WorldWideScience

Sample records for radiant energy cyclically

  1. Nonimaging radiant energy device

    Winston, Roland; Ning, Xiaohui

    1993-01-01

    A nonimaging radiant energy device may include a hyperbolically shaped reflective element with a radiant energy inlet and a radiant energy outlet. A convex lens is provided at the radiant energy inlet and a concave lens is provided at the radiant energy outlet. Due to the provision of the lenses and the shape of the walls of the reflective element, the radiant energy incident at the radiant energy inlet within a predetermined angle of acceptance is emitted from the radiant energy outlet exclusively within an acute exit angle. In another embodiment, the radiant energy device may include two interconnected hyperbolically shaped reflective elements with a respective convex lens being provided at each aperture of the device.

  2. Direct conversion of infrared radiant energy for space power applications

    Finke, R. C.

    1982-01-01

    A proposed technology to convert the earth radiant energy (infrared albedo) for spacecraft power is presented. The resultant system would eliminate energy storage requirements and simplify the spacecraft design. The design and performance of a infrared rectenna is discussed.

  3. Radiant Barriers Save Energy in Buildings

    2014-01-01

    Langley Research Center needed to coat the Echo 1 satellite with a fine mist of vaporized metal, and collaborated with industry to create "radiant barrier technology." In 2010, Ryan Garrett learned about a new version of the technology resistant to oxidation and founded RadiaSource in Ogden, Utah, to provide the NASA-derived technology for applications in homes, warehouses, gymnasiums, and agricultural settings.

  4. Design of energy efficient building with radiant slab cooling

    Tian, Zhen

    2007-12-01

    Air-conditioning comprises a substantial fraction of commercial building energy use because of compressor-driven refrigeration and fan-driven air circulation. Core regions of large buildings require year-round cooling due to heat gains from people, lights and equipment. Negative environmental impacts include CO2 emissions from electric generation and leakage of ozone-depleting refrigerants. Some argue that radiant cooling simultaneously improves building efficiency and occupant thermal comfort, and that current thermal comfort models fail to reflect occupant experience with radiant thermal control systems. There is little field evidence to test these claims. The University of Calgary's Information and Communications Technology (ICT) Building, is a pioneering radiant slab cooling installation in North America. Thermal comfort and energy performance were evaluated. Measurements included: (1) heating and cooling energy use, (2) electrical energy use for lighting and equipment, and (3) indoor temperatures. Accuracy of a whole building energy simulation model was evaluated with these data. Simulation was then used to compare the radiant slab design with a conventional (variable air volume) system. The radiant system energy performance was found to be poorer mainly due to: (1) simultaneous cooling by the slab and heating by other systems, (2) omission of low-exergy (e.g., groundwater) cooling possible with the high cooling water temperatures possible with radiant slabs and (3) excessive solar gain and conductive heat loss due to the wall and fenestration design. Occupant thermal comfort was evaluated through questionnaires and concurrent measurement of workstation comfort parameters. Analysis of 116 sets of data from 82 occupants showed that occupant assessment was consistent with estimates based on current thermal comfort models. The main thermal comfort improvements were reductions in (1) local discomfort from draft and (2) vertical air temperature stratification. The

  5. Performance of Radiant Heating Systems of Low-Energy Buildings

    Sarbu, Ioan; Mirza, Matei; Crasmareanu, Emanuel

    2017-10-01

    After the introduction of plastic piping, the application of water-based radiant heating with pipes embedded in room surfaces (i.e., floors, walls, and ceilings), has significantly increased worldwide. Additionally, interest and growth in radiant heating and cooling systems have increased in recent years because they have been demonstrated to be energy efficient in comparison to all-air distribution systems. This paper briefly describes the heat distribution systems in buildings, focusing on the radiant panels (floor, wall, ceiling, and floor-ceiling). Main objective of this study is the performance investigation of different types of low-temperature heating systems with different methods. Additionally, a comparative analysis of the energy, environmental, and economic performances of floor, wall, ceiling, and floor-ceiling heating using numerical simulation with Transient Systems Simulation (TRNSYS) software is performed. This study showed that the floor-ceiling heating system has the best performance in terms of the lowest energy consumption, operation cost, CO2 emission, and the nominal boiler power. The comparison of the room operative air temperatures and the set-point operative air temperature indicates also that all radiant panel systems provide satisfactory results without significant deviations.

  6. ''Super-radiant'' states in intermediate energy nuclear physics

    Auerbach, N.

    1994-01-01

    A ''super-radiant'' state emerges when, under certain conditions, one or a few ''internal'' states acquire a large collective decay width due to the coupling to one or a few ''external'' decay channels. The rest of the internal states are ''stripped'' of their decay width and become long lived quasistationary states. The essentials of such mechanism and its possible role in intermediate energy nuclear physics are discussed in this work

  7. Radiant energy collection and conversion apparatus and method

    Hunt, A.J.

    The apparatus for collecting radiant energy and converting to alternate energy forms includes a housing having an interior space and a radiation transparent window allowing solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past the window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  8. Radiant energy during infrared neural stimulation at the target structure

    Richter, Claus-Peter; Rajguru, Suhrud; Stafford, Ryan; Stock, Stuart R.

    2013-03-01

    Infrared neural stimulation (INS) describes a method, by which an infrared laser is used to stimulate neurons. The major benefit of INS over stimulating neurons with electrical current is its spatial selectivity. To translate the technique into a clinical application it is important to know the energy required to stimulate the neural structure. With this study we provide measurements of the radiant exposure, at the target structure that is required to stimulate the auditory neurons. Flat polished fibers were inserted into scala tympani so that the spiral ganglion was in front of the optical fiber. Angle polished fibers were inserted along scala tympani, and rotating the beveled surface of the fiber allowed the radiation beam to be directed perpendicular to the spiral ganglion. The radiant exposure for stimulation at the modiolus for flat and angle polished fibers averaged 6.78+/-2.15 mJ/cm2. With the angle polished fibers, a 90º change in the orientation of the optical beam from an orientation that resulted in an INS-evoked maximum response, resulted in a 50% drop in the response amplitude. When the orientation of the beam was changed by 180º, such that it was directed opposite to the orientation with the maxima, minimum response amplitude was observed.

  9. Energy efficiency and indoor thermal perception. A comparative study between radiant panel and portable convective heaters

    Ali, Ahmed Hamza H.; Morsy, Mahmoud Gaber [Department of Mechanical Engineering, Faculty of Engineering, Assiut University, Assiut, 71516 (Egypt)

    2010-11-15

    This study investigates experimentally the thermal perception of indoor environment for evaluating the ability of radiant panel heaters to produce thermal comfort for space occupants as well as the energy consumption in comparison with conventional portable natural convective heaters. The thermal perception results show that, compared with conventional convection heater, a radiantly heated office room maintains a lower ambient air temperature while providing equal levels of thermal perception on the thermal dummy head as the convective heater and saves up to 39.1% of the energy consumption per day. However, for human subjects' vote experiments, the results show that for an environmentally controlled test room at outdoor environment temperatures of 0C and 5C, using two radiant panel heaters with a total capacity of 580 W leads to a better comfort sensation than the conventional portable natural convective heater with a 670 W capacity, with an energy saving of about 13.4%. In addition, for an outdoor environment temperature of 10C, using one radiant panel heater with a capacity of 290 W leads to a better comfort sensation than the conventional convection heater with a 670 W capacity, with an energy saving of about 56.7%. From the analytical results, it is found that distributing the radiant panel heater inside the office room, one on the wall facing the window and the other on the wall close to the window, provides the best operative temperature distribution within the room.

  10. Integrated application of combined cooling, heating and power poly-generation PV radiant panel system of zero energy buildings

    Yin, Baoquan

    2018-02-01

    A new type of combined cooling, heating and power of photovoltaic radiant panel (PV/R) module was proposed, and applied in the zero energy buildings in this paper. The energy system of this building is composed of PV/R module, low temperature difference terminal, energy storage, multi-source heat pump, energy balance control system. Radiant panel is attached on the backside of the PV module for cooling the PV, which is called PV/R module. During the daytime, the PV module was cooled down with the radiant panel, as the temperature coefficient influence, the power efficiency was increased by 8% to 14%, the radiant panel solar heat collecting efficiency was about 45%. Through the nocturnal radiant cooling, the PV/R cooling capacity could be 50 W/m2. For the multifunction energy device, the system shows the versatility during the heating, cooling and power used of building utilization all year round.

  11. Influence of increment thickness on radiant energy and microhardness of bulk-fill resin composites.

    Karacolak, Gamze; Turkun, L Sebnem; Boyacioglu, Hayal; Ferracane, Jack L

    2018-03-30

    Determining the energy transferred at the bottom of eleven bulk-fill resin composites, comparing top and bottom microhardness's and evaluating the correlation between microhardness and radiant energy were aimed. Samples were placed over the bottom sensor of a visible light transmission spectrophotometer and polymerized for 20 s. The bottom and top Knoop microhardness were measured. Paired t-test and correlation analysis were used for statistics (p≤0.05). In all groups, the bottom radiant energy decreased significantly with increasing thickness. For groups of Aura 2 mm, X-tra Fil 2 and 4 mm, SDR 2 and 4 mm, X-tra Base 2 mm no significant difference was found between top and bottom microhardness. For the bottom levels of Aura, X-tra Fil, Filtek Bulk-Fill Posterior, SDR, X-tra Base groups no significant difference was found between the microhardness's of 2 and 4 mm thicknesses. For X-tra Fil, Tetric Evo Ceram Bulk-Fill, Filtek Bulk-Fill Flowable and Z100 groups radiant energy affected positively the microhardness.

  12. Effects of Floor Covering Resistance of a Radiant Floor on System Energy and Exergy Performances

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    Floor covering resistance (material and thickness) can be influenced by subjective choices (architectural design, interior design, texture, etc.) with significant effects on the performance of a radiant heating and cooling system. To study the effects of floor covering resistance on system...... performance, a water-based radiant floor heating and cooling system (dry, wooden construction) was considered to be coupled to an air-to-water heat pump, and the effects of varying floor covering resistances (0.05 m2K/W, 0.09 m2K/W and 0.15 m2K/W) on system performance were analyzed in terms of energy...... and exergy. In order to achieve the same heating and cooling outputs, higher average water temperatures are required in the heating mode (and lower temperatures in the cooling mode) with increasing floor covering resistance. These temperature requirements decrease the heat pump’s performance (lower...

  13. Radiant Research. Institute for Energy Technology 1948-98

    Njoelstad, Olav

    1999-01-01

    Institutt for Atomenergi (IFA), or Institute for Atomic Energy, at Kjeller, Norway, was founded in 1948. The history of the institute as given in this book was published in 1999 on the occasion of the institute's 50th anniversary. The scope of the institute was to do research and development as a foundation for peaceful application of nuclear energy and radioactive substances in Norway. The book tells the story of how Norway in 1951 became the first country after the four superpowers and Canada to have its own research reactor. After the completion of the reactor, the institute experienced a long and successful period and became the biggest scientific and technological research institute in Norway. Three more reactors were built, one in Halden and two at Kjeller. Plans were developed to build nuclear powered ships and nuclear power stations. It became clear, however, in the 1970s, that there was no longer political support for nuclear power in Norway, and it was necessary for the institute to change its research profile. In 1980, the institute changed its name to Institutt for energiteknikk (IFE), or Institute for energy technology, to signal the broadened scope. The book describes this painful but successful readjustment and shows how IFE in the 1980s and 1990s succeeded in using its special competence from the nuclear field to establish special competence in new research fields with great commercial potential

  14. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    Le Dréau, Jérôme

    is based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam...... losses, and an air-based terminal might be more energy-efficient than a radiant terminal (in terms of delivered energy). Regarding comfort, a similar global level has been observed for the radiant and air-based terminals in both numerical and experimental investigations. But the different terminals did...... not achieve the same uniformity in space. The active chilled beam theoretically achieves the most uniform comfort conditions (when disregarding the risk of draught), followed by the radiant ceiling. The least uniform conditions were obtained with the cooled floor due to large differences between the sitting...

  15. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    Le Dréau, Jérôme

    Heating and cooling terminals can be classified in two main categories: convective terminals (e.g air conditioning, active chilled beam, fan coil) and radiant terminals. The two terminals have different modes of heat transfer: the first one is mainly based on convection, whereas the second one...... is based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam...... losses, and an air-based terminal might be more energy-efficient than a radiant terminal (in terms of delivered energy). Regarding comfort, a similar global level has been observed for the radiant and air-based terminals in both numerical and experimental investigations. But the different terminals did...

  16. Solar–terrestrial radiant-energy regimes and temperature anomalies of natural and artificial turfs

    Jim, C.Y.

    2016-01-01

    Highlights: • Solar and terrestrial radian energy regimes affect temperature response of sports turfs. • Adjacent natural and artificial turfs were monitored with replications on sunny days. • Artificial turf has meager albedo, low specific heat and moisture to augment warming. • Artificial turf surface and substrate reach 70 °C but cool down effectively at night. • Artificial turf may induce heat stress on athletes in hot summer afternoon. - Abstract: Artificial turf can develop unusually high surface temperature on hot sunny days. Solar and terrestrial radiant energy regimes as key determinants of thermal performance deserve detailed investigation. This study evaluated six components of the radiant-energy environment of a natural turf (NT) and a contiguous artificial turf (AT) sports fields in Hong Kong: direct solar, reflected solar, net solar, sky thermal, ground thermal, and net thermal. Temperature was monitored at five positions: air at 150 cm, 50 cm and 15 cm height, turf surface, and substrate. The experiment included four replications, namely two summer sunny days, and two duplicated instrument sets at each turf site. The two sites reacted very differently to the same intense daily sum of solar radiation input of 23.70 MW m −2 with 9 h of bright sunshine (>120 W m −2 ), and daily sum of sky thermal radiation input of 38.59 MW m −2 . The maximum direct solar radiation reached 976.1 W m −2 at 1245 h. NT albedo of 0.23 vis-à-vis AT of merely 0.073, and higher moisture content and specific heat of NT materials, presented critical differences. The hydrophobic and generally dry plastic (polyethylene) pile-fibers and black rubber-granule infill materials have low specific heat. Intense incoming shortwave and longwave radiation absorbed readily by AT materials raised turf surface temperature to 70.2 °C and substrate 69.3 °C, in comparison with <40 °C at NT. A cascading warming effect was triggered, beginning with low albedo, high net solar

  17. Clouds and the Earth's Radiant Energy System (CERES) Data Products for Climate Research

    Kato, Seiji; Loeb, Norman G.; Rutan, David A.; Rose, Fred G.

    2015-01-01

    NASA's Clouds and the Earth's Radiant Energy System (CERES) project integrates CERES, Moderate Resolution Imaging Spectroradiometer (MODIS), and geostationary satellite observations to provide top-of-atmosphere (TOA) irradiances derived from broadband radiance observations by CERES instruments. It also uses snow cover and sea ice extent retrieved from microwave instruments as well as thermodynamic variables from reanalysis. In addition, these variables are used for surface and atmospheric irradiance computations. The CERES project provides TOA, surface, and atmospheric irradiances in various spatial and temporal resolutions. These data sets are for climate research and evaluation of climate models. Long-term observations are required to understand how the Earth system responds to radiative forcing. A simple model is used to estimate the time to detect trends in TOA reflected shortwave and emitted longwave irradiances.

  18. Numerical study of influence of different dispersed components of crystal cloud on transmission of radiant energy

    Shefer, Olga

    2017-11-01

    The calculated results of the transmission of visible and infrared radiation by an atmosphere layer involving ensembles of large preferentially oriented crystals and spherical particles are presented. To calculate extinction characteristics, the physical optics method and the Mie theory are applied. Among all atmospheric particles, both the small particles that are commensurable with the wavelength of the incident radiation and the large plates and the columns are distinguished by the most pronounced dependence of the transmission on spectra of radiant energy. The work illustrates features of influence of parameters of the particle size distribution, particle aspect ratios, orientation and particle refractive index, also polarization state of the incident radiation on the transmission. The predominant effect of the plates on the wavelength dependence of the transmission is shown. A separated and cooperative contributes of the large plates and the small volume shape particles to the common transmission by medium are considered.

  19. The Influence of a Radiant Panel System with Integrated Phase Change Material on Energy Use and Thermal Indoor Environment

    Nielsen, Lin Flemming; Bourdakis, Eleftherios; Kazanci, Ongun Berk

    2018-01-01

    This study examined the effect on energy use and thermal comfort when combining microencapsulated phase change material (PCM) with radiant ceiling panels in a two-person office. The performance of the system was studied during the cooling season in the climates of Copenhagen, Denmark, and Rome...

  20. Extinction of radiant energy by large atmospheric crystals with different shapes

    Shefer, Olga

    2016-01-01

    The calculated results of extinction characteristics of visible and infrared radiation for large semi-transparent crystals are obtained by hybrid technique, which is a combination of the geometric optics method and the physical optics method. Energy and polarization characteristics of the radiation extinction in terms of the elements of the extinction matrix for individual large crystals and ensemble of crystals are discussed. Influences of particle shapes, aspect ratios, parameters of size distribution, complex refractive index, orientation of crystals, wavelength, and the polarization state of an incident radiation on the extinction are illustrated. It is shown that the most expressive and stable features of energy and polarization characteristics of the extinction are observed in the midinfrared region, despite the fact that the ice particles significantly absorb the radiant energy of this spectrum. It is demonstrated that the polarized extinction characteristics can reach several tens of percent at IR wavelengths. For the large crystals, the conditions of occurrence of the spectral behavior of the extinction coefficient in the visible, near-IR, and mid-IR wavelength ranges are determined. - Highlights: • Method of physical optics is used at coherent sum of diffracted and refracted fields. • The extinction characteristics in terms of elements of extinction matrix are obtained. • Influence of shapes and sizes of large particles on the extinction is evaluated. • Conditions of occurrence of extinction features are determined.

  1. Clouds and Earth Radiant Energy System (CERES), a Review: Past, Present and Future

    Smith, G. L.; Priestley, K. J.; Loeb, N. G.; Wielicki, B. A.; Charlock, T. P.; Minnis, P.; Doelling, D. R.; Rutan, D. A.

    2011-01-01

    The Clouds and Earth Radiant Energy System (CERES) project s objectives are to measure the reflected solar radiance (shortwave) and Earth-emitted (longwave) radiances and from these measurements to compute the shortwave and longwave radiation fluxes at the top of the atmosphere (TOA) and the surface and radiation divergence within the atmosphere. The fluxes at TOA are to be retrieved to an accuracy of 2%. Improved bidirectional reflectance distribution functions (BRDFs) have been developed to compute the fluxes at TOA from the measured radiances with errors reduced from ERBE by a factor of two or more. Instruments aboard the Terra and Aqua spacecraft provide sampling at four local times. In order to further reduce temporal sampling errors, data are used from the geostationary meteorological satellites to account for changes of scenes between observations by the CERES radiometers. A validation protocol including in-flight calibrations and comparisons of measurements has reduced the instrument errors to less than 1%. The data are processed through three editions. The first edition provides a timely flow of data to investigators and the third edition provides data products as accurate as possible with resources available. A suite of cloud properties retrieved from the MODerate-resolution Imaging Spectroradiometer (MODIS) by the CERES team is used to identify the cloud properties for each pixel in order to select the BRDF for each pixel so as to compute radiation fluxes from radiances. Also, the cloud information is used to compute radiation at the surface and through the atmosphere and to facilitate study of the relationship between clouds and the radiation budget. The data products from CERES include, in addition to the reflected solar radiation and Earth emitted radiation fluxes at TOA, the upward and downward shortwave and longwave radiation fluxes at the surface and at various levels in the atmosphere. Also at the surface the photosynthetically active radiation

  2. Climate Model Evaluation using New Datasets from the Clouds and the Earth's Radiant Energy System (CERES)

    Loeb, Norman G.; Wielicki, Bruce A.; Doelling, David R.

    2008-01-01

    There are some in the science community who believe that the response of the climate system to anthropogenic radiative forcing is unpredictable and we should therefore call off the quest . The key limitation in climate predictability is associated with cloud feedback. Narrowing the uncertainty in cloud feedback (and therefore climate sensitivity) requires optimal use of the best available observations to evaluate and improve climate model processes and constrain climate model simulations over longer time scales. The Clouds and the Earth s Radiant Energy System (CERES) is a satellite-based program that provides global cloud, aerosol and radiative flux observations for improving our understanding of cloud-aerosol-radiation feedbacks in the Earth s climate system. CERES is the successor to the Earth Radiation Budget Experiment (ERBE), which has widely been used to evaluate climate models both at short time scales (e.g., process studies) and at decadal time scales. A CERES instrument flew on the TRMM satellite and captured the dramatic 1998 El Nino, and four other CERES instruments are currently flying aboard the Terra and Aqua platforms. Plans are underway to fly the remaining copy of CERES on the upcoming NPP spacecraft (mid-2010 launch date). Every aspect of CERES represents a significant improvement over ERBE. While both CERES and ERBE measure broadband radiation, CERES calibration is a factor of 2 better than ERBE. In order to improve the characterization of clouds and aerosols within a CERES footprint, we use coincident higher-resolution imager observations (VIRS, MODIS or VIIRS) to provide a consistent cloud-aerosol-radiation dataset at climate accuracy. Improved radiative fluxes are obtained by using new CERES-derived Angular Distribution Models (ADMs) for converting measured radiances to fluxes. CERES radiative fluxes are a factor of 2 more accurate than ERBE overall, but the improvement by cloud type and at high latitudes can be as high as a factor of 5

  3. Radiant Energy Measurements from a Scaled Jet Engine Axisymmetric Exhaust Nozzle for a Baseline Code Validation Case

    Baumeister, Joseph F.

    1994-01-01

    A non-flowing, electrically heated test rig was developed to verify computer codes that calculate radiant energy propagation from nozzle geometries that represent aircraft propulsion nozzle systems. Since there are a variety of analysis tools used to evaluate thermal radiation propagation from partially enclosed nozzle surfaces, an experimental benchmark test case was developed for code comparison. This paper briefly describes the nozzle test rig and the developed analytical nozzle geometry used to compare the experimental and predicted thermal radiation results. A major objective of this effort was to make available the experimental results and the analytical model in a format to facilitate conversion to existing computer code formats. For code validation purposes this nozzle geometry represents one validation case for one set of analysis conditions. Since each computer code has advantages and disadvantages based on scope, requirements, and desired accuracy, the usefulness of this single nozzle baseline validation case can be limited for some code comparisons.

  4. Phantom energy accretion onto black holes in a cyclic universe

    Sun Chengyi

    2008-01-01

    Black holes pose a serious problem in cyclic or oscillating cosmology. It is speculated that, in the cyclic universe with phantom turnarounds, black holes will be torn apart by phantom energy prior to turnaround before they can create any problems. In this paper, using the mechanism of phantom accretion onto black holes, we find that black holes do not disappear before phantom turnaround. But the remanent black holes will not cause any problems due to Hawking evaporation.

  5. Numerical Modeling of Conjugate Thermogravitational Convection in a Closed System with a Radiant Energy Source in Conditions of Convective-Radiative Heat Exchange at the External Boundary

    Nee Alexander

    2016-01-01

    Full Text Available Mathematical modeling of conjugate natural convection in a closed rectangular cavity with a radiant energy source in conditions of convective-radiative heat exchange at the external boundary was conducted. The radiant energy distribution was set by the Lambert’s law. Conduction and convection processes analysis showed that the air masses flow pattern is modified slightly over the time. The temperature increases in the gas cavity, despite the heat removal from the one of the external boundary. According to the results of the integral heat transfer analysis were established that the average Nusselt number (Nuav increasing occurs up to τ = 200 (dimensionless time. Further Nuav has changed insignificantly due to the temperature field equalization near the interfaces “gas – wall”.

  6. Modeling the transmitted and stored energy in multilayer protective clothing under low-level radiant exposure

    Su, Yun; He, Jiazhen; Li, Jun

    2016-01-01

    Highlights: • A numerical model from heating source to skin tissues through multilayer fabric system is developed. • The numerical model is comprehensively validated with experimental data. • The model is used to investigate the relationship between the transmitted and stored energy and the influencing factors. - Abstract: A finite difference model was introduced to simulate the transmitted and stored energy in firefighters' protective clothing exposed to low-level thermal radiation. The model domain consists of a three-layer fire-resistant fabric system (outer shell, moisture barrier, and thermal liner), the human skin, and the air gap between clothing and the skin. The model accounted for the relationship between the transmitted heat during the exposure and the discharged heat during the cooling-down period. The numerical model predictions were compared with experimental data. Additionally, the parameters that affect the transmitted and stored energy of protective clothing were investigated. The results demonstrate that for the typical multilayer firefighter protective clothing, the transmitted heat during exposure and the discharged heat after exposure totally determine the skin burn under low-level heat exposure, especially for third-degree skin burns. The findings obtained in this study can be used to engineer fabric systems that provide better protection for the stored thermal burn.

  7. Radiant energy dissipation during final storage of high-level radioactive waste in rock salt

    Ramthun, H.

    1981-08-01

    A final disposal concept is assumed where the high-active waste from 1400 t of uranium, remaining after conditioning, is solidified in borosilicate glass and distributed in 1.760 waste casks. These containers 1.2 m in height and 0.3 m in diameter are to be buried 10 years after the fuel is removed from the reactor in the 300 m deep boreholes of a salt dome. For this design the mean absorbed dose rates are calculated in the glass die (3.9 Gy/s), the steel mantle (0.26 Gy/s) and in the salt rock (0.12 Gy/s at a distance of 1 cm and 0.034 Gy/s at a distance of 9 cm from the container surface) valid at the beginning of disposal. The risk involved with these amounts of stored lattice energy is shortly discussed. (orig.) [de

  8. A determination of the absolute radiant energy of a Robertson-Berger meter sunburn unit

    DeLuisi, John J.; Harris, Joyce M.

    Data from a Robertson-Berger (RB) sunburn meter were compared with concurrent measurements obtained with an ultraviolet double monochromator (DM), and the absolute energy of one sunburn unit measured by the RB-meter was determined. It was found that at a solar zenith angle of 30° one sunburn unit (SU) is equivalent to 35 ± 4 mJ cm -2, and at a solar zenith angle of 69°, one SU is equivalent to 20 ± 2 mJ cm -2 (relative to a wavelength of 297 nm), where the rate of change is non-linear. The deviation is due to the different response functions of the RB-meter and the DM system used to simulate the response of human skin to the incident u.v. solar spectrum. The average growth rate of the deviation with increasing solar zenith angle was found to be 1.2% per degree between solar zenith angles 30 and 50° and 2.3% per degree between solar zenith angles 50 and 70°. The deviations of response with solar zenith angle were found to be consistent with reported RB-meter characteristics.

  9. Mathematical modelling, variational formulation and numerical simulation of the energy transfer process in a gray plate in the presence of a thermal radiant source

    Gama, R.M.S. da.

    1992-05-01

    The energy transfer process in a gray, opaque and rigid plate, heated by an external thermal radiant source, is considered. The source is regarded as a spherical black body, with radius a (a → 0) and uniform heat generation, placed above the plate. A mathematical model is constructed, assuming that the heat transfer from/to the plate takes place by thermal radiation. The obtained mathematical model is nonlinear. Is presented a suitable variational principle which is employed for simulating some particular cases. (author)

  10. Radiant cooling of an enclosure

    Chebihi, Abdeslam; Byun, Ki-Hong; Wen Jin; Smith, Theodore F.

    2006-01-01

    The purpose of this study is to analyze the potential for radiant cooling using the atmospheric sky window and to evaluate the desired characteristics of a radiant cooling material (RCM) applied to the ceiling window of a three-dimensional enclosure. The thermal characteristics of the system are governed by the geometry, ambient temperature, sky radiative temperature, amount of solar energy and its direction, heat transfer modes, wall radiative properties, and radiative properties of the RCMs. A semi-gray band analysis is utilized for the solar and infrared bands. The radiosity/irradiation method is used in each band to evaluate the radiant exchanges in the enclosure. The radiative properties for the RCM are varied in a parametric study to identify the desired properties of RCMs. For performance simulation of real RCMs, the radiative properties are calculated from spectral data. The desired solar property is a high reflectance for both opaque and semi-transparent RCMs. For a semi-transparent RCM, a low value of the solar transmittance is preferred. The desired infrared property is a high emittance for an opaque RCM. For a semi-transparent RCM, a high infrared transmittance is desired, and the emittance should be greater than zero

  11. Radiant heating of petroleum reservoirs; Aquecimento radiante de reservatorios petroliferos

    Sidrim, Fernando A.C.

    1990-12-31

    This work presents a proposal of a simplified model for the enhanced oil recovery process through radiant heating of oil reservoirs. The resulting continuity, energy and motion equations were solved analytically for the prediction of the increase in well flow rates. The heat loss to adjacent formations and the necessary for the establishment of the temperature profile,which are transient terms of energy equation, have been neglected. Also, no temperature gradient in the axial direction has been modelled as a cylindrical wave propagating in a loss medium. It is concluded that: the inclusion of a radial conduction term in the energy equation led to higher flow rates than the ones predicted by the literature existing solution; if the absorption coefficient is too large, it is profitable to dry the reservoir around the well bore; the transient terms in the energy equation are significant for extended periods of well production. 47 refs., 18 figs., 4 tabs.

  12. Radiant Floor Cooling Systems

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  13. Clouds and the Earth's Radiant Energy System (CERES) algorithm theoretical basis document. volume 2; Geolocation, calibration, and ERBE-like analyses (subsystems 1-3)

    Wielicki, B. A. (Principal Investigator); Barkstrom, B. R. (Principal Investigator); Charlock, T. P.; Baum, B. A.; Green, R. N.; Minnis, P.; Smith, G. L.; Coakley, J. A.; Randall, D. R.; Lee, R. B., III

    1995-01-01

    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 2 details the techniques used to geolocate and calibrate the CERES scanning radiometer measurements of shortwave and longwave radiance to invert the radiances to top-of-the-atmosphere (TOA) and surface fluxes following the Earth Radiation Budget Experiment (ERBE) approach, and to average the fluxes over various time and spatial scales to produce an ERBE-like product. Spacecraft ephemeris and sensor telemetry are used with calibration coefficients to produce a chronologically ordered data product called bidirectional scan (BDS) radiances. A spatially organized instrument Earth scan product is developed for the cloud-processing subsystem. The ERBE-like inversion subsystem converts BDS radiances to unfiltered instantaneous TOA and surface fluxes. The TOA fluxes are determined by using established ERBE techniques. Hourly TOA fluxes are computed from the instantaneous values by using ERBE methods. Hourly surface fluxes are estimated from TOA fluxes by using simple parameterizations based on recent research. The averaging process produces daily, monthly-hourly, and monthly means of TOA and surface fluxes at various scales. This product provides a continuation of the ERBE record.

  14. Thermal to Electric Energy Conversion for Cyclic Heat Loads

    Whitehead, Benjamin E.

    Today, we find cyclic heat loads almost everywhere. When we drive our cars, the engines heat up while we are driving and cool while parked. Processors heat while the computer is in use at the office and cool when idle at night. The sun heats the earth during the day and the earth radiates that heat into space at night. With modern technology, we have access to a number of methods to take that heat and convert it into electricity, but, before selecting one, we need to identify the parameters that inform decision making. The majority of the parameters for most systems include duty cycle, total cost, weight, size, thermal efficiency, and electrical efficiency. However, the importance of each of these will depend on the application. Size and weight take priority in a handheld device, while efficiency dominates in a power plant, and duty cycle is likely to dominate in highly demanding heat pump applications. Over the past decade, developments in semiconductor technology has led to the creation of the thermoelectric generator. With no moving parts and a nearly endlessly scalable nature, these generators present interesting opportunities for taking advantage of any source of waste heat. However, these generators are typically only capable of 5-8% efficiency from conversion of thermal to electric energy. [1]. Similarly, advancements in photovoltaic cells has led to the development of thermophotovoltaics. By heating an emitter to a temperature so it radiates light, a thermophotovoltaic cell then converts that light into electricity. By selecting materials that emit light in the optimal ranges of the appropriate photovoltaic cells, thermophotovoltaic systems can potentially exceed the current maximum of 10% efficiency. [2]. By pressurizing certain metal powders with hydrogen, hydrogen can be bound to the metal, creating a metal hydride, from which hydrogen can be later re-extracted under the correct pressure and temperature conditions. Since this hydriding reaction is

  15. Influence of radiant energy exchange on the determination of convective heat transfer rates to Orbiter leeside surfaces during entry

    Throckmorton, D. A.

    1982-01-01

    Temperatures measured at the aerodynamic surface of the Orbiter's thermal protection system (TPS), and calorimeter measurements, are used to determine heating rates to the TPS surface during atmospheric entry. On the Orbiter leeside, where convective heating rates are low, it is possible that a significant portion of the total energy input may result from solar radiation, and for the wing, cross radiation from the hot (relatively) Orbiter fuselage. In order to account for the potential impact of these sources, values of solar- and cross-radiation heat transfer are computed, based upon vehicle trajectory and attitude information and measured surface temperatures. Leeside heat-transfer data from the STS-2 mission are presented, and the significance of solar radiation and fuselage-to-wing cross-radiation contributions to total energy input to Orbiter leeside surfaces is assessed.

  16. PERFORMANCE EVALUATION OF CEILING RADIANT COOLING SYSTEM IN COMPOSITE CLIMATE

    Sharma, Anuj [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2015-01-01

    Radiant cooling systems are proving to be an energy efficient solution due to higher thermal capacity of cooling fluid especially for the buildings that require individual zone controls and where the latent loads are moderate. The Conventional air conditioners work at very low temperature i.e.5-8 c (refrigerant evaporator inlet) while the radiant cooling systems, also referred as high temperature cooling system, work at high temperatures i.e. 14-18 c. The radiant cooling systems can maintain lower MRT (Mean Radiant Temperature) as ceiling panels maintain uniform temperature gradient inside room and provide higher human comfort. The radiant cooling systems are relatively new systems and their operation and energy savings potential are not quantified for a large number of buildings and operational parameters. Moreover, there are only limited numbers of whole building simulation studies have been carried out for these systems to have a full confidence in the capability of modelling tools to simulate these systems and predict the impact of various operating parameters. Theoretically, savings achieve due to higher temperature set point of chilled water, which reduces chiller-running time. However, conventional air conditioner runs continuously to maintain requisite temperature. In this paper, experimental study for performance evaluation of radiant cooling system carried out on system installed at Malaviya National Institute of Technology Jaipur. This paper quantifies the energy savings opportunities and effective temperature by radiant cooling system at different chilled water flow rates and temperature range. The data collected/ analysed through experimental study will used for calibration and validation of system model of building prepared in building performance simulation software. This validated model used for exploring optimized combinations of key parameters for composite climate. These optimized combinations will used in formulation of radiant cooling system

  17. Radiant absorption characteristics of corrugated curved tubes

    Đorđević Milan Lj.

    2017-01-01

    Full Text Available The utilization of modern paraboloidal concentrators for conversion of solar radiation into heat energy requires the development and implementation of compact and efficient heat absorbers. Accurate estimation of geometry influence on absorption characteristics of receiver tubes is an important step in this process. This paper deals with absorption characteristics of heat absorber made of spirally coiled tubes with transverse circular corrugations. Detailed 3-D surface-to-surface Hemicube method was applied to compare radiation performances of corrugated and smooth curved tubes. The numerical results were obtained by varying the tube curvature ratio and incident radiant heat flux intensity. The details of absorption efficiency of corrugated tubes and the effect of curvature on absorption properties for both corrugated and smooth tubes were presented. The results may have significance to further analysis of highly efficient heat absorbers exposed to concentrated radiant heating. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 42006

  18. Radiant exchange in partially specular architectural environments

    Beamer, C. Walter; Muehleisen, Ralph T.

    2003-10-01

    The radiant exchange method, also known as radiosity, was originally developed for thermal radiative heat transfer applications. Later it was used to model architectural lighting systems, and more recently it has been extended to model acoustic systems. While there are subtle differences in these applications, the basic method is based on solving a system of energy balance equations, and it is best applied to spaces with mainly diffuse reflecting surfaces. The obvious drawback to this method is that it is based around the assumption that all surfaces in the system are diffuse reflectors. Because almost all architectural systems have at least some partially specular reflecting surfaces in the system it is important to extend the radiant exchange method to deal with this type of surface reflection. [Work supported by NSF.

  19. Thermal model of attic systems with radiant barriers

    Wilkes, K.E.

    1991-07-01

    This report summarizes the first phase of a project to model the thermal performance of radiant barriers. The objective of this phase of the project was to develop a refined model for the thermal performance of residential house attics, with and without radiant barriers, and to verify the model by comparing its predictions against selected existing experimental thermal performance data. Models for the thermal performance of attics with and without radiant barriers have been developed and implemented on an IBM PC/AT computer. The validity of the models has been tested by comparing their predictions with ceiling heat fluxes measured in a number of laboratory and field experiments on attics with and without radiant barriers. Cumulative heat flows predicted by the models were usually within about 5 to 10 percent of measured values. In future phases of the project, the models for attic/radiant barrier performance will be coupled with a whole-house model and further comparisons with experimental data will be made. Following this, the models will be utilized to provide an initial assessment of the energy savings potential of radiant barriers in various configurations and under various climatic conditions. 38 refs., 14 figs., 22 tabs.

  20. A full-scale experimental set-up for assessing the energy performance of radiant wall and active chilled beam for cooling buildings

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    in decreasing the cooling need of the radiant wall compared to the active chilled beam. It has also been observed that the type and repartition of heat load have an influence on the cooling demand. Regarding the comfort level, both terminals met the general requirements, except at high solar heat gains......: overheating has been observed due to the absence of solar shading and the limited cooling capacity of the terminals. No local discomfort has been observed although some segments of the thermal manikin were slightly colder....

  1. Performance evaluation of radiant cooling system application on a university building in Indonesia

    Satrio, Pujo; Sholahudin, S.; Nasruddin

    2017-03-01

    The paper describes a study developed to estimate the energy savings potential of a radiant cooling system installed in an institutional building in Indonesia. The simulations were carried out using IESVE to evaluate thermal performance and energy consumption The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption and temperature distribution to determine the proportional energy savings and occupant comfort under different systems. The result was radiant cooling which integrated with a Dedicated Outside Air System (DOAS) could make 41,84% energy savings compared to the installed cooling system. The Computational Fluid Dynamics (CFD) simulation showed that a radiant system integrated with DOAS provides superior human comfort than a radiant system integrated with Variable Air Volume (VAV). Percentage People Dissatisfied was kept below 10% using the proposed system.

  2. Radiant recuperator modelling and design

    Knežević Suzana D.

    2017-01-01

    Full Text Available Recuperators are frequently used in glass production and metallurgical processes to preheat combustion air by heat exchange with high temperature flue gases. Mass and energy balances of a 15 m high, concurrent radiant recuperator used in a glass fiber production process are given. The balances are used: for validation of a cell modeling method that predicts the performance of different recuperator designs, and for finding a simple solution to improve the existing recuperator. Three possible solutions are analyzed: to use the existing recuperator as a countercurrent one, to add an extra cylinder over the existing construction, and to make a system that consists of a central pipe and two concentric annular ducts. In the latter, two air streams flow in opposite directions, whereas air in the inner annular passage flows concurrently or countercurrently to flue gases. Compared with the concurrent recuperator, the countercurrent has only one drawback: the interface temperature is higher at the bottom. The advantages are: lower interface temperature at the top where the material is under maximal load, higher efficiency, and smaller pressure drop. Both concurrent and countercurrent double pipe-in-pipe systems are only slightly more efficient than pure concurrent and countercurrent recuperators, respectively. Their advantages are smaller interface temperatures whereas the disadvantages are their costs and pressure drops. To implement these solutions, the average velocities should be: for flue gas around 5 m/s, for air in the first passage less than 2 m/s, and for air in the second passage more than 25 m/s. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. EE 33027

  3. Radiant Heating and Cooling Systems. Part one

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    The use of radiant heating systems has several thousand years of history.1,2 The early stage of radiant system application was for heating purposes, where hot air from flue gas (cooking, fires) was circulated under floors or in walls. After the introduction of plastic piping water-based radiant...

  4. Theoretical analysis, infrared and structural investigations of energy dissipation in metals under cyclic loading

    Plekhov, O.A.; Saintier, N.; Palin-Luc, T.; Uvarov, S.V.; Naimark, O.B.

    2007-01-01

    The infrared and structural investigations of energy dissipation processes in metals subjected to cyclic loading have given impetus to the development of a new thermodynamic model with the capability of describing the energy balance under plastic deformation. The model is based on the statistical description of the mesodefect ensemble evolution and its influence on the dissipation ability of the material. Constitutive equations have been formulated for plastic and structural strains, which allow us to describe the stored and dissipated parts of energy under plastic flow. Numerical results indicate that theoretical predictions are in good agreement with the experimentally observed temperature data

  5. Radiant floor cooling coupled with dehumidification systems in residential buildings: A simulation-based analysis

    Zarrella, Angelo; De Carli, Michele; Peretti, Clara

    2014-01-01

    Highlights: • The floor radiant cooling in a typical apartment is analyzed. • Dehumidification devices, fan-coil and mechanical ventilation are compared. • The results are analyzed in terms of both thermal comfort and energy consumption. • The energy consumption of the dehumidifiers is higher than that of other systems. • The mechanical ventilation decreases the moisture level better than other systems. - Abstract: The development of radiant cooling has stimulated an interest in new systems based on coupling ventilation with radiant cooling. However, radiant cooling systems may cause condensation to form on an active surface under warm and humid conditions during the cooling season. This phenomenon occurs when surface temperature falls below dew point. To prevent condensation, air humidity needs to be reduced with a dehumidification device or a mechanical ventilation system. There are two main options to achieve this. The first is to use dehumidification devices that reduce humidity, but are not coupled with ventilation, i.e. devices that handle room air and leave air change to infiltrations. The second is to combine a mechanical ventilation system with dehumidifying finned coils. This study analyzes the floor radiant cooling of a typical residential apartment within a multi-storey building in three Italian climate zones by means of a detailed simulation tool. Five systems were compared in terms of both indoor thermal comfort and energy consumption: radiant cooling without dehumidification; radiant cooling with a soft dehumidification device; radiant cooling with a dehumidification device which also supplies sensible cooling; radiant cooling coupled with fan coils; and radiant cooling with a mechanical ventilation system which dehumidifies and cools

  6. Mechanisms of Earth activity forsed by external celestial bodies:energy budjet and nature of cyclicity

    Barkin, Yu. V.; Ferrandiz, J. M.

    2003-04-01

    In given report we discuss tidal and non-tidal mechanisms of forced tectonic (endogenous) activity of the Earth caused by gravitational attraction of the Moon, Sun and the planets. On the base of the classical solution of the problem of elasticity for model of the Earth with concentric mass distribution the evaluations of the tidal energy and power of Earth lunar-solar deformations, including their joint effect, were obtained. Important role of the joint energetic effect of rotational deformation of the Earth with lunar and solar tides was illustrated. Gravitational interaction of the Moon and Sun with non-spherical, non-homogeneous shells of the Earth generates big additional mechanical forces and moments of the interaction of the neighboring shells (rigid core, liquid core, mantle, lithosphere and separate plates). Acting of these forces and moments in the different time scales on the corresponding sells generates cyclic perturbations of the tensional state of the shells, their deformations, small relative translational displacements and small relative rotational oscillations of the shells. In geological period of time it leads to a fundamental tectonic reconstruction of the Earth. These additional forces and moments of the cyclic celestial-mechanical nature produce cyclic deformations of the all layers of the body and organize and control practically all natural processes. The additional force between mantle and core is cyclic and characterized by the wide basis of frequencies typical for orbital motions (of the Sun, Moon and planets), for rotational motion of the Earth, Moon and Sun and for many from observed natural processes. The problem about small relative translatory-rotary motion of the two shells separated by the thin viscous-elastic layer is studied. The differential equations of motion were obtained and have been studied in particular cases (plane motion of system; case of two axisymmetrical interacting shells and oth.) by approximate methods of small

  7. Radiant zone heated particulate filter

    Gonze, Eugene V [Pinckney, MI

    2011-12-27

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  8. Subjective evaluation of different ventilation concepts combined with radiant heating and cooling

    Krajcik, Michal; Tomasi, Roberta; Simone, Angela

    2012-01-01

    Sixteen subjects evaluated the indoor environment in four experiments with different combinations of ventilation and radiant heating/cooling systems. Two test setups simulated a room in a low energy building with a single occupant during winter. The room was equipped either by a ventilation system...... supplying warm air space heating or by a combination of radiant floor heating and mixing ventilation system. Next two test setups simulated an office room with two occupants during summer, ventilated and cooled by a single displacement ventilation system or by a radiant floor cooling combined...

  9. Advanced radiant combustion system. Final report, September 1989--September 1996

    Sullivan, J.D.; Carswell, M.G.; Long, F.S.

    1996-09-01

    Results of the Advanced Radiant Combustion System (ARCS) project are presented in this report. This work was performed by Alzeta Corporation as prime contractor under a contract to the U.S. Department of Energy Office of Industrial Technologies as part of a larger DOE program entitled Research Program for Advanced Combustion Systems. The goals of the Alzeta ARCS project were to (a) Improve the high temperature performance characteristics of porous surface ceramic fiber burners, (b) Develop an Advanced Radiant Combustion System (ARCS) that combines combustion controls with an advanced radiant burner, and (c) Demonstrate the advanced burner and controls in an industrial application. Prior to the start of this project, Alzeta had developed and commercialized a porous surface radiant burner, the Pyrocore{trademark} burner. The product had been commercially available for approximately 5 years and had achieved commercial success in a number of applications ranging from small burners for commercial cooking equipment to large burners for low temperature industrial fluid heating applications. The burner was not recommended for use in applications with process temperatures above 1000{degrees}F, which prevented the burner from being used in intermediate to high temperature processes in the chemical and petroleum refining industries. The interest in increasing the maximum use temperature of the burner was motivated in part by a desire to expand the number of applications that could use the Pyrocore product, but also because many of the fluid sensitive heating applications of interest would benefit from the distributed flux characteristic of porous surface burners. Background information on porous surface radiant burners, and a discussion of advantages that would be provided by an improved product, are presented in Section 2.

  10. Experimental evaluation of an active solar thermoelectric radiant wall system

    Liu, ZhongBing; Zhang, Ling; Gong, GuangCai; Han, TianHe

    2015-01-01

    Highlights: • A novel active solar thermoelectric radiant wall are proposed and tested. • The novel wall can control thermal flux of building envelope by using solar energy. • The novel wall can eliminate building envelop thermal loads and provide cooling capacity for space cooling. • Typical application issues including connection strategies, coupling with PV system etc. are discussed. - Abstract: Active solar thermoelectric radiant wall (ASTRW) system is a new solar wall technology which integrates thermoelectric radiant cooling and photovoltaic (PV) technologies. In ASTRW system, a PV system transfers solar energy directly into electrical energy to power thermoelectric cooling modes. Both the thermoelectric cooling modes and PV system are integrated into one enclosure surface as radiant panel for space cooling and heating. Hence, ASTRW system presents fundamental shift from minimizing building envelope energy losses by optimizing the insulation thickness to a new regime where active solar envelop is designed to eliminate thermal loads and increase the building’s solar gains while providing occupant comfort in all seasons. This article presents an experimental study of an ASTRW system with a dimension of 1580 × 810 mm. Experimental results showed that the inner surface temperature of the ASTRW is 3–8 °C lower than the indoor temperature of the test room, which indicated that the ASTRW system has the ability to control thermal flux of building envelope by using solar energy and reduce the air conditioning system requirements. Based on the optimal operating current of TE modules and the analysis based upon PV modeling theories, the number and type of the electrical connections for the TE modules in ASTRW system are discussed in order to get an excellent performance in the operation of the ASTRW system

  11. Radiant Heat Transfer in Reusable Surface Insulation

    Hughes, T. A.; Linford, R. M. F.; Chmitt, R. J.; Christensen, H. E.

    1973-01-01

    During radiant testing of mullite panels, temperatures in the insulation and support structure exceeded those predicted on the basis of guarded hot plate thermal conductivity tests. Similar results were obtained during arc tunnel tests of mullite specimens. The differences between effective conductivity and guarded hot plate values suggested that radiant transfer through the mullite was occurring. To study the radiant transport, measurements were made of the infrared transmission through various insulating materials and fibers of interest to the shuttle program, using black body sources over the range of 780 to 2000 K. Experimental data were analyzed and scattering coefficients were derived for a variety of materials, fiber diameters, and source temperature.

  12. Determining role of cyclicity in cosmic and natural processes for formation of energy figures in Chinese Classical Zhen Jiu Therapy

    Alexey I. Falev

    2016-11-01

    Full Text Available The article covers the questions of cosmic and natural phenomena, identity, cyclic nature and parallelism of their constant changes. The authors regard it as a starting point for giving definitions to fundamental terms in Canon of Changes (Yi jing which is a methodological basis of Traditional Chinese Medicine (TCM; law of dynamic alternation of Yin and Yang, their cyclic regularity, succession, constancy and symmetry at any level of organization of the being; concept of changes as a function of movement; origin and numerological value of fundamental numerals and characters: the energy images of Canon of Changes; their mutual definition and mutual derivation as well as synchronizing indivisibility.

  13. Consequences of different dietary energy sources during follicular development on subsequent fertility of cyclic gilts.

    Almeida, F R C L; Machado, G S; Borges, A L C C; Rosa, B O; Fontes, D O

    2014-02-01

    The objective of the present study was to investigate the effects of dietary-induced insulin enhancement during the late luteal phase on subsequent fertility of gilts. Fifty-two littermate cyclic gilts were subjected to dietary treatments where two energy sources were tested: corn starch (T1) and soybean oil (T2). The experimental diets were supposed to provide similar amounts of dietary energy, but from different sources. Gilts were fed ad libitum, starting day 8 of the estrous cycle, until the next standing heat. Blood sampling was performed in a subgroup of 20 gilts on days 14 and 21 of the cycle for analyses of glucose and insulin, and after ovulation detection until 18 h after ovulation for progesterone. All gilts were slaughtered on day 28 of pregnancy and the reproductive tracts recovered for further analysis. T1 gilts showed higher postprandial insulin peak on days 14 and 21 and lower glucose levels 4 h after feeding on day 14 (Penergy sources did not affect average daily feed intake, body weight and backfat on day 28 of pregnancy. Estrous cycle length, estrus duration and time of ovulation were not affected by previous nutritional treatments either. T1 gilts showed higher ovulation rates, number of embryos, embryo weight and placental weight (Penergy source during the late luteal and follicular phases of the cycle.

  14. Exergy metrication of radiant panel heating and cooling with heat pumps

    Kilkis, Birol

    2012-01-01

    Highlights: ► Rational Exergy Management Model analytically relates heat pumps and radiant panels. ► Heat pumps driven by wind energy perform better with radiantpanels. ► Better CO 2 mitigation is possible with wind turbine, heat pump, radiant panel combination. ► Energy savings and thermo-mechanical performance are directly linked to CO 2 emissions. - Abstract: Radiant panels are known to be energy efficient sensible heating and cooling systems and a suitable fit for low-exergy buildings. This paper points out the little known fact that this may not necessarily be true unless their low-exergy demand is matched with low-exergy waste and alternative energy resources. In order to further investigate and metricate this condition and shed more light on this issue for different types of energy resources and energy conversion systems coupled to radiant panels, a new engineering metric was developed. Using this metric, which is based on the Rational Exergy Management Model, true potential and benefits of radiant panels coupled to ground-source heat pumps were analyzed. Results provide a new perspective in identifying the actual benefits of heat pump technology in curbing CO 2 emissions and also refer to IEA Annex 49 findings for low-exergy buildings. Case studies regarding different scenarios are compared with a base case, which comprises a radiant panel system connected to a natural gas-fired condensing boiler in heating and a grid power-driven chiller in cooling. Results show that there is a substantial CO 2 emission reduction potential if radiant panels are optimally operated with ground-source heat pumps driven by renewable energy sources, or optimally matched with combined heat and power systems, preferably running on alternative fuels.

  15. Development of a Numerical Approach to Simulate Compressed Air Energy Storage Subjected to Cyclic Internal Pressure

    Song-Hun Chong

    2017-10-01

    Full Text Available This paper analyzes the long-term response of unlined energy storage located at shallow depth to improve the distance between a wind farm and storage. The numerical approach follows the hybrid scheme that combined a mechanical constitutive model to extract stress and strains at the first cycle and polynomial-type strain accumulation functions to track the progressive plastic deformation. In particular, the strain function includes the fundamental features that requires simulating the long-term response of geomaterials: volumetric strain (terminal void ratio and shear strain (shakedown and ratcheting, the strain accumulation rate, and stress obliquity. The model is tested with a triaxial strain boundary condition under different stress obliquities. The unlined storage subjected to cyclic internal stress is simulated with different storage geometries and stress amplitudes that play a crucial role in estimating the long-term mechanical stability of underground storage. The simulations present the evolution of ground surface, yet their incremental rate approaches towards a terminal void ratio. With regular and smooth displacement fields for the large number of cycles, the inflection point is estimated with the previous surface settlement model.

  16. Influence of negative energy balance on cyclicity and fertility in the high producing dairy cow.

    Wathes, D C; Fenwick, M; Cheng, Z; Bourne, N; Llewellyn, S; Morris, D G; Kenny, D; Murphy, J; Fitzpatrick, R

    2007-09-01

    The peripartum period is of critical importance to subsequent health and fertility. Most cows enter a state of negative energy balance (NEB) associated with many metabolic changes which have carry over effects on the resumption and normality of estrous cyclicity and the success of subsequent inseminations. A dataset on 500 lactations explored the relationships between metabolic traits measured before and after calving with fertility. Stepwise multiple regression analysis showed that longer calving to conception intervals were associated with altered profiles of IGF-I, urea and body condition score. These relationships between metabolic profiles and fertility differed between first lactation cows (which are still growing but produce less milk) and mature animals. Early postpartum the liver undergoes extensive biochemical and morphological modifications to adapt to NEB, the uterus is extensively remodeled and must clear bacterial infections, and the ovary must resume ovulatory cycles. RNA isolated from liver and uterine tissues harvested 2 weeks postpartum from cows in mild (MNEB) and severe (SNEB) energy balance was used to screen the Affymetrix 23K bovine microarray. In liver, SNEB resulted in differential expression of key genes involved in lipid catabolism, gluconeogenesis, and the synthesis and stability of IGF-I. This was accompanied by reduced systemic concentrations of IGF-I which is likely to impact on ovarian function and early embryo development. Within endometrium, cows in SNEB showed histological evidence for higher levels of inflammation and the microarray analysis identified groups of differentially expressed genes involved in tissue remodeling and immune response. This may delay uterine repair after calving, likely contributing to the observed reduction in fertility.

  17. Ten questions about radiant heating and cooling systems

    Rhee, Kyu-Nam; Olesen, Bjarne W.; Kim, Kwang Woo

    2017-01-01

    studies on RHC systems in terms of comfort, heat transfer analysis, energy simulation, control strategy, system configurations and so on. Many studies have demonstrated that the RHC system is a good solution to improve indoor environmental quality while reducing building energy consumption for heating......Radiant heating and cooling (RHC) systems are being increasingly applied not only in residential but also in non-residential buildings such as commercial buildings, education facilities, and even large scale buildings such as airport terminals. Furthermore, with the combined ventilation system used...

  18. Airflow and Heat Transfer in the Slot-Vented Room with Radiant Floor Heating Unit

    Xiang-Long Liu

    2012-01-01

    Full Text Available Radiant floor heating has received increasing attention due to its diverse advantages, especially the energy saving as compared to the conventional dwelling heating system. This paper presents a numerical investigation of airflow and heat transfer in the slot-vented room with the radiant floor heating unit. Combination of fluid convection and thermal radiation has been implemented through the thermal boundary conditions. Spatial distributions of indoor air temperature and velocity, as well as the heat transfer rates along the radiant floor and the outer wall, have been presented and analyzed covering the domains from complete natural convection to forced convection dominated flows. The numerical results demonstrate that the levels of average temperature in the room with lateral slot-ventilation are higher than those without slot-ventilation, but lower than those in the room with ceiling slot-ventilation. Overall, the slot-ventilation room with radiant floor heating unit could offer better indoor air quality through increasing the indoor air temperature and fresh air exchanging rate simultaneously. Concerning the airborne pollutant transports and moisture condensations, the performance of radiant floor heating unit will be further optimized in our future researches.

