Axisymmetric flow and heat transfer to modified second grade fluid over a radially stretching sheet
Directory of Open Access Journals (Sweden)
Masood Khan
Full Text Available In the present work, an analysis is made to the two-dimensional axisymmetric flow and heat transfer of a modified second grade fluid over an isothermal non-linear radially stretching sheet. The momentum and energy equations are modelled and the boundary layer equations are derived. The governing equations for velocity and temperature are turned down into a system of ordinary differential equations by invoking appropriate transformations which are then solved numerically via fourth and fifth order Runge-Kutta Fehlberg method. Moreover, the influence of the pertinent parameters namely the generalized second grade parameter, stretching parameter, the power-law index and the generalized Prandtl number is graphically portrayed. It is inferred that the generalized second grade parameter uplifted the momentum boundary layer while lessened the thermal boundary layer. Furthermore, the impact of stretching parameter is more pronounced for the second grade fluid (m = 0 in contrast with the power-law fluid (k = 0. For some special cases, comparisons are made with previously reported results and an excellent agreement is established. Keywords: Modified second grade fluid, Axisymmetric flow, Heat transfer, Non-linear stretching sheet
Unsteady axisymmetric flow and heat transfer over time-dependent radially stretching sheet
Directory of Open Access Journals (Sweden)
Azeem Shahzad
2017-03-01
Full Text Available This article address the boundary layer flow and heat transfer of unsteady and incompressible viscous fluid over an unsteady stretching permeable surface. First of all modeled nonlinear partial differential equations are transformed to a system of ordinary differential equations by using similarity transformations. Analytic solution of the reduced problem is constructed by using homotopy analysis method (HAM. To validate the constructed series solution a numerical counterpart is developed using shooting algorithm based on Runge-Kutta method. Both schemes are in an excellent agreement. The effects of the pertinent parameters on the velocity and energy profile are shown graphically and examined in detail.
Reinforcement for Stretch Formed Sheet Metal
Lea, J. B.; Baxter, C. R.
1983-01-01
Tearing of aluminum sheet metal durinng stretch forming prevented by flame spraying layer of aluminum on edges held in stretch-forming machine. Technique improves grip of machine on metal and reinforced sheet better able to with stand concentration of force in vicinity of grips.
Radial distribution function of semiflexible oligomers with stretching flexibility
Zhang, Xi; Bao, Lei; Wu, Yuan-Yan; Zhu, Xiao-Long; Tan, Zhi-Jie
2017-08-01
The radial distribution of the end-to-end distance Ree is crucial for quantifying the global size and flexibility of a linear polymer. For semiflexible polymers, several analytical formulas have been derived for the radial distribution of Ree ignoring the stretching flexibility. However, for semiflexible oligomers, such as DNA or RNA, the stretching flexibility can be rather pronounced and can significantly affect the radial distribution of Ree. In this study, we obtained an extended formula that includes the stretch modulus to describe the distribution of Ree for semiflexible oligomers on the basis of previous formulas for semiflexible polymers without stretching flexibility. The extended formula was validated by extensive Monte Carlo simulations over wide ranges of the stretch modulus and persistence length, as well as all-atom molecular dynamics simulations of short DNAs and RNAs. Additionally, our analyses showed that the effect of stretching flexibility on the distribution of Ree becomes negligible for DNAs longer than ˜130 base pairs and RNAs longer than ˜240 base pairs.
Wrinkling instability of an inhomogeneously stretched viscous sheet
Srinivasan, Siddarth; Wei, Zhiyan; Mahadevan, L.
2017-07-01
Motivated by the redrawing of hot glass into thin sheets, we investigate the shape and stability of a thin viscous sheet that is inhomogeneously stretched in an imposed nonuniform temperature field. We first determine the associated base flow by solving the long-time-scale stretching flow of a flat sheet as a function of two dimensionless parameters: the normalized stretching velocity α and a dimensionless width of the heating zone β . This allows us to determine the conditions for the onset of an out-of-plane wrinkling instability stated in terms of an eigenvalue problem for a linear partial differential equation governing the displacement of the midsurface of the sheet. We show that the sheet can become unstable in two regions that are upstream and downstream of the heating zone where the minimum in-plane stress is negative. This yields the shape and growth rates of the most unstable buckling mode in both regions for various values of the stretching velocity and heating zone width. A transition from stationary to oscillatory unstable modes is found in the upstream region with increasing β , while the downstream region is always stationary. We show that the wrinkling instability can be entirely suppressed when the surface tension is large enough relative to the magnitude of the in-plane stress. Finally, we present an operating diagram that indicates regions of the parameter space that result in a required outlet sheet thickness upon stretching while simultaneously minimizing or suppressing the out-of-plane buckling, a result that is relevant for the glass redraw method used to create ultrathin glass sheets.
The stretch zone of automotive steel sheets
Indian Academy of Sciences (India)
This study brings new material properties which are necessary for modelling and simulation the crash behaviour of automotive sheets. ... The specimens were loaded by eccentric tension on a tensile testing machine (FP 100/1) at two crosshead-rates: 0.0217 and 2.17 mm/s. The videoextensometry technique enables us to.
Ko, William L.; Lung, Shun-Fat
2017-01-01
Non-classical stress concentration behavior in a stretched circular hyperelastic sheet (outer radius b = 10 in., thickness t = 0.0625 in.) containing a central hole (radius a = 0.5 in.) was analyzed. The hyperelastic sheet was subjected to different levels of remote radial stretchings. Nastran large-strain large-deformation analysis and the Blatz-Ko large deformation theory were used to calculate the equal-biaxial stress concentration factors K. The results show that the values of K calculated from the Blatz-Ko theory and Nastran are extremely close. Unlike the classical linear elasticity theory, which gives the constant K = 2 for the equal-biaxial stress field, the hyperelastic K values were found to increase with increased stretching and can exceed the value K = 6 at a remote radial extension ratio of 2.35. The present K-values compare fairly well with the K-values obtained by previous works. The effect of the hole-size on K-values was investigated. The values of K start to decrease from a hole radius a = 0.125 in. down to K = 1 (no stress concentration) as a shrinks to a = 0 in. (no hole). Also, the newly introduced stretch and strain magnification factors {K(sub ?),K(sub e) } are also material- and deformation-dependent, and can increase from linear levels of {1.0, 4.0} and reaching {3.07, 4.61}, respectively at a remote radial extension ratio of 2.35.
Conjugate Heat Transfer of Mixed Convection for Viscoelastic Fluid Past a Stretching Sheet
Directory of Open Access Journals (Sweden)
Kai-Long Hsiao
2007-01-01
Full Text Available A conjugate heat transfer problem of a second-grade viscoelastic fluid past a stretching sheet has been studied. Governing equations include heat conduction equation of a stretching sheet, continuity equation, momentum equation, and energy equation of a second-grade fluid, analyzed by a combination of a series expansion method, the similarity transformation, and a second-order accurate finite-difference method. These solutions are used to iterate with the heat conduction equation of the stretching sheet to obtain distributions of the local convective heat transfer coefficient and the stretching sheet temperature. Ranges of dimensionless parameters, the Prandtl number Pr, the elastic number E and the conduction-convection coefficient Ncc are from 0.001 to 10, 0.0001 to 0.01, and 0.5 to 2.0, respectively. A parameter G, which is used to represent the dominance of the buoyant effect, is present in governing equations. Results indicated that elastic effect in the flow could increase the local heat transfer coefficient and enhance the heat transfer of a stretching sheet. In addition, same as the results from Newtonian fluid flow and conduction analysis of a stretching sheet, a better heat transfer is obtained with a larger Ncc, G, and E.
Instability prediction during stretch bending of AHSS sheet metal
Hou, B.; Perdahcioglu, E. S.; Van Den Boogaard, A. H.
2014-01-01
Under stretch-bending conditions where the curvature is relatively large, the plane stress assumption leads to a significant inaccuracy in forming limit prediction. In processes where a contact pressure acts on the material combined with a small punch radius it is observed by FE simulations that a
MHD flow and nonlinear radiative heat transfer of Sisko nanofluid over a nonlinear stretching sheet
Directory of Open Access Journals (Sweden)
B.C. Prasannakumara
2017-01-01
Full Text Available The problem of heat and mass transfer of Siskonanofluid flow over a nonlinear stretching sheet under the influence of nonlinear thermal radiation and chemical reaction is considered. suitable set of similarity transformations are implemented to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. An efficient Runge–Kutta–Fehlberg fourth–fifth order method along with shooting technique is employed to solve the reduced equations. The influence of several emerging physical parameters on velocity, temperature and concentration profiles for both linear and nonlinear stretching sheet in the presence of linear and nonlinear thermal radiation has been studied and analyzed through plotted graphs and tables in detail. It is found that the Nusselt and Sherwood number are high in case of nonlinear stretching sheet than linear. Further, it is observed that the nonlinear thermal radiation has more influence on temperature profiles than linear.
Stagnation-point flow over a stretching/shrinking sheet in a nanofluid.
Bachok, Norfifah; Ishak, Anuar; Pop, Ioan
2011-12-08
An analysis is carried out to study the steady two-dimensional stagnation-point flow of a nanofluid over a stretching/shrinking sheet in its own plane. The stretching/shrinking velocity and the ambient fluid velocity are assumed to vary linearly with the distance from the stagnation point. The similarity equations are solved numerically for three types of nanoparticles, namely copper, alumina, and titania in the water-based fluid with Prandtl number Pr = 6.2. The skin friction coefficient, Nusselt number, and the velocity and temperature profiles are presented graphically and discussed. Effects of the solid volume fraction φ on the fluid flow and heat transfer characteristics are thoroughly examined. Different from a stretching sheet, it is found that the solutions for a shrinking sheet are non-unique.
Stability analysis of stagnation-point flow over a stretching/shrinking sheet
Directory of Open Access Journals (Sweden)
I. S. Awaludin
2016-04-01
Full Text Available The stagnation point flow over a linearly stretching or shrinking sheet is considered in the present study. The transformed ordinary differential equations are solved numerically. Dual solutions are possible for the shrinking case, while the solution is unique for the stretching case. For the shrinking case, a linear temporal stability analysis is performed to determine which one of the solution is stable and thus physically reliable.
On boundary layer flow of a sisko fluid over a stretching sheet | Khan ...
African Journals Online (AJOL)
In this paper, the steady boundary layer flow of a non-Newtonian fluid over a nonlinear stretching sheet is investigated. The Sisko fluid model, which is combination of power-law and Newtonian fluids in which the fluid may exhibit shear thinning/thickening behaviors, is considered. The boundary layer equations are derived ...
Stretch bending - the plane within the sheet where strains reach the forming limit curve
Neuhauser, F. M.; Terrazas, O. R.; Manopulo, N.; Hora, P.; Van Tyne, C. J.
2016-11-01
Finite element analysis (FEA) was used to model the angular stretch bend test, where a strip of sheet metal is locked at both ends and a tool with a radius stretches and bends the center of the strip until failure. The FEA program used in the study was Abaqus. The FEA model was verified by experimental work using a dual phase steel (DP600) and with a simplified analytical analysis. The FEA model was used to simulate the experimental test for various frictional conditions and various radii of an upward moving tool. The primary objective of the study was to evaluate the concave-side rule, which states that during stretch bending the forming limit occurs when the strains on the concave surface plane of the bent sheet (i.e. bottom plane) reach the forming limit curve (FLC). The verification with experimental data indicates that the FEA model represents the process very well. Only conditions where failure occurred on or near the tooling are included in the results. The FEA simulations showed that the actual forming limit of the sheet occurs when the strains on the bottom plane of the sheet (i.e. concave side of the bend) reach the forming limit curve for high friction and small tool radii. For lower friction and for larger tool radii the actual forming limit occurs when strains on other planes in the sheet (i.e. mid planes or top surface plane) reach the forming limit curve. The implications of these results suggest that care must be taken in assessing forming operations when both stretch and bending occur. Although it is known that the FLC cannot predict the forming limit for small bend radii, the common assumption that the forming limit occurs when the strains for the middle thickness plane of the sheet reach the forming limit curve or that the concave side rule is often made. Understanding the limits of this assumption needs to be carefully and critically evaluated.
Hydromagnetic Stagnation-Point Flow towards a Radially Stretching Convectively Heated Disk
Directory of Open Access Journals (Sweden)
S. Shateyi
2013-01-01
Full Text Available The steady stagnation-point flow and heat transfer of an electrically conducted incompressible viscous fluid are extended to the case where the disk surface is convectively heated and radially stretching. The fluid is subjected to an external uniform magnetic field perpendicular to the plane of the disk. The governing momentum and energy balance equations give rise to nonlinear boundary value problem. Using a spectral relaxation method with a Chebyshev spectral collocation method, the numerical solutions are obtained over the entire range of the physical parameters. Emphasis has been laid to study the effects of viscous dissipation and Joule heating on the thermal boundary layer. Pertinent results on the effects of various thermophysical parameters on the velocity and temperature fields as well as local skin friction and local Nusselt number are discussed in detail and shown graphically and/or in tabular form.
Directory of Open Access Journals (Sweden)
M. Jayachandra Babu
Full Text Available The boundary layer flow across a slendering stretching sheet has gotten awesome consideration due to its inexhaustible pragmatic applications in nuclear reactor technology, acoustical components, chemical and manufacturing procedures, for example, polymer extrusion, and machine design. By keeping this in view, we analyzed the two-dimensional MHD flow across a slendering stretching sheet within the sight of variable viscosity and viscous dissipation. The sheet is thought to be convectively warmed. Convective boundary conditions through heat and mass are employed. Similarity transformations used to change over the administering nonlinear partial differential equations as a group of nonlinear ordinary differential equations. Runge-Kutta based shooting technique is utilized to solve the converted equations. Numerical estimations of the physical parameters involved in the problem are calculated for the friction factor, local Nusselt and Sherwood numbers. Viscosity variation parameter and chemical reaction parameter shows the opposite impact to each other on the concentration profile. Heat and mass transfer Biot numbers are helpful to enhance the temperature and concentration respectively. Keywords: MHD, Variable viscosity, Viscous dissipation, Convective boundary conditions, Slendering stretching sheet
Experimental investigation of the stability of a moving radial liquid sheet
Paramati, Manjula; Tirumkudulu, Mahesh
2013-11-01
Experiments were conducted to understand the stability of moving radial liquid sheets formed by the head-on impingement of two co-linear water jets using laser induced fluorescence technique (LIF). Acoustic sinusoidal fluctuations were introduced at the jet impingement point and we measured the displacement of the center line of the liquid sheet (sinuous mode) and the thickness variation (varicose mode) of the disturbed liquid sheet. Our experiments show that the sinuous disturbances grow as they are convected outward in the radial direction even in the smooth regime (We accounts for the inertia of the liquid phase and the surface tension force in a radial liquid sheet while neglecting the inertial effects due to the surrounding gas phase. The authors acknowledge the financial assistance from Indo-French Center for Pro- motion of Advanced Research and also Indian institute of technology Bombay.
Boundary layer flow and heat transfer of Cross fluid over a stretching sheet
Khan, Masood; Rahman, Masood ur
2016-01-01
The current study is a pioneering work in presenting the boundary layer equations for the two-dimensional flow and heat transfer of the Cross fluid over a linearly stretching sheet. The system of partial differential equations is turned down into highly non-linear ordinary differential equations by applying suitable similarity transformations. The stretching sheet solutions are presented via. a numerical technique namely the shooting method and graphs are constructed for the shear-thinning as well as shear-thickening regime. The impact of the emerging parameters namely the power-law index , the local Weissenberg number and the Prandtl number on the velocity and temperature fields are investigated through graphs. Numerical values of the local skin friction coefficient and the local Nusselt number are also presented in tabular form. For some limiting cases, comparisons with previously available results in the literature are made and an excellent agreement is achieved.
MHD convective flow of magnetite-Fe3O4 nanoparticles by curved stretching sheet
Directory of Open Access Journals (Sweden)
Tasawar Hayat
Full Text Available Present work is devoted to convective flow of ferrofluid due to non linear stretching curved sheet. Electrically conducting fluid is considered in the presence of uniform magnetic field. Nanofluid comprises water and magnetite-Fe3O4 as nanoparticles. Thermal radiation and heat generation/absorption are explained. Homotopy concept is utilized for the development of solutions. Highly nonlinear partial differential systems are reduced into the nonlinear ordinary differential system. Impact of non-dimensional radius of curvature and power law index on the physical quantities like fluid pressure, velocity and temperature field are examined. Computations for surface shear stress and heat transfer rate also analyzed. Keywords: MHD nanofluid, Thermal radiation, Porous medium, Convective boundary conditions, Non-linear curved stretching sheet
Directory of Open Access Journals (Sweden)
G. Kumaran
Full Text Available This paper reports the magnetohydrodynamic chemically reacting Casson and Maxwell fluids past a stretching sheet with cross diffusion, non-uniform heat source/sink, thermophoresis and Brownian motion effects. Numerical results are obtained by employing the R-K based shooting method. Effects of pertinent parameters on flow, thermal and concentration fields are discussed with graphical illustrations. We presented the tabular results to discuss the nature of the skin friction coefficient, reduced Nusselt and Sherwood numbers. Dual nature is observed in the solution of Casson and Maxwell fluids. It is also observed a significant increase in heat and mass transfer rate of Maxwell fluid when compared with the Casson fluid. Keywords: Chemical reaction, Casson fluid, Maxwell fluid, Magnetohydrodynamic (MHD, Stretching sheet, Soret and Dufour effect
Directory of Open Access Journals (Sweden)
Phool Singh
2011-01-01
Full Text Available An analysis is made for the steady two-dimensional flow of a viscous incompressible electrically conducting fluid in the vicinity of a stagnation point on a stretching sheet. Fluid is considered in a porous medium under the influence of (itransverse magnetic field, (iivolumetric rate of heat generation/absorption in the presence of radiation effect. Rosseland approximation is used to model the radiative heat transfer. The governing boundary layer equations are transformed to ordinary differential equations by taking suitable similarity variables. In the present reported work the effect of porosity parameter, radiation parameter, magnetic field parameter and the Prandtl number on flow and heat transfer characteristics have been discussed. Variation of above discussed parameters with the ratio of free stream velocity parameter to stretching sheet parameter have been graphically represented.
