

  9. The Analysis of Closed-form Solution for Energy Detector Dynamic Threshold Adaptation in Cognitive Radio

    Directory of Open Access Journals (Sweden)

    R. Bozovic

    2017-12-01

    Full Text Available Spectrum sensing is the most important process in cognitive radio in order to ensure interference avoidance to primary users. For optimal performance of cognitive radio, it is substantial to monitor and promptly react to dynamic changes in its operating environment. In this paper, energy detector based spectrum sensing is considered. Under the assumption that detected signal can be modelled according to an autoregressive model, noise variance is estimated from that noisy signal, as well as primary user signal power. A closed-form solution for optimal decision threshold in dynamic electromagnetic environment is proposed and analyzed.

  10. LET spectrometry with track etch detectors-Use in high-energy radiation fields

    Czech Academy of Sciences Publication Activity Database

    Jadrníčková, Iva; Spurný, František

    2008-01-01

    Roč. 43, 2-6 (2008), s. 683-687 ISSN 1350-4487. [International Conference on Dosimetry /15./. Delft, 08.07.-13.07.2007] R&D Projects: GA ČR GA202/04/0795; GA ČR(CZ) GD202/05/H031; GA MŠk 1P05OC032 Institutional research plan: CEZ:AV0Z10480505 Keywords : track detector * linear energy transfer * CERF Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.267, year: 2008

  11. Determination of the Jet Energy Scale and the Jet Energy Resolution in the 20fb-1 of data collected by the ATLAS detector in 2012

    CERN Document Server

    Dattagupta, A; The ATLAS collaboration

    2014-01-01

    Jets are manifestations of quarks and gluons, in the form of sprays of hadrons, in High Energy Physics experiments. For the ATLAS detector, these objects are constructed using three-dimensional topological clusters, built from the calorimeter cells of the detector, surrounding a seed cell. This seed cell has an energy significance above 4 sigma noise. Since jets have a high production rate in the ATLAS detector, an accurate measurement of their properties is essential for Physics analyses, aiming to measure Standard Model processes, and looking for new Physics. A summary of the calibration algorithms for the reconstruction of jets in ATLAS and it's validation and calibration in data are presented here.

  12. A systematic characterization of the low-energy photon response of plastic scintillation detectors

    Science.gov (United States)

    Boivin, Jonathan; Beddar, Sam; Bonde, Chris; Schmidt, Daniel; Culberson, Wesley; Guillemette, Maxime; Beaulieu, Luc

    2016-08-01

    To characterize the low energy behavior of scintillating materials used in plastic scintillation detectors (PSDs), 3 PSDs were developed using polystyrene-based scintillating materials emitting in different wavelengths. These detectors were exposed to National Institute of Standards and Technology (NIST)-matched low-energy beams ranging from 20 kVp to 250 kVp, and to 137Cs and 60Co beams. The dose in polystyrene was compared to the dose in air measured by NIST-calibrated ionization chambers at the same location. Analysis of every beam quality spectrum was used to extract the beam parameters and the effective mass energy-absorption coefficient. Monte Carlo simulations were also performed to calculate the energy absorbed in the scintillators’ volume. The scintillators’ expected response was then compared to the experimental measurements and an energy-dependent correction factor was identified to account for low-energy quenching in the scintillators. The empirical Birks model was then compared to these values to verify its validity for low-energy electrons. The clear optical fiber response was below 0.2% of the scintillator’s light for x-ray beams, indicating that a negligible amount of fluorescence contamination was produced. However, for higher-energy beams (137Cs and 60Co), the scintillators’ response was corrected for the Cerenkov stem effect. The scintillators’ response increased by a factor of approximately 4 from a 20 kVp to a 60Co beam. The decrease in sensitivity from ionization quenching reached a local minimum of about 11%+/- 1% between 40 keV and 60 keV x-ray beam mean energy, but dropped by 20% for very low-energy (13 keV) beams. The Birks model may be used to fit the experimental data, but it must take into account the energy dependence of the kB quenching parameter. A detailed comprehension of intrinsic scintillator response is essential for proper calibration of PSD dosimeters for radiology.

  13. arXiv Energy Dependent Features of X-ray Signals in a GridPix Detector

    CERN Document Server

    Krieger, Christoph; Vafeiadis, Theodoros; Desch, Klaus

    2018-06-11

    We report on the calibration of an argon/isobutane (97.7%/2.3%)-filled GridPix detector with soft X-rays (277 eV to 8 keV) using the variable energy X-ray source of the CAST Detector Lab at CERN. We study the linearity and energy resolution of the detector using both the number of pixels hit and the total measured charge as energy measures. For the latter, the energy resolution σE∕E is better than 10% (20%) for energies above 2 keV (0.5 keV). Several characteristics of the recorded events are studied.

  14. Analysis of the surface technology of silicon detectors for imaging of low-energy beta tracers in biological material

    CERN Document Server

    Tykva, R

    2000-01-01

    Using silicon surface barrier detectors, the counting sensitivity of low-energy beta tracers is considerably influenced by surface technology applied in detector manufacturing. Original diagnostic procedure, using a mixture of uranium fission products, is described to trace the behaviors of different admixtures as in the etching bath as in the water used during development of the detector surface. In combination with some other described analyses, the detectors produced with the developed surface control are used in a PC - controlled scanning equipment reaching at room temperature an FWHM of 3.4 keV for sup 2 sup 4 sup 1 Am. Such detectors make it possible to image distribution, of e.g., sup 3 H, sup 1 sup 2 sup 5 I, sup 3 H+ sup 1 sup 4 C and other beta tracer combinations applied in life and environmental sciences.

  15. Design and expected performance of a novel hybrid detector for very-high-energy gamma-ray astrophysics

    Science.gov (United States)

    Assis, P.; Barres de Almeida, U.; Blanco, A.; Conceição, R.; D'Ettorre Piazzoli, B.; De Angelis, A.; Doro, M.; Fonte, P.; Lopes, L.; Matthiae, G.; Pimenta, M.; Shellard, R.; Tomé, B.

    2018-05-01

    Current detectors for Very-High-Energy γ-ray astrophysics are either pointing instruments with a small field of view (Cherenkov telescopes), or large field-of-view instruments with relatively large energy thresholds (extensive air shower detectors). In this article, we propose a new hybrid extensive air shower detector sensitive in an energy region starting from about 100 GeV. The detector combines a small water-Cherenkov detector, able to provide a calorimetric measurement of shower particles at ground, with resistive plate chambers which contribute significantly to the accurate shower geometry reconstruction. A full simulation of this detector concept shows that it is able to reach better sensitivity than any previous gamma-ray wide field-of-view experiment in the sub-TeV energy region. It is expected to detect with a 5σ significance a source fainter than the Crab Nebula in one year at 100 GeV and, above 1 TeV a source as faint as 10% of it. As such, this instrument is suited to detect transient phenomena making it a very powerful tool to trigger observations of variable sources and to detect transients coupled to gravitational waves and gamma-ray bursts.

  16. Monte Carlo simulation of the X-ray response of a germanium microstrip detector with energy and position resolution

    CERN Document Server

    Rossi, G; Fajardo, P; Morse, J

    1999-01-01

    We present Monte Carlo computer simulations of the X-ray response of a micro-strip germanium detector over the energy range 30-100 keV. The detector consists of a linear array of lithographically defined 150 mu m wide strips on a high purity monolithic germanium crystal of 6 mm thickness. The simulation code is divided into two parts. We first consider a 10 mu m wide X-ray beam striking the detector surface at normal incidence and compute the interaction processes possible for each photon. Photon scattering and absorption inside the detector crystal are simulated using the EGS4 code with the LSCAT extension for low energies. A history of events is created of the deposited energies which is read by the second part of the code which computes the energy histogram for each detector strip. Appropriate algorithms are introduced to account for lateral charge spreading occurring during charge carrier drift to the detector surface, and Fano and preamplifier electronic noise contributions. Computed spectra for differen...

  17. Low Energy Neutrino Astronomy in the future large-volume liquid-scintillator detector LENA

    International Nuclear Information System (INIS)

    Wurm, Michael; Feilitzsch, F V; Goeger-Neff, M; Lewke, T; Undagoitia, T Marrodan; Oberauer, L; Potzel, W; Todor, S; Winter, J

    2008-01-01

    The recent successes in neutrino physics prove that liquid-scintillator detectors allow to combine high energy resolution, efficient means of background reduction, and a large detection volume. In the planned LENA (Low Energy Neutrino Astronomy) experiment, a target mass of 50 kt will enable the investigation of a variety of terrestrial and astrophysical neutrino sources. The high-statistics spectroscopy of geoneutrinos, solar neutrinos and supernova neutrinos will provide new insights in the heat production processes of Earth and Sun, and the workings of a gravitational collapse. The same measurements will as well investigate neutrino properties as oscillation parameters and mass hierarchy. A first spectroscopic measurement of the low flux of diffuse supernova neutrino background is within the sensitivity of the LENA detector. Finally, a life-time limit of several 1034 years can be set to the proton decay into proton and anti-neutrino, testing the predictions of SUSY theory. The present contribution includes a review of the scientific studies that were performed in the last years as well as a report on currently on-going R and D activities.

  18. A fast event preprocessor for the Simbol-X Low-Energy Detector

    Science.gov (United States)

    Schanz, T.; Tenzer, C.; Kendziorra, E.; Santangelo, A.

    2008-07-01

    The Simbol-X1 Low Energy Detector (LED), a 128 × 128 pixel DEPFET array, will be read out very fast (8000 frames/second). This requires a very fast onboard data preprocessing of the raw data. We present an FPGA based Event Preprocessor (EPP) which can fulfill this requirements. The design is developed in the hardware description language VHDL and can be later ported on an ASIC technology. The EPP performs a pixel related offset correction and can apply different energy thresholds to each pixel of the frame. It also provides a line related common-mode correction to reduce noise that is unavoidably caused by the analog readout chip of the DEPFET. An integrated pattern detector can block all invalid pixel patterns. The EPP has an internal pipeline structure and can perform all operation in realtime (< 2 μs per line of 64 pixel) with a base clock frequency of 100 MHz. It is utilizing a fast median-value detection algorithm for common-mode correction and a new pattern scanning algorithm to select only valid events. Both new algorithms were developed during the last year at our institute.

  19. Low Energy Neutrino Astronomy in the future large-volume liquid-scintillator detector LENA

    Energy Technology Data Exchange (ETDEWEB)

    Wurm, Michael; Feilitzsch, F V; Goeger-Neff, M; Lewke, T; Undagoitia, T Marrodan; Oberauer, L; Potzel, W; Todor, S; Winter, J [E15 Chair for Astroparticle Physics, Technische Universitat Miinchen, Physik Department, James-Franck-Str., D-85748 Garching (Germany)

    2008-11-01

    The recent successes in neutrino physics prove that liquid-scintillator detectors allow to combine high energy resolution, efficient means of background reduction, and a large detection volume. In the planned LENA (Low Energy Neutrino Astronomy) experiment, a target mass of 50 kt will enable the investigation of a variety of terrestrial and astrophysical neutrino sources. The high-statistics spectroscopy of geoneutrinos, solar neutrinos and supernova neutrinos will provide new insights in the heat production processes of Earth and Sun, and the workings of a gravitational collapse. The same measurements will as well investigate neutrino properties as oscillation parameters and mass hierarchy. A first spectroscopic measurement of the low flux of diffuse supernova neutrino background is within the sensitivity of the LENA detector. Finally, a life-time limit of several 1034 years can be set to the proton decay into proton and anti-neutrino, testing the predictions of SUSY theory. The present contribution includes a review of the scientific studies that were performed in the last years as well as a report on currently on-going R and D activities.

  20. HEPD on NEXTSat-1: A High Energy Particle Detector for Measurements of Precipitating Radiation Belt Electrons

    Science.gov (United States)

    Sohn, Jongdae; Lee, Jaejin; Min, Kyoungwook; Lee, Junchan; Lee, Seunguk; Lee, Daeyoung; Jo, Gyeongbok; Yi, Yu; Na, Gowoon; Kang, Kyung-In; Shin, Goo-Hwan

    2018-05-01

    Radiation belt particles of the inner magnetosphere precipitate into the atmosphere in the subauroral regions when they are pitch-angle scattered into the loss cone by wave-particle interactions. Such particle precipitations are known to be especially enhanced during space storms, though they can also occur during quiet times. The observed characteristics of precipitating electrons can be distinctively different, in their time series as well as in their spectra, depending on the waves involved. The present paper describes the High Energy Particle Detector (HEPD) on board the Next Generation Small Satellite-1 (NEXTSat-1), which will measure these radiation belt electrons from a low-Earth polar orbit satellite to study the mechanisms related to electron precipitation in the sub-auroral regions. The HEPD is based on silicon barrier detectors and consists of three telescopes that are mounted on the satellite to have angles of 0°. 45°, and 90°, respectively with the local geomagnetic field during observations. With a high time resolution of 32 Hz and a high spectral resolution of 11 channels over the energy range from 350 keV to 2 MeV, together with the pitch angle information provided by the three telescopes, HEPD is capable of identifying physical processes, such as microbursts and dust-side relativistic electron precipitation (DREP) events associated with electron precipitations. NextSat-1 is scheduled for launch in early 2018.

  1. Energy calibration for the forward detector at WASA-at-COSY

    Energy Technology Data Exchange (ETDEWEB)

    Demmich, Kay; Bergmann, Florian; Huesemann, Patrice; Huesken, Nils; Taeschner, Alexander; Khoukaz, Alfons [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster (Germany); Collaboration: WASA-at-COSY-Collaboration

    2014-07-01

    Studies on rare and forbidden decays of light mesons are one main aspect of the WASA-at-COSY physics program. In this context a large data set of η mesons has been produced in proton proton scattering in order to investigate the decay properties of this meson. This high statistic measurement allows, e.g., for the search for the C parity violating reaction η → π{sup 0} + e{sup +} + e{sup -}, for which only an upper limit for the relative branching ratio of 4 x 10{sup -5} is quoted by the particle data group. The analysis of this forbidden decay channel relies on an effective separation of the physical background which is mainly caused by the direct pion production. To handle this background a missing mass analysis and kinematic fitting will be applied. Since both methods rely on a high energy resolution of the forward detector this detector, which measures the proton energies, has to be calibrated very carefully. In this contribution, a new calibration software is presented which has been developed especially for proton-proton measurements, and which allows for a precise determination of the calibration parameters by the mean of a graphical user interface and a dedicated fitting algorithm. Moreover, with this tool a run-by-run calibration can be realised. First results of the improved calibration are presented.

  2. Full energy peak efficiency of NaI(Tl) gamma detectors and its analytical and semi-empirical representations

    International Nuclear Information System (INIS)

    Sudarshan, M.; Joseph, J.; Singh, R.

    1992-01-01

    The validity of various analytical functions and semi-empirical formulae proposed for representing the full energy peak efficiency (FEPE) curves of Ge(Li) and HPGe detectors has been tested for the FEPE of 7.6 cm x 7.6 cm and 5 cm x 5 cm Nal(Tl) detectors in the gamma energy range from 59.5 to 1408.03 keV. The functions proposed by East, and McNelles and Campbell provide by far the best representations of the present data. The semi-empirical formula of Mowatt describes the present data very well. The present investigation shows that some of the analytical functions and semi-empirical formulae, which represent the FEPE of the Ge(Li) and HPGe detectors very well, can be quite fruitfully used for Nal(Tl) detectors. (Author)

  3. Improving the neutron-to-photon discrimination capability of detectors used for neutron dosimetry in high energy photon beam radiotherapy

    International Nuclear Information System (INIS)

    Irazola, L.; Terrón, J.A.; Bedogni, R; Pola, A.; Lorenzoli, M.; Sánchez-Nieto, B.; Gómez, F.; Sánchez-Doblado, F.