  19. Cyclic multiverses

    Marosek, Konrad; Dąbrowski, Mariusz P.; Balcerzak, Adam

    2016-09-01

    Using the idea of regularization of singularities due to the variability of the fundamental constants in cosmology we study the cyclic universe models. We find two models of oscillating and non-singular mass density and pressure (`non-singular' bounce) regularized by varying gravitational constant G despite the scale factor evolution is oscillating and having sharp turning points (`singular' bounce). Both violating (big-bang) and non-violating (phantom) null energy condition models appear. Then, we extend this idea on to the multiverse containing cyclic individual universes with either growing or decreasing entropy though leaving the net entropy constant. In order to get an insight into the key idea, we consider the doubleverse with the same geometrical evolution of the two `parallel' universes with their physical evolution [physical coupling constants c(t) and G(t)] being different. An interesting point is that there is a possibility to exchange the universes at the point of maximum expansion - the fact which was already noticed in quantum cosmology. Similar scenario is also possible within the framework of Brans-Dicke theory where varying G(t) is replaced by the dynamical Brans-Dicke field φ(t) though these theories are slightly different.

  20. Numerical Model and Experimental Analysis of the Thermal Behavior of Electric Radiant Heating Panels

    Giovanni Ferrarini

    2018-01-01

    Full Text Available Electric radiant heating panels are frequently selected during the design phase of residential and industrial heating systems, especially for retrofit of existing buildings, as an alternative to other common heating systems, such as radiators or air conditioners. The possibility of saving living and working space and the ease of installation are the main advantages of electric radiant solutions. This paper investigates the thermal performance of a typical electric radiant panel. A climatic room was equipped with temperature sensors and heat flow meters to perform a steady state experimental analysis. For the dynamic behavior, a mathematical model was created and compared to a thermographic measurement procedure. The results showed for the steady state an efficiency of energy transformation close to one, while in a transient thermal regime the time constant to reach the steady state condition was slightly faster than the typical ones of hydronic systems.

  1. Electric radiant heating : a hot profitable idea

    Lemieux, G. [Britech Corp., Toronto, ON (Canada)

    2006-09-15

    Due to the high cost of heating oil, natural gas and propane, floor mounted radiant heating systems are now proving to be a cost effective method of heating homes. The systems provide evenly distributed heat across the entire floor area. Unlike hydronic floor systems, radiant floor systems require no maintenance, and are easy to control because no mechanical rooms or boilers are required. The system is comprised of a series of resistant heating cables, a thermostat, and a solid state relay. The cables are installed in a poured concrete pad. Separate temperature control devices are used to heat individual areas of floorspace. Building automation systems can also control the heating system by using simple ambient air- and floor-mounted sensors in conjunction with relays to energize the heating cables. The cost of thermostats and heating cables to heat a standard 2000 square foot home are estimated at $9000.00, with an additional 64 hours of installation costs. It was noted that the systems may prove to be less costly in the long-term than hydronic systems, which require additional boilers, pumps and water treatments. Electric radiant heating can be an even more cost-effective application when used with thermal storage heating applications that use lower-cost off-peak electricity to generate and store heat in concrete floor slabs or ceramic bricks contained in insulated cabinets. It was concluded that radiant heating systems are a viable and cost-effective alternative to expensive hydronic systems, which are costly to install and maintain. 4 figs.

  2. Measurement of radiant properties of ceramic foam

    Hoornstra, J.; Turecky, M.; Maatman, D.

    1994-07-01

    An experimental facility is described for the measurement of the normal spectral and total emissivity and transmissivity of semi-transparent materials in the temperature range of 600 C to 1200 C. The set-up was used for the measurement of radiation properties of highly porous ceramic foam which is used in low NO x radiant burners. Emissivity and transmissivity data were measured and are presented for coated and uncoated ceramic foam of different thicknesses. (orig.)

  3. The effects of different footprint sizes and cloud algorithms on the top-of-atmosphere radiative flux calculation from the Clouds and Earth's Radiant Energy System (CERES instrument on Suomi National Polar-orbiting Partnership (NPP

    W. Su

    2017-10-01

    Full Text Available Only one Clouds and Earth's Radiant Energy System (CERES instrument is onboard the Suomi National Polar-orbiting Partnership (NPP and it has been placed in cross-track mode since launch; it is thus not possible to construct a set of angular distribution models (ADMs specific for CERES on NPP. Edition 4 Aqua ADMs are used for flux inversions for NPP CERES measurements. However, the footprint size of NPP CERES is greater than that of Aqua CERES, as the altitude of the NPP orbit is higher than that of the Aqua orbit. Furthermore, cloud retrievals from the Visible Infrared Imaging Radiometer Suite (VIIRS and the Moderate Resolution Imaging Spectroradiometer (MODIS, which are the imagers sharing the spacecraft with NPP CERES and Aqua CERES, are also different. To quantify the flux uncertainties due to the footprint size difference between Aqua CERES and NPP CERES, and due to both the footprint size difference and cloud property difference, a simulation is designed using the MODIS pixel-level data, which are convolved with the Aqua CERES and NPP CERES point spread functions (PSFs into their respective footprints. The simulation is designed to isolate the effects of footprint size and cloud property differences on flux uncertainty from calibration and orbital differences between NPP CERES and Aqua CERES. The footprint size difference between Aqua CERES and NPP CERES introduces instantaneous flux uncertainties in monthly gridded NPP CERES measurements of less than 4.0 W m−2 for SW (shortwave and less than 1.0 W m−2 for both daytime and nighttime LW (longwave. The global monthly mean instantaneous SW flux from simulated NPP CERES has a low bias of 0.4 W m−2 when compared to simulated Aqua CERES, and the root-mean-square (RMS error is 2.2 W m−2 between them; the biases of daytime and nighttime LW flux are close to zero with RMS errors of 0.8 and 0.2 W m−2. These uncertainties are within the uncertainties of CERES ADMs

  4. Electric radiant heating or, why are plumbers getting our work?

    Lemieux, G. [Britech, Toronto, ON (Canada)

    2009-02-15

    Electric radiant heating (ERH) technologies are now being installed in floors as a means of reducing heating costs. The radiant installations have seen a large increase in sales over the last decade, and are now being used in commercial applications. Sales of hydronic ERH systems have increased by 24 per cent over the last year. ERH systems are energy efficient and do not cause drafts. The systems consist of resistant heating cables installed within the floors of a room. The cables are supplied as loose cables and tracks with predetermined spacings or rugged, heavier cable that can be stapled onto wooden subfloors. Program temperature setbacks can be applied on a room-by-room basis. Electric thermal storage systems allow building owners to store heat in the floors and are ideal for use in combination with time-of-use electric metering. Some electric utilities are now promoting the use of electric thermal storage in order to reduce demand during peak times. Thermostats used with the systems should have floor sensors and ambient air sensors to control space heating in conjunction with the floor sensor. It was concluded that electrical contractors who gain knowledge in the application and installation of the systems will tap into a growing revenue stream. 5 figs.

  5. Electric radiant heating or, why are plumbers getting our work?

    Lemieux, G.

    2009-01-01

    Electric radiant heating (ERH) technologies are now being installed in floors as a means of reducing heating costs. The radiant installations have seen a large increase in sales over the last decade, and are now being used in commercial applications. Sales of hydronic ERH systems have increased by 24 per cent over the last year. ERH systems are energy efficient and do not cause drafts. The systems consist of resistant heating cables installed within the floors of a room. The cables are supplied as loose cables and tracks with predetermined spacings or rugged, heavier cable that can be stapled onto wooden subfloors. Program temperature setbacks can be applied on a room-by-room basis. Electric thermal storage systems allow building owners to store heat in the floors and are ideal for use in combination with time-of-use electric metering. Some electric utilities are now promoting the use of electric thermal storage in order to reduce demand during peak times. Thermostats used with the systems should have floor sensors and ambient air sensors to control space heating in conjunction with the floor sensor. It was concluded that electrical contractors who gain knowledge in the application and installation of the systems will tap into a growing revenue stream. 5 figs

  6. Dynamic heat transfer modeling and parametric study of thermoelectric radiant cooling and heating panel system

    Luo, Yongqiang; Zhang, Ling; Liu, Zhongbing; Wang, Yingzi; Wu, Jing; Wang, Xiliang

    2016-01-01

    Highlights: • Dynamic model of thermoelectric radiant panel system is established. • The internal parameters of thermoelectric module are dynamically calculated in simulation. • Both artificial neural networks model and system model are verified through experiment data. • Optimized system structure is obtained through parametric study. - Abstract: Radiant panel system can optimize indoor thermal comfort with lower energy consumption. The thermoelectric radiant panel (TERP) system is a new and effective prototype of radiant system using thermoelectric module (TEM) instead of conventional water pipes, as heat source. The TERP can realize more stable and easier system control as well as lower initial and operative cost. In this study, an improved system dynamic model was established by combining analytical system model and artificial neural networks (ANN) as well as the dynamic calculation functions of internal parameters of TEM. The double integral was used for the calculation of surface average temperature of TERP. The ANN model and system model were in good agreement with experiment data in both cooling and heating mode. In order to optimize the system design structure, parametric study was conducted in terms of the thickness of aluminum panel and insulation, as well as the arrangement of TEMs on the surface of radiant panel. It was found through simulation results that the optimum thickness of aluminum panel and insulation are respectively around 1–2 mm and 40–50 mm. In addition, TEMs should be uniformly installed on the surface of radiant panel and each TEM should stand at the central position of a square-shaped typical region with length around 0.387–0.548 m.

  7. Oscillations of the energy, magnetic moment, and current with a period equal to the normal or superconducting flux quantum in cyclic systems

    Svirskii, M.S.

    1985-01-01

    Oscillations with a period equal to the normal or superconducting flux quantum occur in the current density and the orbital parts of the energy and the magnetic moment in cyclic systems. Transitions between these regimes can be induced by changing the number of electrons or by switching between states with different energies

  8. Use of local convective and radiant cooling at warm environment

    Melikov, Arsen Krikor; Krejcirikova, Barbora; Kaczmarczyk, Jan

    2012-01-01

    The effect of four local cooling devices (convective, radiant and combined) on SBS symptoms reported by 24 subjects at 28 ˚C and 50% RH was studied. The devices studied were: (1) desk cooling fan, (2) personalized ventilation providing clean air, (3) two radiant panels and (4) two radiant panels...... and with radiant panel with attached fans, which also helped people to feel less fatigue. The SBS symptoms increased the most when the cooling fan, generating movement of polluted room air, was used....

  9. Exposure of embryos to cyclically cold incubation temperatures durably affects energy metabolism and antioxidant pathways in broiler chickens.

    Loyau, T; Collin, A; Yenisey, C; Crochet, S; Siegel, P B; Akşit, M; Yalçin, S

    2014-08-01

    Cyclically cold incubation temperatures have been suggested as a means to improve resistance of broiler chickens to ascites; however, the underlying mechanisms are not known. Nine hundred eggs obtained from 48 wk Ross broiler breeders were randomly assigned to 2 incubation treatments: control I eggs were incubated at 37.6°C throughout, whereas for cold I eggs the incubation temperature was reduced by 1°C for 6 h daily from 10 to 18 d of incubation. Thereafter, chickens were reared at standard temperatures or under cold exposure that was associated or not with a postnatal cold acclimation at d 5 posthatch. At hatch, hepatic catalase activity and malondialdehyde content were measured. Serum thyroid hormone and triglyceride concentrations, and muscle expression of several genes involved in the regulation of energy metabolism and oxidative stress were also measured at hatch and 5 and 25 d posthatch. Cold incubation induced modifications in antioxidant pathways with higher catalase activity, but lower expression of avian uncoupling protein 3 at hatch. However, long-term enhancement in the expression of avian uncoupling protein 3 was observed, probably caused by an increase in the expression of the transcription factor peroxisome proliferator activated receptor-γ coactivator-1α. These effects were not systematically associated with an increase in serum triiodothyronine concentrations that were observed only in chickens exposed to both cold incubation and later acclimation at 5 d with cold rearing. Our results suggest that these conditions of cyclically cold incubation resulted in the long-term in changes in antioxidant pathways and energy metabolism, which could enhance the health of chickens reared under cold conditions. © Poultry Science Association Inc.

  10. Study on coal char ignition by radiant heat flux.

    Korotkikh, A. G.; Slyusarskiy, K. V.

    2017-11-01

    The study on coal char ignition by CO2-continuous laser was carried out. The coal char samples of T-grade bituminous coal and 2B-grade lignite were studied via CO2-laser ignition setup. Ignition delay times were determined at ambient condition in heat flux density range 90-200 W/cm2. The average ignition delay time value for lignite samples were 2 times lower while this difference is larger in high heat flux region and lower in low heat flux region. The kinetic constants for overall oxidation reaction were determined using analytic solution of simplified one-dimensional heat transfer equation with radiant heat transfer boundary condition. The activation energy for lignite char was found to be less than it is for bituminous coal char by approximately 20 %.

  11. A RADIANT AIR-CONDITIONING SYSTEM USING SOLAR-DRIVEN

    S. A. ABDALLA

    2006-12-01

    Full Text Available Every air-conditioning system needs some fresh air to provide adequate ventilation air required to remove moisture, gases like ammonia and hydrogen sulphide, disease organisms, and heat from occupied spaces. However, natural ventilation is difficult to control because urban areas outside air is often polluted and cannot be supplied to inner spaces before being filtered. Besides the high electrical demand of refrigerant compression units used by most air-conditioning systems, and fans used to transport the cool air through the thermal distribution system draw a significant amount of electrical energy in comparison with electrical energy used by the building thermal conditioning systems. Part of this electricity heats the cooled air; thereby add to the internal thermal cooling peak load. In addition, refrigerant compression has both direct and indirect negative effects on the environment on both local and global scales. In seeking for innovative air-conditioning systems that maintain and improve indoor air quality under potentially more demanding performance criteria without increasing environmental impact, this paper presents radiant air-conditioning system which uses a solar-driven liquid desiccant evaporative cooler. The paper describes the proposed solar-driven liquid desiccant evaporative cooling system and the method used for investigating its performance in providing cold water for a radiant air-conditioning system in Khartoum (Central Sudan. The results of the investigation show that the system can operate in humid as well as dry climates and that employing such a system reduces air-conditioning peak electrical demands as compared to vapour compression systems.

  12. Surface radiant flux densities inferred from LAC and GAC AVHRR data

    Berger, F.; Klaes, D.

    To infer surface radiant flux densities from current (NOAA-AVHRR, ERS-1/2 ATSR) and future meteorological (Envisat AATSR, MSG, METOP) satellite data, the complex, modular analysis scheme SESAT (Strahlungs- und Energieflüsse aus Satellitendaten) could be developed (Berger, 2001). This scheme allows the determination of cloud types, optical and microphysical cloud properties as well as surface and TOA radiant flux densities. After testing of SESAT in Central Europe and the Baltic Sea catchment (more than 400scenes U including a detailed validation with various surface measurements) it could be applied to a large number of NOAA-16 AVHRR overpasses covering the globe.For the analysis, two different spatial resolutions U local area coverage (LAC) andwere considered. Therefore, all inferred results, like global area coverage (GAC) U cloud cover, cloud properties and radiant properties, could be intercompared. Specific emphasis could be made to the surface radiant flux densities (all radiative balance compoments), where results for different regions, like Southern America, Southern Africa, Northern America, Europe, and Indonesia, will be presented. Applying SESAT, energy flux densities, like latent and sensible heat flux densities could also be determined additionally. A statistical analysis of all results including a detailed discussion for the two spatial resolutions will close this study.

  13. Perturbation expansion of the ground-state energy for the one-dimensional cyclic Hubbard system in the Hueckel limit

    Takahashi, M.; Bracken, P.; Cizek, J.; Paldus, J.

    1995-01-01

    The perturbation expansion coefficients for the ground-state energy of the half-filled one-dimensional Hubbard model with N = 4 ν + 2, (ν = 1,2,...) sites and satisfying cyclic boundary conditions were calculated in the Hueckel limit (U/β → 0), where β designates the one-electron hopping or resonance integral, and U, the two-electron on-site Coulomb integral. This was achieved by solving-order by order-the Lieb-Wu equations, a system of transcendental equations that determines the set of quasi-momenta (k i ) and spin variable τ α for this model. The exact values for these quantities were found for the N = 6 member ring up to the 20th order in terms of the coupling constant B = U/2β, as well as numerically for 10 ≤ N ≤ 50, and the N = 6 Lieb-Wu system was reduced to a system of sextic algebraic equations. These results are compared with those of the infinite system derived analytically by Misurkin and Ovchinnikov. It is further shown how the results of this article can be used for the interpolation by the root of a polynomial. It is demonstrated that a polynomial of relatively small degree provides a very good approximation for the energy in the intermediate coupling region. 20 refs., 3 tabs

  14. Radiant non-catalytic recuperative reformer

    Khinkis, Mark J.; Kozlov, Aleksandr P.

    2017-10-31

    A radiant, non-catalytic recuperative reformer has a flue gas flow path for conducting hot exhaust gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is positioned adjacent to the flue gas flow path to permit heat transfer from the hot exhaust gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, a portion of the reforming mixture flow path is positioned outside of flue gas flow path for a relatively large residence time.

  15. Validation of the uncertainty budget for soft X-ray radiant power measurement using a cryogenic radiometer

    Rabus, H.; Klein, R.; Scholze, F.; Thornagel, R.; Ulm, G.

    2002-01-01

    The cryogenic radiometer SYRES, a thermal detector based on the electrical substitution principle, has been used as the primary detector standard for radiant power measurement in the ultraviolet, vacuum ultraviolet and soft X-ray spectral ranges. In order to investigate the possibility of radiant energy being deposited in its absorber cavity without being transformed into heat when detecting soft X-rays, SYRES has been directly compared with the electron storage ring BESSY 1, a primary radiometric source standard of calculable spectral radiant power. To this end, the integral radiant power emitted by the storage ring,into a solid angle defined by a high-precision aperture was measured with SYRES. The experiments were conducted at two nominal energies of the circulating electrons, 800 MeV and 340 MeV, to study the influence of the different spectral distributions of the synchrotron radiation. For the original graphite-coated cavity absorber, significant discrepancies were found which could be traced back to the ablation of the graphite coating from the copper cavity body. In the case of the new gold-coated cavity absorber, the calculated and measured values of the radiant power agreed in all experiments within the combined relative uncertainties of typically 2.5 x 10 -3 (k = 1). (author)

  16. Effect of binding in cyclic phosphorylation-dephosphorylation process and in energy transformation.

    Sarkar, A; Beard, D A; Franza, B R

    2006-07-01

    The effects of binding on the phosphorylation-dephosphorylation cycle (PDPC) - one of the key components of the signal transduction processes - is analyzed based on a mathematical model. The model shows that binding of proteins, forming a complex, diminishes the ultrasensitivity of the PDPC to the differences in activity between kinase and phosphatase in the cycle. It is also found that signal amplification depends upon the strength of the binding affinity of the protein (phosphorylated or dephosphorylated) to other proteins . It is also observed that the amplification of signal is not only dependent on phosphorylation potential but also on binding properties and resulting adjustments in binding energies.

  17. Numerical analysis of diffuse ceiling ventilation and its integration with a radiant ceiling system

    Zhang, Chen; Heiselberg, Per Kvols; Chen, Qingyan

    2017-01-01

    A novel system combining diffuse ceiling ventilation and radiant ceiling was proposed recently, with the aim of providing energy efficient and comfort environment to office buildings. Designing of such a system is challenging because of complex interactions between the two subsystems and a large ......-uniformity air distribution and further led to the draught problem in the occupied zone. This system was recommended to apply in the small offices instead of large, open spaces....

  18. Error analysis of thermocouple measurements in the Radiant Heat Facility

    Nakos, J.T.; Strait, B.G.

    1980-12-01

    The measurement most frequently made in the Radiant Heat Facility is temperature, and the transducer which is used almost exclusively is the thermocouple. Other methods, such as resistance thermometers and thermistors, are used but very rarely. Since a majority of the information gathered at Radiant Heat is from thermocouples, a reasonable measure of the quality of the measurements made at the facility is the accuracy of the thermocouple temperature data

  19. Simplified Building Thermal Model Used for Optimal Control of Radiant Cooling System

    Lei He

    2016-01-01

    Full Text Available MPC has the ability to optimize the system operation parameters for energy conservation. Recently, it has been used in HVAC systems for saving energy, but there are very few applications in radiant cooling systems. To implement MPC in buildings with radiant terminals, the predictions of cooling load and thermal environment are indispensable. In this paper, a simplified thermal model is proposed for predicting cooling load and thermal environment in buildings with radiant floor. In this thermal model, the black-box model is introduced to derive the incident solar radiation, while the genetic algorithm is utilized to identify the parameters of the thermal model. In order to further validate this simplified thermal model, simulated results from TRNSYS are compared with those from this model and the deviation is evaluated based on coefficient of variation of root mean square (CV. The results show that the simplified model can predict the operative temperature with a CV lower than 1% and predict cooling loads with a CV lower than 10%. For the purpose of supervisory control in HVAC systems, this simplified RC thermal model has an acceptable accuracy and can be used for further MPC in buildings with radiation terminals.

  20. Radiant heat testing of the H1224A shipping/storage container

    Harding, D.C.; Bobbe, J.G.; Stenberg, D.R.; Arviso, M.

    1994-05-01

    H1224A weapons containers have been used for years by the Departments of Energy and Defense to transport and store W78 warhead midsections. Although designed to protect the midsections only from low-energy impacts, a recent transportation risk assessment effort has identified a need to evaluate the container`s ability to protect weapons in more severe accident environments. Four radiant heat tests were performed: two each on an H1224A container (with a Mk12a Mod 6c mass mock-up midsection inside) and two on a low-cost simulated H1224A container (with a hollow Mk12 aeroshell midsections inside). For each unit tested, temperatures were recorded at numerous points throughout the container and midsection during a 4-hour 121{degrees}C (250{degrees}F) and 30-minute 1010{degrees}C (1850{degrees}F) radiant environment. Measured peak temperatures experienced by the inner walls of the midsections as a result of exposure to the high-temperature radiant environment ranged from 650{degrees} C to 980{degrees} C (1200{degrees} F to 1800{degrees}F) for the H1224A container and 770 {degrees} to 990 {degrees}C (1420{degrees} F to 1810{degrees}F) for the simulated container. The majority of both containers were completely destroyed during the high-temperature test. Temperature profiles will be used to benchmark analytical models and predict warhead midsection temperatures over a wide range of the thermal accident conditions.

  1. Rate Constants and Activation Energies for Gas-Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical.

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie; Macleod, Matthew

    2015-07-01

    Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second-order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D 4 ), decamethylcyclopentasiloxane (D 5 ), and dodecamethylcyclohexasiloxane (D 6 ) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140-mL gas-phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D 4 and D 5 with the OH radical are 1.9 × 10 -12 (95% confidence interval (CI): (1.7-2.2) × 10 -12 ) and 2.6 × 10 -12 (CI: (2.3-2.9) × 10 -12 ) cm 3 molecule -1 s -1 , respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D 6 is 2.8 × 10 -12 (CI: (2.5-3.2) × 10 -12 ) cm 3 molecule -1 s -1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D 5 were 33% higher than for D 4 (CI: 30-37%), whereas the rates for D 6 were only 8% higher than for D 5 (CI: 5-10%). The activation energies of the reactions of D 4 , D 5 , and D 6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol.

  2. Rate Constants and Activation Energies for Gas‐Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie

    2015-01-01

    ABSTRACT Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second‐order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140‐mL gas‐phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D4 and D5 with the OH radical are 1.9 × 10−12 (95% confidence interval (CI): (1.7–2.2) × 10−12) and 2.6 × 10−12 (CI: (2.3–2.9) × 10−12) cm3 molecule−1 s−1, respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D6 is 2.8 × 10−12 (CI: (2.5–3.2) × 10−12) cm3 molecule−1 s−1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D5 were 33% higher than for D4 (CI: 30–37%), whereas the rates for D6 were only 8% higher than for D5 (CI: 5–10%). The activation energies of the reactions of D4, D5, and D6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol. PMID:27708500

  3. Analysis of excimer laser radiant exposure effect toward corneal ablation volume at LASIK procedure

    Adiati, Rima Fitria; Rini Rizki, Artha Bona; Kusumawardhani, Apriani; Setijono, Heru; Rahmadiansah, Andi

    2016-11-01

    LASIK (Laser Asissted In Situ Interlamelar Keratomilieusis) is a technique for correcting refractive disorders of the eye such as myopia and astigmatism using an excimer laser. This procedure use photoablation technique to decompose corneal tissues. Although preferred due to its efficiency, permanency, and accuracy, the inappropriate amount radiant exposure often cause side effects like under-over correction, irregular astigmatism and problems on surrounding tissues. In this study, the radiant exposure effect toward corneal ablation volume has been modelled through several processes. Data collecting results is laser data specifications with 193 nm wavelength, beam diameter of 0.065 - 0.65 cm, and fluence of 160 mJ/cm2. For the medical data, the myopia-astigmatism value, cornea size, corneal ablation thickness, and flap data are taken. The first modelling step is determining the laser diameter between 0.065 - 0.65 cm with 0.45 cm increment. The energy, power, and intensity of laser determined from laser beam area. Number of pulse and total energy is calculated before the radiant exposure of laser is obtained. Next is to determine the parameters influence the ablation volume. Regression method used to create the equation, and then the spot size is substituted to the model. The validation used is statistic correlation method to both experimental data and theory. By the model created, it is expected that any potential complications can be prevented during LASIK procedures. The recommendations can give the users clearer picture to determine the appropriate amount of radiant exposure with the corneal ablation volume necessary.

  4. Prediction of radiant heat flux from horizontal propane jet fire

    Zhou, Kuibin; Liu, Jiaoyan; Jiang, Juncheng

    2016-01-01

    Highlights: • Line source model for the radiant heat flux from horizontal jet fire is proposed. • A review on the difference between horizontal and vertical jet fires is conducted. • Effects of lift-off distance and flame shape are discussed for the line source model. • Line source model gives encouraging results relative to the validity of model system. - Abstract: Jet fires are often reported to occur in process industry with lots of hazardous heat energy released. A line source model describing the flame emissive power and subsequent heat flux radiated from a horizontal propane jet fire is evaluated through a testing against experimental fire data and comparison against other models. By a review on the jet flame behavior, the correlations of the lift-off distance, flame length and radiative fraction are proposed to close the line source model in theory. It is found that the fuel jet direction holds a considerable effect on the flame behavior by comparison between horizontal and vertical jet fires. Results indicate that the lift-off distance and the flame shape influence the model prediction to some extent. Comparison of model predictions against data collected in the near field and predictions from the point source model and multipoint source model gives encouraging results relative to the validity of model system.

  5. Radiant{trademark} Liquid Radioisotope Intravascular Radiation Therapy System

    Eigler, N.; Whiting, J.; Chernomorsky, A.; Jackson, J.; Knapp, F.F., Jr.; Litvack, F.

    1998-01-16

    RADIANT{trademark} is manufactured by United States Surgical Corporation, Vascular Therapies Division, (formerly Progressive Angioplasty Systems). The system comprises a liquid {beta}-radiation source, a shielded isolation/transfer device (ISAT), modified over-the-wire or rapid exchange delivery balloons, and accessory kits. The liquid {beta}-source is Rhenium-188 in the form of sodium perrhenate (NaReO{sub 4}), Rhenium-188 is primarily a {beta}-emitter with a physical half-life of 17.0 hours. The maximum energy of the {beta}-particles is 2.1 MeV. The source is produced daily in the nuclear pharmacy hot lab by eluting a Tungsten-188/Rhenium-188 generator manufactured by Oak Ridge National Laboratory (ORNL). Using anion exchange columns and Millipore filters the effluent is concentrated to approximately 100 mCi/ml, calibrated, and loaded into the (ISAT) which is subsequently transported to the cardiac catheterization laboratory. The delivery catheters are modified Champion{trademark} over-the-wire, and TNT{trademark} rapid exchange stent delivery balloons. These balloons have thickened polyethylene walls to augment puncture resistance; dual radio-opaque markers and specially configured connectors.

  6. On the ability of some cyclic plasticity models to predict the evolution of stored energy in a type 304L stainless steel submitted to high cycle fatigue

    Vincent, L.

    2008-01-01

    Fatigue analyses of materials are generally based on a so-called stabilized cycle, on which plastic strain amplitude, plastic energy, maximum shear stress and so on are determined. The part of plastic energy which is dissipated in heat cannot be used to accumulate damage and it should be worthwhile extracting only the part of plastic energy which is stored in material microstructure in order to build a consistent damage model. In this paper, some cyclic plasticity models including a polycrystalline model are reformulated in the thermodynamic framework in order to test their capacity to predict both the stress-strain behaviour and the partition of plastic energy for a high cycle fatigue test on a type 304L stainless steel. For an equivalent description of stress-strain loops, the number of kinematic hardening variables chosen in a model may qualitatively alter the prediction of plastic energy partition due to the modification of the isotropic hardening variable. Measurements of the specimen temperature increase due to plastic dissipation is therefore proposed as a convenient complementary experimental data to identify the constitutive equation of the isotropic hardening variable of a cyclic plasticity model. (author)

  7. Validation of the uncertainty budget for soft X-ray radiant power measurement using a cryogenic radiometer

    Rabus, H; Scholze, F; Thornagel, R; Ulm, G

    2002-01-01

    The cryogenic radiometer SYRES, a thermal detector based on the electrical substitution principle, has been used as the primary detector standard for radiant power measurement in the ultraviolet, vacuum ultraviolet and soft X-ray spectral ranges. In order to investigate the possibility of radiant energy being deposited in its absorber cavity without being transformed into heat when detecting soft X-rays, SYRES has been directly compared with the electron storage ring BESSY 1, a primary radiometric source standard of calculable spectral radiant power. To this end, the integral radiant power emitted by the storage ring,into a solid angle defined by a high-precision aperture was measured with SYRES. The experiments were conducted at two nominal energies of the circulating electrons, 800 MeV and 340 MeV, to study the influence of the different spectral distributions of the synchrotron radiation. For the original graphite-coated cavity absorber, significant discrepancies were found which could be traced back to th...

  8. Growth and solar energy conversion of Azolla sp., cultivated under four solar irradiance flux density; Crescimento e conversao da energia solar de Azolla sp. cultivada em quatro densidades do fluxo radiante

    Carvalho, E.F. de [Acre Univ., Rio Branco, AC (Brazil); Lopes, N.F. [Vicosa Univ., MG (Brazil). Dept. de Biologia Vegetal

    1994-02-01

    Growth and solar energy conversion were studied in three Azolla species grown under four levels (30, 50, 70 and 100%) of solar radiation incidence under outdoor conditions. Under full sunlight, the specie A. microphylla showed higher crop growth rate, relative growth rate, net assimilation rate and efficiency of solar energy conversion than the other ones. (author). 8 figs., 23 refs.

  9. Experimental and Numerical Study of the Radiant Induction-Unit and the Induction Radiant Air-Conditioning System

    Qiang Si

    2016-12-01

    Full Text Available In this paper we proposed the novel air-conditioning system which combined induction ventilation and radiant air-conditioning. The indoor terminal device is the radiant induction-unit (RIDU. The RIDU is the induction unit combined with the pore radiant panel on which the copper pipes with rigid aluminum diffusion fins are installed. The two-stage evaporator chiller with the non-azeotropic mixture refrigerant is utilized in the system to reduce the initial investment in equipment. With the performance test and the steady state heat transfer model based on the theory of radiative heat transfer, the relationship between the induction ratio of the RIDU and the characteristic of the air supply was studied. Based on this, it is verified that the RIDU has a lower dew-point temperature and better anti-condensation performance than a traditional plate-type radiant panel. The characteristics of the radiation and convection heat transfer of the RIDU were studied. The total heat exchange of the RIDU can be 16.5% greater than that of the traditional plate-type radiant terminal.

  10. The Optimization Based Dynamic and Cyclic Working Strategies for Rechargeable Wireless Sensor Networks with Multiple Base Stations and Wireless Energy Transfer Devices

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-01-01

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating “bottleneck” sensor nodes is also developed in this paper. PMID:25785305

  11. The optimization based dynamic and cyclic working strategies for rechargeable wireless sensor networks with multiple base stations and wireless energy transfer devices.

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-03-16

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating "bottleneck" sensor nodes is also developed in this paper.

  12. Radiant smiles everywhere - before the Chernobyl accident

    Anon.

    1986-01-01

    The business reports presented by the Federal German electric utilities for 1985 are almost all simply brillant. Electricity consumption has been going up, some of the utilities even can boast about rates kept constant over the year. But before the printed business reports could be presented to the meetings of shareholders, a nasty cloud threw a dark shadow over all the brilliant results. The Chernobyl accident made some of the hymns over the nuclear electricity increases and nuclear power in general sound rather queer. Could we do without this energy source. Substituting nuclear power would yearly require: 28 million t of oil, or 41 million t of hard coal, or 142 million t of browncoal, or 38 thousand million cubic metres of natural gas. Extrapolating current conditions and assuming best achievements, renewable energy sources might be able to meet 6 p.c. of the primary energy demands by the year 2000. (orig./HP) [de

  13. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  14. Load calculations of radiant cooling systems for sizing the plant

    Bourdakis, Eleftherios; Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    The aim of this study was, by using a building simulation software, to prove that a radiant cooling system should not be sized based on the maximum cooling load but at a lower value. For that reason six radiant cooling models were simulated with two control principles using 100%, 70% and 50......% of the maximum cooling load. It was concluded that all tested systems were able to provide an acceptable thermal environment even when the 50% of the maximum cooling load was used. From all the simulated systems the one that performed the best under both control principles was the ESCS ceiling system. Finally...... it was proved that ventilation systems should be sized based on the maximum cooling load....

  15. Cooling load calculation by the radiant time series method - effect of solar radiation models

    Costa, Alexandre M.S. [Universidade Estadual de Maringa (UEM), PR (Brazil)], E-mail: amscosta@uem.br

    2010-07-01

    In this work was analyzed numerically the effect of three different models for solar radiation on the cooling load calculated by the radiant time series' method. The solar radiation models implemented were clear sky, isotropic sky and anisotropic sky. The radiant time series' method (RTS) was proposed by ASHRAE (2001) for replacing the classical methods of cooling load calculation, such as TETD/TA. The method is based on computing the effect of space thermal energy storage on the instantaneous cooling load. The computing is carried out by splitting the heat gain components in convective and radiant parts. Following the radiant part is transformed using time series, which coefficients are a function of the construction type and heat gain (solar or non-solar). The transformed result is added to the convective part, giving the instantaneous cooling load. The method was applied for investigate the influence for an example room. The location used was - 23 degree S and 51 degree W and the day was 21 of January, a typical summer day in the southern hemisphere. The room was composed of two vertical walls with windows exposed to outdoors with azimuth angles equals to west and east directions. The output of the different models of solar radiation for the two walls in terms of direct and diffuse components as well heat gains were investigated. It was verified that the clear sky exhibited the less conservative (higher values) for the direct component of solar radiation, with the opposite trend for the diffuse component. For the heat gain, the clear sky gives the higher values, three times higher for the peek hours than the other models. Both isotropic and anisotropic models predicted similar magnitude for the heat gain. The same behavior was also verified for the cooling load. The effect of room thermal inertia was decreasing the cooling load during the peak hours. On the other hand the higher thermal inertia values are the greater for the non peak hours. The effect

  16. Photosynthetic utilization of radiant energy by CAM Dendrobium flowers

    Khoo, G.H.; Hew, C.S.; He, J.

    1997-01-01

    14 CO 2 fixation was observed in orchid Dendrobium flowers; its rate decreased with the flower development. Chlorophyll (Chl) fluorescence in different developmental stages of flowers was compared to other green plant parts (leaf, inflorescence stalk, and fruit capsule). The photochemical efficiency of photosystem 2 (PS2) (Fv/Fm) of a leaf was 14-21 % higher than that of a mature flower perianth (sepal, petal, and labellum) which had a much lower total Chl content and Chl a/b ratio. A higher quantum yield of PS2 (ΦPS2) than in the mature flowers was observed in all green parts. Flower sepals had higher Chl content, Chl a/b ratio, and Fv/Fm values than the petal and labellum. During flower development the Chl content, Chl a/b ratio, Fv/Fm, and qN decreased while ΦPS2 and qP remained constant. An exposure of developing flowers to irradiances above 50 µmol m -2 s -1 resulted in a very drastic drop of ΦPS2 and qP, and a coherent increase of qN as compared to other green plant organs. A low saturation irradiance (PFD of 100 µmol m -2 s -1 ) and the increase in qN in the flower indicate that irradiation stress may occur since there is no further protection when the flower is exposed to irradiances above 100 µmol m -2 s -1 . A low Chl/carotenoid ratio in mature flower perianth as a consequence of Chl content reduction in the course of flower development suggests a relief of irradiation stress via this mean. (author)

  17. Electric radiant heating: A hot item in home comfort

    Lemieux, G. [Britech Corp., Toronto, ON (Canada)

    2003-12-01

    Electric radiant heating as a floor warming system and its growing popularity in home comfort are discussed. Price can be as low as $2.00 per square foot; cost of operation may be as little as 30 cents per square foot per year, depending on time of use and local hydro rates. The use of radiant cable heating is said to have surged in popularity; it provides the same warmth and comfort as more expensive hydronic systems. Radiant cable is simple and inexpensive to install since unlike hydronic systems, it requires no complicated mechanical system with boiler, heat exchanger, valves, pumps and extensive controls. Nevertheless, prospective end users are warned to make sure that the cable is sturdy, tough, has multiple layers of protection with a thick grounding system and conductor core. In addition to heating floors, electric heating cables can also be used for snow and ice control and for melting in driveways and gutters. In these type of installations heavy duty cables are used which are installed under asphalt, concrete or interlocking stones. Thirty watts per square foot per hour is the typical requirement for melting snow and ice. Based on average electricity prices in Ontario, melting snow on an 800 square foot driveway would cost about $2.20 per hour. Assuming five hours for the system to clear the driveway, installing a heating system under the driveway could be an economically viable solution for the home owner, providing freedom from ice, the inconvenience of shovelling snow, and saving time and money.

  18. Comparison of Energy Dissipation, Stiffness, and Damage of Structural Oriented Strand Board (OSB, Conventional Gypsum, and Viscoelastic Gypsum Shearwalls Subjected to Cyclic Loads

    Andrew S. Blasetti

    2012-06-01

    Full Text Available A key element in the seismic load resisting system of a wood framed structure is the shear wall which is typically sheathed on one side with plywood or oriented strand board (OSB and gypsum on the other. The shear capacity of gypsum sheathed shear walls is typically neglected in high seismic areas due to the susceptibility of conventional drywall screw connections to damage caused by earthquakes. The earthquake resistance of an innovative viscoelastic (VE gypsum shearwall is evaluated and compared to conventional structural and non-structural walls. Ten 8 ft × 8 ft wood framed wall specimens of three configurations [nailed-OSB, screw-gypsum, and VE polymer-gypsum] were subjected to a cyclic test protocol. The energy dissipation, stiffness, and damage characteristics of all shearwalls are reported herein. Testing results indicate the VE-gypsum walls can dissipate more energy than the OSB structural panels and 500% more energy that the conventional gypsum sheathed walls and contains a constant source of energy dissipation not seen in the structural and non-structural walls. The wall stiffness of the OSB wall degrades at a far greater rate that the VE gypsum wall and at continued cycling degrades below the VE wall stiffness. Unlike both of the conventional wall types, the VE wall showed no visible or audible signs of damage when subjected to shear displacements up to 1.

  19. Radiant heat exchange measurements for Tore Supra

    Chatain, D.; Disdier, F.; Gauthier, A.; Raffin, M.; Renaud, M.

    1984-03-01

    In order to minimize the energy consumption of the low temperature cryogenic system connected to the superconducting magnet of TORE-SUPRA, heat exchange from thermal radiation between the vacuum vessels and the thermal shields has been studied. Accordingly large scale cold and hot walls of T.S. have been simulated in a model with reduced dimensions. In this model, the experiment consists in the measurement of the thermal radiated power between two concentric cylindrical surfaces of stainless steel under vacuum conditions. The temperature of the external cylinder was kept constant at 80 K. The internal cylinder was bakeable up to 250 0 C. Various surface treatments were applied on the two cylinders (mechanical polishing and metal deposition of Al, Ag, Ni) [fr

  20. Ekpyrotic and cyclic cosmology

    Lehners, Jean-Luc

    2008-01-01

    Ekpyrotic and cyclic cosmologies provide theories of the very early and of the very late universe. In these models, the big bang is described as a collision of branes - and thus the big bang is not the beginning of time. Before the big bang, there is an ekpyrotic phase with equation of state w=P/(ρ) >>1 (where P is the average pressure and ρ the average energy density) during which the universe slowly contracts. This phase resolves the standard cosmological puzzles and generates a nearly scale-invariant spectrum of cosmological perturbations containing a significant non-Gaussian component. At the same time it produces small-amplitude gravitational waves with a blue spectrum. The dark energy dominating the present-day cosmological evolution is reinterpreted as a small attractive force between our brane and a parallel one. This force eventually induces a new ekpyrotic phase and a new brane collision, leading to the idea of a cyclic universe. This review discusses the detailed properties of these models, their embedding in M-theory and their viability, with an emphasis on open issues and observational signatures

  1. Increasing the Energy Efficiency of the Cyclic Action Mechanisms in Rolling for a Roller Bed Used as an Example

    andreev, A. N.; Kolesnichenko, D. A.

    2017-12-01

    The possibility of increasing the energy efficiency of the production cycle in a roller bed is briefly reviewed and justified. The sequence diagram of operation of the electrical drive in a roller bed is analyzed, and the possible increase in the energy efficiency is calculated. A method for energy saving is described for the application of a frequency-controlled asynchronous electrical drive of drive rollers in a roller bed with an increased capacitor capacity in a dc link. A fine mathematical model is developed to describe the behavior of the electrical drive during the deceleration of a roller bed. An experimental setup is created and computer simulation and physical modeling are performed. The basic information flows of the general hierarchical automatic control system of an enterprise are described and determined with allowance for the proposed method of increasing the energy efficiency.

  2. Design of a cyclic multiverse

    Piao Yunsong, E-mail: yspiao@gucas.ac.c [College of Physical Sciences, Graduate School of Chinese Academy of Sciences, Beijing 100049 (China)

    2010-08-09

    Recently, it has been noticed that the amplification of the amplitude of curvature perturbation cycle by cycle can lead to a cyclic multiverse scenario, in which the number of universes increases cycle by cycle. However, this amplification will also inevitably induce either the ultimate end of corresponding cycle, or the resulting spectrum of perturbations inside corresponding universe is not scale invariant, which baffles the existence of observable universes. In this Letter, we propose a design of a cyclic multiverse, in which the observable universe can emerges naturally. The significance of a long period of dark energy before the turnaround of each cycle for this implementing is shown.

  3. Design of a cyclic multiverse

    Piao Yunsong

    2010-01-01

    Recently, it has been noticed that the amplification of the amplitude of curvature perturbation cycle by cycle can lead to a cyclic multiverse scenario, in which the number of universes increases cycle by cycle. However, this amplification will also inevitably induce either the ultimate end of corresponding cycle, or the resulting spectrum of perturbations inside corresponding universe is not scale invariant, which baffles the existence of observable universes. In this Letter, we propose a design of a cyclic multiverse, in which the observable universe can emerges naturally. The significance of a long period of dark energy before the turnaround of each cycle for this implementing is shown.

  4. Radiant science, dark politics: a memoir of the nuclear age

    Kamen, M.D.

    1985-01-01

    The reviewer describes Radiant Science, Dark Politics: A Memoir of the Nuclear Age in contrast to a memoir by James R. Killian, Jr., a contemporary of Kamen. Kamen, co-discoverer of carbon-14 and a valued member of the Berkeley Radiation Laboratory, was fired in 1944 and blackballed as a security risk. Rehabilitated by the end of the war, his continued fight against political injustice through the McCarthy era colors the book and, for the reviewer, makes it self-serving. Kamen's later scientific work reflected his desire to work alone rather than in collaboration

  5. Radiant coolers - Theory, flight histories, design comparisons and future applications

    Donohoe, M. J.; Sherman, A.; Hickman, D. E.

    1975-01-01

    Radiant coolers have been developed for application to the cooling of infrared detectors aboard NASA earth observation systems and as part of the Defense Meteorological Satellite Program. The prime design constraints for these coolers are the location of the cooler aboard the satellite and the satellite orbit. Flight data from several coolers indicates that, in general, design temperatures are achieved. However, potential problems relative to the contamination of cold surfaces are also revealed by the data. A comparison among the various cooler designs and flight performances indicates design improvements that can minimize the contamination problem in the future.

  6. An experimental study about effect of far infrared radiant ceramics on efficient methane fermentation

    Oda, A.; Yamazaki, M.; Oida, A.

    2003-01-01

    Methane fermentation, well known as one of the methods for organic wastes treatment, has been used as an energy production process in order to produce a gaseous fuel. But methane fermentation has some problems to be solved about gas production rate and volatile solids reduction efficiency. Simple methods to improve these problems are needed. In this study, we focused on far infrared radiant ceramics as a stimulating substance to activate methanogenic bacteria. Firstly, through the experiment of one batch fermentation, it was confirmed that the ceramics in the fermenter caused increase of total gas production. Next, even through the experiment of continuous fermentation, same stimulating effect was confirmed. It was considered that this effect was caused not only by a function of bio-contactor of the ceramics but also by far infrared radiation from ceramics. (author)

  7. Energy efficiency of electrical infrared heating elements

    Brown, K.J.; Farrelly, R.; O’Shaughnessy, S.M.; Robinson, A.J.

    2016-01-01

    Highlights: • Characterization of the radiant energy efficiency of infrared heating elements. • Performed for a commercially available ceramic heater element for two cases. • Total radiant power and net radiant efficiency is computed. • Radiant efficiencies are strongly dependant on the input power to the element. • In-plane efficiencies depend on the distance from the heater. - Abstract: A measurement system has been designed to characterize the radiant energy efficiency of infrared heating elements. The system also allows for measurement of the radiant heat flux distribution emitted from radiant heater assemblies. To facilitate these, a 6-axis robotic arm is fitted with a Schmidt–Boelter radiant heat flux gauge. A LabVIEW interface operates the robot and positions the sensor in the desired location and subsequently acquires the desired radiant heat flux measurement. To illustrate the functionality of the measurement system and methodology, radiant heat flux distributions and efficiency calculations are performed for a commercially available ceramic heater element for two cases. In the first, a spherical surface is traced around the entire heater assembly and the total radiant power and net radiant efficiency is computed. In the second, 50 cm × 50 cm vertical planes are traced parallel to the front face of the heater assembly at distances between 10 cm and 50 cm and the in-plane power and efficiencies are computed. The results indicate that the radiant efficiencies are strongly dependant on the input power to the element and, for the in-plane efficiencies, depend on the distance from the heater.

  8. Effects of cyclic impacts on the performance of a piezo-composite electricity generating element in a d33 mode energy harvesting.

    Pham, Van Lai; Ha, Ngoc San; Goo, Nam Seo; Choo, Jinkyo F

    2014-10-01

    The increasing use of piezoelectric generators to harvest energy from various ambient sources requires the establishment of durability data for piezoelectric materials. In this paper, a d3 mode piezocomposite electricity generating element (PCGE) was tested for its durability under cyclic impact loading. For this purpose, a motor driven lever system was designed to apply constant impact force on PCGEs. To investigate the durability of PCGEs, the output voltage of the PCGEs was observed upon repeated application of an impact force until eventual loss of the generated voltage. The experimental results enabled to determine the number of cycles until which PCGEs can be used without loss of their electricity generation performance with respect to the stress level applied on the PCGEs. At low stress level (around 0.76 MPa or lower), the PCGE showed almost insignificant degradation even after 2 million cycles whereas degradation occurred sooner (after 8 x 10(5) cycles) at higher stress levels (around 0.92 MPa or higher). The effects of impact loading on the durability of the PCGEs were also examined by X-ray photographs of the specimens.

  9. 16 CFR Figure 3 to Subpart A of... - Flooring Radiant Tester Schematic Side Elevation

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flooring Radiant Tester Schematic Side Elevation 3 Figure 3 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION.... 1209, Subpt. A, Fig. 3 Figure 3 to Subpart A of Part 1209—Flooring Radiant Tester Schematic Side...

  10. Human response to local convective and radiant cooling in a warm environment

    Melikov, Arsen Krikor; Krejcirikova, Barbora; Kaczmarczyk, Jan

    2013-01-01

    The response of 24 human subjects to local convective cooling, radiant cooling, and combined radiant and convective cooling was studied at 28°C and 50% relative humidity. The local cooling devices used were (1) a tabletop cooling fan, (2) personalized ventilation providing a stream of clean air, (3...

  11. Radiant-and-plasma technology for coal processing

    Vladimir Messerle

    2012-12-01

    Full Text Available Radiant-and-plasma technology for coal processing is presented in the article. Thermodynamic computation and experiments on plasma processing of bituminous coal preliminary electron-beam activated were fulfilled in comparison with plasma processing of the coal. Positive influence of the preliminary electron-beam activation of coal on synthesis gas yield was found. Experiments were carried out in the plasma gasifier of 100 kW power. As a result of the measurements of material and heat balance of the process gave the following integral indicators: weight-average temperature of 2200-2300 K, and carbon gasification degree of 82,4-83,2%. Synthesis gas yield at thermochemical preparation of raw coal dust for burning was 24,5% and in the case of electron-beam activation of coal synthesis gas yield reached 36,4%, which is 48% higher.

  12. Results from radiant treatment in no Hodgkin's lymphomas of adults

    Alert, J.; Rodriguez, E.; Mesa, E.; Diaz, C.

    1982-01-01

    From 1973 to 1979, at the Institute of Oncology and Radiobiology, Havana City, 91 adults were irradiated because they underwent no Hodgkin's lymphomas at Stage I (located) and Stage II (regional extension) to whom radiant treatment was the basic therapeutic selection, with single or multiple fields and dose ranging between 3 500 and 4 000 rads-tumor, and some of them at Stage III, where primary treatment was chemotherapy. Present survival for all of them after 3 and 5 years is 55.7% and 54.7%, with 84.4% for patients at Stage I, 55.8% and 52.4% for Stage II and 33.8% for Stage III. Survival was similar for both sexes; in the same way ganglionar processes and those of extraganglionar localization presented no significant survival differences. Only to 7 patients (7.7%) modular forms were diagnosed. (author)

  13. Methods of total spectral radiant flux realization at VNIIOFI

    Ivashin, Evgeniy; Lalek, Jan; Rybczyński, Andrzej; Ogarev, Sergey; Khlevnoy, Boris; Dobroserdov, Dmitry; Sapritsky, Victor

    2018-02-01

    VNIIOFI carries out works on realization of independent methods for realization of the total spectral radiant flux (TSRF) of incoherent optical radiation sources - reference high-temperature blackbodies (BB), halogen lamps, and LED with quasi-Lambert spatial distribution of radiance. The paper describes three schemes for measuring facilities using photometers, spectroradiometers and computer-controlled high class goniometer. The paper describes different approaches for TSRF realization at the VNIIOFI National radiometric standard on the basis of high-temperature BB and LED sources, and gonio-spectroradiometer. Further, they are planned to be compared, and the use of fixed-point cells (in particular, based on the high-temperature δ(MoC)-C metal-carbon eutectic with a phase transition temperature of 2583 °C corresponding to the metrological optical “source-A”) as an option instead of the BB is considered in order to enhance calibration accuracy.

  14. The Wolff rearrangement of cyclic 2-diazo-1,3-diketones in electron impact - mass spectrometry - controlling the molecular fragmentation by means of low-energy electrons 18 to 70 eV

    Kuruc, J.; Kardosova, E.; Nikolaev, V. A.

    2016-01-01

    The electron-impact-induced fragmentations (the mass spectra, 17 - 70 eV) of cyclic 2-diazo-1,3-diketones were studied. As the suitable compounds were selected the following cyclic 2-diazo-1,3-diketones: 2-diazo-1,3-cyclohexanedione, Ia; 2-diazo-4,4-dimethyl-1,3-cyclohexanedione, Ib; 2-diazo-5,5-dimethyl-1,3-cyclohexanedione, Ic; 2-diazo-4,6-dioxa-5,5-dimethyl-1,3-cyclohexanedione, Id; and 2-diazo-5-phenyl-1,3-cyclohexanedione, Ie). The mass spectra were measured with Varian MAT 111 instrument with direct introduction of samples, with a source temperature of 120 grad C, energy of ionising electrons was in the range (17 - 70) eV. The elimination of the diazo group is the typical reaction of the fragmentation of the cyclic diazo-1,3-diketones after ionization of molecules by electron impact. All our studied cyclic diazo-1,3-diketones have a molecular ion with a relative intensity from 0.7 to 86.4%. Typical ions are [M]"+·, [M-N"_2]"+"·, [M-N_2-CO]"+"·, [M-N_2-CO-CH_2]"+"·, [M-N_2-CO-CH_3]"+"·. For all treatment cyclic diazo-1,3-diketones have been registered 3D mass spectra, for each cyclic diazo-1,3-diketone was proposed fragmentation scheme, including the general fragmentation scheme. The Wolff rearrangement is observed in all studied cyclic diazo-1,3-diketones after cleavage of nitrogen molecules. The energy of ionizing electrons ∼20 eV in the case of compounds Ib, Id - Ie dominating ions are fragments of the [M-N_2]"+"·, in the compound Ia at 18 and 20 eV is dominant fragment [M-N_2-CO-C_2H_2-H]"+"· and for the Ic at 30 eV becomes a dominant fragment [M-N_2-CH_3]"+"· (m/z = 123) but at (25 - 18) eV the most intensive ion is [M-N_2]"+"· (m/z = 138). (authors)

  15. Finite-elements modeling of radiant heat transfers between mobile surfaces; Modelisation par elements finis de transferts radiatifs entre surfaces mobiles

    Daurelle, J V; Cadene, V; Occelli, R [Universite de Provence, 13 - Marseille (France)

    1997-12-31

    In the numerical modeling of thermal industrial problems, radiant heat transfers remain difficult to take into account and require important computer memory and long computing time. These difficulties are enhanced when radiant heat transfers are coupled with finite-elements diffusive heat transfers because finite-elements architecture is complex and requires a lot of memory. In the case of radiant heat transfers along mobile boundaries, the methods must be optimized. The model described in this paper concerns the radiant heat transfers between diffuse grey surfaces. These transfers are coupled with conduction transfers in the limits of the diffusive opaque domain. 2-D and 3-D geometries are analyzed and two configurations of mobile boundaries are considered. In the first configuration, the boundary follows the deformation of the mesh, while in the second, the boundary moves along the fixed mesh. Matter displacement is taken into account in the term of transport of the energy equation, and an appropriate variation of the thermophysical properties of the transition elements between the opaque and transparent media is used. After a description of the introduction of radiative limit conditions in a finite-elements thermal model, the original methods used to optimize calculation time are explained. Two examples of application illustrate the approach used. The first concerns the modeling of radiant heat transfers between fuel rods during a reactor cooling accident, and the second concerns the study of heat transfers inside the air-gap of an electric motor. The method of identification of the mobile surface on the fixed mesh is described. (J.S.) 12 refs.