New approach to the exact solution of viscous flow due to stretching (shrinking and porous sheet
Directory of Open Access Journals (Sweden)
Azhar Ali
Full Text Available Exact analytical solutions for the generalized stretching (shrinking of a porous surface, for the variable suction (injection velocity, is presented in this paper. The solution is generalized in the sense that the existing solutions that correspond to various stretching velocities are recovered as a special case of this study. A suitable similarity transformation is introduced to find self-similar solution of the non-linear governing equations. The flow is characterized by a few non-dimensional parameters signifying the problem completely. These parameters are such that the whole range of stretching (shrinking problems discussed earlier can be recovered by assigning appropriate values to these parameters. A key point of the whole narrative is that a number of earlier works can be abridged into one generalized problem through the introduction of a new similarity transformation and finding its exact solution encompassing all the earlier solutions. Keywords: Exact solutions, New similarities, Permeable and moving sheet
Variational Iteration Method for the Magnetohydrodynamic Flow over a Nonlinear Stretching Sheet
Directory of Open Access Journals (Sweden)
Lan Xu
2013-01-01
Full Text Available The variational iteration method (VIM is applied to solve the boundary layer problem of magnetohydrodynamic flow over a nonlinear stretching sheet. The combination of the VIM and the Padé approximants is shown to be a powerful method for solving two-point boundary value problems consisting of systems of nonlinear differential equations. And the comparison of the obtained results with other available results shows that the method is very effective and convenient for solving boundary layer problems.
Dual solutions of Casson fluid flow over a stretching or shrinking sheet
Indian Academy of Sciences (India)
tions in industry. The flow of various non-Newtonian fluids over stretching or shrinking sheets was analysed by Liao (2003), Hayat et al (2008) and Ishak et al (2012). ..... β = 4.0 β = 5.0. Figure 5. Effects of the Casson parameter on the concentration profiles when λ = 0.01,Pr = Df = Sc = Sr = 0.1, c/a = −1.25. case of a Casson ...
Analysis of boundary layer flow over a porous nonlinearly stretching sheet with partial slip at
Directory of Open Access Journals (Sweden)
Swati Mukhopadhyay
2013-12-01
Full Text Available The boundary layer flow of a viscous incompressible fluid toward a porous nonlinearly stretching sheet is considered in this analysis. Velocity slip is considered instead of no-slip condition at the boundary. Similarity transformations are used to convert the partial differential equation corresponding to the momentum equation into nonlinear ordinary differential equation. Numerical solution of this equation is obtained by shooting method. It is found that the horizontal velocity decreases with increasing slip parameter.
Mesh refinement study and experimental validation for stretch bending of sheet metals
Raupach, M.; Kreissl, S.; Vuaille, L.; Möller, T.; Friebe, H.; Volk, W.
2017-09-01
For sheet metal parts with small radii and large bending angles, the sheet metal forming simulation reaches their application limits. Alternatives are complex shell formulations and volume elements. For volume elements, the necessary number of elements over the thickness is important. Valid values are not available depending on discrete radii. Therefore in this work, a convergence study is performed using the example of an angular stretch bend test with a radius to thickness ratio of 1. For various states of mesh refinement, simulations are performed, various results are presented, analysed and discussed with regard to convergence behaviour to the necessary number of elements in thickness direction. Recommendations for suitable validation variables are derived. Based on the refinement study, a simulation model for an experimental validation is developed. The experiments are carried out in a sheet metal forming machine. Experimental angular stretch bend test with a punch radius of 1 mm are performed until failure and the strain distribution on the top side of the sheet is measured. Finally, simulation and experiments are compared based on the surface strain.
Parameter optimization and stretch enhancement of AISI 316 sheet using rapid prototyping technique
Moayedfar, M.; Rani, A. M.; Hanaei, H.; Ahmad, A.; Tale, A.
2017-10-01
Incremental sheet forming is a flexible manufacturing process which uses the indenter point-to-point force to shape the sheet metal workpiece into manufactured parts in batch production series. However, the problem sometimes arising from this process is the low plastic point in the stress-strain diagram of the material which leads the low stretching amount before ultra-tensile strain point. Hence, a set of experiments is designed to find the optimum forming parameters in this process for optimum sheet thickness distribution while both sides of the sheet are considered for the surface quality improvement. A five-axis high-speed CNC milling machine is employed to deliver the proper motion based on the programming system while the clamping system for holding the sheet metal was a blank mould. Finally, an electron microscope and roughness machine are utilized to evaluate the surface structure of final parts, illustrate any defect may cause during the forming process and examine the roughness of the final part surface accordingly. The best interaction between parameters is obtained with the optimum values which lead the maximum sheet thickness distribution of 4.211e-01 logarithmic elongation when the depth was 24mm with respect to the design. This study demonstrates that this rapid forming method offers an alternative solution for surface quality improvement of 65% avoiding the low probability of cracks and low probability of crystal structure changes.
Munir, Asif; Shahzad, Azeem; Khan, Masood
2014-01-01
The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.
Roşca, Natalia C; Pop, Ioan
2017-01-12
In this paper, the problem of normal impingement rotational stagnation-point flow on a radially permeable stretching sheet in a viscous fluid, recently studied in a very interesting paper, is extended to a water-based nanofluid. A similarity transformation is used to reduce the system of governing nonlinear partial differential equations to a system of ordinary differential equations, which is then solved numerically using the function bvp4c from Matlab. It is found that dual (upper and lower branch) solutions exist for some values of the governing parameters. From the stability analysis, it is found that the upper branch solution is stable, while the lower branch solution is unstable. Sample velocity and temperature profiles along both solution branches are graphically presented.
Flow past a permeable stretching/shrinking sheet in a nanofluid using two-phase model.
Directory of Open Access Journals (Sweden)
Khairy Zaimi
Full Text Available The steady two-dimensional flow and heat transfer over a stretching/shrinking sheet in a nanofluid is investigated using Buongiorno's nanofluid model. Different from the previously published papers, in the present study we consider the case when the nanofluid particle fraction on the boundary is passively rather than actively controlled, which make the model more physically realistic. The governing partial differential equations are transformed into nonlinear ordinary differential equations by a similarity transformation, before being solved numerically by a shooting method. The effects of some governing parameters on the fluid flow and heat transfer characteristics are graphically presented and discussed. Dual solutions are found to exist in a certain range of the suction and stretching/shrinking parameters. Results also indicate that both the skin friction coefficient and the local Nusselt number increase with increasing values of the suction parameter.
Slip flow on stagnation point over a stretching sheet in a viscoelastic nanofluid
Mohamed, M. K. A.; Noar, N. A. Z.; Salleh, M. Z.; Ishak, A.
2017-04-01
In this study, the numerical investigation of stagnation point flow past a stretching sheet immersed in a viscoelastic (Walter's liquid-B model) nanofluid with velocity slip condition and constant wall temperature is considered. The governing equations for the model which is non linear partial differential equations are first transformed by using similarity transformation. Then, the Runge-Kutta-Fehlberg method is employed to solve the transformed ordinary differential equations. Numerical solutions are obtained for the reduced Nusselt number, the Sherwood number and the skin friction coefficient. Further, the effects of slip parameter on the Nusselt number and the Sherwood number are analyzed and discussed. It is found that the heat and mass transfer rate is higher for the Walter's fluid compared to the classical viscous fluid and the presence of the velocity slip reduces the effects of the stretching parameter on the skin friction coefficient.
Mansur, Syahira; Ishak, Anuar; Pop, Ioan
2015-01-01
The magnetohydrodynamic (MHD) stagnation point flow of a nanofluid over a permeable stretching/shrinking sheet is studied. Numerical results are obtained using boundary value problem solver bvp4c in MATLAB for several values of parameters. The numerical results show that dual solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. For the stable solution, the skin friction is higher in the presence of magnetic field and increases when the suction effect is increased. It is also found that increasing the Brownian motion parameter and the thermophoresis parameter reduces the heat transfer rate at the surface.
Viscous Flow over Nonlinearly Stretching Sheet with Effects of Viscous Dissipation
Directory of Open Access Journals (Sweden)
Javad Alinejad
2012-01-01
Full Text Available The flow and heat transfer characteristics of incompressible viscous flow over a nonlinearly stretching sheet with the presence of viscous dissipation is investigated numerically. The similarity transformation reduces the time-independent boundary layer equations for momentum and thermal energy into a set of coupled ordinary differential equations. The obtained equations, including nonlinear equation for the velocity field and differential equation by variable coefficient for the temperature field , are solved numerically by using the fourth order of Runge-Kutta integration scheme accompanied by shooting technique with Newton-Raphson iteration method. The effect of various values of Prandtl number, Eckert number and nonlinear stretching parameter are studied. The results presented graphically show some behaviors such as decrease in dimensionless temperature due to increase in Pr number, and curve relocations are observed when heat dissipation is considered.
Analytical Investigation of Magnetohydrodynamic Flow over a Nonlinear Porous Stretching Sheet
Directory of Open Access Journals (Sweden)
Fazle Mabood
2016-01-01
Full Text Available We investigated the magnetohydrodynamic (MHD boundary layer flow over a nonlinear porous stretching sheet with the help of semianalytical method known as optimal homotopy asymptotic method (OHAM. The effects of different parameters on fluid flow are investigated and discussed. The obtained results are compared with numerical Runge-Kutta-Fehlberg fourth-fifth-order method. It is found that the OHAM solution agrees well with numerical as well as published data for different assigned values of parameters; this thus indicates the feasibility of the proposed method (OHAM.
Heat transfer in MHD flow due to a linearly stretching sheet with induced magnetic field
El-Mistikawy, Tarek M A
2016-01-01
The full MHD problem of the flow and heat transfer due to a linearly stretching sheet in the presence of a transverse magnetic field is put in a self-similar form. Traditionally ignored physical processes such as induced magnetic field, viscous dissipation, Joule heating, and work shear are included and their importance is established. Cases of prescribed surface temperature, prescribed heat flux, surface feed (injection or suction), velocity slip, and thermal slip are also considered. The problem is shown to admit self similarity. Sample numerical solutions are obtained for chosen combinations of the flow parameters.
MHD mass transfer flow of an Eyring-Powell fluid over a stretching sheet
Babu, D. Harish; Sudheer Babu, M.; Narayana, P. V. Satya
2017-11-01
This study investigates the mass transfer flow of Powell-Eyring fluid due to the porous stretching sheet with magnetic field. A second-order approximation of the Eyring-Powell fluid model is used to obtain the flow equations. Using usual similarity transformations, the governing equations have been transformed into non-linear ordinary differential equations and solved by a powerful technique known as shooting method along with R-K fourth order scheme. Graphical results displaying the influence of pertinent physical parameters on the velocity, concentration profile, skin-friction coefficient and Sherwood number are given.
Stagnation-Point Flow towards a Stretching Vertical Sheet with Slip Effects
Directory of Open Access Journals (Sweden)
Khairy Zaimi
2016-04-01
Full Text Available The effects of partial slip on stagnation-point flow and heat transfer due to a stretching vertical sheet is investigated. Using a similarity transformation, the governing partial differential equations are reduced into a system of nonlinear ordinary differential equations. The resulting equations are solved numerically using a shooting method. The effect of slip and buoyancy parameters on the velocity, temperature, skin friction coefficient and the local Nusselt number are graphically presented and discussed. It is found that dual solutions exist in a certain range of slip and buoyancy parameters. The skin friction coefficient decreases while the Nusselt number increases as the slip parameter increases.
Mixed Convection Flow Adjacent to a Stretching Vertical Sheet in a Nanofluid
Directory of Open Access Journals (Sweden)
Nor Azizah Yacob
2013-01-01
Full Text Available The characteristics of fluid flow and heat transfer over a stretching vertical sheet immersed in a nanofluid are investigated numerically in this paper. Three different types of nanoparticles, namely, copper Cu, alumina Al2O3, and titania TiO2, are considered, using water as the base fluid. It is found that nanofluid with titania nanoparticles has better enhancement on the heat transfer rate compared to copper and alumina nanoparticles. For a particular nanoparticle, increasing the nanoparticle fraction is to reduce the skin friction coefficient and the heat transfer rate at the surface.
Najib, Najwa; Bachok, Norfifah; Aziz, Siti Fatima Abdul; Arifin, Norihan Md
2014-07-01
An analysis is carried out to investigate the steady two-dimensional boundary layer stagnation point flow past a permeable stretching/shrinking sheet with chemical reaction. Using a similarity transformation, the governing equations are transformed into coupled, nonlinear ordinary differential equations which are then solved numerically using a shooting method. Effects of uniform suction and injection on the flow and mass transfer characteristics are thoroughly examined. Different from a stretching sheet, it is found that the solutions for a shrinking sheet are non-unique. The range of parameter b/a where the similarity solution exists for the steady stagnation point flow over a stretching/shrinking sheet with suction effect is larger compared with injection effect. The results indicate that the concentration boundary layer thickness decreases with increasing values of Schmidt number and reaction-rate parameter for both solutions.
On Convective Dusty Flow Past a Vertical Stretching Sheet with Internal Heat Absorption
Directory of Open Access Journals (Sweden)
Raj Nandkeolyar
2013-01-01
Full Text Available The steady two-dimensional boundary layer flow of a viscous, incompressible, and electrically conducting dusty fluid past a vertical permeable stretching sheet under the influence of a transverse magnetic field with the viscous and Joule dissipation is investigated. The fluid particles are assumed to be heat absorbing and the temperature at the surface of the sheet is a result of convective heating. The governing nonlinear partial differential equations are transformed to a set of highly nonlinear coupled ordinary differential equations using a suitable similarity transformation and the resulting system is then solved numerically. It is found inter alia that the contributions of viscous and Joule dissipation in the flow are to increase the thickness of the thermal boundary layer.
Directory of Open Access Journals (Sweden)
Krishnendu Bhattacharyya
2014-01-01
Full Text Available A mathematical model of the steady boundary layer flow of nanofluid due to an exponentially permeable stretching sheet with external magnetic field is presented. In the model, the effects of Brownian motion and thermophoresis on heat transfer and nanoparticle volume friction are considered. Using shooting technique with fourth-order Runge-Kutta method the transformed equations are solved. The study reveals that the governing parameters, namely, the magnetic parameter, the wall mass transfer parameter, the Prandtl number, the Lewis number, Brownian motion parameter, and thermophoresis parameter, have major effects on the flow field, the heat transfer, and the nanoparticle volume fraction. The magnetic field makes enhancement in temperature and nanoparticle volume fraction, whereas the wall mass transfer through the porous sheet causes reduction of both. For the Brownian motion, the temperature increases and the nanoparticle volume fraction decreases. Heat transfer rate becomes low with increase of Lewis number. For thermophoresis effect, the thermal boundary layer thickness becomes larger.
Mustafa, Meraj; Farooq, Muhammad A; Hayat, Tasawar; Alsaedi, Ahmed
2013-01-01
This investigation is concerned with the stagnation-point flow of nanofluid past an exponentially stretching sheet. The presence of Brownian motion and thermophoretic effects yields a coupled nonlinear boundary-value problem (BVP). Similarity transformations are invoked to reduce the partial differential equations into ordinary ones. Local similarity solutions are obtained by homotopy analysis method (HAM), which enables us to investigate the effects of parameters at a fixed location above the sheet. The numerical solutions are also derived using the built-in solver bvp4c of the software MATLAB. The results indicate that temperature and the thermal boundary layer thickness appreciably increase when the Brownian motion and thermophoresis effects are strengthened. Moreover the nanoparticles volume fraction is found to increase when the thermophoretic effect intensifies.
Heat Transfer of Viscoelastic Fluid Flow due to Nonlinear Stretching Sheet with Internal Heat Source
Nandeppanavar, M. M.; Siddalingappa, M. N.; Jyoti, H.
2013-08-01
In the present paper, a viscoelastic boundary layer flow and heat transfer over an exponentially stretching continuous sheet in the presence of a heat source/sink has been examined. Loss of energy due to viscous dissipation of the non-Newtonian fluid has been taken into account in this study. Approximate analytical local similar solutions of the highly non-linear momentum equation are obtained for velocity distribution by transforming the equation into Riccati-type and then solving this sequentially. Accuracy of the zero-order analytical solutions for the stream function and velocity are verified by numerical solutions obtained by employing the Runge-Kutta fourth order method involving shooting. Similarity solutions of the temperature equation for non-isothermal boundary conditions are obtained in the form of confluent hypergeometric functions. The effect of various physical parameters on the local skin-friction coefficient and heat transfer characteristics are discussed in detail. It is seen that the rate of heat transfer from the stretching sheet to the fluid can be controlled by suitably choosing the values of the Prandtl number Pr and local Eckert number E, local viscioelastic parameter k*1 and local heat source/ sink parameter β*
Flow and Heat Transfer in a Newtonian Nanoliquid due to a Curved Stretching Sheet
Siddheshwar, Pradeep Ganapathi; Nerolu, Meenakshi; Pažanin, Igor
2017-08-01
Flow of a Newtonian nanoliquid due to a curved stretching sheet and heat transfer in it is studied. The governing nonlinear partial differential equations are reduced to nonlinear ordinary differential equations with variable coefficients by using a similarity transformation. The flow characteristics are studied using plots of flow velocity components and the skin-friction coefficient as a function of suction-injection parameter, curvature, and volume fraction. Prescribed surface temperature and prescribed surface heat flux are considered for studying the temperature distribution in the flow. The thermophysical properties of 20 nanoliquids are considered in the investigation by modeling them through the use of phenomenological laws and mixture theory. The results of the corresponding problem involving a plane stretching sheet is obtained as a particular case of those obtained in the present paper. Skin friction coefficient and Nusselt number are evaluated and it is observed that skin friction coefficient decreases with concentration of nanoparticles in the absence as well as presence of suction where as Nusselt number increases with increase in concentration of nanoparticles in a dilute range.
MHD flow over a permeable stretching/shrinking sheet of a nanofluid with suction/injection
Directory of Open Access Journals (Sweden)
Sandeep Naramgari
2016-06-01
Full Text Available In this study we analyzed the influence of thermal radiation and chemical reaction on two dimensional steady magnetohydrodynamic flow of a nanofluid past a permeable stretching/shrinking sheet in the presence of suction/injection. We considered nanofluid volume fraction on the boundary is submissive controlled, which makes the present study entirely different from earlier studies and physically more realistic. The equations governing the flow are solved numerically. Effects of non-dimensional governing parameters on velocity, temperature and concentration profiles are discussed and presented through graphs. Also, coefficient of skin friction and local Nusselt number is investigated for stretching/shrinking and suction/injection cases separately and presented through tables. Comparisons with existed results are presented. Present results have an excellent agreement with the existed studies under some special assumptions. Results indicate that the enhancement in Brownian motion and thermophoresis parameters depreciates the nanoparticle concentration and increases the mass transfer rate. Dual solutions exist only for certain range of stretching/shrinking and suction/injection parameters.
Method for measuring tri-axial lumbar motion angles using wearable sheet stretch sensors.