    2016-01-01

    The increasing interest of the medical community to radioinduced second malignancies due to photoneutrons in patients undergoing high-energy radiotherapy, has stimulated in recent years the study of peripheral doses, including the development of some dedicated active detectors. Although these devices are designed to respond to neutrons only, their parasitic photon response is usually not identically zero and anisotropic. The impact of these facts on measurement accuracy can be important, especially in points close to the photon field-edge. A simple method to estimate the photon contribution to detector readings is to cover it with a thermal neutron absorber with reduced secondary photon emission, such as a borated rubber. This technique was applied to the TNRD (Thermal Neutron Rate Detector), recently validated for thermal neutron measurements in high-energy photon radiotherapy. The positive results, together with the accessibility of the method, encourage its application to other detectors and different clinical scenarios. - Highlights: • Neutron-to-photon discrimination of a thermal neutron detector used in radiotherapy. • Photon and anisotropic response study with distance and beam incidence of thermal neutron detector. • Borated rubber for estimating photon contribution in any thermal neutron detector.

  4. Simulations and developments of the Low Energy Neutron detector Array LENA

    International Nuclear Information System (INIS)

    Langer, C.; Algora, A.; Couture, A.; Csatlós, M.; Gulyás, J.; Heil, M.; Krasznahorkay, A.; O'Donnell, J.M.; Plag, R.; Reifarth, R.; Stuhl, L.; Sonnabend, K.; Tornyi, T.; Tovesson, F.

    2011-01-01

    Prototypes of the Low Energy Neutron detector Array (LENA) have been tested and compared with detailed GEANT simulations. LENA will consist of plastic scintillation bars with the dimensions 1000×45×10 mm 3 . The tests have been performed with γ-ray sources and neutrons originating from the neutron-induced fission of 235 U. The simulations agreed very well with the measured response and were therefore used to simulate the response to mono-energetic neutrons with different detection thresholds. LENA will be used to detect low-energy neutrons from (p,n)-type reactions with low momentum transfer foreseen at the R 3 B and EXL setups at FAIR, Darmstadt.

  5. Extended performance gas Cherenkov detector for gamma-ray detection in high-energy density experiments

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, H. W., E-mail: herrmann@lanl.gov; Kim, Y. H.; Young, C. S.; Fatherley, V. E.; Lopez, F. E.; Oertel, J. A.; Batha, S. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Malone, R. M. [National Security Technologies, LLC, Los Alamos, New Mexico 87544 (United States); Rubery, M. S.; Horsfield, C. J. [Atomic Weapons Establishment, Aldermaston, Berkshire RG7 4PR (United Kingdom); Stoeffl, W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Zylstra, A. B. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Shmayda, W. T. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States)

    2014-11-15

    A new Gas Cherenkov Detector (GCD) with low-energy threshold and high sensitivity, currently known as Super GCD (or GCD-3 at OMEGA), is being developed for use at the OMEGA Laser Facility and the National Ignition Facility (NIF). Super GCD is designed to be pressurized to ≤400 psi (absolute) and uses all metal seals to allow the use of fluorinated gases inside the target chamber. This will allow the gamma energy threshold to be run as low at 1.8 MeV with 400 psi (absolute) of C{sub 2}F{sub 6}, opening up a new portion of the gamma ray spectrum. Super GCD operating at 20 cm from TCC will be ∼400 × more efficient at detecting DT fusion gammas at 16.7 MeV than the Gamma Reaction History diagnostic at NIF (GRH-6m) when operated at their minimum thresholds.

  6. Energy calibration for LaBr3(Ce) scintillator detector in the region of 1-10 MeV

    International Nuclear Information System (INIS)

    Zhang Jianhua; Zhu Chengsheng; Zeng Jun; Ding Ge; Xiang Qingpei; Liu Zhao; Yang Chaowen

    2013-01-01

    Background: LaBr 3 (Ce) detector has played an important role in detecting explosive, contraband and landmine because of its high y detection efficiency and good energy resolution etc. Purpose: To calibrate detector in wide energy region. Methods: The gamma spectra of NH 4 Cl and C 3 H 6 N 6 induced by 252 Cf neutron source were measured. Results: Comparing their gamma spectra, characteristic gamma lines can be located and the energy calibration curve was obtained. Conclusions: Radio nuclides can be identified by the calibration curve fitted with quadratic or cubic polynomial. (authors)

  7. Analysis of painted arts by energy sensitive radiographic techniques with the Pixel Detector Timepix

    International Nuclear Information System (INIS)

    Zemlicka, J; Jakubek, J; Kroupa, M; Hradil, D; Hradilova, J; Mislerova, H

    2011-01-01

    Non-invasive techniques utilizing X-ray radiation offer a significant advantage in scientific investigations of painted arts and other cultural artefacts such as painted artworks or statues. In addition, there is also great demand for a mobile analytical and real-time imaging device given the fact that many fine arts cannot be transported. The highly sensitive hybrid semiconductor pixel detector, Timepix, is capable of detecting and resolving subtle and low-contrast differences in the inner composition of a wide variety of objects. Moreover, it is able to map the surface distribution of the contained elements. Several transmission and emission techniques are presented which have been proposed and tested for the analysis of painted artworks. This study focuses on the novel techniques of X-ray transmission radiography (conventional and energy sensitive) and X-ray induced fluorescence imaging (XRF) which can be realised at the table-top scale with the state-of-the-art pixel detector Timepix. Transmission radiography analyses the changes in the X-ray beam intensity caused by specific attenuation of different components in the sample. The conventional approach uses all energies from the source spectrum for the creation of the image while the energy sensitive alternative creates images in given energy intervals which enable identification and separation of materials. The XRF setup is based on the detection of characteristic radiation induced by X-ray photons through a pinhole geometry collimator. The XRF method is extremely sensitive to the material composition but it creates only surface maps of the elemental distribution. For the purpose of the analysis several sets of painted layers have been prepared in a restoration laboratory. The composition of these layers corresponds to those of real historical paintings from the 19 th century. An overview of the current status of our methods will be given with respect to the instrumentation and the application in the field of

  8. Analysis of painted arts by energy sensitive radiographic techniques with the Pixel Detector Timepix

    Energy Technology Data Exchange (ETDEWEB)

    Zemlicka, J; Jakubek, J; Kroupa, M [Institute of Experimental and Applied Physics, Czech Technical University Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Hradil, D [Institute of Inorganic Chemistry, AS CR, v.v.i., ALMA, 50 68 Husinec-Oeez (Czech Republic); Hradilova, J; Mislerova, H, E-mail: jan.zemlicka@utef.cvut.cz [Academy of Fine Arts in Prague, ALMA, U Akademie 4, 170 2, Prague 7 (Czech Republic)

    2011-01-15

    Non-invasive techniques utilizing X-ray radiation offer a significant advantage in scientific investigations of painted arts and other cultural artefacts such as painted artworks or statues. In addition, there is also great demand for a mobile analytical and real-time imaging device given the fact that many fine arts cannot be transported. The highly sensitive hybrid semiconductor pixel detector, Timepix, is capable of detecting and resolving subtle and low-contrast differences in the inner composition of a wide variety of objects. Moreover, it is able to map the surface distribution of the contained elements. Several transmission and emission techniques are presented which have been proposed and tested for the analysis of painted artworks. This study focuses on the novel techniques of X-ray transmission radiography (conventional and energy sensitive) and X-ray induced fluorescence imaging (XRF) which can be realised at the table-top scale with the state-of-the-art pixel detector Timepix. Transmission radiography analyses the changes in the X-ray beam intensity caused by specific attenuation of different components in the sample. The conventional approach uses all energies from the source spectrum for the creation of the image while the energy sensitive alternative creates images in given energy intervals which enable identification and separation of materials. The XRF setup is based on the detection of characteristic radiation induced by X-ray photons through a pinhole geometry collimator. The XRF method is extremely sensitive to the material composition but it creates only surface maps of the elemental distribution. For the purpose of the analysis several sets of painted layers have been prepared in a restoration laboratory. The composition of these layers corresponds to those of real historical paintings from the 19{sup th} century. An overview of the current status of our methods will be given with respect to the instrumentation and the application in the field

  9. Results from a 64-pixel PIN-diode detector system for low-energy beta-electrons

    Energy Technology Data Exchange (ETDEWEB)

    Wuestling, Sascha, E-mail: sascha.wuestling@kit.ed [Forschungszentrum Karlsruhe, Institut fuer Prozessdatenverarbeitung und Elektronik, Postfach 3640, 76021 Karlsruhe (Germany); Fraenkle, F.; Habermehl, F.; Renschler, P. [Universitaet Karlsruhe - TH, Institut fuer Experimentelle Kernphysik, Postfach 6980, 76128 Karlsruhe (Germany); Steidl, M [Forschungszentrum Karlsruhe, Institut fuer Kernphysik, Postfach 3640, 76021 Karlsruhe (Germany)

    2010-12-11

    The KATRIN neutrino mass experiment is based on a precise energy measurement ({Delta}E/E=5x10{sup -5}) of electrons emerging from tritium beta decay (E{sub max}=18.6 keV). This is done by a large electrostatic retarding spectrometer (MAC-E Filter), which is followed by an electron detector. Key requirements for this detector are a large sensitive area ({approx}80 cm{sup 2}), a certain energy resolution ({Delta}E=600 eV - 18.6 keV) but also a certain spatial resolution ({approx}3 mm), which leads to a multi-pixel design. As a tentative design on the way to the final detector, but also for operational service on the so-called pre-spectrometer experiment, a detector system with a reduced size (16 cm{sup 2}) and a reduced pixel number (64), making use of a monolithic segmented silicon PIN diode, was designed and built. While the design and very first measurements have been presented in Wuestling et al. , this publication shows the operational performance of the detector system. The robust concept of the electronics allowed adaptation to mechanically different experimental setups. The spacial resolution of the detector system proved to be essential in examining Penning trap induced background and other effects in the pre-spectrometer experiment. The detector performance test runs include energy resolution and calibration, background rates, correlation between pixels (crosstalk), spatially resolved rate analysis, and a dead-layer measurement . The detector allows for background searches with a sensitivity as low as 1.3x10{sup -3} cps/cm{sup 2} in the energy range of 20 keV. This allows the pre-spectrometer to be characterized with e-gun illumination with a signal to background ratio of better than 10{sup 5} and the search for ultra low Penning discharge emissions.

  10. Results from a 64-pixel PIN-diode detector system for low-energy beta-electrons

    Science.gov (United States)

    Wuestling, Sascha; Fraenkle, F.; Habermehl, F.; Renschler, P.; Steidl, M.

    2010-12-01

    The KATRIN neutrino mass experiment is based on a precise energy measurement (Δ E/ E=5×10 -5) of electrons emerging from tritium beta decay ( Emax=18.6 keV). This is done by a large electrostatic retarding spectrometer (MAC-E Filter), which is followed by an electron detector. Key requirements for this detector are a large sensitive area (˜80 cm 2), a certain energy resolution (Δ E=600 eV @ 18.6 keV) but also a certain spatial resolution (˜3 mm), which leads to a multi-pixel design. As a tentative design on the way to the final detector, but also for operational service on the so-called pre-spectrometer experiment, a detector system with a reduced size (16 cm 2) and a reduced pixel number (64), making use of a monolithic segmented silicon PIN diode, was designed and built. While the design and very first measurements have been presented in Wuestling et al. [6], this publication shows the operational performance of the detector system. The robust concept of the electronics allowed adaptation to mechanically different experimental setups. The spacial resolution of the detector system proved to be essential in examining Penning trap induced background and other effects in the pre-spectrometer experiment. The detector performance test runs include energy resolution and calibration, background rates, correlation between pixels (crosstalk), spatially resolved rate analysis, and a dead-layer measurement [7]. The detector allows for background searches with a sensitivity as low as 1.3×10 -3 cps/cm 2 in the energy range of 20 keV. This allows the pre-spectrometer to be characterized with e-gun illumination with a signal to background ratio of better than 10 5 and the search for ultra low Penning discharge emissions.

  11. Radiant smiles everywhere - before the Chernobyl accident

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The business reports presented by the Federal German electric utilities for 1985 are almost all simply brillant. Electricity consumption has been going up, some of the utilities even can boast about rates kept constant over the year. But before the printed business reports could be presented to the meetings of shareholders, a nasty cloud threw a dark shadow over all the brilliant results. The Chernobyl accident made some of the hymns over the nuclear electricity increases and nuclear power in general sound rather queer. Could we do without this energy source. Substituting nuclear power would yearly require: 28 million t of oil, or 41 million t of hard coal, or 142 million t of browncoal, or 38 thousand million cubic metres of natural gas. Extrapolating current conditions and assuming best achievements, renewable energy sources might be able to meet 6 p.c. of the primary energy demands by the year 2000. (orig./HP) [de

  12. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  13. Study of inter-strip gap effects and efficiency for full energy detection of double sided silicon strip detectors

    International Nuclear Information System (INIS)

    Fisichella, M.; Forneris, J.; Grassi, L.

    2015-01-01

    We performed a characterization of Double Sided Silicon Strip Detectors (DSSSD) with the aim to carry out a systematic study of the inter-strip effects on the energy measurement of charged particles. The dependence of the DSSSD response on ion, energy and applied bias has been investigated. (author)

  14. Energy Calibration of a Silicon Detector Using Pure Beta-Emitters; Calibracion Energetica de un Detector de Silicio Mediante Emisores Beta Puros

    Energy Technology Data Exchange (ETDEWEB)

    Borras, C; Arcos, J M. los

    1992-07-01

    Energy calibration of SI detectors used in electron spectroscopy 13 commonly performed with conversion electron sources or monoenergetic electrons beams, which are preferred against beta emitters due to the problems arising from their continuous spectra. This paper presents a simple calibration procedure for a PIP-type silicon detector, using 14C, 147Pm, 99{sup T}c and 45Ca sources, that is based on the correspondence between the average channel observed in the experimental spectrum and the mean energy evaluated from the theoretical Fermi distribution for each nuclide. First, a method for evaluating the average channel in the experimental spectrum distorted by the electronic noise is described and its uncertainty estimated. Then, the channel-energy relation ship is established by least squares fitting modified to account for uncertainties in both variables.The calibration has been successfully verified with 147Pm and '09cd sources, showing discrepaneles not greater than 2.5%, within the uncertainties due to the detector resolution and the sources features. (Author)

  15. Energy Calibration of a Silicon Detector Using Pure Beta-Emitters; Calibracion Energetica de un Detector de Silicio Mediante Emisores Beta Puros

    Energy Technology Data Exchange (ETDEWEB)

    Borras, C.; Arcos, J. M. los

    1992-07-01

    Energy calibration of SI detectors used in electron spectroscopy 13 commonly performed with conversion electron sources or monoenergetic electrons beams, which are preferred against beta emitters due to the problems arising from their continuous spectra. This paper presents a simple calibration procedure for a PIP-type silicon detector, using 14C, 147Pm, 99{sup T}c and 45Ca sources, that is based on the correspondence between the average channel observed in the experimental spectrum and the mean energy evaluated from the theoretical Fermi distribution for each nuclide. First, a method for evaluating the average channel in the experimental spectrum distorted by the electronic noise is described and its uncertainty estimated. Then, the channel-energy relation ship is established by least squares fitting modified to account for uncertainties in both variables.The calibration has been successfully verified with 147Pm and '09cd sources, showing discrepaneles not greater than 2.5%, within the uncertainties due to the detector resolution and the sources features. (Author)

  16. Prediction of background in low-energy spectrum of phoswich detector

    International Nuclear Information System (INIS)

    Arun, B.; Manohari, M.; Mathiyarasu, R.; Rajagopal, V.; Jose, M.T.