  16. Finite-elements modeling of radiant heat transfers between mobile surfaces; Modelisation par elements finis de transferts radiatifs entre surfaces mobiles

    Daurelle, J.V.; Cadene, V.; Occelli, R. [Universite de Provence, 13 - Marseille (France)

    1996-12-31

    In the numerical modeling of thermal industrial problems, radiant heat transfers remain difficult to take into account and require important computer memory and long computing time. These difficulties are enhanced when radiant heat transfers are coupled with finite-elements diffusive heat transfers because finite-elements architecture is complex and requires a lot of memory. In the case of radiant heat transfers along mobile boundaries, the methods must be optimized. The model described in this paper concerns the radiant heat transfers between diffuse grey surfaces. These transfers are coupled with conduction transfers in the limits of the diffusive opaque domain. 2-D and 3-D geometries are analyzed and two configurations of mobile boundaries are considered. In the first configuration, the boundary follows the deformation of the mesh, while in the second, the boundary moves along the fixed mesh. Matter displacement is taken into account in the term of transport of the energy equation, and an appropriate variation of the thermophysical properties of the transition elements between the opaque and transparent media is used. After a description of the introduction of radiative limit conditions in a finite-elements thermal model, the original methods used to optimize calculation time are explained. Two examples of application illustrate the approach used. The first concerns the modeling of radiant heat transfers between fuel rods during a reactor cooling accident, and the second concerns the study of heat transfers inside the air-gap of an electric motor. The method of identification of the mobile surface on the fixed mesh is described. (J.S.) 12 refs.

  17. Organic Carbon/Water and Dissolved Organic Carbon/Water Partitioning of Cyclic Volatile Methylsiloxanes: Measurements and Polyparameter Linear Free Energy Relationships.

    Panagopoulos, Dimitri; Jahnke, Annika; Kierkegaard, Amelie; MacLeod, Matthew

    2015-10-20

    The sorption of cyclic volatile methyl siloxanes (cVMS) to organic matter has a strong influence on their fate in the aquatic environment. We report new measurements of the partition ratios between freshwater sediment organic carbon and water (KOC) and between Aldrich humic acid dissolved organic carbon and water (KDOC) for three cVMS, and for three polychlorinated biphenyls (PCBs) that were used as reference chemicals. Our measurements were made using a purge-and-trap method that employs benchmark chemicals to calibrate mass transfer at the air/water interface in a fugacity-based multimedia model. The measured log KOC of octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) were 5.06, 6.12, and 7.07, and log KDOC were 5.05, 6.13, and 6.79. To our knowledge, our measurements for KOC of D6 and KDOC of D4 and D6 are the first reported. Polyparameter linear free energy relationships (PP-LFERs) derived from training sets of empirical data that did not include cVMS generally did not predict our measured partition ratios of cVMS accurately (root-mean-squared-error (RMSE) for logKOC 0.76 and for logKDOC 0.73). We constructed new PP-LFERs that accurately describe partition ratios for the cVMS as well as for other chemicals by including our new measurements in the existing training sets (logKOC RMSEcVMS: 0.09, logKDOC RMSEcVMS: 0.12). The PP-LFERs we have developed here should be further evaluated and perhaps recalibrated when experimental data for other siloxanes become available.

  18. Evaluation of Various Retrofitting Concepts of Building Envelope for Offices Equipped with Large Radiant Ceiling Panels by Dynamic Simulations

    Sabina Jordan

    2015-09-01

    Full Text Available In order to achieve significant savings in energy and an improved level of thermal comfort in retrofitted existing buildings, specific retrofitting concepts that combine new technologies and design need to be developed and implemented. Large radiant surfaces systems are now among the most promising future technologies to be used both in retrofitted and in new low-energy buildings. These kinds of systems have been the topic of several studies dealing with thermal comfort and energy utilization, but some specific issues concerning their possible use in various concepts for retrofitting are still poorly understood. In the present paper, some results of dynamic simulations, with the transient system simulation tool (TRNSYS model, of the retrofitted offices equipped with radiant ceiling panels are presented and thoroughly analysed. Based on a precise comparison of the results of these simulations with actual measurements in the offices, certain input data for the model were added, so that the model was consequently validated. The model was then applied to the evaluation of various concepts of building envelopes for office retrofitting. By means of dynamic simulations of indoor environment it was possible to determine the benefits and limitations of individual retrofitting concepts. Some specific parameters, which are relevant to these concepts, were also identified.

  19. Radiometric measurements of wall temperatures in the 800 K to 1150 K range for a quartz radiant heating tube

    Blevins, L.G.; Sivathanu, Y.R.; Gore, J.P.; Shahien, M.A.

    1995-01-01

    Many industrial applications require heat transfer to a load in an inert environment, which can be achieved by using gas-fired radiant tubes. A radiant tube consists of a flame confined in a cylindrical metal or ceramic chamber. The flame heats the tube wall, which in turn radiates to the load. One important characteristic of radiant heating tubes is wall temperature uniformity. Numerical models of radiant tubes have been used to predict wall temperatures, but there is a lack of experimental data for validation. Recently, Namazian et al., Singh and Gorski, and Peters et al. have measured wall temperature profiles of radiant tubes using thermocouples. 13 refs., 3 figs

  20. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S.

    2011-01-01

    Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

  1. Analysis of directional radiative behavior and heating efficiency for a gas-fired radiant burner

    Li, B.X.; Lu, Y.P.; Liu, L.H.; Kudo, K.; Tan, H.P.

    2005-01-01

    For the purpose of energy conservation and uniform heating of object surface, a gas-fired porous radiant burner with a bundle of reflecting tubes is developed. A physical model is developed to simulate the directional radiative behavior of this heating device, in which the Monte Carlo method based on the concept of radiation distribution factor is used to compute the directional radiative behavior. The effects of relating parameters on the directional behavior of radiative heating and the heating efficiency are analyzed. With the increase of the length-to-radius ratio of tube, the radiation heating efficiency decreases, but the radiation energy incident on the object surface is more collimated. The radiation heating efficiency increases with the specular reflectivity. With the increase in length of tube segment with specular reflective surface, the radiation heating efficiency increases, but the extent of concentration and collimation of radiative energy decreases. For real design of the heating device, some trade-offs are needed to balance the radiation heating efficiency and the uniformity of radiative heating of object surface

  2. An experimental study of thermal comfort at different combinations of air and mean radiant temperature

    Simone, Angela; Olesen, Bjarne W.

    2009-01-01

    It is often discussed if a person prefers a low air temperature (ta) and a high mean radiant temperature (tr), vice-versa or it does not matter as long as the operative temperature is acceptable. One of the hypotheses is that it does not matter for thermal comfort but for perceived air quality......, a lower air temperature is preferred. This paper presents an experimental study with 30 human subjects exposed to three different combinations of air- and mean radiant temperature with an operative temperature around 23 °C. The subjects gave subjective evaluations of thermal comfort and perceived air...... quality during the experiments. The PMV-index gave a good estimation of thermal sensation vote (TSV) when the air and mean radiant temperature were the same. In the environment with different air- and mean radiant temperatures, a thermal comfort evaluation shows an error up to 1 scale unit on the 7-point...

  3. Cyclic nucleotides and radioresistnace

    Kulinskij, V.I.; Mikheeva, G.A.; Zel'manovich, B.M.

    1982-01-01

    The addition of glucose to meat-peptone broth does not change the radiosensitizing effect (RSE) of cAMP at the logarithmic phase (LP) and the radioprotective effect (RPE) at the stationary phase (SP), but sensitization, characteristic of cGMP, disappears in SP and turns into RPE in LP. Introduction of glucose into the broth for 20 min eliminates all the effects of both cyclic nucleotides in the cya + strain while cya - mutant exhibits RSE. RSE of both cyclic nucleotides is only manifested on minimal media. These data brought confirmation of the dependence of the influence of cyclic media. These data brought confirmation of the dependence of the influence of cyclic nucleotides on radioresistance upon the metabolic status of the cell [ru

  4. Ignition of Cellulosic Paper at Low Radiant Fluxes

    White, K. Alan

    1996-01-01

    The ignition of cellulosic paper by low level thermal radiation is investigated. Past work on radiative ignition of paper is briefly reviewed. No experimental study has been reported for radiative ignition of paper at irradiances below 10 Watts/sq.cm. An experimental study of radiative ignition of paper at these low irradiances is reported. Experimental parameters investigated and discussed include radiant power levels incident on the sample, the method of applying the radiation (focussed vs. diffuse Gaussian source), the presence and relative position of a separate pilot ignition source, and the effects of natural convection (buoyancy) on the ignition process in a normal gravity environment. It is observed that the incident radiative flux (in W/sq.cm) has the greatest influence on ignition time. For a given flux level, a focussed Gaussian source is found to be advantageous to a more diffuse, lower amplitude, thermal source. The precise positioning of a pilot igniter relative to gravity and to the fuel sample affects the ignition process, but the precise effects are not fully understood. Ignition was more readily achieved and sustained with a horizontal fuel sample, indicating the buoyancy plays a role in the ignition process of cellulosic paper. Smoldering combustion of doped paper samples was briefly investigated, and results are discussed.

  5. Design and construction of a regenerative radiant tube burner

    Henao, Diego Alberto; Cano C, Carlos Andres; Amell Arrieta, Andres A.

    2002-01-01

    The technological development of the gas industry in Colombia, aiming at efficient and safe use of the natural gas, requires the assimilation and adaptation of new generation, technologies for this purpose in this article results are presented on the design, construction and characterization of a prototype of a burner of regenerative radiant robe with a thermal power of 9,94 kW and a factor of air 1,05. This system takes advantage of the high exit temperature of the combustion smokes, after they go trough a metallic robe where they transfer the heat by radiation, to heat a ceramic channel that has the capacity to absorbing a part of the heat of the smokes and then transferring them to a current of cold air. The benefits of air heating are a saving in fuel, compared with other processes that don't incorporate the recovery of heat from the combustion gases. In this work it was possible to probe a methodology for the design of this type of burners and to reach maximum temperatures of heating of combustion air of 377,9 centigrade degrees, using a material available in the national market, whose regenerative properties should be studied in depth

  6. Automatic drawing and CAD actualization in processing data of radiant sampling in physics prospect

    Liu Jinsheng

    2010-01-01

    In this paper discussed a method of processing radiant sampling data with computer. By this method can get expain the curve of radiant sampling data, and we can combine mineral masses and analyse and calculate them, then record the result on Notebook. There are many merites of this method: easy to learn, simple to use, high efficient. It adapts to all sorts of mines. (authors)

  7. Automatic drawing and cad actualiztion in processing data of radiant sampling in physics prospect

    Liu Jinsheng

    2010-01-01

    In this paper discussed a method of processing radiant sampling data with computer. By this method can get explain the curve of radiant sampling data, and we can combine mineral masses and analyses and calculate them, then record the result on Notebook. There are many merites of this method: easy to learn, simple to use, high efficient. It adapts to all sorts of mines. (authors)

  8. General Relativistic Radiant Shock Waves in the Post-Quasistatic Approximation

    H, Jorge A Rueda [Centro de Fisica Fundamental, Universidad de Los Andes, Merida 5101, Venezuela Escuela de Fisica, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); Nunez, L A [Centro de Fisica Fundamental, Universidad de Los Andes, Merida 5101, Venezuela Centro Nacional de Calculo Cientifico, Universidad de Los Andes, CeCalCULA, Corporacion Parque Tecnologico de Merida, Merida 5101, Venezuela (Venezuela)

    2007-05-15

    An evolution of radiant shock wave front is considered in the framework of a recently presented method to study self-gravitating relativistic spheres, whose rationale becomes intelligible and finds full justification within the context of a suitable definition of the post-quasistatic approximation. The spherical matter configuration is divided into two regions by the shock and each side of the interface having a different equation of state and anisotropic phase. In order to simulate dissipation effects due to the transfer of photons and/or neutrinos within the matter configuration, we introduce the flux factor, the variable Eddington factor and a closure relation between them. As we expected the strong of the shock increases the speed of the fluid to relativistic ones and for some critical values is larger than light speed. In addition, we find that energy conditions are very sensible to the anisotropy, specially the strong energy condition. As a special feature of the model, we find that the contribution of the matter and radiation to the radial pressure are the same order of magnitude as in the mant as in the core, moreover, in the core radiation pressure is larger than matter pressure.

  9. General Relativistic Radiant Shock Waves in the Post-Quasistatic Approximation

    H, Jorge A Rueda; Nunez, L A

    2007-01-01

    An evolution of radiant shock wave front is considered in the framework of a recently presented method to study self-gravitating relativistic spheres, whose rationale becomes intelligible and finds full justification within the context of a suitable definition of the post-quasistatic approximation. The spherical matter configuration is divided into two regions by the shock and each side of the interface having a different equation of state and anisotropic phase. In order to simulate dissipation effects due to the transfer of photons and/or neutrinos within the matter configuration, we introduce the flux factor, the variable Eddington factor and a closure relation between them. As we expected the strong of the shock increases the speed of the fluid to relativistic ones and for some critical values is larger than light speed. In addition, we find that energy conditions are very sensible to the anisotropy, specially the strong energy condition. As a special feature of the model, we find that the contribution of the matter and radiation to the radial pressure are the same order of magnitude as in the mant as in the core, moreover, in the core radiation pressure is larger than matter pressure

  10. Radiant heat increases piglets’ use of the heated creep area on the critical days after birth

    Larsen, Mona Lilian Vestbjerg; Thodberg, Karen; Pedersen, Lene Juul

    2017-01-01

    The aim of the present study was to investigate how piglets’ use of a creep area is affected by using radiant heat compared to an incandescent light bulb. It was hypothesised that radiant heat would increase the use of the creep area. Twenty litters were randomly assigned to one of two heat sources...... in the creep area: (1) an incandescent light bulb (STANDARD, n=10) or (2) a radiant heat source (RADIANT, n=10) with five of each type of heat source in each of two batches. Observations on piglets’ position in the pen were made by scan sampling every ten minutes in a 4-hour period from 1100 to 1500 h on day 1......–7, 14 and 21 post partum. A higher percentage of piglets in the creep area was seen for RADIANT litters compared to STANDARD litters on day 2 (P=0.002) and day 3 (P=0.005), and percentage of piglets in the creep area increased for RADIANT litters from day 1 to 2 (P

  11. Tunnel effect wave energy detection

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1995-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  12. Generalized Wideband Cyclic MUSIC

    Zhang-Meng Liu

    2009-01-01

    Full Text Available The method of Spectral Correlation-Signal Subspace Fitting (SC-SSF fails to separate wideband cyclostationary signals with coherent second-order cyclic statistics (SOCS. Averaged Cyclic MUSIC (ACM method made up for the drawback to some degree via temporally averaging the cyclic cross-correlation of the array output. This paper interprets ACM from another perspective and proposes a new DOA estimation method by generalizing ACM for wideband cyclostationary signals. The proposed method successfully makes up for the aforementioned drawback of SC-SSF and obtains a more satisfying performance than ACM. It is also demonstrated that ACM is a simplified form of the proposed method when only a single spectral frequency is exploited, and the integration of the frequencies within the signal bandwidth helps the new method to outperform ACM.

  13. The Role of Cyclic Nucleotide Signaling Pathways in Cancer: Targets for Prevention and Treatment

    Fajardo, Alexandra M.; Piazza, Gary A. [Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave, Suite 3029, Mobile, AL 36604 (United States); Tinsley, Heather N., E-mail: htinsley@montevallo.edu [Department of Biology, Chemistry, and Mathematics, University of Montevallo, Station 6480, Montevallo, AL 35115 (United States)

    2014-02-26

    For more than four decades, the cyclic nucleotides cyclic AMP (cAMP) and cyclic GMP (cGMP) have been recognized as important signaling molecules within cells. Under normal physiological conditions, cyclic nucleotides regulate a myriad of biological processes such as cell growth and adhesion, energy homeostasis, neuronal signaling, and muscle relaxation. In addition, altered cyclic nucleotide signaling has been observed in a number of pathophysiological conditions, including cancer. While the distinct molecular alterations responsible for these effects vary depending on the specific cancer type, several studies have demonstrated that activation of cyclic nucleotide signaling through one of three mechanisms—induction of cyclic nucleotide synthesis, inhibition of cyclic nucleotide degradation, or activation of cyclic nucleotide receptors—is sufficient to inhibit proliferation and activate apoptosis in many types of cancer cells. These findings suggest that targeting cyclic nucleotide signaling can provide a strategy for the discovery of novel agents for the prevention and/or treatment of selected cancers.

  14. Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower

    Ma, Peizheng; Wang, Lin-Shu; Guo, Nianhua

    2014-01-01

    Highlights: • Investigated cooling of thermally homeostatic buildings in 7 U.S. cities by modeling. • Natural energy is harnessed by cooling tower to extract heat for building cooling. • Systematically studied possibility and conditions of using cooling tower in buildings. • Diurnal ambient temperature amplitude is taken into account in cooling tower cooling. • Homeostatic building cooling is possible in locations with large ambient T amplitude. - Abstract: A case is made that while it is important to mitigate dissipative losses associated with heat dissipation and mechanical/electrical resistance for engineering efficiency gain, the “architect” of energy efficiency is the conception of best heat extraction frameworks—which determine the realm of possible efficiency. This precept is applied to building energy efficiency here. Following a proposed process assumption-based design method, which was used for determining the required thermal qualities of building thermal autonomy, this paper continues this line of investigation and applies heat extraction approach investigating the extent of building partial homeostasis and the possibility of full homeostasis by using cooling tower in one summer in seven selected U.S. cities. Cooling tower heat extraction is applied parametrically to hydronically activated radiant-surfaces model-buildings. Instead of sizing equipment as a function of design peak hourly temperature as it is done in heat balance design-approach of selecting HVAC equipment, it is shown that the conditions of using cooling tower depend on both “design-peak” daily-mean temperature and the distribution of diurnal range in hourly temperature (i.e., diurnal temperature amplitude). Our study indicates that homeostatic building with natural cooling (by cooling tower alone) is possible only in locations of special meso-scale climatic condition such as Sacramento, CA. In other locations the use of cooling tower alone can only achieve homeostasis

  15. Linearization of the interaction principle: Analytic Jacobians in the 'Radiant' model

    Spurr, R.J.D.; Christi, M.J.

    2007-01-01

    In this paper we present a new linearization of the Radiant radiative transfer model. Radiant uses discrete ordinates for solving the radiative transfer equation in a multiply-scattering anisotropic medium with solar and thermal sources, but employs the adding method (interaction principle) for the stacking of reflection and transmission matrices in a multilayer atmosphere. For the linearization, we show that the entire radiation field is analytically differentiable with respect to any surface or atmospheric parameter for which we require Jacobians (derivatives of the radiance field). Derivatives of the discrete ordinate solutions are based on existing methods developed for the LIDORT radiative transfer models. Linearization of the interaction principle is completely new and constitutes the major theme of the paper. We discuss the application of the Radiant model and its linearization in the Level 2 algorithm for the retrieval of columns of carbon dioxide as the main target of the Orbiting Carbon Observatory (OCO) mission

  16. The arabidopsis cyclic nucleotide interactome

    Donaldson, Lara Elizabeth; Meier, Stuart Kurt; Gehring, Christoph A

    2016-01-01

    Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms

  17. Holographic entanglement entropy and cyclic cosmology

    Frampton, Paul H.

    2018-06-01

    We discuss a cyclic cosmology in which the visible universe, or introverse, is all that is accessible to an observer while the extroverse represents the total spacetime originating from the time when the dark energy began to dominate. It is argued that entanglement entropy of the introverse is the more appropriate quantity to render infinitely cyclic, rather than the entropy of the total universe. Since vanishing entanglement entropy implies disconnected spacetimes, at the turnaround when the introverse entropy is zero the disconnected extroverse can be jettisoned with impunity.

  18. Geometric morphometric analysis of cyclical body shape changes in color pattern variants of Cichla temensis Humboldt, 1821 (Perciformes: Cichlidae demonstrates reproductive energy allocation

    Paul Reiss

    Full Text Available Previously recognized color and pattern variants of adult Cichla temensis in Amazon flood pulse river environments reflect the cycling of individuals through seasonal sexual maturity and spawning. Individuals also vary in shape from blocky to fusiform. To determine if shape differences are related to patterns of fat reserve deposition and utilization, and to quantify the relationship of shape with color and pattern variation and life history status, specimens in each of four previously defined grades of color and pattern variation were compared using geometric morphometric techniques. Progressive shape changes occurred between grades independent of sex and correlated to gonosomatic index (GSI. Thin plate spline deformation visualizations indicate that the observed shape differences are related to fat deposition patterns. The seasonal timing of shape change and its link to color pattern variation, sexual maturity and local water level conditions suggests a relationship between the physiological and behavioral characteristics of C. temensis and the cyclical flood pulse pattern of its habitat.

  19. Simulation of excitonic optical line shapes of cyclic oligomers - models for basic units of photosynthetic antenna systems: Transfer integral versus local energy fluctuations with dichotomic coloured noise

    Barvik, I.; Reineker, P.; Warns, C.; Neidlinger, T.

    1995-08-01

    For Frenkel excitons moving on cyclic and linear molecular chains modeling in part photosynthetic antenna systems we investigate the influence of dynamic and static disorder on their optical line shapes. The dynamic disorder describes the influence of vibrational degrees of freedom and is taken into account by fluctuations of the transfer matrix element between neighbouring molecules. The fluctuations are represented by dichotomic Markov processes with coloured noise. We obtain a closed set of equations of motion for the correlation functions determining the optical line shape which is solved exactly. The line shapes are discussed for various sets of the model parameters and arrangements of molecules and their dipole moments. (author). 63 refs, 10 figs

  20. Energy efficient heating and ventilation of large halls

    Hojer, Ondrej; Kabele, Karel; Kotrbaty, Miroslav; Sommer, Klaus; Petras, Dusan

    2011-01-01

    This guidebook is focused on modern methods for design, control and operation of energy efficient heating systems in large spaces and industrial halls. The book deals with thermal comfort, light and dark gas radiant heaters, panel radiant heating, floor heating and industrial air heating systems. Various heating systems are illustrated with case studies. Design principles, methods and modeling tools are presented for various systems.

  1. Cyclic Voltammograms from First Principles

    Karlberg, Gustav; Jaramillo, Thomas; Skulason, Egill

    2007-01-01

    Cyclic voltammetry is a fundamental experimental tool for characterizing electrochemical surfaces. Whereas cyclic voltammetry is widely used within the field of electrochemistry, a way to quantitatively and directly relate the cyclic voltammogram to ab initio calculations has been lacking, even f...

  2. Experimental evaluation of heat transfer coefficients between radiant ceiling and room

    Causone, Francesco; Corgnati, Stefano P.; Filippi, Marco

    2009-01-01

    The heat transfer coefficients between radiant surfaces and room are influenced by several parameters: surfaces temperature distributions, internal gains, air movements. The aim of this paper is to evaluate the heat transfer coefficients between radiant ceiling and room in typical conditions...... of occupancy of an office or residential building. Internal gains were therefore simulated using heated cylinders and heat losses using cooled surfaces. Evaluations were developed by means of experimental tests in an environmental chamber. Heat transfer coefficient may be expressed separately for radiation...

  3. Thermal Conditions in a Simulated Office Environment with Convective and Radiant Cooling Systems

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Kostov, Kalin

    2013-01-01

    velocity and turbulent intensity were measured and draft rate levels calculated in the room. Manikin-based equivalent temperature (MBET) was determined by two thermal manikins to identify the impact of the local thermal conditions generated by the studied systems on occupants’ thermal comfort. The results......The thermal conditions in a two person office room were measured with four air conditioning systems: chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and four desk partition mounted local radiant cooling panels with mixing...

  4. Three-dimensional simulation of super-radiant Smith-Purcell radiation

    Li, D.; Imasaki, K.; Yang, Z.; Park, Gun-Sik

    2006-01-01

    A simulation of coherent and super-radiant Smith-Purcell radiation is performed in the gigahertz regime using a three-dimensional particle-in-cell code. The simulation model supposes a rectangular grating to be driven by a single electron bunch and a train of periodic bunches, respectively. The true Smith-Purcell radiation is distinguished from the evanescent wave, which has an angle independent frequency lower than the minimum allowed Smith-Purcell frequency. We also find that the super-radiant radiations excited by periodic bunches are emitted at higher harmonics of the bunching frequency and at the corresponding Smith-Purcell angles

  5. Cooling load calculations of radiant and all-air systems for commercial buildings

    Bourdakis, Eleftherios; Bauman, Fred; Schiavon, Stefano

    The authors simulated in TRNSYS three radiant systems coupled with a 50% sized variable air volume (VAV) system and a 50% sized all-air VAV system with night ventilation. The objective of this study was to identify the differences in the cooling load profiles of the examined systems when they are......The authors simulated in TRNSYS three radiant systems coupled with a 50% sized variable air volume (VAV) system and a 50% sized all-air VAV system with night ventilation. The objective of this study was to identify the differences in the cooling load profiles of the examined systems when...

  6. Fixed, low radiant exposure vs. incremental radiant exposure approach for diode laser hair reduction: a randomized, split axilla, comparative single-blinded trial.

    Pavlović, M D; Adamič, M; Nenadić, D

    2015-12-01

    Diode lasers are the most commonly used treatment modalities for unwanted hair reduction. Only a few controlled clinical trials but not a single randomized controlled trial (RCT) compared the impact of various laser parameters, especially radiant exposure, onto efficacy, tolerability and safety of laser hair reduction. To compare the safety, tolerability and mid-term efficacy of fixed, low and incremental radiant exposures of diode lasers (800 nm) for axillary hair removal, we conducted an intrapatient, left-to-right, patient- and assessor-blinded and controlled trial. Diode laser (800 nm) treatments were evaluated in 39 study participants (skin type II-III) with unwanted axillary hairs. Randomization and allocation to split axilla treatments were carried out by a web-based randomization tool. Six treatments were performed at 4- to 6-week intervals with study subjects blinded to the type of treatment. Final assessment of hair reduction was conducted 6 months after the last treatment by means of blinded 4-point clinical scale using photographs. The primary endpoint was reduction in hair growth, and secondary endpoints were patient-rated tolerability and satisfaction with the treatment, treatment-related pain and adverse effects. Excellent reduction in axillary hairs (≥ 76%) at 6-month follow-up visit after receiving fixed, low and incremental radiant exposure diode laser treatments was obtained in 59% and 67% of study participants respectively (Z value: 1.342, P = 0.180). Patients reported lower visual analogue scale (VAS) pain score on the fixed (4.26) than on the incremental radiant exposure side (5.64) (P diode laser treatments were less painful and better tolerated. © 2015 European Academy of Dermatology and Venereology.

  7. 16 CFR Figure 4 to Subpart A of... - Flooring Radiant Panel Tester Schematic Low Flux End, Elevation

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Flooring Radiant Panel Tester Schematic Low Flux End, Elevation 4 Figure 4 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY... Standard Pt. 1209, Subpt. A, Fig. 4 Figure 4 to Subpart A of Part 1209—Flooring Radiant Panel Tester...

  8. HOST liner cyclic facilities

    Schultz, D.

    1983-01-01

    The HOST Liner Cyclic Program is utilizing two types of test apparatus, rectangular box rigs and a full annular rig. To date two quartz lamp cyclic box rigs have been tested and a third is to begin testing in late October 1983. The box rigs are used to evaluate 5x8 inch rectangular linear samples. A 21 inch diameter outer liner simulator is also being built up for testing beginning in April 1984. All rigs are atmospheric rigs. The first box rig, a three 6-kVA lamp installation, was operated under adverse conditions to determine feasibility of using quartz lamps for cyclic testing. This work was done in December 1981 and looked promising. The second box rig, again using three 6-kVA lamps, was operated to obtain instrumentation durability information and initial data input to a Finite Element Model. This limited test program was conducted in August 1983. Five test plates were run. Instrumentation consisted of strain gages, thermocouples and thermal paint. The strain gages were found to fail at 1200 F as expected though plates were heated to 1700 F. The third box rig, containing four 6-kVA lamps, is in build up for testing to begin in late October 1983. In addition to 33 percent greater power input, this rig has provision for 400 F backside line cooling air and a viewing port suitable for IR camera viewing. The casing is also water cooled for extended durability.

  9. Compressed sensing with cyclic-S Hadamard matrix for terahertz imaging applications

    Ermeydan, Esra Şengün; ćankaya, Ilyas

    2018-01-01

    Compressed Sensing (CS) with Cyclic-S Hadamard matrix is proposed for single pixel imaging applications in this study. In single pixel imaging scheme, N = r . c samples should be taken for r×c pixel image where . denotes multiplication. CS is a popular technique claiming that the sparse signals can be reconstructed with samples under Nyquist rate. Therefore to solve the slow data acquisition problem in Terahertz (THz) single pixel imaging, CS is a good candidate. However, changing mask for each measurement is a challenging problem since there is no commercial Spatial Light Modulators (SLM) for THz band yet, therefore circular masks are suggested so that for each measurement one or two column shifting will be enough to change the mask. The CS masks are designed using cyclic-S matrices based on Hadamard transform for 9 × 7 and 15 × 17 pixel images within the framework of this study. The %50 compressed images are reconstructed using total variation based TVAL3 algorithm. Matlab simulations demonstrates that cyclic-S matrices can be used for single pixel imaging based on CS. The circular masks have the advantage to reduce the mechanical SLMs to a single sliding strip, whereas the CS helps to reduce acquisition time and energy since it allows to reconstruct the image from fewer samples.

  10. Radiant and convective heat transfer for flow of a transparent gas in a short tube with prescribed sinusoidal wall heat flux

    de Lemos, M.J.S.

    1982-01-01

    The present analysis accounts for radiant and convective heat transfer for a transparent fluid flowing in a short tube with prescribed wall heat flux. The heat flux distribution used was of sine shape with maximum at the middle of the tube. Such a solution is the approximate one for axial power in a nuclear reactor. The solutions for the tube wall and gas bulk temperatures were obtained by successive substitutions for the wall and gas balance energy equations. The results show a decrease of 30% for the maximum wall temperature using black surface (e = 1). In this same case, the increasing in the gas temperature shows a decrease of 58%

  11. Calculation codes for radiant heat transfers; Les codes de calcul de rayonnement thermique

    NONE

    1997-12-31

    This document reports on 12 papers about computerized simulation and modeling of radiant heat transfers and fluid flows in various industrial and domestic situations: space heating, metal industry (furnaces, boilers..), aerospace industry (turbojet engines, combustion chambers) etc.. This workshop was organized by the ``radiation`` section of the French society of thermal engineers. (J.S.)

  12. Present and projected future mean radiant temperature for three European cities

    Thorsson, Sofia; Rayner, David; Lindberg, Fredrik; Monteiro, Ana; Katzschner, Lutz; Lau, Kevin Ka-Lun; Campe, Sabrina; Katzschner, Antje; Konarska, Janina; Onomura, Shiho; Velho, Sara; Holmer, Björn

    2017-09-01

    Present-day and projected future changes in mean radiant temperature, T mrt in one northern, one mid-, and one southern European city (represented by Gothenburg, Frankfurt, and Porto), are presented, and the concept of hot spots is adopted. Air temperature, T a , increased in all cities by 2100, but changes in solar radiation due to changes in cloudiness counterbalanced or exacerbated the effects on T mrt. The number of days with high T mrt in Gothenburg was relatively unchanged at the end of the century (+1 day), whereas it more than doubled in Frankfurt and tripled in Porto. The use of street trees to reduce daytime radiant heat load was analyzed using hot spots to identify where trees could be most beneficial. Hot spots, although varying in intensity and frequency, were generally confined to near sunlit southeast-southwest facing walls, in northeast corner of courtyards, and in open spaces in all three cities. By adding trees in these spaces, the radiant heat load can be reduced, especially in spaces with no or few trees. A set of design principles for reducing the radiant heat load is outlined based on these findings and existing literature.

  13. Calculation codes for radiant heat transfers; Les codes de calcul de rayonnement thermique

    NONE

    1996-12-31

    This document reports on 12 papers about computerized simulation and modeling of radiant heat transfers and fluid flows in various industrial and domestic situations: space heating, metal industry (furnaces, boilers..), aerospace industry (turbojet engines, combustion chambers) etc.. This workshop was organized by the ``radiation`` section of the French society of thermal engineers. (J.S.)

  14. Applicability of meteor radiant determination methods depending on orbit type. I. High-eccentric orbits

    Svoren, J.; Neslusan, L.; Porubcan, V.

    1993-07-01

    It is evident that there is no uniform method of calculating meteor radiants which would yield reliable results for all types of cometary orbits. In the present paper an analysis of this problem is presented, together with recommended methods for various types of orbits. Some additional methods resulting from mathematical modelling are presented and discussed together with Porter's, Steel-Baggaley's and Hasegawa's methods. In order to be able to compare how suitable the application of the individual radiant determination methods is, it is necessary to determine the accuracy with which they approximate real meteor orbits. To verify the accuracy with which the orbit of a meteoroid with at least one node at 1 AU fits the original orbit of the parent body, we applied the Southworth-Hawkins D-criterion (Southworth, R.B., Hawkins, G.S.: 1963, Smithson. Contr. Astrophys 7, 261). D0.2 the fit is rather poor and the change of orbit unrealistic. The optimal methods with the smallest values of D for given types of orbits are shown in two series of six plots. The new method of rotation around the line of apsides we propose is very appropriate in the region of small inclinations. There is no doubt that Hasegawa's omega-adjustment method (Hasegawa, I.: 1990, Publ. Astron. Soc. Japan 42, 175) has the widest application. A comparison of the theoretical radiants with the observed radiants of seven known meteor showers is also presented.

  15. Theoretical Analysis of Interferometer Wave Front Tilt and Fringe Radiant Flux on a Rectangular Photodetector

    Franz Konstantin Fuss

    2013-09-01

    Full Text Available This paper is a theoretical analysis of mirror tilt in a Michelson interferometer and its effect on the radiant flux over the active area of a rectangular photodetector or image sensor pixel. It is relevant to sensor applications using homodyne interferometry where these opto-electronic devices are employed for partial fringe counting. Formulas are derived for radiant flux across the detector for variable location within the fringe pattern and with varying wave front angle. The results indicate that the flux is a damped sine function of the wave front angle, with a decay constant of the ratio of wavelength to detector width. The modulation amplitude of the dynamic fringe pattern reduces to zero at wave front angles that are an integer multiple of this ratio and the results show that the polarity of the radiant flux changes exclusively at these multiples. Varying tilt angle causes radiant flux oscillations under an envelope curve, the frequency of which is dependent on the location of the detector with the fringe pattern. It is also shown that a fringe count of zero can be obtained for specific photodetector locations and wave front angles where the combined effect of fringe contraction and fringe tilt can have equal and opposite effects. Fringe tilt as a result of a wave front angle of 0.05° can introduce a phase measurement difference of 16° between a photodetector/pixel located 20 mm and one located 100 mm from the optical origin.

  16. Experimental and numerical analysis of air and radiant cooling systems in offices

    Corgnati, S. P.; Perino, M.; Fracastoro, G. V.

    2009-01-01

    This paper analyses office cooling systems based on all air mixing ventilation systems alone or coupled with radiant ceiling panels. This last solution may be effectively applied to retrofit all air systems that are no longer able to maintain a suitable thermal comfort in the indoor environment, ...

  17. Characteristics of infrared thermometers manufactured in Japan and calibration methods for sky radiant emittance

    Wang, X.; Horiguchi, I.; Machimura, T.

    1993-01-01

    Infrared thermometers to measure surface temperature have been increasingly adopted in recent years. The characteristics of the IR thermometer, however, are not well known.IR thermometers manufactured in Japan systematically adjust for ambient radiation based on the internal temperature of the thermometer. If, therefore, there is a large difference between the internal temperature of the IR thermometer and the apparent temperature associated with the surrounding radiation, a large error will be induced into the measured surface temperature.The purpose of our research was to determine the characteristics and measurement errors of IR thermometers. Experiments were performed with regard to the following items: (1) Measurement errors related to the internal temperature of the IR thermometer. (2) Linearity of the output signal of the IR thermometer. (3) Response of the output signal to changes in the emissivity setting. (4) Effect of sky radiant emittance on the measured surface temperature. (5) Calibration method for the terrestrial surface.The following is a summary of the results: Measurement error is affected by the internal temperature of the IR thermometer. Measurement accuracy is improved with a controlled internal temperature of 20-30°C. The measurement error becomes larger at emissivity settings under 0.7.The measurement error outdoors was not proportional to the downward longwave radiation, but to the sky radiant temperature measured by the IR thermometer. Calibration for sky radiant emittance was improved by using the difference between sky radiant temperature and air temperature.When the surface temperature measured by the infrared thermometer is plotted against the surface temperature measured by thermocouple, the sky radiant emittance error is obtained from the Y intercept. Additionally, the difference between true temperature and output of the IR thermometer for a reference plate was compared to that obtained for vegetation, and the RMS obtained was

  18. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise.

    Guéritée, Julien; Tipton, Michael J

    2015-02-01

    The aims of the present work were to investigate the relationships between radiant heat load, air velocity and body temperatures with or without coincidental exercise to determine the physiological mechanisms that drive thermal comfort and thermoregulatory behaviour. Seven male volunteers wearing swimming trunks in 18°C, 22°C or 26°C air were exposed to increasing air velocities up to 3 m s(-1) and self-adjusted the intensity of the direct radiant heat received on the front of the body to just maintain overall thermal comfort, at rest or when cycling (60 W, 60 rpm). During the 30 min of the experiments, skin and rectal temperatures were continuously recorded. We hypothesized that mean body temperature should be maintained stable and the intensity of the radiant heat and the mean skin temperatures would be lower when cycling. In all conditions, mean body temperature was lower when facing winds of 3 m s(-1) than during the first 5 min, without wind. When facing winds, in all but the 26°C air, the radiant heat was statistically higher at rest than when exercising. In 26°C air mean skin temperature was lower at rest than when exercising. No other significant difference was observed. In all air temperatures, high correlation coefficients were observed between the air velocity and the radiant heat load. Other factors that we did not measure may have contributed to the constant overall thermal comfort status despite dropping mean skin and body temperatures. It is suggested that the allowance to behaviourally adjust the thermal environment increases the tolerance of cold discomfort. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Cyclic approximation to stasis

    Stewart D. Johnson

    2009-06-01

    Full Text Available Neighborhoods of points in $mathbb{R}^n$ where a positive linear combination of $C^1$ vector fields sum to zero contain, generically, cyclic trajectories that switch between the vector fields. Such points are called stasis points, and the approximating switching cycle can be chosen so that the timing of the switches exactly matches the positive linear weighting. In the case of two vector fields, the stasis points form one-dimensional $C^1$ manifolds containing nearby families of two-cycles. The generic case of two flows in $mathbb{R}^3$ can be diffeomorphed to a standard form with cubic curves as trajectories.

  20. Accelerated cyclic corrosion tests

    Prošek T.

    2016-06-01

    Full Text Available Accelerated corrosion testing is indispensable for material selection, quality control and both initial and residual life time prediction for bare and painted metallic, polymeric, adhesive and other materials in atmospheric exposure conditions. The best known Neutral Salt Spray (NSS test provides unrealistic conditions and poor correlation to exposures in atmosphere. Modern cyclic accelerated corrosion tests include intermittent salt spray, wet and dry phases and eventually other technical phases. They are able to predict the material performance in service more correctly as documented on several examples. The use of NSS should thus be restricted for quality control.

  1. [Asthma and cyclic neutropenia].

    Salazar Cabrera, A N; Berrón Pérez, R; Ortega Martell, J A; Onuma Takane, E

    1996-01-01

    We report a male with history of recurrent infections (recurrent oral aphtous disease [ROAD], middle ear infections and pharyngo amigdalitis) every 3 weeks since he was 7 months old. At the age of 3 years cyclic neutropenia was diagnosed with cyclic fall in the total neutrophil count in blood smear every 21 days and prophylactic antimicrobial therapy was indicated. Episodic events every 3 weeks of acute asthma and allergic rhinitis were detected at the age of 6 years old and specific immunotherapy to Bermuda grass was given during 3 years with markedly improvement in his allergic condition but not in the ROAD. He came back until the age of 16 with episodic acute asthma and ROAD. The total neutrophil count failed to 0 every 21 days and surprisingly the total eosinophil count increased up to 2,000 at the same time, with elevation of serum IgE (412 Ul/mL). Specific immunotherapy to D.pt. and Aller.a. and therapy with timomodulin was indicated. After 3 months we observed clinical improvement in the asthmatic condition and the ROAD disappeared, but the total neutrophil count did not improve. We present this case as a rare association between 2 diseases with probably no etiological relationship but may be physiopatological that could help to understand more the pathogenesis of asthma.

  2. Z₂-double cyclic codes

    Borges, J.

    2014-01-01

    A binary linear code C is a Z2-double cyclic code if the set of coordinates can be partitioned into two subsets such that any cyclic shift of the coordinates of both subsets leaves invariant the code. These codes can be identified as submodules of the Z2[x]-module Z2[x]/(x^r − 1) × Z2[x]/(x^s − 1). We determine the structure of Z2-double cyclic codes giving the generator polynomials of these codes. The related polynomial representation of Z2-double cyclic codes and its duals, and the relation...

  3. Manual for Cyclic Triaxial Test

    Shajarati, Amir; Sørensen, Kris Wessel; Nielsen, Søren Kjær

    This manual describes the different steps that is included in the procedure for conducting a cyclic triaxial test at the geotechnical Laboratory at Aalborg University. Furthermore it contains a chapter concerning some of the background theory for the static triaxial tests. The cyclic/dynamic tria......This manual describes the different steps that is included in the procedure for conducting a cyclic triaxial test at the geotechnical Laboratory at Aalborg University. Furthermore it contains a chapter concerning some of the background theory for the static triaxial tests. The cyclic...

  4. Effects of tri-n-butyltin chloride on energy metabolism, macromolecular synthesis, precursor uptake and cyclic AMP production in isolated rat thymocytes

    Snoeij, N.J.; Punt, P.M.; Penninks, A.H.; Seinen, W.

    1986-01-01

    The inhibitor of oxidative phosphorylation tri-n-butyltin chloride (TBTC) causes membrane damage and disintegration of isolated rat thymocytes at concentrations higher than 1 μM. From a concentration of 0.1 μM, TBTC disturbs energy metabolism as indicated by an increase in methylglucose uptake,

  5. The arabidopsis cyclic nucleotide interactome

    Donaldson, Lara Elizabeth

    2016-05-11

    Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  6. Freeform Lens Design for Scattering Data with General Radiant Fields

    Gutiérrez, Cristian E.; Sabra, Ahmad

    2018-05-01

    We show the existence of a lens, when its lower face is given, such that it refracts radiation emanating from a planar source, with a given field of directions, into the far field that preserves a given distribution of energies. Conditions are shown under which the lens obtained is physically realizable. It is shown that the upper face of the lens satisfies a pde of Monge-Ampère type.

  7. Super-radiant Smith–Purcell radiation from periodic line charges

    Li, D.; Hangyo, M.; Tsunawaki, Y.; Yang, Z.; Wei, Y.; Miyamoto, S; Asakawa, M.R.; Imasaki, K.

    2012-01-01

    Smith–Purcell radiation occurs when an electron passes close to the surface of a metallic grating. The radiation becomes coherent when the length of the electron bunch is smaller than the wavelength of the radiation. A train of periodic bunches can enhance the spectral intensity by changing the angular and spectral distribution of the radiation. This is called super-radiant Smith–Purcell radiation, and has been observed in experiments and particle-in-cell simulations. In this paper, we introduce a new method to study this effect by calculating the reflected waves of an incident evanescent wave from periodic line charges. The reflection coefficients are numerically computed, and the spectral distributions of the super-radiant radiation are demonstrated. These analytical results are in agreement with those obtained through part-in-cell simulations.

  8. Study of thermosiphon and radiant panel passive heating systems for metal buildings

    Biehl, F.A.; Schnurr, N.M.; Wray, W.O.

    1983-01-01

    A study of passive-heating systems appropriate for use on metal buildings is being conducted at Los Alamos National Laboratory for the Naval Civil Engineering Laboratory, Port Hueneme, California. The systems selected for study were chosen on the basis of their appropriateness for retrofit applications, although they are also suitable for new construction: simple radiant panels that communicate directly with the building interior and a backflow thermosiphon that provides heat indirectly.

  9. Free of pollution gas - an utopia or attainable goal? Gas radiant burner with a small capacity

    Hofbauer, P.; Bornscheuer, W.

    1993-01-01

    The firm Viessmann has developed a gas radiant burner for boiler capacities up to 100 kN combusting gas with extremely low pollutant emissions. This is possible since from the reaction zone a considerable part of the combustion heat is delivered through radiation by means of a glowing special steel structure. The theoretical fundamentals are explained by means of considerations regarding the equilibrium and a reaction kinetic numerical model. (orig.) [de

  10. Effects of cryogen spray cooling and high radiant exposures on selective vascular injury during laser irradiation of human skin.

    Tunnell, James W; Chang, David W; Johnston, Carol; Torres, Jorge H; Patrick, Charles W; Miller, Michael J; Thomsen, Sharon L; Anvari, Bahman

    2003-06-01

    Increasing radiant exposure offers a means to increase treatment efficacy during laser-mediated treatment of vascular lesions, such as port-wine stains; however, excessive radiant exposure decreases selective vascular injury due to increased heat generation within the epidermis and collateral damage to perivascular collagen. To determine if cryogen spray cooling could be used to maintain selective vascular injury (ie, prevent epidermal and perivascular collagen damage) when using high radiant exposures (16-30 J/cm2). Observational study. Academic hospital and research laboratory. Twenty women with normal abdominal skin (skin phototypes I-VI). Skin was irradiated with a pulsed dye laser (wavelength = 585 nm; pulse duration = 1.5 milliseconds; 5-mm-diameter spot) using various radiant exposures (8-30 J/cm2) without and with cryogen spray cooling (50- to 300-millisecond cryogen spurts). Hematoxylin-eosin-stained histologic sections from each irradiated site were examined for the degree of epidermal damage, maximum depth of red blood cell coagulation, and percentage of vessels containing perivascular collagen coagulation. Long cryogen spurt durations (>200 milliseconds) protected the epidermis in light-skinned individuals (skin phototypes I-IV) at the highest radiant exposure (30 J/cm2); however, epidermal protection could not be achieved in dark-skinned individuals (skin phototypes V-VI) even at the lowest radiant exposure (8 J/cm2). The red blood cell coagulation depth increased with increasing radiant exposure (to >2.5 mm for skin phototypes I-IV and to approximately 1.2 mm for skin phototypes V-VI). In addition, long cryogen spurt durations (>200 milliseconds) prevented perivascular collagen coagulation in all skin types. Cryogen spurt durations much longer than those currently used in therapy (>200 milliseconds) may be clinically useful for protecting the epidermis and perivascular tissues when using high radiant exposures during cutaneous laser therapies

  11. Inverse optimal design of the radiant heating in materials processing and manufacturing

    Fedorov, A. G.; Lee, K. H.; Viskanta, R.

    1998-12-01

    Combined convective, conductive, and radiative heat transfer is analyzed during heating of a continuously moving load in the industrial radiant oven. A transient, quasi-three-dimensional model of heat transfer between a continuous load of parts moving inside an oven on a conveyor belt at a constant speed and an array of radiant heaters/burners placed inside the furnace enclosure is developed. The model accounts for radiative exchange between the heaters and the load, heat conduction in the load, and convective heat transfer between the moving load and oven environment. The thermal model developed has been used to construct a general framework for an inverse optimal design of an industrial oven as an example. In particular, the procedure based on the Levenberg-Marquardt nonlinear least squares optimization algorithm has been developed to obtain the optimal temperatures of the heaters/burners that need to be specified to achieve a prescribed temperature distribution of the surface of a load. The results of calculations for several sample cases are reported to illustrate the capabilities of the procedure developed for the optimal inverse design of an industrial radiant oven.

  12. Optimum pulse duration and radiant exposure for vascular laser therapy of dark port-wine skin: a theoretical study

    Tunnell, James W.; Anvari, Bahman; Wang, Lihong V.

    2003-01-01

    Laser therapy for cutaneous hypervascular malformations such as port-wine stain birthmarks is currently not feasible for dark-skinned individuals. We study the effects of pulse duration, radiant exposure, and cryogen spray cooling (CSC) on the thermal response of skin, using a Monte Carlo based optical-thermal model. Thermal injury to the epidermis decreases with increasing pulse duration during irradiation at a constant radiant exposure; however, maintaining vascular injury requires that the radiant exposure also increase. At short pulse durations, only a minimal increase in radiant exposure is necessary for a therapeutic effect to be achieved because thermal diffusion from the vessels is minimal. However, at longer pulse durations the radiant exposure must be greatly increased. There exists an optimum pulse duration at which minimal damage to the epidermis and significant injury within the targeted vasculature occur. For example, the model predicts optimum pulse durations of approximately 1.5, 6, and 20 ms for vessel diameters of 40, 80, and 120 μm, respectively. Optimization of laser pulse duration and radiant exposure in combination with CSC may offer a means to treat cutaneous lesions in dark-skinned individuals

  13. Capacity of 50Ti-47Ni-3Cu composite to convert heat energy to mechanical work under cyclic measurement of temperature

    Belyaev, S.P.; Kuz'min, S.L.; Likhachev, V.A.

    1984-01-01

    The TiNiCu alloy with a shape memory which may be used as a working medium for the martensite engine converting heat energy to mechanical one is studied for its energy characteristics. Mechanical characteristics of the material are studied under torsion of cylindrical specimens of stressed thermocycling through temperature intervals of martensite transformations. It is established that the shape memory and transformation ductility effects determining serviceability and power of the martensite enginem vary gradually with the number of heat changes reaching saturation after 10-15 thermocycles, The heating-and-cooling stress dependence of deformations due to the shape memory and transformation ductility effects also varied with the number of heat changes, Cooling conditions under stress of 50 MPa and heating conditions under 200 MPa and above proved to be most optimal. Serviceability of the engine made of the TiNiCu alloy exceeds 10 MJ/m 3 and its power reaches 10 5 MW m -3 under operation frequency of 10 3 Hz

  14. Cosmic evolution in a cyclic universe

    Steinhardt, Paul J.; Turok, Neil

    2002-01-01

    Based on concepts drawn from the ekpyrotic scenario and M theory, we elaborate our recent proposal of a cyclic model of the universe. In this model, the universe undergoes an endless sequence of cosmic epochs which begin with the universe expanding from a 'big bang' and end with the universe contracting to a 'big crunch'. Matching from 'big crunch' to 'big bang' is performed according to the prescription recently proposed with Khoury, Ovrut and Seiberg. The expansion part of the cycle includes a period of radiation and matter domination followed by an extended period of cosmic acceleration at low energies. The cosmic acceleration is crucial in establishing the flat and vacuous initial conditions required for ekpyrosis and for removing the entropy, black holes, and other debris produced in the preceding cycle. By restoring the universe to the same vacuum state before each big crunch, the acceleration ensures that the cycle can repeat and that the cyclic solution is an attractor

  15. The singlet-triplet energy gap in divalent three, five and seven-membered cyclic C2H2M, C4H4M and C6H6M (M = C, Si, Ge, Sn AND Pb

    E. Vessally

    2009-08-01

    Full Text Available Total energy gaps, ∆Et–s, enthalpy gaps, ∆Ht–s, and Gibbs free energy gaps, ∆Gt–s, between singlet (s and triplet (t states were calculated for three, five and seven-membered cyclic C2H2M, C4H4M and C6H6M (M = C, Si, Ge, Sn and Pb at B3LYP/6-311++G**. The singlet-triplet free energy gaps, ∆Gt–s, for C2H2M (M = C, Si, Ge, Sn and Pb are found to be increased in the order: C2H2Si > C2H2C > C2H2Ge > C2H2Sn > C2H2Pb. The ∆Gt–s of C4H4M are found to be increased in the order: C4H4Pb > C4H4Sn > C4H4Ge > C4H4Si > C4H4C. Also, the ∆Gt–s of C6H6M are determined in the order: C6H6Pb > C6H6Ge ≥ C6H6Sn > C6H6Si > C6H6C. The most stable conformers of C2H2M, C4H4M and C6H6M are proposed for both the singlet and triplet states. Nuclear independent chemical shifts (NICS calculations were carried out for determination of aromatic character. The geometrical parameters are calculated and discussed.

  16. Radiant heat loss, an unexploited path for heat stress reduction in shaded cattle.

    Berman, A; Horovitz, T

    2012-06-01

    Reducing thermal radiation on shaded animals reduces heat stress independently of other means of stress relief. Radiant heat exchange was estimated as a function of climate, shade structure, and animal density. Body surface portion exposed to radiant sources in shaded environments was determined by geometrical relations to determine angles of view of radiation sources (roof underside, sky, sun-exposed ground, shaded ground) on the animal's surface. The relative representation of environment radiation sources on the body surface was determined. Animal thermal radiation balance was derived from radiant heat gained from radiation sources (including surrounding animals) and that lost from the animal surface. The animal environment was assumed to have different shade dimensions and temperatures. These were summed to the radiant heat balance of the cow. The data formed served to estimate the effect of changes in intensity of radiation sources, roof and shaded surface dimensions, and animal density on radiant heat balance (Rbal) of cattle. Roof height effect was expressed by effect of roof temperature on Rbal. Roof underside temperature (35 to 75°C) effect on Rbal was reduced by roof height. If roof height were 4m, an increase in its underside temperature from 35 to 75°C would increase mean Rbal from -63 to -2 W·m⁻², whereas if roof height were 10 m, Rbal would only increase from -99 to -88 W·m⁻². A hot ground temperature increase from 35 to 65°C reduced mean Rbal heat loss from -45 to 3 W·m⁻². Increasing the surface of the shaded area had only a minor effect on Rbal and on the effect of hot ground on Rbal. Increasing shade roof height reduced the effect of roof temperature on Rbal to minor levels when height was > 8m. Increasing the roof height from 4 to 10 m decreased Rbal from -32 to -94 W·m⁻². Increasing indirect radiation from 100 to 500 W·m⁻² was associated with an increase in Rbal from -135 to +23 W·m⁻². Their combined effects were lower

  17. Prognosis of Cyclic Vomiting Syndrome

    J. Gordon Millichap

    2016-03-01

    Full Text Available Investigators from Teikyo University School of Medicine, Tokyo, Japan, evaluated the clinical features, prognosis, and prophylaxis of cyclic vomiting syndrome and the relationship between the syndrome and levels of adrenocorticotropic/antidiuretic hormones (ACTH/ADH.

  18. Modelling and Simulation of the Radiant Field in an Annular Heterogeneous Photoreactor Using a Four-Flux Model

    O. Alvarado-Rolon

    2018-01-01

    Full Text Available This work focuses on modeling and simulating the absorption and scattering of radiation in a photocatalytic annular reactor. To achieve so, a model based on four fluxes (FFM of radiation in cylindrical coordinates to describe the radiant field is assessed. This model allows calculating the local volumetric rate energy absorption (LVREA profiles when the reaction space of the reactors is not a thin film. The obtained results were compared to radiation experimental data from other authors and with the results obtained by discrete ordinate method (DOM carried out with the Heat Transfer Module of Comsol Multiphysics® 4.4. The FFM showed a good agreement with the results of Monte Carlo method (MC and the six-flux model (SFM. Through this model, the LVREA is obtained, which is an important parameter to establish the reaction rate equation. In this study, the photocatalytic oxidation of benzyl alcohol to benzaldehyde was carried out, and the kinetic equation for this process was obtained. To perform the simulation, the commercial software COMSOL Multiphysics v. 4.4 was employed.