Directory of Open Access Journals (Sweden)
Akio Yamamoto
Full Text Available Body movements, such as trunk flexion and rotation, are risk factors for low back pain in occupational settings, especially in healthcare workers. Wearable motion capture systems are potentially useful to monitor lower back movement in healthcare workers to help avoid the risk factors. In this study, we propose a novel system using sheet stretch sensors and investigate the system validity for estimating lower back movement.Six volunteers (female:male = 1:1, mean age: 24.8 ± 4.0 years, height 166.7 ± 5.6 cm, weight 56.3 ± 7.6 kg participated in test protocols that involved executing seven types of movements. The movements were three uniaxial trunk movements (i.e., trunk flexion-extension, trunk side-bending, and trunk rotation and four multiaxial trunk movements (i.e., flexion + rotation, flexion + side-bending, side-bending + rotation, and moving around the cranial-caudal axis. Each trial lasted for approximately 30 s. Four stretch sensors were attached to each participant's lower back. The lumbar motion angles were estimated using simple linear regression analysis based on the stretch sensor outputs and compared with those obtained by the optical motion capture system.The estimated lumbar motion angles showed a good correlation with the actual angles, with correlation values of r = 0.68 (SD = 0.35, r = 0.60 (SD = 0.19, and r = 0.72 (SD = 0.18 for the flexion-extension, side bending, and rotation movements, respectively (all P < 0.05. The estimation errors in all three directions were less than 3°.The stretch sensors mounted on the back provided reasonable estimates of the lumbar motion angles. The novel motion capture system provided three directional angles without capture space limits. The wearable system possessed great potential to monitor the lower back movement in healthcare workers and helping prevent low back pain.
Directory of Open Access Journals (Sweden)
M. Suali
2012-01-01
Full Text Available The unsteady stagnation point flow and heat transfer over a stretching/shrinking sheet with suction/injection is studied. The governing partial differential equations are converted into nonlinear ordinary differential equations using a similarity transformation and solved numerically. Both stretching and shrinking cases are considered. Results for the skin friction coefficient, local Nusselt number, velocity, and temperature profiles are presented for different values of the governing parameters. It is found that the dual solutions exist for the shrinking case, whereas the solution is unique for the stretching case. Numerical results show that the range of dual solutions increases with mass suction and decreases with mass injection.
Directory of Open Access Journals (Sweden)
Khairy Zaimi
2014-01-01
Full Text Available This paper considers the problem of a steady two-dimensional stagnation-point flow and heat transfer of an incompressible micropolar fluid over a nonlinearly stretching/shrinking sheet. A similarity transformation is employed to convert the partial differential equations into nonlinear ordinary ones which are then solved numerically using a shooting method. Numerical results obtained are presented graphically, showing the effects of the micropolar or material parameter and the stretching/shrinking parameter on the flow field and heat transfer characteristics. The dual solutions are found to exist in a limited range of the stretching/shrinking parameter for the shrinking case, while unique solutions are possible for all positive values of the stretching/shrinking parameter (stretching case. It is also observed that the skin friction coefficient and the magnitude of the local Nusselt number increase as the material parameter increases.
A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet
Energy Technology Data Exchange (ETDEWEB)
Ahmed, Jawad; Shahzad, Azeem [Department of Basic Sciences, University of Engineering and Technology, Taxila 47050 (Pakistan); Khan, Masood [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan); Ali, Ramzan, E-mail: alian.qau@gmail.com [Department of Applied Mathematics, TU-Dortmund (Germany); University of Central Asia, 720001 Bishkek (Kyrgyzstan)
2015-11-15
This article focuses on the exact solution regarding convective heat transfer of a magnetohydrodynamic (MHD) Jeffrey fluid over a stretching sheet. The effects of joule and viscous dissipation, internal heat source/sink and thermal radiation on the heat transfer characteristics are taken in account in the presence of a transverse magnetic field for two types of boundary heating process namely prescribed power law surface temperature (PST) and prescribed heat flux (PHF). Similarity transformations are used to reduce the governing non-linear momentum and thermal boundary layer equations into a set of ordinary differential equations. The exact solutions of the reduced ordinary differential equations are developed in the form of confluent hypergeometric function. The influence of the pertinent parameters on the temperature profile is examined. In addition the results for the wall temperature gradient are also discussed in detail.
Directory of Open Access Journals (Sweden)
Kai-Long Hsiao
2010-01-01
Full Text Available A magnetic hydrodynamic (MHD of an incompressible viscoelastic fluid over a stretching sheet with electric and magnetic dissipation and nonuniform heat source/sink has been studied. The buoyant effect and the electric number E1 couple with magnetic parameter M to represent the dominance of the electric and magnetic effects, and adding the specific item of nonuniform heat source/sink is presented in governing equations which are the main contribution of this study. The similarity transformation, the finite-difference method, Newton method, and Gauss elimination method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, and the important wall unknown values of f''(0 and θ'(0 have been carried out. The parameter Pr, E1, or Ec can increase the heat transfer effects, but the parameter M or A* may decrease the heat transfer effects.
A note on convective heat transfer of an MHD Jeffrey fluid over a stretching sheet
Directory of Open Access Journals (Sweden)
Jawad Ahmed
2015-11-01
Full Text Available This article focuses on the exact solution regarding convective heat transfer of a magnetohydrodynamic (MHD Jeffrey fluid over a stretching sheet. The effects of joule and viscous dissipation, internal heat source/sink and thermal radiation on the heat transfer characteristics are taken in account in the presence of a transverse magnetic field for two types of boundary heating process namely prescribed power law surface temperature (PST and prescribed heat flux (PHF. Similarity transformations are used to reduce the governing non-linear momentum and thermal boundary layer equations into a set of ordinary differential equations. The exact solutions of the reduced ordinary differential equations are developed in the form of confluent hypergeometric function. The influence of the pertinent parameters on the temperature profile is examined. In addition the results for the wall temperature gradient are also discussed in detail.
Murtaza, M. G.; Tzirtzilakis, E. E.; Ferdows, M.
2017-08-01
The biomagnetic fluid flow (blood) over a stretching sheet in the presence of magnetic field is studied. For the mathematical formulation of the problem both magnetization and electrical conductivity of blood are taken into account and consequently both principles of magnetohydrodynamics (MHD) and ferrohydrodynamics (FHD) are adopted. The physical problem is described by a coupled, nonlinear system of ordinary differential equations subject to appropriate boundary conditions. This solution is obtained numerically by applying an efficient numerical technique based on finite differences method. The obtained results are presented graphically for different values of the parameters entering into the problem under consideration. Emphasis is given to the study of the effect of the MHD and FHD interaction parameters on the flow field. It is apparent that both parameters effect significantly on various characteristics of the flow and consequently neither electrical conductivity nor magnetization of blood could be neglected.
Mixed Convection Unsteady Stagnation-Point Flow towards a Stretching Sheet with Slip Effects
Directory of Open Access Journals (Sweden)
Hui Chen
2014-01-01
Full Text Available The paper studies the unsteady mixed convection flow of an incompressible viscous fluid about a stagnation point on a stretching sheet in presence of velocity and thermal slips. The governing equations are transformed into the ordinary differential equations by using similarity transformations. The transformed equations are solved numerically by an efficient shooting method. The characteristics of the flow and heat transfer features for governing parameters are analyzed and discussed for both the assisting and opposing flows. It is found that dual solutions exist for certain range of buoyancy parameter λ which again depend on the unsteadiness parameter α and the slip parameters (i.e., δ and γ. The numerical results show that the increase of unsteadiness parameter and the slip effects cause increment in the existence range of similarity solution. The effects of unsteadiness parameter, the velocity ratio parameter, and the velocity and thermal slip parameters on the velocity and temperature distributions are analyzed and discussed.
Unsteady MHD nanofluid flow over a stretching sheet with chemical reaction
Tarakaramu, Nainaru; Narayan, P. V. Satya
2017-11-01
The unsteady magnetohydrodynamic (MHD) mass transfer flow of an incompressible, electrically conducting nanofluid past a porous stretching sheet has been considered. In this study we considered three different types of water based nanofluids viz., copper (Cu), aluminum oxide Al2O3, and titanium dioxide (TiO2). By using appropriate similarity transformations, the governing partial differential equations of momentum and concentration are converted into a set of non-linear ordinary differential equations. The resulting equations are then solved numerically by using shooting method along with R-K fourth order scheme. The effects of diverse flow physical parameters on the flow fields and mass transfer are illustrated graphically. It is found that the influence of unsteady parameter on skin friction coefficient and Sherwood number is opposite.
Flow over Exponentially Stretching Sheet through Porous Medium with Heat Source/Sink
Directory of Open Access Journals (Sweden)
I. Swain
2015-01-01
Full Text Available An attempt has been made to study the heat and mass transfer effect in a boundary layer MHD flow of an electrically conducting viscous fluid subject to transverse magnetic field on an exponentially stretching sheet through porous medium. The effect of thermal radiation and heat source/sink has also been discussed in this paper. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations and then solved numerically using a fourth-order Runge-Kutta method with a shooting technique. Graphical results are displayed for nondimensional velocity, temperature, and concentration profiles while numerical values of the skin friction local Nusselt number and Sherwood number are presented in tabular form for various values of parameters controlling the flow system.
Directory of Open Access Journals (Sweden)
Kalidas Das
2016-10-01
Full Text Available The present work is concerned with heat and mass transfer of an electrically conducting second grade MHD fluid past a semi-infinite stretching sheet with convective surface heat flux. The analysis accounts for thermophoresis and thermal radiation. A similarity transformations is used to reduce the governing equations into a dimensionless form. The local similarity equations are derived and solved using Nachtsheim-Swigert shooting iteration technique together with Runge–Kutta sixth order integration scheme. Results for various flow characteristics are presented through graphs and tables delineating the effect of various parameters characterizing the flow. Our analysis explores that the rate of heat transfer enhances with increasing the values of the surface convection parameter. Also the fluid velocity and temperature in the boundary layer region rise significantly for increasing the values of thermal radiation parameter.
MHD Jeffrey nanofluid past a stretching sheet with viscous dissipation effect
Zokri, S. M.; Arifin, N. S.; Salleh, M. Z.; Kasim, A. R. M.; Mohammad, N. F.; Yusoff, W. N. S. W.
2017-09-01
This study investigates the influence of viscous dissipation on magnetohydrodynamic (MHD) flow of Jeffrey nanofluid over a stretching sheet with convective boundary conditions. The nonlinear partial differential equations are reduced into the nonlinear ordinary differential equations by utilizing the similarity transformation variables. The Runge-Kutta Fehlberg method is used to solve the problem numerically. The numerical solutions obtained are presented graphically for several dimensionless parameters such as Brownian motion, Lewis number and Eckert number on the specified temperature and concentration profiles. It is noted that the temperature profile is accelerated due to increasing values of Brownian motion parameter and Eckert number. In contrast, both the Brownian motion parameter and Lewis number have caused the deceleration in the concentration profiles.
Entropy Generation in Magnetohydrodynamic Mixed Convection Flow over an Inclined Stretching Sheet
Directory of Open Access Journals (Sweden)
Muhammad Idrees Afridi
2016-12-01
Full Text Available This research focuses on entropy generation rate per unit volume in magneto-hydrodynamic (MHD mixed convection boundary layer flow of a viscous fluid over an inclined stretching sheet. Analysis has been performed in the presence of viscous dissipation and non-isothermal boundary conditions. The governing boundary layer equations are transformed into ordinary differential equations by an appropriate similarity transformation. The transformed coupled nonlinear ordinary differential equations are then solved numerically by a shooting technique along with the Runge-Kutta method. Expressions for entropy generation (Ns and Bejan number (Be in the form of dimensionless variables are also obtained. Impact of various physical parameters on the quantities of interest is seen.
Effects of viscous dissipation and heat source on unsteady MHD flow over a stretching sheet
Directory of Open Access Journals (Sweden)
Machireddy Gnaneswara Reddy
2015-12-01
Full Text Available The aim of this paper is to present the unsteady magnetohydrodynamic (MHD boundary layer flow and heat transfer of a fluid over a stretching sheet in the presence of viscous dissipation and heat source. Utilizing a similarity variable, the governing nonlinear partial differential equations are first transformed into ordinary differential equations before they are solved numerically by applying Keller Box method. Effects of physical parameters on the dimensionless velocity and temperature profiles were depicted graphically and analyzed in detail. The numerical predictions have been compared with already published papers and good agreement is obtained. Finally, numerical values of physical quantities such as the skin friction coefficient and the local Nusselt number are presented in tabular form. Heat transfer rate at the surface increases with increasing values of Prandtl number and unsteadiness parameter whereas it decreases with magnetic parameter, radiation parameter, Eckert number and heat source parameter.
Bakar, Nor Ashikin Abu; Bachok, Norfifah; Arifin, Norihan Md.
2017-08-01
The boundary layer flow and heat transfer in rotating nanofluid over a stretching sheet using Buongiorno model and thermophysical properties of nanoliquids is studied. Four types of nanoparticles, namely silver (Ag), copper (Cu), alumina (Al2O3) and titania (TiO2) are used in our analysis with water as the base fluid (Prandtl number, Pr = 6.2). The nonlinear partial differential equations are transformed into ordinary differential equations by using the similarity transformation. The numerical solutions of these equation is obtained using shooting method in Maple software. The numerical results is concentrated on the effects of nanoparticle volume fraction φ, Brownian motion Nb, thermophoresis Nt, rotation Ω and suction S parameters on the skin friction coefficient and heat transfer rate. Dual solutions are observed in a certain range of the rotating parameter.
Directory of Open Access Journals (Sweden)
Chenguang Yin
2017-03-01
Full Text Available This paper studies flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate. Three types of nanoparticles-Cu, Al2O3 and CuO-with water-based nanofluids are considered. The governing equations are reduced by Von Karman transformation and then solved by the homotopy analysis method (HAM, which is in close agreement with numerical results. Results indicate that with increasing in stretching strength parameter, the skin friction and the local Nusselt number, the velocity in radial and axial directions increase, whereas the velocity in tangential direction and the thermal boundary layer thickness decrease, respectively. Moreover, the effects of volume fraction and types of nanofluids on velocity and temperature fields are also analyzed.
Directory of Open Access Journals (Sweden)
Syahira Mansur
2014-01-01
Full Text Available The magnetohydrodynamic (MHD boundary layer flow of a nanofluid past a stretching/shrinking sheet with velocity, thermal, and solutal slip boundary conditions is studied. Numerical solutions to the governing equations were obtained using a shooting method. The skin friction coefficient and the local Sherwood number increase as the stretching/shrinking parameter increases. However, the local Nusselt number decreases with increasing the stretching/shrinking parameter. The range of the stretching/shrinking parameter for which the solution exists increases as the velocity slip parameter and the magnetic parameter increase. For the shrinking sheet, the skin friction coefficient increases as the velocity slip parameter and the magnetic parameter increase. For the stretching sheet, it decreases when the velocity slip parameter and the magnetic parameter increase. The local Nusselt number diminishes as the thermal slip parameter increases while the local Sherwood number decreases with increasing the solutal slip parameter. The local Nusselt number is lower for higher values of Lewis number, Brownian motion parameter, and thermophoresis parameter.
Directory of Open Access Journals (Sweden)
Domingo Morales-Palma
2017-11-01
Full Text Available The maximum force criteria and their derivatives, the Swift and Hill criteria, have been extensively used in the past to study sheet formability. Many extensions or modifications of these criteria have been proposed to improve necking predictions under only stretching conditions. This work analyses the maximum force principle under stretch-bending conditions and develops two different approaches to predict necking. The first is a generalisation of classical maximum force criteria to stretch-bending processes. The second approach is an extension of a previous work of the authors based on critical distance concepts, suggesting that necking of the sheet is controlled by the damage of a critical material volume located at the inner side of the sheet. An analytical deformation model is proposed to characterise the stretch-bending process under plane-strain conditions. Different parameters are considered, such as the thickness reduction, the gradient of variables through the sheet thickness, the thickness stress and the anisotropy of the material. The proposed necking models have been successfully applied to predict the failure in different materials, such as steel, brass and aluminium.
DEFF Research Database (Denmark)
Sheikholeslami, R; Ashorynejad, H.R; Barari, Amin
2013-01-01
Purpose – The purpose of this paper is to analyze hydromagnetic flow between two horizontal plates in a rotating system. The bottom plate is a stretching sheet and the top one is a solid porous plate. Heat transfer in an electrically conducting fluid bounded by two parallel plates is also studied...
El-Mistikawy, Tarek M A
2016-01-01
The equations governing the magnetohydrodynamic stagnation point flow toward a non-conducting, thermally insulated, nonporous, linearly stretching sheet are cast in a self similar form. Consistent boundary conditions on the velocity, magnetic field and temperature are invoked. The flow problem involves three parameters- the magnetic Prandtl number, the magnetic interaction number, and the ratio of the stretching rate to the strength of the stagnation point flow. The energy equation includes viscous dissipation and Joule heating, and introduces the Prandtl number as a fourth parameter. Numerical solutions are obtained and sample results are presented.
Ishak, Nazila; Hashim, Hasmawani; Khairul Anuar Mohamed, Muhammad; Sarif, Norhafizah Md; Rosli, Norhayati; Zuki Salleh, Mohd
2017-09-01
In this study, the numerical solution of the thermal radiation effects on a stagnation point flow past a stretching/shrinking sheet in a Maxwell fluid with slip condition is considered. The transformed boundary layer equations are solved numerically using the Runge-Kutta-Fehlberg (RKF) method. Numerical solutions are obtained for the skin friction coefficient and the wall temperature as well as the temperature and the velocity profiles. The features of the flow and the heat transfer characteristics for various values of Prandtl number, stretching/shrinking parameter, thermal radiation parameter, Maxwell parameter, dimensionless velocity slip parameter and thermal slip parameter are analyzed and discussed.
Directory of Open Access Journals (Sweden)
Ibukun Sarah Oyelakin
2016-06-01
Full Text Available In this paper we report on combined Dufour and Soret effects on the heat and mass transfer in a Casson nanofluid flow over an unsteady stretching sheet with thermal radiation and heat generation. The effects of partial slip on the velocity at the boundary, convective thermal boundary condition, Brownian and thermophoresis diffusion coefficients on the concentration boundary condition are investigated. The model equations are solved using the spectral relaxation method. The results indicate that the fluid flow, temperature and concentration profiles are significantly influenced by the fluid unsteadiness, the Casson parameter, magnetic parameter and the velocity slip. The effect of increasing the Casson parameter is to suppress the velocity and temperature growth. An increase in the Dufour parameter reduces the flow temperature, while an increase in the value of the Soret parameter causes increase in the concentration of the fluid. Again, increasing the velocity slip parameter reduces the velocity profile whereas increasing the heat generation parameter increases the temperature profile. A validation of the work is presented by comparing the current results with existing literature.