    2014-01-01

    In vivo monitoring of actinides in occupational workers is done using Phoswich detector by measuring the low-energy X ray and gamma rays. Quantification of actinides like plutonium and americium in the lungs is extremely difficult due to higher background in the low-energy regions, which is from ambient background as well as from the subject. In the latter case, it is mainly due to the Compton scattering of body potassium, which varies person-to-person. Hence, an accurate prediction of subject-specific background counts in the lower-energy regions is an essential element in the in vivo measurement of plutonium and americium. Empirical equations are established for the prediction of background count rate in 239 Pu and 241 Am lower-energy regions, called 'target regions', as a function of count rate in the monitoring region (97-130 keV)/ 40 K region in the high-energy spectrum, weight-to-height ratio of the subject (scattering parameter) and the gender. (authors)

  17. Energy spectra analysis of the four-layer DOI detector for the brain PET scanner: jPET-D4

    International Nuclear Information System (INIS)

    Yoshida, Eiji; Kitamura, Keishi; Tsuda, Tomoaki; Shibuya, Kengo; Yamaya, Taiga; Inadama, Naoko; Hasegawa, Tomoyuki; Murayama, Hideo

    2006-01-01

    A depth of interaction (DOI) detector is being developed for the brain PET scanner, jPET-D4. We introduce a light output correction procedure to compensate for variations among the crystal elements in the DOI detector. Under uniform irradiation with 511 keV gamma rays, we estimate the light output of each crystal element by identifying each crystal element, and generate a look-up table (LUT) for light output correction. We evaluate the energy resolution of all crystal elements. The energy resolution of 16% is achieved after light output correction for all crystal elements. The DOI detector can correct light output variations that are related to the DOI. We analyze the crystal position dependence of the energy spectra due to inter-crystal scattering among the multiple crystal elements in the DOI detector. It is highly possible that gamma rays interacting with central crystal elements in the crystal array are absorbed by surrounding crystal elements and the Compton part of the energy spectrum is decreased. Inter-crystal scattering has less impact on the energy resolution of the DOI detector

  18. Dosimetric properties of radiophotoluminescent glass detector in low-energy photon beams.

    Science.gov (United States)

    Kadoya, Noriyuki; Shimomura, Kouhei; Kitou, Satoshi; Shiota, Yasuo; Fujita, Yukio; Dobashi, Suguru; Takeda, Ken; Jingu, Keiichi; Matsushita, Haruo; Namito, Yoshihito; Ban, Syuichi; Koyama, Syuji; Tabushi, Katsuyoshi

    2012-10-01

    A radiophotoluminescent glass rod dosimeter (RGD) has recently become commercially available. It is being increasingly used for dosimetry in radiotherapy to measure the absorbed dose including scattered low-energy photons on the body surface of a patient and for postal dosimetry audit. In this article, the dosimetric properties of the RGD, including energy dependence of the dose response, reproducibly, variation in data obtained by the RGD for each energy, and angular dependence in low-energy photons, are discussed. An RGD (GD-301, Asahi Techno Glass Corporation, Shizuoka, Japan) was irradiated with monochromatic low-energy photon beams generated by synchrotron radiation at Photon Factory, High Energy Accelerator Research Organization (KEK). The size of GD-301 was 1.5 mm in diameter and 8.5 mm in length and the active dose readout volume being 1 mm diameter and 0.6 mm depth located 0.7 mm from the end of the detector. The energy dependence of the dose response and reproducibility and variation were investigated for RGDs irradiated with a plastic holder and those irradiated without the plastic holder. Response of the RGD was obtained by not only conventional single field irradiation but also bilateral irradiation. Angular dependence of the RGD was measured in the range of 0°-90° for 13, 17, 40, and 80 keV photon beams by conventional single field irradiation. The dose responses had a peak at around 40 keV. For the energy range of less than 25 keV, all dose response curves steeply decreased in comparison with the ratio of mass energy absorption coefficient of the RGD to that of air. As for the reproducibility and variation in data obtained by the RGD, the coefficient of variance increased with decrease in photon energy. Furthermore, the variation for bilateral irradiation was less than that for single field irradiation. Regarding angular dependence of the RGD, for energies of 13 and 17 keV, the response decreased with increase in the irradiation angle, and the

  19. Load calculations of radiant cooling systems for sizing the plant

    DEFF Research Database (Denmark)

    Bourdakis, Eleftherios; Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    The aim of this study was, by using a building simulation software, to prove that a radiant cooling system should not be sized based on the maximum cooling load but at a lower value. For that reason six radiant cooling models were simulated with two control principles using 100%, 70% and 50......% of the maximum cooling load. It was concluded that all tested systems were able to provide an acceptable thermal environment even when the 50% of the maximum cooling load was used. From all the simulated systems the one that performed the best under both control principles was the ESCS ceiling system. Finally...... it was proved that ventilation systems should be sized based on the maximum cooling load....

  20. Cooling load calculation by the radiant time series method - effect of solar radiation models

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Alexandre M.S. [Universidade Estadual de Maringa (UEM), PR (Brazil)], E-mail: amscosta@uem.br

    2010-07-01

    In this work was analyzed numerically the effect of three different models for solar radiation on the cooling load calculated by the radiant time series' method. The solar radiation models implemented were clear sky, isotropic sky and anisotropic sky. The radiant time series' method (RTS) was proposed by ASHRAE (2001) for replacing the classical methods of cooling load calculation, such as TETD/TA. The method is based on computing the effect of space thermal energy storage on the instantaneous cooling load. The computing is carried out by splitting the heat gain components in convective and radiant parts. Following the radiant part is transformed using time series, which coefficients are a function of the construction type and heat gain (solar or non-solar). The transformed result is added to the convective part, giving the instantaneous cooling load. The method was applied for investigate the influence for an example room. The location used was - 23 degree S and 51 degree W and the day was 21 of January, a typical summer day in the southern hemisphere. The room was composed of two vertical walls with windows exposed to outdoors with azimuth angles equals to west and east directions. The output of the different models of solar radiation for the two walls in terms of direct and diffuse components as well heat gains were investigated. It was verified that the clear sky exhibited the less conservative (higher values) for the direct component of solar radiation, with the opposite trend for the diffuse component. For the heat gain, the clear sky gives the higher values, three times higher for the peek hours than the other models. Both isotropic and anisotropic models predicted similar magnitude for the heat gain. The same behavior was also verified for the cooling load. The effect of room thermal inertia was decreasing the cooling load during the peak hours. On the other hand the higher thermal inertia values are the greater for the non peak hours. The effect

  1. ENERGY RESPONSE OF FLUORESCENT NUCLEAR TRACK DETECTORS OF VARIOUS COLORATIONS TO MONOENERGETIC NEUTRONS.

    Science.gov (United States)

    Fomenko, V; Moreno, B; Million, M; Harrison, J; Akselrod, M

    2017-10-25

    The neutron-energy dependence of the track-counting sensitivity of fluorescent nuclear track detectors (FNTDs) at two ranges of Mg doping, resulting in different crystal colorations, was investigated. The performance of FNTDs was studied with the following converters: Li-glass for thermal to intermediate-energy neutrons, polyethylene for fast neutrons, and polytetrafluoroethylene (Teflon™) for photon- and radon-background subtraction. The irradiations with monoenergetic neutrons were performed at the National Physics Laboratory (NPL), UK. The energy range was varied from 144 keV to 16.5 MeV in the personal dose equivalent range from 1 to 3 mSv. Monte Carlo simulations were performed to model the response of FNTDs to monoenergetic neutrons. A good agreement with the experimental data was observed suggesting the development of a basic model for future MC studies. Further work will focus on increasing FNTD sensitivity to low-energy neutrons and developing a faster imaging technique for scanning larger areas to improve counting statistics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Intermediate Energies for Nuclear Astrophysics and the Development of a Position Sensitive Microstrip Detector System

    Energy Technology Data Exchange (ETDEWEB)

    Sobotka, Lee G. [Washington Univ., St. Louis, MO (United States); Blackmon, J. [Louisiana State Univ., Baton Rouge, LA (United States); Bertulani, C. [Texas A & M Univ., College Station, TX (United States)

    2015-12-30

    The chemical elements are made at astrophysical sites through a sequence of nuclear reactions often involving unstable nuclei. The overarching aim of this project is to construct a system that allows for the inverse process of nucleosynthesis (i.e. breakup of heavier nuclei into lighter ones) to be studied in high efficiency. The specific problem to be overcome with this grant is inadequate dynamic range and (triggering) threshold to detect the products of the breakup which include both heavy ions (with large energy and large deposited energy in a detector system) and protons (with little energy and deposited energy.) Early on in the grant we provided both TAMU and RIKEN (the site of the eventual experiments) with working systems based on the existing technology. This technology could be used with either an external preamplifier that was to be designed and fabricated by our RIKEN collaborators or upgraded by replacing the existing chip with one we designed. The RIKEN external preamplifier project never can to completion but our revised chip was designed, fabricated, used in a test experiment and performs as required.

  3. Ultralow energy calibration of LUX detector using Xe 127 electron capture

    Science.gov (United States)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Druszkiewicz, E.; Edwards, B. N.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.

    2017-12-01

    We report an absolute calibration of the ionization yields (Qy ) and fluctuations for electronic recoil events in liquid xenon at discrete energies between 186 eV and 33.2 keV. The average electric field applied across the liquid xenon target is 180 V /cm . The data are obtained using low energy Xe 127 electron capture decay events from the 95.0-day first run from LUX (WS2013) in search of weakly interacting massive particles. The sequence of gamma-ray and x-ray cascades associated with I 127 deexcitations produces clearly identified two-vertex events in the LUX detector. We observe the K-(binding energy, 33.2 keV), L-(5.2 keV), M-(1.1 keV), and N-(186 eV) shell cascade events and verify that the relative ratio of observed events for each shell agrees with calculations. The N-shell cascade analysis includes single extracted electron (SE) events and represents the lowest-energy electronic recoil in situ measurements that have been explored in liquid xenon.

  4. Photosynthetic utilization of radiant energy by CAM Dendrobium flowers

    International Nuclear Information System (INIS)

    Khoo, G.H.; Hew, C.S.; He, J.

    1997-01-01

    14 CO 2 fixation was observed in orchid Dendrobium flowers; its rate decreased with the flower development. Chlorophyll (Chl) fluorescence in different developmental stages of flowers was compared to other green plant parts (leaf, inflorescence stalk, and fruit capsule). The photochemical efficiency of photosystem 2 (PS2) (Fv/Fm) of a leaf was 14-21 % higher than that of a mature flower perianth (sepal, petal, and labellum) which had a much lower total Chl content and Chl a/b ratio. A higher quantum yield of PS2 (ΦPS2) than in the mature flowers was observed in all green parts. Flower sepals had higher Chl content, Chl a/b ratio, and Fv/Fm values than the petal and labellum. During flower development the Chl content, Chl a/b ratio, Fv/Fm, and qN decreased while ΦPS2 and qP remained constant. An exposure of developing flowers to irradiances above 50 µmol m -2 s -1 resulted in a very drastic drop of ΦPS2 and qP, and a coherent increase of qN as compared to other green plant organs. A low saturation irradiance (PFD of 100 µmol m -2 s -1 ) and the increase in qN in the flower indicate that irradiation stress may occur since there is no further protection when the flower is exposed to irradiances above 100 µmol m -2 s -1 . A low Chl/carotenoid ratio in mature flower perianth as a consequence of Chl content reduction in the course of flower development suggests a relief of irradiation stress via this mean. (author)

  5. The Effect of Gamma-ray Detector Energy Resolution on the Ability to Identify Radioactive Sources

    International Nuclear Information System (INIS)

    Nelson, K.E.; Gosnell, T.B.; Knapp, D.A.

    2009-01-01

    This report describes the results of an initial study on radiation detector spectral resolution, along with the underlying methodology used. The study was done as part of an ongoing effort in Detection Modeling and Operational Analysis (DMOA) for the DNDO System Architecture Directorate. The study objective was to assess the impact of energy resolution on radionuclide identification capability, measured by the ability to reliably discriminate between spectra associated with 'threats' (defined as fissile materials) and radioactive 'non-threats' that might be present in the normal stream of commerce. Although numerous factors must be considered in deciding which detector technology is appropriate for a specific application, spectral resolution is a critical one for homeland security applications in which a broad range of non-threat sources are present and very low false-alarm rates are required. In this study, we have proposed a metric for quantifying discrimination capability, and have shown how this metric depends on resolution. In future work we will consider other important factors, such as efficiency and volume, and the relative frequency of spectra known to be discrimination challenges in practical applications

  6. Low-dose electron energy-loss spectroscopy using electron counting direct detectors.

    Science.gov (United States)

    Maigné, Alan; Wolf, Matthias

    2018-03-01

    Since the development of parallel electron energy loss spectroscopy (EELS), charge-coupled devices (CCDs) have been the default detectors for EELS. With the recent development of electron-counting direct-detection cameras, micrographs can be acquired under very low electron doses at significantly improved signal-to-noise ratio. In spectroscopy, in particular in combination with a monochromator, the signal can be extremely weak and the detection limit is principally defined by noise introduced by the detector. Here we report the use of an electron-counting direct-detection camera for EEL spectroscopy. We studied the oxygen K edge of amorphous ice and obtained a signal noise ratio up to 10 times higher than with a conventional CCD.We report the application of electron counting to record time-resolved EEL spectra of a biological protein embedded in amorphous ice, revealing chemical changes observed in situ while exposed by the electron beam. A change in the fine structure of nitrogen K and the carbon K edges were recorded during irradiation. A concentration of 3 at% nitrogen was detected with a total electron dose of only 1.7 e-/Å2, extending the boundaries of EELS signal detection at low electron doses.

  7. Validation of Energy Expenditure Prediction Models Using Real-Time Shoe-Based Motion Detectors.

    Science.gov (United States)

    Lin, Shih-Yun; Lai, Ying-Chih; Hsia, Chi-Chun; Su, Pei-Fang; Chang, Chih-Han

    2017-09-01

    This study aimed to verify and compare the accuracy of energy expenditure (EE) prediction models using shoe-based motion detectors with embedded accelerometers. Three physical activity (PA) datasets (unclassified, recognition, and intensity segmentation) were used to develop three prediction models. A multiple classification flow and these models were used to estimate EE. The "unclassified" dataset was defined as the data without PA recognition, the "recognition" as the data classified with PA recognition, and the "intensity segmentation" as the data with intensity segmentation. The three datasets contained accelerometer signals (quantified as signal magnitude area (SMA)) and net heart rate (HR net ). The accuracy of these models was assessed according to the deviation between physically measured EE and model-estimated EE. The variance between physically measured EE and model-estimated EE expressed by simple linear regressions was increased by 63% and 13% using SMA and HR net , respectively. The accuracy of the EE predicted from accelerometer signals is influenced by the different activities that exhibit different count-EE relationships within the same prediction model. The recognition model provides a better estimation and lower variability of EE compared with the unclassified and intensity segmentation models. The proposed shoe-based motion detectors can improve the accuracy of EE estimation and has great potential to be used to manage everyday exercise in real time.