  19. Blanchability and sensory quality of large runner peanuts blanched in a radiant wall oven using infrared radiation.

    Kettler, Katrina; Adhikari, Koushik; Singh, Rakesh K

    2017-10-01

    The main factors behind the growing popularity of infrared radiation heating in food processing include its energy efficiency, food quality retention and process speed, as well as the simplicity of equipment. Infrared radiation was employed as an alternative heat treatment to the conventional hot air method used in peanut blanching. The present study aimed to investigate the application of infrared heating for blanching peanuts and determine their blanchability and sensory quality under various processing conditions. The total blanchabilities (expressed as a percentage of total blanched) of the infrared radiation trials (radiant wall oven) at 343 °C for 1.5 min, 316 °C for 1.5 min, 288 °C for 1.5 min and 343 °C for 1 min did not differ significantly compared to the hot air control trials (impingement oven) at 100 °C for 30 and 20 min. All infrared trials had significantly lower (P infrared samples demonstrated the possible initiation of oxidation for the conventionally blanched sample at 18 weeks of storage at 24 °C (room temperature), with no indication of oxidation in the infrared samples stored at the same temperature. Infrared radiation peanut blanching is a viable alternative to conventional hot air blanching because of the shorter process time and longer shelf-life, as evident from the sensory storage study. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Functionalized linear and cyclic polyolefins

    Tuba, Robert; Grubbs, Robert H.

    2018-02-13

    This invention relates to methods and compositions for preparing linear and cyclic polyolefins. More particularly, the invention relates to methods and compositions for preparing functionalized linear and cyclic polyolefins via olefin metathesis reactions. Polymer products produced via the olefin metathesis reactions of the invention may be utilized for a wide range of materials applications. The invention has utility in the fields of polymer and materials chemistry and manufacture.

  1. Cyclic Processing for Context Fusion

    Kjærgaard, Mikkel Baun

    2007-01-01

    Many machine-learning techniques use feedback information. However, current context fusion systems do not support this because they constrain processing to be structured as acyclic processing. This paper proposes a generalization which enables the use of cyclic processing in context fusion systems....... A solution is proposed to the inherent problem of how to avoid uncontrollable looping during cyclic processing. The solution is based on finding cycles using graph-coloring and breaking cycles using time constraints....

  2. Application of roof radiant burners in large pusher-type furnaces

    A. Varga

    2009-07-01

    Full Text Available The paper deals with the application of roof flat-flame burners in the pusher-type steel slab reheating furnaces, after furnace reconstruction and replacement of conventional torch burners, with the objective to increase the efficiency of radiative heat transfer from the refractory roof to the charge. Based on observations and on measurements of the construction and process parameters under operating conditions, the advantages and disadvantages of indirectly oriented radiant heat transfer are analysed in relation to the heat transfer in classically fired furnaces.

  3. Comparison of radiant and convective cooling of office room: effect of workstation layout

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Rezgals, Lauris

    2014-01-01

    and compared. The room was furnished with two workstations, two laptops and two thermal manikins resembling occupants. Two heat load levels, design (65 W/m2) and usual (39 W/m2), were generated by adding heat from warm panels simulating solar radiation. Two set-ups were studied: occupants sitting......The impact of heat source location (room layout) on the thermal environment generated in a double office room with four cooling ventilation systems - overhead ventilation, chilled ceiling with overhead ventilation, active chilled beam and active chilled beam with radiant panels was measured...

  4. Sensitivity analysis of the thermal performance of radiant and convective terminals for cooling buildings

    Le Dréau, J.; Heiselberg, P.

    2014-01-01

    Heating and cooling terminals can be classified in two main categories: convective terminals (e.g. active chilled beam, air conditioning) and radiant terminals. The mode of heat transfer of the two emitters is different: the first one is mainly based on convection, whereas the second one is based...... conducted to determine the parameters influencing their thermal performance the most. The air change rate, the outdoor temperature and the air temperature stratification have the largest effect on the cooling need (maintaining a constant operative temperature). For air change rates higher than 0.5 ACH...

  5. Three dimensional modelling and numerical analysis of super-radiant harmonic emission in FEL (optical klystron)

    Gover, A.; Friedman, A.; Luccio, A.

    1986-09-01

    A full 3-D Analysis of super-radiant (bunched electron) free electron harmonic radiation is presented. A generalized form of the FEL pendulum equation was derived and numerically solved. Both spectral and phasor formulation were developed to treat the radiation in the time domain. In space the radiation field is expanded in terms of either a set of free space discrete modes or plane waves. The numerical solutions reveal some new distinctly 3-D effects to which we provide a physical explanation. 12 refs., 9 figs., 5 tabs

  6. Perceived air quality, thermal comfort, and SBS symptoms at low air temperature and increased radiant temperature

    Toftum, Jørn; Reimann, Gregers Peter; Foldbjerg, P.

    2002-01-01

    source present at the low temperature. To maintain overall thermal neutrality, the low air temperature was partly compensated for by individually controlled radiant heating, and partly by allowing subjects to modify clothing insulation. A reduction of the air temperature from 23 deg.C to 18 deg.......C suggested an improvement of the perceived air quality, while no systematic effect on symptom intensity was observed. The overall indoor environment was evaluated equally acceptable at both temperatures due to local thermal discomfort at the low air temperature....

  7. Failure Investigation of Radiant Platen Superheater Tube of Thermal Power Plant Boiler

    Ghosh, D.; Ray, S.; Mandal, A.; Roy, H.

    2015-04-01

    This paper highlights a case study of typical premature failure of a radiant platen superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement and chemical analysis, are conducted as part of the investigations. Apart from these, metallographic analysis and fractography are also conducted to ascertain the probable cause of failure. Finally it has been concluded that the premature failure of the super heater tube can be attributed to localized creep at high temperature. The corrective actions has also been suggested to avoid this type of failure in near future.

  8. Literarily -radiant

    Halvorsen, Finn

    2008-01-01

    The article discusses radiation emissions from various every day appliances such as mobile telephones, wireless technologic aids, networks, radios and television sets. The health risks are mentioned (tk)

  9. Cyclic voltammograms for H on Pt(111) and Pt(100) from first principles

    Karlberg, Gustav; Jaramillo, Thomas; Skulason, Egill

    2007-01-01

    Cyclic voltammetry is a fundamental experimental method for characterizing electrochemical surfaces. Despite its wide use, a way to quantitatively and directly relate cyclic voltammetry to ab initio calculations has been lacking. We derive the cyclic voltammogram for H on Pt(111) and Pt(100), bas...... solely on density functional theory calculations and standard molecular tables. By relating the gas phase adsorption energy to the electrochemical electrode potential, we provide a direct link between surface science and electrochemistry....

  10. On Improvements of Cyclic MUSIC

    H. Howard Fan

    2005-01-01

    Full Text Available Many man-made signals encountered in communications exhibit cyclostationarity. By exploiting cyclostationarity, cyclic MUSIC has been shown to be able to separate signals with different cycle frequencies, thus, to be able to perform signal selective direction of-arrival (DOA estimation. However, as will be shown in this paper, the DOA estimation of cyclic MUSIC is actually biased. We show in this paper that by properly choosing the frequency for evaluating the steering vector, the bias of DOA estimation can be substantially reduced and the performance can be improved. Furthermore, we propose another algorithm exploiting cyclic conjugate correlation to further improve the performance of DOA estimation. Simulation results show the effectiveness of both of our methods.

  11. Solar radiation and cooling load calculation for radiant systems: Definition and evaluation of the Direct Solar Load

    Causone, Francesco; Corgnati, Stefano P.; Filippi, Marco

    2010-01-01

    The study of the influence of solar radiation on the built environment is a basic issue in building physics and currently it is extremely important because glazed envelopes are widely used in contemporary architecture. In the present study, the removal of solar heat gains by radiant cooling systems...... is investigated. Particular attention is given to the portion of solar radiation converted to cooling load, without taking part in thermal absorption phenomena due to the thermal mass of the room. This specific component of the cooling load is defined as the Direct Solar Load. A simplified procedure to correctly...... calculate the magnitude of the Direct Solar Load in cooling load calculations is proposed and it is implemented with the Heat Balance method and the Radiant Time Series method. The F ratio of the solar heat gains directly converted to cooling load, in the case of a low thermal mass radiant ceiling...

  12. Use of local convective and radiant cooling at warm environment: effect on thermal comfort and perceived air quality

    Melikov, Arsen Krikor; Duszyk, Marcin; Krejcirikova, Barbora

    2012-01-01

    The effect of four local cooling devices (convective, radiant and combined) on thermal comfort and perceived air quality reported by 24 subjects at 28 ˚C and 50% RH was studied. The devices studied were: (1) desk cooling fan, (2) personalized ventilation providing clean air, (3) two radiant panels...... and (4) two radiant panels with one panel equipped with small fans. A reference condition without cooling was tested as well. The response of the subjects to the exposed conditions was collected by computerized questionnaires. The cooling devices significantly (pthermal comfort...... compared to without cooling. The acceptability of the thermal environment was similar for all cooling devices. The acceptability of air movement and PAQ increased when the local cooling methods were used. The best results were achieved with personalized ventilation and cooling fan. The improvement in PAQ...

  13. Dynamic behavior of radiant cooling system based on capillary tubes in walls made of high performance concrete

    Mikeska, Tomás; Svendsen, Svend

    2015-01-01

    elements made of high performance concrete. The influence of the radiant cooling system on the indoor climate of the test room in terms of the air, surface and operative temperatures and velocities was investigated.The results show that the temperature of the room air can be kept in a comfortable range...... using cooling water for the radiant cooling system with a temperature only about 4K lower than the temperature of the room air. The relatively high speed reaction of the designed system is a result of the slim construction of the sandwich wall elements made of high performance concrete. (C) 2015...... the small amount of fresh air required by standards to provide a healthy indoor environment.This paper reports on experimental analyses evaluating the dynamic behavior of a test room equipped with a radiant cooling system composed of plastic capillary tubes integrated into the inner layer of sandwich wall...

  14. Effect of radiant heat transfer on the performance of high temperature heat exchanger

    Mori, Yasuo; Hijikata, Kunio; Yamada, Yukio

    1975-01-01

    The development of high temperature gas-cooled reactors is motivated by the consideration of the application of nuclear heat for industrial uses or direct steelmaking and chemical processes. For these purposes, reliable and efficient heat exchangers should be developed. This report analyzes the effect of radiant heat transfer on the performance of high temperature heat exchangers. The heat transfer model is as follows: the channel composed with two parallel adiabatic walls is divided with one parallel plate between the walls. Non-radiative fluid flows in the two separated channels in opposite direction. Heat transfer equations for this system were obtained, and these equations were solved by some approximate method and numerical analysis. The effect of radiation on heat transfer became larger as the radiant heat transfer between two walls was larger. In the heat exchangers of counter flow type, the thermal efficiency is controlled with three parameters, namely radiation-convection parameter, Stanton number and temperature difference. The thermal efficiency was larger with the increase of these parameters. (Iwase, T.)

  15. Numerical Simulation of the Thermal Process in a W-Shape Radiant Tube Burner

    Wang, Yi; Li, Jiyong; Zhang, Lifeng; Ling, Haitao; Li, Yanlong

    2014-07-01

    In the current work, three-dimensional mathematical models were developed for the heat transfer and combustion in a W-shape radiant tube burner (RTB) and were solved using Fluent software (ANSYS Inc., Canonsburg, PA). The standard k- ɛ model, nonpremixed combustion model, and the discrete ordinate model were used for the modeling of turbulence, combustion, and radiant heat transfer, respectively. In addition, the NO x postprocessor was used for the prediction of the NO emission. A corresponding experiment was performed for the validation of mathematical models. The details of fluid flow, heat transfer, and combustion in the RTB were investigated. Moreover, the effect of the air/fuel ratio (A/F) and air staging on the performance of RTB was studied with the reference indexes including heat efficiency, maximum temperature difference on shell wall, and NO emission at the outlet. The results indicated that a low speed zone formed in the vicinity of the combustion chamber outlet, and there were two relative high-temperature zones in the RTB, one in combustion chamber that favored the flame stability and the other from the main flame in the RTB. The maximum temperature difference was 95.48 K. As the A/F increased, the temperature increased first and then decreased. As the ratio of the primary to secondary air increased, the recirculation zone at the outlet of combustion chamber shrank gradually to disappear, and the flame length was longer and the temperature in flame decreased correspondingly.

  16. Radiative heat exchange of a meteor body in the approximation of radiant heat conduction

    Pilyugin, N.N.; Chernova, T.A.

    1986-01-01

    The problem of the thermal and dynamic destruction of large meteor bodies moving in planetary atmospheres is fundamental for the clarification of optical observations and anomalous phenomena in the atmosphere, the determination of the physicochemical properties of meteoroids, and the explanation of the fall of remnants of large meteorites. Therefore, it is important to calculate the coefficient of radiant heat exchange (which is the determining factor under these conditions) for large meteor bodies as they move with hypersonic velocities in an atmosphere. The solution of this problem enables one to find the ablation of a meteorite during its aerodynamic heating and to determine the initial conditions for the solution of problems of the breakup of large bodies and their subsequent motion and ablation. Hypersonic flow of an inviscid gas stream over an axisymmetric blunt body is analyzed with allowance for radiative transfer in a thick-thin approximation. The gas-dynamic problem of the flow of an optically thick gas over a large body is solved by the method of asymptotic joined expansions, using a hypersonic approximation and local self-similarity. An equation is obtained for the coefficient of radiant heat exchange and the peculiarities of such heat exchange for meteor bodies of large size are noted

  17. Non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner

    Catapan, R.C.; Costa, M. [Mechanical Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Avenida Rovisco Pais, 1049-001 Lisbon (Portugal); Oliveira, A.A.M. [Mechanical Engineering Department, Federal University of Santa Catarina, Campus Universitario Professor Joao David Ferreira Lima, 88040-900 Florianopolis, SC (Brazil)

    2011-01-15

    Industrial processes where the heating of large surfaces is required lead to the possibility of using large surface porous radiant burners. This causes additional temperature uniformity problems, since it is increasingly difficult to evenly distribute the reactant mixture over a large burner surface while retaining its stability and keeping low pollutant emissions. In order to allow for larger surface area burners, a non-uniform velocity profile mechanism for flame stabilization in a porous radiant burner using a single large injection hole is proposed and analyzed for a double-layered burner operating in open and closed hot (laboratory-scale furnace, with temperature-controlled, isothermal walls) environments. In both environments, local mean temperatures within the porous medium have been measured. For lower reactant flow rate and ambient temperature the flame shape is conical and anchored at the rim of the injection hole. As the volumetric flow rate or furnace temperature is raised, the flame undergoes a transition to a plane flame stabilized near the external burner surface. However, the stability range envelope remains the same in both regimes. (author)

  18. High-temperature process heat reactor with solid coolant and radiant heat exchange

    Alekseev, A.M.; Bulkin, Yu.M.; Vasil'ev, S.I.

    1984-01-01

    The high temperature graphite reactor with the solid coolant in which heat transfer is realized by radiant heat exchange is described. Neutron-physical and thermal-technological features of the reactor are considered. The reactor vessel is made of sheet carbon steel in the form of a sealed rectangular annular box. The moderator is a set of graphite blocks mounted as rows of arched laying Between the moderator rows the solid coolant annular layings made of graphite blocks with high temperature nuclear fuel in the form of coated microparticles are placed. The coolant layings are mounted onto ring movable platforms, the continuous rotation of which is realizod by special electric drives. Each part of the graphite coolant laying consecutively passes through the reactor core neutron cut-off zones and technological zone. In the core the graphite is heated up to the temperature of 1350 deg C sufficient for effective radiant heat transfer. In the neutron cut-off zone the chain reaction and further graphite heating are stopped. In the technological zone the graphite transfers the accumulated heat to the walls of technological channels in which the working medium moves. The described reactor is supposed to be used in nuclear-chemical complex for ammonia production by the method of methane steam catalytic conversion

  19. Nature of a solar cyclicity

    Romanchuk, P.R.

    1981-01-01

    The paper contains a critical review of works on studying a cyclic character of solar activity. An introduction of cyclic curves with a frequency spectrum is established to be insolvent. The Wolf, Newcomb and Waldmeier approach seems to be useful. Some evidence is given in favour of the author's conception of solar activity ciclicity of a tide nature. It is accounted for a continuous double and single effect of planets, a resonant character of this effect due to which a 10-year period of Jupiter and Saturn is transformed into an 11-year cycle of activity [ru

  20. [Transparent evolution of the energy/matter interactions on earth: from gas whirlwind to technogenic civilization].

    Pechurkin, N S; Shuvaev, A N

    2015-01-01

    The paper presents the idea of transparent evolution through the long-term reaction of the planet Earth on the external flow of radiant energy from the Sun. Due to limitations of matter on Earth, as well as on any other planet, the continuous pumping flow of radiant energy was shown to lead to cyclization and transport of substance on emerging gradients. The evolution of energy-matter interaction follows the path of capturing and transferring more energy by the fewer matter, i.e., the path of growth of the amount of energy used by each unit mass. For this indicator, the least effective mass transfer is a simple mass transfer as vortices of gases, in the gradients of temperature and pressure, which occurred on the primary surface of the planet. A long-term natural selection related to the accumulation of water on the planet has played a special role in developing the interaction of energy and matter. Phase transformations (ice, water, vapor) and mechanical transfers are the most common energy-matter processes. Based on water cycles, cyclic transports and transformations, chemical transformation of substances became possible developing over time into a biological transformation. This kind of the interaction of energy and matter is most efficient. In particular, during photosynthesis the energy of our star "is captured and utilized" in the most active part of the spectrum of its radiation. In the process of biological evolution of heterotrophs, a rise (by a factor of hundreds) in the coefficient that characterizes the intensity of energy exchange from protozoa to mammals is most illustratory. The development and the current dominance of humans as the most energy-using active species in capturing the energy and meaningful organization of its new flows especially on the basis of organic debris of former biospheres is admirable, but quite natural from the energy positions. In the course of technological evolution of humankind, the measure of the intensity of energy for

  1. Morteros acumuladores con parafinas microencapsuladas para el aprovechamiento de la energía solar en suelos radiantes

    Zetola Vargas, Vicente Andrés

    2013-01-01

    Esta Tesis plantea la pregunta de si el uso de morteros con parafinas microencapsuladas combinado con colectores solares térmicos puede reducir el consumo de energías convencionales, en un sistema tradicional de suelo radiante. Se pretende contribuir al conocimiento acerca del efecto que produce en el edificio, el calor latente acumulado en suelos radiantes, utilizando morteros de cemento Portland con material de cambio de fase (PCM), en conjunto con la energía solar. Para cumplir con este pr...

  2. Thermal environment in simulated offices with convective and radiant cooling systems under cooling (summer) mode of operation

    Mustakallio, Panu; Bolashikov, Zhecho Dimitrov; Kostov, Kalin

    2016-01-01

    The thermal environment in a double office room and in a six-person meeting room obtained with chilled beam (CB), chilled beam with radiant panel (CBR), chilled ceiling with ceiling installed mixing ventilation (CCMV) and four desk partition-mounted local radiant cooling panels with mixing...... calculated. Manikin-based equivalent temperature (MBET) was determined by using two thermal manikins to identify the impact of the local thermal conditions generated by the studied systems on occupants' thermal perception. The results revealed that the differences in the thermal conditions achieved...

  3. Control characteristics and heating performance analysis of automatic thermostatic valves for radiant slab heating system in residential apartments

    Ahn, Byung-Cheon [Department of Building Equipment System Engineering, Kyungwon University, Seongnam City (Korea); Song, Jae-Yeob [Graduate School, Building Equipment System Engineering, Kyungwon University, Seongnam City (Korea)

    2010-04-15

    Computer simulations and experiments are carried out to research the control characteristics and heating performances for a radiant slab heating system with automatic thermostatic valves in residential apartments. An electrical equivalent R-C circuit is applied to analyze the unsteady heat transfer in the house. In addition, the radiant heat transfer between slabs, ceilings and walls in the room is evaluated by enclosure analysis method. Results of heating performance and control characteristics were determined from control methods such as automatic thermostatic valves, room air temperature-sensing method, water-temperature-sensing method, proportional control method, and On-Off control method. (author)

  4. Towards a uniform specification of light therapy devices for the treatment of affective disorders and use for non-image forming effects: Radiant flux.

    Aarts, M P J; Rosemann, A L P

    2018-08-01

    For treating affective disorders like SAD, light therapy is used although the underlying mechanism explaining this success remains unclear. To accelerate the research on defining the light characteristics responsible for inducing a specific effect a uniform manner for specifying the irradiance at the eye should be defined. This allows a genuine comparison between light-affect studies. An important factor impacting the irradiance at the eye are the radiant characteristics of the used light therapy device. In this study the radiant fluxes of five different light therapy devices were measured. The values were weighted against the spectral sensitivity of the five photopigments present in the human eye. A measurement was taken every five minutes to control for a potential stabilizing effect. The results show that all five devices show large differences in radiant flux. The devices equipped with blue LED lights have a much lower spectral radiant flux than the devices equipped with a fluorescent light source or a white LED. The devices with fluorescent lamps needed 30 min to stabilize to a constant radiant flux. In this study only five devices were measured. Radiant flux is just the first step to identify uniform specifications for light therapy devices. It is recommended to provide all five α-opic radiant fluxes. Preferably, the devices should come with a spectral power distribution of the radiant flux. For the devices equipped with a fluorescent lamp it is recommended to provide information on the stabilization time. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Radiant heat transfers in turbojet engines. Two applications, three levels of modeling; Transferts radiatifs dans les foyers de turboreacteurs. Deux applications, trois niveaux de modelisation

    Schultz, J L; Desaulty, M [SNECMA, Centre de Villaroche, 77 - Moissy-Cramayel (France); Taine, J [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France)

    1997-12-31

    Several applications linked with the dimensioning of turbojet engines require the use of modeling of radiant heat transfers. Two different applications are presented in this study: the modeling of heat transfers in the main combustion chamber, and modeling of the infrared signature of the post-combustion chamber of a military engine. In the first application, two types of radiant heat transfer modeling are presented: a global modeling based on empirical considerations and used in rapid pre-dimensioning methods, and a modeling based on a grey gases concept and combined to a ray shooting type technique allowing the determination of local radiant heat flux values. In the second application, a specific modeling of the radiant heat flux is used in the framework of a ray shooting method. Each model represents a different level of successive approximations of the radiant heat transfer adapted to flow specificities and to the performance requested. (J.S.) 16 refs.

  6. Radiant heat transfers in turbojet engines. Two applications, three levels of modeling; Transferts radiatifs dans les foyers de turboreacteurs. Deux applications, trois niveaux de modelisation

    Schultz, J.L.; Desaulty, M. [SNECMA, Centre de Villaroche, 77 - Moissy-Cramayel (France); Taine, J. [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France)

    1996-12-31

    Several applications linked with the dimensioning of turbojet engines require the use of modeling of radiant heat transfers. Two different applications are presented in this study: the modeling of heat transfers in the main combustion chamber, and modeling of the infrared signature of the post-combustion chamber of a military engine. In the first application, two types of radiant heat transfer modeling are presented: a global modeling based on empirical considerations and used in rapid pre-dimensioning methods, and a modeling based on a grey gases concept and combined to a ray shooting type technique allowing the determination of local radiant heat flux values. In the second application, a specific modeling of the radiant heat flux is used in the framework of a ray shooting method. Each model represents a different level of successive approximations of the radiant heat transfer adapted to flow specificities and to the performance requested. (J.S.) 16 refs.

  7. Smart Control of Air Climatization System in Function on the Values of Mean Local Radiant Temperature

    Giuseppe Cannistraro

    2015-08-01

    Full Text Available The hygrothermal comfort indoor conditions are defined as: those environmental conditions in which an individual exposed, expresses a state of satisfaction. These conditions cannot always be achieved anywhere in an optimal way and economically; in some cases they can be obtained only in work environments specific areas. This could be explained because of air conditioning systems designing is generally performed both on the basis of the fundamental parameters’ average values, such as temperature, velocity and relative humidity (Ta, va e φa and derived parameters such as operating temperature and mean radiant one (Top eTmr. However, in some specific cases - large open-spaces or in case of radiating surfaces - the descriptors defining indoor comfort conditions, based on average values, do not provide the optimum values required during the air conditioning systems design phase. This is largely due to the variability of real environmental parameters values compared to the average ones taken as input in the calculation. The results obtained in previous scientific papers on the thermal comfort have been the driving element of this work. It offers a simple, original and clever way of thinking about the new domotic systems for air conditioning, based on the “local mean radiant temperature.” This is a very important parameter when one wants to analyze comfort in environments characterized by the presence of radiating surfaces, as will be seen hereinafter. In order to take into account the effects of radiative exchanges in the open-space workplace, where any occupant may find themselves in different temperature and humidity conditions, this paper proposes an action on the domotic climate control, with ducts and vents air distribution placed in different zones. Comparisons were performed between the parameters values representing the punctual thermal comfort, with the Predicted Mean Vote PMV, in an environment marked by radiating surfaces (i

  8. Deformation mechanisms in cyclic creep and fatigue

    Laird, C.

    1979-01-01

    Service conditions in which static and cyclic loading occur in conjunction are numerous. It is argued that an understanding of cyclic creep and cyclic deformation are necessary both for design and for understanding creep-fatigue fracture. Accordingly a brief, and selective, review of cyclic creep and cyclic deformation at both low and high strain amplitudes is provided. Cyclic loading in conjunction with static loading can lead to creep retardation if cyclic hardening occurs, or creep acceleration if softening occurs. Low strain amplitude cyclic deformation is understood in terms of dislocation loop patch and persistent slip band behavior, high strain deformation in terms of dislocation cell-shuttling models. While interesting advances in these fields have been made in the last few years, the deformation mechanisms are generally poorly understood

  9. Sequencing Cyclic Peptides by Multistage Mass Spectrometry

    Mohimani, Hosein; Yang, Yu-Liang; Liu, Wei-Ting; Hsieh, Pei-Wen; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2012-01-01

    Some of the most effective antibiotics (e.g., Vancomycin and Daptomycin) are cyclic peptides produced by non-ribosomal biosynthetic pathways. While hundreds of biomedically important cyclic peptides have been sequenced, the computational techniques for sequencing cyclic peptides are still in their infancy. Previous methods for sequencing peptide antibiotics and other cyclic peptides are based on Nuclear Magnetic Resonance spectroscopy, and require large amount (miligrams) of purified materials that, for most compounds, are not possible to obtain. Recently, development of mass spectrometry based methods has provided some hope for accurate sequencing of cyclic peptides using picograms of materials. In this paper we develop a method for sequencing of cyclic peptides by multistage mass spectrometry, and show its advantages over single stage mass spectrometry. The method is tested on known and new cyclic peptides from Bacillus brevis, Dianthus superbus and Streptomyces griseus, as well as a new family of cyclic peptides produced by marine bacteria. PMID:21751357

  10. Cyclic peptide therapeutics: past, present and future.

    Zorzi, Alessandro; Deyle, Kaycie; Heinis, Christian

    2017-06-01

    Cyclic peptides combine several favorable properties such as good binding affinity, target selectivity and low toxicity that make them an attractive modality for the development of therapeutics. Over 40 cyclic peptide drugs are currently in clinical use and around one new cyclic peptide drug enters the market every year on average. The vast majority of clinically approved cyclic peptides are derived from natural products, such as antimicrobials or human peptide hormones. New powerful techniques based on rational design and in vitro evolution have enabled the de novo development of cyclic peptide ligands to targets for which nature does not offer solutions. A look at the cyclic peptides currently under clinical evaluation shows that several have been developed using such techniques. This new source for cyclic peptide ligands introduces a freshness to the field, and it is likely that de novo developed cyclic peptides will be in clinical use in the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A compact cyclic plasticity model with parameter evolution

    Krenk, Steen; Tidemann, L.

    2017-01-01

    The paper presents a compact model for cyclic plasticity based on energy in terms of external and internal variables, and plastic yielding described by kinematic hardening and a flow potential with an additive term controlling the nonlinear cyclic hardening. The model is basically described by five...... parameters: external and internal stiffness, a yield stress and a limiting ultimate stress, and finally a parameter controlling the gradual development of plastic deformation. Calibration against numerous experimental results indicates that typically larger plastic strains develop than predicted...

  12. Where the Solar system meets the solar neighbourhood: patterns in the distribution of radiants of observed hyperbolic minor bodies

    de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl; Aarseth, Sverre J.

    2018-05-01

    Observed hyperbolic minor bodies might have an interstellar origin, but they can be natives of the Solar system as well. Fly-bys with the known planets or the Sun may result in the hyperbolic ejection of an originally bound minor body; in addition, members of the Oort cloud could be forced to follow inbound hyperbolic paths as a result of secular perturbations induced by the Galactic disc or, less frequently, due to impulsive interactions with passing stars. These four processes must leave distinctive signatures in the distribution of radiants of observed hyperbolic objects, both in terms of coordinates and velocity. Here, we perform a systematic numerical exploration of the past orbital evolution of known hyperbolic minor bodies using a full N-body approach and statistical analyses to study their radiants. Our results confirm the theoretical expectations that strong anisotropies are present in the data. We also identify a statistically significant overdensity of high-speed radiants towards the constellation of Gemini that could be due to the closest and most recent known fly-by of a star to the Solar system, that of the so-called Scholz's star. In addition to and besides 1I/2017 U1 (`Oumuamua), we single out eight candidate interstellar comets based on their radiants' velocities.

  13. A METHOD FOR EVALUATION OF NON-UNIFORM RADIANT-CONVECTIVE LOAD ON HUMAN BODY DURING MENTAL WORK

    Lenka Prokšová Zuská

    2017-10-01

    Full Text Available The objective of this study was to develop a documentation for the amendment of the microclimatic part of the Czech Government Regulation, particularly in a non-uniform radiant-convective load evaluation. Changes in regulation were made based on experimental data obtained on a group of experimental individuals in a climatic chamber. One of the objectives of the climatic chamber experiments was to evaluate whether there was a possibility to use an alternative method, which utilizes a new value – stereotemperature, for the assessment. A group of 24 women was exposed to a non-uniform radiant-convective load in a climatic chamber for 1 hour during their computer work. Measurements were divided according to the globe temperature into 3 stages. The physical parameters of air were continuously measured: the air temperature, globe temperature, air velocity, radiant temperature, relative humidity, stereotemperature and physiological parameters. Thermal sensations of experimental subjects were expressed in the seven-point scale according to EN ISO 7730. The thermal sensation correlated very well with the difference of stereotemperature and the globe temperature. The stereotemperature correlated very well with the radiant temperature. In this work, the composed equations were used to develop the limit values for the thermal stress evaluation in the uniform and non-uniform thermal environment at workplaces. It is possible to determine how the body of an exposed person perceives the non-uniform climatic conditions in the indoor environment, by adding the stereotemperature to government regulations.

  14. Experimental study including subjective evaluations of mixing and displacement ventilation combined with radiant floor heating/cooling system

    Krajcik, Michal; Tomasi, Roberta; Simone, Angela

    2013-01-01

    Sixteen subjects evaluated the indoor environment in four experiments with different combinations of ventilation systems and radiant heating/cooling systems. In the first two tests, the simulated residential room was equipped either by a mixing ventilation system supplying warm air for space heat...

  15. Radiant heating tests of several liquid metal heat-pipe sandwich panels

    Camarda, C.J.; Basiulis, A.

    1983-08-01

    Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors

  16. The Super-Radiant Mechanism and the Widths of Compound Nuclear States

    Auerbach, N

    2012-01-01

    In the introduction I will present the theory of the super-radiant mechanism as applied to various phenomena. I will then discuss the statistics of resonance widths in a many-body Fermi system with open decay channels. Depending on the strength of the coupling to the continuum such systems show deviations from the standard Porter-Thomas distribution. The deviations result from the process of increasing interaction of the intrinsic states through the common decay channels. In the limit of very strong coupling this leads to super-radiance. The results I will present are important for the understanding of recent experimental data concerning the width distribution of compound neutron resonances in nuclei.

  17. A critical examination of the validity of simplified models for radiant heat transfer analysis.

    Toor, J. S.; Viskanta, R.

    1972-01-01

    Examination of the directional effects of the simplified models by comparing the experimental data with the predictions based on simple and more detailed models for the radiation characteristics of surfaces. Analytical results indicate that the constant property diffuse and specular models do not yield the upper and lower bounds on local radiant heat flux. In general, the constant property specular analysis yields higher values of irradiation than the constant property diffuse analysis. A diffuse surface in the enclosure appears to destroy the effect of specularity of the other surfaces. Semigray and gray analyses predict the irradiation reasonably well provided that the directional properties and the specularity of the surfaces are taken into account. The uniform and nonuniform radiosity diffuse models are in satisfactory agreement with each other.

  18. Thermal Texture Selection and Correction for Building Facade Inspection Based on Thermal Radiant Characteristics

    Lin, D.; Jarzabek-Rychard, M.; Schneider, D.; Maas, H.-G.

    2018-05-01

    An automatic building façade thermal texture mapping approach, using uncooled thermal camera data, is proposed in this paper. First, a shutter-less radiometric thermal camera calibration method is implemented to remove the large offset deviations caused by changing ambient environment. Then, a 3D façade model is generated from a RGB image sequence using structure-from-motion (SfM) techniques. Subsequently, for each triangle in the 3D model, the optimal texture is selected by taking into consideration local image scale, object incident angle, image viewing angle as well as occlusions. Afterwards, the selected textures can be further corrected using thermal radiant characteristics. Finally, the Gauss filter outperforms the voted texture strategy at the seams smoothing and thus for instance helping to reduce the false alarm rate in façade thermal leakages detection. Our approach is evaluated on a building row façade located at Dresden, Germany.

  19. Radiant thinking and the use of the mind map in nurse practitioner education.

    Spencer, Julie R; Anderson, Kelley M; Ellis, Kathryn K

    2013-05-01

    The concept of radiant thinking, which led to the concept of mind mapping, promotes all aspects of the brain working in synergy, with thought beginning from a central point. The mind map, which is a graphical technique to improve creative thinking and knowledge attainment, utilizes colors, images, codes, and dimensions to amplify and enhance key ideas. This technique augments the visualization of relationships and links between concepts, which aids in information acquisition, data retention, and overall comprehension. Faculty can promote students' use of the technique for brainstorming, organizing ideas, taking notes, learning collaboratively, presenting, and studying. These applications can be used in problem-based learning, developing plans of care, health promotion activities, synthesizing disease processes, and forming differential diagnoses. Mind mapping is a creative way for students to engage in a unique method of learning that can expand memory recall and help create a new environment for processing information. Copyright 2013, SLACK Incorporated.

  20. Monopod bucket foundations under cyclic lateral loading

    Foglia, Aligi; Ibsen, Lars Bo

    on bucket foundations under lateral cyclic loading. The test setup is described in detail and a comprehensive experimental campaign is presented. The foundation is subjected to cyclic overturning moment, cyclic horizontal loading and constant vertical loading, acting on the same plane for thousands...

  1. 40 CFR 721.2120 - Cyclic amide.

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cyclic amide. 721.2120 Section 721... Cyclic amide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a cyclic amide (PMN P-92-131) is subject to reporting under this section for the...

  2. Cyclic and Explosive Evaluation of New Proposed Steel Joint

    Iman Faridmehr

    2016-01-01

    Full Text Available The behaviour of a novel steel beam-to-column connection, the saddlebag, subjected to cyclic and progressive collapse, was evaluated in this paper. The cyclic behaviour considered the interstory drift angle and flexural strength in accordance with 2010 AISC Seismic Provisions, while progressive collapse assessment was evaluated through the plastic hinge rotation angle based on acceptance criteria provided in the UFC 4-023-03 guideline. From the cyclic test, one complete cycle of an interstory drift angle of 0.06 rad was satisfied for the saddlebag connection, which is an indication of the effectiveness in accordance with 2010 AISC Seismic Provisions. Besides, the new proposed connection developed adequate catenary action, which is a fundamental criterion to resist against progressive collapse. The resulting fuller hysteretic loops with large energy dissipation capacity in the proposed saddlebag connection guarantee its ability to address the inelastic deformation demands in earthquake conditions.

  3. Cyclic plastic hinges with degradation effects for frame structures

    Tidemann, Lasse; Krenk, Steen

    2017-01-01

    A model of cyclic plastic hinges in frame structures including degradation effects for stiffness and strength is developed. The model is formulated via potentials in terms of section forces. It consists of a yield surface, described in a generic format permitting representation of general convex...... shapes including corners, and a set of evolution equations based on an internal energy potential and a plastic flow potential. The form of these potentials is specified by five parameters for each generalized stress-strain component describing yield level, ultimate stress capacity, elastic...... and stiffness parameters. The cyclic plastic hinges are introduced into a six-component equilibrium-based beam element, using additive element and hinge flexibilities. When converted to stiffness format the plastic hinges are incorporated into the element stiffness matrix. The cyclic plastic hinge model...

  4. Gold prices: Analyzing its cyclical behavior

    Martha Gutiérrez

    2013-07-01

    Full Text Available Gold is a commodity that is seen as a safe haven when a financial crisis strikes, but when stock markets are prosperous, these are more attractive investment alternatives, and so the gold cycle goes on and on. The DJIA/GF (Dow Jones Industrial Average and Gold Fix ratio is chosen to establish the evolution of gold prices in relation to the NYSE. This paper has two goals: to prove that the DJIA/GF ratio is strongly cyclical by using Fourier analysis and to set a predictive neural networks model to forecast the behavior of this ratio during 2011-2020. To this end, business cycle events like the Great Depression along with the 1970s crisis, and the 1950s boom along with the world economic recovery of the 1990s are contrasted in light of the mentioned ratio. Gold prices are found to evolve cyclically with a dominant period of 37 years and are mainly affected by energy prices, financial markets and macroeconomic indicators.

  5. Research on the Improvement of a Natural Gas Fired Burner for the CHP Application in a Central Heating Boiler using Radiant Burner Technology

    Bieleveld, T.

    2010-08-15

    These days, the reduction of CO2 emissions from combustion devices is one of the main priorities for each design improvement. For the domestic use of the central heating boiler, Microgen Engine Corporation produces free piston Stirling engines for the Combined Heat and Power (CHP) application in these central heating boilers (Dutch: 'HRe ketel'). With CHP, the generation of electricity and heat are combined to increase overall efficiency, as heat is generally a waste product from the combustion to electric generation process. In this application, the Stirling engine, which can be defined as an external combustion engine, is heated by a natural gas fired engine-burner and cooled by a coolant flow. The heat transfer into the engine is converted into mechanical work and a heat flux from the engine. The mechanical work is used to produce electricity via a linear alternator. Heat in the flue gasses from the engine-burner is reused in a secondary burner and condensing heat exchanger. The coolant flow from the engine, after passing the secondary burner, is used for heating purposes. The heat transfer from engine-burner to the Stirling engine is analyzed and via several motivations it is found that it is favorable to improve fuel to electric conversion efficiency, for which the heat transfer efficiency of the engine-burner to the Stirling engine should be improved, as the engine design is not to be altered. From an initially developed linear free piston Stirling engine model and measurements performed at Microgen Engine Corporation, St. Petersborough, (UK), the engine power demand and engine-burner performance are found. The results are used to visualize the current energy flows of the Stirling engine and engine burner subsystem. The heat transfer to the engine is analyzed to find possible heat transfer improvements. It is concluded that heat transfer from the engine-burner to the engine can be approved if the flue losses due to convective heat transfer are

  6. Newborns' temperature submitted to radiant heat and to the Top Maternal device at birth.

    Albuquerque, Rosemeire Sartori de; Mariani, Corintio; Bersusa, Ana Aparecida Sanches; Dias, Vanessa Macedo; Silva, Maria Izabel Mota da

    2016-08-08

    to compare the axillar temperatures of newborns that are put immediately after birth in skin-to-skin contact under the Top Maternal device, as compared to those in a radiant heat crib. comparatives observational study of the case-control type about temperature of 60 babies born at the Obstetric Center and Normal Delivery Center of a public hospital of the municipality of Sao Paulo, being them: 29 receiving assistance in heated crib and 31 in skin-to skin contact, shielded by a cotton tissue placed on mother's thorax, called Top Maternal. the temperature of the babies of the skin-to-skin contact group presented higher values in a larger share of the time measures verified, as compared to those that were placed in radiant heat crib, independently from the place of birth. Differences between the two groups were not statistically significant. the study contributes to generate new knowledge, supporting the idea of keeping babies with their mothers immediately after birth protected with the Maternal Top, without harming their wellbeing, as it keeps the axillar temperature in recommendable levels. comparar a temperatura axilar dos recém-nascidos acomodados - imediatamente após o nascimento - em contato pele a pele, sob o Top Maternal, em berço de calor radiante. estudo comparativo observacional do tipo Caso-Controle sobre a temperatura de 60 bebês nascidos no Centro Obstétrico e Centro de Parto Normal de um hospital público do município de São Paulo, sendo: 29 assistidos em berço aquecido e 31 em contato pele a pele, protegidos por uma malha de algodão colocada sobre o tórax da mãe, denominada Top Maternal. a temperatura dos bebês do grupo de contato pele a pele teve maior valor na maioria dos tempos verificados comparada à dos que foram colocados em berço de calor radiante, independentemente do local de nascimento. A diferença entre os grupos não foi estatisticamente significante. o estudo contribui com a geração de um novo conhecimento que sustenta a

  7. Mapping temperature and radiant geothermal heat flux anomalies in the Yellowstone geothermal system using ASTER thermal infrared data

    Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.

  8. Solar ultraviolet and the occupational radiant exposure of Queensland school teachers: A comparative study between teaching classifications and behavior patterns.

    Downs, Nathan J; Harrison, Simone L; Chavez, Daniel R Garzon; Parisi, Alfio V

    2016-05-01

    Classroom teachers located in Queensland, Australia are exposed to high levels of ambient solar ultraviolet as part of the occupational requirement to provide supervision of children during lunch and break times. We investigated the relationship between periods of outdoor occupational radiant exposure and available ambient solar radiation across different teaching classifications and schools relative to the daily occupational solar ultraviolet radiation (HICNIRP) protection standard of 30J/m(2). Self-reported daily sun exposure habits (n=480) and personal radiant exposures were monitored using calibrated polysulphone dosimeters (n=474) in 57 teaching staff from 6 different schools located in tropical north and southern Queensland. Daily radiant exposure patterns among teaching groups were compared to the ambient UV-Index. Personal sun exposures were stratified among teaching classifications, school location, school ownership (government vs non-government), and type (primary vs secondary). Median daily radiant exposures were 15J/m(2) and 5J/m(2)HICNIRP for schools located in northern and southern Queensland respectively. Of the 474 analyzed dosimeter-days, 23.0% were found to exceed the solar radiation protection standard, with the highest prevalence found among physical education teachers (57.4% dosimeter-days), followed by teacher aides (22.6% dosimeter-days) and classroom teachers (18.1% dosimeter-days). In Queensland, peak outdoor exposure times of teaching staff correspond with periods of extreme UV-Index. The daily occupational HICNIRP radiant exposure standard was exceeded in all schools and in all teaching classifications. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. G-control fatigue testing for cyclic crack propagation in composite structures

    Manca, Marcello; Berggreen, Christian; Carlsson, Leif A.

    2015-01-01

    This paper presents a computer controlled testing methodology called “The G-control Method” which allows cyclic crack growth testing using real-time control of the cyclic energy release rate. The advantages of using this approach are described and compared with traditional fatigue testing methods...... that the G-control method allows fatigue testing at a constant range of energy release rates leading to a constant crack propagation rate....

  10. Performance Evaluation of Radiator and Radiant Floor Heating Systems for an Office Room Connected to a Ground-Coupled Heat Pump

    Ioan Sarbu

    2016-03-01

    Full Text Available A ground-coupled heat pump (GCHP system used to provide the space heating for an office room is a renewable, high performance technology. This paper discusses vapour compression-based HP systems, briefly describing the thermodynamic cycle calculations, as well as the coefficient of performance (COP and CO2 emissions of a HP with an electro-compressor and compares different heating systems in terms of energy consumption, thermal comfort and environmental impact. It is focused on an experimental study performed to test the energy efficiency of the radiator or radiant floor heating system for an office room connected to a GCHP. The main performance parameters (COP and CO2 emissions are obtained for one month of operation of the GCHP system, and a comparative analysis of these parameters is presented. Additionally, two numerical simulation models of useful thermal energy and the system COP in heating mode are developed using the Transient Systems Simulation (TRNSYS software. Finally, the simulations obtained from TRNSYS software are analysed and compared to the experimental data, showing good agreement and thus validating the simulation models.

  11. On charge-3 cyclic monopoles

    Braden, H W; D'Avanzo, Antonella; Enolski, V Z

    2011-01-01

    We determine the spectral curve of charge-3 BPS su(2) monopoles with C 3 cyclic symmetry. The symmetry means that the genus 4 spectral curve covers a (Toda) spectral curve of genus 2. A well adapted homology basis is presented enabling the theta functions and monopole data of the genus 4 curve to be given in terms of genus 2 data. The Richelot correspondence, a generalization of the arithmetic mean, is used to solve for this genus 2 curve. Results of other approaches are compared

  12. On numerically pluricanonical cyclic coverings

    Kulikov, V S; Kharlamov, V M

    2014-01-01

    We investigate some properties of cyclic coverings f:Y→X (where X is a complex surface of general type) branched along smooth curves B⊂X that are numerically equivalent to a multiple of the canonical class of X. Our main results concern coverings of surfaces of general type with p g =0 and Miyaoka-Yau surfaces. In particular, such coverings provide new examples of multi-component moduli spaces of surfaces with given Chern numbers and new examples of surfaces that are not deformation equivalent to their complex conjugates

  13. Cyclic graphs and Apery's theorem

    Sorokin, V N

    2002-01-01

    This is a survey of results about the behaviour of Hermite-Pade approximants for graphs of Markov functions, and a survey of interpolation problems leading to Apery's result about the irrationality of the value ζ(3) of the Riemann zeta function. The first example is given of a cyclic graph for which the Hermite-Pade problem leads to Apery's theorem. Explicit formulae for solutions are obtained, namely, Rodrigues' formulae and integral representations. The asymptotic behaviour of the approximants is studied, and recurrence formulae are found

  14. A system for cyclical voltametry

    Silva, R.P. da; Chierice, G.O.

    1974-01-01

    The constrution of a system composed by two instruments, voltametric circuit and potenciostate is depicted. Both instruments junction joined so that the voltametric circuit works as a triangular pulse generator, capable of operating with independent ascendant and descendant slope change, with unique pulse of continuous regime. The circuit of the potenciostate is composed of an amplifier with high entrance impedance and capable of supplying relatively high currents at the exit. The equipment was tested to study the aqueous Pb 2+ system in mercury electrode. this system depicted for the cyclical-voltometry technique set in use at I.E.A., Sao Paulo (Brazil), has very good linearity

  15. Radiant Ceiling Panels Combined with Localized Methods for Improved Thermal Comfort of Both Patient and Medical Staff in Patient Room

    Mori, Sakura; Barova, Mariya; Bolashikov, Zhecho Dimitrov

    2012-01-01

    The objectives were to identify whether ceiling installed radiant heating panels can provide thermal comfort to the occupants in a patient room, and to determine a method for optimal thermal environment to both patient and medical staff simultaneously. The experiments were performed in a climate...... mattress were used to provide local heating for the patient. The effects of the methods were identified by comparing the manikin based equivalent temperatures. The optimal thermal comfort level for both patient and medical staff would obtained when two conventional cotton blankets were used with extra...... chamber resembling a single-bed patient room under convective air conditioning alone or combined with the ceiling installed radiant heating panels. Two thermal manikins simulated a patient lying in the bed and a doctor standing next to the patient. Conventional cotton blanket, electric blanket, electric...

  16. Effect of radiant heat at the birth site in farrowing crates on hypothermia and behaviour in neonatal piglets

    Andersen, Heidi Mai-Lis; Pedersen, Lene Juul

    2016-01-01

    It has been documented that floor heating of the farrowing area in loose housed sows improves survival of piglets significantly. However, today, the majority of farrowing pens are designed with crating of sows and slatted floor at the birth site. The aim of this study was to investigate whether...... providing radiant heat at the birth site to new-born piglets in pens with crated sows reduced hypothermia, time to first milk intake and growth of the piglets during the 1st week. Second parity Danish Landrace×Yorkshire sows (n=36) were randomly divided into two groups: Control (CG) and heat (HG......). In the area behind the sow (zone 1), two radiant heat panels were mounted above the slatted floor in the HG. The farrowings were attended, and the heaters were turned on at birth of first piglet and turned off 12 h after. Birth time, time to leave zone 1, time to first contact with udder and time to first...

  17. Cyclic AMP in rat pancreatic islets

    Grill, V.; Borglund, E.; Cerasi, E.; Uppsala Univ.

    1977-01-01

    The incorporation of [ 3 H]adenine into cyclic AMP was studied in rat pancreatic islets under varying conditions of labeling. Prolonging the exposure to [ 3 H]adenine progressively augmented the islet cyclic [ 3 H]AMP level. Islets labeled for different periods of time and subsequently incubated (without adenine) in the presence of D-glucose or cholera toxin showed stimulations of intra-islet cyclic [ 3 H]AMP that were proportionate to the levels of radioactive nucleotide present under non-stimulatory conditions. Labeling the islets in a high glucose concentration (27.7 mM) did not modify the nucleotide responses to glucose or cholera toxin. The specific activity of cyclic [ 3 H]AMP, determined by simultaneous assay of cyclic [ 3 H]AMP and total cyclic AMP, was not influenced by glucose or cholera toxin. Glucose had no effect on the specific activity of labeled ATP

  18. Plasma-focused cyclic accelerators

    Mondelli, A.A.; Chernin, D.P.

    1985-01-01

    The use of ambient plasma to neutralize the transverse forces of an intense particle beam has been known for many years. Most recently, the so-called ion-focused regime (IFR) for beam propagation has been used as a means of focusing intense electron beams in linear accelerators and suggested for injecting an electron beam across magnetic field lines into a high-current cyclic accelerator. One technique for generating the required background plasma for IFR propagation is to use a laser to ionize ambient gas in the accelerator chamber. For cyclic accelerators a technique is required for carrying the plasma channel and the beam around a bend. Multiple laser-generated channels with dipole magnetic fields to switch the beam from one channel to the next have been tested at Sandia. This paper discusses an alternative means of plasma production for IFR, viz. by using rf breakdown. For this approach the accelerator chamber acts as a waveguide. With a suitable driving frequency, a waveguide mode can be driven which has its peak field intensity on the axis with negligible fields at the chamber walls. The plasma production and hence the beam propagation is thereby isolated from the walls. This technique is not limited to toroidal accelerators. It may be applied to any accelerator or recirculator geometry as well as for beam steering and for injection or extraction of beams in closed accelerator configurations

  19. Cyclic Vomiting Syndrome in Children

    T.V. Sorokman

    2016-08-01

    Full Text Available Introduction. Cyclic vomiting syndrome (CVS — is a fairly common disease of unknown etiology that affects children of all age groups and sometimes adult population and refers to the functional disorders of the gastrointestinal tract. Objective: to evaluate the effectiveness of the usage of Rehydron Optim for oral rehydration therapy in children. Materials and methods. The treatment of 40 children aged 3 to 11 years with CVS (15 persons and primary acetonemic syndrome (25 persons in the period of acetonemic crisis, including 15 boys and 25 girls, was analyzed. All children were observed in the outpatient department of the Regional children’s hospital of Chernivtsi. Diagnosis was established based on anamnesis, clinical and laboratory data. Patients underwent required clinico-biological tests and instrumental examinations. The dynamics of the following syndromes was investigated: pain, vomiting, dehydration and intoxication. Rehydration therapy in all cases was oral with the usage of Rehydron Optim. Results of the study and their discussion. A cyclical vomiting was observed in children with primary acetonemic syndrome with satisfactory condition in attack-free period. Migraine-like headaches prevailed in 36 patients (80 %, and the age of these patients was older than 7 years. Same children had episodes of paroxysmal autonomic failure. Almost all surveyed children had in their family history the risk factors for CVS development. All children had positive dynamics of the main basic clinical manifestations on the background of oral rehydration therapy using Rehydron Optim. Within the 1st day of oral rehydration therapy with Rehydron Optim in children, we have noted a significant decrease in the incidence of lethargy, vomiting, spastic abdominal pain, smell of acetone in the exhaled air (p < 0.05. In children with the I degree of dehydration, clinical signs of dehydration were not seen before the treatment, and children with the II degree had an

  20. Experimental research on the indoor temperature and humidity fields in radiant ceiling air-conditioning system under natural ventilation

    Huang, Tao; Xiang, Yutong; Wang, Yonghong

    2017-05-01

    In this paper, the indoor temperature and humidity fields of the air in a metal ceiling radiant panel air conditioning system with fresh air under natural ventilation were researched. The temperature and humidity distributions at different height and different position were compared. Through the computation analysis of partial pressure of water vapor, the self-recovery characteristics of humidity after the natural ventilation was discussed.

  1. [Cyclic Cushing's Syndrome - rare or rarely recognized].

    Kiałka, Marta; Doroszewska, Katarzyna; Mrozińska, Sandra; Milewicz, Tomasz; Stochmal, Ewa

    2015-01-01

    Cyclic Cushing's syndrome is a type of Cushing's disease which is characterized by alternating periods of increasing and decreasing levels of cortisol in the blood. The diagnostic criteria for cyclic Cushing's syndrome are at least three periods of hypercortisolism alternating with at least two episodes of normal levels of serum cortisol concentration. The epidemiology, signs, symptoms, pathogenesis and treatment of cyclic Cushing's syndrome have been discussed.

  2. Solar radiation, phytoplankton pigments and the radiant heating of the equatorial Pacific warm pool

    Siegel, David A.; Ohlmann, J. Carter; Washburn, Libe; Bidigare, Robert R.; Nosse, Craig T.; Fields, Erik; Zhou, Yimei

    1995-01-01

    Recent optical, physical, and biological oceanographic observations are used to assess the magnitude and variability of the penetrating flux of solar radiation through the mixed layer of the warm water pool (WWP) of the western equatorial Pacific Ocean. Typical values for the penetrative solar flux at the climatological mean mixed layer depth for the WWP (30 m) are approx. 23 W/sq m and are a large fraction of the climatological mean net air-sea heat flux (approx. 40 W/sq m). The penetrating solar flux can vary significantly on synoptic timescales. Following a sustained westerly wind burst in situ solar fluxes were reduced in response to a near tripling of mixed layer phytoplankton pigment concentrations. This results in a reduction in the penetrative flux at depth (5.6 W/sq m at 30 m) and corresponds to a biogeochemically mediated increase in the mixed layer radiant heating rate of 0.13 C per month. These observations demonstrate a significant role of biogeochemical processes on WWP thermal climate. We speculate that this biogeochemically mediated feedback process may play an important role in enhancing the rate at which the WWP climate system returns to normal conditions following a westerly wind burst event.

  3. EXPERIMENTAL INVESTIGATION OF THE CONVECTIVE HEAT TRANSFER IN A SPIRALLY COILED CORRUGATED TUBE WITH RADIANT HEATING

    Milan Đorđević

    2017-12-01

    Full Text Available The Archimedean spiral coil made of a transversely corrugated tube was exposed to radiant heating in order to represent a heat absorber of the parabolic dish solar concentrator. The main advantage of the considered innovative design solution is a coupling effect of the two passive methods for heat transfer enhancement - coiling of the flow channel and changes in surface roughness. The curvature ratio of the spiral coil varies from 0.029 to 0.234, while water and a mixture of propylene glycol and water are used as heat transfer fluids. The unique focus of this study is on specific boundary conditions since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but in the axial direction as well. Instrumentation of the laboratory model of the heat absorber mounted in the radiation field includes measurement of inlet fluid flow rate, pressure drop, inlet and outlet fluid temperature and 35 type K thermocouples welded to the coil surface. A thermal analysis of the experimentally obtained data implies taking into consideration the externally applied radiation field, convective and radiative heat losses, conduction through the tube wall and convection to the internal fluid. The experimental results have shown significant enhancement of the heat transfer rate compared to spirally coiled smooth tubes, up to 240% in the turbulent flow regime.