Nur Wahida Khalili, Noran; Aziz Samson, Abdul; Aziz, Ahmad Sukri Abdul; Ali, Zaileha Md
2017-09-01
In this study, the problem of MHD boundary layer flow past an exponentially stretching sheet with chemical reaction and radiation effects with heat sink is studied. The governing system of PDEs is transformed into a system of ODEs. Then, the system is solved numerically by using Runge-Kutta-Fehlberg fourth fifth order (RKF45) method available in MAPLE 15 software. The numerical results obtained are presented graphically for the velocity, temperature and concentration. The effects of various parameters are studied and analyzed. The numerical values for local Nusselt number, skin friction coefficient and local Sherwood number are tabulated and discussed. The study shows that various parameters give significant effect on the profiles of the fluid flow. It is observed that the reaction rate parameter affected the concentration profiles significantly and the concentration thickness of boundary layer decreases when reaction rate parameter increases. The analysis found is validated by comparing with the results previous work done and it is found to be in good agreement.
Hamid, Rohana Abdul; Nazar, Roslinda; Pop, Ioan
2015-10-06
The paper deals with a stagnation-point boundary layer flow towards a permeable stretching/shrinking sheet in a nanofluid where the flow and the sheet are not aligned. We used the Buongiorno model that is based on the Brownian diffusion and thermophoresis to describe the nanofluid in this problem. The main purpose of the present paper is to examine whether the non-alignment function has the effect on the problem considered when the fluid suction and injection are imposed. It is interesting to note that the non-alignment function can ruin the symmetry of the flows and prominent in the shrinking sheet. The fluid suction will reduce the impact of the non-alignment function of the stagnation flow and the stretching/shrinking sheet but at the same time increasing the velocity profiles and the shear stress at the surface. Furthermore, the effects of the pertinent parameters such as the Brownian motion, thermophoresis, Lewis number and the suction/injection on the flow and heat transfer characteristics are also taken into consideration. The numerical results are shown in the tables and the figures. It is worth mentioning that dual solutions are found to exist for the shrinking sheet.
Duc, Van Pham; Kobayashi, Junya; Sugimoto, Koh-Ichi
2014-01-01
The effects of Cr, Mo, and Ni addition on the microstructure and stretch-flangeability of a 0.2%C-1.5%Si-1.5%Mn-0.05%Nb (mass%) transformation-induced plasticity (TRIP)-aided martensitic steel sheet produced by an isothermal transformation process at a temperature below martensite transformation-finish temperatures were investigated in order to develop third-generation steel sheet for automobiles requiring high hardenability. When 0.5% or 1.0% Cr was added to the base steel, a tensile strengt...
MHD flow and heat transfer due to the axisymmetric stretching of a sheet with induced magnetic field
El-Mistikawy, Tarek M A
2016-01-01
The full MHD equations, governing the flow due to the axisymmetric stretching of a sheet in the presence of a transverse magnetic field, can be cast in a self similar form. This allows evaluation of the induced magnetic field and its effect on the flow and heat transfer. The problem involves three parameters- the magnetic Prandtl number, the magnetic interaction number, and the Prandtl number. Numerical solutions are obtained for the velocity field, the magnetic field, and the temperature, at different values of the magnetic Prandtl number and the magnetic interaction number. The contributions of the viscous dissipation, Joule heating, and streamwise diffusion to the heat flux toward the sheet are assessed.
Directory of Open Access Journals (Sweden)
A. Malvandi
2013-01-01
Full Text Available This paper deals with the steady two-dimensional stagnation point flow of nanofluid toward an exponentially stretching sheet with nonuniform heat generation/absorption. The employed model for nanofluid includes two-component four-equation nonhomogeneous equilibrium model that incorporates the effects of Brownian diffusion and thermophoresis simultaneously. The basic partial boundary layer equations have been reduced to a two-point boundary value problem via similarity variables and solved analytically via HAM. Effects of governing parameters such as heat generation/absorption λ, stretching parameter ε, thermophoresis , Lewis number Le, Brownian motion , and Prandtl number Pr on heat transfer and concentration rates are investigated. The obtained results indicate that in contrast with heat transfer rate, concentration rate is very sensitive to the abovementioned parameters. Also, in the case of heat generation , despite concentration rate, heat transfer rate decreases. Moreover, increasing in stretching parameter leads to a gentle rise in both heat transfer and concentration rates.
M. Jayachandra Babu; N. Sandeep
2016-01-01
In this study, we inquired the cross-diffusion effects on the magnetohydrodynamic Williamson fluid flow across a variable thickness stretching sheet by viewing velocity slip. With the aid of Runge-Kutta based shooting process, we resolved the transformed differential equations numerically. The effects of different dimensionless parameters on three usual profiles (velocity, temperature, concentration) along with skin friction coefficient, heat transfer rate and mass transfer rate are examined ...
Ullah, Imran; Khan, Ilyas; Shafie, Sharidan
2016-12-01
In the present work, the effects of chemical reaction on hydromagnetic natural convection flow of Casson nanofluid induced due to nonlinearly stretching sheet immersed in a porous medium under the influence of thermal radiation and convective boundary condition are performed numerically. Moreover, the effects of velocity slip at stretching sheet wall are also examined in this study. The highly nonlinear-coupled governing equations are converted to nonlinear ordinary differential equations via similarity transformations. The transformed governing equations are then solved numerically using the Keller box method and graphical results for velocity, temperature, and nanoparticle concentration as well as wall shear stress, heat, and mass transfer rate are achieved through MATLAB software. Numerical results for the wall shear stress and heat transfer rate are presented in tabular form and compared with previously published work. Comparison reveals that the results are in good agreement. Findings of this work demonstrate that Casson fluids are better to control the temperature and nanoparticle concentration as compared to Newtonian fluid when the sheet is stretched in a nonlinear way. Also, the presence of suspended nanoparticles effectively promotes the heat transfer mechanism in the base fluid.
Parand, Kourosh; Lotfi, Yasaman; Amani Rad, Jamal
2017-09-01
In this study, coupling the quasilinearization method (QLM) and indirect radial basis functions (IRBFs) method is proposed for solving the boundary layer flow of an Eyring-Powell fluid over an stretching sheet in unbounded domain. The QLM is used as a tool for confronting the nonlinearity of the problem and then the IRBFs method leads to stable computations for this problem. The IRBFs-QLM meshless method offers several advantages over the more conventional radial basis function approximation, nevertheless it has never been applied to problems in computational fluid dynamics (CFD), at least to the very best of our knowledge. It should be noted that the IRBFs-QLM scheme leads to full system equations which their coefficient matrices are the same for every QLM step. Therefore, we use a powerful non-iterative algorithm named the LU factorization method with partial pivoting to get rid of this system. Numerical results involving comparisons made with other methods indicate the numerically convergence of the proposed new method in this work. Effects of the material fluid parameters on the velocity field function and its derivative are also noteworthy to verify the accuracy of the proposed new approach and to demonstrate the superior performance of the IRBFs-QLM compared with spectral techniques presented elsewhere.
National Research Council Canada - National Science Library
Rahman Abdel-Gamal M
2013-01-01
The unsteady flow and heat transfer in an incompressible laminar, electrically conducting and non-Newtonian fluid over a non-isothermal stretching sheet with the variation in the viscosity and thermal...
Directory of Open Access Journals (Sweden)
Krishnendu Bhattacharyya
2013-06-01
Full Text Available The heat transfer in unsteady boundary layer stagnation-point flow over a shrinking/stretching sheet is investigated. The surface temperature of the sheet is taken time dependent. The governing equations are transformed into self-similar ordinary differential equations by adopting similarity transformations and then the converted equations are solved numerically by shooting method. The study reveals that in addition to the velocity field, for the temperature distribution the dual solutions exist for some values of velocity ratio parameter. The heat transfer rate enhances due to the unsteadiness of the flow. The temperature for first solution decreases with unsteadiness parameter, and for second solution the temperature initially decreases, but it increases at large distance from the sheet. Moreover, for dual solutions as well as unique solution cases, the heat transfer rate increases with the Prandtl number in presence of unsteadiness.
Khan, Mair; Malik, M. Y.; Salahuddin, T.; Hussian, Arif.
2018-03-01
The present analysis is devoted to explore the computational solution of the problem addressing the variable viscosity and inclined Lorentz force effects on Williamson nanofluid over a stretching sheet. Variable viscosity is assumed to vary as a linear function of temperature. The basic mathematical modelled problem i.e. system of PDE's is converted nonlinear into ODE's via applying suitable transformations. Computational solutions of the problem is also achieved via efficient numerical technique shooting. Characteristics of controlling parameters i.e. stretching index, inclined angle, Hartmann number, Weissenberg number, variable viscosity parameter, mixed convention parameter, Brownian motion parameter, Prandtl number, Lewis number, thermophoresis parameter and chemical reactive species on concentration, temperature and velocity gradient. Additionally, friction factor coefficient, Nusselt number and Sherwood number are describe with the help of graphics as well as tables verses flow controlling parameters.
Two-Dimensional Stagnation-Point Velocity-Slip Flow and Heat Transfer over Porous Stretching Sheet
Directory of Open Access Journals (Sweden)
FEROZ AHMED SOOMRO
2016-10-01
Full Text Available Present paper investigates 2D (Two-Dimensional stagnation-point velocity-slip flow over porous stretching sheet. The governing non-linear PDEs (Partial Differential Equations are non-dimensionlized by using the similarity transformation technique that results into coupled non-linear ODEs (Ordinary Differential Equations. Such ODEs are then solved by using shooting technique with fourth-order Runge-Kutta method. Since the behavior of boundary layer stagnation-point flow depends on the rate of cooling and stretching. Therefore, the main objective of this paper is to analyze the effects of different working parameters on shear stress, heat transfer, velocity and temperature of fluid. The results revealed that the velocity-slip has significant effect on the fluid flow as well as on the heat transfer. The numerical results are also compared with existing work for no-slip condition and found to have good agreement with improved asymptotic behavior.
Substorm‐associated explosive magnetic field stretching near the earthward edge of the plasma sheet
National Research Council Canada - National Science Library
Kozelova, T. V; Kozelov, B. V
2013-01-01
We report a detailed analysis of explosive local magnetic field line stretching just before dipolarization observed by one of Time History of Events and Macroscale Interactions during Substorms (THEMIS...
Directory of Open Access Journals (Sweden)
S. Mohammed Ibrahim
2014-01-01
Full Text Available The steady two-dimensional radiative MHD boundary layer flow of an incompressible, viscous, electrically conducting fluid caused by a nonisothermal linearly stretching sheet placed at the bottom of fluid saturated porous medium in the presence of viscous dissipation and chemical reaction is studied. The governing system of partial differential equations is converted to ordinary differential equations by using the similarity transformations, which are then solved by shooting method. The dimensionless velocity, temperature, and concentration are computed for different thermophysical parameters, namely, the magnetic parameter, permeability parameter, radiation parameter, wall temperature parameter, Prandtl number, Eckert number, Schmidt number, and chemical reaction.
Directory of Open Access Journals (Sweden)
Sushila
2013-09-01
Full Text Available In this paper, we present an efficient analytical approach based on new homotopy perturbation sumudu transform method (HPSTM to investigate the magnetohydrodynamics (MHD viscous flow due to a stretching sheet. The viscous fluid is electrically conducting in the presence of magnetic field and the induced magnetic field is neglected for small magnetic Reynolds number. Finally, some numerical comparisons among the new HPSTM, the homotopy perturbation method and the exact solution have been made. The numerical solutions obtained by the proposed method show that the approach is easy to implement and computationally very attractive.
Directory of Open Access Journals (Sweden)
Sharma Pushkar Raj
2009-01-01
Full Text Available Aim of the paper is to investigate effects of ohmic heating and viscous dissipation on steady flow of a viscous incompressible electrically conducting fluid in the presence of uniform transverse magnetic field and variable free stream near a stagnation point on a stretching non-conducting isothermal sheet. The governing equations of continuity, momentum, and energy are transformed into ordinary differential equations and solved numerically using Runge-Kutta fourth order with shooting technique. The velocity and temperature distributions are discussed numerically and presented through graphs. Skin-friction coefficient and the Nusselt number at the sheet are derived, discussed numerically, and their numerical values for various values of physical parameters are compared with earlier results and presented through tables.
Directory of Open Access Journals (Sweden)
Wubshet Ibrahim
2015-12-01
Full Text Available Two-dimensional boundary layer flow of nanofluid fluid past a stretching sheet is examined. The paper reveals the effect of non-linear radiative heat transfer on magnetohydrodynamic (MHD stagnation point flow past a stretching sheet with convective heating. Condition of zero normal flux of nanoparticles at the wall for the stretched flow is considered. The nanoparticle fractions on the boundary are considered to be passively controlled. The solution for the velocity, temperature and nanoparticle concentration depends on parameters viz. Prandtl number Pr, velocity ratio parameter A, magnetic parameter M, Lewis number Le, Brownian motion Nb, and the thermophoresis parameter Nt. Moreover, the problem is governed by temperature ratio parameter (Nr=TfT∞ and radiation parameter Rd. Similarity transformation is used to reduce the governing non-linear boundary-value problems into coupled higher order non-linear ordinary differential equation. These equations were numerically solved using the function bvp4c from the matlab software for different values of governing parameters. Numerical results are obtained for velocity, temperature and concentration, as well as the skin friction coefficient and local Nusselt number. The results indicate that the skin friction coefficient Cf increases as the values of magnetic parameter M increase and decreases as the values of velocity ratio parameter A increase. The local Nusselt number −θ′(0 decreases as the values of thermophoresis parameter Nt and radiation parameter Nr increase and it increases as the values of both Biot number Bi and Prandtl number Pr increase. Furthermore, radiation has a positive effect on temperature and concentration profiles.
Dual solutions of Casson fluid flow over a stretching or shrinking sheet
Indian Academy of Sciences (India)
A comparison is made with the results available in the literature and found to be in good agreement. Dual solutions for the velocity, temperature, concentration and skin friction were obtained for some special cases when the stretching parameter is negative. The effect of the Casson parameter on the skin friction, heat ...
Guo, Chengjie; Zheng, Liancun; Zhang, Chaoli; Chen, Xuehui; Zhang, Xinxin
2016-05-01
In this study, the generalised velocity slip and the generalised temperature jump of nanofluid in the flow over a stretching sheet with variable thickness are investigated. Because of the non-adherence of the fluid to a solid boundary, the velocity slip and the temperature jump between fluid and moving sheet may happen in industrial process, so taking velocity slip and temperature jump into account is indispensable. It is worth mentioning that the analysis of the velocity v, which has not been seen in the previous references related to the variable thickness sheet, is presented. The thermophoresis and the Brownian motion, which are the two very important physical parameters, are fully studied. The governing equations are simplified into ordinary differential equations by the proper transformations. The homotopy analysis method (HAM) is applied to solve the reduced equations for general conditions. In addition, the effects of involved parameters such as velocity slip parameter, temperature jump parameter, Prandtl number, magnetic field parameter, permeable parameter, Lewis number, thermophoresis parameter, and Brownian motion parameter are investigated and analysed graphically.
Non-Newtonian Momentum Transfer past an Isothermal Stretching Sheet with Applied Suction
Veena, P. H.; Suresh, B.; Pravin, V. K.; Goud, A. M.
2017-08-01
The paper discusses the flow of an incompressible non-Newtonian fluid due to stretching of a plane elastic surface in a saturated porous medium in the approximation of boundary layer theory. An exact analytical solution of non-linear MHD momentum equation governing the self-similar flow is given. The skin friction co-efficient decreases with an increase in the visco-elastic parameter k1 and increase in the values of both the magnetic parameter and permeability parameter.
Hall Effect on Falkner—Skan Boundary Layer Flow of FENE-P Fluid over a Stretching Sheet
Maqbool, Khadija; Sohail, Ayesha; Manzoor, Naeema; Ellahi, Rahmat
2016-11-01
The Falkner—Skan boundary layer steady flow over a flat stretching sheet is investigated in this paper. The mathematical model consists of continuity and the momentum equations, while a new model is proposed for MHD Finitely Extensible Nonlinear Elastic Peterlin (FENE-P) fluid. The effects of Hall current with the variation of intensity of non-zero pressure gradient are taken into account. The governing partial differential equations are first transformed to ordinary differential equations using appropriate similarity transformation and then solved by Adomian decomposition method (ADM). The obtained results are validated by generalized collocation method (GCM) and found to be in good agreement. Effects of pertinent parameters are discussed through graphs and tables. Comparison with the existing studies is made as a limiting case of the considered problem at the end.
Rawi, N. A.; Ilias, M. R.; Lim, Y. J.; Isa, Z. M.; Shafie, S.
2017-09-01
The influence of nanoparticles on the unsteady mixed convection flow of Casson fluid past an inclined stretching sheet is investigated in this paper. The effect of gravity modulation on the flow is also considered. Carboxymethyl cellulose solution (CMC) is chosen as the base fluid and copper as nanoparticles. The basic governing nonlinear partial differential equations are transformed using appropriate similarity transformation and solved numerically using an implicit finite difference scheme by means of the Keller-box method. The effect of nanoparticles volume fraction together with the effect of inclination angle and Casson parameter on the enhancement of heat transfer of Casson nanofluid is discussed in details. The velocity and temperature profiles as well as the skin friction coefficient and the Nusselt number are presented and analyzed.
Directory of Open Access Journals (Sweden)
N. Kishan
2016-01-01
Full Text Available The problem of steady Magnetohydrodynamic boundary layer flow of an electrically conducting nanofluid due to an exponentially permeable stretching sheet with heat source/sink in presence of thermal radiation is numerically investigated. The effect of transverse Brownian motion and thermophoresis on heat transfer and nano particle volume fraction considered. The governing partial differential equations of mass, momentum, energy and nanoparticle volume fraction equations are reduced to ordinary differential equations by using suitable similarity transformation. These equations are solved numerically using an implicit finite difference scheme, for some values of flow parameters such as Magnetic parameter (M, Wall mass transfer parameter(S, Prandtl number(Pr, Lewis number (Le, Thermophoresis parameter (Nt, Brownian motion parameter(Nb, Radiation parameter (R. The numerical values presented graphically and analized for velocity, temperature and nanoparticle volume fraction.
Ferdows, M.
2012-01-01
Magnetohydrodynamic (MHD) boundary layer flow of a nanofluid over an exponentially stretching sheet was studied. The governing boundary layer equations are reduced into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six-order iteration schemes. The effects of the governing parameters on the flow field and heat transfer characteristics were obtained and discussed. The numerical solutions for the wall skin friction coefficient, the heat and mass transfer coefficient, and the velocity, temperature, and concentration profiles are computed, analyzed, and discussed graphically. Comparison with previously published work is performed and excellent agreement is observed. 2012 M. Ferdows et al.