  8. Electric radiant heating: A hot item in home comfort

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, G. [Britech Corp., Toronto, ON (Canada)

    2003-12-01

    Electric radiant heating as a floor warming system and its growing popularity in home comfort are discussed. Price can be as low as $2.00 per square foot; cost of operation may be as little as 30 cents per square foot per year, depending on time of use and local hydro rates. The use of radiant cable heating is said to have surged in popularity; it provides the same warmth and comfort as more expensive hydronic systems. Radiant cable is simple and inexpensive to install since unlike hydronic systems, it requires no complicated mechanical system with boiler, heat exchanger, valves, pumps and extensive controls. Nevertheless, prospective end users are warned to make sure that the cable is sturdy, tough, has multiple layers of protection with a thick grounding system and conductor core. In addition to heating floors, electric heating cables can also be used for snow and ice control and for melting in driveways and gutters. In these type of installations heavy duty cables are used which are installed under asphalt, concrete or interlocking stones. Thirty watts per square foot per hour is the typical requirement for melting snow and ice. Based on average electricity prices in Ontario, melting snow on an 800 square foot driveway would cost about $2.20 per hour. Assuming five hours for the system to clear the driveway, installing a heating system under the driveway could be an economically viable solution for the home owner, providing freedom from ice, the inconvenience of shovelling snow, and saving time and money.

  9. Influence of dopants on the glow curve structure and energy dependence of LiF:Mg,Cu,Si detectors

    International Nuclear Information System (INIS)

    Knezevic, Z.; Ranogajec-Komor, M.; Miljanic, S.; Lee, J.I.; Kim, J.L.; Music, S.

    2011-01-01

    LiF thermoluminescent material doped with Mg, Cu and Si recently developed by the Korea Atomic Energy Research Institute (KAERI) has shown very good dosimetric properties. Since the thermoluminescence in LiF was found to be dependent on the proper combination of dopants, the investigation of the concentration and type of dopants is very important in developing and characterisation of new TL materials. The aim of this work was to determine the influence of type and concentration of activators on the glow curve structure, sensitivity, reproducibility and on the photon energy response of LiF:Mg,Cu,Si detectors. The energy response was studied in air and on the ISO water phantom in the range of mean photon energies between 33 keV and 164 keV. The morphology and local chemical composition of LiF:Mg,Cu,Si detectors were examined using high resolution scanning electron microscopy (FE-SEM). The results show that type and concentration of activators influence the glow curve and sensitivity. Different dopant concentrations did not show influence on the photon energy response. The sensitivity of LiF:Mg,Cu,Si detector with dopant concentration of Mg = 0.35 mol%, Cu = 0.025 mol% and Si = 0.9 mol% was very high (up to 65 times higher than that of TLD-100). The photon energy response of LiF:Mg,Cu,Si detectors containing all three dopants in various concentrations is in accordance with the IAEA recommendations for individual monitoring.

  10. Influence of dopants on the glow curve structure and energy dependence of LiF:Mg,Cu,Si detectors

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, Z., E-mail: zknez@irb.h [Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Ranogajec-Komor, M.; Miljanic, S. [Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia); Lee, J.I.; Kim, J.L. [Korea Atomic Energy Research Institute, P.O. Box 105 Yuseong, Daejon 305-600 (Korea, Republic of); Music, S. [Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb (Croatia)

    2011-03-15

    LiF thermoluminescent material doped with Mg, Cu and Si recently developed by the Korea Atomic Energy Research Institute (KAERI) has shown very good dosimetric properties. Since the thermoluminescence in LiF was found to be dependent on the proper combination of dopants, the investigation of the concentration and type of dopants is very important in developing and characterisation of new TL materials. The aim of this work was to determine the influence of type and concentration of activators on the glow curve structure, sensitivity, reproducibility and on the photon energy response of LiF:Mg,Cu,Si detectors. The energy response was studied in air and on the ISO water phantom in the range of mean photon energies between 33 keV and 164 keV. The morphology and local chemical composition of LiF:Mg,Cu,Si detectors were examined using high resolution scanning electron microscopy (FE-SEM). The results show that type and concentration of activators influence the glow curve and sensitivity. Different dopant concentrations did not show influence on the photon energy response. The sensitivity of LiF:Mg,Cu,Si detector with dopant concentration of Mg = 0.35 mol%, Cu = 0.025 mol% and Si = 0.9 mol% was very high (up to 65 times higher than that of TLD-100). The photon energy response of LiF:Mg,Cu,Si detectors containing all three dopants in various concentrations is in accordance with the IAEA recommendations for individual monitoring.

  11. Energy resolution of the CdTe-XPAD detector:calibration and potential for Laue diffractionmeasurements on protein crystals

    Energy Technology Data Exchange (ETDEWEB)

    Medjoubi K.; Idir M.; Thompson, A.; Berar, J-F.; Clemens, J-C.; Delpierre, P.; Da Silva, P.; Dinkespiler, B.; Itie, J-P.; Legrand, P.; Menneglier, C.; Mercere, P.; Picca, F.; Samama J-P.

    2012-02-02

    The XPAD3S-CdTe, a CdTe photon-counting pixel array detector, has been used to measure the energy and the intensity of the white-beam diffraction from a lysozyme crystal. A method was developed to calibrate the detector in terms of energy, allowing incident photon energy measurement to high resolution (approximately 140 eV), opening up new possibilities in energy-resolved X-ray diffraction. In order to demonstrate this, Laue diffraction experiments were performed on the bending-magnet beamline METROLOGIE at Synchrotron SOLEIL. The X-ray energy spectra of diffracted spots were deduced from the indexed Laue patterns collected with an imaging-plate detector and then measured with both the XPAD3S-CdTe and the XPAD3S-Si, a silicon photon-counting pixel array detector. The predicted and measured energy of selected diffraction spots are in good agreement, demonstrating the reliability of the calibration method. These results open up the way to direct unit-cell parameter determination and the measurement of high-quality Laue data even at low resolution. Based on the success of these measurements, potential applications in X-ray diffraction opened up by this type of technology are discussed.

  12. A comparative analysis of OTF, NPS, and DQE in energy integrating and photon counting digital x-ray detectors

    International Nuclear Information System (INIS)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2010-01-01

    Purpose: One of the benefits of photon counting (PC) detectors over energy integrating (EI) detectors is the absence of many additive noise sources, such as electronic noise and secondary quantum noise. The purpose of this work is to demonstrate that thresholding voltage gains to detect individual x rays actually generates an unexpected source of white noise in photon counters. Methods: To distinguish the two detector types, their point spread function (PSF) is interpreted differently. The PSF of the energy integrating detector is treated as a weighting function for counting x rays, while the PSF of the photon counting detector is interpreted as a probability. Although this model ignores some subtleties of real imaging systems, such as scatter and the energy-dependent amplification of secondary quanta in indirect-converting detectors, it is useful for demonstrating fundamental differences between the two detector types. From first principles, the optical transfer function (OTF) is calculated as the continuous Fourier transform of the PSF, the noise power spectra (NPS) is determined by the discrete space Fourier transform (DSFT) of the autocovariance of signal intensity, and the detective quantum efficiency (DQE) is found from combined knowledge of the OTF and NPS. To illustrate the calculation of the transfer functions, the PSF is modeled as the convolution of a Gaussian with the product of rect functions. The Gaussian reflects the blurring of the x-ray converter, while the rect functions model the sampling of the detector. Results: The transfer functions are first calculated assuming outside noise sources such as electronic noise and secondary quantum noise are negligible. It is demonstrated that while OTF is the same for two detector types possessing an equivalent PSF, a frequency-independent (i.e., ''white'') difference in their NPS exists such that NPS PC ≥NPS EI and hence DQE PC ≤DQE EI . The necessary and sufficient condition for equality is that the PSF

  13. Position, Energy, and Transit Time Distributions in a Hemispherical Deflector Analyzer with Position Sensitive Detector

    Directory of Open Access Journals (Sweden)

    Omer Sise

    2015-01-01

    Full Text Available Practical analytic equations, for the ideal field, and numerical results from SIMION simulations, for the fringing field, are presented for the exit radius rπ and transit time tπ of electrons in a hemispherical deflector analyzer (HDA over a wide range of analyzer parameters. Results are presented for a typically dimensioned HDA with mean radius R-=101.6 mm and interradial separation ΔR=R2-R1=58.4 mm able to accommodate a 40 mm diameter position sensitive detector (PSD. Results for three different entry positions R0 are compared: R0=R- (the conventional central entry and two displaced (paracentric entries: R0=82.55 mm and R0=116 mm. Exit spreads Δrπ, Δtπ and base energy resolution ΔEB are computed for HDA pass energies E0=10, 100, 500, and 1000 eV, entry aperture sizes Δr0≤1.5 mm, entry angular spreads |αmax|≤5°, and an electron beam with relative energy spread δE/E0≤0.4%. Overall, under realistic conditions, both paracentric entries demonstrate near ideal field behavior and clear superiority over the conventional entry at R0=R-. The R0=82.55 mm entry has better absolute energy and time spread resolutions, while the R0=116 mm has better relative energy resolutions, both offering attractive alternatives for time-of-flight and coincidence applications where both energy and timing resolutions are important.

  14. Model-independent evaluation of recoils channeling impact on visible energy spectra in dark matter particles crystalline detectors

    International Nuclear Information System (INIS)

    Dyuldya, S.V.; Bratchenko, M.I.

    2012-01-01

    Proposed is a direct method of Dark Matter crystalline scintillation detectors calibration by means of an atomistic molecular dynamics modeling of their responses to ∼10 keV recoil atoms. Simulations show that the recoils channeling exists in NaI lattice with probabilities of ∼5 - 15 %. It does not affect the mean values of quenching factors but gives rise to high visible energy spectral tails absent in disordered detectors. As a result, the lattice ordering manifests the ∼100 % effect on NaI(Tl) visible energy spectra at 2-6 keV window

  15. A response matrix method for slab-geometry discrete ordinates adjoint calculations in energy-dependent source-detector problems

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Ralph S.; Moura, Carlos A., E-mail: ralph@ime.uerj.br, E-mail: demoura@ime.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Departamento de Engenharia Mecanica; Barros, Ricardo C., E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Departamento de Modelagem Computacional

    2017-07-01

    Presented here is an application of the Response Matrix (RM) method for adjoint discrete ordinates (S{sub N}) problems in slab geometry applied to energy-dependent source-detector problems. The adjoint RM method is free from spatial truncation errors, as it generates numerical results for the adjoint angular fluxes in multilayer slabs that agree with the numerical values obtained from the analytical solution of the energy multigroup adjoint SN equations. Numerical results are given for two typical source-detector problems to illustrate the accuracy and the efficiency of the offered RM computer code. (author)

  16. Absolute peak detection efficiencies of a Ge(Li) detector for high gamma-ray energies

    International Nuclear Information System (INIS)

    Katagiri, Masaki

    1985-11-01

    Absolute peak detection efficiencies of a Ge(Li) detector for gamma-rays of 3.5 MeV to 12 MeV were measured using four (p,γ) reactions and a (n,γ) reaction. Two-line-method was used to obtaine peak detection efficiencies. The efficiencies with the both cases are agreed very well. Utilization of (n,γ) reaction is, therefore, effective for measuring these efficiencies, because high energy gamma-rays can be generated easily by using a neutron source. These results were applied to calibration of a gamma-ray standard source, emitting 6.13 MeV gamma-rays, and of intensities of 56 Co standard gamma-ray source. (author)

  17. Cosmic-ray muons as a calibration source for high-energy gamma-ray detectors

    International Nuclear Information System (INIS)

    Thoerngren Engblom, P.

    1990-09-01

    In this paper a measurement of the directional distribution of cosmic-ray muons, at the latitude of Stockholm, is reported. In fitting the measured flux to a simple analytical expression, the distribution was found to be symmetric around a line approximately to the northwest at 4.2±0.7 degrees from zenith. The east-west asymmetry amounted to a difference in the total intensity of 20±4% at the zenith angle of 45 degrees. The spectra of energies deposited by the muons in a BGO-detector orientated at different angles, are obtained through a Monte Carlo-simulation, where the muon distribution is used as a weight function for sampling muons in different directions. (author)

  18. Extreme Energy Events Project: Construction of the detectors and installation in Italian High Schools

    International Nuclear Information System (INIS)

    Abbrescia, M.; An, S.; Antolini, R.; Badala, A.; Baldini Ferroli, R.; Bencivenni, G.; Blanco, F.; Bressan, E.; Chiavassa, A.; Chiri, C.; Cifarelli, L.; Cindolo, F.; Coccia, E.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Fabbri, F.L.; Frolov, V.; Garbini, M.; Gustavino, C.

    2008-01-01

    The EEE Project, conceived by its leader Antonino Zichichi, aims to detect Extreme Energy Events of cosmic rays with an array of muon telescopes distributed over the Italian territory. The Project involves Italian High Schools in order to introduce young people to Physics, also countervailing the recent crisis of university scientific classes inscriptions. The detectors for the EEE telescopes are Multigap Resistive Plate Chambers (MRPC) and have been constructed by teams of High School students who went in shift at the CERN laboratories. The mechanics and the electronics were developed by groups of researchers from CERN, the Italian Centro Fermi and INFN. The first group of schools of the EEE Project has inaugurated their telescopes recently. A status report of the Project and the preliminary results are presented

  19. Extreme Energy Events Project: Construction of the detectors and installation in Italian High Schools

    CERN Document Server

    Abbrescia, M; An, S; Antolini, R; Badalà, A; Baldini Ferroli, R; Bencivenni, G; Blanco, F; Bressan, E; Chiavassa, A; Chiri, C; Cifarelli, L; Cindolo, F; Coccia, E; De Pasquale, S; Di Giovanni, A; D’Incecco, M; Fabbri, F L; Frolov, V; Garbini, M; Gustavino, C; Hatzifotiadou, D; Imponente, G; Kim, J; La Rocca, P; Librizzi, F; Maggiora, A; Menghetti, H; Miozzi, S; Moro, R; Panareo, M; Pappalardo, G S; Piragino, G; Riggi, F; Romano, F; Sartorelli, G; Sbarra, C; Selvi, M; Serci, S; Williams, C; Zuyeuski, R

    2008-01-01

    The EEE Project, conceived by its leader Antonino Zichichi, aims to detect Extreme Energy Events of cosmic rays with an array of muon telescopes distributed over the Italian territory. The Project involves Italian High Schools in order to introduce young people to Physics, also countervailing the recent crisis of university scientific classes inscriptions. The detectors for the EEE telescopes are Multigap Resistive Plate Chambers (MRPC) and have been constructed by teams of High School students who went in shift at the CERN laboratories. The mechanics and the electronics were developed by groups of researchers from CERN, the Italian Centro Fermi and INFN. The first group of schools of the EEE Project has inaugurated their telescopes recently. A status report of the Project and the preliminary results are presented.

  20. Radiant heat exchange measurements for Tore Supra

    International Nuclear Information System (INIS)

    Chatain, D.; Disdier, F.; Gauthier, A.; Raffin, M.; Renaud, M.

    1984-03-01

    In order to minimize the energy consumption of the low temperature cryogenic system connected to the superconducting magnet of TORE-SUPRA, heat exchange from thermal radiation between the vacuum vessels and the thermal shields has been studied. Accordingly large scale cold and hot walls of T.S. have been simulated in a model with reduced dimensions. In this model, the experiment consists in the measurement of the thermal radiated power between two concentric cylindrical surfaces of stainless steel under vacuum conditions. The temperature of the external cylinder was kept constant at 80 K. The internal cylinder was bakeable up to 250 0 C. Various surface treatments were applied on the two cylinders (mechanical polishing and metal deposition of Al, Ag, Ni) [fr

  1. Development of one-energy group, two-dimensional, frequency dependent detector adjoint function based on the nodal method

    International Nuclear Information System (INIS)

    Khericha, Soli T.