  4. Evolution of arbitrary moments of radiant intensity distribution for partially coherent general beams in atmospheric turbulence

    Dan, Youquan; Xu, Yonggen

    2018-04-01

    The evolution law of arbitrary order moments of the Wigner distribution function, which can be applied to the different spatial power spectra, is obtained for partially coherent general beams propagating in atmospheric turbulence using the extended Huygens-Fresnel principle. A coupling coefficient of radiant intensity distribution (RID) in turbulence is introduced. Analytical expressions of the evolution of the first five-order moments, kurtosis parameter, coupling coefficient of RID for general beams in turbulence are derived, and the formulas are applied to Airy beams. Results show that there exist two types for general beams in turbulence. A larger value of kurtosis parameter for Airy beams also reveals that coupling effect due to turbulence is stronger. Both theoretical analysis and numerical results show that the maximum value of kurtosis parameter for an Airy beam in turbulence is independent of turbulence strength parameter and is only determined by inner scale of turbulence. Relative angular spread, kurtosis and coupling coefficient are less influenced by turbulence for Airy beams with a smaller decay factor and a smaller initial width of the first lobe.

  5. Mathematical Modeling of Radiant Heat Transfer in Mirror Systems Considering Deep Reflecting Surface Defects

    V. V. Leonov

    2014-01-01

    Full Text Available When designing large-sized mirror concentrating systems (MCS for high-temperature solar power plants, one must have at disposal reasonably reliable and economical methods and tools, making it possible to analyze its characteristics, to predict them depending on the operation conditions and accordingly to choose the most suitable system for the solution of particular task.Experimental determination of MCS characteristics requires complicated and expensive experimentation, having significant limitations on interpretation of the results, as well as limitations imposed due to the size of the structure. Therefore it is of particular interest to develop a mathematical model capable of estimating power characteristics of MCS considering the influence of operating conditions, design features, roughness and other surface defects.For efficient solution of the tasks the model must ensure simulation of solar radiant flux as well as simulation of geometrical and optical characteristics of reflection surface and their interaction. In this connection a statistical mathematical model of radiation heat exchange based on use of Monte Carlo methods and Finite Element Method was developed and realized in the software complex, making it possible to determine main characteristics of the MCS.In this paper the main attention is given to definition of MCS radiation characteristics with account for deep reflecting surface defects (cavities, craters. Deep cavities are not typical for MCS, but their occurrence is possible during operation as a result of erosion or any physical damage. For example, for space technology it is primarily micrometeorite erosion.

  6. Numerical investigation on the convective heat transfer in a spiral coil with radiant heating

    Đorđević Milan Lj.

    2016-01-01

    Full Text Available The objective of this study was to numerically investigate the heat transfer in spiral coil tube in the laminar, transitional, and turbulent flow regimes. The Archimedean spiral coil was exposed to radiant heating and should represent heat absorber of parabolic dish solar concentrator. Specific boundary conditions represent the uniqueness of this study, since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but also in the axial direction. The curvature ratio of spiral coil varies from 0.029 at the flow inlet to 0.234 at the flow outlet, while the heat transfer fluid is water. The 3-D steady-state transport equations were solved using the Reynolds stress turbulence model. Results showed that secondary flows strongly affect the flow and that the heat transfer is strongly asymmetric, with higher values near the outer wall of spiral. Although overall turbulence levels were lower than in a straight pipe, heat transfer rates were larger due to the curvature-induced modifications of the mean flow and temperature fields. [Projekat Ministarstva nauke Republike Srbije, br. 42006

  7. Dependence of calculus retropulsion dynamics on fiber size and radiant exposure during Ho:YAG lithotripsy.

    Lee, Ho; Ryan, Robert T; Kim, Jeehyun; Choi, Bernard; Arakeri, Navanit V; Teichman, Joel M H; Welch, A J

    2004-08-01

    During pulsed laser lithotripsy, the calculus is subject to a strong recoil momentum which moves the calculus away from laser delivery and prolongs the operation. This study was designed to quantify the recoil momentum during Ho:YAG laser lithotripsy. The correlation among crater shape, debris trajectory, laser-induced bubble and recoil momentum was investigated. Calculus phantoms made from plaster of Paris were ablated with free running Ho:YAG lasers. The dynamics of recoil action of a calculus phantom was monitored by a high-speed video camera and the laser ablation craters were examined with Optical Coherent Tomography (OCT). Higher radiant exposure resulted in larger ablation volume (mass) which increased the recoil momentum. Smaller fibers produced narrow craters with a steep contoured geometry and decreased recoil momentum compared to larger fibers. In the presence of water, recoil motion of the phantom deviated from that of phantom in air. Under certain conditions, we observed the phantom rocking towards the fiber after the laser pulse. The shape of the crater is one of the major contributing factors to the diminished recoil momentum of smaller fibers. The re-entrance flow of water induced by the bubble collapse is considered to be the cause of the rocking of the phantom.

  8. Influence on living body by radiant rays produced in low power reactor

    Ogura, Isao; Nakamura, Katsuichi; Usuyama, Hideo; Usui, Akinori; Hosomi, Takashi; Yoshimura, Yoshinao; Nakai, Takahide; Egashira, Masamichi

    1984-01-01

    There is possibility of a risk that a living body is irradiated by those for slightly indifference to radiant rays, radiation source or devices of low level dose or dose rate. Accordingly, a low power reactor (UTR-KINKI) was utilized for a observation of influence by radiation of low level dose or dose rate, the rabbits were irradiated in it at output 1 w. The large influence was not expected for the low level dose rate of 1.313 Rad/hr even if they were irradiated for the several hours, but in a part of blood components a slight change was recognized. The change of M pattern in white blood corpuscle number was indicated likewise as irradiation of 500R X-ray, reported from Jacobson and others, by irradiation to about 13 Rads. In addition, lymphocyte number was increased considerably in an early stage. This fact will be useful for a recovery of an injury as mentioned by Lucky. The rabbits of alloxan diabetes mellitus and hepatitis were irradiated in the same way as above, but they scarcely showed the alterations. However, numerous rabbits can't be used in this experiment for the equipment and others. (author)

  9. A new integrating sphere design for spectral radiant flux determination of light-emitting diodes

    Hanselaer, P.; Keppens, A.; Forment, S.; Ryckaert, W. R.; Deconinck, G.

    2009-09-01

    Light-emitting diode (LED) technology is developing very quickly and may be considered an alternative for traditional light sources. However, at this moment, manufacturers and end users of LEDs are facing a rather basic but major problem. The lack of standardization regarding optical and electrical characterization of LEDs appears to compromise a successful implementation. In particular, numbers quoted for the luminous flux, and consequently for the efficacy of LEDs, are very sensitive data because they are used to impress and push the LED market. In this paper, the most was made of the typical hemispherical radiation of high-power LEDs to increase the accuracy of the flux determination using a custom-made integrating sphere. Recently developed measurement techniques such as the use of an external spectral irradiance standard and an optimized spectral irradiance detection head are combined with a very particular port geometry and a minimized baffle area. This results in a uniform spatial response distribution function (SRDF), which guarantees an accurate radiant and luminous flux determination, irrespective of the spatial intensity distribution of the LED package or luminaire. The effect of the directional response of the detector head on the SRDF has been explored. Measurements on LED devices with and without external optics are presented, illustrating the possibilities of the measurement setup.

  10. A new integrating sphere design for spectral radiant flux determination of light-emitting diodes

    Hanselaer, P; Keppens, A; Forment, S; Ryckaert, W R; Deconinck, G

    2009-01-01

    Light-emitting diode (LED) technology is developing very quickly and may be considered an alternative for traditional light sources. However, at this moment, manufacturers and end users of LEDs are facing a rather basic but major problem. The lack of standardization regarding optical and electrical characterization of LEDs appears to compromise a successful implementation. In particular, numbers quoted for the luminous flux, and consequently for the efficacy of LEDs, are very sensitive data because they are used to impress and push the LED market. In this paper, the most was made of the typical hemispherical radiation of high-power LEDs to increase the accuracy of the flux determination using a custom-made integrating sphere. Recently developed measurement techniques such as the use of an external spectral irradiance standard and an optimized spectral irradiance detection head are combined with a very particular port geometry and a minimized baffle area. This results in a uniform spatial response distribution function (SRDF), which guarantees an accurate radiant and luminous flux determination, irrespective of the spatial intensity distribution of the LED package or luminaire. The effect of the directional response of the detector head on the SRDF has been explored. Measurements on LED devices with and without external optics are presented, illustrating the possibilities of the measurement setup

  11. Assessing the accuracy of globe thermometer method in predicting outdoor mean radiant temperature under Malaysia tropical microclimate

    Khrit, N. G.; Alghoul, M. A.; Sopian, K.; Lahimer, A. A.; Elayeb, O. K.

    2017-11-01

    Assessing outdoor human thermal comfort and urban climate quality require experimental investigation of microclimatic conditions and their variations in open urban spaces. For this, it is essential to provide quantitative information on air temperature, humidity, wind velocity and mean radiant temperature. These parameters can be quantified directly except mean radiant temperature (Tmrt). The most accurate method to quantify Tmrt is integral radiation measurements (3-D shortwave and long-wave) which require using expensive radiometer instruments. To overcome this limitation the well-known globe thermometer method was suggested to calculate Tmrt. The aim of this study was to assess the possibility of using indoor globe thermometer method in predicting outdoor mean radiant temperature under Malaysia tropical microclimate. Globe thermometer method using small and large sizes of black-painted copper globes (50mm, 150mm) were used to estimate Tmrt and compare it with the reference Tmrt estimated by integral radiation method. The results revealed that the globe thermometer method considerably overestimated Tmrt during the middle of the day and slightly underestimated it in the morning and late evening. The difference between the two methods was obvious when the amount of incoming solar radiation was high. The results also showed that the effect of globe size on the estimated Tmrt is mostly small. Though, the estimated Tmrt by the small globe showed a relatively large amount of scattering caused by rapid changes in radiation and wind speed.

  12. PAIR INFLUENCE OF WIND SPEED AND MEAN RADIANT TEMPERATURE ON OUTDOOR THERMAL COMFORT OF HUMID TROPICAL ENVIRONMENT

    Sangkertadi Sangkertadi

    2016-01-01

    Full Text Available The purposes of this article is to explore knowledge of outdoor thermal comfort in humid tropical environment for urban activities especially for people in walking activity, and those who stationary/seated with moderate action. It will be characterized the pair influence of wind speed and radiant temperature on the outdoor thermal comfort. Many of researchers stated that those two microclimate variables give significant role on outdoor thermal comfort in tropical humid area. Outdoor Tropical Comfort (OTC model was used for simulation in this study. The model output is comfort scale that refers on ASHRAE definition. The model consists of two regression equations with variables of air temperature, globe temperature, wind speed, humidity and body posture, for two types of activity: walking and seated. From the results it can be stated that there is significant role of wind speed to reduce mean radiant temperature and globe temperature, when the velocity is elevated from 0.5 m/s to 2 m/s. However, the wind has not play significant role when the speed is changed from 2 m/s to 3.5 m/s. The results of the study may inspire us to implement effectiveness of electrical-fan equipment for outdoor space in order to get optimum wind speed, coupled with optimum design of shading devices to minimize radiant temperature for thermal comfort.

  13. Effects of radiant exposure and wavelength spectrum of light-curing units on chemical and physical properties of resin cements

    Adriano Fonseca Lima

    2016-11-01

    Full Text Available Objectives In this study, we evaluated the influence of different radiant exposures provided by single-peak and polywave light-curing units (LCUs on the degree of conversion (DC and the mechanical properties of resin cements. Materials and Methods Six experimental groups were established for each cement (RelyX ARC, 3M ESPE; LuxaCore Dual, Ivoclar Vivadent; Variolink, DMG, according to the different radiant exposures (5, 10, and 20 J/cm2 and two LCUs (single-peak and polywave. The specimens were made (7 mm in length × 2 mm in width × 1 mm in height using silicone molds. After 24 hours of preparation, DC measurement was performed using Fourier transform infrared spectrometry. The same specimens were used for the evaluation of mechanical properties (flexural strength, FS; elastic modulus, E by a three-point bending test. Data were assessed for normality, after which two-way analysis of variance (ANOVA and post hoc Tukey's test were performed. Results No properties of the Variolink cement were influenced by any of the considered experimental conditions. In the case of the RelyX ARC cement, DC was higher when polywave LCU was used; FS and E were not influenced by the conditions evaluated. The LuxaCore cement showed greater sensitivity to the different protocols. Conclusions On the basis of these results, both the spectrum of light emitted and the radiant exposure used could affect the properties of resin cements. However, the influence was material-dependent.

  14. The efficacy of radiant heat controls on workers' heat stress around the blast furnace of a steel industry.

    Giahi, Omid; Darvishi, Ebrahim; Aliabadi, Mohsen; Khoubi, Jamshid

    2015-01-01

    Workers' exposure to excessive heat in molten industries is mainly due to radiant heat from hot sources. The aim of this study was to evaluate the efficacy of radiant heat controls on workers heat stress around a typical blast furnace. Two main interventions were applied for reducing radiant heat around the blast furnace of a steel industry located in western Iran. These included using a heat absorbing system in the furnace body and installing reflective aluminum barrier in the main workstation. Heat stress indexes were measured before and after each intervention using the digital WBGT-meter. The results showed MRT and WBGT indexes decreased by 20 °C and 3.9 °C, respectively after using heat absorbing system and also decreased by 18.6 °C and 2.5 °C, respectively after installing a reflective barrier. These indexes decrease by 26.5 °C and 5.2 °C, respectively due to the simultaneous application of the two interventions which were statistically significant (p steel industries.

  15. Modeling Cyclic Variation of Intracranial Pressure

    Daley, M

    2001-01-01

    ...) recording during mechanical ventilation are due to cyclic extravascular compressional modulation primarily of the cerebral venous bed, an established isovolumetric model of cerebrospinal fluid...

  16. Behaviour of Cohesionless Soils During Cyclic Loading

    Shajarati, Amir; Sørensen, Kris Wessel; Nielsen, Søren Kjær

    Offshore wind turbine foundations are typically subjected to cyclic loading from both wind and waves, which can lead to unacceptable deformations in the soil. However, no generally accepted standardised method is currently available, when accounting for cyclic loading during the design of offshore...... wind turbine foundations. Therefore a literature study is performed in order to investigate existing research treating the behaviour of cohesionless soils, when subjected to cyclic loading. The behaviour of a soil subjected to cyclic loading is found to be dependent on; the relative density, mean...

  17. Cyclical subnormal separation in A-groups

    Makarfi, M.U.

    1995-12-01

    Three main results, concerning A-groups in respect of cyclical subnormal separation as defined in, are presented. It is shown in theorem A that any A-group that is generated by elements of prime order and satisfying the cyclical subnormal separation conditions is metabelian. The two other main results give necessary and sufficient conditions for A-groups, that are split extensions of certain abelian p-groups by a metabelian p'-group, to satisfy the cyclical subnormal separation condition. There is also a result which shows that A-groups with elementary abelian Sylow subgroups are cyclically separated as defined. (author). 7 refs

  18. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response.

    Troussel, Ph; Villette, B; Emprin, B; Oudot, G; Tassin, V; Bridou, F; Delmotte, F; Krumrey, M

    2014-01-01

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  19. Public administration and cyclical mechanisms socio-economic development

    S. A. Kvitka

    2016-03-01

    Full Text Available The article discusses the cyclical mechanisms of socio-economic development as one of kinds of natural cycles. The author notes that in all cases the basis of the self-oscillations are cyclical. And they are only possible with the constant influx of three resources - energy, matter and information. On this basis, it is noted that the self-organization of coherent structures, regardless of their Genesis, is due to intrinsically contradictory unity of two interacting types of resource flows - energy, matter and information – And-stream forming system, and the In-flow that will disrupt her. The cycle of development of systems consists of two components: one that describes the development of a system with positive saturation, according to a logistic law (A>B; and another describing the development of the system with negative saturation.

  20. Topology and symmetry of surface Majorana arcs in cyclic superconductors

    Mizushima, Takeshi; Nitta, Muneto

    2018-01-01

    We study the topology and symmetry of surface Majorana arcs in superconductors with nonunitary "cyclic" pairing. Cyclic p -wave pairing may be realized in a cubic or tetrahedral crystal, while it is a candidate for the interior P32 superfluids of neutron stars. The cyclic state is an admixture of full gap and nodal gap with eight Weyl points and the low-energy physics is governed by itinerant Majorana fermions. We here show the evolution of surface states from Majorana cone to Majorana arcs under rotation of surface orientation. The Majorana cone is protected solely by an accidental spin rotation symmetry and fragile against spin-orbit coupling, while the arcs are attributed to two topological invariants: the first Chern number and one-dimensional winding number. Lastly, we discuss how topologically protected surface states inherent to the nonunitary cyclic pairing can be captured from surface probes in candidate compounds, such as U1 -xThxBe13 . We examine tunneling conductance spectra for two competitive scenarios in U1 -xThxBe13 —the degenerate Eu scenario and the accidental scenario.

  1. Finite element analysis of the cyclic indentation of bilayer enamel

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-01-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel. (paper)

  2. Finite element analysis of the cyclic indentation of bilayer enamel

    Jia, Yunfei; Xuan, Fu-zhen; Chen, Xiaoping; Yang, Fuqian

    2014-04-01

    Tooth enamel is often subjected to repeated contact and often experiences contact deformation in daily life. The mechanical strength of the enamel determines the biofunctionality of the tooth. Considering the variation of the rod arrangement in outer and inner enamel, we approximate enamel as a bilayer structure and perform finite element analysis of the cyclic indentation of the bilayer structure, to mimic the repeated contact of enamel during mastication. The dynamic deformation behaviour of both the inner enamel and the bilayer enamel is examined. The material parameters of the inner and outer enamel used in the analysis are obtained by fitting the finite element results with the experimental nanoindentation results. The penetration depth per cycle at the quasi-steady state is used to describe the depth propagation speed, which exhibits a two-stage power-law dependence on the maximum indentation load and the amplitude of the cyclic load, respectively. The continuous penetration of the indenter reflects the propagation of the plastic zone during cyclic indentation, which is related to the energy dissipation. The outer enamel serves as a protective layer due to its great resistance to contact deformation in comparison to the inner enamel. The larger equivalent plastic strain and lower stresses in the inner enamel during cyclic indentation, as calculated from the finite element analysis, indicate better crack/fracture resistance of the inner enamel.

  3. Modular assembly of a photovoltaic solar energy receiver

    Graven, Robert M.; Gorski, Anthony J.; Schertz, William W.; Graae, Johan E. A.

    1978-01-01

    There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.

  4. The energy balance of the earth's surface : a practical approach

    Bruin, de H.A.R.

    1982-01-01

    This study is devoted to the energy balance of the earth's surface with a special emphasis on practical applications. A simple picture of the energy exchange processes that take place at the ground is the following. Per unit time and area an amount of radiant energy is supplied to the surface. This

  5. Cyclic plastic hinges with degradation effects for frame structures

    Tidemann, Lasse; Krenk, Steen

    2017-01-01

    A model of cyclic plastic hinges in frame structures including degradation effects for stiffness and strength is developed. The model is formulated via potentials in terms of section forces. It consists of a yield surface, described in a generic format permitting representation of general convex shapes including corners, and a set of evolution equations based on an internal energy potential and a plastic flow potential. The form of these potentials is specified by five parameters for each gen...

  6. Plasma-focused cyclic accelerators

    Mondelli, A.A.; Chernin, D.P.

    1985-01-01

    The use of ambient plasma to neutralize the transverse forces of an intense particle beam has been known for many years. Most recently, the so-called ion-focused regime (IFR) for beam propagation has been used as a means of focusing intense electron beams in linear accelerators and suggested for injecting an electron beam across magnetic field lines into a high-current cyclic accelerator. One technique for generating the required background plasma for IFR propagation is to use a laser to ionize ambient gas in the accelerator chamber. This paper discusses an alternative means of plasma production for IFR, viz. by using RF breakdown. For this approach the accelerator chamber acts as a waveguide. This technique is not limited to toroidal accelerators. It may be applied to any accelerator or recirculator geometry as well as for beam steering and for injection or extraction of beams in closed accelerator configurations

  7. In-situ investigations of structural changes during cyclic loading by high resolution reciprocal space mapping

    Diederichs, Annika M.; Thiel, Felix; Lienert, Ulrich

    2017-01-01

    dislocation structures can be identified using advanced electron microscopy and synchrotron techniques. A detailed characterization of the microstructure during cyclic loading by in-situ monitoring the internal structure within individual grains with high energy x-rays can help to understand and predict...... the materials behavior during cyclic deformation and to improve the material design. While monitoring macroscopic stress and strain during cyclic loading, reciprocal space maps of diffraction peaks from single grains are obtained with high resolution. High Resolution Reciprocal Space Mapping was applied...

  8. Cyclic completion of the anamorphic universe

    Ijjas, Anna

    2018-04-01

    Cyclic models of the universe have the advantage of avoiding initial conditions problems related to postulating any sort of beginning in time. To date, the best known viable examples of cyclic models have been ekpyrotic. In this paper, we show that the recently proposed anamorphic scenario can also be made cyclic. The key to the cyclic completion is a classically stable, non-singular bounce. Remarkably, even though the bounce construction was originally developed to connect a period of contraction with a period of expansion both described by Einstein gravity, we show here that it can naturally be modified to connect an ordinary contracting phase described by Einstein gravity with a phase of anamorphic smoothing. The paper will present the basic principles and steps in constructing cyclic anamorphic models.

  9. Detection of Cyclic Dinucleotides by STING.

    Du, Xiao-Xia; Su, Xiao-Dong

    2017-01-01

    STING (stimulator of interferon genes) is an essential signaling adaptor protein mediating cytosolic DNA-induced innate immunity for both microbial invasion and self-DNA leakage. STING is also a direct receptor for cytosolic cyclic dinucleotides (CDNs), including the microbial secondary messengers c-di-GMP (3',3'-cyclic di-GMP), 3',3'cGAMP (3',3'-cyclic GMP-AMP), and mammalian endogenous 2',3'cGAMP (2',3'-cyclic GMP-AMP) synthesized by cGAS (cyclic GMP-AMP synthase). Upon CDN binding, STING undergoes a conformational change to enable signal transduction by phosphorylation and finally to active IRF3 (Interferon regulatory factor 3) for type I interferon production. Here, we describe some experimental procedures such as Isothermal Titration Calorimetry and luciferase reporter assays to study the CDNs binding and activity by STING proteins.

  10. Highly Controlled Synthesis and Super-Radiant Photoluminescence of Plasmonic Cube-in-Cube Nanoparticles.

    Park, Jeong-Eun; Kim, Sungi; Son, Jiwoong; Lee, Yeonhee; Nam, Jwa-Min

    2016-12-14

    The plasmonic properties of metal nanostructures have been heavily utilized for surface-enhanced Raman scattering (SERS) and metal-enhanced fluorescence (MEF), but the direct photoluminescence (PL) from plasmonic metal nanostructures, especially with plasmonic coupling, has not been widely used as much as SERS and MEF due to the lack of understanding of the PL mechanism, relatively weak signals, and the poor availability of the synthetic methods for the nanostructures with strong PL signals. The direct PL from metal nanostructures is beneficial if these issues can be addressed because it does not exhibit photoblinking or photobleaching, does not require dye-labeling, and can be employed as a highly reliable optical signal that directly depends on nanostructure morphology. Herein, we designed and synthesized plasmonic cube-in-cube (CiC) nanoparticles (NPs) with a controllable interior nanogap in a high yield from Au nanocubes (AuNCs). In synthesizing the CiC NPs, we developed a galvanic void formation (GVF) process, composed of replacement/reduction and void formation steps. We unraveled the super-radiant character of the plasmonic coupling-induced plasmon mode which can result in highly enhanced PL intensity and long-lasting PL, and the PL mechanisms of these structures were analyzed and matched with the plasmon hybridization model. Importantly, the PL intensity and quantum yield (QY) of CiC NPs are 31 times and 16 times higher than those of AuNCs, respectively, which have shown the highest PL intensity and QY reported for metallic nanostructures. Finally, we confirmed the long-term photostability of the PL signal, and the signal remained stable for at least 1 h under continuous illumination.

  11. Pollutant emissions reduction and performance optimization of an industrial radiant tube burner

    Scribano, Gianfranco; Solero, Giulio; Coghe, Aldo [Dipartimento di Energetica, Politecnico di Milano, via La Masa, 34, 20156 Milano (Italy)

    2006-07-15

    This paper presents the results of an experimental investigation performed upon a single-ended self-recuperative radiant tube burner fuelled by natural gas in the non-premixed mode, which is used in the steel industry for surface treatment. The main goal of the research activity was a systematic investigation of the burner aimed to find the best operating conditions in terms of optimum equivalence ratio, thermal power and lower pollutant emissions. The analysis, which focused on the main parameters influencing the thermal efficiency and pollutant emissions at the exhaust (NO{sub x} and CO), has been carried out for different operating conditions of the burner: input thermal powers from 12.8 up to 18kW and equivalence ratio from 0.5 (very lean flame) to 0.95 (quasi-stoichiometric condition). To significantly reduce pollutant emissions ensuring at the same time the thermal requirements of the heating process, it has been developed a new burner configuration, in which a fraction of the exhaust gases recirculates in the main combustion region through a variable gap between the burner efflux and the inner flame tube. This internal recirculation mechanism (exhaust gases recirculation, EGR) has been favoured through the addition of a pre-combustion chamber terminated by a converging nozzle acting as a mixing/ejector to promote exhaust gas entrainment into the flame tube. The most important result of this solution was a decrease of NO{sub x} emissions at the exhaust of the order of 50% with respect to the original burner geometry, for a wide range of thermal power and equivalence ratio. (author)

  12. Experimental and modelling analysis of an office building HVAC system based in a ground-coupled heat pump and radiant floor

    Villarino, José Ignacio; Villarino, Alberto; Fernández, Francisco Ángel

    2017-01-01

    Highlights: • A case study of a geothermal heat pump in an office building. • A numerical model in EnergyPlus is validated by experimental results. • An energy, economic and environmental analysis is presented. • A comparison with other technologies demonstrates the potential of the system. - Abstract: This paper shows the evaluation of the performance of a ground-coupled heat pump system monitored building providing heating, ventilating and air conditioning to an office building located in Madrid, in Spain. The system consists of one borehole exchanger, heat pump unit, radiant floor system, mechanical ventilation and data control system. A simulation model was performed with EnergyPlus software and validated. The analyzed period corresponds to the most unfavorable weather conditions in heating and cooling mode. The coefficient of performance obtained in heating and cooling mode was 3.86/5.29, considering all the energy consumption elements of the building and the thermal demand corresponding to an office operation. The CO_2 emissions obtained with a value of 34.68 kg corresponding to the period analyzed represents a low CO_2 emission system. The monitored temperatures reached set point values of 22 °C/25 °C, considered as acceptable comfort temperatures. The values obtained in the validated simulation model presented a deviation of 2% respected experimental results in heating and cooling mode. A comparative of COP_s_y_s and CO_2 emissions with other technologies is performed in order to analyze GCHP compared to other available technologies. The GCHP system is presented as a technology that can fully supply the HVAC conditions for a building and environmentally friendly.

  13. Potency of Solar Energy Applications in Indonesia

    Handayani, Noer Abyor; Ariyanti, Dessy

    2012-01-01

    Currently, 80% of conventional energy is used to fulfill general public's needs andindustries. The depletion of oil and gas reserves and rapid growth in conventional energyconsumption have continuously forced us to discover renewable energy sources, like solar, wind,biomass, and hydropower, to support economic development in the future. Solar energy travels at aspeed of 186,000 miles per second. Only a small part of the radiant energy that the sun emits intospace ever reaches the Earth, but t...

  14. Specificity of the Cyclic GMP-Binding Activity and of a Cyclic GMP-Dependent Cyclic GMP Phosphodiesterase in Dictyostelium discoideum

    Haastert, Peter J.M. van; Walsum, Hans van; Meer, Rob C. van der; Bulgakov, Roman; Konijn, Theo M.

    1982-01-01

    The nucleotide specificity of the cyclic GMP-binding activity in a homogenate of Dictyostelium discoideum was determined by competition of cyclic GMP derivatives with [8-3H] cyclic GMP for the binding sites. The results indicate that cyclic GMP is bound to the binding proteins by hydrogen bonds at

  15. Radiant heat transfer during the natural evaporation from free surfaces exposed to solar radiation; Transferencia de calor radiante durante a evaporacao natural em superficies livres expostas a radiacao solar

    Teixeira, C O.M. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Hackenberg, C M [Universidade Federal do Rio de Janeiro, RJ (Brazil). Escola de Quimica

    1985-12-31

    In this work a conductive-convective-radiant model which includes phase change behavior, is developed in order to determine the rate of evaporation from free surface exposed to solar radiation and consequently the most important parameters, and their effects, on the design of salt solutions concentrating natural evaporation reservoirs may be analysed. The numerical solutions of the resulting of system of equations are shown to represent very well the experimental results measured on evaporation chambers specially built for daily operations. The thermal effect of spectrally selective surfaces as coating agents for the reservoir is also analysed. (author). 11 refs., 8 figs

  16. Production of isomers by the cyclic activation method

    Salaita, G.N.; Eapen, P.K.

    1974-01-01

    The isomeric states formation cross sections for 14.8 MeV neutron reactions in Mg, Al, As, Y, In, Hf, Tl, Pb, and Bi were measured using the cyclic activation technique and a high resolution Ge(Li) detector. Isomeric activities originating from the various isotopes of lead and thallium were separated by proper choice of cyclic timing parameters and energy discrimination. Long lived isomeric and ground state activities were investigated through conventional activation method. The isomeric cross section ratios, sigma/sub m//sigma/sub g/ for six elements, were measured and compared to the theoretical predictions of the Huizenga-Vandenbosch method. The half-lives of short-lived activities were determined using a wide range time-to-pulse height converter and a multi-channel analyzer

  17. Low-temperature resistance of cyclically strained aluminum

    Segal, H.R.; Richard, T.G.

    1977-01-01

    An experimental study of the resistance changes in high-purity, reinforced aluminum due to cyclic straining is presently underway. The purpose of this work is to determine the optimum purity of aluminum to be used as a stabilizing material for superconducting magnets used for energy storage. Since pure aluminum has a low yield strength, it is not capable of supporting the stress levels in an energized magnet. Therefore, it has been bonded to a high-strength material--in this case, 6061 aluminum alloy. This bonding permits pure aluminum to be strained cyclically beyond its elastic limit with recovery of large plastic strains upon release of the load. The resistance change in this composite material is less than that of pure, unreinforced aluminum

  18. Experimental investigation and feasibility analysis on a capillary radiant heating system based on solar and air source heat pump dual heat source

    Zhao, M.; Gu, Z.L.; Kang, W.B.; Liu, X.; Zhang, L.Y.; Jin, L.W.; Zhang, Q.L.

    2017-01-01

    Graphical abstract: (a) Vertical temperature gradient in Case 3, (b) PMV and PPD of the test room in Case 3, (c) operating time of SPCTS and ASHP systems in Case 3 and (d) the proportion of SPCTS operating time. - Highlights: • A capillary heating system based on solar and air source heat pump was developed. • Influence of supply water temperature on solar energy saving rate was investigated. • Heating performance and thermal comfort of capillary heating system were analyzed. • Low temperature heating with capillary is suitable for solar heating system. - Abstract: Due to sustainable development, solar energy has drawn much attention and been widely applied in buildings. However, the application of solar energy is limited because of its instability, intermittency and low energy density in winter. In order to use low density and instable solar energy source for heating and improve the utilization efficiency of solar energy, a solar phase change thermal storage (SPCTS) heating system using a radiant-capillary-terminal (RCT) to effectively match the low temperature hot water, a phase change thermal storage (PCTS) to store and continuously utilize the solar energy, and an air source heat pump (ASHP) as an alternate energy, was proposed and set up in this research. Series of experiments were conducted to obtain the relation between the solar radiation utilization rate and the heating supply temperatures, and to evaluate the performance of the RCT module and the indoor thermal environment of the system for its practical application in a residential building in the north-western City of Xi’an, China. The results show that energy saving of the solar heating system can be significantly improved by reducing the supplied water temperature, and the supplied water temperature of the RCT would be no more than 35 °C. The capillary radiation heating can adopt a lower water temperature and create a good thermal comfort environment as well. These results may lead to the

  19. Cyclic characteristics of earthquake time histories

    Hall, J.R. Jr; Shukla, D.K.; Kissenpfennig, J.F.

    1977-01-01

    From an engineering standpoint, an earthquake record may be characterized by a number of parameters, one of which is its 'cyclic characteristics'. The cyclic characteristics are most significant in fatigue analysis of structures and liquefaction analysis of soils where, in addition to the peak motion, cyclic buildup is significant. Whereas duration peak amplitude and response spectra for earthquakes have been studied extensively, the cyclic characteristics of earthquake records have not received an equivalent attention. Present procedures to define the cyclic characteristics are generally based upon counting the number of peaks at various amplitude ranges on a record. This paper presents a computer approach which describes a time history by an amplitude envelope and a phase curve. Using Fast Fourier Transform Techniques, an earthquake time history is represented as a projection along the x-axis of a rotating vector-the length the vector is given by the amplitude spectra-and the angle between the vector and x-axis is given by the phase curve. Thus one cycle is completed when the vector makes a full rotation. Based upon Miner's cumulative damage concept, the computer code automatically combines the cycles of various amplitudes to obtain the equivalent number of cycles of a given amplitude. To illustrate the overall results, the cyclic characteristics of several real and synthetic earthquake time histories have been studied and are presented in the paper, with the conclusion that this procedure provides a physical interpretation of the cyclic characteristics of earthquakes. (Auth.)

  20. Cyclic deformation of Nb single crystals

    Guiu, F.; Anglada, M.

    1982-01-01

    The temperature and strain-rate dependence of the cyclic flow stress of Nb single crystals with two different axial orientations has been studied at temperatures between 175 and 350 K. This dependence is found to be independent of the crystal orientation when the internal stresses are taken into account, and the results are discussed in terms of the theory of thermally activated dislocation glide. A transition temperature can be identified at about 250 K which separates two regions with different thermally activated deformation behaviour. Above this transition temperature the strain rate can be described by a stress power law, and the activation energy can be represented by a logarithmic function of the stress, as in Escaig's model of screw dislocation mobility. In the temperature range 170 to 250 K the results are also in agreement with the more recent model proposed by Seeger. The large experimental errors inherent in the values of activation enthalpy at low stresses are emphasized and taken into account in the discussion of the results. It is suggested that either impurity-kink interactions or the flexibility of the screw dislocations are responsible for the trend towards the high values of activation enthalpy measured at the low stresses. (author)

  1. Interuniversal entanglement in a cyclic multiverse

    Robles-Pérez, Salvador; Balcerzak, Adam; Dąbrowski, Mariusz P.; Krämer, Manuel

    2017-04-01

    We study scenarios of parallel cyclic multiverses which allow for a different evolution of the physical constants, while having the same geometry. These universes are classically disconnected, but quantum-mechanically entangled. Applying the thermodynamics of entanglement, we calculate the temperature and the entropy of entanglement. It emerges that the entropy of entanglement is large at big bang and big crunch singularities of the parallel universes as well as at the maxima of the expansion of these universes. The latter seems to confirm earlier studies that quantum effects are strong at turning points of the evolution of the universe performed in the context of the timeless nature of the Wheeler-DeWitt equation and decoherence. On the other hand, the entropy of entanglement at big rip singularities is going to zero despite its presumably quantum nature. This may be an effect of total dissociation of the universe structures into infinitely separated patches violating the null energy condition. However, the temperature of entanglement is large/infinite at every classically singular point and at maximum expansion and seems to be a better measure of quantumness.

  2. Everolimus in advanced, progressive, well-differentiated, non-functional neuroendocrine tumors: RADIANT-4 lung subgroup analysis.

    Fazio, Nicola; Buzzoni, Roberto; Delle Fave, Gianfranco; Tesselaar, Margot E; Wolin, Edward; Van Cutsem, Eric; Tomassetti, Paola; Strosberg, Jonathan; Voi, Maurizio; Bubuteishvili-Pacaud, Lida; Ridolfi, Antonia; Herbst, Fabian; Tomasek, Jiri; Singh, Simron; Pavel, Marianne; Kulke, Matthew H; Valle, Juan W; Yao, James C

    2018-01-01

    In the phase III RADIANT-4 study, everolimus improved median progression-free survival (PFS) by 7.1 months in patients with advanced, progressive, well-differentiated (grade 1 or grade 2), non-functional lung or gastrointestinal neuroendocrine tumors (NETs) vs placebo (hazard ratio, 0.48; 95% confidence interval [CI], 0.35-0.67; P < .00001). This exploratory analysis reports the outcomes of the subgroup of patients with lung NETs. In RADIANT-4, patients were randomized (2:1) to everolimus 10 mg/d or placebo, both with best supportive care. This is a post hoc analysis of the lung subgroup with PFS, by central radiology review, as the primary endpoint; secondary endpoints included objective response rate and safety measures. Ninety of the 302 patients enrolled in the study had primary lung NET (everolimus, n = 63; placebo, n = 27). Median PFS (95% CI) by central review was 9.2 (6.8-10.9) months in the everolimus arm vs 3.6 (1.9-5.1) months in the placebo arm (hazard ratio, 0.50; 95% CI, 0.28-0.88). More patients who received everolimus (58%) experienced tumor shrinkage compared with placebo (13%). Most frequently reported (≥5% incidence) grade 3-4 drug-related adverse events (everolimus vs. placebo) included stomatitis (11% vs. 0%), hyperglycemia (10% vs. 0%), and any infections (8% vs. 0%). In patients with advanced, progressive, well-differentiated, non-functional lung NET, treatment with everolimus was associated with a median PFS improvement of 5.6 months, with a safety profile similar to that of the overall RADIANT-4 cohort. These results support the use of everolimus in patients with advanced, non-functional lung NET. The trial is registered with ClinicalTrials.gov (no. NCT01524783). © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  3. Direct evaluation of reflector effects on radiant flux from InGaN-based light-emitting diodes

    Masui, Hisashi; Fellows, Natalie N.; Sato, Hitoshi; Asamizu, Hirokuni; Nakamura, Shuji; Denbaars, Steven P.

    2007-08-01

    A metal layer formed on the backside of InGaN/sapphire-based light-emitting diodes deteriorates the inherent optical power output. An experimental approach of a suspended die is employed to study the effects of such metal layers via a direct comparison in radiant flux from a discrete die with and without a reflector. A sphere package that employs no reflector is proposed and fabricated. Light extraction of the sphere design is discussed; a light source in the sphere package would not have to be either an ideal point or placed at the center of the sphere, due to a finite critical angle at the sphere/air interface.

  4. Integrated thermal infrared imaging and Structure-from-Motion photogrametry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA USA

    Lewis, Aaron; George Hilley,; Lewicki, Jennifer L.

    2015-01-01

    This work presents a method to create high-resolution (cm-scale) orthorectified and georeferenced maps of apparent surface temperature and radiant hydrothermal heat flux and estimate the radiant hydrothermal heat emission rate from a study area. A ground-based thermal infrared (TIR) camera was used to collect (1) a set of overlapping and offset visible imagery around the study area during the daytime and (2) time series of co-located visible and TIR imagery at one or more sites within the study area from pre-dawn to daytime. Daytime visible imagery was processed using the Structure-from-Motion photogrammetric method to create a digital elevation model onto which pre-dawn TIR imagery was orthorectified and georeferenced. Three-dimensional maps of apparent surface temperature and radiant hydrothermal heat flux were then visualized and analyzed from various computer platforms (e.g., Google Earth, ArcGIS). We demonstrate this method at the Mammoth Mountain fumarole area on Mammoth Mountain, CA. Time-averaged apparent surface temperatures and radiant hydrothermal heat fluxes were observed up to 73.7 oC and 450 W m-2, respectively, while the estimated radiant hydrothermal heat emission rate from the area was 1.54 kW. Results should provide a basis for monitoring potential volcanic unrest and mitigating hydrothermal heat-related hazards on the volcano.

  5. Standard Terminology Relating to Photovoltaic Solar Energy Conversion

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This terminology pertains to photovoltaic (radiant-to-electrical energy conversion) device performance measurements and is not a comprehensive list of terminology for photovoltaics in general. 1.2 Additional terms used in this terminology and of interest to solar energy may be found in Terminology E 772.

  6. Impact of prior therapies on everolimus activity: an exploratory analysis of RADIANT-4.

    Buzzoni, Roberto; Carnaghi, Carlo; Strosberg, Jonathan; Fazio, Nicola; Singh, Simron; Herbst, Fabian; Ridolfi, Antonia; Pavel, Marianne E; Wolin, Edward M; Valle, Juan W; Oh, Do-Youn; Yao, James C; Pommier, Rodney

    2017-01-01

    Recently, everolimus was shown to improve median progression-free survival (PFS) by 7.1 months in patients with advanced, progressive, well-differentiated, nonfunctional neuroendocrine tumors (NET) of lung or gastrointestinal (GI) tract compared with placebo (HR, 0.48; 95% CI, 0.35-0.67; P <0.00001) in the Phase III, RADIANT-4 study. This post hoc analysis evaluates the impact of prior therapies (somatostatin analogs [SSA], chemotherapy, and radiotherapy) on everolimus activity. ClinicalTrials.gov identifier: NCT01524783. Patients were randomized (2:1) to everolimus 10 mg/day or placebo, both with best supportive care. Subgroups of patients who received prior SSA, chemotherapy, or radiotherapy (including peptide receptor radionuclide therapy) were analyzed and reported. A total of 302 patients were enrolled, of whom, 163 (54%) had any prior SSA use (mostly for tumor control), 77 (25%) received chemotherapy, and 63 (21%) were previously exposed to radiotherapy. Patients who received everolimus had longer median PFS compared with placebo, regardless of previous SSA (with SSA: 11.1 vs 4.5 months [HR, 0.56 {95% CI, 0.37-0.85}]; without SSA: 9.5 vs 3.7 months [0.57 {0.36-0.89}]), chemotherapy (with chemotherapy: 9.2 vs 2.1 months [0.35 {0.19-0.64}]; without chemotherapy: 11.2 vs 5.4 months [0.60 {0.42-0.86}]), or radiotherapy (with radiotherapy: 9.2 vs 3.0 months [0.47 {0.24-0.94}]; without radiotherapy: 11 vs 5.1 months [0.59 {0.42-0.83}]) exposure. The most frequent drug-related adverse events included stomatitis (59%-65%), fatigue (27%-35%), and diarrhea (24%-34%) among the subgroups. These results suggest that everolimus improves PFS in patients with advanced, progressive lung or GI NET, regardless of prior therapies. Safety findings were consistent with the known safety profile of everolimus in NET.

  7. Cyclic voltammetry and reduction mechanistic studies of ...

    styrylpyrylium perchlorates have been evaluated using cyclic voltammetry, in comparison to their non-methylated derivatives values. The reduction peak of all studied compounds remained chemically irreversible. The presence of the ...

  8. A cyclically actuated electrolytic drug delivery device

    Yi, Ying; Buttner, Ulrich; Foulds, Ian G.

    2015-01-01

    This work, focusing on an implantable drug delivery system, presents the first prototype electrolytic pump that combines a catalytic reformer and a cyclically actuated mode. These features improve the release performance and extend the lifetime

  9. Introduction of a cyclic-fermentation method

    Makarova, C P

    1958-01-01

    Equipment is described, consisting of 8 kettles, which permits a cyclic fermentation process and continuous ethanol production; 100% yields of ethanol are obtained, based on the starch content in grain.

  10. Results on Cyclic Signal Processing Systems

    Vaidyanathan, P

    1998-01-01

    .... A number of related problems such as the paraunitary interpolation problem and the cyclic paraunitary factorizability problem can be understood in a unified way by using the realization matrix...

  11. Cyclical Variability of Prominences, CMEs and Flares

    tribpo

    For many years, qualitative studies were made about the cyclical ... plan to review the more recent research concerning all these topics. Key words. ... are distributed in three narrow zones, which show different types of time-latitude behaviour.

  12. Anodic selective functionalization of cyclic amine derivatives

    Onomura, Osamu

    2012-01-01

    Anodic reactions are desirable methods from the viewpoint of Green Chemistry, since no toxic oxidants are necessary for the oxidation of organic molecules. This review introduces usefulness of anodic oxidation and successive reaction for selective functionalization of cyclic amine derivatives.

  13. Experimental investigation of steel fiber-reinforced concrete beams under cyclic loading

    Ranjbaran, Fariman; Rezayfar, Omid; Mirzababai, Rahmatollah

    2018-03-01

    An experimental study has been conducted to study the cyclic behavior of reinforced concrete beams in which steel fibers were added to the concrete mix. Seven similar geometrically specimens in full scale were studied under four- point bending test in the form of slow cyclic loading. One sample as a control specimen was made without steel fibers or 0% volume fraction (vf) and six other samples with 1, 2 and 4% vf of steel fibers in twin models. The maximum and ultimate resistance, ductility, degradation of loading and unloading stiffness, absorption and dissipation of energy and equivalent viscous damping were studied in this investigation and the effect of steel fibers on the cyclic behavior was compared with each other. Generally, the addition of steel fibers up to a certain limit value (vf = 2%) improves the cyclic behavior of reinforced concrete beams and results in the increase of maximum strength and ultimate displacement.

  14. Macromolecular Networks Containing Fluorinated Cyclic Moieties

    2015-12-12

    Briefing Charts 3. DATES COVERED (From - To) 17 Nov 2015 – 12 Dec 2015 4. TITLE AND SUBTITLE Macromolecular Networks Containing Fluorinated Cyclic... FLUORINATED CYCLIC MOIETIES 12 December 2015 Andrew J. Guenthner,1 Scott T. Iacono,2 Cynthia A. Corley,2 Christopher M. Sahagun,3 Kevin R. Lamison,4...Reinforcements Good Flame, Smoke, & Toxicity Characteristics Low Water Uptake with Near Zero Coefficient of Hygroscopic Expansion ∆ DISTRIBUTION A

  15. The Cyclicality of New Product Introductions

    Kostas Axarloglou

    2003-01-01

    This study analyzes empirically the cyclical nature of the timing of new product introductions in U.S. manufacturing. New product introductions vary more in nonseasonal frequencies than in seasonal frequencies. However, the seasons alone account for only a small part of their total variability with demand factors being much more important. Demand fluctuations account for 35%80% and 17%43%, respectively, of the seasonal and cyclical variability of new product introductions in various industrie...

  16. 3' : 5'-Cyclic AMP-dependent 3'

    Mato, José M.; Krens, Frans A.; Haastert, Peter J.M. van; Konijn, Theo M.

    1977-01-01

    Suspensions of 3':5'-cyclic AMP (cAMP)-sensitive cells of Dictyostelium discoideum responded to a cAMP pulse with increased 3':5'-cyclic GMP (cGMP) levels. Under the assay conditions used (2 × 10^8 cells per ml in 10 mM phosphate buffer, pH 6.0) cAMP (5 × 10-8 M final concentration) increased cGMP

  17. The calculation of dissipated work, elastoplastic cyclic stress and cyclic strain in a structure

    Wang Xucheng; Xie Yihuan.

    1986-01-01

    With the development of the reactor technique, there is being an increasing interest in the calculation of elastoplastic response of a structure to its complex loading. This paper introduces a constitutive relation of a material for discribing unloading property, and uses it in an analysis of a real structure under a cyclic loading. The results, which include cyclic stress, cyclic strain and dissipated work, are meaningful in the researches of the structure behavior under complex loading and of the structural safety

  18. Reducing heat loss from the energy absorber of a solar collector

    Chao, Bei Tse; Rabl, Ari

    1976-01-01

    A device is provided for reducing convective heat loss in a cylindrical radiant energy collector. It includes a curved reflective wall in the shape of the arc of a circle positioned on the opposite side of the exit aperture from the reflective side walls of the collector. Radiant energy exiting the exit aperture is directed by the curved wall onto an energy absorber such that the portion of the absorber upon which the energy is directed faces downward to reduce convective heat loss from the absorber.

  19. In silico study of amphiphilic nanotubes based on cyclic peptides in polar and non-polar solvent

    Vijayakumar, Vinodhkumar; Vijayaraj, Ramadoss; Peters, Günther H.J.

    2016-01-01

    The stability of cyclic peptide assemblies (CPs) forming a macromolecular nanotube structure was investigated in solvents of different polarity using computational methods. The stability and structure of the complexes were studied using traditional molecular dynamics (MD). Energy of dissociation ...

  20. Optimal design approach for heating irregular-shaped objects in three-dimensional radiant furnaces using a hybrid genetic algorithm-artificial neural network method

    Darvishvand, Leila; Kamkari, Babak; Kowsary, Farshad

    2018-03-01

    In this article, a new hybrid method based on the combination of the genetic algorithm (GA) and artificial neural network (ANN) is developed to optimize the design of three-dimensional (3-D) radiant furnaces. A 3-D irregular shape design body (DB) heated inside a 3-D radiant furnace is considered as a case study. The uniform thermal conditions on the DB surfaces are obtained by minimizing an objective function. An ANN is developed to predict the objective function value which is trained through the data produced by applying the Monte Carlo method. The trained ANN is used in conjunction with the GA to find the optimal design variables. The results show that the computational time using the GA-ANN approach is significantly less than that of the conventional method. It is concluded that the integration of the ANN with GA is an efficient technique for optimization of the radiant furnaces.

  1. The effects of radiant cooling versus convective cooling on human eye tear film stability and blinking rate

    Nygaard, Linette; Uth, Simon C.; Bolashikov, Zhecho Dimitrov

    2014-01-01

    The effect of indoor temperature, radiant and convective cooling on tear film stability and eye blink frequency was examined. 24 human subjects were exposed to the non-uniform environment generated by localised chilled beam and a chilled ceiling combined with overhead mixing ventilation. The subj......The effect of indoor temperature, radiant and convective cooling on tear film stability and eye blink frequency was examined. 24 human subjects were exposed to the non-uniform environment generated by localised chilled beam and a chilled ceiling combined with overhead mixing ventilation....... The subjects participated in four two-hour experiments. The room air temperature was kept at 26 °C or 28 °C. Tear film samples were collected after 30 min of acclimatisation and at the end of the exposures. Eye blinking frequency was analysed for the first and last 15 min of each exposure. The tear film...... stability decreased as the temperature increased. The highest number of subjects with unchanged or improved tear film quality was observed with the localised chilled beam at 26 °C. A trend was found between subjects who reported eye irritation and had a bad tear film quality....

  2. Comparison of indoor air distribution and thermal environment for different combinations of radiant heating systems with mechanical ventilation systems

    Wu, Xiaozhou; Fang, Lei; Olesen, Bjarne W.

    2018-01-01

    A hybrid system with a radiant heating system and a mechanical ventilation system, which is regarded as an advanced heating, ventilation and air-conditioning (HVAC) system, has been applied in many modern buildings worldwide. To date, almost no studies focused on comparative analysis of the indoor...... air distribution and the thermal environment for all combinations of radiant heating systems with mechanical ventilation systems. Therefore, in this article, the indoor air distribution and the thermal environment were comparatively analyzed in a room with floor heating (FH) or ceiling heating (CH......) and mixing ventilation (MV) or displacement ventilation (DV) when the supply air temperature ranged from 15.0°C to 19.0°C. The results showed that the temperature effectiveness values were 1.05–1.16 and 0.95–1.02 for MV+ FH and MV+ CH, respectively, and they were 0.78–0.91 and 0.51–0.67 for DV + FH and DV...

  3. A search for space energy alternatives

    Gilbreath, W. P.; Billman, K. W.

    1978-01-01

    This paper takes a look at a number of schemes for converting radiant energy in space to useful energy for man. These schemes are possible alternatives to the currently most studied solar power satellite concept. Possible primary collection and conversion devices discussed include the space particle flux devices, solar windmills, photovoltaic devices, photochemical cells, photoemissive converters, heat engines, dielectric energy conversion, electrostatic generators, plasma solar collectors, and thermionic schemes. Transmission devices reviewed include lasers and masers.

  4. The influence of cyclic structure on the radiolysis of hydrocarbons

    Foeldiak, G.; Cserep, Gy.; Horvath, Zs.; Wojnarovits, L.

    1975-01-01

    Aliphatic and cyclic C 3 -C 12 alkanes and alkenes have been irradiated in liquid phase by a 60 Co-γ-source with the nominal activity of 80 000 Ci. The dose rate was 1-2 Mrad/hr, the doses were between 0 and 10 Mrad. The following conclusions can be drawn from the experiments: 1., While no significant difference can be observed between radiolytic decomposition of n-hydrocarbon homologues, that of cyclic hydrocarbons is the function of the size of the ring. 2., Reactivity of cyclic hydrocarbons is influenced not only by their surplus enthalpy of formation (strain energy) but also by the individual components of this surplus enthalpy, e.g. bond deformation or repulsion between hydrogen atoms. 3., The overall yield of decomposition of higher than C 4 straightchain and cyclic alkanes activated by radiation and reacting via either C-C or C-H fission is approximately constant, with a G value of 6.5+-0.5. The structure of the molecules affects mainly the ratio of C-C and C-H bond rupture, i.e. these two processes are in competition. 4., Hydrogen yields from alkenes are affected mainly by the order and number of allylic C-H bonds, and by the possibility of the formation of allyl-type radicals. This latter is facilitated by ''free'' rotation in the case of open-chain hydrocarbons whereas it is hindered in the case of small and medium size cycles. (K.A.)

  5. 21 CFR 862.1230 - Cyclic AMP test system.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cyclic AMP test system. 862.1230 Section 862.1230....1230 Cyclic AMP test system. (a) Identification. A cyclic AMP test system is a device intended to measure the level of adenosine 3′, 5′-monophosphate (cyclic AMP) in plasma, urine, and other body fluids...

  6. Impact of prior therapies on everolimus activity: an exploratory analysis of RADIANT-4

    Buzzoni R

    2017-10-01

    Full Text Available Roberto Buzzoni,1 Carlo Carnaghi,2 Jonathan Strosberg,3 Nicola Fazio,4 Simron Singh,5 Fabian Herbst,6 Antonia Ridolfi,7 Marianne E Pavel,8 Edward M Wolin,9 Juan W Valle,10 Do-Youn Oh,11 James C Yao,12 Rodney Pommier13 1IRCCS Foundation, National Institute of Tumors, Milan, Italy; 2Humanitas Clinical and Research Center, Rozzano, Italy; 3Moffitt Cancer Center, Tampa, FL, USA; 4European Institute of Oncology, Milan, Italy; 5Sunnybrook Health Sciences Centre, Toronto, ON, Canada; 6Novartis AG, Basel, Switzerland; 7Novartis Pharma S.A.S., Rueil-Malmaison, France; 8Medizinische Klinik 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; 9Montefiore Einstein Center for Cancer Care, Bronx, NY, USA; 10Institute of Cancer Sciences, University of Manchester, The Christie Hospital, Manchester, UK; 11Seoul National University Hospital, Seoul, Republic of Korea; 12University of Texas M.D. Anderson Cancer Center, Houston, TX, USA; 13Oregon Health & Science University, Portland, OR, USA Background: Recently, everolimus was shown to improve median progression-free survival (PFS by 7.1 months in patients with advanced, progressive, well-differentiated, nonfunctional neuroendocrine tumors (NET of lung or gastrointestinal (GI tract compared with placebo (HR, 0.48; 95% CI, 0.35–0.67; P<0.00001 in the Phase III, RADIANT-4 study. This post hoc analysis evaluates the impact of prior therapies (somatostatin analogs [SSA], chemotherapy, and radiotherapy on everolimus activity. Trial registration: ClinicalTrials.gov identifier: NCT01524783. Patients and methods: Patients were randomized (2:1 to everolimus 10 mg/day or placebo, both with best supportive care. Subgroups of patients who received prior SSA, chemotherapy, or radiotherapy (including peptide receptor radionuclide therapy were analyzed and reported. Results: A total of 302 patients were enrolled, of whom, 163 (54% had any prior SSA use (mostly for tumor control, 77 (25% received

  7. Global attractors and extinction dynamics of cyclically competing species.

    Rulands, Steffen; Zielinski, Alejandro; Frey, Erwin

    2013-05-01

    Transitions to absorbing states are of fundamental importance in nonequilibrium physics as well as ecology. In ecology, absorbing states correspond to the extinction of species. We here study the spatial population dynamics of three cyclically interacting species. The interaction scheme comprises both direct competition between species as in the cyclic Lotka-Volterra model, and separated selection and reproduction processes as in the May-Leonard model. We show that the dynamic processes leading to the transient maintenance of biodiversity are closely linked to attractors of the nonlinear dynamics for the overall species' concentrations. The characteristics of these global attractors change qualitatively at certain threshold values of the mobility and depend on the relative strength of the different types of competition between species. They give information about the scaling of extinction times with the system size and thereby the stability of biodiversity. We define an effective free energy as the negative logarithm of the probability to find the system in a specific global state before reaching one of the absorbing states. The global attractors then correspond to minima of this effective energy landscape and determine the most probable values for the species' global concentrations. As in equilibrium thermodynamics, qualitative changes in the effective free energy landscape indicate and characterize the underlying nonequilibrium phase transitions. We provide the complete phase diagrams for the population dynamics and give a comprehensive analysis of the spatio-temporal dynamics and routes to extinction in the respective phases.