Directory of Open Access Journals (Sweden)
Swati Mukhopadhyay
2013-09-01
Full Text Available The boundary layer flow and heat transfer towards a porous exponential stretching sheet in presence of a magnetic field is presented in this analysis. Velocity slip and thermal slip are considered instead of no-slip conditions at the boundary. Thermal radiation term is incorporated in the temperature equation. Similarity transformations are used to convert the partial differential equations corresponding to the momentum and energy equations into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the horizontal velocity decreases with increasing slip parameter as well as with the increasing magnetic parameter. Temperature increases with the increasing values of magnetic parameter. Temperature is found to decrease with an increase of thermal slip parameter. Thermal radiation enhances the effective thermal diffusivity and the temperature rises.
Directory of Open Access Journals (Sweden)
A. Zeeshan
2016-09-01
Full Text Available The purpose of the present paper was to investigate the flow and heat transfer of Jeffery fluid past a linearly stretching sheet with the effect of a magnetic dipole. The governing differential equations of motion and heat transfer are transformed into nonlinear coupled ordinary differential equations (ODEs using appropriate similarity transformations. Then the ODEs are solved by adopting two different schemes, Runge–Kutta with shooting technique and series solution based on GA and NM. The effect of various physical parameters including ferromagnetic interaction parameter (β, Deborah number (γ1, Prandtl number (Pr, suction/injection parameter (S, ratio of relaxation to retardation times (λ2 on velocity and temperature profiles is illustrated graphically and in tabular form by considering two types of thermal process namely prescribed surface temperature (PST and prescribed heat flux (PHF. Comparison with available results for particular cases is found an excellent agreement.
Directory of Open Access Journals (Sweden)
M. Jayachandra Babu
2016-09-01
Full Text Available In this study, we inquired the cross-diffusion effects on the magnetohydrodynamic Williamson fluid flow across a variable thickness stretching sheet by viewing velocity slip. With the aid of Runge-Kutta based shooting process, we resolved the transformed differential equations numerically. The effects of different dimensionless parameters on three usual profiles (velocity, temperature, concentration along with skin friction coefficient, heat transfer rate and mass transfer rate are examined with the support of plots and tables. Dual solutions are exhibited for two cases i.e., Newtonian fluid and non-Newtonian fluid. Results reveal that the Soret and Dufour numbers have drift to control the thermal and concentration boundary layers. We also found a good agreement of the present results by comparing with the published results.
Directory of Open Access Journals (Sweden)
M. Ferdows
2012-01-01
Full Text Available Magnetohydrodynamic (MHD boundary layer flow of a nanofluid over an exponentially stretching sheet was studied. The governing boundary layer equations are reduced into ordinary differential equations by a similarity transformation. The transformed equations are solved numerically using the Nactsheim-Swigert shooting technique together with Runge-Kutta six-order iteration schemes. The effects of the governing parameters on the flow field and heat transfer characteristics were obtained and discussed. The numerical solutions for the wall skin friction coefficient, the heat and mass transfer coefficient, and the velocity, temperature, and concentration profiles are computed, analyzed, and discussed graphically. Comparison with previously published work is performed and excellent agreement is observed.
Directory of Open Access Journals (Sweden)
Lin Yanhai
2016-01-01
Full Text Available This paper presents an investigation on the MHD thin film flow and heat transfer of a power law fluid over an unsteady stretching sheet. The effects of power law viscosity on a temperature field are taken into account with a modified Fourier’s law Proposed by Zheng by assuming that the temperature field is similar to the velocity field. The governing equations are reduced to a system of nonlinear ordinary differential equations. The numerical solutions are obtained by using the shooting method coupled with the Runge-Kutta method. The influence of the Hartmann number, the power law exponent, the unsteadiness parameter, the thickness parameter and the generalized Prandtl number on the velocity and temperature fields are presented graphically and analyzed. Moreover, the critical formula for parameters are derived which indicated that the magnetic field has no effect on the critical value.
Directory of Open Access Journals (Sweden)
Sameh E. Ahmed
2017-12-01
Full Text Available The present paper deals with the effects of slip boundary conditions and chemical reaction on the heat and mass transfer by mixed convective boundary layer flow of a non-Newtonian fluid over a nonlinear stretching sheet. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. First order chemical reactions are considered. Similar solutions are used to convert the partial differential equations governing the problem to ordinary differential equations. The velocity, temperature and concentration profiles are obtained, numerically, using the MATLAB function bvp4c and those are used to compute the entropy generation number. The effect of increasing values of the Casson parameter is found to suppress the velocity field and temperature distribution. But the concentration is enhanced with the increasing of Casson parameter. The viscous dissipation, temperature and concentration irreversibility are determined and discussed in details.
Isa, Siti Suzilliana Putri Mohamed; Arifin, Norihan Md.; Nazar, Roslinda; Bachok, Norfifah; Ali, Fadzilah Md
2017-12-01
A theoretical study that describes the magnetohydrodynamic mixed convection boundary layer flow with heat transfer over an exponentially stretching sheet with an exponential temperature distribution has been presented herein. This study is conducted in the presence of convective heat exchange at the surface and its surroundings. The system is controlled by viscous dissipation and internal heat generation effects. The governing nonlinear partial differential equations are converted into ordinary differential equations by a similarity transformation. The converted equations are then solved numerically using the shooting method. The results related to skin friction coefficient, local Nusselt number, velocity and temperature profiles are presented for several sets of values of the parameters. The effects of the governing parameters on the features of the flow and heat transfer are examined in detail in this study.
Directory of Open Access Journals (Sweden)
Kalidas Das
2015-12-01
Full Text Available The present paper investigates numerically the influence of melting heat transfer and thermal radiation on MHD stagnation point flow of an electrically conducting non-Newtonian fluid (Jeffrey fluid over a stretching sheet with partial surface slip. The governing equations are reduced to non-linear ordinary differential equations by using a similarity transformation and then solved numerically by using Runge–Kutta–Fehlberg method. The effects of pertinent parameters on the flow and heat transfer fields are presented through tables and graphs, and are discussed from the physical point of view. Our analysis revealed that the fluid temperature is higher in case of Jeffrey fluid than that in the case of Newtonian fluid. It is also observed that the wall stress increases with increasing the values of slip parameter but the effect is opposite for the rate of heat transfer at the wall.
Directory of Open Access Journals (Sweden)
F. Mabood
Full Text Available This article addresses the combined effects of chemical reaction and viscous dissipation on MHD radiative heat and mass transfer of nanofluid flow over a rotating stretching surface. The model used for the nanofluid incorporates the effects of the Brownian motion and thermophoresis in the presence of heat source. Similarity transformation variables have been used to model the governing equations of momentum, energy, and nanoparticles concentration. Runge-Kutta-Fehlberg method with shooting technique is applied to solve the resulting coupled ordinary differential equations. Physical features for all pertinent parameters on the dimensionless velocity, temperature, skin friction coefficient, and heat and mass transfer rates are analyzed graphically. The numerical comparison has also presented for skin friction coefficient and local Nusselt number as a special case for our study. It is noted that fluid velocity enhances when rotational parameter is increased. Surface heat transfer rate enhances for larger values of Prandtl number and heat source parameter while mass transfer rate increases for larger values of chemical reaction parameter. Keywords: Nanofluid, MHD, Chemical reaction, Rotating stretching sheet, Radiation
Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet
Directory of Open Access Journals (Sweden)
Masood Khan
2015-10-01
Full Text Available This article studies the Carreau viscosity model (which is a generalized Newtonian model and then use it to obtain a formulation for the boundary layer equations of the Carreau fluid. The boundary layer flow and heat transfer to a Carreau model over a nonlinear stretching surface is discussed. The Carreau model, adequate for many non-Newtonian fluids, is used to characterize the behavior of the fluids having shear thinning properties and fluids with shear thickening properties for numerical values of the power law exponent n. The modeled boundary layer conservation equations are converted to non-linear coupled ordinary differential equations by a suitable transformation. Numerical solution of the resulting equations are obtained by using the Runge-Kutta Fehlberg method along with shooting technique. This analysis reveals many important physical aspects of flow and heat transfer. Computations are performed for different values of the stretching parameter (m, the Weissenberg number (We and the Prandtl number (Pr. The obtained results show that for shear thinning fluid the fluid velocity is depressed by the Weissenberg number while opposite behavior for the shear thickening fluid is observed. A comparison with previously published data in limiting cases is performed and they are in excellent agreement.
Directory of Open Access Journals (Sweden)
Nemat Dalir
2014-12-01
Full Text Available Entropy generation for the steady two-dimensional laminar forced convection flow and heat transfer of an incompressible Jeffrey non-Newtonian fluid over a linearly stretching, impermeable and isothermal sheet is numerically investigated. The governing differential equations of continuity, momentum and energy are transformed using suitable similarity transformations to two nonlinear coupled ordinary differential equations (ODEs. Then the ODEs are solved by applying the numerical implicit Keller’s box method. The effects of various parameters of the flow and heat transfer including Deborah number, ratio of relaxation to retardation times, Prandtl number, Eckert number, Reynolds number and Brinkman number on dimensionless velocity, temperature and entropy generation number profiles are analyzed. The results reveal that the entropy generation number increases with the increase of Deborah number while the increase of ratio of relaxation to retardation times causes the entropy generation number to reduce. A comparative study of the numerical results with the results from an exact solution for the dimensionless velocity gradient at the sheet surface is also performed. The comparison shows excellent agreement within 0.05% error.
MHD flow of Powell-Eyring nanofluid over a non-linear stretching sheet with variable thickness
Directory of Open Access Journals (Sweden)
T. Hayat
Full Text Available This research explores the magnetohydrodynamic (MHD boundary layer flow of Powell-Eyring nanofluid past a non-linear stretching sheet of variable thickness. An electrically conducting fluid is considered under the characteristics of magnetic field applied transverse to the sheet. The mathematical expressions are accomplished via boundary layer access, Brownian motion and thermophoresis phenomena. The flow analysis is subjected to a recently established conditions requiring zero nanoparticles mass flux. Adequate transformations are implemented for the reduction of partial differential systems to the ordinary differential systems. Series solutions for the governing nonlinear flow of momentum, temperature and nanoparticles concentration have been executed. Physical interpretation of numerous parameters is assigned by graphical illustrations and tabular values. Moreover the numerical data of drag coefficient and local heat transfer rate are executed and discussed. It is investigated that higher wall thickness parameter results in the reduction of velocity distribution. Effects of thermophoresis parameter on temperature and concentration profiles are qualitatively similar. Both the temperature and concentration profiles are enhanced for higher values of thermophoresis parameter. Keywords: MHD, Variable thicked surface, Powell-Eyring nanofluid, Zero mass flux conditions
Flow of an Erying-Powell fluid over a stretching sheet in presence of chemical reaction
Directory of Open Access Journals (Sweden)
Khan Ilyas
2016-01-01
Full Text Available In this paper we study the flow of an incompressible Erying-Powell fluid bounded by a linear stretching surface. The mass transfer analysis in the presence of destructive /generative chemical reactions is also analyzed. A similarity transformation is used to transform the governing partial differential equations into ordinary differential equations. Computations for dimensionless velocity and concentration fields are performed by an efficient approach namely the homotopy analysis method (HAM and numerical solution is obtained by shooting technique along with Runge-Kutta-Fehlberg integration scheme. Graphical results are prepared to illustrate the details of flow and mass transfer characteristics and their dependence upon the physical parameters. The values for gradient of mass transfer are also evaluated and analyzed. A comparison of the present solutions with published results in the literature is performed and the results are found to be in excellent agreement.
Energy Technology Data Exchange (ETDEWEB)
Hu Jianguo; Jonas, J.J.; Zhou Youdong [McGill Univ., Montreal, PQ (Canada). Dept. of Metallurgical Engineering; Ishikawa, T. [Department of Materials Processing, School of Engineering, Nagoya University, Nagoya 464-8603 (Japan)
1998-08-15
A numerical code has been developed to calculate limit strains of textured aluminum alloy sheets. This code is based on the Marciniak-Kuczynski (M-K) model, but allows for void nucleation and growth so that both limit strain and fracture strain can be predicted. The strain induced void nucleation model was employed together with the Cocks and Ashby`s void growth model. The influences of initial texture, texture evolution, and void nucleation and growth during deformation on the limit strains of an Al-Mg alloy were all investigated. Satisfactory agreement was obtained between the predictions and measured data. It was also shown that the introduction of void damage into the old M-K model can lead to more reasonable and accurate predictions. (orig.) 31 refs.
Directory of Open Access Journals (Sweden)
Pooria Akbarzadeh
2017-07-01
Full Text Available In this paper, the problem of laminar nanofluid flow which results from the nonlinear stretching of a flat sheet is investigated numerically. In this paper, a modified variable physical properties model for analyzing nanofluids flow and heat transfer is introduced. In this model, the effective viscosity, density, and thermal conductivity of the solid-liquid mixture (nanofluids which are commonly utilized in the homogenous single-phase model, are locally combined with the prevalent single-phase model. A numerical similarity solution is considered which depends on the local Prandtl number, local Brownian motion number, local Lewis number, and local thermophoresis number. The results are compared to the prevalent single-phase model. This comparison depicts that the prevalent single-phase model has a considerable deviation for predicting the behavior of nanofluids flow especially in dimensionless temperature and nanoparticle volume fraction. In addition the effect of the governing parameters such as Prandtl number, the Brownian motion number, the thermophoresis parameter, the Lewis number, and etc. on the velocity, temperature, and volume fraction distribution and the dimensionless heat and mass transfer rates are examined.
Directory of Open Access Journals (Sweden)
Yahaya Shagaiya Daniel
2015-09-01
Full Text Available This paper investigates the theoretical influence of buoyancy and thermal radiation on MHD flow over a stretching porous sheet. The model which constituted highly nonlinear governing equations is transformed using similarity solution and then solved using homotopy analysis method (HAM. The analysis is carried out up to the 5th order of approximation and the influences of different physical parameters such as Prandtl number, Grashof number, suction/injection parameter, thermal radiation parameter and heat generation/absorption coefficient and also Hartman number on dimensionless velocity, temperature and the rate of heat transfer are investigated and discussed quantitatively with the aid of graphs. Numerical results obtained are compared with the previous results published in the literature and are found to be in good agreement. It was found that when the buoyancy parameter and the fluid velocity increase, the thermal boundary layer decreases. In case of the thermal radiation, increasing the thermal radiation parameter produces significant increases in the thermal conditions of the fluid temperature which cause more fluid in the boundary layer due to buoyancy effect, causing the velocity in the fluid to increase. The hydrodynamic boundary layer and thermal boundary layer thickness increase as a result of increase in radiation.
Directory of Open Access Journals (Sweden)
Krishnendu Bhattacharyya
2013-01-01
Full Text Available The two-dimensional magnetohydrodynamic (MHD stagnation-point flow of electrically conducting non-Newtonian Casson fluid and heat transfer towards a stretching sheet have been considered. The effect of thermal radiation is also investigated. Implementing similarity transformations, the governing momentum, and energy equations are transformed to self-similar nonlinear ODEs and numerical computations are performed to solve those. The investigation reveals many important aspects of flow and heat transfer. If velocity ratio parameter (B and magnetic parameter (M increase, then the velocity boundary layer thickness becomes thinner. On the other hand, for Casson fluid it is found that the velocity boundary layer thickness is larger compared to that of Newtonian fluid. The magnitude of wall skin-friction coefficient reduces with Casson parameter (β. The velocity ratio parameter, Casson parameter, and magnetic parameter also have major effects on temperature distribution. The heat transfer rate is enhanced with increasing values of velocity ratio parameter. The rate of heat transfer is enhanced with increasing magnetic parameter M for B > 1 and it decreases with M for B < 1. Moreover, the presence of thermal radiation reduces temperature and thermal boundary layer thickness.
Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet
Directory of Open Access Journals (Sweden)
M.M. Rashidi
2017-03-01
Full Text Available The purpose of this article is to study and analyze the convective flow of a third grade non-Newtonian fluid due to a linearly stretching sheet subject to a magnetic field. The dimensionless entropy generation equation is obtained by solving the reduced momentum and energy equations. The momentum and energy equations are reduced to a system of ordinary differential equations by a similarity method. The optimal homotopy analysis method (OHAM is used to solve the resulting system of ordinary differential equations. The effects of the magnetic field, Biot number and Prandtl number on the velocity component and temperature are studied. The results show that the thermal boundary-layer thickness gets decreased with increasing the Prandtl number. In addition, Brownian motion plays an important role to improve thermal conductivity of the fluid. The main purpose of the paper is to study the effects of Reynolds number, dimensionless temperature difference, Brinkman number, Hartmann number and other physical parameters on the entropy generation. These results are analyzed and discussed.
Rashid, Irfan; Ul Haq, Rizwan; Al-Mdallal, Qasem M.
2017-05-01
This study deals the simultaneous effects of inclined magnetic field and prescribed surface temperature (PST) on boundary layer flow of nanofluid over a stretching sheet. In order to make this mechanism more feasible, we have further considered the velocity slip and thermal radiation effects. Moreover, this perusal is made to consider the two kinds of nanofluid namely: Cu -water and A l2O3-water. Inclined magnetic field is utilized to accompanying an aligned angle that varies from 0 to π / 2 . The exact solutions are acquired from the transformed non-dimensional momentum and energy equations in the form of confluent hypergeometric function. Lorentz forces and aligned magnetic field depicts the significant effects on nanofluid. We found that, due to the increase in the aligned angle provides the enhancement in local skin friction coefficient and a reduction in the local Nusselt number. The combined impacts of inclined magnetic field with other emerging parameters such as velocity slip, thermal radiation and nanoparticles volume fraction on velocity, temperature, local Nusselt number and skin friction coefficient are examined. Flow behavior of nanofluid is also determined via stream lines pattern.
Directory of Open Access Journals (Sweden)
Reda G. Abdel-Rahman
2013-01-01
Full Text Available An analysis is carried out to study the problem of heat and mass transfer flow over a moving permeable flat stretching sheet in the presence of convective boundary condition, slip, radiation, heat generation/absorption, and first-order chemical reaction. The viscosity of fluid is assumed to vary linearly with temperature. Also the diffusivity is assumed to vary linearly with concentration. The governing partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by using Lie group point of transformations. The system of transformed nonlinear ordinary differential equations is solved numerically using shooting techniques with fourth-order Runge-Kutta integration scheme. Comparison between the existing literature and the present study was carried out and found to be in excellent agreement. The effects of the various interesting parameters on the flow, heat, and mass transfer are analyzed and discussed through graphs in detail. The values of the local Nusselt number, the local skin friction, and the local Sherwood number for different physical parameters are also tabulated.