    2000-01-01

    One-energy group, two-dimensional computer code was developed to calculate the response of a detector to a vibrating absorber in a reactor core. A concept of local/global components, based on the frequency dependent detector adjoint function, and a nodalization technique were utilized. The frequency dependent detector adjoint functions presented by complex equations were expanded into real and imaginary parts. In the nodalization technique, the flux is expanded into polynomials about the center point of each node. The phase angle and the magnitude of the one-energy group detector adjoint function were calculated for a detector located in the center of a 200x200 cm reactor using a two-dimensional nodalization technique, the computer code EXTERMINATOR, and the analytical solution. The purpose of this research was to investigate the applicability of a polynomial nodal model technique to the calculations of the real and the imaginary parts of the detector adjoint function for one-energy group two-dimensional polynomial nodal model technique. From the results as discussed earlier, it is concluded that the nodal model technique can be used to calculate the detector adjoint function and the phase angle. Using the computer code developed for nodal model technique, the magnitude of one energy group frequency dependent detector adjoint function and the phase angle were calculated for the detector located in the center of a 200x200 cm homogenous reactor. The real part of the detector adjoint function was compared with the results obtained from the EXTERMINATOR computer code as well as the analytical solution based on a double sine series expansion using the classical Green's Function solution. The values were found to be less than 1% greater at 20 cm away from the source region and about 3% greater closer to the source compared to the values obtained from the analytical solution and the EXTERMINATOR code. The currents at the node interface matched within 1% of the average

  2. Semiconductor detectors in current energy dispersive X-ray spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Betin, J; Zhabin, E; Krampit, I; Smirnov, V

    1980-04-01

    A review is presented of the properties of semiconductor detectors and of the possibilities stemming therefrom of using the detectors in X-ray spectral analysis in industries, in logging, in ecology and environmental control, in medicine, etc.

  3. Three-layer GSO depth-of-interaction detector for high-energy gamma camera

    International Nuclear Information System (INIS)

    Yamamoto, S.; Watabe, H.; Kawachi, N.; Fujimaki, S.; Kato, K.; Hatazawa, J.

    2014-01-01

    Using Ce-doped Gd 2 SiO 5 (GSO) of different Ce concentrations, three-layer DOI block detectors were developed to reduce the parallax error at the edges of a pinhole gamma camera for high-energy gamma photons. GSOs with Ce concentrations of 1.5 mol% (decay time ∼40 ns), 0.5 mol% crystal (∼60 ns), 0.4 mol% (∼80 ns) were selected for the depth of interaction (DOI) detectors. These three types of GSOs were optically coupled in the depth direction, arranged in a 22×22 matrix and coupled to a flat panel photomultiplier tube (FP-PMT, Hamamatsu H8500). Sizes of these GSO cells were 1.9 mm×1.9 mm×4 mm, 1.9 mm×1.9 mm×5 mm, and 1.9 mm×1.9 mm×6 mm for 1.5 mol%, 0.5 mol%, and 0.4 mol%, respectively. With these combinations of GSOs, all spots corresponding to GSO cells were clearly resolved in the position histogram. Pulse shape spectra showed three peaks for these three decay times of GSOs. The block detector was contained in a 2-cm-thick tungsten shield, and a pinhole collimator with a 0.5-mm aperture was mounted. With pulse shape discrimination, we separated the point source images of the Cs-137 for each DOI layer. The point source image of the lower layer was detected at the most central part of the field-of-view, and the distribution was the smallest. The point source image of the higher layer was detected at the most peripheral part of the field-of-view, and the distribution was widest. With this information, the spatial resolution of the pinhole gamma camera can be improved. We conclude that DOI detection is effective for pinhole gamma cameras for high energy gamma photons

  4. Simulation of cross-talk noise of high energy X-ray detectors

    International Nuclear Information System (INIS)

    Zhou Rifeng; Zhang Ping; Zhang Zehong

    2005-01-01

    The signal-noise ratio of detectors and the image quality will be affected by the detector cross-talk noise. The authors use EGSnrc to research the cross-talk noise in the CdWO 4 detector module, and analyze various factors which can bring about the cross-talk noise. The work will facilitate the selection of detector module and offer some parameters for the correction of cross-talk noise with software. (authors)

  5. Calibration and energy response of the Bitt RM10/RS02 gamma radiation detectors

    International Nuclear Information System (INIS)

    Dijk, E. van; Aalbers, A.H.L.

    1990-03-01

    A radiation monitoring network with automatic warning capabilities (LMR) has been established in the Netherlands. For the detection of gamma radiation exposure-rate-meters manufactured by Bitt Technologies are used. These meters consist of a proportional counter tube (type RS 02) and a read-out unit (type RM 10E). The photon energy response of 6 counter tubes was tested at the National Institute of Public Health and Environmental Protection. The measurements were performed with heavy filtered X-rays in the range of 50-250 keV (ISO narrow spectrum series) and with gamma ray beams from cesium-137 (662 keV) and cobalt-60 (1,25 MeV). To determine the energy response, the detector reading was referred to air kerma by means of a transfer ionization chamber. This transfer chamber was directly calibrated against the standard for X-rays. By applying these measurement procedures of a set of calibration factors (N k ) as a function of photon energy was determined. These calibration factors, expressed as the ratio air kerma to reading were converted to ambient dose equivalent calibration factors using appropriate conversion factors taken from Grosswend et al., 1988. From the measurement data an average ambient dose equivalent calibration factor of 10.8 mSv.roentgen -1 was calculated. (author). 5 refs.; 6 figs.; 5 tabs

  6. Detection system with a large angular acceptance and an energy high dynamics, for heavy ion physics at intermediate energies: M.E.ω. detector

    International Nuclear Information System (INIS)

    Monnet, F.

    1985-01-01

    Built for intermediate energy heavy ions nuclear physics, the M.E.ω. detector uses various and complementary detection methods: ionization chamber, parallel plate avalanche counter, plastic scintillators. With these techniques, velocity, energy, mass and charge of nuclei were measured over wide range. From the detailed theoretical study of each method, limitations and perturbation causes are deduced. The solutions used for optimizing the detector, and the main results are exposed. The internal sectorisation of the detector, which permits a modulation in counting rate and electronical adjustments, has been revealed to be very suitable for heavy ions intermediate energy physics. Results of the first experiment realised with M.E.ω. (Ar + Ag at 35 MeV/u) are commented [fr

  7. Lateral particle density reconstruction from the energy deposits of particles in the KASCADE-Grande detector stations

    International Nuclear Information System (INIS)

    Toma, G.; Brancus, I.M.; Mitrica, B.; Sima, O.; Rebel, H.

    2005-01-01

    The study of primary cosmic rays with energies greater than 10 14 eV is done mostly by indirect observation techniques such as the study of Extensive Air Showers (EAS). In the much larger framework effort of inferring data on the mass and energy of the primaries from EAS observables, the present study aims at delivering a versatile method and software tool that will be used to reconstruct lateral particle densities from the energy deposits of particles in the KASCADE-Grande detector stations. The study has been performed on simulated events, by taking into account the interaction of the EAS components with the detector array (energy deposits). The energy deposits have been parametrized for different incident energies and angles. Thus it is possible to reconstruct the particle densities in detectors from the energy deposits. A correlation between lateral particle density and primary mass and primary energy (at ∼ 600 m from shower core) has been established. The study puts great emphasis on the quality of reconstruction and also on the speed of the technique. The data obtained from the study on simulated events will be used soon on real events detected by the KASCADE-Grande array. (authors)

  8. Detector applications

    International Nuclear Information System (INIS)

    Pehl, R.H.

    1977-10-01

    Semiconductor detectors are now applied to a very wide range of problems. The combination of relatively low cost, excellent energy resolution, and simultaneous broad energy-spectrum analysis is uniquely suited to many applications in both basic and applied physics. Alternative techniques, such as magnetic spectrometers for charged-particle spectroscopy, while offering better energy resolution, are bulky, expensive, and usually far more difficult to use. Furthermore, they do not directly provide the broad energy-spectrum measurements easily accomplished using semiconductor detectors. Scintillation detectors, which are approximately equivalent to semiconductor detectors in convenience and cost, exhibit 10 to 100 times worse energy resolution. However, their high efficiency and large potential size recommend their use in some measurements

  9. Problems related to the use of annihilation radiation for precision energy calibration of Ge(Li) detectors

    International Nuclear Information System (INIS)

    Fransson, K.; Nilsson, A.; Raedt, J. de; Rensfelt, K.G.

    1976-03-01

    The energy of positron annihilation radiation emanating from several materials was measured, using recently established energies of the 198 Au and 192 Ir γ-rays for calibration. Corrections for the binding energy of positrons and electrons were applied. A peak fitting routine was used which took into account both the background step under the peak, and the possibility that only a part of the detector contains charge-carrier traps. The electron rest mass energy (corrected for binding energies) could be reproduced to within +- 10 eV, in some well-behaved metals even to within +- 5 eV. (Auth.)

  10. A large area transition radiation detector to measure the energy of muons in the Gran Sasso underground laboratory

    International Nuclear Information System (INIS)

    Barbarito, E.; Bellotti, R.; Cafagna, F.; Castellano, M.; De Cataldo, G.; De Marzo, C.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Guarnaccia, P.; Mazziotta, M.N.; Mongelli, M.; Montaruli, T.; Perchiazzi, M.; Raino, A.; Sacchetti, A.; Spinelli, P.

    1995-01-01

    We have designed and built a transition radiation detector of 36 m 2 area in order to measure the residual energy of muons penetrating in the Gran Sasso cosmic ray underground laboratory up to the TeV region. It consists of three adjacent modules, each of 2x6 m 2 area. Polystyrene square tubes, filled with a argon-carbon dioxide gas mixture, and polyethylene foam layers are used as proportional detectors and radiators respectively. We cover such a large surface with only 960 channels that provide adequate energy resolution and particle tracking for the astroparticle physics items to investigate. The detector has been calibrated using a reduced size prototype in a test beam. Results from one module exposed to cosmic rays at sea level are shown. (orig.)

  11. MARTA: A high-energy cosmic-ray detector concept with high-accuracy muon measurement

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, P.; et al.

    2017-12-20

    A new concept for the direct measurement of muons in air showers is presented. The concept is based on resistive plate chambers (RPCs), which can directly measure muons with very good space and time resolution. The muon detector is shielded by placing it under another detector able to absorb and measure the electromagnetic component of the showers such as a water-Cherenkov detector, commonly used in air shower arrays. The combination of the two detectors in a single, compact detector unit provides a unique measurement that opens rich possibilities in the study of air showers.

  12. Study on the energy dependence of gamma radiation detectors for {sup 137}Cs and {sup 60}Co; Estudo da dependencia energetica de detectores de radiacao gama para {sup 137}Cs e {sup 60}Co

    Energy Technology Data Exchange (ETDEWEB)

    Nonato, Fernanda B.C.; Diniz, Raphael E.; Carvalho, Valdir S.; Vivolo, Vitor; Caldas, Linda V.E., E-mail: fbnonato@ipen.b, E-mail: rediniz@ipen.b, E-mail: vcsouza@ipen.b, E-mail: vivolo@ipen.b, E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    38 Geiger-Mueller radiation detectors and 9 ionization chambers were calibrated, viewing to study the energy dependence of the monitor response for gamma radiation fields ({sup 137}Cs and {sup 60}Co). The results were considered satisfactory only for ionization chambers and for some Geiger-Mueller detectors

  13. Development of a Schottky CdTe Medipix3RX hybrid photon counting detector with spatial and energy resolving capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, E.N., E-mail: Eva.Gimenez@diamond.ac.uk [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom); Astromskas, V. [University of Surrey (United Kingdom); Horswell, I.; Omar, D.; Spiers, J.; Tartoni, N. [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom)

    2016-07-11

    A multichip CdTe-Medipix3RX detector system was developed in order to bring the advantages of photon-counting detectors to applications in the hard X-ray range of energies. The detector head consisted of 2×2 Medipix3RX ASICs bump-bonded to a 28 mm×28 mm e{sup −} collection Schottky contact CdTe sensor. Schottky CdTe sensors undergo performance degrading polarization which increases with temperature, flux and the longer the HV is applied. Keeping the temperature stable and periodically refreshing the high voltage bias supply was used to minimize the polarization and achieve a stable and reproducible detector response. This leads to good quality images and successful results on the energy resolving capabilities of the system. - Highlights: • A high atomic number (CdTe sensor based) photon-counting detector was developed. • Polarization effects affected the image were minimized by regularly refreshing the bias voltage and stabilizing the temperature. • Good spatial resolution and image quality was achieved following this procedure.

  14. Technology development of 3D detectors for high energy physics and medical imaging

    CERN Document Server

    Pellegrini, G

    2003-01-01

    This thesis is concerned with the fabrication, characterisation and simulation of 3D semiconductor detectors. Due to their geometry, these detectors have more efficient charge collection properties than current silicon and gallium arsenide planar detectors. The unit cell of these detectors is hexagonal with a central anode surrounded by six cathode contacts. This geometry gives a uniform electric field with the maximum drift and depletion distance set by electrode spacing, 85m in this project, rather than detector thickness, as in the case of planar detectors (typically 100-300m). This results in lower applied biases (35-40 V in the work of this project) compared to >200 V in typical planar detectors. The reduction in bias offers the possibility of improved detector operation in the presence of bulk radiation damage as lower voltage reduces leakage current which limits the signal to noise ratio and hence the overall detector efficiency. In this work, 3D detectors realised in Si, GaAs and SiC have ...

  15. Performance of room temperature mercuric iodide (HgI2) detectors in the ultra low energy x-ray region

    International Nuclear Information System (INIS)

    Dabrowski, A.J.; Iwanczyk, J.S.; Barton, J.B.; Huth, G.C.; Whited, R.; Ortale, C.; Economou, T.E.; Turkevich, A.L.

    1980-01-01

    Performance of room temperature mercuric iodide x-ray spectrometers has been recently improved through new fabrication techniques and further development of low noise associated electronic systems. This progress has extended the range of measurements to the ultra low energy x-ray region at room temperature. This paper reports the study of the effect of contact material on the performance of HgI 2 detectors in the low energy x-ray region

  16. Calorimetric low-temperature detectors on semiconductor base for the energy-resolving detection of heavy ions

    International Nuclear Information System (INIS)

    Kienlin, A. von.