  8. Thermodynamic Analysis of Closed Steady or Cyclic Systems

    Jim McGovern

    2015-09-01

    Full Text Available Closed, steady or cyclic thermodynamic systems, which have temperature variations over their boundaries, can represent an extremely large range of plants, devices or natural objects, such as combined heating, cooling and power plants, computers and data centres, and planets. Energy transfer rates can occur across the boundary, which are characterized as heat or work. We focus on the finite time thermodynamics aspects, on energy-based performance parameters, on rational efficiency and on the environmental reference temperature. To do this, we examine the net work rate of a closed, steady or cyclic system bounded by thermal resistances linked to isothermal reservoirs in terms of the first and second laws of thermodynamics. Citing relevant references from the literature, we propose a methodology that can improve the thermodynamic analysis of an energy-transforming or an exergy-destroying plant. Through the reflections and analysis presented, we have found an explanation of the second law that clarifies the link between the Clausius integral of heat over temperature and the reference temperature of the Gouy–Stodola theorem. With this insight and approach, the specification of the environmental reference temperature in exergy analysis becomes more solid. We have explained the relationship between the Curzon Ahlborn heat engine and an irreversible Carnot heat engine. We have outlined the nature of subsystem rational efficiencies and have found Rant’s anergy to play an important role. We postulate that heat transfer through thermal resistance is the sole basis of irreversibility.

  9. Analysis of the kinetics of decohesion process in the conditions of cyclic temperature variations

    Zuchowski, R.

    1981-01-01

    Specimens made of four types of heat-resistant steels were used in the investigation. Various variants of loading process were applied, resulting in thermal fatigue, cyclic creep and isothermal fatigue. Stress or strain variation as well as intensity of acoustic emission were recorded during the tests as a function of time. Cyclic variations of strain or stress amplitude were found to occur one full period covering few to several cycles. Comparing the relative number of acoustic emission impulses with the variation of stress or strain leads to the conclusion that cyclic character of strain or stress variation results from cyclic character of damage cumulation process. This statement is confirmed by the results of material damage degree determination based on specific strain work measurements. Results of investigation testify to the equivalence of action (in terms of energy) of cyclically variable force field at constant temperature and of constant force field in the conditions of cyclic temperature variations. Damage mechanism can be different in each case, because it depends (for a given material) on loading process parameters and in particular - on temperature and stress value. (orig./HP)

  10. Cyclic transformation of orbital angular momentum modes

    Schlederer, Florian; Krenn, Mario; Fickler, Robert; Malik, Mehul; Zeilinger, Anton

    2016-01-01

    The spatial modes of photons are one realization of a QuDit, a quantum system that is described in a D-dimensional Hilbert space. In order to perform quantum information tasks with QuDits, a general class of D-dimensional unitary transformations is needed. Among these, cyclic transformations are an important special case required in many high-dimensional quantum communication protocols. In this paper, we experimentally demonstrate a cyclic transformation in the high-dimensional space of photonic orbital angular momentum (OAM). Using simple linear optical components, we show a successful four-fold cyclic transformation of OAM modes. Interestingly, our experimental setup was found by a computer algorithm. In addition to the four-cyclic transformation, the algorithm also found extensions to higher-dimensional cycles in a hybrid space of OAM and polarization. Besides being useful for quantum cryptography with QuDits, cyclic transformations are key for the experimental production of high-dimensional maximally entangled Bell-states. (paper)

  11. On the equivalence of cyclic and quasi-cyclic codes over finite fields

    Kenza Guenda

    2017-07-01

    Full Text Available This paper studies the equivalence problem for cyclic codes of length $p^r$ and quasi-cyclic codes of length $p^rl$. In particular, we generalize the results of Huffman, Job, and Pless (J. Combin. Theory. A, 62, 183--215, 1993, who considered the special case $p^2$. This is achieved by explicitly giving the permutations by which two cyclic codes of prime power length are equivalent. This allows us to obtain an algorithm which solves the problem of equivalency for cyclic codes of length $p^r$ in polynomial time. Further, we characterize the set by which two quasi-cyclic codes of length $p^rl$ can be equivalent, and prove that the affine group is one of its subsets.

  12. True Triaxial Experimental Study of Rockbursts Induced By Ramp and Cyclic Dynamic Disturbances

    Su, Guoshao; Hu, Lihua; Feng, Xiating; Yan, Liubin; Zhang, Gangliang; Yan, Sizhou; Zhao, Bin; Yan, Zhaofu

    2018-04-01

    A modified rockburst testing system was utilized to reproduce rockbursts induced by ramp and cyclic dynamic disturbances with a low-intermediate strain rate of 2 × 10-3-5 × 10-3 s-1 in the laboratory. The experimental results show that both the ramp and cyclic dynamic disturbances play a significant role in inducing rockbursts. In the tests of rockbursts induced by a ramp dynamic disturbance, as the static stress before the dynamic disturbance increases, both the strength of specimens and the kinetic energy of the ejected fragments first increase and then decrease. In the tests of rockbursts induced by a cyclic dynamic disturbance, there exists a rockburst threshold of the static stress and the dynamic disturbance amplitude, and the kinetic energy of the ejected fragments first increases and then decreases as the cyclic dynamic disturbance frequency increases. The main differences between rockbursts induced by ramp dynamic disturbances and those induced by cyclic dynamic disturbances are as follows: the rockburst development process of the former is characterized by an impact failure feature, while that of the latter is characterized by a fatigue failure feature; the damage evolution curve of the specimen of the former has a leap-developing form with a significant catastrophic feature, while that of the latter has an inverted S-shape with a remarkable fatigue damage characteristic; the energy mechanism of the former involves the ramp dynamic disturbance giving extra elastic strain energy to rocks, while that of the latter involves the cyclic dynamic disturbance decreasing the ultimate energy storage capacity of rocks.

  13. Field tests on human tolerance to (LNG) fire radiant heat exposure, and attenuation effects of clothing and other objects

    Raj, Phani K.

    2008-01-01

    A series of field tests exposing mannequins clothed with civilian clothing to a 3 m x 3 m square liquefied natural gas (LNG) pool fire was conducted. Both single layer clothing and double layer clothing were used. The radiant heat flux incident outside the clothing and incident on the skin covered by clothing were measured using wide-angle radiometers, for durations of 100-200 s (per test). The levels of heat flux incident on the clothing were close to 5 kW/m 2 . The magnitude of the radiant heat attenuation factor (AF) across the thickness was determined. AF varies between 2 and higher for cotton and polyester clothing (thickness 0.286-1.347 mm); AF value of 6 was measured for 1.347 mm thickness. Single sheet newspaper held about 5 cm in front of mannequins and exposed to incident flux of 5 kW/m 2 resulted in AF of 5, and AF of 8 with double sheets. AF decreases linearly with increasing heat flux values and linearly increases with thickness. The author exposed himself, in normal civilian clothing (of full sleeve cotton/polyester shirt and jean pants), to radiant heat from a LNG fire. The exposure was for several tens of seconds to heat flux levels ranging from 3.5 kW/m 2 to 5 + kW/m 2 (exposure times from 25 s to 97 s at average heat flux values in the 4 kW/m 2 and 5 kW/m 2 range). Occasionally, he was exposed to (as high as) 7 kW/m 2 for durations of several seconds. He did not suffer any unbearable or even severe pain nor did he experience blisters or burns or any other injury on the unprotected skin of his body. The incident heat fluxes on the author were measured by a hand-held radiometer (with digital display) as well as by strapped on wide-angle radiometers connected to a computer. He could withstand the US regulatory criterion of 5 kW/m 2 (for 30 s) without suffering any damage or burns. Temperature measured on author's skin covered by clothing did not rise above the normal body temperature even after 200 s of exposure to 4 kW/m 2 average heat flux

  14. HOST liner cyclic facilities: Facility description

    Schultz, D.

    1982-01-01

    A quartz lamp box, a quartz lamp annular rig, and a low pressure liner cyclic can rig planned for liner cyclic tests are described. Special test instrumentation includes an IR-TV camera system for measuring liner cold side temperatures, thin film thermocouples for measuring liner hot side temperatures, and laser and high temperature strain gages for obtaining local strain measurements. A plate temperature of 2,000 F was obtained in an initial test of an apparatus with three quartz lamps. Lamp life, however, appeared to be limited for the standard commercial quartz lamps available. The design of vitiated and nonvitiated preheaters required for the quartz lamp annular rig and the cyclic can test rigs is underway.

  15. Cyclic cellular automata in 3D

    Reiter, Clifford A.

    2011-01-01

    Highlights: → We explore the self-organization of cyclic cellular automata in 3D. → Von Neumann, Moore and two types of intermediate neighborhoods are investigated. → Random neighborhoods self organize through phases into complex nested structures. → Demons are seen to have many alternatives in 3D. - Abstract: Cyclic cellular automata in two dimensions have long been intriguing because they self organize into spirals and that behavior can be analyzed. The form for the patterns that develop is highly dependent upon the form of the neighborhood. We extend this work to three dimensional cyclic cellular automata and observe self organization dependent upon the neighborhood type. This includes neighborhood types intermediate between Von Neumann and Moore neighborhoods. We also observe that the patterns include nested shells with the appropriate forms but that the nesting is far more complex than the spirals that occur in two dimensions.

  16. Singlet-triplet energy differences in divalent five membered cyclic conjugated Arduengo-type carbenes XC2HN2M (M = C, Si, Ge, Sn, and Pb; X = F, Cl, Br, and I)

    Vessally, Esmail; Dehbandi, Behnam; Ahmadi, Elaheh

    2016-09-01

    Singlet-triplet energy differences in Arduengo-type carbenes XC2HN2C compared and contrasted with their sila, germa, stana and plumba analogues; at B3LYP/6-311++G** level of theory. Free Gibbs energy differences between triplet (t) and singlet (s) states (Δ G(t-s)) change in the following order: plumbylenes > stannylenes > germylenes > silylenes > carbenes. The singlet states in XC2HN2C are generally more stable when the electron withdrawing groups such as-F was used at β-position. However, the singlet states in XC2N2HM (M = Si, Ge, Sn, and Pb) are generally more stable when the withdrawing groups such as-F was placed. The puckering energy is investigated for each the singlet and triplet states. The DFT calculations found the linear correlation to size of the group 14 divalent element (M), the ∠N-M-N angle, and the Δ(LUMO-HOMO) of XC2HN2M.

  17. Disseny de calefacció amb terra radiant d'una casa a l'horta de Lleida mitjançant energia geotèrmica

    Fillat Sobrino, Jordi

    2008-01-01

    S'ha realitzat el disseny de calefacció d'una vivenda mitjançant energia geotèrmica de baixa temperatura, amb un bescanviador vertical de 80 m de profunditat. El sistema de calefacció és de terra radiant en forma d'espiral.

  18. Full Scale Measurements and CFD Investigations of a Wall Radiant Cooling System Based on Plastic Capillary Tubes in Thin Concrete Walls

    Mikeska, Tomás; Fan, Jianhua; Svendsen, Svend

    2017-01-01

    Densely occupied spaces such as classrooms can very often have problems with overheating. It can be difficult to cool such spaces by means of a ventilation system without creating draughts and causing discomfort for occupants. The use of a wall radiant cooling system is a suitable option for spaces...

  19. The effects of mixing air distribution and heat load arrangement on the performance of ceiling radiant panels under cooling mode of operation

    Mustakallio, Panu; Kosonen, Risto; Melikov, Arsen Krikor

    2016-01-01

    arrangement and air distribution generated in a room by linear slot diffuser, radial multi-nozzle diffuser and radial swirl induction unit on the cooling power of radiant panels was compared. The impact on the thermal environment was also studied. Measurements were carried out without and with supply air...

  20. Entire cyclic cohomology and modular theory

    Stoytchev, O.Ts.

    1992-04-01

    We display a close relationship between C* and W*-dynamical systems with KMS states on them and entire cyclic cohomology theory. We construct a character form which assigns to each such system (A, α, R) an even entire cyclic cocycle of the subalgebra A of differentiable (with respect to the given automorphism group) elements of A. We argue that the most interesting case is the von Neumann algebra one, where the automorphism group is determined uniquely by the faithful normal state on the algebra (the modular group) and where the character may provide important information about the algebra. (author). 11 refs

  1. A Simulation Study on the Performance of Radiant Ceilings Combined with Free-Hanging Horizontal Sound Absorbers

    Kazanci, Ongun Berk; Domínguez, L. Marcos; Rage, Niels

    2018-01-01

    using TABS, most building simulation models assume an uncovered ceiling; however, this might not be the case in practice, due to the use of free-hanging horizontal (or vertical) sound absorbers for the control of room acoustic conditions. The use of sound absorbers will decrease the performance...... of radiant ceiling cooling systems. Therefore, the quantification of the effects during the design phase is important for predicting the resulting thermal indoor environment and for system dimensioning. In this study, a two-person office room equipped with TABS was simulated using a commercially available...... simulation software with a recently developed plug-in that allows simulating the effects of horizontal sound absorbers on the performance of TABS and on the thermal indoor environment. The change in thermal indoor environment and in performance of TABS were quantified, and the simulation results were...

  2. Process evaluation of the RaDIANT community study: a dialysis facility-level intervention to increase referral for kidney transplantation.

    Hamoda, Reem E; Gander, Jennifer C; McPherson, Laura J; Arriola, Kimberly J; Cobb, Loren; Pastan, Stephen O; Plantinga, Laura; Browne, Teri; Hartmann, Erica; Mulloy, Laura; Zayas, Carlos; Krisher, Jenna; Patzer, Rachel E

    2018-01-15

    The Reducing Disparities in Access to kidNey Transplantation Community Study (RaDIANT) was an End-Stage Renal Disease (ESRD) Network 6-developed, dialysis facility-level randomized trial testing the effectiveness of a 1-year multicomponent education and quality improvement intervention in increasing referral for kidney transplant evaluation among selected Georgia dialysis facilities. To assess implementation of the RaDIANT intervention, we conducted a process evaluation at the conclusion of the intervention period (January-December 2014). We administered a 20-item survey to the staff involved with transplant education in 67 dialysis facilities randomized to participate in intervention activities. Survey items assessed facility participation in the intervention (fidelity and reach), helpfulness and willingness to continue intervention activities (sustainability), suggestions for improving intervention components (sustainability), and factors that may have influenced participation and study outcomes (context). We defined high fidelity to the intervention as completing 11 or more activities, and high participation in an activity as having at least 75% participation across intervention facilities. Staff from 65 of the 67 dialysis facilities completed the questionnaire, and more than half (50.8%) reported high adherence (fidelity) to RaDIANT intervention requirements. Nearly two-thirds (63.1%) of facilities reported that RaDIANT intervention activities were helpful or very helpful, with 90.8% of facilities willing to continue at least one intervention component beyond the study period. Intervention components with high participation emphasized staff and patient-level education, including in-service staff orientations, patient and family education programs, and patient educational materials. Suggested improvements for intervention activities emphasized addressing financial barriers to transplantation, with financial education materials perceived as most helpful among RaDIANT

  3. Everolimus for Advanced Pancreatic Neuroendocrine Tumours: A Subgroup Analysis Evaluating Japanese Patients in the RADIANT-3 Trial

    Ito, Tetsuhide; Okusaka, Takuji; Ikeda, Masafumi; Igarashi, Hisato; Morizane, Chigusa; Nakachi, Kohei; Tajima, Takeshi; Kasuga, Akio; Fujita, Yoshie; Furuse, Junji

    2012-01-01

    Objective Everolimus, an inhibitor of the mammalian target of rapamycin, has recently demonstrated efficacy and safety in a Phase III, double-blind, randomized trial (RADIANT-3) in 410 patients with low- or intermediate-grade advanced pancreatic neuroendocrine tumours. Everolimus 10 mg/day provided a 2.4-fold improvement compared with placebo in progression-free survival, representing a 65% risk reduction for progression. The purpose of this analysis was to investigate the efficacy and safety of everolimus in the Japanese subgroup enrolled in the RADIANT-3 study. Methods Subgroup analysis of the Japanese patients was performed comparing efficacy and safety between everolimus 10 mg/day orally (n = 23) and matching placebo (n = 17). The primary endpoint was progression-free survival. Safety was evaluated on the basis of the incidence of adverse drug reactions. Results Progression-free survival was significantly prolonged with everolimus compared with placebo. The median progression-free survival was 19.45 months (95% confidence interval, 8.31–not available) with everolimus vs 2.83 months (95% confidence interval, 2.46–8.34) with placebo, resulting in an 81% risk reduction in progression (hazard ratio, 0.19; 95% confidence interval, 0.08–0.48; P< 0.001). Adverse drug reactions occurred in all 23 (100%) Japanese patients receiving everolimus and in 13 (77%) patients receiving placebo; most were grade 1/2 in severity. The most common adverse drug reactions in the everolimus group were rash (n = 20; 87%), stomatitis (n = 17; 74%), infections (n = 15; 65%), nail disorders (n = 12; 52%), epistaxis (n = 10; 44%) and pneumonitis (n = 10; 44%). Conclusions These results support the use of everolimus as a valuable treatment option for Japanese patients with advanced pancreatic neuroendocrine tumours. PMID:22859827

  4. Development and demonstration of a gas-fired recuperative confined radiant burner (deliverable 42/43). Final report

    NONE

    2003-06-01

    The objective of the project was to develop and demonstrate an innovative, efficient, low-pollutant, recuperative gas-fired IR-system (infrared radiation) for industrial processes (hereafter referred to as the CONRAD-system). The CONRAD-system is confined, so flue gases from the combustion can be kept separated from the product. The gas/air mixture to the burner is preheated by means of the flue gas, which increases the radiant efficiency of the CONRAD-system significantly over traditional gas-fired IR burners. During the first phase of the project, the CONRAD-system was designed and developed. The conducted work included a survey on suitable burner materials, modelling of the burner system, basic design of burner construction, control etc., experimental characterisation of several preprototypes and detailed design of the internal heat exchanger in the burner. The result is a cost effective burner system with a documented radiant efficiency up to 66% and low emissions (NO{sub x} and CO) all in accordance with the criteria of success set up at the start of the project. In the second phase of the project, the burner system was established and tested in laboratory and in four selected industrial applications: 1) Drying of coatings on sand cores in the automotive industry. 2) Baking of bread/cake. 3) General purpose painting/powder curing process 4. Curing of powder paint on wood components. The results from the preliminary tests Overe used to optimise the CONRAD-system, before it was applied in the industrial processes and demonstrated. However, the optimised burners manufactured for demonstration suffered from different 'infant failures', which made the installation in an industrial environment very cumbersome, and even impossible in the food industry and the automotive industry. In the latter cases realistic laboratory tests Overe carried out and the established know how reported for use when the burner problems are overcome.(au)

  5. Prediction of liquid metal alloy radiant properties from measurements of the Hall coefficient and the direct current resistivity

    Havstad, M.A.; Qiu, T.

    1995-04-01

    The thermal radiative properties of high temperature solid and liquid metal alloys are particularly useful to research and development efforts in laser cladding and machining, electron beam welding and laser isotope separation. However the cost, complexity, and difficulty of measuring these properties have forced the use of crude estimates from the Hagen-Rubens relation, the Drude relations, or extrapolation from low temperature or otherwise flawed data (e.g., oxidized). The authors have found in this work that published values for the Hall coefficient and the electrical resistivity of liquid metal alloys can provide useful estimates of the reflectance and emittance of some groups of binary liquid metal and high temperature solid alloys. The estimation method computes the Drude free electron parameters, and thence the optical constants and the radiant properties from the dependence of the Hall coefficient and direct current resistivity on alloy composition (the Hall coefficient gives the free electron density and the resistivity gives the average time between collisions). They find that predictions of the radiant properties of molten cerium-copper alloy, which use the measured variations in the Hall coefficient and resistivity (both highly nonlinear) as a function of alloy fraction (rather than linear combinations of the values of the pure elements) yield a good comparison to published measurements of the variation of the normal spectral emittance (a different but also nonlinear function) of cerium-copper alloy at the single wavelength available for comparison, 0.645 μm. The success of the approach in the visible range is particularly notable because one expects a Drude based approach to improve with increasing wavelength from the visible into the infrared. Details of the estimation method, the comparison between the calculation and the measured emittance, and a discussion of what groups of elements may also provide agreement is given

  6. Dietary Habits of Young Athletes Going in for Cyclic Sports

    S. G. Makarova

    2015-01-01

    Full Text Available In modern sports, outlining an adequate diet is one of the key issues in training young athletes. The following literature review presents new approaches to nutrition of young athletes going in for cyclic sports. These sports take a lot of energy, entail great strain and significant intensity of training. Correspondingly, the ratio of nutrients in athletes training for endurance tends to shift toward carbohydrates, the amount of which in the body should cover the increased need for workload as may be defined by the training process and the amount of workload. High-fat diets have proved irrelevant in terms of providing energy function; therefore, this nutritive approach was dismissed, since an athlete should have an about 25% share of fats of his/her menu’s total caloric value. According to modern standards, the amount of proteins in athletes’ menu should not exceed 1.2–1.6g per 1kg of body weight. To avoid the risk of dehydration and physical weakness, cyclic athletes should take sport drinks (in small portions prior to and following a training session (competition. They contain carbohydrates and electrolytes and therefore are more preferable than pure water. 

  7. Selective hydrodeoxygenation of cyclic vicinal diols to cyclic alcohols over tungsten oxide-palladium catalysts.

    Amada, Yasushi; Ota, Nobuhiko; Tamura, Masazumi; Nakagawa, Yoshinao; Tomishige, Keiichi

    2014-08-01

    Hydrodeoxygenation of cyclic vicinal diols such as 1,4-anhydroerythritol was conducted over catalysts containing both a noble metal and a group 5-7 transition-metal oxide. The combination of Pd and WOx allowed the removal of one of the two OH groups selectively. 3-Hydroxytetrahydrofuran was obtained from 1,4-anhydroerythritol in 72 and 74% yield over WOx -Pd/C and WOx -Pd/ZrO2 , respectively. The WOx -Pd/ZrO2 catalyst was reusable without significant loss of activity if the catalyst was calcined as a method of regeneration. Characterization of WOx -Pd/C with temperature-programmed reduction, X-ray diffraction, and transmission electron microscopy/energy-dispersive X-ray spectroscopy suggested that Pd metal particles approximately 9 nm in size were formed on amorphous tungsten oxide particles. A reaction mechanism was proposed on the basis of kinetics, reaction results with tungsten oxides under an atmosphere of Ar, and density functional theory calculations. A tetravalent tungsten center (W(IV) ) was formed by reduction of WO3 with the Pd catalyst and H2 , and this center served as the reductant for partial hydrodeoxygenation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Documentation associated with the WESF preparation for receiving 25 cesium capsules from the Applied Radiant Energy Corporation (ARECO)

    Pawlak, M.W.

    1996-10-21

    The purpose of this report is to compile all documentation associated with facility preparation of WESF to receive 25 cesium capsules from ARECO. The WESF validated it`s preparedness by completing a facility preparedness review using a performance indicator checklist.

  9. Means of increasing efficiency of CPC solar energy collector

    Chao, B.T.; Rabl, A.

    1975-06-27

    A device is provided for improving the thermal efficiency of a cylindrical radiant energy collector. A channel is placed next to and in close proximity to the nonreflective side of an energy reflective wall of a cylindrical collector. A coolant is piped through the channel and removes a portion of the nonreflective energy incident on the wall which is absorbed by the wall. The energy transferred to the coolant may be utilized in a useful manner.

  10. Return to cyclical activity in ewes with energy and protein restriction during lactation period Retorno a atividade cíclica em ovelhas deslanadas submetidas à restrição calórica ou protéica durante o período de lactação

    Eleonora Araújo Barbosa

    2009-06-01

    Full Text Available Inadequate ingestion of nutrients in quality and quantities is common cause of infertility in ewe and mechanisms involved between nutrition and reproduction is changeable. The aim of this work was to evaluate the energy or protein restriction during lactation in ewe on return of reproductive cyclic activity. Twenty one females in post-partum was divided randomly in 3 treatments: control treatment (CT, diet supply the requirements for maintenance and lactation, caloric restriction (CRT, supplied ½ of the diet of the CT, protein restriction (PRT, supplied 1/3 of the protein of the CT. Trans-rectal ultrasound was performed to ovary evaluation weekly and the body weight were measured biweekly. Effect of treatment on number (P<0.0001 and diameter (P<0.0001 of follicle was observed. PRT (3.32 ± 1.79; 1.45 ± 0.15 was lesser CRT (4.12 ± 1.98 ; 1.55 ± 0.09 and CT (4.94±2.01; 3.32 ± 0.22. Interaction between treatment and week in follicles lesser or equal 3 mm (P=0,0007 and greater of 3 mm (P<0,0001 added the presence of corpus luteum (P=0.0319 in the CT demonstrated effect of energy or protein restriction in the cyclic pattens of nursing sheep. On the basis of the results conclude that the nutritional restriction affects the return of the cyclical activity in the post-partum of sheep.A ingestão inadequada de nutrientes em qualidade e quantidade influencia a fertilidade das ovelhas, sendo variados os mecanismos envolvidos na inter-relação nutrição e reprodução. Objetivou-se avaliar os efeitos da restrição calórica ou protéica em ovelhas, durante a fase de lactação, sobre o desenvolvimento folicular e retorno à atividade cíclica pós-parto. Foram utilizadas 21 ovelhas SRD, recém-paridas, divididas aleatoriamente em três tratamentos: tratamento controle (TC - dieta que atendia aos requerimentos de mantença e lactação, restrição calórica (TRC - fornecia 1/2 da dieta do TC, restrição protéica (TRP - fornecia 1/3 da prote

  11. Cyclic Plastic Deformation and Welding Simulation

    Ten Horn, C.H.L.J.

    2003-01-01

    One of the concerns of a fitness for purpose analysis is the quantification of the relevant material properties. It is known from experiments that the mechanical properties of a material can change due to a monotonic plastic deformation or a cyclic plastic deformation. For a fitness for purpose

  12. Undrained Cyclic Behaviour of Dense Frederikshavn Sand

    Nielsen, Søren Kjær; Ibsen, Lars Bo; Sørensen, Kris Wessel

    2013-01-01

    A modified contour diagram is created for the Frederikshavn Sand in the undrained case for a relative density of ID = 80 %. It can be used to estimate the number of cycles to failure for a given combination of pore pressure, average and cyclic load ratio. The diagram is based on a series of undra...

  13. Driving Force Based Design of Cyclic Distillation

    Nielsen, Rasmus Fjordbak; Huusom, Jakob Kjøbsted; Abildskov, Jens

    2017-01-01

    with mixed phase feeds. A range of binary test cases, benzene toluene, methanol water, and ethanol water, are evaluated. The advantage of the design approach in cyclic distillation is shown to be analogous to the advantages obtained in conventional continuous distillation, including a minimal utility...

  14. Cyclic Cratonic Carbonates and Phanerozoic Calcite Seas.

    Wilkinson, Bruce H.

    1982-01-01

    Discusses causes of cyclicity in cratonic carbonate sequences and evidence for and potential significance of postulated primary calcite sediment components in past Paleozoic seas, outlining problems, focusing on models explaining existing data, and identifying background. Future sedimentary geologists will need to address these and related areas…

  15. Hopf Algebroids and Their Cyclic Theory

    Kowalzig, N.

    2009-01-01

    The main objective of this thesis is to clarify concepts of generalised symmetries in noncommutative geometry (i.e., the noncommutative analogue of groupoids and Lie algebroids) and their associated (co)homologies. These ideas are incorporated by the notion of Hopf algebroids and Hopf-cyclic

  16. Cyclic viscoelastoplasticity of polypropylene/nanoclay composites

    Drozdov, A.; Christiansen, Jesper de Claville

    2012-01-01

    Observations are reported on isotactic polypropylene/organically modified nanoclay hybrids with concentrations of filler ranging from 0 to 5 wt.% in cyclic tensile tests with a stress–controlled program (oscillations between various maximum stresses and the zero minimum stress). A pronounced effe...

  17. Breaking antidunes: Cyclic behavior due to hysteresis

    Deigaard, Rolf

    2006-01-01

    The cyclic behavior of breaking antidunes (growth, breaking of surface wave, obliteration) is investigated by use of a numerical model. The model includes the transition between supercritical and transcritical flow. As the antidune grows the flow becomes transcritical and a hydraulic jump is form...

  18. Inversion of General Cyclic Heptadiagonal Matrices

    A. A. Karawia

    2013-01-01

    Full Text Available We describe a reliable symbolic computational algorithm for inverting general cyclic heptadiagonal matrices by using parallel computing along with recursion. The computational cost of it is operations. The algorithm is implementable to the Computer Algebra System (CAS such as MAPLE, MATLAB, and MATHEMATICA. Two examples are presented for the sake of illustration.

  19. Cyclic olefin copolymer-silica nanocomposites foams

    Pegoretti, A.; Dorigato, A.; Biani, A.; Šlouf, Miroslav

    2016-01-01

    Roč. 51, č. 8 (2016), s. 3907-3916 ISSN 0022-2461 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : cyclic olefin copolymer * nanocomposites * silica Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.599, year: 2016

  20. Steady state oxygen reduction and cyclic voltammetry

    Rossmeisl, Jan; Karlberg, Gustav; Jaramillo, Thomas

    2008-01-01

    The catalytic activity of Pt and Pt3Ni for the oxygen reduction reaction is investigated by applying a Sabatier model based on density functional calculations. We investigate the role of adsorbed OH on the activity, by comparing cyclic voltammetry obtained from theory with previously published ex...

  1. Energy

    Meister, F.; Ott, F.

    2002-01-01

    This chapter gives an overview of the current energy economy in Austria. The Austrian political aims of sustainable development and climate protection imply a reorientation of the Austrian energy policy as a whole. Energy consumption trends (1993-1998), final energy consumption by energy carrier (indexed data 1993-1999), comparative analysis of useful energy demand (1993 and 1999) and final energy consumption of renewable energy sources by sector (1996-1999) in Austria are given. The necessary measures to be taken in order to reduce the energy demand and increased the use of renewable energy are briefly mentioned. Figs. 5. (nevyjel)

  2. Thermochemistry of cyclic acetone peroxides

    Sinditskii, V.P., E-mail: vps@rctu.ru [Mendeleev University of Chemical Technology, 9 Miusskaya Square, 125047 Moscow (Russian Federation); Kolesov, V.I.; Egorshev, V.Yu.; Patrikeev, D.I. [Mendeleev University of Chemical Technology, 9 Miusskaya Square, 125047 Moscow (Russian Federation); Dorofeeva, O.V. [Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow (Russian Federation)

    2014-06-01

    Highlights: • Old data on DADP and TATP enthalpies of formation have been revised. • Combining Gaussian-4 (G4) theory with an isodesmic reaction scheme allowed calculated enthalpies of formation of TATP and DADP. • Oxygen bomb calorimetry measurements allowed experimental enthalpies of formation of the peroxides. • Both experimental and calculated values show a satisfactory agreement between each other. • The newly obtained enthalpies reasonably account for the observed derivative parameters: heats of decomposition, combustion, and explosion. - Abstract: Two potentially initiating explosive peroxides, diacetonediperoxide (DADP) and triacetonetriperoxide (TATP), were studied in respect to their thermochemical properties. To get the internally self-consistent estimations of gas-phase enthalpy of formation of DADP and TATP, their values were calculated by combining Gaussian-4 (G4) theory with an isodesmic reaction scheme. The energies of combustion (Δ{sub c}U) were measured and the standard enthalpies of formation (Δ{sub f}H{sub 298}{sup °}) of DADP and TATP were derived using the standard enthalpies of formation of the combustion products. The heat of explosion was measured for small low-pressed charges of the peroxides. The obtained enthalpies of formation of DADP and TATP were found to agree well with quantum chemical calculations and reasonably account for the observed derivative parameters: heats of decomposition, combustion, and detonation.

  3. Energy

    Meister, F.

    2001-01-01

    This chapter of the environmental control report deals with the environmental impact of energy production, energy conversion, atomic energy and renewable energy. The development of the energy consumption in Austria for the years 1993 to 1999 is given for the different energy types. The development of the use of renewable energy sources in Austria is given, different domestic heat-systems are compared, life cycles and environmental balance are outlined. (a.n.)

  4. Identification of cyclic nucleotide gated channels using regular expressions

    Zelman, Alice K.; Dawe, Adam Sean; Berkowitz, Gerald A.

    2013-01-01

    Cyclic nucleotide-gated channels (CNGCs) are nonselective cation channels found in plants, animals, and some bacteria. They have a six-transmembrane/one- pore structure, a cytosolic cyclic nucleotide-binding domain, and a cytosolic calmodulin

  5. Effects of hypokinesia on cyclic nucleotides and hormonal regulation ...

    PTH), calcitonin (CT), cyclic nucleotides (cAMP, cGMP) and calcium in the blood of rats, while in urine - phosphate, calcium and cyclic nucleotides. Design: Laboratory based experiment. Setting: Laboratory in the Department of Biochemistry, ...

  6. Rhodium-Catalyzed Dehydrogenative Borylation of Cyclic Alkenes

    Kondoh, Azusa; Jamison, Timothy F.

    2010-01-01

    A rhodium-catalyzed dehydrogenative borylation of cyclic alkenes is described. This reaction provides direct access to cyclic 1-alkenylboronic acid pinacol esters, useful intermediates in organic synthesis. Suzuki-Miyaura cross-coupling applications are also presented. PMID:20107646

  7. Cyclic inelastic deformation aspects of fatigue-crack-growth analysis

    Leis, B.N.; Zahoor, A.

    1980-01-01

    This paper concentrates on a J-integral analysis of fatigue crack growth. Data on cyclic plasticity are analyzed showing that there are limitations to the usefulness of the deformation theory in applications to cyclic plasticity. 56 refs.

  8. Synergistic enhancing effect of N+C alloying on cyclic deformation behaviors in austenitic steel

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Yang, Z.N. [National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004 (China)

    2014-07-29

    Cyclic plastic and elastic strain controlled deformation behaviors of Mn18Cr7 austenitic steel with N0.6C0.3 synergistic enhancing alloying have been investigated using tension-compression low cycle fatigue and three-point bending high cycle fatigue testing. Results of cyclic deformation characteristic and fatigue damage mechanism have been compared to that in Mn12C1.2 steel. Mn18Cr7N0.6C0.3 steel always shows cyclic softening caused by enhanced planar sliding due to the interaction between N+C and the substitutional atoms as well as the dislocation, which is totally different from cyclic hardening in Mn12C1.2 steel caused by the interaction between C members of C–Mn couples with the dislocation. Enhanced effective stress is obtained due to the solid solution strengthening effect caused by the short range order at low strain amplitude while this effect does not work at high strain amplitude. Internal stress contributes most to the cyclic softening with the increase of strain amplitudes. Significant planar slip characteristic can be observed resulting from low stacking fault energy and high short range order effects in Mn18Cr7N0.6C0.3 steel and finally the parallel or intersecting thin sheets with dislocation tangles separated by dislocation free sheets are obtained with the prolonged cycles under cyclic elastic or plastic strain controlled fatigue testing. There exist amounts of small cracks on the surface of the Mn18Cr7N0.6C0.3 steel because fatigue crack initiation is promoted by the cyclic plastic strain localization. However, the zigzag configuration of the cracks reveals that the fatigue crack propagation is highly inhibited by the planar slip characteristic, which eventually improves the fatigue life.

  9. Experiment and Simulation Effects of Cyclic Pitch Control on Performance of Horizontal Axis Wind Turbine

    Le Quang Sang

    2017-06-01

      Keywords: Floating Offshore Wind Turbine, Aerodynamic Forces, Cyclic Pitch Control, FAST Code, Wind Tunnel Experiment Article History: Received February 11th 2017; Received in revised form April 29th 2017; Accepted June 2nd 2017; Available online How to Cite This Article: Sang, L.Q., Maeda, T., Kamada, Y., and Li, Q. (2017 Experiment and simulation effect of cyclic pitch control on performance of horizontal axis wind turbine to International Journal of Renewable Energy Develeopment, 6(2, 119-125. https://doi.org/10.14710/ijred.6.2.119-125

  10. Observations on bucket foundations under cyclic loading in dense saturated sand

    Foglia, Aligi; Ibsen, Lars Bo; Nicolai, Giulio

    2014-01-01

    Offshore wind farms will play a significant role in the European energy supply of the coming years. Today, one of the main challenges faced by the offshore wind market is to reduce the cost of turbine foundations. The monopod bucket foundation is a possible solution to this problem. The long......-term cyclic response of this foundation is not fully understood. In this article, a single gravity physical model is described, an experimental campaign is presented and the observed results are discussed. The aim of the study is to explore the general pattern of response of the foundation under cyclic...

  11. Physical Modelling of Bucket Foundation Under Long-Term Cyclic Lateral Loading

    Foglia, Aligi; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard

    2012-01-01

    Offshore wind farms are a promising renewable energy source. The monopod bucket foundation has the potential to become a reliable and cost-effective concept for offshore wind turbines. The bucket foundation must be designed by accounting for the cyclic loading which might endanger the turbine...... functioning. In this article a 1g physical model of bucket foundation under horizontal and moment cyclic loading is described. A testing program including four tests was carried out. Every test was conducted for at least 30000 cycles, each with different loading features. The capability of the model...

  12. Phase-Change Thermal Energy Storage

    1989-11-01

    The goal of this program is to advance the engineering and scientific understanding of solar thermal technology and to establish the technology base from which private industry can develop solar thermal power production options for introduction into the competitive energy market. Solar thermal technology concentrates the solar flux using tracking mirrors or lenses onto a receiver where the solar energy is absorbed as heat and converted into electricity or incorporated into products as process heat. The two primary solar thermal technologies, central receivers and distributed receivers, employ various point and line-focus optics to concentrate sunlight. Current central receiver systems use fields of heliostats (two-axes tracking mirrors) to focus the sun's radiant energy onto a single, tower-mounted receiver. Point focus concentrators up to 17 meters in diameter track the sun in two axes and use parabolic dish mirrors or Fresnel lenses to focus radiant energy onto a receiver. Troughs and bowls are line-focus tracking reflectors that concentrate sunlight onto receiver tubes along their focal lines. Concentrating collector modules can be used alone or in a multimodule system. The concentrated radiant energy absorbed by the solar thermal receiver is transported to the conversion process by a circulating working fluid. Receiver temperatures range from 100 C in low-temperature troughs to over 1500 C in dish and central receiver systems.

  13. Cyclic Soft Groups and Their Applications on Groups

    Hacı Aktaş

    2014-01-01

    Full Text Available In crisp environment the notions of order of group and cyclic group are well known due to many applications. In this paper, we introduce order of the soft groups, power of the soft sets, power of the soft groups, and cyclic soft group on a group. We also investigate the relationship between cyclic soft groups and classical groups.

  14. MONOTONIC AND CYCLIC LOADING SIMULATION OF STRUCTURAL STEELWORK BEAM TO COLUMN BOLTED CONNECTIONS WITH CASTELLATED BEAM

    SAEID ZAHEDI VAHID

    2013-08-01

    Full Text Available Recently steel extended end plate connections are commonly used in rigid steel frame due to its good ductility and ability for energy dissipation. This connection system is recommended to be widely used in special moment-resisting frame subjected to vertical monotonic and cyclic loads. However improper design of beam to column connection can leads to collapses and fatalities. Therefore extensive study of beam to column connection design must be carried out, particularly when the connection is exposed to cyclic loadings. This paper presents a Finite Element Analysis (FEA approach as an alternative method in studying the behavior of such connections. The performance of castellated beam-column end plate connections up to failure was investigated subjected to monotonic and cyclic loading in vertical and horizontal direction. The study was carried out through a finite element analysis using the multi-purpose software package LUSAS. The effect of arranging the geometry and location of openings were also been investigated.

  15. Effect of cyclic loading on the viscoplastic behaviour of Zircaloy 4 cladding tubes

    Bouffioux, P.; Gabriel, B.; Soniak, A.; Mardon, J.P.

    1995-06-01

    Most of the electricity being generated by nuclear energy load follow and remote control have become normal operating modes in the French PWR. In addition, EDF is developing a strategy of fuel sub-assembly burnup extension. Those operating conditions will lead to cyclic straining of the Zircaloy cladding tube which could induce damages. Therefore, EDF, CEA, and FRAMATOME has started a joint R and D cooperative program in order to investigate the mechanical behaviour of Zircaloy cladding tubes under cyclic loading. This paper is dealing with the effect of a pre-cyclic loading on the plasticity properties of Zircaloy 4 cladding tubes. Load controlled cyclic tests were carried out at 350 deg. C and 0.5 Hz in both axial and hoop directions. The Woehler curves were determined. Sequential tests combining pre-cyclic loading to 50 and 75 % fraction life with tension were then performed. It has ben noticed that the pre-cycling loading does not change the plastic flow curve of the Zircaloy 4 cladding tubes and therefore does not induce observable macroscopic damage. It has been concluded that a linear cumulative damage rule like ΣΔN(σ)/N r(σ) is very conservative. (author)

  16. Synthesis and degradation of cyclic nucleotides in brain after a high dose of ionizing radiation

    Hunt, W.A.; Dalton, T.K.

    1981-01-01

    Previous data from our laboratory have indicated that a high dose of ionizing radiation can deplete the cyclic nucleotides guanosine 3',5'-cyclic monophosphate (cGMP) and adenosine 3',5'-cyclic monophosphate (cAMP) on several areas of the rat brain. cGMP is more sensitive to radiation than cAMP and does not recover for at least 24 h after irradiation. The response of cAMP is transient and recovery occurs within 4 h. The purpose of the present paper is to determine whether alternations in the activity of the synthetic and degradative enzymes that regulate cyclic nucleotide levels could account for the observed effects. Guanylate and adenylate cyclase and cGMP and cAMP phosphodiesterase activities were determined 10 min after irradiation with 10,000 rad of high-energy electrons. No alteration was detected under these experimental conditions. The data suggest that the reduction in cyclic nucleotides is not a direct effect on their metabolic enzymes and is probably secondary to some as yet-undefined action of radiation on the brain

  17. The multielement potential of fast neutron cyclic activation analysis

    Nonie, S.E.; Randle, K.

    1994-01-01

    Cyclic neutron activation analysis (CNAA) has, in recent years been developed as a useful analytical tool for the assay of short-lived isotopes in single element situations. The work described in this paper investigates the potential of the technique for composite samples having a wide range of elements that produce short-lived and long-lived isotopes on neutron irradiation. Accelerator-derived neutrons with average energies of 3 MeV, 6 MeV and 14 MeV were employed in what has been dubbed 'Fast Neutron Cyclic Neutron Activation Analysis' (FNCAA). The approach to multi-element analysis entailed: determination of cycle parameters in single element samples via the reactions 27 Al(n,p) 27 Mg(9.6 min,E γ =840keV), and 137 Ba(n,n 'γ137m Ba(2.3 min,E γ 137m Ba(2.3 min,E γ =662 keV), a test of the method on a composite rock sample, determination of analytical sensitivities using both powdered kale and rock standards and a comparison of analytical results with other techniques. The results obtained in all these measurements are presented and discussed. (author) 10 refs.; 3 figs.; 5 tabs

  18. CFD simulation on use of polyethylene single bubble to reduce radiant heat on lecture hall

    Muhieldeen, M.W.; Adam, N.M.; Elias Salleh; Tang, S.H.; Ghezavati, H.

    2009-01-01

    Full text: In recent years, Malaysia energy consumption has increased and become comparable to larger consumers worldwide. The increased demand for artificial cooling through the use of air conditioning units in other to provide comfort would also mean increased energy usage and increased electricity cost to the occupants. This paper reviews the results from a field survey of saving energy within one type of buildings lecture theater, in Universiti Putra Malaysia. The thermal insulation material established (polyethylene single bubble) and putting on the wall which separate between the lecture theater and the exterior. The survey was undertaken at January until April in 2008. In a 3D occupant Lecture hall (L: 15 m, W: 12 m, and H: 6.6 m). In addition the environmental parameters were measured in class room to calculate the boundary condition for using CFD to compare saving energy. The results show that by using polyethylene single bubble insulation in each condition, a reduction of 2.2 degree Celsius was achieved. (author)

  19. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, D. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  20. Air-to-Water Heat Pumps With Radiant Delivery in Low-Load Homes

    Backman, C. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group; German, A. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group; Dakin, B. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group; Springer, D. [Alliance for Residential Building Innovation, Davis, CA (United States). Davis Energy Group

    2013-12-01

    Space conditioning represents nearly 50% of average residential household energy consumption, highlighting the need to identify alternative cost-effective, energy-efficient cooling and heating strategies. As homes are better built, there is an increasing need for strategies that are particularly well suited for high performance, low load homes. ARBI researchers worked with two test homes in hot-dry climates to evaluate the in-situ performance of air-to-water heat pump (AWHP) systems, an energy efficient space conditioning solution designed to cost-effectively provide comfort in homes with efficient, safe, and durable operation. Two monitoring projects of test houses in hot-dry climates were initiated in 2010 to test this system. Both systems were fully instrumented and have been monitored over one year to capture complete performance data over the cooling and heating seasons. Results are used to quantify energy savings, cost-effectiveness, and system performance using different operating modes and strategies. A calibrated TRNSYS model was developed and used to evaluate performance in various climate regions. This strategy is most effective in tight, insulated homes with high levels of thermal mass (i.e. exposed slab floors).

  1. Cyclic Nucleotide Signalling in Kidney Fibrosis

    Elisabeth Schinner

    2015-01-01

    Full Text Available Kidney fibrosis is an important factor for the progression of kidney diseases, e.g., diabetes mellitus induced kidney failure, glomerulosclerosis and nephritis resulting in chronic kidney disease or end-stage renal disease. Cyclic adenosine monophosphate (cAMP and cyclic guanosine monophosphate (cGMP were implicated to suppress several of the above mentioned renal diseases. In this review article, identified effects and mechanisms of cGMP and cAMP regarding renal fibrosis are summarized. These mechanisms include several signalling pathways of nitric oxide/ANP/guanylyl cyclases/cGMP-dependent protein kinase and cAMP/Epac/adenylyl cyclases/cAMP-dependent protein kinase. Furthermore, diverse possible drugs activating these pathways are discussed. From these diverse mechanisms it is expected that new pharmacological treatments will evolve for the therapy or even prevention of kidney failure.

  2. A cyclic symmetry principle in physics

    Green, H.S.; Adelaide Univ., SA

    1994-01-01

    Many areas of modern physics are illuminated by the application of a symmetry principle, requiring the invariance of the relevant laws of physics under a group of transformations. This paper examines the implications and some of the applications of the principle of cyclic symmetry, especially in the areas of statistical mechanics and quantum mechanics, including quantized field theory. This principle requires invariance under the transformations of a finite group, which may be a Sylow π-group, a group of Lie type, or a symmetric group. The utility of the principle of cyclic invariance is demonstrated in finding solutions of the Yang-Baxter equation that include and generalize known solutions. It is shown that the Sylow π-groups have other uses, in providing a basis for a type of generalized quantum statistics, and in parametrising a new generalization of Lie groups, with associated algebras that include quantized algebras. 31 refs

  3. Strain gradient effects on cyclic plasticity

    Niordson, Christian Frithiof; Legarth, Brian Nyvang

    2010-01-01

    Size effects on the cyclic shear response are studied numerically using a recent higher order strain gradient visco-plasticity theory accounting for both dissipative and energetic gradient hardening. Numerical investigations of the response under cyclic pure shear and shear of a finite slab between...... rigid platens have been carried out, using the finite element method. It is shown for elastic–perfectly plastic solids how dissipative gradient effects lead to increased yield strength, whereas energetic gradient contributions lead to increased hardening as well as a Bauschinger effect. For linearly...... hardening materials it is quantified how dissipative and energetic gradient effects promote hardening above that of conventional predictions. Usually, increased hardening is attributed to energetic gradient effects, but here it is found that also dissipative gradient effects lead to additional hardening...

  4. Generalized Toeplitz operators and cyclic vectors

    Gassier, G.; Mahzouli, H.; Zerouali, E.H.

    2003-04-01

    We give in this paper some asymptotic Von Neumann inequalities for power bounded operators in the class C ρ intersection C 1 . and some spacial von Neumann inequalities associated with non zero elements of the point spectrum, when it is non void, of generalized Toeplitz operators. Introducing perturbed kernel, we consider classes C R which extend the classical classes C ρ . We give results about absolute continuity with respect to the Haar measure for operators in class C R intersection C 1 . This allows us to give new results on cyclic vectors for such operators and provides invariant subspaces for their powers. Relationships between cyclic vectors for T and T* involving generalized Toeplitz operators are given and the commutativity of {T}', the commutant of T is discussed. (author)

  5. Separation of isotopes by cyclical processes

    Hamrin, C.E. Jr.; Weaver, K.

    1976-01-01

    Various isotopes of hydrogen are separated by a cyclic sorption process in which a gas stream containing the isotopes is periodically passed through a high pressure column containing a palladium sorbent. A portion of the product from the high pressure column is passed through a second column at lower pressure to act as a purge. Before the sorbent in the high pressure column becomes saturated, the sequence is reversed with the stream flowing through the former low-pressure column now at high pressure, and a portion of the product purging the former high pressure column now at low pressure. The sequence is continued in cyclic manner with the product being enriched in a particular isotope

  6. The effect of urban geometry on mean radiant temperature under future climate change: a study of three European cities.

    Lau, Kevin Ka-Lun; Lindberg, Fredrik; Rayner, David; Thorsson, Sofia

    2015-07-01

    Future anthropogenic climate change is likely to increase the air temperature (T(a)) across Europe and increase the frequency, duration and magnitude of severe heat stress events. Heat stress events are generally associated with clear-sky conditions and high T(a), which give rise to high radiant heat load, i.e. mean radiant temperature (T(mrt)). In urban environments, T mrt is strongly influenced by urban geometry. The present study examines the effect of urban geometry on daytime heat stress in three European cities (Gothenburg in Sweden, Frankfurt in Germany and Porto in Portugal) under present and future climates, using T(mrt) as an indicator of heat stress. It is found that severe heat stress occurs in all three cities. Similar maximum daytime T(mrt) is found in open areas in all three cities despite of the latitudinal differences in average daytime T(mrt). In contrast, dense urban structures like narrow street canyons are able to mitigate heat stress in the summer, without causing substantial changes in T(mrt) in the winter. Although the T(mrt) averages are similar for the north-south and east-west street canyons in each city, the number of hours when T(mrt) exceeds the threshold values of 55.5 and 59.4 °C-used as indicators of moderate and severe heat stress-in the north-south canyons is much higher than that in the east-west canyons. Using statistically downscaled data from a regional climate model, it is found that the study sites were generally warmer in the future scenario, especially Porto, which would further exacerbate heat stress in urban areas. However, a decrease in solar radiation in Gothenburg and Frankfurt reduces T(mrt) in the spring, while the reduction in T(mrt) is somewhat offset by increasing T(a) in other seasons. It suggests that changes in the T(mrt) under the future scenario are dominated by variations in T(a). Nonetheless, the intra-urban differences remain relatively stable in the future. These findings suggest that dense urban

  7. Applying Fibre-Optic Distributed Temperature Sensing to Near-surface Temperature Dynamics of Broadacre Cereals During Radiant Frost Events.

    Stutsel, B.; Callow, J. N.

    2017-12-01

    Radiant frost events, particularly those during the reproductive stage of winter cereal growth, cost growers millions of dollars in lost yield. Whilst synoptic drivers of frost and factors influencing temperature variation at the landscape scale are relatively well understood, there is a lack of knowledge surrounding small-scale temperature dynamics within paddocks and plot trials. Other work has also suggested a potential significant temperature gradient (several degrees) vertically from ground to canopy, but this is poorly constrained experimentally. Subtle changes in temperature are important as frost damage generally occurs in a very narrow temperature range (-2 to -5°C). Once a variety's damage threshold is reached, a 1°C difference in minimum temperature can increase damage from 10 to 90%. This study applies Distributed Temperature Sensing (DTS) using fibre optics to understand how minimum temperature evolves during a radiant frost. DTS assesses the difference in attenuation of Raman scattering of a light pulse travelling along a fibre optic cable to measure temperature. A bend insensitive multimode fibre was deployed in a double ended duplex configuration as a "fence" run through four times of sowing at a trial site in the Western Australian Wheatbelt. The fibre optic fence was 160m long and 800mm tall with the fibre optic cable spaced 100mm apart vertically, and calibrated in ambient water ( 10 to 15oC) and a chilled glycol ( -8 to-10 oC) baths. The temperature measurements had a spatial resolution of 0.65m and temporal resolution of 60s, providing 2,215 measurements every minute. The results of this study inform our understanding of the subtle temperature changes from the soil to canopy, providing new insight into how to place traditional temperature loggers to monitor frost damage. It also addresses questions of within-trial temperature variability, and provides an example of how novel techniques such as DTS can be used to improve the way temperature

  8. Soil Fatigue Due To Cyclically Loaded Foundations

    Pytlik, Robert Stanislaw

    2016-01-01

    Cyclic loading on civil structures can lead to a reduction of strength of the used materials. A literature study showed that, in contrast to steel structures and material engineering, there are no design codes or standards for fatigue of foundations and the surrounding ground masses in terms of shear strength reduction. Scientific efforts to study the fatigue behaviour of geomaterials are mainly focused on strain accumulation, while the reduction of shear strength of geomaterials has not been...

  9. Reaction of cyclic epoxide compounds with triphenylphosphine

    Kas'yan, L.I.; Stepanova, N.V.; Galafeeva, M.F.; Boldeskul, I.E.; Trachevskii, V.V.; Zefirov, N.S.

    1987-01-01

    Significant differences were found in the reactivity of a series of epoxides of cycloalkenes and methylenecycloalkanes and diepoxides in reaction with triphenylphosphine, depending both on the steric effects of the cyclic fragments and on their strain. The level of the strain can be judged indirectly from the chemical shifts of the 1 H and 13 C nuclei and the spin-spin coupling constants of the C-H bonds in the epoxide ring

  10. Human skin kinetics of cyclic depsipeptide mycotoxins

    Taevernier, Lien; Veryser, Lieselotte; ROCHE, NATHALIE; De Spiegeleer, Bart

    2014-01-01

    Cyclic depsipeptides (CDPs) are an emerging group of naturally occurring bioactive peptides, some of which are already developed as pharmaceutical drugs, e.g. valinomycin. They are produced by bacteria, marine organisms and fungi [1]. Some CDPs are secondary fungal metabolites, which can be very toxic to humans and animals, and are therefore called mycotoxins. Currently, dermal exposure data of CDP mycotoxins is scarce and fragmentary with a lack of understanding about the local skin and syst...

  11. Modelling of cyclical stratigraphy using Markov chains

    Kulatilake, P.H.S.W.

    1987-07-01

    State-of-the-art on modelling of cyclical stratigraphy using first-order Markov chains is reviewed. Shortcomings of the presently available procedures are identified. A procedure which eliminates all the identified shortcomings is presented. Required statistical tests to perform this modelling are given in detail. An example (the Oficina formation in eastern Venezuela) is given to illustrate the presented procedure. 12 refs., 3 tabs. 1 fig.