Abdul Hakeem, A. K.; Renuka, P.; Vishnu Ganesh, N.; Kalaivanan, R.; Ganga, B.
2016-03-01
The inclined magnetic field effect on the boundary layer flow of a Casson model non-Newtonian fluid over a stretching sheet in the existence of thermal radiation and velocity slip boundary condition is investigated for both prescribed surface temperature and power law of surface heat flux cases. It is assumed that the magnetic field is applied with an aligned angle which varied from 0° to 90°. Both analytical and numerical solutions are obtained for the transformed non-dimensional ODE's using confluent hypergeometric function and fourth order Runge-Kutta method with shooting technique respectively. The combined effects of inclined magnetic field with other pertinent parameters such as Casson parameter, velocity slip parameter, radiation parameter and Prandtl number on velocity profile, temperature profile, local skin friction coefficient, local Nusselt number and non-dimensional wall temperature are discussed through graphs. It is found that the aligned angle plays a vital role in controlling the magnetic field strength on the Casson fluid flow region and the increasing values of aligned angle of the magnetic field lead to decrease the skin friction coefficient and the Nusselt number and increase the non-dimensional wall temperature.
Energy Technology Data Exchange (ETDEWEB)
Abdul Hakeem, A.K., E-mail: abdulhakeem6@gmail.com [Department of Mathematics, Sri Ramakrishna Mission Vidyalaya, College of Arts and Science, Coimbatore 641 020 (India); Renuka, P. [Department of Mathematics, Erode Sengunthar Engineering college, Erode 638 057 (India); Vishnu Ganesh, N.; Kalaivanan, R. [Department of Mathematics, Sri Ramakrishna Mission Vidyalaya, College of Arts and Science, Coimbatore 641 020 (India); Ganga, B. [Department of Mathematics, Providence College for Women, Coonoor 643 104 (India)
2016-03-01
The inclined magnetic field effect on the boundary layer flow of a Casson model non-Newtonian fluid over a stretching sheet in the existence of thermal radiation and velocity slip boundary condition is investigated for both prescribed surface temperature and power law of surface heat flux cases. It is assumed that the magnetic field is applied with an aligned angle which varied from 0° to 90°. Both analytical and numerical solutions are obtained for the transformed non-dimensional ODE's using confluent hypergeometric function and fourth order Runge–Kutta method with shooting technique respectively. The combined effects of inclined magnetic field with other pertinent parameters such as Casson parameter, velocity slip parameter, radiation parameter and Prandtl number on velocity profile, temperature profile, local skin friction coefficient, local Nusselt number and non-dimensional wall temperature are discussed through graphs. It is found that the aligned angle plays a vital role in controlling the magnetic field strength on the Casson fluid flow region and the increasing values of aligned angle of the magnetic field lead to decrease the skin friction coefficient and the Nusselt number and increase the non-dimensional wall temperature. - Highlights: • Casson fluid flow in the presence of inclined magnetic field is investigated for the first time. • Aligned angle controls the magnetic field strength on the boundary layer flow region. • The direction of Lorentz force changes according to aligned angle. • An excellent agreement is observed between present analytical and numerical results.
Waheed, Shimaa E
2016-01-01
A problem of flow and heat transfer in a non-Newtonian Maxwell liquid film over an unsteady stretching sheet embedded in a porous medium in the presence of a thermal radiation is investigated. The unsteady boundary layer equations describing the problem are transformed to a system of non-linear ordinary differential equations which is solved numerically using the shooting method. The effects of various parameters like the Darcy parameter, the radiation parameter, the Deborah number and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. It is observed that increasing values of the Darcy parameter and the Deborah number cause an increase of the local skin-friction coefficient values and decrease in the values of the local Nusselt number. Also, it is noticed that the local Nusselt number increases as the Prandtl number increases and it decreases with increasing the radiation parameter. However, it is found that the free surface temperature increases by increasing the Darcy parameter, the radiation parameter and the Deborah number whereas it decreases by increasing the Prandtl number.
Hamid, Rohana Abdul; Nazar, Roslinda; Pop, Ioan
2015-01-01
The paper deals with a stagnation-point boundary layer flow towards a permeable stretching/shrinking sheet in a nanofluid where the flow and the sheet are not aligned. We used the Buongiorno model that is based on the Brownian diffusion and thermophoresis to describe the nanofluid in this problem. The main purpose of the present paper is to examine whether the non-alignment function has the effect on the problem considered when the fluid suction and injection are imposed. It is interesting to note that the non-alignment function can ruin the symmetry of the flows and prominent in the shrinking sheet. The fluid suction will reduce the impact of the non-alignment function of the stagnation flow and the stretching/shrinking sheet but at the same time increasing the velocity profiles and the shear stress at the surface. Furthermore, the effects of the pertinent parameters such as the Brownian motion, thermophoresis, Lewis number and the suction/injection on the flow and heat transfer characteristics are also taken into consideration. The numerical results are shown in the tables and the figures. It is worth mentioning that dual solutions are found to exist for the shrinking sheet. PMID:26440761
Mahabaleshwar, U. S.; Nagaraju, K. R.; Vinay Kumar, P. N.; Baleanu, Dumitru; Lorenzini, Giulio
2017-03-01
In this paper, we investigate the theoretical analysis for the unsteady magnetohydrodynamic laminar boundary layer flow due to impulsively stretching sheet. The third-order highly nonlinear partial differential equation modeling the unsteady boundary layer flow brought on by an impulsively stretching flat sheet was solved by applying Adomian decomposition method and Pade approximants. The exact analytical solution so obtained is in terms of rapidly converging power series and each of the variants are easily computable. Variations in parameters such as mass transfer (suction/injection) and Chandrasekhar number on the velocity are observed by plotting the graphs. This particular problem is technically sound and has got applications in expulsion process and related process in fluid dynamics problems.
Directory of Open Access Journals (Sweden)
G. K. Ramesh
2012-01-01
Full Text Available This paper presents the study of momentum and heat transfer characteristics in a hydromagnetic flow of dusty fluid over an inclined stretching sheet with non-uniform heat source/sink, where the flow is generated due to a linear stretching of the sheet. Using a similarity transformation, the governing equations of the problem are reduced to a coupled third-order nonlinear ordinary differential equations and are solved numerically by Runge-Kutta-Fehlberg fourth-fifth-order method using symbolic software Maple. Our numerical solutions are shown to agree with the available results in the literature and then employ the numerical results to bring out the effects of the fluid-particle interaction parameter, local Grashof number, angle of inclination, heat source/sink parameter, Chandrasekhar number, and the Prandtl number on the flow and heat transfer characteristics. The results have possible technological applications in liquid-based systems involving stretchable materials.
Naganthran, Kohilavani; Nazar, Roslinda
2017-08-01
In this study, the influence of the first order chemical reaction towards the magnetohydrodynamics (MHD) stagnation-point boundary layer flow past a permeable stretching/shrinking surface (sheet) is considered numerically. The governing boundary layer equations are transformed into a system of ordinary differential equations from the system of partial differential equations by using a proper similarity transformation so that it can be solved numerically by the "bvp4c" function in Matlab software. The main numerical solutions are presented graphically and discussed in the relevance of the governing parameters. It is found that dual solutions exist when the sheet is stretched and shrunk. Stability analysis is done to determine which solution is stable and valid physically. The results of the stability analysis show that the first solution (upper branch) is physically stable and realizable while the second solution (lower branch) is impracticable.
Naganthran, Kohilavani; Nazar, Roslinda
2017-04-01
In this paper, the magnetohydrodynamics (MHD) stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet in a porous medium is studied numerically. Similarity transformation has been used to transform the governing boundary layer equations to a system of ordinary differential equations from the system of partial differential equations and further solved by the numerical Matlab solver "bvp4c" function. The numerical solutions are illustrated graphically and discussed in the relevance of the governing parameters. It is found that the dual solutions occur when the sheet is stretched and shrunk. Stability analysis is done to determine which solution is stable and valid physically. The results of the stability analysis show that the first solution (upper branch) is stable while the second solution (lower branch) is unstable and may not be physically feasible in practice.
Dang, Van Tuan; Lafon, Pascal; Labergere, Carl
2017-10-01
In this work, a combination of Proper Orthogonal Decomposition (POD) and Radial Basis Function (RBF) is proposed to build a surrogate model based on the Benchmark Springback 3D bending from the Numisheet2011 congress. The influence of the two design parameters, the geometrical parameter of the die radius and the process parameter of the blank holder force, on the springback of the sheet after a stamping operation is analyzed. The classical Design of Experience (DoE) uses Full Factorial to design the parameter space with sample points as input data for finite element method (FEM) numerical simulation of the sheet metal stamping process. The basic idea is to consider the design parameters as additional dimensions for the solution of the displacement fields. The order of the resultant high-fidelity model is reduced through the use of POD method which performs model space reduction and results in the basis functions of the low order model. Specifically, the snapshot method is used in our work, in which the basis functions is derived from snapshot deviation of the matrix of the final displacements fields of the FEM numerical simulation. The obtained basis functions are then used to determine the POD coefficients and RBF is used for the interpolation of these POD coefficients over the parameter space. Finally, the presented POD-RBF approach which is used for shape optimization can be performed with high accuracy.
Liu, Jianguang; Wang, Zhongjin; Meng, Qingyuan
2012-04-01
Lightweight materials have been widely used in aerospace, automobile industries to meet the requirement of structural weight reduction. Due to their limited plasticity at room temperature, however, lightweight materials always exhibit distinctly poor forming capability in comparison with conventional deep drawing steels. Based on the phenomenon that the superimposed hydrostatic pressure can improve the plasticity of metal, many kinds of double-sided pressure forming processes have been proposed. In the present study, the Gurson-Tvergaard-Needleman (GTN) damage model combined with finite element method is used to investigate the influence of double-sided pressure on the deformation behavior of biaxially stretched AA6111-T4 sheet metal, including nucleation and growth of microvoids, evaluation of stress triaxiality, and so forth. The Marciniak-Kuczynski (M-K) localized necking model is used to predict the right-hand side of the forming limit diagram (FLD) of sheet metal under superimposed double-sided pressure. It is found that the superimposed double-sided pressure has no obvious effect on the nucleation of microvoids. However, the superimposed double-sided pressure can suppress the growth and coalescence of microvoids. The forming limit curve (FLC) of the biaxially stretched AA6111-T4 sheet metal under the superimposed double-sided pressure is improved and the fracture locus shifts to the left. Furthermore, the formability increase value is sensitive to the strain path.
Directory of Open Access Journals (Sweden)
Tasawar Hayat
Full Text Available This study investigates the unsteady flow of Powell-Eyring fluid past an inclined stretching sheet. Unsteadiness in the flow is due to the time-dependence of the stretching velocity and wall temperature. Mathematical analysis is performed in the presence of thermal radiation and non-uniform heat source/sink. The relevant boundary layer equations are reduced into self-similar forms by suitable transformations. The analytic solutions are constructed in a series form by homotopy analysis method (HAM. The convergence interval of the auxiliary parameter is obtained. Graphical results displaying the influence of interesting parameters are given. Numerical values of skin friction coefficient and local Nusselt number are computed and analyzed.
Hayat, Tasawar; Asad, Sadia; Mustafa, Meraj; Alsaedi, Ahmed
2014-01-01
This study investigates the unsteady flow of Powell-Eyring fluid past an inclined stretching sheet. Unsteadiness in the flow is due to the time-dependence of the stretching velocity and wall temperature. Mathematical analysis is performed in the presence of thermal radiation and non-uniform heat source/sink. The relevant boundary layer equations are reduced into self-similar forms by suitable transformations. The analytic solutions are constructed in a series form by homotopy analysis method (HAM). The convergence interval of the auxiliary parameter is obtained. Graphical results displaying the influence of interesting parameters are given. Numerical values of skin friction coefficient and local Nusselt number are computed and analyzed.
Aman, Fazlina; Mohamad Khazim, Wan Nor Hafizah Wan; Mansur, Syahira
2017-09-01
Interaction of motile microorganisms and nanoparticles along with buoyancy forces will produce nanofluid bioconvection. Bioconvection happened because of the microorganisms are imposed into the nanofluid to stabilize the nanoparticles to suspend. In this paper, we investigated the problem of mixed convection flow of a nanofluid combined with gyrotactic microorganisms over a stretching/shrinking sheet under the influence of magnetic field. The nonlinear partial differential equations are transformed into a set of five similarities nonlinear ordinary differential equations by using similarity transformation, before being solved numerically. Some of the governing parameters involve in this problem are magnetic parameter, stretching/shrinking parameter, Brownian motion parameter, thermophoresis parameter and Prandtl number. Using tables and graphs, the consequences of numerous parameters on the flow and heat transfer features are examined and discussed. The results indicate that the skin friction coefficient, local Nusselt number, local Sherwood number and local density of the motile microorganisms are strongly affected by the governing parameters.
Ferdows, M.
2017-03-10
A steady two-dimensional free convective flow of a viscous incompressible fluid along a vertical stretching sheet with the effect of magnetic field, radiation and variable thermal conductivity in porous media is analyzed. The nonlinear partial differential equations, governing the flow field under consideration, have been transformed by a similarity transformation into a systemof nonlinear ordinary differential equations and then solved numerically. Resulting non-dimensional velocity and temperature profiles are then presented graphically for different values of the parameters. Finally, the effects of the pertinent parameters, which are of physical and engineering interest, are examined both in graphical and tabular form.
Jusoh, Rahimah; Nazar, Roslinda
2017-08-01
Numerical investigation for stagnation point flow and heat transfer of Maxwell fluid over a stretching/shrinking sheet in the presence of nanoparticles has been performed. A similarity transformation has been used to transform the governing partial differential equations to a system of nonlinear ordinary differential equations. The transformed equations are solved numerically using the built in bvp4c function in Matlab. Graphical results are plotted for the local Nusselt number and the local Sherwood number for various values of the emerging parameters. Final conclusion has been drawn on the basis of both numerical and graphical results. Dual solutions exist and the first solution is found to be stable.
Directory of Open Access Journals (Sweden)
Khan Najeeb Alam
2017-03-01
Full Text Available An investigation is performed for an alyzing the effect of entropy generation on the steady, laminar, axisymmetric flow of an incompressible Powell-Eyring fluid. The flow is considered in the presence of vertically applied magnetic field between radially stretching rotating disks. The Energy and concentration equation is taking into account to investigate the heat dissipation, Soret, Dufour and Joule heating effects. To describe the considered flow non-dimensionalized equations, an exact similarity function is used to reduce a set of the partial differential equation into a system of non-linear coupled ordinary differential equation with the associated boundary conditions. Using homotopy analysis method (HAM, an analytic solution for velocity, temperature and concentration profiles are obtained over the entire range of the imperative parameters. The velocity components, concentration and temperature field are used to determine the entropy generation. Plots illustrate important results on the effect of physical flow parameters. Results obtained by means of HAM are then compared with the results obtained by using optimized homotopy analysis method (OHAM. They are in very good agreement.
Khan, Noor Saeed; Gul, Taza; Islam, Saeed; Khan, Waris
2017-01-01
The influences of thermophoresis and thermal radiation of a magnetohydrodynamic two-dimensional thin-film second-grade fluid with heat and mass transfer flow in the presence of viscous dissipation past a stretching sheet are analyzed. The main focus of the study is to discuss the significant roll of the fluid variable properties like thermal conductivity and viscosity under the variation of the thin film. The thermal conductivity varies directly as a linear function of temperature showing the property that expresses the ability of a material to transfer heat, and the viscosity is assumed to vary inversely as a linear function of temperature showing that viscous forces become weak at increasing temperature. Thermophoresis occurs to discuss the mass deposition at the surface of the stretching sheet while thermal radiation occurs, especially, at high temperature. The basic governing equations for the velocity, temperature and concentration of the fluid flow have been transformed to high nonlinear coupled differential equations with physical conditions by invoking suitable similarity transformations. The solution of the problem has been obtained by using HAM (Homotopy Analysis Method). The heat and mass transfer flow behaviors are affected significantly by the thin film. The physical influences of thin film parameter and all other parameters have been studied graphically and illustrated. The residual graphs and residual error table elucidate the authentication of the present work.
Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan
2016-04-19
In this paper, the unsteady stagnation-point boundary layer flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet has been studied. Similarity transformation is used to transform the system of boundary layer equations which is in the form of partial differential equations into a system of ordinary differential equations. The system of similarity equations is then reduced to a system of first order differential equations and has been solved numerically by using the bvp4c function in Matlab. The numerical solutions for the skin friction coefficient and heat transfer coefficient as well as the velocity and temperature profiles are presented in the forms of tables and graphs. Dual solutions exist for both cases of stretching and shrinking sheet. Stability analysis is performed to determine which solution is stable and valid physically. Results from the stability analysis depict that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable.
Directory of Open Access Journals (Sweden)
Imran Ullah
2017-04-01
Full Text Available The effect of slip condition on MHD free convective flow of non-Newtonian fluid over a nonlinearly stretching sheet saturated in porous medium with Newtonian heating is analyzed. The governing nonlinear coupled partial differential equations with auxiliary conditions are transformed into the system of coupled ordinary differential equations via similarity transformations and then solved numerically using Keller-box method. The results for skin friction coefficient and the reduced Nusselt number are obtained and compared with previous results in the literature and are found to be in excellent agreement. Results show that the slip parameter reduces the velocity of Casson fluid and enhances the shear stress. It is also observed that slip effect is more pronounced on temperature profile in comparison with velocity profile. It is also seen that velocity and dimensionless temperature are increasing functions of Newtonian heating parameter. Further, temperature gradient is an increasing function of thermal buoyancy parameter and Newtonian heating parameter whereas a decreasing function of porosity parameter and nonlinear stretching sheet parameter.
Directory of Open Access Journals (Sweden)
Dulal Pal
2017-03-01
Full Text Available The study of magnetohydrodynamic (MHD convective heat and mass transfer near a stagnation-point flow over stretching/shrinking sheet of nanofluids is presented in this paper by considering thermal radiation, Ohmic heating, viscous dissipation and heat source/sink parameter effects. Non-similarity method is adopted for the governing basic equations before they are solved numerically using Runge-Kutta-Fehlberg method using shooting technique. The numerical results are validated by comparing the present results with previously published results. The focus of this paper is to study the effects of some selected governing parameters such as Richardson number, radiation parameter, Schimdt number, Eckert number and magnetic parameter on velocity, temperature and concentration profiles as well as on skin-friction coefficient, local Nusselt number and Sherwood number.