    1994-01-01

    In the framework of this thesis for the first time calorimetric low-temperature detectors for the energy-resolving detection of heavy ions were developed and successfully applied. Constructed were two different detector types, which work both with a semiconductor thermistor. The temperature increasement effected by a particle incidence is read out. In the first detector type the thermistor was simutaneously used as absorber. The thickness of the germanium crystals was sufficient in order to stop the studied heavy ions completely. In the second type, a composed calorimeter, a sapphire crystal, which was glued on a germanium thermistor, served as absorber for the incident heavy ions. The working point of the calorimeter lies in the temperature range (1.2-4.2 K), which is reachable with a pumped 4 He cryostat. The temperatur increasement of the calorimeter amounts after the incidence of a single α particle about 20-30 μK and that after a heavy ion incidence up to some mK. An absolute energy resolution of 400-500 keV was reached. In nine beam times the calorimeters were irradiated by heavy ions ( 20 Ne, 40 Ar, 136 Xe, 208 Pb, 209 Bi) of different energies (3.6 MeV/nucleon< E<12.5 MeV/nucleon) elastically scattered from gold foils. In the pulse height spectra of the first detector type relatively broad, complex-structurated line shapes were observed. By systematic measurements dependences of the complex line structures on operational parameters of the detector, the detector temperature, and the position of the incident particle could be detected. Together with the results of further experiments a possible interpretation of these phenomena is presented. Contrarily to the complex line structures of the pure germanium thermistor the line shapes in the pulse height spectra, which were taken up in a composite germanium/sapphire calorimeter, are narrow and Gauss-shaped

  17. New medical imaging systems exploiting the energy dispersive X-ray diffraction with spectrometric CdZnTe based detector

    International Nuclear Information System (INIS)

    Barbes, Damien

    2016-01-01

    This thesis studies the interest of measuring the coherent scattering of X-rays for breast diagnosis imaging. Nowadays, most of X-ray-based medical imaging techniques use the information of X-rays attenuation through the tissues. It is the case for mammography, the most common breast imaging modality. The recent emergence of energy resolved detectors (based on semiconductors in particular) allows to consider using another phenomenon: the coherent X-ray scattering. Measurement of diffracted spectra can provide new information related to the molecular structure of the examined tissues, in order to improve their characterization and therefore improve the final diagnosis. Two modalities are considered: the breast cancer detection in vivo, following a suspicious mammography result, or biopsy analysis. The coherent scattering measurement system developed during this thesis work uses energy-resolved CdZnTe-based detectors, these detectors combining performances (energy resolution, sensitivity, spatial resolution, and compactness) promising for clinical application. This system is also based on the detector pixelation, which allows to provide an imaging modality capable of characterizing analyzed materials or tissues in one direction without any translation or rotation. A complete study of the measurement system is proposed in this thesis, structured in three main parts: modeling and simulation of the system, development of the processing of the data measured by the detector in order to image and characterize the analyzed sample and finally, designing of a new and more complex experimental setup based on a whole detector and multi-slit collimation system. An experimental validation is proposed for each of these three parts. (author) [fr

  18. Report of the DOE Office of Energy Research review committee on the Solenoidal Detector Collaboration of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    1992-11-01

    At the request of Dr. James F. Decker, Deputy Director of DOE's Office of Energy Research, a technical review committee was assembled to perform a peer review of the Solenoidal Detector Collaboration (SDC) from October 26 to October 30, 1992, at the Superconducting Super Collider Laboratory (SSCL). The Energy Research Review Committee (ERC) evaluated the technical feasibility, the estimated cost, the proposed construction schedule, and the management arrangements for the SDC detector as documented in the SDC Technical Design Report, SDC Project Cost/Schedule Summary Book, SDC draft Project Management Plan, and other materials prepared for and presented to the Committee by the SDC management. The SDC detector is one of two major detector facilities anticipated at the SSC. The SDC project will be carried out by a worldwide collaboration of almost 1000 scientists, engineers, and managers from over 100 universities, national laboratories, and industries. The SDC will construct a state-of-the-art, general-purpose detector weighing over 26,000 tons and the size of an eight-story building, to perform a broad class of high energy physics experiments at the SSC beginning in the fall of 1999. The design of the SSC detector emphasizes tracking in a strong solenoidal magnetic field to measure charged-particle momenta and to assist in providing good electron and muon identification; identification of neutrinos and other penetrating particles using a hermetic calorimeter; studies of jets of hadrons using both calorimeter and tracking systems; and studies of short-lived particles, such as B mesons, and pattern recognition within complex events using a silicon-based vertex tracking system. These capabilities are the result of the intensive research, development, and design activities undertaken since 1989 by this very large and capable collaboration

  19. Precision studies of proton structure and jet energy scale with the CMS detector at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Haitz, Dominik

    2016-05-20

    A single proton in the darkness. Slowly, it begins to move, to accelerate. Invisible forces guide it on a circular path. It joins others of its kind, a pack of particles, round and round it goes, evading a deadly crash again and again and again until - everything is illuminated in the light of the collision. Science has come a long way. Ages after the bathtub adventures of Archimedes and Galileo's star-gazing, it has evolved into a worldwide endeavour to uncover the secrets of the cosmos. These efforts have led to the construction of increasingly complex experiments: Giant devices probe the laws of nature by smashing particles together and observing the outcome. Currently, the most powerful and advanced particle accelerator is the Large Hadron Collider (LHC). It is capable of colliding protons at energies and intensities which surpass all previous experiments. This enables the study of physical processes which occur only at high momentum transfers. To observe these processes, large particle detectors are installed at the interaction points of the LHC. One of these detectors is the Compact Muon Solenoid (CMS). It is designed to measure as many of the particles produced in a collision event as possible, thus providing scientists with extensive information for physics analyses. These analyses are often difficult: The rare occurrence of certain processes, multiple concurrent proton-proton interactions or the difficult energy measurement and event reconstruction constitute severe experimental challenges. These effects can lead to significant statistical and systematic uncertainties. The measurement of Z bosons is less affected by some of these problems: The properties of the Z boson are well known from previous experiments; in its dimuon and dielectron decay channels it offers a clear signature with only small contributions from background processes. As a consequence, Z bosons can be precisely measured. At the LHC, Z bosons are produced at an unprecedented rate. Z

  20. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yue-Houng, E-mail: yuehoung.hu@gmail.com; Zhao, Wei [Department of Radiology, State University of New York at Stony Brook, L-4 120 Health Sciences Center, Stony Brook, New York 11794-8460 (United States)

    2014-11-01

    Purpose: Contrast enhanced (CE) imaging techniques for both planar digital mammography (DM) and three-dimensional (3D) digital breast tomosynthesis (DBT) applications requires x-ray photon energies higher than the k-edge of iodine (33.2 keV). As a result, x-ray tube potentials much higher (>40 kVp) than those typical for screening mammography must be utilized. Amorphous selenium (a-Se) based direct conversion flat-panel imagers (FPI) have been widely used in DM and DBT imaging systems. The a-Se layer is typically 200 μm thick with quantum detective efficiency (QDE) >87% for x-ray energies below 26 keV. However, QDE decreases substantially above this energy. To improve the object detectability of either CE-DM or CE-DBT, it may be advantageous to increase the thickness (d{sub Se}) of the a-Se layer. Increasing the d{sub Se} will improve the detective quantum efficiency (DQE) at the higher energies used in CE imaging. However, because most DBT systems are designed with partially isocentric geometries, where the gantry moves about a stationary detector, the oblique entry of x-rays will introduce additional blur to the system. The present investigation quantifies the effect of a-Se thickness on imaging performance for both CE-DM and CE-DBT, discussing the effects of improving photon absorption and blurring from oblique entry of x-rays. Methods: In this paper, a cascaded linear system model (CLSM) was used to investigate the effect of d{sub Se} on the imaging performance (i.e., MTF, NPS, and DQE) of FPI in CE-DM and CE-DBT. The results from the model are used to calculate the ideal observer signal-to-noise ratio, d′, which is used as a figure-of-merit to determine the total effect of increasing d{sub Se} for CE-DM and CE-DBT. Results: The results of the CLSM show that increasing d{sub Se} causes a substantial increase in QDE at the high energies used in CE-DM. However, at the oblique projection angles used in DBT, the increased length of penetration through a

  1. Radiant science, dark politics: a memoir of the nuclear age

    International Nuclear Information System (INIS)

    Kamen, M.D.

    1985-01-01

    The reviewer describes Radiant Science, Dark Politics: A Memoir of the Nuclear Age in contrast to a memoir by James R. Killian, Jr., a contemporary of Kamen. Kamen, co-discoverer of carbon-14 and a valued member of the Berkeley Radiation Laboratory, was fired in 1944 and blackballed as a security risk. Rehabilitated by the end of the war, his continued fight against political injustice through the McCarthy era colors the book and, for the reviewer, makes it self-serving. Kamen's later scientific work reflected his desire to work alone rather than in collaboration

  2. Some characteristics of the CR-39 solid state nuclear - Track Detector for register of protons and low energy alpha particles

    International Nuclear Information System (INIS)

    Fonseca, E.S. da.

    1983-01-01

    Experimental results related to registration properties of the CR-39 Solid State Nuclear Track Detector for charged particles are presented and discussed. The existence of an inverse proportion between the induction time and the temperature as well as normal concentration of solutions, is showed by the study of CR-39 chemical etching characteristics in NaOH and KOH solutions, comprising varied concentration and temperature. The bulk-etch rate and activation energy of the process were obtained. The critical energy and critical energy-loss rate of CR-39 track-detectors for registration of protons were experimentally determined. Samples were exposed to 24 Mev proton beams in the IEN/CNEN Cyclotron (CV-28), using scattering chamber with a tantalum thin target and aluminium absorbers in contact with the samples, in order to provide the required fluctuation in the scattered beam energy. From the mean track-diameter plotted against incident proton energy the critical energy was obtained. From the calculated energy-loss rate vs. energy curve, the critical energy loss rate were evaluated. The CR-39 response for low energy alpha particles (E = 7h) under the conditions of 6.25 N NaOH at 70 0 C. It is shown that successive chemical etchings do not produce the same track geometry as obtained by means of a continous revelation with the same total etching time. (Author) [pt

  3. Coincident searches between high energy neutrinos and gravitational waves with ANTARES, VIRGO and LIGO detectors

    International Nuclear Information System (INIS)

    Bouhou, B.

    2012-01-01

    The aim of this work is the joint detection of gravitational waves and high energy neutrinos in a multi-messengers context. The neutrino and gravitational waves astronomies are still in the phase of development, but they are expected to play a fundamental role in the future. In fact, these messengers can travel big distances because of their weak interaction with matter (contrary to photons that at high energy are rapidly absorbed) without being affected by magnetic fields (contrary to charged cosmic rays). They can also escape dense media and provide information on the processes taking place in the heart of astrophysics sources. Particularly, GW+HEN multi-messenger astronomy may open a new observational window on the Universe. ANTARES collaboration has built a telescope of area 0.1 km 2 in the Mediterranean Sea for the detection of high energy neutrinos. This is the most sensitive telescope for the observed part of the sky. LIGO and VIRGO interferometers are ground-based detector for direct observation of gravitational waves, installed in Europe and the USA respectively. Instruments ANTARES, VIRGO and LIGO offer unrivaled sensitivity in the area of joint observation. The first chapter of this thesis introduces the theoretical motivations for GW+HEN search by developing different emission scenarios. The second and third chapters we give an overview of the experiments and review the data analysis tools. The fourth and fifth chapters of this work present the results of the analysis of the combined data from ANTARES, VIRGO and LIGO taken separately in 2007 and 2009-2010. (author)

  4. A track chamber with controlled heat centres as a vertex detector for very high energy physics experiments

    International Nuclear Information System (INIS)

    Shcherbakov, Yu.A.

    1989-01-01

    A high-pressure vertex detector for high energy experiments is proposed on the basis of development of a new track detector of charged particles, which is a chamber with controlled centres. A possible design of this chamber is discussed. Laser illumination of a streamer chamber allows enough light for reading the information by means of a CCD device. Some characteristics of the set-up are considered in the paper. A possibility of using a new method for suppression of diffusion is discussed. 30 refs.; 7 figs.; 3 tabs

  5. A fast one-chip event-preprocessor and sequencer for the Simbol-X Low Energy Detector

    Science.gov (United States)

    Schanz, T.; Tenzer, C.; Maier, D.; Kendziorra, E.; Santangelo, A.

    2010-12-01

    We present an FPGA-based digital camera electronics consisting of an Event-Preprocessor (EPP) for on-board data preprocessing and a related Sequencer (SEQ) to generate the necessary signals to control the readout of the detector. The device has been originally designed for the Simbol-X low energy detector (LED). The EPP operates on 64×64 pixel images and has a real-time processing capability of more than 8000 frames per second. The already working releases of the EPP and the SEQ are now combined into one Digital-Camera-Controller-Chip (D3C).

  6. A fast one-chip event-preprocessor and sequencer for the Simbol-X Low Energy Detector

    Energy Technology Data Exchange (ETDEWEB)

    Schanz, T., E-mail: schanz@astro.uni-tuebingen.d [Kepler Center for Astro- and Particlephysics, Institut fuer Astronomie und Astrophysik Tuebingen, Sand 1, 72076 Tuebingen (Germany); Tenzer, C., E-mail: tenzer@astro.uni-tuebingen.d [Kepler Center for Astro- and Particlephysics, Institut fuer Astronomie und Astrophysik Tuebingen, Sand 1, 72076 Tuebingen (Germany); Maier, D.; Kendziorra, E.; Santangelo, A. [Kepler Center for Astro- and Particlephysics, Institut fuer Astronomie und Astrophysik Tuebingen, Sand 1, 72076 Tuebingen (Germany)

    2010-12-11

    We present an FPGA-based digital camera electronics consisting of an Event-Preprocessor (EPP) for on-board data preprocessing and a related Sequencer (SEQ) to generate the necessary signals to control the readout of the detector. The device has been originally designed for the Simbol-X low energy detector (LED). The EPP operates on 64x64 pixel images and has a real-time processing capability of more than 8000 frames per second. The already working releases of the EPP and the SEQ are now combined into one Digital-Camera-Controller-Chip (D3C).

  7. A fast one-chip event-preprocessor and sequencer for the Simbol-X Low Energy Detector

    International Nuclear Information System (INIS)

    Schanz, T.; Tenzer, C.; Maier, D.; Kendziorra, E.; Santangelo, A.

    2010-01-01

    We present an FPGA-based digital camera electronics consisting of an Event-Preprocessor (EPP) for on-board data preprocessing and a related Sequencer (SEQ) to generate the necessary signals to control the readout of the detector. The device has been originally designed for the Simbol-X low energy detector (LED). The EPP operates on 64x64 pixel images and has a real-time processing capability of more than 8000 frames per second. The already working releases of the EPP and the SEQ are now combined into one Digital-Camera-Controller-Chip (D3C).

  8. Phase contrast imaging: Effect of increased object-detector distances at X-ray diagnostic and megavoltage energies

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, J.; Gundogdu, O. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Morton, E. [Rapiscan Systems, Units 2,3,4, Radnor Park Trading Estate, Congleton, Cheshire CW12 4XJ (United Kingdom); Wells, K. [CVSSP, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Bradley, D.A., E-mail: d.a.bradley@surrey.ac.uk [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2011-10-01

    The effect of varying object to detector separation at constant and varying magnification has been investigated at an accelerating potential of 30 kVp. Edge-contrast enhancement provided by phase effects was investigated for a drinking straw and found to provide up to 2.52{+-}0.02x the contrast for a PVC Heaviside step function. An optimum magnification of 1.5x was found to apply for the microfocus X-ray tube setup used. Imaging at nominal megavoltage energies was investigated using a Rapiscan Systems Eagle M4500 series scanner. For a fixed source-detector separation, increased magnification improved edge contrast and spatial resolution.

  9. Phase contrast imaging: Effect of increased object-detector distances at X-ray diagnostic and megavoltage energies

    International Nuclear Information System (INIS)

    Loveland, J.; Gundogdu, O.; Morton, E.; Wells, K.; Bradley, D.A.

    2011-01-01

    The effect of varying object to detector separation at constant and varying magnification has been investigated at an accelerating potential of 30 kVp. Edge-contrast enhancement provided by phase effects was investigated for a drinking straw and found to provide up to 2.52±0.02x the contrast for a PVC Heaviside step function. An optimum magnification of 1.5x was found to apply for the microfocus X-ray tube setup used. Imaging at nominal megavoltage energies was investigated using a Rapiscan Systems Eagle M4500 series scanner. For a fixed source-detector separation, increased magnification improved edge contrast and spatial resolution.

  10. Coordinate determination of high energy charged particles by silicon strip detectors

    International Nuclear Information System (INIS)

    Anokhin, I.E.; Zinets, O.S.