  12. Markup cyclicality, employment adjustment, and financial constraints

    Askildsen, Jan Erik; Nilsen, Øivind Anti

    2001-01-01

    We investigate the existence of markups and their cyclical behaviour. Markup is not directly observed. Instead, it is given as a price-cost relation that is estimated from a dynamic model of the firm. The model incorporates potential costly employment adjustments and takes into consideration that firms may be financially constrained. When considering size of the future labour stock, financially constrained firms may behave as if they have a higher discount factor, which may affect the realise...

  13. Characterization of cyclic peptides containing disulfide bonds

    Johnson, Mindy; Liu, Mingtao; Struble, Elaine; Hettiarachchi, Kanthi

    2015-01-01

    Unlike linear peptides, analysis of cyclic peptides containing disulfide bonds is not straightforward and demands indirect methods to achieve a rigorous proof of structure. Three peptides that belong to this category, p-Cl-Phe-DPDPE, DPDPE, and CTOP, were analyzed and the results are presented in this paper. The great potential of two dimensional NMR and ESI tandem mass spectrometry was harnessed during the course of peptide characterizations. A new RP-HPLC method for the analysis of trifluor...

  14. Visual search of cyclic spatio-temporal events

    Gautier, Jacques; Davoine, Paule-Annick; Cunty, Claire

    2018-05-01

    The analysis of spatio-temporal events, and especially of relationships between their different dimensions (space-time-thematic attributes), can be done with geovisualization interfaces. But few geovisualization tools integrate the cyclic dimension of spatio-temporal event series (natural events or social events). Time Coil and Time Wave diagrams represent both the linear time and the cyclic time. By introducing a cyclic temporal scale, these diagrams may highlight the cyclic characteristics of spatio-temporal events. However, the settable cyclic temporal scales are limited to usual durations like days or months. Because of that, these diagrams cannot be used to visualize cyclic events, which reappear with an unusual period, and don't allow to make a visual search of cyclic events. Also, they don't give the possibility to identify the relationships between the cyclic behavior of the events and their spatial features, and more especially to identify localised cyclic events. The lack of possibilities to represent the cyclic time, outside of the temporal diagram of multi-view geovisualization interfaces, limits the analysis of relationships between the cyclic reappearance of events and their other dimensions. In this paper, we propose a method and a geovisualization tool, based on the extension of Time Coil and Time Wave, to provide a visual search of cyclic events, by allowing to set any possible duration to the diagram's cyclic temporal scale. We also propose a symbology approach to push the representation of the cyclic time into the map, in order to improve the analysis of relationships between space and the cyclic behavior of events.

  15. Cyclic combustion driven shocks in a sompressible vortex as a source of MHD power

    Jenkins, J. M.; Swithenbank, J.

    1963-04-15

    Theory and experimental data are presented on the properties of cyclic, combustion-driven shocks in a compressible vortex. In this system, part of the chemical energy is converted directly into kinetic energy. Because the temperatures encountered in these combustions approach those obtained in detonations, it is suggested that the cycliccombustion system might be suitable for the production of magnetohydrodynamic power. The experimental data presented are based on observations of rocket motor characteristics. Effects of instabilities are discussed. (T.F.H.)

  16. Return of reproductive cyclic activity in Morada Nova sheep at metabolizable energy different levels Retorno da atividade cíclica reprodutiva em ovelhas da raça Morada Nova submetidas a diferentes níveis de energia metabolizável

    Maria Teresa Jansem de Almeida Catanho

    2008-09-01

    Full Text Available The objective, in this work, was to evaluate the effect of metabolizable energy offered on reproductive cyclic activity return of Morada Nova sheep, at different energy levels, during the lactation, since the pregnancy last third, 39 sheep, distributed in three treatments, during the rainy and dry season, were used. Experimental diets were formulated to meet a daily intake of 2.2, 2.8 and 3.4 Mcal of Metabolizable Energy (ME/day and 150 g of crude protein, and the serum levels of progesterone and cortisol regarding, besides the reproductive performance, were evaluated. An entirely casualized design was used in a subdivided scheme for the hormone, and generalized linear models, by the Poisson distribution and binomial distribution in the non-parametric data. There was effect from interaction between period and treatment (P<0,05 for cortisol and progesterone serum, as well as for reproductive performance. The animals went through stress condition, which interfered in the return of reproductive cyclic activity and extended the anoestrus post-partum period, during the dry season. The offer of ME 3.4 Mcal must be recommended for Morada Nova sheep since the pregnancy last third because of the best performance rates and reproductive performance.Este trabalho foi realizado com o objetivo de avaliar os efeitos da energia metabolizável ofertada sobre o retorno da atividade cíclica reprodutiva de ovelhas da raça Morada Nova, durante a lactação, que receberam diferentes níveis de energia desde o terço final da gestação. Foram utilizadas 39 ovelhas distribuídas em três tratamentos durante a época chuvosa e seca. As dietas experimentais foram formuladas para atender ingestão diária de 2,2; 2,8; e 3,4 Mcal de Energia Metabolizável (EM/dia e 150g de proteína bruta, sendo avaliados os níveis séricos de progesterona e cortisol, além do desempenho reprodutivo. Utilizou-se um delineamento inteiramente casualizado, num esquema de parcelas

  17. Energy

    Bobin, J.L.

    1996-01-01

    Object of sciences and technologies, energy plays a major part in economics and relations between nations. Jean-Louis Bobin, physicist, analyses the relations between man and energy and wonders about fears that delivers nowadays technologies bound to nuclear energy and about the fear of a possible shortage of energy resources. (N.C.). 17 refs., 14 figs., 2 tabs

  18. Cyclic dominance in evolutionary games: a review

    Szolnoki, Attila; Mobilia, Mauro; Jiang, Luo-Luo; Szczesny, Bartosz; Rucklidge, Alastair M.; Perc, Matjaž

    2014-01-01

    Rock is wrapped by paper, paper is cut by scissors and scissors are crushed by rock. This simple game is popular among children and adults to decide on trivial disputes that have no obvious winner, but cyclic dominance is also at the heart of predator–prey interactions, the mating strategy of side-blotched lizards, the overgrowth of marine sessile organisms and competition in microbial populations. Cyclical interactions also emerge spontaneously in evolutionary games entailing volunteering, reward, punishment, and in fact are common when the competing strategies are three or more, regardless of the particularities of the game. Here, we review recent advances on the rock–paper–scissors (RPS) and related evolutionary games, focusing, in particular, on pattern formation, the impact of mobility and the spontaneous emergence of cyclic dominance. We also review mean-field and zero-dimensional RPS models and the application of the complex Ginzburg–Landau equation, and we highlight the importance and usefulness of statistical physics for the successful study of large-scale ecological systems. Directions for future research, related, for example, to dynamical effects of coevolutionary rules and invasion reversals owing to multi-point interactions, are also outlined. PMID:25232048

  19. Scale factor duality for conformal cyclic cosmologies

    Silva, University Camara da; Lima, A.L. Alves; Sotkov, G.M. [Departamento de Física - CCE,Universidade Federal de Espirito Santo, 29075-900, Vitoria ES (Brazil)

    2016-11-16

    The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose’s Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.

  20. Scale factor duality for conformal cyclic cosmologies

    Silva, University Camara da; Lima, A.L. Alves; Sotkov, G.M.

    2016-01-01

    The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose’s Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.

  1. The rearrangements of naphthylnitrenes: UV/Vis and IR spectra of azirines, cyclic ketenimines, and cyclic nitrile ylides.

    Maltsev, Alexander; Bally, Thomas; Tsao, Meng-Lin; Platz, Matthew S; Kuhn, Arvid; Vosswinkel, Michael; Wentrup, Curt

    2004-01-14

    Ar matrix photolysis of 1- and 2-naphthyl azides 3 and 4 at 313 nm initially affords the singlet naphthyl nitrenes, (1)()1 and (1)()2. Relaxation to the corresponding lower energy, persistent triplet nitrenes (3)()1 and (3)()2 competes with cyclization to the azirines 15 and 18, which can also be formed photochemically from the triplet nitrenes. On prolonged irradiation, the azirines can be converted to the seven-membered cyclic ketenimines 10 and 13, respectively, as described earlier by Dunkin and Thomson. However, instead of the o-quinoid ketenimines 16 and 19, which are the expected primary ring-opening products of azirines 15 and 18, respectively, we observed their novel bond-shift isomers 17 and 20, which may be formally regarded as cyclic nitrile ylides. The existence of such ylidic heterocumulenes has been predicted previously, but this work provides the first experimental observation of such species. The factors which are responsible for the special stability of the ylidic species 17 and 20 are discussed.

  2. Energy

    Foland, Andrew Dean

    2007-01-01

    Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.

  3. Doorway states in nuclear reactions as a manifestation of the 'super-radiant' mechanism

    Auerbach, N.; Zelevinsky, V.

    2007-01-01

    A mechanism is considered for generating doorway states and intermediate structure in low-energy nuclear reactions as a result of collectivization of widths of unstable intrinsic states coupled to common decay channels. At the limit of strong continuum coupling, the segregation of broad ('super-radiating') and narrow ('trapped') states occurs revealing the separation of direct and compound processes. We discuss the conditions for the appearance of intermediate structure in this process and doorways related to certain decay channels

  4. Experimental investigation of the influence of the air jet trajectory on convective heat transfer in buildings equipped with air-based and radiant cooling systems

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    -state and dynamic conditions. With the air-based cooling system, a dependency of the convective heat transfer on the air jet trajectory has been observed. New correlations have been developed, introducing a modified Archimedes number to account for the air flow pattern. The accuracy of the new correlations has been...... evaluated to±15%. Besides the study with an air-based cooling system, the convective heat transfer with a radiant cooling system has also been investigated. The convective flow at the activated surface is mainly driven by natural convection. For other surfaces, the complexity of the flow and the large......The complexity and diversity of airflow in buildings make the accurate definition of convective heat transfer coefficients (CHTCs) difficult. In a full-scale test facility, the convective heat transfer of two cooling systems (active chilled beam and radiant wall) has been investigated under steady...

  5. An order-by-disorder process in the cyclic phase of spin-2 condensate with a weak magnetic field

    Zheng, Gong-Ping; Xu, Lei-Kuan; Qin, Shuai-Feng; Jian, Wen-Tian; Liang, J.-Q.

    2013-01-01

    We present in this paper a model study on the “order-by-disorder” process in the cyclic phase of spin-2 condensate, which forms a family of incommensurable, spiral degenerate ground states. On the basis of the ordering mechanism of entropic splitting, it is demonstrated that the energy corrections resulting from quantum fluctuations of disorder lift the accidental degeneracy of the cyclic configurations and thus lead to an eventual spiral order called the cyclic order. The order-by-disorder phenomenon is then realized even if the magnetic field exists. Finally, we show that our theoretic observations can be verified experimentally by direct detection of the cyclic order in the 87 Rb condensate of a spin-2 manifold with a weak magnetic field. -- Highlights: •A model for the order-by-disorder process in the cyclic phase of spin-2 condensate is presented. •The second-order quantum fluctuations of the mean-field states are studied. •The energy corrections lift the accidental degeneracy of the cyclic configurations. •The order-by-disorder phenomenon is realized even if a magnetic field exists. •The theoretic observations can be verified experimentally for 87 Rb condensate

  6. Quantifying the radiant exposure and effective dose in patients treated for actinic keratoses with topical photodynamic therapy using daylight and LED white light

    Manley, M.; Collins, P.; Gray, L.; O'Gorman, S.; McCavana, J.

    2018-02-01

    Daylight photodynamic therapy (dl-PDT) is as effective as conventional PDT (c-PDT) for treating actinic keratoses but has the advantage of reducing patient discomfort significantly. Topical dl-PDT and white light-PDT (wl-PDT) differ from c-PDT by way of light sources and methodology. We measured the variables associated with light dose delivery to skin surface and influence of geometry using a radiometer, a spectral radiometer and an illuminance meter. The associated errors of the measurement methods were assessed. The spectral and spatial distribution of the radiant energy from the LED white light source was evaluated in order to define the maximum treatment area, setup and treatment protocol for wl-PDT. We compared the data with two red LED light sources we use for c-PDT. The calculated effective light dose is the product of the normalised absorption spectrum of the photosensitizer, protoporphyrin IX (PpIX), the irradiance spectrum and the treatment time. The effective light dose from daylight ranged from 3  ±  0.4 to 44  ±  6 J cm-2due to varying weather conditions. The effective light dose for wl-PDT was reproducible for treatments but it varied across the treatment area between 4  ±  0.1 J cm-2 at the edge and 9  ±  0.1 J cm-2 centrally. The effective light dose for the red waveband (615-645 nm) was 0.42  ±  0.05 J cm-2 on a clear day, 0.05  ±  0.01 J cm-2 on an overcast day and 0.9  ±  0.01 J cm-2 using the white light. This compares with 0.95  ±  0.01 and 0.84  ±  0.01 J cm-2 for c-PDT devices. Estimated errors associated with indirect determination of daylight effective light dose were very significant, particularly for effective light doses less than 5 J cm-2 (up to 83% for irradiance calculations). The primary source of error is in establishment of the relationship between irradiance or illuminance and effective dose. Use of the O’Mahoney model is recommended using a

  7. Cyclic voltammetry of ion transfer across a room temperature ionic liquid membrane supported by a microporous filter

    Langmaier, Jan; Samec, Zdeněk

    2007-01-01

    Roč. 9, č. 9 (2007), s. 2633-2638 ISSN 1388-2481 R&D Projects: GA AV ČR IAA400400704 Institutional research plan: CEZ:AV0Z40400503 Keywords : room-temperature ionic membrane * cyclic voltammetry * standard Gibbs energy of ion transfer * linear Gibbs energy relationship Subject RIV: CG - Electrochemistry Impact factor: 4.186, year: 2007

  8. Modeling of mean radiant temperature based on comparison of airborne remote sensing data with surface measured data

    Chen, Yu-Cheng; Chen, Chih-Yu; Matzarakis, Andreas; Liu, Jin-King; Lin, Tzu-Ping

    2016-06-01

    Assessment of outdoor thermal comfort is becoming increasingly important due to the urban heat island effect, which strongly affects the urban thermal environment. The mean radiant temperature (Tmrt) quantifies the effect of the radiation environment on humans, but it can only be estimated based on influencing parameters and factors. Knowledge of Tmrt is important for quantifying the heat load on human beings, especially during heat waves. This study estimates Tmrt using several methods, which are based on climatic data from a traditional weather station, microscale ground surface measurements, land surface temperature (LST) and light detection and ranging (LIDAR) data measured using airborne devices. Analytical results reveal that the best means of estimating Tmrt combines information about LST and surface elevation information with meteorological data from the closest weather station. The application in this method can eliminate the inconvenience of executing a wide range ground surface measurement, the insufficient resolution of satellite data and the incomplete data of current urban built environments. This method can be used to map a whole city to identify hot spots, and can be contributed to understanding human biometeorological conditions quickly and accurately.

  9. Synthesis of unstable cyclic peroxides for chemiluminescence studies

    Bartoloni, Fernando H.; Oliveira, Marcelo A. de; Augusto, Felipe A.; Ciscato, Luiz Francisco M.L.; Bastos, Erick L.; Baader, Wilhelm J., E-mail: wjbaader@iq.usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Fundamental

    2012-11-15

    Cyclic four-membered ring peroxides are important high-energy intermediates in a variety of chemi and bioluminescence transformations. Specifically, a-peroxy lactones (1,2-dioxetanones) have been considered as model systems for efficient firefly bioluminescence. However, the preparation of such highly unstable compounds is extremely difficult and, therefore, only few research groups have been able to study the properties of these substances. In this study, the synthesis, purification and characterization of three 1,2-dioxetanones are reported and a detailed procedure for the known synthesis of diphenoyl peroxide, another important model compound for the chemical generation of electronically excited states, is provided. For most of these peroxides, the complete spectroscopic characterization is reported here for the first time. (author)

  10. Effects of blue diode laser (445 nm) and LED (430-480 nm) radiant heat treatments on dental glass ionomer restoratives

    Dionysopoulos, Dimitrios; Tolidis, Kosmas; Strakas, Dimitrios; Gerasimou, Paris; Sfeikos, Thrasyvoulos; Gutknecht, Norbert

    2018-02-01

    The purpose of this in vitro study was to evaluate the effect of two radiant heat treatments on water sorption, solubility and surface roughness of three conventional glass ionomer cements by using a blue diode laser (445 nm) and a light emitting diode (LED) unit (430-480 nm). Thirty disk-shaped specimens were prepared for each tested GIC (Equia Fil, Ketac Universal Aplicap and Riva Self Cure). The experimental groups (n = 10) of the study were as follows: Group 1 was the control group, in Group 2 the specimens were irradiated for 60 s at the top surface using a LED light-curing unit and in Group 3 the specimens were irradiated for 60 s at the top surface using a blue light diode laser. Statistical analysis was performed using one-way ANOVA and Tukey post hoc tests at a level of significance of a = 0.05. Radiant heat treatments with both laser and LED devices significantly decreased water sorption and solubility (p tested GICs. Blue diode laser treatment was seemed to be more effective compared to LED treatment for some of the tested materials. There were no changes in surface roughness of the GICs after the treatments (p > 0.05). Among the tested materials there were differences in water sorption and solubility (p 0.05). The use of the blue diode laser for this radiant heat treatment was harmless for the surface of the tested GICs and may be advantageous for the longevity of their restorations.

  11. Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-10-01

    A constitutive model of rocks subjected to cyclic stress-temperature was proposed. Based on statistical damage theory, the damage constitutive model with Weibull distribution was extended. Influence of model parameters on the stress-strain curve for rock reloading after stress-temperature cycling was then discussed. The proposed model was initially validated by rock tests for cyclic stress-temperature and only cyclic stress. Finally, the total damage evolution induced by stress-temperature cycling and reloading after cycling was explored and discussed. The proposed constitutive model is reasonable and applicable, describing well the stress-strain relationship during stress-temperature cycles and providing a good fit to the test results. Elastic modulus in the reference state and the damage induced by cycling affect the shape of reloading stress-strain curve. Total damage induced by cycling and reloading after cycling exhibits three stages: initial slow increase, mid-term accelerated increase, and final slow increase.

  12. Smart aggregate based damage detection of circular RC columns under cyclic combined loading

    Moslehy, Yashar; Belarbi, Abdeldjelil; Mo, Y L; Gu, Haichang; Song, Gangbing

    2010-01-01

    Structural health monitoring is an important issue for the maintenance of large-scale civil infrastructures, especially for bridge columns. In this paper, an innovative piezoceramic-based approach is developed for the structural health monitoring of reinforced concrete columns. An innovative piezoceramic-based device, the smart aggregate, is utilized as a transducer for the purpose of health monitoring. To investigate the seismic behavior of reinforced concrete (RC) bridge columns, structural health monitoring tests were performed on two bridge columns under combined reversed cyclic loading at the Missouri University of Science and Technology. The proposed smart aggregate based approach successfully evaluated the health status of concrete columns during the loading procedure. Sensor energy plots and 3D normalized sensor energy plots demonstrated that the damage inside attenuated the transmitted energy. The wavelet packet based damage index and sensor history damage index evaluate the damage development in concrete columns under cyclic loading

  13. Virtual screening using combinatorial cyclic peptide libraries reveals protein interfaces readily targetable by cyclic peptides.

    Duffy, Fergal J; O'Donovan, Darragh; Devocelle, Marc; Moran, Niamh; O'Connell, David J; Shields, Denis C

    2015-03-23

    Protein-protein and protein-peptide interactions are responsible for the vast majority of biological functions in vivo, but targeting these interactions with small molecules has historically been difficult. What is required are efficient combined computational and experimental screening methods to choose among a number of potential protein interfaces worthy of targeting lead macrocyclic compounds for further investigation. To achieve this, we have generated combinatorial 3D virtual libraries of short disulfide-bonded peptides and compared them to pharmacophore models of important protein-protein and protein-peptide structures, including short linear motifs (SLiMs), protein-binding peptides, and turn structures at protein-protein interfaces, built from 3D models available in the Protein Data Bank. We prepared a total of 372 reference pharmacophores, which were matched against 108,659 multiconformer cyclic peptides. After normalization to exclude nonspecific cyclic peptides, the top hits notably are enriched for mimetics of turn structures, including a turn at the interaction surface of human α thrombin, and also feature several protein-binding peptides. The top cyclic peptide hits also cover the critical "hot spot" interaction sites predicted from the interaction crystal structure. We have validated our method by testing cyclic peptides predicted to inhibit thrombin, a key protein in the blood coagulation pathway of important therapeutic interest, identifying a cyclic peptide inhibitor with lead-like activity. We conclude that protein interfaces most readily targetable by cyclic peptides and related macrocyclic drugs may be identified computationally among a set of candidate interfaces, accelerating the choice of interfaces against which lead compounds may be screened.

  14. Energy

    Robertson, William C

    2002-01-01

    Confounded by kinetic energy? Suspect that teaching about simple machines isn t really so simple? Exasperated by electricity? If you fear the study of energy is beyond you, this entertaining book will do more than introduce you to the topic. It will help you actually understand it. At the book s heart are easy-to-grasp explanations of energy basics work, kinetic energy, potential energy, and the transformation of energy and energy as it relates to simple machines, heat energy, temperature, and heat transfer. Irreverent author Bill Robertson suggests activities that bring the basic concepts of energy to life with common household objects. Each chapter ends with a summary and an applications section that uses practical examples such as roller coasters and home heating systems to explain energy transformations and convection cells. The final chapter brings together key concepts in an easy-to-grasp explanation of how electricity is generated. Energy is the second book in the Stop Faking It! series published by NS...

  15. Nitration Study of Cyclic Ladder Polyphenylsilsesquioxane

    LIANG Jia-xiang

    2017-05-01

    Full Text Available Several nitration reagents including fuming nitric acid, HNO3-H2SO4, KNO3-H2SO4, HNO3-KNO3, CH3COOH-KNO3, (CH3CO2O-HNO3 were used to nitrate cyclic ladder polyphenylsilsesquioxane (CL-PPSQ in different conditions in order to enhance the compatibility of the CL-PPSQ in polymers, the NO2-PPSQ was obtained. FTIR, element analysis, GPC, TGA and 1H NMR were used to characterize the structures of the nitrated products. The results show that the nitrating abilities of the fuming nitric acid, HNO3-H2SO4 and KNO3-H2SO4 are very strong. Many nitro groups can be linked with phenyl groups in CL-PPSQ, but with low molecular mass, fracture occurs in siloxane segment. However, the Mn of the product NO2-PPSQ sharply drops by 50% compared with that of CL-PPSQ, so the nitration reagents can break the cyclic structure of CL-PPSQ. The nitrating reagents of HNO3-KNO3 and CH3COOH-KNO3 have no nitration effects on CL-PPSQ. At last, NO2-CL-PPSQ was prepared using (CH3CO2O-HNO3 because of the moderate nitration process and ability. The cyclic structure of PPSQ is remained, although the number of —NO2 group is not too much. At the same time, the nitration mechanism using different nitration reagents was analyzed. A certain amount of NO2+, which is a kind of activator owning strong nitration ability, can be found in the fuming nitric acid and H2SO4-HNO3(KNO3 systems. As to the (CH3CO2O-HNO3 system, the main activator is CH3COONO2.

  16. Cosmological D-instantons and cyclic universes

    Bergshoeff, E A; Collinucci, A; Roest, D; Russo, J G; Townsend, P K

    2005-01-01

    For models of gravity coupled to hyperbolic sigma models, such as the metric-scalar sector of IIB supergravity, we show how smooth trajectories in the 'augmented target space' connect FLRW cosmologies to non-extremal D-instantons through a cosmological singularity. In particular, we find closed cyclic universes that undergo an endless sequence of big-bang to big-crunch cycles separated by instanton 'phases'. We also find 'big-bounce' universes in which a collapsing closed universe bounces off its cosmological singularity to become an open expanding universe

  17. Increase of cyclic durability of pressure vessels

    Vorona, V.A.; Zvezdin, Yu.I.

    1980-01-01

    The durability of multilayer pressure vessels under cyclic loading is compared with single-layer vessels. The relative conditional durability is calculated taking into account the assumption on the consequent destruction of layers and viewing a vessel wall as an indefinite plate. It is established that the durability is mainly determined by the number of layers and to a lesser degree depends on the relative size of the defect for the given layer thickness. The advantage of the multilayer vessels is the possibility of selecting layer materials so that to exclude the effect of agressive corrosion media on the strength [ru

  18. Sigmund Freud: pioneer in energy healing.

    Edwards, Stephen D; Edwards, David J

    2010-02-01

    Energy healing is a popular contemporary term for forms of healing that facilitate a natural healing process through harmonizing, rebalancing, and releasing energy flow disturbed or blocked by disease and illness. Biographical evidence indicates that Freud used physical, suggestive, and radiant forms of energy healing, and that his personal life, metapsychology, and psychoanalysis were founded on dynamic, energetic experiences and conceptualizations. Analysis of Freud's life and work leads to the conclusion that in experience, theory, and practice, Freud typified the traditional role of therapist and was a pioneer in modern forms of energy healing.

  19. Energy

    1975-10-01

    On the occasion of the World Environment Day the Norwegian Ministry for the Environment held a conference on growth problems in energy consumption. The themes which were treated were energy conservation, hydroelectric power, the role of nuclear power, radioactive waste disposal, fossil fuel resources, ecological limits, pollution and international aspects. Nuclear energy forms the main theme of one lecture and an aspect of several others. (JIW)

  20. Energy

    Torriti, Jacopo

    2016-01-01

    The impact of energy policy measures has been assessed with various appraisal and evaluation tools since the 1960s. Decision analysis, environmental impact assessment and strategic environmental assessment are all notable examples of progenitors of Regulatory Impact Assessment (RIA) in the assessment of energy policies, programmes and projects. This chapter provides overview of policy tools which have been historically applied to assess the impacts of energy policies, programmes and projects....

  1. Solar heating by radiant floor: Experimental results and emission reduction obtained with a micro photovoltaic–heat pump system

    Izquierdo, M.; Agustín-Camacho, P. de

    2015-01-01

    Highlights: • This work presents a PVT multicrystalline solar heating system for buildings. • The PV DC electricity generated was converted to AC to drive an air–water heat pump. • Experimental results obtained from December 1, 2012 to April 30, 2013 are detailed. • An environmental study is also presented. - Abstract: An experimental research with a solar photovoltaic thermal (PVT) micro grid feeding a reversible air–water, 6 kW heating capacity heat pump, has been carried out from December 2012 to April 2013. Its purpose is to heat a laboratory that is used as a house prototype for the study of heating/cooling systems. It was built in accordance with the 2013 Spanish CTE, and has an area of 35 m 2 divided into two internal rooms: one of them housing the storage system, the solar controller, the inverter and the control system; the other one is occupied by three people. Its main thermal characteristics are: UA = 125 W/°C and a maximum thermal load about 6.0 kW at the initial time. The PVT field consists of 12 modules, with a total area of 15.7 m 2 and useful area of 14 m 2 . Each module is composed of 48 polycrystalline silicon cells of 243.4 cm 2 , which with a nominal efficiency 14% can generate a power of 180 W, being the total nominal power installed 2.16 kW. The PV system stores electricity in 250 Ah batteries from where is converted from DC to AC through a 3.0 kW inverter that feeds the heat pump. This works supplying 840 l/h of hot water at 35–45 °C to the radiant floor. The data storing system is recording variables such as solar radiation; temperatures; input power to batteries; heat produced; heat transferred by the radiant floor; heat pump’s COP; isolated ratio; and solar fraction. The objective of this work is to present and discuss the experimental results and the emission reduction of CO 2 obtained during the period from 01/12/2012 to 30/04/2013, including the detailed results of two representative days of Madrid’s climate: 28

  2. Energies

    2003-01-01

    In the framework of the National Debate on the energies in a context of a sustainable development some associations for the environment organized a debate on the nuclear interest facing the renewable energies. The first part presents the nuclear energy as a possible solution to fight against the greenhouse effect and the associated problem of the wastes management. The second part gives information on the solar energy and the possibilities of heat and electric power production. A presentation of the FEE (French wind power association) on the situation and the development of the wind power in France, is also provided. (A.L.B.)

  3. Corticosteroid receptors adopt distinct cyclical transcriptional signatures.

    Le Billan, Florian; Amazit, Larbi; Bleakley, Kevin; Xue, Qiong-Yao; Pussard, Eric; Lhadj, Christophe; Kolkhof, Peter; Viengchareun, Say; Fagart, Jérôme; Lombès, Marc

    2018-05-07

    Mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) are two closely related hormone-activated transcription factors that regulate major pathophysiologic functions. High homology between these receptors accounts for the crossbinding of their corresponding ligands, MR being activated by both aldosterone and cortisol and GR essentially activated by cortisol. Their coexpression and ability to bind similar DNA motifs highlight the need to investigate their respective contributions to overall corticosteroid signaling. Here, we decipher the transcriptional regulatory mechanisms that underlie selective effects of MRs and GRs on shared genomic targets in a human renal cellular model. Kinetic, serial, and sequential chromatin immunoprecipitation approaches were performed on the period circadian protein 1 ( PER1) target gene, providing evidence that both receptors dynamically and cyclically interact at the same target promoter in a specific and distinct transcriptional signature. During this process, both receptors regulate PER1 gene by binding as homo- or heterodimers to the same promoter region. Our results suggest a novel level of MR-GR target gene regulation, which should be considered for a better and integrated understanding of corticosteroid-related pathophysiology.-Le Billan, F., Amazit, L., Bleakley, K., Xue, Q.-Y., Pussard, E., Lhadj, C., Kolkhof, P., Viengchareun, S., Fagart, J., Lombès, M. Corticosteroid receptors adopt distinct cyclical transcriptional signatures.

  4. A cyclically actuated electrolytic drug delivery device

    Yi, Ying

    2015-01-01

    This work, focusing on an implantable drug delivery system, presents the first prototype electrolytic pump that combines a catalytic reformer and a cyclically actuated mode. These features improve the release performance and extend the lifetime of the device. Using our platinum (Pt)-coated carbon fiber mesh that acts as a catalytic reforming element, the cyclical mode is improved because the faster recombination rate allows for a shorter cycling time for drug delivery. Another feature of our device is that it uses a solid-drug-in-reservoir (SDR) approach, which allows small amounts of a solid drug to be dissolved in human fluid, forming a reproducible drug solution for long-term therapies. We have conducted proof-of-principle drug delivery studies using such an electrolytic pump and solvent blue 38 as the drug substitute. These tests demonstrate power-controlled and pulsatile release profiles of the chemical substance, as well as the feasibility of this device. A drug delivery rate of 11.44 ± 0.56 μg min-1 was achieved by using an input power of 4 mW for multiple pulses, which indicates the stability of our system. © The Royal Society of Chemistry 2015.

  5. Daytime relapse of the mean radiant temperature based on the six-directional method under unobstructed solar radiation.

    Kántor, Noémi; Lin, Tzu-Ping; Matzarakis, Andreas

    2014-09-01

    This study contributes to the knowledge about the capabilities of the popular "six-directional method" describing the radiation fields outdoors. In Taiwan, measurements were carried out with three orthogonally placed net radiometers to determine the mean radiant temperature (T(mrt)). The short- and long-wave radiation flux densities from the six perpendicular directions were recorded in the daylight hours of 12 days. During unobstructed direct irradiation, a specific daytime relapse was found in the temporal course of the T(mrt) values referring to the reference shapes of a standing man and also of a sphere. This relapse can be related to the short-wave fluxes reaching the body from the lateral directions. Through deeper analysis, an instrumental shortcoming of the six-directional technique was discovered. The pyranometer pairs of the same net radiometer have a 10-15-min long "blind spot" when the sun beams are nearly perpendicular to them. The blind-spot period is supposed to be shorter with steeper solar azimuth curve on the daylight period. This means that the locations with lower geographical latitude, and the summertime measurements, are affected less by this instrumental problem. A methodological shortcoming of the six-directional technique was also demonstrated. Namely, the sum of the short-wave flux densities from the lateral directions is sensitive to the orientation of the radiometers, and therefore by deviating from the original directions, the T(mrt) decrease on clear sunny days will occur in different times and will be different in extent.

  6. DOE Zero Energy Ready Home Case Study: Amaris Homes, Afton Model

    Pacific Northwest National Laboratory

    2017-09-01

    Amaris Homes built this 3,734-ft2 home in Afton, Minnesota, to the performance criteria of the DOE Zero Energy Ready Home (ZERH) program. A high-efficiency gas boiler provides hot water for the zoned radiant floor system as well as for faucets and showers. A high-efficiency heat pump provides zoned cooling.

  7. Operation of heat pumps for smart grid integrated buildings with thermal energy storage

    Finck, C.J.; Li, R.; Zeiler, W.

    2017-01-01

    A small scale office building consisting of radiant heating, a heat pump, and a water thermal energy storage tank is implemented in an optimal control framework. The optimal control aims to minimize operational electricity costs of the heat pump based on real-time power spot market prices. Optimal

  8. Synthesis of Cyclic Py-Im Polyamide Libraries

    Li, Benjamin C.; Montgomery, David C.; Puckett, James W.; Dervan, Peter B.

    2013-01-01

    Cyclic Py-Im polyamides containing two GABA turn units exhibit enhanced DNA binding affinity, but extensive studies of their biological properties have been hindered due to synthetic inaccessibility. A facile modular approach toward cyclic polyamides has been developed via microwave-assisted solid-phase synthesis of hairpin amino acid oligomer intermediates followed by macrocyclization. A focused library of cyclic polyamides 1–7 targeted to the androgen response element (ARE) and the estrogen...

  9. Characterization of cyclical phases in the manufacturing industry in Spain

    Sala, Mercè; Torres, Teresa; Farré, Mariona

    2014-01-01

    Purpose: The purpose of this paper is to characterize the cyclical phases of the manufacturing industry in Spain and detect which industries have more influence on the Spanish business cycle. We assume that economic growth is a priority; we are going to determine which industries have a more/less appropriate cyclical behavior according this priority. We analyze if the industries with better cyclical behavior are the ones that achieve greater co-movement with the business cycle of the Spanish...

  10. Caffeine, cyclic AMP and postreplication repair of mammalian DNA

    Ehmann, U.K.

    1976-01-01

    The methylxanthines, caffeine and theophylline, inhibit postreplication repair of DNA in mammalian cells. Because they also inhibit cyclic AMP phosphodiesterase, it was thought that there might be some connection between concentrations of cyclic AMP and postreplication repair. This possibility was tested by performing DNA sedimentation experiments with a cyclic AMP-resistant mouse lymphoma cell mutant and its wild-type counterpart. The results show that there is no connection between cellular cyclic AMP concentrations and the rate of postreplication repair. Therefore, it is more likely that caffeine and theophylline inhibit postreplication repair by some other means, such as by binding to DNA

  11. Promotion of Cyclic Electron Transport Around Photosystem I with the Development of C4 Photosynthesis.

    Munekage, Yuri Nakajima; Taniguchi, Yukimi Y

    2016-05-01

    C4 photosynthesis is present in approximately 7,500 species classified into 19 families, including monocots and eudicots. In the majority of documented cases, a two-celled CO2-concentrating system that uses a metabolic cycle of four-carbon compounds is employed. C4 photosynthesis repeatedly evolved from C3 photosynthesis, possibly driven by the survival advantages it bestows in the hot, often dry, and nutrient-poor soils of the tropics and subtropics. The development of the C4 metabolic cycle greatly increased the ATP demand in chloroplasts during the evolution of malic enzyme-type C4 photosynthesis, and the additional ATP required for C4 metabolism may be produced by the cyclic electron transport around PSI. Recent studies have revealed the nature of cyclic electron transport and the elevation of its components during C4 evolution. In this review, we discuss the energy requirements of C3 and C4 photosynthesis, the current model of cyclic electron transport around PSI and how cyclic electron transport is promoted during C4 evolution using studies on the genus Flaveria, which contains a number of closely related C3, C4 and C3-C4 intermediate species. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Comparing the cyclic behavior of concrete cylinders confined by shape memory alloy wire or steel jackets

    Park, Joonam; Choi, Eunsoo; Kim, Hong-Taek; Park, Kyoungsoo

    2011-01-01

    Shape memory alloy (SMA) wire jackets for concrete are distinct from conventional jackets of steel or fiber reinforced polymer (FRP) since they provide active confinement which can be easily achieved due to the shape memory effect of SMAs. This study uses NiTiNb SMA wires of 1.0 mm diameter to confine concrete cylinders with the dimensions of 300 mm × 150 mm (L × D). The NiTiNb SMAs have a relatively wider temperature hysteresis than NiTi SMAs; thus, they are more suitable for the severe temperature-variation environments to which civil structures are exposed. Steel jackets of passive confinement are also prepared in order to compare the cyclic behavior of actively and passively confined concrete cylinders. For this purpose, monotonic and cyclic compressive loading tests are conducted to obtain axial and circumferential strain. Both strains are used to estimate the volumetric strains of concrete cylinders. Plastic strains from cyclic behavior are also estimated. For the cylinders jacketed by NiTiNb SMA wires, the monotonic axial behavior differs from the envelope of cyclic behavior. The plastic strains of the actively confined concrete show a similar trend to those of passive confinement. This study proposed plastic strain models for concrete confined by SMA wire or steel jackets. For the volumetric strain, the active jackets of NiTiNb SMA wires provide more energy dissipation than the passive jacket of steel

  13. Heavy Traffic Feasible Hybrid Intracycle and Cyclic Sleep for Power Saving in 10G-EPON

    Xintian Hu

    2014-01-01

    Full Text Available Energy consumption in optical access networks costs carriers substantial operational expense (OPEX every year and is one of contributing factors for the global warming. To reduce energy consumption in the 10-gigabit Ethernet passive optical network (10G-EPON, a hybrid intracycle and cyclic sleep mechanism is proposed in this paper. Under heavy traffic load, optical network units (ONUs can utilize short idle slots within each scheduling cycle to enter intracycle sleep without postponing data transmission. In this way, energy conservation is achieved even under heavy traffic load with quality of service (QoS guarantee. Under light traffic load, ONUs perform long cyclic sleep for several scheduling cycles. The adoption of cyclic sleep instead of intracycle sleep under light traffic load can reduce unnecessary frequent transitions between sleep and full active work caused by using intracycle sleep. Further, the Markov chain of the proposed mechanism is established. The performances of the proposed mechanism and existing approaches are analyzed quantitatively based on the chain. For the proposed mechanism, power saving ability with QoS guarantee even under heavy traffic and better power saving performance than existing approaches are verified by the quantitative analysis. Moreover, simulations validate the above conclusions based on the chain.

  14. Cyclicality of Wages and Union Power

    Morin, Annaïg

    2017-01-01

    This paper examines how trade unions shape the volatility of wages over the business cycle. I present a dynamic stochastic model of the labor market that integrates two main features: search frictions and trade unions. Because of search frictions, each job match yields an economic surplus...... that is shared between the worker and the firm. Therefore, I can decompose the volatility of wages into two components: the volatility of the match surplus and the volatility of the worker share of the surplus. Starting from the unions' objective function, I show that under collective wage bargaining, the worker...... share is endogenous and counter-cyclical. Consequently, when the economy is hit by a shock, the dynamics of the worker share partially counteract the dynamics of the match surplus, and this mechanism delivers endogenous wage rigidity. The model thus offers new insights into two business cycle features...

  15. Stress relaxation under cyclic electron irradiation

    Bystrov, L.N.; Reznitskij, M.E.

    1990-01-01

    The kinetics of deformation process in a relaxating sample under 2 MeV electron cyclic irradiation was studied experimentally. The Al-Mg alloys with controllable and different (in dislocation density precipitate presence and their character) structure were used in experiments. It was established that after the beam was switched on the deformation rate increased sharply and then, during prolonged irradiation, in a gradual manner. After the switching-off the relaxation rate decreases by jumps up to values close to extrapolated rates of pre-radiation relaxation. The exhibition of these effects with radiation switching-off and switchin-on is dependent on the initial rate of thermal relaxation, the test temperature, the preliminary cold deformation and the dominating deformation dislocation mechanism. The preliminary cold deformation and test temperature elevation slightly decrease the effect of instantaneous relaxation acceleration with the irradiation switch-on. 17 refs., 5 figs

  16. Numerical Simulation of Cyclic Thermodynamic Processes

    Andersen, Stig Kildegård

    2006-01-01

    This thesis is on numerical simulation of cyclic thermodynamic processes. A modelling approach and a method for finding periodic steady state solutions are described. Examples of applications are given in the form of four research papers. Stirling machines and pulse tube coolers are introduced...... and a brief overview of the current state of the art in methods for simulating such machines is presented. It was found that different simulation approaches, which model the machines with different levels of detail, currently coexist. Methods using many simplifications can be easy to use and can provide...... models flexible and easy to modify, and to make simulations fast. A high level of accuracy was achieved for integrations of a model created using the modelling approach; the accuracy depended on the settings for the numerical solvers in a very predictable way. Selection of fast numerical algorithms...

  17. Temperature rise of cyclicly loaded power cables

    Brakelmann, H

    1984-09-01

    A calculation method for the current ratings of cyclicly loaded power cables is introduced, taking into account optional shapes of the load cycle as well as the drying-out of the soil. The method is based on the Fourier-analysis of the loss cycle, representing an extension of the calculation method of VDE 0298. It is shown, that the ''VDE-method'' gives good results for the thermal resistances, if an ''utility load cycle'' in accordance with VDE 0298 is supposed. Only for cycles deviating essentially from the utility load cycle, the thermal resistances calculated by the ''VDE-method'' may be too great. In these cases the represented method is advantageous and can be processed by the aid of microcomputers.

  18. The cyclic universe: An informal introduction

    Steinhaxdt, Paul J.; Turok, Neil

    2003-01-01

    The Cyclic Model is a radical, new cosmological scenario which proposes that the Universe undergoes an endless sequence of epochs which begin with a 'big bang' and end in a 'big crunch.' When the Universes bounces from contraction to re-expansion, the temperature and density remain finite. The model does not include a period of rapid inflation, yet it reproduces all of the successful predictions of standard big bang and inflationary cosmology. We point out numerous novel elements that have not been used previously which may open the door to further alternative cosmologies. Although the model is motivated by M-theory, branes and extra dimensions, here we show that the scenario can be described almost entirely in terms of conventional 4d field theory and 4d cosmology

  19. Janus cyclic peptide-polymer nanotubes

    Danial, Maarten; My-Nhi Tran, Carmen; Young, Philip G.; Perrier, Sébastien; Jolliffe, Katrina A.

    2013-11-01

    Self-assembled nanotubular structures have numerous potential applications but these are limited by a lack of control over size and functionality. Controlling these features at the molecular level may allow realization of the potential of such structures. Here we report a new generation of self-assembled cyclic peptide-polymer nanotubes with dual functionality in the form of either a Janus or mixed polymeric corona. A ‘relay’ synthetic strategy is used to prepare nanotubes with a demixing or mixing polymeric corona. Nanotube structure is assessed in solution using 1H-1H nuclear Overhauser effect spectroscopy NMR, and in bulk using differential scanning calorimetry. The Janus nanotubes form artificial pores in model phospholipid bilayers. These molecules provide a viable pathway for the development of intriguing nanotubular structures with dual functionality via a demixing or a mixing polymeric corona and may provide new avenues for the creation of synthetic transmembrane protein channel mimics.

  20. Magnetoelastic Demagnetization of Steel under Cyclic Loading

    Muratov, K. R.; Novikov, V. F.; Neradovskii, D. F.; Kazakov, R. Kh.

    2018-01-01

    Magnetoelastic demagnetization of steel samples under cyclic tensile loads has been analyzed. It has been established that values of residual magnetization that correspond to peak loads are characterized by the power-law dependence on the number of loading cycles. In some cases, in the region of high loads, the qualitative transition to exponential dependence has been observed. Coefficients of the power-law approximation of peak magnetization depend on the value of amplitude load and have specific characteristics in the vicinity of characteristic loads. The ratios of approximated slide load coefficients depending on the load are common for the three considered samples, and there is an outburst in the vicinity of the fatigue limit, which can be used as the basis for developing the rapid nondestructive method for determination of this limit.

  1. Protein Misfolding Cyclic Amplification of Infectious Prions.

    Moda, Fabio

    2017-01-01

    Transmissible spongiform encephalopathies, or prion diseases, are a group of incurable disorders caused by the accumulation of an abnormally folded prion protein (PrP Sc ) in the brain. According to the "protein-only" hypothesis, PrP Sc is the infectious agent able to propagate the disease by acting as a template for the conversion of the correctly folded prion protein (PrP C ) into the pathological isoform. Recently, the mechanism of PrP C conversion has been mimicked in vitro using an innovative technique named protein misfolding cyclic amplification (PMCA). This technology represents a great tool for studying diverse aspects of prion biology in the field of basic research and diagnosis. Moreover, PMCA can be expanded for the study of the misfolding process associated to other neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and frontotemporal lobar degeneration. © 2017 Elsevier Inc. All rights reserved.

  2. Experimental Investigation on the Fatigue Mechanical Properties of Intermittently Jointed Rock Models Under Cyclic Uniaxial Compression with Different Loading Parameters

    Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng

    2018-01-01

    Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.

  3. Thermal inertia and radiating average Temperature. A brief analysis of some causes of discomfort; Inercia Termica y Temperatura media radiante. Un breve analisis de algunas causas de disconfort

    Arroba, M.

    2008-07-01

    Radiant average temperature in walls is as important as dry air temperature to achieve thermal comfort of users of a local. An excessive discrepancy between these levels, or an asymmetric distribution of the surface temperature of fences, may cause localized thermal discomfort, an effect impossible to compensate by rising dry air temperature. Thermal inertia and its concentration must be properly studied in order to handle this parameters, inside or outside the building, on both sides of the cladding or none depending on the weather, the bio climatic strategies used, heating and air conditioning systems and planned use of the building. (Author)

  4. Parameter optimization through performance analysis of model based control of a batch heat treatment furnace with low NO x radiant tube burner

    Tiwari, Manish Kumar; Mukhopadhyay, Achintya; Sanyal, Dipankar

    2005-01-01

    A model based control structure for heat treating a 0.5% C steel slab in a batch furnace with low NO x radiant tube burner is designed and tested for performance to yield optimal parameter values using the model developed in the companion paper. Combustion is considered in a highly preheated and product gas diluted mode. Controlled combustion with a proposed arrangement for preheating and diluting the air by recirculating the exhaust gas that can be retrofitted with an existing burner yields satisfactory performance and emission characteristics. Finally, the effect of variable property considerations are presented and critically analyzed

  5. Supplementary Material for: The arabidopsis cyclic nucleotide interactome

    Donaldson, Lara; Meier, Stuart; Gehring, Christoph A

    2016-01-01

    Abstract Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  6. Infinity-Norm Permutation Covering Codes from Cyclic Groups

    Karni, Ronen; Schwartz, Moshe

    2017-01-01

    We study covering codes of permutations with the $\\ell_\\infty$-metric. We provide a general code construction, which uses smaller building-block codes. We study cyclic transitive groups as building blocks, determining their exact covering radius, and showing linear-time algorithms for finding a covering codeword. We also bound the covering radius of relabeled cyclic transitive groups under conjugation.

  7. Evaluating cyclic fatigue of sealants during outdoor testing

    R. Sam Williams; Steven Lacher; Corey Halpin; Christopher White

    2009-01-01

    A computer-controlled test apparatus (CCTA) and other instrumentation for subjecting sealant specimens to cyclic fatigue during outdoor exposure was developed. The CCTA enables us to use weather-induced conditions to cyclic fatigue specimens and to conduct controlled tests in-situ during the outdoor exposure. Thermally induced dimensional changes of an aluminum bar...

  8. A Practical Beginner's Guide to Cyclic Voltammetry

    Elgrishi, Noémie; Rountree, Kelley J.; McCarthy, Brian D.; Rountree, Eric S.; Eisenhart, Thomas T.; Dempsey, Jillian L.

    2018-01-01

    Despite the growing popularity of cyclic voltammetry, many students do not receive formalized training in this technique as part of their coursework. Confronted with self-instruction, students can be left wondering where to start. Here, a short introduction to cyclic voltammetry is provided to help the reader with data acquisition and…

  9. Cyclic deformation of zircaloy-4 at room temperature

    Armas, A. F; Herenu, S; Bolmaro, R; Alvarez-Armas, I

    2003-01-01

    Annealed materials hardens under low cyclic fatigue tests.However, FCC metals tested with medium strain amplitudes show an initial cyclic softening.That behaviour is related with the strong interstitial atom-dislocation interactions.For HCP materials the information is scarce.Commercial purity Zirconium and Zircaloy-4 alloys show also a pronounced cyclic softening, similar to Titanium alloys.Recently the rotation texture induced softening model has been proposed according to which the crystals are placed in a more favourable deformation orientation by prismatic slip due to the cyclic strain.The purpose of the current paper is the presentation of decisive results to discuss the causes for cyclic softening of Zircaloy-4. Low cycle fatigue tests were performed on recrystallized Zircaloy-4 samples.The cyclic behaviour shows an exponential softening at room temperature independently of the deformation range.Only at high temperature a cyclic hardening is shown at low number of cycles.Friction stresses, related with dislocation movement itself, and back stresses, related with dislocation pile-ups can be calculated from the stress-strain loops.The cyclic softening is due to diminishing friction stress while the starting hardening behaviour is due to increasing back stresses.The rotation texture induced softening model is ruled out assuming instead a model based on dislocation unlocking from interstitial oxygen solute atoms

  10. Classifying spaces with virtually cyclic stabilizers for linear groups

    Degrijse, Dieter Dries; Köhl, Ralf; Petrosyan, Nansen

    2015-01-01

    We show that every discrete subgroup of GL(n, ℝ) admits a finite-dimensional classifying space with virtually cyclic stabilizers. Applying our methods to SL(3, ℤ), we obtain a four-dimensional classifying space with virtually cyclic stabilizers and a decomposition of the algebraic K-theory of its...

  11. Cyclic Matching Pursuits with Multiscale Time-frequency Dictionaries

    Sturm, Bob L.; Christensen, Mads Græsbøll

    2010-01-01

    We generalize cyclic matching pursuit (CMP), propose an orthogonal variant, and examine their performance using multiscale time-frequency dictionaries in the sparse approximation of signals. Overall, we find that the cyclic approach of CMP produces signal models that have a much lower approximation...

  12. Cyclic complex loading of 316 stainless steel: Experiments and calculations

    Jacquelin, B.; Hourlier, F.; Dang Van, K.; Stolz, C.

    1981-01-01

    To test the ability of cyclic constitutive law established by mean of uniaxial test a benchmark is proposed. The calculated results using the model of Chaboche-Cordier-Dang Van are compared with experimental data obtained on cylindrical specimens undergoing simultaneously constant torque and cyclic tension. (orig.)

  13. Charge initiation schemes for ensuring high-performance operation of cyclic-flow technology cyclic link

    S. N. Zharikov

    2017-09-01

    Full Text Available The authors consider the issue of ensuring the quality of crushing rock mass by drilling and blasting method for high productivity of a cyclic link of a cyclic-flow technology complex. The article contains recommendations for calculating certain parameters of drilling and blasting operations, such as the width of the retaining wall Bp. s, the collapse with account for the retaining wall Вr, the width of the collapse of the rock mass Bf when blasting onto a free surface (for the first row of vertical wells and for the first series of inclined wells, the width of the collapse from the first series of wells B1, the deceleration time τ, the coefficient kβ that takes into account the incline angle of wells β to the horizon. The authors prove the expediency of using a retaining wall in explosions of technological blocks. The authors raise the question about the management of detonation characteristics of explosives produced in the field of application for the most rational impact of an explosion on a rock massif. Since the technological schemes for preparing the rock mass to the excavation, which ensure the high-performance operation of the cyclic link of the cyclic-flow technology, can be different, then the choice of a specific drilling and blasting circuit is depends on the geological conditions and elements of the development system. As a preliminary method of breaking, one can consider the explosion of charges along the diagonal (diagonal blasting schemes on the retaining wall. This method provides sufficient reliability of technological explosions, and with the development of modern means of blasting with decelerations between charges of more than 67 ms, there are nearly no back emissions.

  14. Wide Dynamic Range Multiband Infrared Radiometer for In-Fire Measurements of Wildland Fire Radiant Flux Density

    Kremens, R.; Dickinson, M. B.; Hardy, C.; Skowronski, N.; Ellicott, E. A.; Schroeder, W.

    2016-12-01

    We have developed a wide dynamic range (24-bit) data acquisition system for collection of radiant flux density (FRFD) data from wildland fires. The data collection subsystem was designed as an Arduino `shield' and incorporates a 24-bit analog-to-digital converter, precision voltage reference, real time clock, microSD card interface, audible annuciator and interface for various digital communication interfaces (RS232, I2C, SPI, etc.). The complete radiometer system consists of our custom-designed `shield', a commercially available Arduino MEGA computer circuit board and a thermopile sensor -amplifier daughter board. Software design and development is greatly assisted by the availability of a library of public-domain, user-implemented software. The daughter board houses a 5-band radiometer using thermopiles designed for this experiment (Dexter Research Corp., Dexter, MI) to allow determination of the total FRFD from the fire (using a wide band thermopile with a KRS-5 window, 0.1 - 30 um), the FRFD as would be received by an orbital asset like MODIS (3.95 um center wavelength (CWL) and 10.95 CWL, corresponding to MODIS bands 21/22 and 31, respectively) and wider bandpass (0.1-5.5 um and 8-14 um) corresponding to the FRFD recorded by `MWIR' and `LWIR' imaging systems. We required a very wide dynamic range system in order to be able to record the flux density from `cold' ground before the fire, through the `hot' flaming combustion stage, to the `cool' phase after passage of the fire front. The recording dynamic range required (with reasonable resolution at the lowest temperatures) is on the order of 106, which is not currently available in commercial instrumentation at a price point, size or feature set that is suitable for wildland fire investigations. The entire unit, along with rechargeable battery power supply is housed in a fireproof aluminum chassis box, which is then mounted on a mast at a height of 5 - 7 m above the fireground floor. We will report initial

  15. A radiant black market

    Roser, T.

    1993-01-01

    On the 13 October the Bavarian police seized 2.2kg of uranium and arrested a group of seven people who had offered to sell it for $500.000. The existence of a black market for uranium may be a proliferation risk but it is not a serious health hazard - even if the material is negligently packed, as it seems to have been in all the recent cases. The situation is quite different when it comes to dealing with highly radioactive materials such as fission productions. Two such cases have been reported this summer involving Cs-137 and Sr-90, both emitters of hard beta rays. Little is known about the provenance of the radioactive and fissile material discovered. Obviously it originates from the ex-USSR, and the absence of highly enriched material suggests a civil rather than a military source. The governments of ex-Soviet states have apparently tried to intercept smugglers at their western frontiers, but have so far been unable to pinpoint the breaches in their security. It is also uncertain whether the occurrences discovered and reported are merely the tip of an iceberg. (author)

  16. Surface radiation budget in the Clouds and the Earth's Radiant Energy System (CERES) effort and in the Global Energy and Water Cycle Experiment (GEWEX)

    Charlock, Thomas P.; Smith, G. L.; Rose, Fred G.

    1990-01-01

    The surface radiation budget (SRB) and the atmospheric radiative flux divergence (ARD) are vital components of the weather and climate system. The importance of radiation in a complex international scientific endeavor, the GEWEX of the World Climate Research Programme is explained. The radiative transfer techniques and satellite instrumentation that will be used to retrieve the SRB and ARD later in this decade with the CERES are discussed; CERES is a component of the Earth Observing System satellite program. Examples of consistent SRB and ARD retrievals made with Nimbus-7 and International Satellite Cloud Climatology Project data from July 1983 are presented.