Directory of Open Access Journals (Sweden)
Sarkhosh Seddighi Chaharborj
2013-01-01
Full Text Available An analysis for the mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet is carried out via symmetry analysis. By employing Lie group method to the given system of nonlinear partial differential equations, we can obtain information about the invariants and symmetries of these equations. This information can be used to determine the similarity variables that will reduce the number of independent variables in the system. The transformed ordinary differential equations are solved numerically for some values of the parameters involved using fifth-order Improved Runge-Kutta Method (IRK5 coupled with shooting method. The features of the flow and heat transfer characteristics are analyzed and discussed in detail. Both cases of assisting and opposing flows are considered. This paper' results in comparison with known results are excellent.
Directory of Open Access Journals (Sweden)
M. Kayalvizhi
2016-06-01
Full Text Available In the present article, we discussed the velocity slip effects on the heat and mass fluxes of a viscous electrically conducting fluid flow over a stretching sheet in the presence of viscous dissipation, Ohmic dissipation and thermal radiation. A system of governing nonlinear PDEs is converted into a set of nonlinear ODEs by suitable similarity transformations. The numerical and analytical solutions are presented for the governing non-dimensional ODEs using shooting method and hypergeometric function respectively. The results are discussed for skin friction coefficient, concentration field, non-dimensional wall temperature and non-dimensional wall concentration. The non-dimensional wall concentration increases with slip and magnetic parameters and decreases with Schmidt number. Furthermore, comparisons are found to be good with bench mark solutions.
Jusoh, Rahimah; Nazar, Roslinda
2017-04-01
The present study examines the stagnation point flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet with convective boundary conditions. The governing equations and their associated boundary conditions are initially cast into dimensionless and similarity form by similarity transformation. The resulting system of equations is then solved numerically using the boundary value problem solver "bvp4c" in Matlab for several values of the governing parameters. Numerical solutions are obtained for the velocity, temperature and concentration profiles as well as the skin friction coefficient, the local Nusselt number and the Sherwood number. Dual solutions have also been discovered in this problem for a certain range of the suction parameter. The features of the flow and heat transfer characteristics for various values of the Schmidt number, Biot number, suction parameter, Brownian motion parameter and thermophoresis parameter are analyzed and discussed.
DEFF Research Database (Denmark)
Momeni, M.; Jamshidi, N.; Barari, Amin
2011-01-01
equations governing on the problem. It has been attempted to show the capabilities and wide-range applications of the Homotopy Analysis Method in comparison with the numerical method in solving this problems. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. A clear...... conclusion can be drawn from the numerical method results that the HAM provides highly accurate solutions for nonlinear differential equations. Design/methodology/approach - In this paper a study of the flow and heat transfer of an incompressible homogeneous second grade fluid past a stretching sheet channel...... is presented and the Homotopy Analysis Method (HAM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing on the problem. It has been attempted to show the capabilities and wide-range applications of the Homotopy Analysis Method in comparison...
Directory of Open Access Journals (Sweden)
N. Sandeep
2015-12-01
Full Text Available The aim of the present study is to investigate the influence of non-uniform heat source/sink, mass transfer and chemical reaction on an unsteady mixed convection boundary layer flow of a magneto-micropolar fluid past a stretching/shrinking sheet in the presence of viscous dissipation and suction/injection. The governing equations of the flow, heat and mass transfer are transformed into system of nonlinear ordinary differential equations by using similarity transformation and then solved numerically using Shooting technique with Matlab Package. The influence of non-dimensional governing parameters on velocity, microrotation, temperature and concentration profiles are discussed and presented with the help of their graphical representations. Also, friction factor, heat and mass transfer rates have been computed and presented through tables. Under some special conditions, present results are compared with the existed results to check the accuracy and validity of the present study. An excellent agreement is observed with the existed results.
Directory of Open Access Journals (Sweden)
Mohammad Yaghoub Abdollahzadeh Jamalabadi
2016-05-01
Full Text Available Numerical and analytical investigation of the effects of thermal radiation and viscous heating on a convective flow of a non-Newtonian, incompressible fluid in an axisymmetric stretching sheet with constant temperature wall is performed. The power law model of the blood is used for the non-Newtonian model of the fluid and the Rosseland model for the thermal radiative heat transfer in an absorbing medium and viscous heating are considered as the heat sources. The non-dimensional governing equations are transformed to similarity form and solved numerically. A parameter study on entropy generation in medium is presented based on the Second Law of Thermodynamics by considering various parameters such as the thermal radiation parameter, the Brinkman number, Prandtl number, Eckert number.
Directory of Open Access Journals (Sweden)
A.K. Abdul Hakeem
2014-07-01
Full Text Available In this present article heat transfer in a Walter’s liquid B fluid over an impermeable stretching sheet with non-uniform heat source/sink, elastic deformation and radiation are reported. The basic boundary layer equations for momentum and heat transfer, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The dimensionless governing equations for this investigation are solved analytically using hyper geometric functions. The results are carried out for prescribed surface temperature (PST and prescribed power law surface heat flux (PHF. The effects of viscous dissipation, Prandtl number, Eckert number, heat source/sink parameter with elastic deformation and radiation are shown in the several plots and addressed.
Ganesh Kumar, K.; Rudraswamy, N. G.; Gireesha, B. J.; Krishnamurthy, M. R.
2017-09-01
Present exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.
Directory of Open Access Journals (Sweden)
Waini Iskandar
2017-01-01
Full Text Available In this paper, the effect of aligned magnetic field towards the flow and heat transfer of the upper-convected Maxwell (UCM fluid over a stretching/shrinking sheet is numerically studied. The governing partial differential equations are reduced into a system of ordinary differential equations using a similarity transformation, which are then solved numerically using the shooting method. The skin friction and heat transfer coefficients, the velocity, as well as the temperature profiles of the fluid are presented and discussed. Results indicate that an increase in the aligned angle strengthens the applied magnetic field which decrease the velocity and increase the temperature profiles of the fluid. This implies that an increase in the aligned angle increases the skin friction coefficient and decreases the heat transfer coefficients.
Ghehsareh, Hadi Roohani; Abbasbandy, Saeid; Soltanalizadeh, Babak
2012-05-01
In this research, the Laplace-Adomian decomposition method (LADM) is applied for the analytical and numerical treatment of the nonlinear differential equation that describes a magnetohydrodynamic (MHD) flow under slip condition over a permeable stretching surface. The technique is well applied to approximate the similarity solutions of the problem for some typical values of model parameters. The obtained series solutions by the LADM are combined with the Padé approximation to improve the accuracy and enlarge the convergence domain of the obtained results. Through tables and figures, the efficiency of the presented method is illustrated.
Energy Technology Data Exchange (ETDEWEB)
Uddin, M.J., E-mail: jashim_74@yahoo.com [Department of Mathematics, American International University-Bangladesh, Banani Dhaka 1213 (Bangladesh); Bég, O. Anwar [Gort Engovation Research (Propulsion/Biomechanics), Gabriel' s Wing House, 15 Southmere Ave., Bradford, BD7 3NU England (United Kingdom); Amin, N. [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor (Malaysia)
2014-11-15
Steady two-dimensional magnetohydrodynamic laminar free convective boundary layer slip flow of an electrically conducting Newtonian nanofluid from a translating stretching/shrinking sheet in a quiescent fluid is studied. A convective heating boundary condition is incorporated. The transport equations along with the boundary conditions are first converted into dimensionless form and following the implementation of a linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge–Kutta–Fehlberg fourth fifth order method from Maple. Validation of the Maple solutions is achieved with previous non-magnetic published results. The effects of the emerging thermophysical parameters; namely, stretching/shrinking, velocity slip, magnetic field, convective heat transfer and buoyancy ratio parameters, on the dimensionless velocity, temperature and concentration (nanoparticle fraction) are depicted graphically and interpreted at length. It is found that velocity increases whilst temperature and concentration reduce with the velocity slip. Magnetic field causes to reduce velocity and enhances temperature and concentration. Velocity, temperature as well as concentration rises with convective heating parameter. The study is relevant to the synthesis of bio-magnetic nanofluids of potential interest in wound treatments, skin repair and smart coatings for biological devices. - Highlights: • This paper analyses MHD slip flow of nofluid with convective boundary conditions. • Group method is used to transform governing equations into similarity equations. • The Runge–Kutta–Fehlberg method is used for numerical computations. • The study is relevant to synthesis of bio-magnetic nanofluids.
Directory of Open Access Journals (Sweden)
Mariam Sheikh
2017-09-01
Full Text Available This study deals with the effects of homogeneous–heterogeneous reaction on boundary layer flow of a non-Newtonian fluid near a stagnation point over a porous stretching/shrinking sheet with a constant suction. In this analysis Casson fluid is used to indicate the non-Newtonian fluid behavior by taking diffusion coefficients of both reactant and autocatalysis equal. The basic flow equations in form of partial differential equations are converted into a system of ordinary differential equations and then solved numerically. The influences of physical and fluid parameters on the velocity and concentration profiles are analyzed, presented and discussed through graphs. An increase in fluid velocity slip parameter reduces the magnitude of the velocity as well as increases the concentration in the boundary layer region. Furthermore, a unique solution is possible for all values of the stretching parameter (λ > 0, while in case of shrinking parameter (λ < 0, solutions are possible only for its limited ranges.
Mishra, S. R.; Pattnaik, P. K.; Bhatti, M. M.; Abbas, T.
2017-10-01
This article addresses the mass and heat transfer analysis over an electrically conducting viscoelastic (Walters B') fluid over a stretching surface in presence of transverse magnetic field. The impact of chemical reaction, as well as non-uniform heat source, are also taken into account. Similarity transformations are employed to model the equations. The governing equations comprises of momentum, energy, and concentration which are modified to a set of non-linear differential equations and then solved by applying confluent hypergeometric function known as " Kummer's function". The exact solution for heat equation is obtained for two cases i.e. (1) Prescribed surface temperature, (2) Prescribed wall heat flux. Physical behavior of all the sundry parameters are against concentration, temperature, and velocity profile are presented through graphs. The inclusion of magnetic field is counterproductive in diminishing the velocity distribution whereas reverse effect is encountered for concentration and temperature profiles.
Rubab, Khansa; Mustafa, M
2016-01-01
This letter investigates the MHD three-dimensional flow of upper-convected Maxwell (UCM) fluid over a bi-directional stretching surface by considering the Cattaneo-Christov heat flux model. This model has tendency to capture the characteristics of thermal relaxation time. The governing partial differential equations even after employing the boundary layer approximations are non linear. Accurate analytic solutions for velocity and temperature distributions are computed through well-known homotopy analysis method (HAM). It is noticed that velocity decreases and temperature rises when stronger magnetic field strength is accounted. Penetration depth of temperature is a decreasing function of thermal relaxation time. The analysis for classical Fourier heat conduction law can be obtained as a special case of the present work. To our knowledge, the Cattaneo-Christov heat flux model law for three-dimensional viscoelastic flow problem is just introduced here.
Directory of Open Access Journals (Sweden)
N. Sivakumar
Full Text Available The simultaneous interaction of viscous dissipative and thermal radiation in MHD two dimensional flows of ferro-liquid over a nonlinear moving surface is analyzed here. The slip on velocity and convective boundary condition on temperature are imposed on stretching surface. We used water as conventional base liquid which have magnetite (Fe3O4 and alumina (Al2O3 as nanoparticles. The governing mathematical expressions are converted into non-dimensional form via nonlinear type similarity variables. The resulting mathematical model is numerically solved with the help of MATLAB solver bvp4c. The roles of non-dimensional constraints on velocity and temperature are elaborated through plots. The numerical data of skin-friction coefficient and Nusselt number is presented and visualized. The validity of computed results is analyzed through comparative benchmark. Keywords: Ferro fluid, Velocity slip condition, Convective boundary condition, Viscous dissipation, Radiation
Directory of Open Access Journals (Sweden)
Waris Khan
2016-11-01
Full Text Available This article describes the effect of thermal radiation on the thin film nanofluid flow of a Williamson fluid over an unsteady stretching surface with variable fluid properties. The basic governing equations of continuity, momentum, energy, and concentration are incorporated. The effect of thermal radiation and viscous dissipation terms are included in the energy equation. The energy and concentration fields are also coupled with the effect of Dufour and Soret. The transformations are used to reduce the unsteady equations of velocity, temperature and concentration in the set of nonlinear differential equations and these equations are tackled through the Homotopy Analysis Method (HAM. For the sake of comparison, numerical (ND-Solve Method solutions are also obtained. Special attention has been given to the variable fluid properties’ effects on the flow of a Williamson nanofluid. Finally, the effect of non-dimensional physical parameters like thermal conductivity, Schmidt number, Williamson parameter, Brinkman number, radiation parameter, and Prandtl number has been thoroughly demonstrated and discussed.
Convective flow, heat and mass transfer of Ostwald-de Waele fluid over a vertical stretching sheet
Directory of Open Access Journals (Sweden)
K. Vajravelu
2017-01-01
Full Text Available In this paper we study the combined buoyancy (due to thermal and species diffusion effects on the flow, heat and mass transfer of a viscous, incompressible, Ostwald-de Waele fluid over a vertical stretching surface in the presence of a chemical reaction. The effects of variable thermal conductivity and the variable mass diffusivity are also considered. A similarity transformation is used to convert the partial differential equations into coupled nonlinear ordinary differential equations. Numerical solutions are obtained by the Keller-box method. The influences of sundry parameters on the velocity, temperature and the concentration fields are presented in figures and discussed in detail. The values of the skin friction coefficient, Nusselt number and the surface mass transfer for various values of the governing parameters are presented in tables. One of the interesting observations is that the influence of the buoyancy parameters increases the velocity. However, quite the opposite is true with the temperature and the mass concentration, for all values of the power law index and the reaction rate parameter. The results obtained reveal many interesting behaviors that warrant a further study of the non-Newtonian fluid phenomena, especially shear thinning phenomena. Shear thinning reduces the wall shear stress.
Directory of Open Access Journals (Sweden)
Hunegnaw Dessie
2014-09-01
Full Text Available In this analysis, MHD boundary layer flow and heat transfer of a fluid with variable viscosity through a porous medium towards a stretching sheet by taking in to the effects of viscous dissipation in presence of heat source/sink is considered. The symmetry groups admitted by the corresponding boundary value problem are obtained by using Lie’s scaling group of transformations. These transformations are used to convert the partial differential equations of the governing equations into self-similar non-linear ordinary differential equations. Numerical solutions of these equations are obtained by Runge-Kutta fourth order with shooting method. Numerical results obtained for different parameters such as viscosity variation parameter A, permeability parameter k1, heat source/sink parameter λ, magnetic field parameter M, Prandtl number Pr, and Eckert number Ec are drawn graphically and effects of different flow parameters on velocity and temperature profiles are discussed. The skin-friction coefficient -f″(0 and heat transfer coefficient −θ′(0 are presented in tables.
Directory of Open Access Journals (Sweden)
Mohammed J Uddin
Full Text Available The unsteady two-dimensional laminar g-Jitter mixed convective boundary layer flow of Cu-water and Al2O3-water nanofluids past a permeable stretching sheet in a Darcian porous is studied by using an implicit finite difference numerical method with quasi-linearization technique. It is assumed that the plate is subjected to velocity and thermal slip boundary conditions. We have considered temperature dependent viscosity. The governing boundary layer equations are converted into non-similar equations using suitable transformations, before being solved numerically. The transport equations have been shown to be controlled by a number of parameters including viscosity parameter, Darcy number, nanoparticle volume fraction, Prandtl number, velocity slip, thermal slip, suction/injection and mixed convection parameters. The dimensionless velocity and temperature profiles as well as friction factor and heat transfer rates are presented graphically and discussed. It is found that the velocity reduces with velocity slip parameter for both nanofluids for fluid with both constant and variable properties. It is further found that the skin friction decreases with both Darcy number and momentum slip parameter while it increases with viscosity variation parameter. The surface temperature increases as the dimensionless time increases for both nanofluids. Nusselt numbers increase with mixed convection parameter and Darcy numbers and decreases with the momentum slip. Excellent agreement is found between the numerical results of the present paper with published results.
Directory of Open Access Journals (Sweden)
D. Bhukta
2017-09-01
Full Text Available Dissipative effect on magnetohydrodynamic (MHD mixed convective unsteady flow of an electrically conducting fluid over a stretching sheet embedded in a porous medium subject to transverse magnetic field in the presence of non-uniform heat source/sink has been investigated in this paper. The method of solution involves similarity transformation. The coupled nonlinear partial differential equations governing flow, heat and mass transfer phenomena are reduced into set of nonlinear ordinary differential equations. The transformed equations are solved numerically by using Runge–Kutta fourth order method associated with shooting technique. The numerical computation of skin friction, Nusselt number and Sherwood number is presented in tables. The work of previous authors is compared with the present work as particular cases in the absence of unsteady parameter, solutal buoyancy, Darcy dissipation and chemical reaction. The results of steady and unsteady cases are also discussed. The important findings are as follows: effect of electric field enhances the skin friction contributing to flow instability. Higher Prandtl number is suitable for the reduction of coefficient of skin friction which is desirable.
Directory of Open Access Journals (Sweden)
M. Jayachandra Babu
2016-09-01
Full Text Available The current study covers the relative study of non-aligned magnetohydrodynamic stagnation point flow of a nanofluid comprising gyrotactic microorganisms across a stretching sheet in the presence of nonlinear thermal radiation and variable viscosity. The governing equations transitioned as nonlinear ordinary differential equations with suited similarity transformations. With the assistance of Runge-Kutta based shooting method, we derived solutions. Results for oblique and free stream flow cases are exhibited through plots for the parameters of concern. In tabular form, heat and mass transfer rate along with the local density of the motile microorganisms are analyzed for some parameters. It is found that local density of the motile microorganisms is highly influenced by the Biot and Peclet numbers. Rising values of the magnetic field parameter, Biot number, thermal radiation parameter and thermophoresis parameter increase the thermal boundary layer. Bioconvection Peclet number and bioconvection Lewis number have tendency to reduce the density of the motile microorganisms. It is also found that thermal and concentration boundary layers become high in free stream flow when compared with the oblique flow.
Directory of Open Access Journals (Sweden)
Koneri L. Krupalakshmi
Full Text Available A numerical investigation of two-dimensional MHD boundary layer flow and thermal characteristics of an electrically conducting dusty non-Newtonian fluid over a convectively heated stretching sheet has been considered. The effects of nonlinear thermal radiation, heat source or sink and viscous dissipation are also taken into the account. The Rosseland approximation is used to model the nonlinear thermal radiation. Suitable similarity transformations are used to transform the flow governing equations into a set of nonlinear differential equations of one independent variable. The Shooting method is adopted to solve transformed equations. The effects of various material parameters on the flow and heat transfer in terms of velocity and temperature distributions are drawn in the form of graphs and are briefly discussed. The numerical computations for the Nusselt number and skin friction drag are also carried out for the emerging parameters of interest in the problem. The obtained numerical results show the good agreement with the existing one for limiting case.