    2002-01-01

    The coordinate determination accuracy of minimum ionizing and short-range particles by silicon strip detectors has been considered. The charge collection on neighboring strips of the detector is studied and the influence of diffusion and the electric field distribution on the accuracy of the coordinate determination is analyzed. It has been shown that coordinates of both minimum ionizing and short-range particles can be determined with accuracy to a few microns using silicon strip detectors. 11 refs.; 8 figs

  11. The use of GaSe semiconductor detectors for monitoring high energy muon beams

    CERN Document Server

    Mancini, A M; Murri, R; Quirini, A; Rizzo, A; Vasanelli, L

    1976-01-01

    GaSe semiconductor detectors have been successfully tested during one year for monitoring muon beams in the GeV range in the neutrino experiment at CERN. Their performances are comparable with those of commercial Si surface barrier detectors for this particular application. Crystal growth, detector fabrication and characterization are briefly described. Various advantages (cost, ruggedness, resistance to radiation damage, manufacturing simplicity, etc.) are discussed. (8 refs).

  12. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  13. Gamma ray energy loss spectra simulation in NaI detectors with the Monte Carlo method

    International Nuclear Information System (INIS)

    Vieira, W.J.

    1982-01-01

    With the aim of studying and applying the Monte Carlo method, a computer code was developed to calculate the pulse height spectra and detector efficiencies for gamma rays incident on NaI (Tl) crystals. The basic detector processes in NaI (Tl) detectors are given together with an outline of Monte Carlo methods and a general review of relevant published works. A detailed description of the application of Monte Carlo methods to ν-ray detection in NaI (Tl) detectors is given. Comparisons are made with published, calculated and experimental, data. (Author) [pt

  14. First realization of a tracking detector for high energy physics experiments based on Josephson digital readout circuitry

    CERN Document Server

    Pagano, S; Esposito, A P; Mukhanov, O; Rylov, S

    1999-01-01

    We have designed and realized a prototype of a high energy particle microstrip detector with Josephson readout circuits. The key features of this device are: minimum ionizing particle sensitivity, due to the use of semiconductive sensors, fast speed and radiation hardness, due to the use of superconductive circuitry, and current discrimination, which allows the use of several types of semiconductors as detector (Si, GaAs, CVD-diamond) without loss in performances. The Josephson circuitry, made by a combination of RSFQ and latching logic gates, realizes an 8-bit current discriminator and parallel to serial converter and can be directly interfaced to room temperature electronics. This device, which is designed for application as vertex detector for the Compass and LHC-B accelerator experiments, has been tested with small radioactive sources acid will undergo to a test beam at the CERN SPS facility with 24 GeV/c protons. Current results and future perspectives will be reported. (11 refs).

  15. Adaptive algorithms of position and energy reconstruction in Anger-camera type detectors: experimental data processing in ANTS

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, A; Fraga, F A F; Fraga, M M F R; Margato, L M S; Pereira, L [LIP-Coimbra and Departamento de Física, Universidade de Coimbra, Rua Larga, Coimbra (Portugal); Defendi, I; Jurkovic, M [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), TUM, Lichtenbergstr. 1, Garching (Germany); Engels, R; Kemmerling, G [Zentralinstitut für Elektronik, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, Jülich (Germany); Gongadze, A; Guerard, B; Manzin, G; Niko, H; Peyaud, A; Piscitelli, F [Institut Laue Langevin, 6 Rue Jules Horowitz, Grenoble (France); Petrillo, C; Sacchetti, F [Istituto Nazionale per la Fisica della Materia, Unità di Perugia, Via A. Pascoli, Perugia (Italy); Raspino, D; Rhodes, N J; Schooneveld, E M, E-mail: andrei@coimbra.lip.pt [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot (United Kingdom); others, and

    2013-05-01

    The software package ANTS (Anger-camera type Neutron detector: Toolkit for Simulations), developed for simulation of Anger-type gaseous detectors for thermal neutron imaging was extended to include a module for experimental data processing. Data recorded with a sensor array containing up to 100 photomultiplier tubes (PMT) or silicon photomultipliers (SiPM) in a custom configuration can be loaded and the positions and energies of the events can be reconstructed using the Center-of-Gravity, Maximum Likelihood or Least Squares algorithm. A particular strength of the new module is the ability to reconstruct the light response functions and relative gains of the photomultipliers from flood field illumination data using adaptive algorithms. The performance of the module is demonstrated with simulated data generated in ANTS and experimental data recorded with a 19 PMT neutron detector. The package executables are publicly available at http://coimbra.lip.pt/∼andrei/.

  16. A new large solid angle multi-element silicon drift detector system for low energy X-ray fluorescence spectroscopy

    Science.gov (United States)

    Bufon, J.; Schillani, S.; Altissimo, M.; Bellutti, P.; Bertuccio, G.; Billè, F.; Borghes, R.; Borghi, G.; Cautero, G.; Cirrincione, D.; Fabiani, S.; Ficorella, F.; Gandola, M.; Gianoncelli, A.; Giuressi, D.; Kourousias, G.; Mele, F.; Menk, R. H.; Picciotto, A.; Rachevski, A.; Rashevskaya, I.; Sammartini, M.; Stolfa, A.; Zampa, G.; Zampa, N.; Zorzi, N.; Vacchi, A.

    2018-03-01

    Low-energy X-ray fluorescence (LEXRF) is an essential tool for bio-related research of organic samples, whose composition is dominated by light elements. Working at energies below 2 keV and being able to detect fluorescence photons of lightweight elements such as carbon (277 eV) is still a challenge, since it requires in-vacuum operations to avoid in-air photon absorption. Moreover, the detectors must have a thin entrance window and collect photons at an angle of incidence near 90 degrees to minimize the absorption by the protective coating. Considering the low fluorescence yield of light elements, it is important to cover a substantial part of the solid angle detecting ideally all emitted X-ray fluorescence (XRF) photons. Furthermore, the energy resolution of the detection system should be close to the Fano limit in order to discriminate elements whose XRF emission lines are often very close within the energy spectra. To ensure all these features, a system consisting of four monolithic multi-element silicon drift detectors was developed. The use of four separate detector units allows optimizing the incidence angle on all the sensor elements. The multi-element approach in turn provides a lower leakage current on each anode, which, in combination with ultra-low noise preamplifiers, is necessary to achieve an energy resolution close to the Fano limit. The potential of the new detection system and its applicability for typical LEXRF applications has been proved on the Elettra TwinMic beamline.

  17. An experimental study about effect of far infrared radiant ceramics on efficient methane fermentation

    International Nuclear Information System (INIS)

    Oda, A.; Yamazaki, M.; Oida, A.

    2003-01-01

    Methane fermentation, well known as one of the methods for organic wastes treatment, has been used as an energy production process in order to produce a gaseous fuel. But methane fermentation has some problems to be solved about gas production rate and volatile solids reduction efficiency. Simple methods to improve these problems are needed. In this study, we focused on far infrared radiant ceramics as a stimulating substance to activate methanogenic bacteria. Firstly, through the experiment of one batch fermentation, it was confirmed that the ceramics in the fermenter caused increase of total gas production. Next, even through the experiment of continuous fermentation, same stimulating effect was confirmed. It was considered that this effect was caused not only by a function of bio-contactor of the ceramics but also by far infrared radiation from ceramics. (author)

  18. Response study of fission track detectors using two different moderator designs in a high-energy radiation field

    International Nuclear Information System (INIS)

    Mayer, S.; Boschung, M.; Fiechtner, A.; Fuerstner, M.; Wernli, C.

    2008-01-01

    Fission track detectors in the center of moderating spheres are routinely used to measure the ambient dose equivalent due to neutrons in the environmental dosimetry at Paul Scherrer Institut (PSI). Originally, the system was designed to cope with neutrons from skyshine effects. Later, the system was also adapted behind the shielding of PSI's accelerators. Nowadays, as a consequence of continuously upgrading accelerator energies and intensities, the neutron energy behind thick shielding can range from fractions of eV to about 1 GeV (e.g. at CERN). For this reason a measurement campaign in a high-energy stray radiation field at CERN's High-Energy Reference Field Facility (CERF) was initiated to study and compare the response of the already existing detector-moderator configuration and a new design, the 'GSI ball'. Employing an additional lead layer in a moderator sphere of 32.5 cm diameter, the GSI ball was primarily designed for the use with thermoluminescent based dosimeters in its center in order to optimize the response for the measurement of H*(10) to higher neutron energies. In this work, the measurement results for fission track detectors using two different radiator materials in the PSI and the GSI moderator are presented. Based on these studies, on the one hand, field calibration factors for the use in presumably similar high-energy fields around accelerators could be deduced. On the other hand, it could be shown that there is no need to replace the established PSI moderator by the GSI moderator since the combination of fission track detector and GSI moderator does not result in a significant sensitivity improvement

  19. Response study of fission track detectors using two different moderator designs in a high-energy radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, S. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)], E-mail: Sabine.Mayer@psi.ch; Boschung, M.; Fiechtner, A. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Fuerstner, M. [CERN, CH-1211 Geneva 23 (Switzerland); Wernli, C. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2008-02-15

    Fission track detectors in the center of moderating spheres are routinely used to measure the ambient dose equivalent due to neutrons in the environmental dosimetry at Paul Scherrer Institut (PSI). Originally, the system was designed to cope with neutrons from skyshine effects. Later, the system was also adapted behind the shielding of PSI's accelerators. Nowadays, as a consequence of continuously upgrading accelerator energies and intensities, the neutron energy behind thick shielding can range from fractions of eV to about 1 GeV (e.g. at CERN). For this reason a measurement campaign in a high-energy stray radiation field at CERN's High-Energy Reference Field Facility (CERF) was initiated to study and compare the response of the already existing detector-moderator configuration and a new design, the 'GSI ball'. Employing an additional lead layer in a moderator sphere of 32.5 cm diameter, the GSI ball was primarily designed for the use with thermoluminescent based dosimeters in its center in order to optimize the response for the measurement of H*(10) to higher neutron energies. In this work, the measurement results for fission track detectors using two different radiator materials in the PSI and the GSI moderator are presented. Based on these studies, on the one hand, field calibration factors for the use in presumably similar high-energy fields around accelerators could be deduced. On the other hand, it could be shown that there is no need to replace the established PSI moderator by the GSI moderator since the combination of fission track detector and GSI moderator does not result in a significant sensitivity improvement.

  20. Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics

    Science.gov (United States)

    Saviano, G.; Ferrini, M.; Benussi, L.; Bianco, S.; Piccolo, D.; Colafranceschi, S.; KjØlbro, J.; Sharma, A.; Yang, D.; Chen, G.; Ban, Y.; Li, Q.; Grassini, S.; Parvis, M.

    2018-03-01

    Gas detectors for elementary particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This work studies properties of potential eco-friendly gas replacements by computing the physical and chemical parameters relevant for use as detector media, and suggests candidates to be considered for experimental investigation.

  1. Semiconductor detectors in current energy dispersive X-ray spectral analysis

    International Nuclear Information System (INIS)

    Betin, J.; Zhabin, E.; Krampit, I.; Smirnov, V.

    1980-01-01

    A review is presented of the properties of semiconductor detectors and of the possibilities stemming therefrom of using the detectors in X-ray spectral analysis in industries, in logging, in ecology and environmental control, in medicine, etc. (M.S.)

  2. Development and analysis of silicon based detectors for low energy nuclear radiation

    International Nuclear Information System (INIS)

    Johansen, G.A.

    1990-11-01

    The design and assembly of a prototype silicon based detector especially for the detection of auroral X-rays is presented. The theoretical fundamentals are shown and the adoption of the detector for applications in future satellite experiments are described. 136 refs

  3. Silicon microstrip detector development in the Institute for High Energy Physics Zeuthen, GDR

    International Nuclear Information System (INIS)

    Lange, W.; Nowak, W.D.; Truetzschler, K.

    1990-01-01

    This paper reports that in regard of the growing interest to study short living particles demanding for high resolution vertex detectors the authors started to build Si microstrip detectors. The first detector generation was characterized by a small area of silicon and a readout via printed circuit board fan out. Now they can assemble detectors with larger areas and VLSI readout. A special cleanroom has been built. Equipment and tools necessary are available. Silicon wafers and thick film hybrid circuits are fabricated under collaboration by the GDR industry. Applications of their detectors were several test-runs at CERN to calibrate the L3 time expansion chamber (TEC) and the L3 muon chambers. A 10-layer telescope is designed now and it is planned to calibrate a high resolution scintillation fiber target. Future applications will be high resolution vertex detectors, e.g. L3 upgrading (LEP, CERN) or KEDR (VEPP-5, Novosibirsk). Further investigations will concern AC coupled strip detectors (single and double sided) and pixel and/or pad detectors

  4. Energy efficiency of electrical infrared heating elements

    International Nuclear Information System (INIS)

    Brown, K.J.; Farrelly, R.; O’Shaughnessy, S.M.; Robinson, A.J.

    2016-01-01

    Highlights: • Characterization of the radiant energy efficiency of infrared heating elements. • Performed for a commercially available ceramic heater element for two cases. • Total radiant power and net radiant efficiency is computed. • Radiant efficiencies are strongly dependant on the input power to the element. • In-plane efficiencies depend on the distance from the heater. - Abstract: A measurement system has been designed to characterize the radiant energy efficiency of infrared heating elements. The system also allows for measurement of the radiant heat flux distribution emitted from radiant heater assemblies. To facilitate these, a 6-axis robotic arm is fitted with a Schmidt–Boelter radiant heat flux gauge. A LabVIEW interface operates the robot and positions the sensor in the desired location and subsequently acquires the desired radiant heat flux measurement. To illustrate the functionality of the measurement system and methodology, radiant heat flux distributions and efficiency calculations are performed for a commercially available ceramic heater element for two cases. In the first, a spherical surface is traced around the entire heater assembly and the total radiant power and net radiant efficiency is computed. In the second, 50 cm × 50 cm vertical planes are traced parallel to the front face of the heater assembly at distances between 10 cm and 50 cm and the in-plane power and efficiencies are computed. The results indicate that the radiant efficiencies are strongly dependant on the input power to the element and, for the in-plane efficiencies, depend on the distance from the heater.

  5. Ultra low energy-ultra low background high purity germanium detectors for studies on dark matter

    International Nuclear Information System (INIS)

    Soma, A.K.; Singh, V.; Singh, L.; Singh, M.K.; Wong, H.T.