  17. History-independent cyclic response of nanotwinned metals

    Pan, Qingsong; Zhou, Haofei; Lu, Qiuhong; Gao, Huajian; Lu, Lei

    2017-11-01

    Nearly 90 per cent of service failures of metallic components and structures are caused by fatigue at cyclic stress amplitudes much lower than the tensile strength of the materials involved. Metals typically suffer from large amounts of cumulative, irreversible damage to microstructure during cyclic deformation, leading to cyclic responses that are unstable (hardening or softening) and history-dependent. Existing rules for fatigue life prediction, such as the linear cumulative damage rule, cannot account for the effect of loading history, and engineering components are often loaded by complex cyclic stresses with variable amplitudes, mean values and frequencies, such as aircraft wings in turbulent air. It is therefore usually extremely challenging to predict cyclic behaviour and fatigue life under a realistic load spectrum. Here, through both atomistic simulations and variable-strain-amplitude cyclic loading experiments at stress amplitudes lower than the tensile strength of the metal, we report a history-independent and stable cyclic response in bulk copper samples that contain highly oriented nanoscale twins. We demonstrate that this unusual cyclic behaviour is governed by a type of correlated ‘necklace’ dislocation consisting of multiple short component dislocations in adjacent twins, connected like the links of a necklace. Such dislocations are formed in the highly oriented nanotwinned structure under cyclic loading and help to maintain the stability of twin boundaries and the reversible damage, provided that the nanotwins are tilted within about 15 degrees of the loading axis. This cyclic deformation mechanism is distinct from the conventional strain localizing mechanisms associated with irreversible microstructural damage in single-crystal, coarse-grained, ultrafine-grained and nanograined metals.

  18. Cyclic nucleotide specific phosphodiesterases of Leishmania major

    Linder Markus

    2006-03-01

    Full Text Available Abstract Background Leishmania represent a complex of important human pathogens that belong to the systematic order of the kinetoplastida. They are transmitted between their human and mammalian hosts by different bloodsucking sandfly vectors. In their hosts, the Leishmania undergo several differentiation steps, and their coordination and optimization crucially depend on numerous interactions between the parasites and the physiological environment presented by the fly and human hosts. Little is still known about the signalling networks involved in these functions. In an attempt to better understand the role of cyclic nucleotide signalling in Leishmania differentiation and host-parasite interaction, we here present an initial study on the cyclic nucleotide-specific phosphodiesterases of Leishmania major. Results This paper presents the identification of three class I cyclic-nucleotide-specific phosphodiesterases (PDEs from L. major, PDEs whose catalytic domains exhibit considerable sequence conservation with, among other, all eleven human PDE families. In contrast to other protozoa such as Dictyostelium, or fungi such as Saccharomyces cerevisiae, Candida ssp or Neurospora, no genes for class II PDEs were found in the Leishmania genomes. LmjPDEA contains a class I catalytic domain at the C-terminus of the polypeptide, with no other discernible functional domains elsewhere. LmjPDEB1 and LmjPDEB2 are coded for by closely related, tandemly linked genes on chromosome 15. Both PDEs contain two GAF domains in their N-terminal region, and their almost identical catalytic domains are located at the C-terminus of the polypeptide. LmjPDEA, LmjPDEB1 and LmjPDEB2 were further characterized by functional complementation in a PDE-deficient S. cerevisiae strain. All three enzymes conferred complementation, demonstrating that all three can hydrolyze cAMP. Recombinant LmjPDEB1 and LmjPDEB2 were shown to be cAMP-specific, with Km values in the low micromolar range

  19. Coupling of a discrete ordinate 3-D radiant heat transfer model with the PHOENICS fluid mechanics software; Couplage d`un modele radiatif tridimensionnel aux ordonnees discretes au logiciel de mecanique des fluides phoenics

    Muller, J [IRSID, Institut de Recherches Siderurgie, 57 - Maizieres-les-Metz (France)

    1997-12-31

    Radiant heat transfer is the main solution retained in many iron and steel metallurgy installations (re-heating and annealing furnaces etc..). Today, it has become important to dispose of performing radiant heat transfer models in heat transfer and fluid mechanics simulation softwares, and well adapted to multidimensional industrial problems. This work presents the discrete ordinate radiant heat transfer model developed at the IRSID (the French institute of research in iron and steel metallurgy) and coupled with the PHOENICS heat transfer-fluid mechanics software. Three modeling approaches are presented concerning the radiative properties of gases (H{sub 2}O-CO{sub 2}). A ``weighted grey gases sum`` model gives satisfactory results for several 1-D validation cases. (J.S.) 20 refs.

  20. Coupling of a discrete ordinate 3-D radiant heat transfer model with the PHOENICS fluid mechanics software; Couplage d`un modele radiatif tridimensionnel aux ordonnees discretes au logiciel de mecanique des fluides phoenics

    Muller, J. [IRSID, Institut de Recherches Siderurgie, 57 - Maizieres-les-Metz (France)

    1996-12-31

    Radiant heat transfer is the main solution retained in many iron and steel metallurgy installations (re-heating and annealing furnaces etc..). Today, it has become important to dispose of performing radiant heat transfer models in heat transfer and fluid mechanics simulation softwares, and well adapted to multidimensional industrial problems. This work presents the discrete ordinate radiant heat transfer model developed at the IRSID (the French institute of research in iron and steel metallurgy) and coupled with the PHOENICS heat transfer-fluid mechanics software. Three modeling approaches are presented concerning the radiative properties of gases (H{sub 2}O-CO{sub 2}). A ``weighted grey gases sum`` model gives satisfactory results for several 1-D validation cases. (J.S.) 20 refs.

  1. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging

    Abu Anas, Emran Mohammad; Kim, Jae Gon; Lee, Soo Yeol; Kamrul Hasan, Md

    2011-10-01

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.

  2. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging

    Anas, Emran Mohammad Abu; Hasan, Md Kamrul; Kim, Jae Gon; Lee, Soo Yeol

    2011-01-01

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.

  3. The mechanical behaviour of NBR/FEF under compressive cyclic stress strain

    Mahmoud, W. E.; El-Eraki, M. H. I.; El-Lawindy, A. M. Y.; Hassan, H. H.

    2006-06-01

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue.

  4. The mechanical behaviour of NBR/FEF under compressive cyclic stress-strain

    Mahmoud, W E [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); El-Eraki, M H I [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); El-Lawindy, A M Y [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); Hassan, H H [Faculty of Science, Physics Department, Cairo University, Giza (Egypt)

    2006-06-07

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue.

  5. Estimation of Cyclic Interstory Drift Capacity of Steel Framed Structures and Future Applications for Seismic Design

    Edén Bojórquez

    2014-01-01

    Full Text Available Several studies have been devoted to calibrate damage indices for steel and reinforced concrete members with the purpose of overcoming some of the shortcomings of the parameters currently used during seismic design. Nevertheless, there is a challenge to study and calibrate the use of such indices for the practical structural evaluation of complex structures. In this paper, an energy-based damage model for multidegree-of-freedom (MDOF steel framed structures that accounts explicitly for the effects of cumulative plastic deformation demands is used to estimate the cyclic drift capacity of steel structures. To achieve this, seismic hazard curves are used to discuss the limitations of the maximum interstory drift demand as a performance parameter to achieve adequate damage control. Then the concept of cyclic drift capacity, which incorporates information of the influence of cumulative plastic deformation demands, is introduced as an alternative for future applications of seismic design of structures subjected to long duration ground motions.

  6. The mechanical behaviour of NBR/FEF under compressive cyclic stress-strain

    Mahmoud, W E; El-Eraki, M H I; El-Lawindy, A M Y; Hassan, H H

    2006-01-01

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue

  7. Discrete radioisotopic relays of a cyclic action

    Klempner, K.S.; Vasil'ev, A.G.

    1975-01-01

    A functional diagram of discrete radioisotopic relay equipment (RRP) with cyclic action was examined. An analysis of its rapid action and reliability under stationary conditions and transition regimes is presented. A structural diagram of radioisotopic relay equipment shows three radiation detectors, a pulse standardizer, an integrator and a power amplifier with a threshold cut-off device. It was established that the basic properties of the RRP - rapid action and reliability - are determined entirely by the counting rate of the average frequency of pulses from the radiation detector, n 0 and n 1 , in the 0 and 1 states (absence of current in the electromagnetic relay winding and activation of the winding of the output relay), capacities N 1 and N 2 of the dual counters, and the frequency of the transition threshold, f, of the generator. Formulas are presented which allow making engineering calculations for determining the optimum RRP parameters. High speed and reliability are shown, which are determined by the production purposes of the relay

  8. Step-by-step cyclic processes scheduling

    Bocewicz, G.; Nielsen, Izabela Ewa; Banaszak, Z.

    2013-01-01

    Automated Guided Vehicles (AGVs) fleet scheduling is one of the big problems in Flexible Manufacturing System (FMS) control. The problem is more complicated when concurrent multi-product manufacturing and resource deadlock avoidance policies are considered. The objective of the research is to pro......Automated Guided Vehicles (AGVs) fleet scheduling is one of the big problems in Flexible Manufacturing System (FMS) control. The problem is more complicated when concurrent multi-product manufacturing and resource deadlock avoidance policies are considered. The objective of the research...... is to provide a declarative model enabling to state a constraint satisfaction problem aimed at AGVs fleet scheduling subject to assumed itineraries of concurrently manufactured product types. In other words, assuming a given layout of FMS’s material handling and production routes of simultaneously manufactured...... orders, the main objective is to provide the declarative framework aimed at conditions allowing one to calculate the AGVs fleet schedule in online mode. An illustrative example of the relevant algebra-like driven step-by-stem cyclic scheduling is provided....

  9. Magnetic properties of cyclically deformed austenite

    Das, Arpan, E-mail: dasarpan1@yahoo.co.in

    2014-06-01

    In meta-stable austenitic stainless steels, low cycle fatigue deformation is accompanied by a partial stress/strain-induced solid state phase transformation of paramagnetic γ(fcc) austenite phase to ferromagnetic α{sup /}(bcc) martensite. The measured characteristic of magnetic properties, which are the saturation magnetization, susceptibility, coercivity, retentivity, and the area under the magnetic hysteresis loop are sensitive to the total strain amplitude imposed and the corresponding material behaviour. The morphologies and nucleation characteristics of deformation induced martensites (i.e., ϵ(hcp), α{sup /}(bcc)) have been investigated through analytical transmission electron microscope. It has been observed that deformation induced martensites can nucleate at a number of sites (i.e., shear band intersections, isolated shear bands, shear band–grain boundary intersection, grain boundary triple points, etc.) through multiple transformation sequences: γ(fcc)→ϵ(hcp), γ(fcc)→ϵ(hcp)→α{sup /}(bcc), γ(fcc)→ deformation twin →α{sup /}(bcc) and γ(fcc)→α{sup /}(bcc). - Highlights: • LCF tests were done at various strain amplitudes of 304LNSS. • Quantification of martensite was done through ferritecope. • Magnetic properties were characterised through VSM. • Correlation of magnetic properties with the cyclic plastic response was done. • TEM was done to investigate the transformation micro-mechanisms.

  10. Cyclic metal migration in a groundwater stream

    Goerlich, W.; Portmann, W.; Wernli, C.; Linder, P.; Burkart, W.

    1988-04-01

    The behaviour of dissolved (<0.45 μm) inorganic species (e.g. metals, anions), and changes in relevant properties of polluted river water during infiltration into adjacent groundwater are investigated. Water from the river and from several wells is analyzed for temporal and spacial changes. For many of the measured quantities a pronounced annual cycle is observed. The temperature differences between summer and winter influence biological activity. Growth and degradation of organic material lead to drastic changes in pH and redox conditions in the near infiltration field. During summer, under relatively anoxic conditions, manganese oxides/hydroxides dissolve. In winter, the higher concentration of dissolved oxygen induce reprecipitation of manganese. Trace metal mobility (e.g. Cu, Zn, Cd) is influenced by these annual variations. In the river, daily cycles are observed for many of the measured quantities. These short term variations are induced by photosynthesis and respiration of aquatic biota. The cyclic behaviour disappears during the early stage of infiltration. The changes between river and groundwater can be modelled by a combination of simplified electron transfer and weathering reactions. (author) 11 refs., 5 figs

  11. Simulations of Granular Particles Under Cyclic Shear

    Royer, John; Chaikin, Paul

    2012-02-01

    We perform molecular dynamics (MD) simulations of spherical grains subjected to cyclic, quasi-static shear in a 3D parallelepiped shear cell. This virtual shear cell is constructed out of rough, bumpy walls in order to minimize wall-induced ordering and has an open top surface to allow the packing to readily dilate or compact. Using a standard routine for MD simulations of frictional grains, we simulate over 1000 shear cycles, measuring grain displacements, the local packing density and changes in the contact network. Varying the shear amplitude and the friction coefficient between grains, we map out a phase diagram for the different types of behavior exhibited by these sheared grains. With low friction and high enough shear, the grains can spontaneously order into densely packed crystals. With low shear and increasing friction the packing remains disordered, yet the grains arrange themselves into configurations which exhibit limit cycles where all grains return to the same position after each full shear cycle. At higher shear and friction there is a transition to a diffusive state, where grains continue rearrange and move throughout the shear cell.

  12. Thermal indoor environment and energy consumption in a plus-energy house: cooling season measurements

    Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    indoor environment. For the energy consumption of the HVAC system, air-to-brine heat pump, mixing station and controller of the radiant floor, and the air handling unit were considered. The measurements were analyzed based on the achieved indoor environment category (according to EN 15251...... the floor cooling system) and increasing the ventilation rate provided a better thermal indoor environment but with increased energy consumption. The thermal indoor environment and energy performance of the house can be improved with decreased glazing area, increased thermal mass, installation of solar...

  13. Evolution of cyclic mixmaster universes with noncomoving radiation

    Ganguly, Chandrima; Barrow, John D.

    2017-12-01

    We study a model of a cyclic, spatially homogeneous, anisotropic, "mixmaster" universe of Bianchi type IX, containing a radiation field with noncomoving ("tilted" with respect to the tetrad frame of reference) velocities and vorticity. We employ a combination of numerical and approximate analytic methods to investigate the consequences of the second law of thermodynamics on the evolution. We model a smooth cycle-to-cycle evolution of the mixmaster universe, bouncing at a finite minimum, by the device of adding a comoving "ghost" field with negative energy density. In the absence of a cosmological constant, an increase in entropy, injected at the start of each cycle, causes an increase in the volume maxima, increasing approach to flatness, falling velocities and vorticities, and growing anisotropy at the expansion maxima of successive cycles. We find that the velocities oscillate rapidly as they evolve and change logarithmically in time relative to the expansion volume. When the conservation of momentum and angular momentum constraints are imposed, the spatial components of these velocities fall to smaller values when the entropy density increases, and vice versa. Isotropization is found to occur when a positive cosmological constant is added because the sequence of oscillations ends and the dynamics expand forever, evolving towards a quasi-de Sitter asymptote with constant velocity amplitudes. The case of a single cycle of evolution with a negative cosmological constant added is also studied.

  14. High Resolution Rotational Spectroscopy of a Flexible Cyclic Ether

    Gámez, F.; Martínez-Haya, B.; Blanco, S.; López, J. C.; Alonso, J. L.

    2011-06-01

    Crown ethers stand as one cornerstone molecular class inhost-guest Supramolecular Chemistry and constitute building blocks for a broad range of modern materials. We report here the first high resolution rotational study of a crown ether: 1,4,7,10,13-pentaoxacyclopentadecane (15-crown-5 ether,15c5). Molecular beam Fourier transform microwave spectroscopy has been employed. The liquid sample of 15c5 has been vaporized using heating methods. The considerable size of 15c5 and the broad range of conformations allowed by the flexibility of its backbone pose important challenges to spectroscopy approaches. In fact, the ab-initio computational study for isolated 15c5, yields at least six stable conformers with relative free energies within 2 kJ Mol-1 (167 Cm-1). Nevertheless, in this investigation it has been possible to identify and characterize in detail one stable rotamer of the 15c5 molecule and to challenge different quantum methods for the accurate description of this system. The results pave the ground for an extensive description of the conformational landscape of 15c5 and related cyclic ethers in the near term. J. L. Alonso, F. J. Lorenzo, J. C. López, A. Lesarri, S. Mata and H. Dreizler, Chem. Phys., 218, 267 (1997) S. Blanco, J.C López, J.L. Alonso, P. Ottaviani, W. Caminati, J. Chem. Phys. 119, 880 (2003) S.E. Hill, D. Feller, Int. J. Mass Spectrom. 201, 41 (2000)

  15. Cyclic strength of metals at impact strain rates

    Eleiche, A.M.; El-Kady, M.M.

    1987-01-01

    Rigorous understanding of the effects of impact loading on the mechanical response of materials and structures is essential for the optimum design and safe operation of many sophisticated engineering systems and components, such as industrial high-energy-rate fabrication processes and nuclear reactor containments. Extensive data are available at present on the dynamic behaviour of most metals in uniaxial tension, compression, torsion and pure shear, when they are subjected to diversified loading conditions, ranging from those characterised by monotonic constant rates, to those involving forward or reverse strain-rate jumps of several orders of magnitude. What appears to be missing in the current material data banks, however, is detailed information concerning the mechanical response under cyclic loading at impact strain rates. Such data are needed for engineering design purposes on one hand, and for the formulation of proper constitutive equations and the accurate modeling of deformation processes on the other. In the present paper, typical stress-strain characteristics at ambient temperature for copper, mild steel and titanium are first exhibited. The application of the unified Bodner-Partom constitutive theory to these data is then presented and discussed. (orig./GL)

  16. Kinetics of degradation of ascorbic acid by cyclic voltammetry method

    Grudić Veselinka V.

    2015-01-01

    Full Text Available Cyclic voltammetry was used to examine the kinetics of degradation of ascorbic acid (AA at different temperatures. It has been shown that the reduction of the concentration of AA in all temperatures follow the kinetics of the first order reaction. The rate constant of the oxidation reaction increases with temperature as follows: 5x10-5; 2x10-4; 1x10-3 and 3x10-3 min-1 at temperatures of 25°C, 35°C, 65°C and 90°C, respectively. The temperature dependence of the rate constant follows Arrhenius equation, and the value of activation energy of the reaction degradation is 48.2 kJ mol-1 . The effect of storage time at a temperature of 90 °C on AA content in fresh juice of green peppers was investigated. It was shown that AA oxidation reaction in the juice is also the first order reaction, while the lower rate constant in relation to the pure AA (5x10-3 min-1 indicates the influence of other substances present in peppers.

  17. Cyclic-2,3-diphosphoglycerate cycle in methanogenic bacteria

    Fahrney, D.E.; Harper, S.H.; Krueger, R.D.

    1987-01-01

    A new and unprecedented model for P/sub i/ translocation into Methanobacterium thermoautotrophicum is proposed. It is based on an analysis of the rates of P/sub i/ uptake and concomitant flux through the cyclic-2,3-diphosphoglycerate (cDPG) pool in the presence of cyanide. CN - completely blocks flow of carbon into cellular constituents, but methanogenesis continues at about 70%, indicating considerable energy flow. P/sub i/ uptake continued at 20% of control for 30 min or longer, resulting in an expansion of the intracellular P/sub i/ pool. During this period the flux of phosphate through the cDPG pool remained equal to the rate of P/sub i/ entry. The distribution of 32 P in cDPG showed that the C-2 phosphoryl group was labeled preferentially, indicating that this phosphoryl group has a half-life under 10 min in the presence of CN - . Since CN - completely blocks CO 2 fixation but does not interfere with cDPG turnover, cDPG is neither a biosynthetic intermediate nor a phosphate storage compound. Earlier they had demonstrated that this methanogen can transport P/sub i/ against a million-fold concentration gradient via a H 2 -driven transport system having a K/sub m/ of 25 nM. The evidence that cDPG may play a role in this transport mechanism seems compelling, but further studies are needed

  18. Laterally cyclic loading of monopile in dense sand

    Klinkvort, Rasmus Tofte; Hededal, Ole; Svensson, M.

    2011-01-01

    In order to investigate the response from laterally cyclic loading of monopiles a large centrifuge tests series is ongoing at the Technical University of Denmark (DTU). This paper will present some of the tests carried out with a focus on the influence of accumulation of rotation when changing...... the loading conditions. In these tests the load conditions are controlled by two load characteristics, one controlling the level of the cyclic loading and one controlling the characteristic of the cyclic loading. The centrifuge tests were performed in dense dry sand on a pile with prototype dimensions...

  19. Centrifuge modelling of a laterally cyclic loaded pile

    Klinkvort, Rasmus Tofte; Leth, Caspar Thrane; Hededal, Ole

    2010-01-01

    A total number of 9 static and 6 cyclic centrifuge tests on laterally loaded piles in very dense, dry sand was erformed. The prototype dimensions of the piles were 1 meter in diameter and penetration depths varying from 6 to 10 meters. The static tests were used to investigate the initial subgrade...... reaction modulus and as a reference for cyclic tests. For the cyclic tests the accumulation of deflections and the change in secant stiffness of the soil from repetitive loading were investigated. From all the tests carried out accumulations of deflections were seen. rom the centrifuge tests it was seen...

  20. The mycotoxin definition reconsidered towards fungal cyclic depsipeptides.

    Taevernier, Lien; Wynendaele, Evelien; De Vreese, Leen; Burvenich, Christian; De Spiegeleer, Bart

    2016-04-02

    Currently, next to the major classes, cyclic depsipeptides beauvericin and enniatins are also positioned as mycotoxins. However, as there are hundreds more fungal cyclic depsipeptides already identified, should these not be considered as mycotoxins as well? The current status of the mycotoxin definition revealed a lack of consistency, leading to confusion about what compounds should be called mycotoxins. Because this is of pivotal importance in risk assessment prioritization, a clear and quantitatively expressed mycotoxin definition is proposed, based on data of widely accepted mycotoxins. Finally, this definition is applied to a set of fungal cyclic depsipeptides, revealing that some of these should indeed be considered as mycotoxins.

  1. Cyclic plasticity models and application in fatigue analysis

    Kalev, I.

    1981-01-01

    An analytical procedure for prediction of the cyclic plasticity effects on both the structural fatigue life to crack initiation and the rate of crack growth is presented. The crack initiation criterion is based on the Coffin-Manson formulae extended for multiaxial stress state and for inclusion of the mean stress effect. This criterion is also applied for the accumulated damage ahead of the existing crack tip which is assumed to be related to the crack growth rate. Three cyclic plasticity models, based on the concept of combination of several yield surfaces, are employed for computing the crack growth rate of a crack plane stress panel under several cyclic loading conditions.

  2. Influence of cyclic torsional preloading on cyclic fatigue resistance of nickel - titanium instruments.

    Pedullà, E; Lo Savio, F; Boninelli, S; Plotino, G; Grande, N M; Rapisarda, E; La Rosa, G

    2015-11-01

    To evaluate the effect of different torsional preloads on cyclic fatigue resistance of endodontic rotary instruments constructed from conventional nickel-titanium (NiTi), M-Wire or CM-Wire. Eighty new size 25, 0.06 taper Mtwo instruments (Sweden & Martina), size 25, 0.06 taper HyFlex CM (Coltene/Whaledent, Inc) and X2 ProTaper Next (Dentsply Maillefer) were used. The Torque and distortion angles at failure of new instruments (n = 10) were measured, and 0% (n = 10), 25%, 50% and 75% (n = 20) of the mean ultimate torsional strength as preloading condition were applied according to ISO 3630-1 for each brand. The twenty files tested for every extent of preload were subjected to 20 or 40 torsional cycles (n = 10). After torsional preloading, the number of cycles to failure was evaluated in a simulated canal with 60° angle of curvature and 5 mm of radius of curvature. Data were analysed using two-way analysis of variance. The fracture surface of each fragment was examined with a scanning electron microscope (SEM). Data were analysed by two-way analyses of variance. Preload repetitions did not influence the cyclic fatigue of the three brands; however, the 25%, 50% and 75% torsional preloading significantly reduced the fatigue resistance of all instruments tested (P 0.05). Torsional preloads reduced the cyclic fatigue resistance of conventional and treated (M-wire and CM-wire) NiTi rotary instruments except for size 25, 0.06 taper HyFlex CM instruments with a 25% of torsional preloading. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  3. Clean and efficient energy conversion processes (Cecon-project). Final report

    NONE

    1998-12-31

    The objectives of the work programme reported are the development and testing of two optimised energy conversion processes, both consisting of a radiant surface gas burner and a ceramic heat exchanger. The first sub-objective of the programme is related to industrial heating, drying and curing processes requireing low and medium heat fluxes. It is estimated that around one tenth of the total EC industrial energy use is associated with such processes. The majority of these processes currently use convection and conduction as the main heat transfer mechanisms and overall energy efficiencies are typically below 25%. For many drying and finishing processes (such as curing powder coatings and drying paints, varnishes, inks, and for the fabrication of paper and textiles), radiant heating can achieve much faster dyring rates and higher energy efficiency than convective heating. In the project new concepts of natural gas fired radiant heating have been investigated which would be much more efficient than the existing processes. One element of the programme was the evelopment of gas burners having enhanced radiant efficiencies. A second concerned the investigation of the safety of gas burners containing significant volumes of mixed gas and air. Finally the new gas burners were tested in combination with the high temperature heat exchanger to create highly efficient radiant heating systems. The second sub-objective concerned the development of a compact low cost heat exchanger capable of achieving high levels of heat recovery (up to 60%) which could be easily installed on industrial processes. This would make heat recovery a practical proposition on processes where existing heat recovery technology is currently not cost effective. The project will have an impact on industrial processes consuming around 80 MTOE of energy per year within EU countries (1 MTOE equals 41.8 PJ). The overall energy saving potential of the project is estimated to be around 22 MTOE which is around 10

  4. Cyclic response and early damage evolution in multiaxial cyclic loading of 316L austenitic steel

    Mazánová, Veronika; Škorík, Viktor; Kruml, Tomáš; Polák, Jaroslav

    2017-01-01

    Roč. 100, JUL (2017), s. 466-476 ISSN 0142-1123 R&D Projects: GA MŠk LM2015069; GA MŠk(CZ) LQ1601; GA ČR(CZ) GA13-23652S; GA ČR GA15-08826S Institutional support: RVO:68081723 Keywords : 316L steel * Crack initiation * Cyclic plasticity * Damage mechanism * Multiaxial straining Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.899, year: 2016

  5. Improvement on life and NO{sub x} discharge of radiant heat transfer tube heating system by the elasto-plasticity creep analysis; Dansosei kuripukaiseki ni yoru hosha dennetsukan kanetsu shisutemu no jumyo to NO{sub x} haishutsuryo no kaizen

    Nakagawa, Futahiko; Ikaruda, Kunihiro; Abe, Yoshio; Arai, Norio

    1999-06-05

    Combustion thermal process using the radiant heat transfer tube has widely been applied as a heating method which separates the combustion atmosphere from the heating-e atmosphere in various heating furnace such as iron and steel industry. In this thermal process, in order to burn the fuel in tight space in radiant heat transfer service area, radiant heat transfer tube and burner life were short under high temperature and high-load combustion, and there was a problem that that and, burning characteristic such as NO{sub x} generation rate are improved was difficult. In this study, large temperature distribution by the combustion in the radiant heat transfer tube clarified that the life of the radiant heat transfer tube was shortened by elasto-plasticity creep analysis of the radiant heat transfer tube. Then, two steps combustion burner of the exhaust gas self recycling type was developed as a method for reducing the NO{sub x} generation rate, while the temperature distribution of the radiant heat transfer tube was equalized. As the result, it was possible to reduce over 20% in comparison with conventional two steps combustion burner, while radiant heat transfer tube and life of the burner are extended over the conventional double, in respect of the NO{sub x} generation rate. (translated by NEDO)

  6. Modeling Individual Cyclic Variation in Human Behavior.

    Pierson, Emma; Althoff, Tim; Leskovec, Jure

    2018-04-01

    Cycles are fundamental to human health and behavior. Examples include mood cycles, circadian rhythms, and the menstrual cycle. However, modeling cycles in time series data is challenging because in most cases the cycles are not labeled or directly observed and need to be inferred from multidimensional measurements taken over time. Here, we present Cyclic Hidden Markov Models (CyH-MMs) for detecting and modeling cycles in a collection of multidimensional heterogeneous time series data. In contrast to previous cycle modeling methods, CyHMMs deal with a number of challenges encountered in modeling real-world cycles: they can model multivariate data with both discrete and continuous dimensions; they explicitly model and are robust to missing data; and they can share information across individuals to accommodate variation both within and between individual time series. Experiments on synthetic and real-world health-tracking data demonstrate that CyHMMs infer cycle lengths more accurately than existing methods, with 58% lower error on simulated data and 63% lower error on real-world data compared to the best-performing baseline. CyHMMs can also perform functions which baselines cannot: they can model the progression of individual features/symptoms over the course of the cycle, identify the most variable features, and cluster individual time series into groups with distinct characteristics. Applying CyHMMs to two real-world health-tracking datasets-of human menstrual cycle symptoms and physical activity tracking data-yields important insights including which symptoms to expect at each point during the cycle. We also find that people fall into several groups with distinct cycle patterns, and that these groups differ along dimensions not provided to the model. For example, by modeling missing data in the menstrual cycles dataset, we are able to discover a medically relevant group of birth control users even though information on birth control is not given to the model.

  7. Coping with cyclic oxygen availability: evolutionary aspects.

    Flück, Martin; Webster, Keith A; Graham, Jeffrey; Giomi, Folco; Gerlach, Frank; Schmitz, Anke

    2007-10-01

    Both the gradual rise in atmospheric oxygen over the Proterozoic Eon as well as episodic fluctuations in oxygen over several million-year time spans during the Phanerozoic Era, have arguably exerted strong selective forces on cellular and organismic respiratory specialization and evolution. The rise in atmospheric oxygen, some 2 billion years after the origin of life, dramatically altered cell biology and set the stage for the appearance of multicelluar life forms in the Vendian (Ediacaran) Period of the Neoproterozoic Era. Over much of the Paleozoic, the level of oxygen in the atmosphere was near the present atmospheric level (21%). In the Late Paleozoic, however, there were extended times during which the level of atmospheric oxygen was either markedly lower or markedly higher than 21%. That these Paleozoic shifts in atmospheric oxygen affected the biota is suggested by the correlations between: (1) Reduced oxygen and the occurrences of extinctions, a lowered biodiversity and shifts in phyletic succession, and (2) During hyperoxia, the corresponding occurrence of phenomena such as arthropod gigantism, the origin of insect flight, and the evolution of vertebrate terrestriality. Basic similarities in features of adaptation to hyopoxia, manifest in living organisms at levels ranging from genetic and cellular to physiological and behavioral, suggest the common and early origin of a suite of adaptive mechanisms responsive to fluctuations in ambient oxygen. Comparative integrative approaches addressing the molecular bases of phenotypic adjustments to cyclic oxygen fluctuation provide broad insight into the incremental steps leading to the early evolution of homeostatic respiratory mechanisms and to the specialization of organismic respiratory function.

  8. Safety Discrete Event Models for Holonic Cyclic Manufacturing Systems

    Ciufudean, Calin; Filote, Constantin

    In this paper the expression “holonic cyclic manufacturing systems” refers to complex assembly/disassembly systems or fork/join systems, kanban systems, and in general, to any discrete event system that transforms raw material and/or components into products. Such a system is said to be cyclic if it provides the same sequence of products indefinitely. This paper considers the scheduling of holonic cyclic manufacturing systems and describes a new approach using Petri nets formalism. We propose an approach to frame the optimum schedule of holonic cyclic manufacturing systems in order to maximize the throughput while minimize the work in process. We also propose an algorithm to verify the optimum schedule.

  9. Cyclic deformation of NiTi shape memory alloys

    Liu Yong; Van Humbeeck, J.; Xie Zeliang

    1999-01-01

    Recently, there is an increasing interest in applying the high damping capacity of shape memory alloys (SMAs). The purpose is to explore the feasibility of those materials for the protection of buildings and other civil constructions as a result of earthquake damages. So far, few experimental results have been reported concerning the mechanical cyclic behaviour of SMAs in their martensitic state (ferroelastic). In the present work, the experimental results on the mechanical behaviour of martensitic NiTi SMAs under tension-compression cyclic deformation up to strains of ±4% are summarized with major attention to the damping capacity, characteristic stresses and strains as a function of deformation cycles. Effect of strain rate, strain amplitude and annealing condition on the martensite damping is summarized. Explanation of the cyclic hardening and cyclic softening phenomenon is proposed based on TEM observations. (orig.)

  10. Quantum Codes From Cyclic Codes Over The Ring R 2

    Altinel, Alev; Güzeltepe, Murat

    2016-01-01

    Let R 2 denotes the ring F 2 + μF 2 + υ 2 + μυ F 2 + wF 2 + μwF 2 + υwF 2 + μυwF 2 . In this study, we construct quantum codes from cyclic codes over the ring R 2 , for arbitrary length n, with the restrictions μ 2 = 0, υ 2 = 0, w 2 = 0, μυ = υμ, μw = wμ, υw = wυ and μ (υw) = (μυ) w. Also, we give a necessary and sufficient condition for cyclic codes over R 2 that contains its dual. As a final point, we obtain the parameters of quantum error-correcting codes from cyclic codes over R 2 and we give an example of quantum error-correcting codes form cyclic codes over R 2 . (paper)

  11. Cyclic deformation behaviour of austenitic steels at ambient and ...

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Fatigue; cyclic deformation behaviour; metastable austenitic steel; .... Figure 4 shows a sequence of the basic diagrams which can be used to assess the fatigue .... well as the change of temperature and the development of the magnetic ...

  12. Constitutive model and electroplastic analysis of structures under cyclic loading

    Wang, X.; Lei, Y; Du, Q.

    1989-01-01

    Many engineering structures in nuclear reactors, thermal power stations, chemical plants and aerospace vehicles are subjected to cyclic mechanic-thermal loading, which is the main cause of structural fatigue failure. Over the past twenty years, designers and researchers have paid great attention to the research on life prediction and elastoplastic analysis of structures under cyclic loading. One of the key problems in elastoplastic analysis is to construct a reasonable constitutive model for cyclic plasticity. In the paper, the constitutive equations are briefly outlined. Then, the model is implemented in a finite element code to predict the response of cyclic loaded structural components such as a double-edge-notched plate, a grooved bar and a nozzle in spherical shell. Numerical results are compared with those from other theories and experiments

  13. The Cyclical Relationship Approach in Teaching Basic Accounting Principles.

    Golen, Steven

    1981-01-01

    Shows how teachers can provide a more meaningful presentation of various accounting principles by illustrating them through a cyclical relationship approach. Thus, the students see the entire accounting relationship as a result of doing business. (CT)

  14. Riboflavin in cyclic vomiting syndrome: efficacy in three children.

    Martinez-Esteve Melnikova, Anastasia; Schäppi, Michela G; Korff, Christian

    2016-01-01

    Cyclic vomiting syndrome is an episodic disorder considered to be a migraine variant. Riboflavin is efficient in the prophylactic treatment of migraines in adults. We describe the effectiveness and tolerance of riboflavin treatment in three children with cyclic vomiting syndrome. All of them fulfilled the diagnosis criteria for cyclic vomiting syndrome. They received prophylactic monotherapy with riboflavin for at least 12 months. Excellent response and tolerability was observed. Based on clinical observation in three cases, riboflavin may be an effective and safe prophylactic treatment for children with cyclic vomiting syndrome. CVS is one of the "childhood periodic syndromes" classified as a migraine subtype by the International Headache Society. Riboflavin is currently used as a prophylactic treatment in patients with migraine. Riboflavin may be an effective and safe prophylactic treatment for children with CVS. Increasing doses of riboflavin and long periods of prophylaxis may be needed in some children..

  15. INFLUENCE OF INTERMITTENT CYCLIC LOADING ON REINFORCED CONCRETE RESISTANCE MODEL

    Vasyl Karpiuk

    2017-01-01

    Full Text Available This article describes the study of reinforced concrete span bending structures under conditions of high-level cyclic loading. Previous studies on the development of physical models of bending reinforced concrete element fatigue resistance, cyclic effect of lateral forces, and methods of calculation, are important and appropriate owing to certain features and the essential specificity of the mentioned loading type. These primarily include the nonlinearity of deformation, damage accumulation in the form of fatigue micro- and macro-cracks, and exhausting destruction of construction materials. In this paper, key expressions determining the endurance limits of concrete, longitudinal reinforcement, and anchoring longitudinal reinforcement, which contribute to endurance throughout the entire construction, are considered. Establishing a link between stresses in the elements and deformations in the element under conditions of cyclic loading action is of equal importance because of the presence of cyclic stress-induced creep deformation.

  16. Cyclical Cushing's syndrome due to an atypical thymic carcinoid

    Meinardi, [No Value; van den Berg, G; Wolffenbuttel, BHR; Kema, IP; Dullaart, RPF

    A 43-year-old man presented with fluctuating symptoms of weight gain, shortness of breath, pretibial oedema, associated with anxiety and memory disturbances. Laboratory investigation revealed an adrenocorticotropin (ACTH)-dependent cyclical Cushing's syndrome characterised by remarkable variations

  17. A Novel Cyclic Catalytic Reformer for Hydrocarbon Fuels, Phase I

    National Aeronautics and Space Administration — This proposed Small Business Innovative Research (SBIR) Phase I addresses development of a compact reformer system based on a cyclic partial oxidation (POx)...

  18. Association of Marijuana Use and Cyclic Vomiting Syndrome

    Mithun B. Pattathan

    2012-06-01

    Full Text Available Cannabis use has become one of the most commonly abused drugs in the world. It is estimated that each year 2.6 million individuals in the USA become new users and most are younger than 19 years of age. Reports describe marijuana use as high as 40–50% in male Cyclic Vomiting Syndrome patients. It is this interest in cannabis in the World, coupled with recognition of a cyclic vomiting illness associated with its chronic use that beckons a review of the most current articles, as well as a contribution from our own experiences in this area. The similarities we have demonstrated for both cannibinoid hyperemesis syndrome and cyclic vomiting make the case that cannibinoid hyperemesis syndrome is a subset of patients who have the diagnoses of cyclic vomiting syndrome and the role of marijuana should always be considered in the diagnosis of CVS, particularly in males.

  19. The evolution of GDP in USA using cyclic regression analysis

    Catalin Angelo IOAN; Gina IOAN

    2013-01-01

    Based on the four major types of economic cycles (Kondratieff, Juglar, Kitchin, Kuznet), the paper aims to determine their actual length (for the U.S. economy) using cyclic regressions based on Fourier analysis.

  20. Cyclical mastalgia: Prevalence and associated determinants in Hamadan City, Iran

    Fatemeh Shobeiri

    2016-03-01

    Conclusions: Most of women with breast discomfort suffered cyclical mastalgia which severity can be determined by advanced age, age of marriage, history of abortion and history of premenstrual syndrome, but inversely by oral contraceptive use and exercise activity.

  1. The Chemistry of Cyclic All-Nitrogen Molecules

    Wodtke, Alec M

    2006-01-01

    ..., $474,927, February 15, 2004 - December 31, 2006. During this period, we have extended our preliminary investigations of azide photochemistry, with the aim of demonstrating unambiguously the photochemical production of cyclic-N, and of revealing...

  2. Multiaxial elastoplastic cyclic loading of austenitic 316L steel

    Mazánová, Veronika; Polák, Jaroslav; Škorík, Viktor; Kruml, Tomáš

    2017-01-01

    Roč. 11, č. 40 (2017), s. 162-169 ISSN 1971-8993 R&D Projects: GA ČR(CZ) GA13-23652S; GA MŠk LM2015069; GA MŠk(CZ) LQ1601; GA ČR GA15-08826S Institutional support: RVO:68081723 Keywords : 316L steel * Crack initiation * Cyclic stress-strain curve * Multiaxial cyclic loading Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis

  3. Microgravity changes in heart structure and cyclic-AMP metabolism

    Philpott, D. E.; Fine, A.; Kato, K.; Egnor, R.; Cheng, L.

    1985-01-01

    The effects of microgravity on cardiac ultrastructure and cyclic AMP metabolism in tissues of rats flown on Spacelab 3 are reported. Light and electron microscope studies of cell structure, measurements of low and high Km phosphodiesterase activity, cyclic AMP-dependent protein kinase activity, and regulatory subunit compartmentation show significant deviations in flight animals when compared to ground controls. The results indicate that some changes have occurred in cellular responses associated with catecholamine receptor interactions and intracellular signal processing.

  4. Constraining cyclic peptides to mimic protein structure motifs

    Hill, Timothy A.; Shepherd, Nicholas E.; Diness, Frederik

    2014-01-01

    peptides can have protein-like biological activities and potencies, enabling their uses as biological probes and leads to therapeutics, diagnostics and vaccines. This Review highlights examples of cyclic peptides that mimic three-dimensional structures of strand, turn or helical segments of peptides...... and proteins, and identifies some additional restraints incorporated into natural product cyclic peptides and synthetic macrocyclic pepti-domimetics that refine peptide structure and confer biological properties....

  5. Facile and Green Synthesis of Saturated Cyclic Amines

    Arruje Hameed

    2017-10-01

    Full Text Available Single-nitrogen containing saturated cyclic amines are an important part of both natural and synthetic bioactive compounds. A number of methodologies have been developed for the synthesis of aziridines, azetidines, pyrrolidines, piperidines, azepanes and azocanes. This review highlights some facile and green synthetic routes for the synthesis of unsubstituted, multisubstituted and highly functionalized saturated cyclic amines including one-pot, microwave assisted, metal-free, solvent-free and in aqueous media.

  6. Paediatric cyclical Cushing's disease due to corticotroph cell hyperplasia.

    Noctor, E

    2015-06-01

    Cushing\\'s disease is very rare in the paediatric population. Although uncommon, corticotroph hyperplasia causing Cushing\\'s syndrome has been described in the adult population, but appears to be extremely rare in children. Likewise, cyclical cortisol hypersecretion, while accounting for 15 % of adult cases of Cushing\\'s disease, has only rarely been described in the paediatric population. Here, we describe a very rare case of a 13-year old boy with cyclical cortisol hypersecretion secondary to corticotroph cell hyperplasia.

  7. Deformation localization and cyclic strength in polycrystalline molybdenum

    Sidorov, O.T.; Rakshin, A.F.; Fenyuk, M.I.

    1983-06-01

    Conditions of deformation localization and its interrelation with cyclic strength in polycrystalline molybdenum were investigated. A fatigue failure of polycrystalline molybdenum after rolling and in an embrittled state reached by recrystallization annealing under cyclic bending at room temperature takes place under nonuniform distribution of microplastic strain resulting in a temperature rise in separate sections of more than 314 K. More intensive structural changes take place in molybdenum after rolling than in recrystallized state.

  8. Model of contract of purchase of the electric power produced by facilities that use the radiant energy of the sun and benefiting from the electricity purchase obligation. Established after enforcement of the article 5 of the decree from May 10, 2001 and approved by the minister attended to energy; Modele de contrat d'achat de l'energie electrique produite par les installations utilisant l'energie radiative du soleil et beneficiant de l'obligation d'achat d'electricite. Etablie en application de l'article 5 du decret du 10 mai 2001 et approuve par le Ministre charge de l'electricite

    NONE

    2001-07-01

    This model of contract comprises 3 parts. The first part describes the general conditions of electric power purchase: aim of the contract, connection to the grid and delivery point, producer's facility, reciprocal commitments and stoppages for maintenance purpose, energy and power metering and control, energy delivery, payment for the purchased power (payment and payment indexing), taxes, payments, contract enforcement, date line, suspension, modification or cancellation, conciliation in case of dispute. A recall of the tariffs mentioned in the by-law from March 13, 2002, of the approximation rules and a model of certificate are given in appendixes. The second part gives some complements to the general conditions (purchaser and producer corporate, characteristics of the facility, details about the connection and delivery point, description of the metering system, tariffs of purchase and indexing, payment of bills, contract characteristics, subscription for a power supply contract). The third part is a model of contract for low voltage photovoltaic facilities. (J.S.)

  9. Mechanical Behavior of Shale Rock under Uniaxial Cyclic Loading and Unloading Condition

    Baoyun Zhao

    2018-01-01

    Full Text Available In order to investigate the mechanical behavior of shale rock under cyclic loading and unloading condition, two kinds of incremental cyclic loading tests were conducted. Based on the result of the short-term uniaxial incremental cyclic loading test, the permanent residual strain, modulus, and damage evolution were analyzed firstly. Results showed that the relationship between the residual strains and the cycle number can be expressed by an exponential function. The deformation modulus E50 and elastic modulus ES first increased and then decreased with the peak stress under the loading condition, and both of them increased approximately linearly with the peak stress under the unloading condition. On the basis of the energy dissipation, the damage variables showed an exponential increasing with the strain at peak stress. The creep behavior of the shale rock was also analyzed. Results showed that there are obvious instantaneous strain, decay creep, and steady creep under each stress level and the specimen appears the accelerated creep stage under the 4th stress of 51.16 MPa. Based on the characteristics of the Burgers creep model, a viscoelastic-plastic creep model was proposed through viscoplastic mechanics, which agrees very well with the experimental results and can better describe the creep behavior of shale rock better than the Burgers creep model. Results can provide some mechanics reference evidence for shale gas development.

  10. Isothermal and cyclic oxidation resistance of pack siliconized Mo–Si–B alloy

    Majumdar, Sanjib, E-mail: sanjib@barc.gov.in

    2017-08-31

    Highlights: • Pack-siliconizing of Mo–Si–B alloy improves its oxidation resistance at 750, 900 and 1400 °C. • A marginal weight change of the coated alloy is detected in isothermal and cyclic oxidation tests. • Kinetics of growth of protective SiO{sub 2} scale is much faster at 1400 °C. • Self-healing SiO{sub 2} is developed at the cracks formed in MoSi{sub 2} layer during cyclic oxidation tests. - Abstract: Oxidation behaviour of MoSi{sub 2} coated Mo–9Si–8B–0.75Y (at.%) alloy has been investigated at three critical temperatures including 750, 900 and 1400 °C in static air. Thermogravimetric analysis (TGA) data indicates a remarkable improvement in the oxidation resistance of the silicide coated alloy in both isothermal and cyclic oxidation tests. The cross-sectional scanning electron microscopy and energy dispersive spectroscopic analysis reveal the occurrence of internal oxidation particularly at the crack fronts formed in the outer MoSi{sub 2} layer during thermal cycling. The dominant oxidation mechanisms at 750–900 °C and 1400 °C are identified. Development of MoB inner layer further improves the oxidation resistance of the silicide coated alloy.

  11. Effect of cyclic torsional preloading on cyclic fatigue resistance of ProTaper Next and Mtwo nickel–titanium instruments

    Eugenio Pedullà

    2015-06-01

    Conclusions: Torsional preloads reduced the cyclic fatigue resistance of M-wire and conventional (as ProTaper Next and Mtwo NiTi rotary instruments except for Mtwo with 25% or 50% of torsional preloading.

  12. Comparison Of INAA Methods (Long Conventional, Cyclic And Pseudo-Cyclic) For The Determination Of Se In Biological Samples

    Sarheel, A.

    2004-01-01

    Selenium content in serum blood, sample were received from international comparison programme (SABC) has been determined by Cyclic irradiation, pseudo-cyclic irradiation and long irradiation conventional Instrumental neutron activation analysis through the 162 keV gamma ray of the 77m Se nuclide for both cyclic and pseudo-cyclic and 264 keV gamma ray of 75 Se nuclide for conventional (long irradiation). The CINAA involve irradiation of samples for 20 s, decay for 15 s and counting for 20 s, samples recycling four times to improve the precision. The PCINAA involve irradiation of samples for 20 s, decay for 20 s and counting for 30s, samples recycling four times day by day. The Conventional (long irradiation) involve irradiation of samples for 20 hr (1 week), decay for 4 weeks and counting for 20 hr. The accuracy has been evaluated by analyzing the certified reference materials. (Author)

  13. Cyclic distillation technology - A mini-review

    Bîldea, Costin Sorin; Pătruţ, Cătălin; Jørgensen, Sten Bay

    2016-01-01

    Process intensification in distillation systems has received much attention during the pastdecades, with the aim of increasing both energy and separation efficiency. Varioustechniques, such as internal heat-integrated distillation, membrane distillation, rotating packedbed, dividing-wall columns...

  14. Effect of Surgical Removal of Endometriomas on Cyclic and Non-cyclic Pelvic Pain

    Murat Api

    2015-07-01

    Full Text Available Background: Endometriosis is a complex disease with a spectrum of pain symptoms from mild dysmenorrhea to debilitating pelvic pain. There is no concrete evidence in the literature whether endometriotic cyst per se, causes pain spectrum related to the disease. The aim of the present study was to evaluate the effect of surgical removal of endometriomas on pain symptoms. Materials and Methods: In this prospective, observational, before-after study, which was conducted between March 2012 and January 2013 in Training and Research Hospital,Adana, Turkey, a total of 23 patients including 16 sexually active and 7 virgin symptomatic women were questioned for non-cyclic pelvic pain (NCPP, intensity of the NCPP, presence of cyclic dysmenorrhea, and dyspareunia before and after the endometrioma operation. Participants who were sonographically diagnosed and later pathologically confirmed as having endometrioma without sign and symptoms of deep infiltrative endometriosis (DIE were also questioned for pain symptoms before and after the laparoscopic removal of cyst wall. Patients with intraabdominal adhesions, history of pelvic inflammatory disease, and pathological diagnosis other than endometrioma were excluded. No ancillary procedures were applied for pain management, but if pain was present, pelvic peritoneal endometriotic lesions were ablated beside the removal of ovarian endometriotic cysts. Results: Out of 23 cases with endometrioma, 91 and 78% reported to have NCPP and dysmenorrhea, respectively, before the operation, while 60 and 48%, respectively, after the operation (McNemar’s test, P=0.016 for both figures. Among the sexually active cases, 31% (5/16 had dyspareunia before the operation and only 1 case reported the pain relief after the operation (McNemar’s test, P=1. Intensity of NCPP were reported to be none (8.7%, moderate (21.7%, severe (56.5% and unbearable (13% before the operation and decreased to none (43.5%, mild (43.5%, moderate (4

  15. The spectral optical properties and relative radiant heating contribution of dissolved and particulate matter in the surface waters across the Fram Strait

    Pavlov, A.K.; Granskog, M.A.; Stedmon, Colin

    autumns of 2009 and 2010 comprehensive observations were performed on transects along 79 N across the Fram Strait. Samples for chromophoric dissolved organic matter (CDOM) and particulate absorption were collected and analyzed together with distribution of temperature and salinity in surface waters (0......-100 m). Large spatial variations in the distribution of CDOM and particulate matter as well as in their relative contributions to total absorption were apparent, with high contrast between waters of Arctic and Atlantic origin. In addition, estimates of underwater light profiles and radiant heating rate...... (RHR) of the upper layer were obtained using a simplistic exponential RHR model. This is one of the first detailed overviews of sea water optical properties across the northern Fram Strait, and might have potential implications for biological, biogeochemical and physical processes in the region...

  16. The influence of local effects on thermal sensation under non-uniform environmental conditions — Gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling

    Schellen, L.; Loomans, M.G.L.C.; de Wit, M.H.

    2012-01-01

    , thermal comfort and productivity in response to thermal non-uniform environmental conditions. Twenty healthy subjects (10 males and 10 females, age 20–29years) were exposed to two different experimental conditions: a convective cooling situation (CC) and a radiant cooling situation (RC). During...... the experiments physiological responses, thermal comfort and productivity were measured. The results show that under both experimental conditions the actual mean thermal sensation votes significantly differ from the PMV-index; the subjects are feeling colder than predicted. Furthermore, the females are more...... of the occupants. Non-uniform thermal conditions, which may occur due to application of high temperature cooling systems, can be responsible for discomfort. Contradictions in literature exist regarding the validity of the often used predicted mean vote (PMV) index for both genders, and the index is not intended...

  17. Mathematical Modeling of the Thermal State of an Isothermal Element with Account of the Radiant Heat Transfer Between Parts of a Spacecraft

    Alifanov, O. M.; Paleshkin, A. V.; Terent‧ev, V. V.; Firsyuk, S. O.

    2016-01-01

    A methodological approach to determination of the thermal state at a point on the surface of an isothermal element of a small spacecraft has been developed. A mathematical model of heat transfer between surfaces of intricate geometric configuration has been described. In this model, account was taken of the external field of radiant fluxes and of the differentiated mutual influence of the surfaces. An algorithm for calculation of the distribution of the density of the radiation absorbed by surface elements of the object under study has been proposed. The temperature field on the lateral surface of the spacecraft exposed to sunlight and on its shady side has been calculated. By determining the thermal state of magnetic controls of the orientation system as an example, the authors have assessed the contribution of the radiation coming from the solar-cell panels and from the spacecraft surface.

  18. Numerical Simulation of the Application of Solar Radiant Systems, Internal Airflow and Occupants’ Presence in the Improvement of Comfort in Winter Conditions

    Eusébio Z. E. Conceição

    2016-09-01

    Full Text Available In this work, the use of numerical simulation in the application of solar radiant systems, internal airflow and occupants’ presence in the improvement of comfort in winter conditions is made. The thermal comfort, the local thermal discomfort and the air quality in an occupied chamber space are evaluated. In the experimental measurements, a wood chamber, a desk, two seats, two seated hygro-thermal manikins, a warm radiant floor, a solar radiation simulator and a water solar collector are used. The air velocity and the air temperature fluctuation are experimentally evaluated around 15 human body sections. The chamber surface temperature is experimentally measured. In the numerical simulation, a coupling human thermal comfort (HTC integral model, a computational fluids dynamics (CFD differential model and a building thermal response (BTR integral model are applied. The human thermal comfort level is evaluated by the HTC numerical model. The airflow inside the virtual chamber, using the k-epsilon and RNG turbulence models, is evaluated by the CFD numerical model. The chamber surface and the collector temperatures are evaluated by the BTR numerical model. In the human thermal comfort level, in non-uniform environments, the predicted mean vote (PMV and the predicted percentage of dissatisfied (PPD people are numerically evaluated; in the local thermal discomfort level the draught risk (DR is experimentally and numerically analyzed; and in the air quality, the carbon dioxide CO2 concentration is numerically calculated. In the validation tests, the experimental and numerical values of the chamber surface temperature, the air temperature, the air velocity, the air turbulence intensity and the DR are presented.

  19. Optimal Scheduling of Residential Microgrids Considering Virtual Energy Storage System

    Weiliang Liu

    2018-04-01

    Full Text Available The increasingly complex residential microgrids (r-microgrid consisting of renewable generation, energy storage systems, and residential buildings require a more intelligent scheduling method. Firstly, aiming at the radiant floor heating/cooling system widely utilized in residential buildings, the mathematical relationship between the operative temperature and heating/cooling demand is established based on the equivalent thermodynamic parameters (ETP model, by which the thermal storage capacity is analyzed. Secondly, the radiant floor heating/cooling system is treated as virtual energy storage system (VESS, and an optimization model based on mixed-integer nonlinear programming (MINLP for r-microgrid scheduling is established which takes thermal comfort level and economy as the optimization objectives. Finally, the optimal scheduling results of two typical r-microgrids are analyzed. Case studies demonstrate that the proposed scheduling method can effectively employ the thermal storage capacity of radiant floor heating/cooling system, thus lowering the operating cost of the r-microgrid effectively while ensuring the thermal comfort level of users.

  20. Damage Accumulation in Cyclically-Loaded Glass-Ceramic Matrix Composites Monitored by Acoustic Emission

    D. G. Aggelis

    2013-01-01

    Full Text Available Barium osumilite (BMAS ceramic matrix composites reinforced with SiC-Tyranno fibers are tested in a cyclic loading protocol. Broadband acoustic emission (AE sensors are used for monitoring the occurrence of different possible damage mechanisms. Improved use of AE indices is proposed by excluding low-severity signals based on waveform parameters, rather than only threshold criteria. The application of such improvements enhances the accuracy of the indices as accumulated damage descriptors. RA-value, duration, and signal energy follow the extension cycles indicating moments of maximum or minimum strain, while the frequency content of the AE signals proves very sensitive to the pull-out mechanism.