    2009-01-01

    Weakly Interacting Massive Particles (WIMP) are the leading DM candidates. Super symmetric particles (SUSY) are one of the leading WIMP candidates. To probe this least explored region Taiwan EXperiments On NeutrinO collaboration is pursuing research and development program by using High Purity Germanium detectors (HPGe). These detectors offer a matured technology to scale up the detectors and achieve sub-keV level threshold i.e. few hundreds of eV, economically. The various detectors developed by the collaboration is shown in the below figure. The current goal of the collaboration is to develop detectors of kg-scale target mass, ∼100 eV threshold and low-background specification for the studies on WIMPs, μ v and neutrino - nucleus coherent scattering

  6. Near space radiation dosimetry in Australian outback using a balloon borne energy compensated PIN diode detector

    International Nuclear Information System (INIS)

    Mukherjee, Bhaskar; Wu, Xiaofeng; Maczka, Tomasz; Kwan, Trevor; Huang, Yijun; Mares, Vladimir

    2016-01-01

    This paper reports the near space ballooning experiment carried out at Australian outback town West Wyalong (33°51′S, 147°24′E) on 19 July 2015. Several dedicated electronic detectors including digital temperature and acceleration (vibration) sensors and an energy compensated PIN-diode gamma ray dosimeter were installed in a thermally insulated Styrofoam payload box. A 9 V Lithium-Polymer battery powered all the devices. The payload box was attached to a helium-filled latex weather balloon and set afloat. The balloon reached a peak burst altitude of 30 km and then soft-landed aided by a self-deploying parachute 66.2 km away form the launch site. The payload box was retrieved and data collected from the electronic sensors analysed. The integrated cosmic ray induced photon ambient dose equivalent recorded by the PIN diode detector was evaluated to be 0.36 ± 0.05 μSv. Furthermore, a high-altitude extended version of commercially available aviation dosimetry package EPCARD.Net (European Program package for the Calculation of Aviation Route Doses) was used to calculate the ambient dose equivalents during the balloon flight. The radiation environment originated from the secondary cosmic ray shower is composed of neutrons, protons, electrons, muons, pions and photons. The photon ambient dose equivalent estimated by the EPCARD.Net code found to be 0.47 ± 0.09 μSv. The important aspects of balloon based near-space radiation dosimetry are highlighted in this paper. - Highlights: • Near space ballooning experiment in Australian outback. • A PIN diode based gamma dosimeter was sent to an altitude of 30 km. • Ambient photon dose equivalent was evaluated as a function of altitude. • Results agreed well with the simulated data delivered by EPCARD.Net Code. • The atmospheric temperature and payload jerks were also assessed.

  7. Study of α-energy discrimination in CR-39 track etch detectors for use as a radon/thoron dosemeter

    International Nuclear Information System (INIS)

    Kandaiya, S.; Al-Najjar, S.A.R.; Piesch, E.

    1988-01-01

    The properties of CR 39 nuclear track detectors were evaluated for their α-energy discrimination up to 8.77 MeV using a combination of chemical-electrochemical track revealing techniques. Using three field strengths, α-energy discrimination by ECE track diameter and track density as a function of chemical pre-etching time were studied. α-energy spectra using different irradiation geometries were then evaluated using the optimum conditions and then compared with those obtained form other techniques. (author)

  8. Fast and high-energy neutron detection with nuclear track detectors: Results of the European joint experiments 1992/93

    Energy Technology Data Exchange (ETDEWEB)

    Schraube, H. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany); Alberts, W.G. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Weeks, A.R. [comps.] [Nuclear Electric plc, Berkeley (United Kingdom). Berkeley Technology Centre

    1997-12-31

    Under the auspices of EURADOS, the European radiation dosimetry group, seventeen recognised laboratories engaged in the field of individual neutron dosimetry with passive track detectors participated in an international comparative experiment. A number of twenty-seven detector systems, predominantly etched track detectors with the material PADC (poly allyl diglycol carbonate), were employed by the participating laboratories. Quasi-monoenergetic neutrons were provided for irradiations free-in-air and on front of a PMMA phantom by the GSF (Forschungszentrum fuer Umwelt und Gesundheit, Neuherberg, Germany) and by the PTB (Physikalisch-Technische Bundesanstalt, Braunschweig, Germany). High energy irradiations were conducted by the PSI (Paul-Scherrer Institut, Villigen, Switzerland). The results of the on-phantom irradiations were used to derive energy and angular responses of the track detectors, those of the free-in-air irradiations to obtain data for the linearity characteristics of the response with dose. The report contains a short description and the original data of the participating laboratories, displays the irradiation and reference conditions, and provides an over-all evaluation. Emphasis is placed on the quantitative evaluation of the background characteristics and of the non-linearity observed with most of the systems employed which limits their useful dose-range of application. (orig.)

  9. Background reduction at low energies with BEGe detector operated in liquid argon using the GERDA-LArGe facility

    Energy Technology Data Exchange (ETDEWEB)

    Budjas, Dusan [Physik-Department E15, Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2014-07-01

    LArGe is a low background test facility used for proving innovative approaches to background reduction in support of the neutrinoless double beta decay experiment Gerda. These approaches include an anti-Compton veto using scintillation light detection from liquid argon, as well as a novel pulse shape discrimination method exploiting the characteristic electrical field distribution inside BEGe detectors. The latter technique can identify single-site events (typical for double beta decays) and efficiently reject multi-site events (typical for backgrounds from gamma-ray interactions), as well as different types of background events from detector surfaces. While the main focus of the LArGe facility is to assist with reaching the goal of Gerda - improving the sensitivity for {sup 76}Ge neutrinoless double beta decay search, reducing the background at low energies and lowering the energy threshold is also of interest. In particular such efforts can be potentially relevant for search of dark matter or low energy neutrino interactions. In this talk I present the experimental measurement of the low energy region with a BEGe detector operated in LArGe with the application of powerful background suppression methods. The performance will be compared to that of some dedicated dark matter detection experiments.

  10. 16 CFR Figure 3 to Subpart A of... - Flooring Radiant Tester Schematic Side Elevation

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flooring Radiant Tester Schematic Side Elevation 3 Figure 3 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 3 Figure 3 to Subpart A of Part 1209—Flooring Radiant Tester Schematic Side...

  11. Human response to local convective and radiant cooling in a warm environment

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Krejcirikova, Barbora; Kaczmarczyk, Jan

    2013-01-01

    The response of 24 human subjects to local convective cooling, radiant cooling, and combined radiant and convective cooling was studied at 28°C and 50% relative humidity. The local cooling devices used were (1) a tabletop cooling fan, (2) personalized ventilation providing a stream of clean air, (3...

  12. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-01-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56–0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose. - Highlights: • Dual-energy mammography based on a photon-counting detector was simulated. • Radiation dose and image quality were evaluated for optimizing the proposed technique. • The proposed technique reduced radiation dose as well as improved image quality. • The proposed technique was optimized at the radiation dose of 1.09 mGy.

  13. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    Science.gov (United States)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56-0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose.

  14. Application of the Broad Energy Germanium detector: A technique for elucidating β-decay schemes which involve daughter nuclei with very low energy excited states

    Energy Technology Data Exchange (ETDEWEB)

    Venhart, M., E-mail: martin.venhart@savba.sk [Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava (Slovakia); Wood, J.L. [Department of Physics, Georgia Institute of Technology, Atlanta GA 30332 (United States); Boston, A.J. [Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava (Slovakia); Cocolios, T.E. [School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); KU Leuven, Instituut voor Kern, en Stralingsfysica, B-3001 Leuven (Belgium); Harkness-Brennan, L.J.; Herzberg, R.-D.; Joss, D.T.; Judson, D.S. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Kliman, J.; Matoušek, V. [Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava (Slovakia); Motyčák, Š. [Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, SK-812 19 Bratislava (Slovakia); Page, R.D.; Patel, A. [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Petrík, K.; Sedlák, M.; Veselský, M. [Institute of Physics, Slovak Academy of Sciences, SK-84511 Bratislava (Slovakia)

    2017-03-21

    A technique for elucidating β-decay schemes of isotopes with a large density of states at low excitation energy has been developed, in which a Broad Energy Germanium (BEGe) detector is used in conjunction with coaxial hyper-pure germanium detectors. The power of this technique is demonstrated using the example of {sup 183}Hg decay. Mass-separated samples of {sup 183}Hg were produced by a deposition of the low-energy radioactive-ion beam delivered by the ISOLDE facility at CERN. The excellent energy resolution of the BEGe detector allowed γ-ray energies to be determined with a precision of a few tens of eV, which was sufficient for the analysis of the Rydberg-Ritz combinations (in conjunction with γ-γ coincidences) in the level scheme. The timestamped structure of the data was used for unambiguous separation of γ rays arising from the decay of {sup 183}Hg from those due to the daughter decays.

  15. Research in high energy physics: Scintillating fiber detector development for the SSC: Annual progress report

    International Nuclear Information System (INIS)

    Ruchti, R.C.

    1988-01-01

    The scintillating fiber detector development program at the University of Notre Dame is divided into several components. These include: Research on scintillating glass fiber materials; Research on scintillating plastic fiber materials; Research on scintillating liquids in fiber capillaries; Studies of improvements in image intensification and light amplification of appropriate test and development facilities at Notre Dame. The overall goal of the program is to develop efficient scintillating fiber detectors with long, optical attenuation length, and excellent radiation resistance properties for tracking and microvertex detectors and as component active sampling materials for scintillation calorimetry. We now discuss each of these programs in turn. 2 figs., 3 tabs

  16. Design of a linear detector array unit for high energy x-ray helical computed tomography and linear scanner

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Tae; Park, Jong Hwan; Kim, Gi Yoon [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of); Kim, Dong Geun [Medical Imaging Department, ASTEL Inc., Seongnam (Korea, Republic of); Park, Shin Woong; Yi, Yun [Dept. of Electronics and Information Eng, Korea University, Seoul (Korea, Republic of); Kim, Hyun Duk [Research Center, Luvantix ADM Co., Ltd., Daejeon (Korea, Republic of)

    2016-11-15

    A linear detector array unit (LdAu) was proposed and designed for the high energy X-ray 2-d and 3-d imaging systems for industrial non-destructive test. Specially for 3-d imaging, a helical CT with a 15 MeV linear accelerator and a curved detector is proposed. the arc-shape detector can be formed by many LdAus all of which are arranged to face the focal spot when the source-to-detector distance is fixed depending on the application. An LdAu is composed of 10 modules and each module has 48 channels of CdWO{sub 4} (CWO) blocks and Si PIn photodiodes with 0.4 mm pitch. this modular design was made for easy manufacturing and maintenance. through the Monte carlo simulation, the CWO detector thickness of 17 mm was optimally determined. the silicon PIn photodiodes were designed as 48 channel arrays and fabricated with NTD (neutron transmutation doping) wafers of high resistivity and showed excellent leakage current properties below 1 nA at 10 V reverse bias. to minimize the low-voltage breakdown, the edges of the active layer and the guard ring were designed as a curved shape. the data acquisition system was also designed and fabricated as three independent functional boards; a sensor board, a capture board and a communication board to a Pc. this paper describes the design of the detectors (CWO blocks and Si PIn photodiodes) and the 3-board data acquisition system with their simulation results.

  17. The GRANDE detector

    International Nuclear Information System (INIS)

    Adams, A.; Bond, R.; Coleman, L.; Rollefson, A.; Wold, D.; Bratton, C.B.; Gurr, H.; Kropp, W.; Nelson, M.; Price, L.R.; Reines, F.; Schultz, J.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Wilson, C.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.

    1990-01-01

    In this paper we present a detector facility which meets the requirements outlined above for a next-generation instrument. GRANDE (Gamma Ray and Neutrino DEtector) is an imaging, water Cerenkov detector, which combines in one facility an extensive air shower array and a high-energy neutrino detector. (orig.)

  18. A new integrating sphere design for spectral radiant flux determination of light-emitting diodes

    Science.gov (United States)

    Hanselaer, P.; Keppens, A.; Forment, S.; Ryckaert, W. R.; Deconinck, G.

    2009-09-01

    Light-emitting diode (LED) technology is developing very quickly and may be considered an alternative for traditional light sources. However, at this moment, manufacturers and end users of LEDs are facing a rather basic but major problem. The lack of standardization regarding optical and electrical characterization of LEDs appears to compromise a successful implementation. In particular, numbers quoted for the luminous flux, and consequently for the efficacy of LEDs, are very sensitive data because they are used to impress and push the LED market. In this paper, the most was made of the typical hemispherical radiation of high-power LEDs to increase the accuracy of the flux determination using a custom-made integrating sphere. Recently developed measurement techniques such as the use of an external spectral irradiance standard and an optimized spectral irradiance detection head are combined with a very particular port geometry and a minimized baffle area. This results in a uniform spatial response distribution function (SRDF), which guarantees an accurate radiant and luminous flux determination, irrespective of the spatial intensity distribution of the LED package or luminaire. The effect of the directional response of the detector head on the SRDF has been explored. Measurements on LED devices with and without external optics are presented, illustrating the possibilities of the measurement setup.

  19. A new integrating sphere design for spectral radiant flux determination of light-emitting diodes

    International Nuclear Information System (INIS)

    Hanselaer, P; Keppens, A; Forment, S; Ryckaert, W R; Deconinck, G

    2009-01-01

    Light-emitting diode (LED) technology is developing very quickly and may be considered an alternative for traditional light sources. However, at this moment, manufacturers and end users of LEDs are facing a rather basic but major problem. The lack of standardization regarding optical and electrical characterization of LEDs appears to compromise a successful implementation. In particular, numbers quoted for the luminous flux, and consequently for the efficacy of LEDs, are very sensitive data because they are used to impress and push the LED market. In this paper, the most was made of the typical hemispherical radiation of high-power LEDs to increase the accuracy of the flux determination using a custom-made integrating sphere. Recently developed measurement techniques such as the use of an external spectral irradiance standard and an optimized spectral irradiance detection head are combined with a very particular port geometry and a minimized baffle area. This results in a uniform spatial response distribution function (SRDF), which guarantees an accurate radiant and luminous flux determination, irrespective of the spatial intensity distribution of the LED package or luminaire. The effect of the directional response of the detector head on the SRDF has been explored. Measurements on LED devices with and without external optics are presented, illustrating the possibilities of the measurement setup

  20. Silicon detectors: Damage, modelling and expected long-time behaviour in physics experiments at ultra high energy

    International Nuclear Information System (INIS)

    Lazanu, Ionel; Lazanu, Sorina

    2007-01-01

    In this contribution, the structural modifications of the material and the degradation of devices is modelled and compared with the experimental data for more resistivities, temperatures, crystal orientations and oxygen concentrations, considering the existence of the new primary fourfold coordinated defect, besides the vacancy and the interstitial. Some estimations of the behaviour of detectors in specific environments at the next generations of high-energy physics experiments as LHC, SLHC, VLHC, or ULHC are done

  1. A diffraction limited nitrogen laser for detector calibration in high energy physics

    International Nuclear Information System (INIS)

    Hartjes, F.G.

    1990-01-01

    This thesis consists of two parts. In part I the operation of a pulsed two-stage nitrogen laser is described. In contrast to most other lasers an optical resonator can not be used in a nitrogen laser because of the very short pulse time (∼ 1 ns). Therefore the emitted beam of a simple nitrogen laser has a large divergence. A nitrogen laser with a small beam divergence however can be constructed via the 'Master Oscillator Power Amplifier' principle. Herein a double nitrogen laser system is employed in which both lasers fire simultaneously. The diameter of the laser beam from the first stage (oscillator) is enlarged by a telescope by which the divergence decreases strongly. In a second stage (amplifier) subsequently the weak laser beam is amplified again. The outcoming beam has an elongated diameter which is changed in an approximately round form by a telescope of two cylindrical lenses. The process leading to the formation of population inversion in the nitrogen causing emission of laser ligth is described. The electric circuit, which delivers the high-voltage pulse causing the electric discharge in the laser cavity, is described. The mechanical construction of the laser, in particular with regard to the choices of the materials, is described. Finally, the optical system of the two-stage nitrogen laser is explained. In part II the application of the two-stage nitrogen laser in high-energy physics is treated. Instructions are given about the practical use of the laser: the usual optical system and the ionization profile to be expected in the detector gas. Herein three different kinds of beams are distinguished: the parallel beam, the weakly focussed, and the strongly focussed beam. Some examples are given of the use of the laser: a time very close to the wire, the outlining of the drift wire chambers with a long parallel beam, and the measurement of optical properties of scintillating plastic fibers. (author). 52 refs.; 76 figs.; 4 tabs

  2. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    International Nuclear Information System (INIS)

    Szabó, J.; Pálfalvi, J.K.

    2012-01-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008–2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.