Directory of Open Access Journals (Sweden)
Dulal Pal
2015-05-01
Full Text Available In this paper, we analyzed the buoyancy-driven radiative non-isothermal heat transfer in a nanofluid stagnation-point flow over a stretching/shrinking sheet embedded in a porous medium.The effects of thermal radiation and internal heat generation/absorption along with suction/injection at the boundary are also considered. Three different types of nanofluids, namely the Copper-water, the Alumina-water and the Titanium dioxide water are considered. The resulting coupled nonlinear differential equations are solved numerically by a fifth-order Runge-Kutta-Fehlberg integration scheme with a shooting technique. A good agreement is found between the present numerical results and the available results in the literature for some special cases. The effects of the physical parameters on the flow and temperature characteristics are presented through tables and graphs, and the salient features are discussed. The results obtained reveal many interesting behaviors that warrant further study on the heat transfer enhancement due to the nanofluids.
Mahmoud, Mostafa A. A.; Megahed, Ahmed M.
2017-10-01
Theoretical and numerical outcomes of the non-Newtonian Casson liquid thin film fluid flow owing to an unsteady stretching sheet which exposed to a magnetic field, Ohmic heating and slip velocity phenomena is reported here. The non-Newtonian thermal conductivity is imposed and treated as it vary with temperature. The nonlinear partial differential equations governing the non-Newtonian Casson thin film fluid are simplified into a group of highly nonlinear ordinary differential equations by using an adequate dimensionless transformations. With this in mind, the numerical solutions for the ordinary conservation equations are found using an accurate shooting iteration technique together with the Runge-Kutta algorithm. The lineaments of the thin film flow and the heat transfer characteristics for the pertinent parameters are discussed through graphs. The results obtained here detect many concern for the local Nusselt number and the local skin-friction coefficient in which they may be beneficial for the material processing industries. Furthermore, in some special conditions, the present problem has an excellent agreement with previously published work.
Basir, Mohammad Faisal Mohd; Ismail, Fazreen Amira; Amirsom, Nur Ardiana; Latiff, Nur Amalina Abdul; Ismail, Ahmad Izani Md.
2017-04-01
The effect of multiple slip on a chemically reactive magnetohydrodynamic (MHD) non-Newtonian power law fluid flow over a stretching sheet with microorganism was numerically investigated. The governing partial differential equations were transformed into nonlinear ordinary differential equations using the similarity transformations developed by Lie group analysis. The reduced governing nonlinear ordinary differential equations were then numerically solved using the Runge-Kutta-Fehlberg fourth-fifth order method. Good agreement was found between the present numerical solutions with the existing published results to support the validity and the accuracy of the numerical computations. The influences of the velocity, thermal, mass and microorganism slips, the magnetic field parameter and the chemical reaction parameter on the dimensionless velocity, temperature, nanoparticle volume fraction, microorganism concentration, the distribution of the density of motile microorganisms have been illustrated graphically. The effects of the governing parameters on the physical quantities, namely, the local heat transfer rate, the local mass transfer rate and the local microorganism transfer rate were analyzed and discussed.
Directory of Open Access Journals (Sweden)
Rahman Abdel-Gamal M.
2013-01-01
Full Text Available The unsteady flow and heat transfer in an incompressible laminar, electrically conducting and non-Newtonian fluid over a non-isothermal stretching sheet with the variation in the viscosity and thermal conductivity in a porous medium by the influence of an external transverse magnetic field have been obtained and studied numerically. By using similarity analysis the governing differential equations are transformed into a set of non-linear coupled ordinary differential equations which are solved numerically. Numerical results were presented for velocity and temperature profiles for different parameters of the problem as power law parameter, unsteadiness parameter, radiation parameter, magnetic field parameter, porous medium parameter, temperature buoyancy parameter, Prandtl parameter, modified Eckert parameter, Joule heating parameter , heat source/sink parameter and others. A comparison with previously published work has been carried out and the results are found to be in good agreement. Also the effects of the pertinent parameters on the skin friction and the rate of heat transfer are obtained and discussed numerically and illustrated graphically.
Impacts on thin elastic sheets
National Research Council Canada - National Science Library
Romain Vermorel; Nicolas Vandenberghe; Emmanuel Villermaux
2009-01-01
... domain and then a transverse wave propagates on the stretched area at a lower speed. In the stretched area, geometrical confinement induces compressive circumferential stresses leading to a buckling instability, giving rise to radial wrinkles...
Energy Technology Data Exchange (ETDEWEB)
Ashraf, M. Bilal, E-mail: bilalashraf-qau@yahoo.com [Department of Mathematics, COMSATS Institute of Information Technology, Wah Cantt 47040 (Pakistan); Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia); Shehzad, S. A. [Department of Mathematics, COMSATS Institute of Information Technology, Sahiwal 57000 (Pakistan); Alsaedi, A. [Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia)
2015-02-15
Three dimensional radiative flow of Maxwell fluid over an inclined stretching surface with convective boundary condition is investigated. Heat and mass transfer analysis is taken into account with thermophoresis effects. Similarity transformations are utilized to reduce the partial differential equations into ordinary differential equations. Series solutions of velocity, temperature and concentration are developed. Influence of different parameters Biot number, therrmophoretic parameter, Deborah number, ratio parameter, inclined stretching angle, radiation parameter, mixed convection parameter and concentration buoyancy parameter on the non-dimensional velocity components, temperature and concentration are plotted and discussed in detail. Physical quantities of interests are tabulated and examined.
Directory of Open Access Journals (Sweden)
M. Bilal Ashraf
2015-02-01
Full Text Available Three dimensional radiative flow of Maxwell fluid over an inclined stretching surface with convective boundary condition is investigated. Heat and mass transfer analysis is taken into account with thermophoresis effects. Similarity transformations are utilized to reduce the partial differential equations into ordinary differential equations. Series solutions of velocity, temperature and concentration are developed. Influence of different parameters Biot number, therrmophoretic parameter, Deborah number, ratio parameter, inclined stretching angle, radiation parameter, mixed convection parameter and concentration buoyancy parameter on the non-dimensional velocity components, temperature and concentration are plotted and discussed in detail. Physical quantities of interests are tabulated and examined.
Energy Technology Data Exchange (ETDEWEB)
Mahmood, Asad, E-mail: asadmahmood_86@yahoo.com [Department of Mathematics and Statistics, International Islamic University, Islamabad 44000 (Pakistan); Chen, Bin [School of Environment, Beijing Normal University, Beijing 100875 (China); Ghaffari, Abuzar [Department of Mathematics and Statistics, International Islamic University, Islamabad 44000 (Pakistan)
2016-10-15
Hydromagnetic stagnation point flow and heat transfer over a nonlinearly stretching/shrinking surface of micropolar fluid is investigated. The numerical simulation is carried out through Chebyshev Spectral Newton Iterative Scheme, after transforming the governing equations into dimensionless boundary layer form. The dual solutions are reported for different values of magnetic and material parameters against the limited range of stretching/shrinking parameter. It is also noted that second solution only occurs for the negative values of stretching/shrinking parameter, whereas for the positive values unique solution exists. The effects of dimensionless parameters are described through graphs. It is seen that the flow and heat transfer rates can be controlled through the material parameter and magnetic force. - Highlights: • Constitutive equations of micropolar fluid and heat transfer are employed. • Magnetic effect on velocity and temperature profile of micropolar fluid is observed. • Dual solution is reported in the region of stagnation point flow. • A numerical technique i.e. Chebyshev Spectral Newton Iterative Scheme is applied to obtain the desire results.
Directory of Open Access Journals (Sweden)
H. M. El-Hawary
2013-01-01
Full Text Available A mathematical analysis has been carried out for stagnation-point heat and mass transfer of a viscoelastic fluid over a stretching sheet with surface slip velocity, concentration dependent diffusivity, thermal convective boundary conditions, and heat source/sink. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using Lie group analysis. Numerical solutions of the resulting ordinary differential equations are obtained using shooting method. The influences of various parameters on velocity, temperature, and mass profiles have been studied. Also, the effects of various parameters on the local skin-friction coefficient, the local Nusselt number, and the local Sherwood number are given in graphics form and discussed.
... done. Tretinoin cream may help reduce stretch marks. Laser treatment may also help. In very rare cases, ... member of Hi-Ethics and subscribes to the principles of the Health on the Net Foundation (www. ...
Directory of Open Access Journals (Sweden)
I-Chung Liu
2012-01-01
Full Text Available We have analyzed the effects of variable heat flux and internal heat generation on the flow and heat transfer in a thin film on a horizontal sheet in the presence of thermal radiation. Similarity transformations are used to transform the governing equations to a set of coupled nonlinear ordinary differential equations. The obtained differential equations are solved approximately by the homotopy perturbation method (HPM. The effects of various parameters governing the flow and heat transfer in this study are discussed and presented graphically. Comparison of numerical results is made with the earlier published results under limiting cases.
Directory of Open Access Journals (Sweden)
Ahmed A. Afify
2017-01-01
Full Text Available The impacts of multiple slips with viscous dissipation on the boundary layer flow and heat transfer of a non-Newtonian nanofluid over a stretching surface have been investigated numerically. The Casson fluid model is applied to characterize the non-Newtonian fluid behavior. Physical mechanisms responsible for Brownian motion and thermophoresis with chemical reaction are accounted for in the model. The governing nonlinear boundary layer equations through appropriate transformations are reduced into a set of nonlinear ordinary differential equations, which are solved numerically using a shooting method with fourth-order Runge-Kutta integration scheme. Comparisons of the numerical method with the existing results in the literature are made and an excellent agreement is obtained. The heat transfer rate is enhanced with generative chemical reaction and concentration slip parameter, whereas the reverse trend is observed with destructive chemical reaction and thermal slip parameter. It is also noticed that the mass transfer rate is boosted with destructive chemical reaction and thermal slip parameter. Further, the opposite influence is found with generative chemical reaction and concentration slip parameter.
Song, Jaeyong; Kim, Yongsun; Kweon, Oh-Kyeong; Kang, Byung-Jae
2017-12-31
A 12-year-old castrated Toy Poodle was referred to the Kangwon National University Animal Hospital with an oligotrophic nonunion fracture in the distal 1/3 of the left radius and an intact ulna. After fixation by a locking plate and screws, adipose-derived mesenchymal stem-cell sheets expressing bone morphogenetic protein 7 (BMP-7) were transplanted to the fracture site to enhance the healing activity. The fracture was healed at 9 weeks after surgery. In the present case, the mesenchymal stem-cell sheets expressing BMP-7 promoted bone regeneration and healing in a nonunion fracture.
Directory of Open Access Journals (Sweden)
Wubshet Ibrahim
Full Text Available This article presents the effect of thermal radiation on magnetohydrodynamic flow of tangent hyperbolic fluid with nanoparticle past an enlarging sheet with second order slip and convective boundary condition. Condition of zero normal flux of nanoparticles at the wall is used for the concentration boundary condition, which is the current topic that have yet to be studied extensively. The solution for the velocity, temperature and nanoparticle concentration is governed by parameters viz. power-law index (n, Weissenberg number We, Biot number Bi, Prandtl number Pr, velocity slip parameters Î´ and Î³, Lewis number Le, Brownian motion parameter Nb and the thermophoresis parameter Nt. Similarity transformation is used to metamorphosed the governing non-linear boundary-value problem into coupled higher order non-linear ordinary differential equation. The succeeding equations were numerically solved using the function bvp4c from the matlab for different values of emerging parameters. Numerical results are deliberated through graphs and tables for velocity, temperature, concentration, the skin friction coefficient and local Nusselt number. The results designate that the skin friction coefficient Cf deplete as the values of Weissenberg number We, slip parameters Î³ and Î´ upturn and it rises as the values of power-law index n increase. The local Nusselt number -Î¸â²(0 decreases as slip parameters Î³ and Î´, radiation parameter Nr, Weissenberg number We, thermophoresis parameter Nt and power-law index n increase. However, the local Nusselt number increases as the Biot number Bi increase. Keywords: Tangent hyperbolic fluid, Second order slip flow, MHD, Convective boundary condition, Radiation effect, Passive control of nanoparticles
Kumaresan, E.; Vijaya Kumar, A. G.; Rushi Kumar, B.
2017-11-01
In the present investigation, a numerical analysis has been carried out for steady two dimensional MHD free convective boundary layer flows of electrically conducting nanofluids past a uniformly stretching sheet through porous media with radiation absorption, heat generation/absorption, thermal radiation, chemical reaction, thermo-diffusion and diffusion – thermo effects. We considered two types of nanofluids namely MgO-water and CuO-water. The mathematical model was governed by a system of linear and non-linear partial differential equations with prescribed boundary conditions. The governing boundary-layer equations are first transformed into a system of coupled nonlinear ordinary differential equations using similarity variables. The transformed equations were solved numerically by the shooting method with Runge-Kutta scheme. Finally the effects of various dimensionless governing parameters like magnetic field parameter, chemical reaction parameter, thermal radiation parameter, radiation absorption parameter, heat generation parameter, Dufour number, Soret number, volume fraction of the nanoparticles and shape of the nanoparticles on velocity, temperature and concentration profiles along with the friction factor, local Nusselt and Sherwood numbers are thoroughly studied and explicitly explained in tabular form.
Ahmed, M. Megahed
2013-09-01
The effects of variable fluid properties and variable heat flux on the flow and heat transfer of a non-Newtonian Maxwell fluid over an unsteady stretching sheet in the presence of slip velocity have been studied. The governing differential equations are transformed into a set of coupled non-linear ordinary differential equations and then solved with a numerical technique using appropriate boundary conditions for various physical parameters. The numerical solution for the governing non-linear boundary value problem is based on applying the fourth-order Runge—Kutta method coupled with the shooting technique over the entire range of physical parameters. The effects of various parameters like the viscosity parameter, thermal conductivity parameter, unsteadiness parameter, slip velocity parameter, the Deborah number, and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. Comparison of numerical results is made with the earlier published results under limiting cases.
Ullah, Imran; Bhattacharyya, Krishnendu; Shafie, Sharidan; Khan, Ilyas
2016-01-01
Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail.
Directory of Open Access Journals (Sweden)
Imran Ullah
Full Text Available Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail.
Directory of Open Access Journals (Sweden)
S A M Mehryan
Full Text Available The behavior of a water-based nanofluid containing motile gyrotactic micro-organisms passing an isothermal nonlinear stretching sheet in the presence of a non-uniform magnetic field is studied numerically. The governing partial differential equations including continuity, momentums, energy, concentration of the nanoparticles, and density of motile micro-organisms are converted into a system of the ordinary differential equations via a set of similarity transformations. New set of equations are discretized using the finite difference method and have been linearized by employing the Newton's linearization technique. The tri-diagonal system of algebraic equations from discretization is solved using the well-known Thomas algorithm. The numerical results for profiles of velocity, temperature, nanoparticles concentration and density of motile micro-organisms as well as the local skin friction coefficient Cfx, the local Nusselt number Nux, the local Sherwood number Shx and the local density number of the motile microorganism Nnx are expressed graphically and described in detail. This investigation shows the density number of the motile micro-organisms enhances with rise of M, Gr/Re2, Pe and Ω but it decreases with augment of Rb and n. Also, Sherwood number augments with an increase of M and Gr/Re2, while decreases with n, Rb, Nb and Nr. To show the validity of the current results, a comparison between the present results and the existing literature has been carried out.
Dogonchi, A. S.; Ganji, D. D.
2017-12-01
In this study, buoyancy MHD nanofluid flow and heat transfer over a stretching sheet in the presence of Joule heating and thermal radiation impacts, are studied. Cattaneo-Christov heat flux model instead of conventional Fourier's law of heat conduction is applied to investigate the heat transfer characteristics. A similarity transformation is used to transmute the governing momentum and energy equations into non-linear ordinary differential equations with the appropriate boundary conditions. The obtained non-linear ordinary differential equations are solved numerically. The impacts of diverse active parameters such as the magnetic parameter, the radiation parameter, the buoyancy parameter, the heat source parameter, the volume fraction of nanofluid and the thermal relaxation parameter are examined on the velocity and temperature profiles. In addition, the value of the Nusselt number is calculated and presented through figures. The results demonstrate that the temperature profile is lower in the case of Cattaneo-Christov heat flux model as compared to Fourier's law. Moreover, the Nusselt number raises with the raising volume fraction of nanofluid and it abates with the ascending the radiation parameter.
Kurukuri, S.; Miroux, Alexis; Wisselink, H.H.; van den Boogaard, Antonius H.
2011-01-01
In the aerospace industry stretch forming is often used to produce skin parts. During stretch forming a sheet is clamped at two sides and stretched over a die, such that the sheet gets the shape of the die. However for complex shapes it is necessary to use expensive intermediate heat-treatments in
Finite Element Simulation of the Stretch-Forming of Aircraft Skins
Wisselink, H.H.; van den Boogaard, Antonius H.
2005-01-01
In the aerospace industry stretch forming is often used to produce skin parts. During stretch forming a sheet is clamped at two sides and stretched over a die, such that the sheet gets the shape of the die. However for complex shapes it is necessary to use expensive intermediate heat-treatments in
Directory of Open Access Journals (Sweden)
Emad H. Aly
2015-01-01
Full Text Available In existence of the velocity slip model, suction/injection, and heat source/sink, the boundary layer flow near a stagnation-point over a heated stretching sheet in a porous medium saturated by a nanofluid, with effect of the thermal radiation and magnetic field, has been studied. The governing system of partial differential equations was transformed into a system of nonlinear ordinary equations using the appropriate similarity transforms. Then, the obtained system has been numerically solved by the Chebyshev pseudospectral differentiation matrix (ChPDM approach. It was found that, at some special cases, the current results are in a very good agreement with those presented in the literature. In addition, the flow velocity, surface shear stress, temperature, and concentration are strongly influenced on applying the slip model, which is, therefore, extremely important to predict the flow characteristics accurately in the nanofluid mechanics. It was proved that this velocity slip condition is mandatory and should be taken into account in nanoscale research; otherwise, false results and a spurious physical sight are to be gained. Further, it was deduced that the influence of the stream velocity and shear stress reaches very rapidly the stable manner for both cases of the velocity ratio. However, when this ratio is equal to one, the skin friction coefficient, reduced Nusselt number, and reduced Sherwood number are constant and equal to zero, 0.721082, and 3.06155, respectively. Furthermore, it was proved that the reduced Nusselt number decreases with increase of Brownian motion and thermophoresis; has a very weak effect on increasing Lewis number; increases with increase of Prandtl number; and is higher in the cases of suction, velocity ratio > 1 and heat source in comparison with injection, velocity ratio 1 in comparison with injection and velocity ratio < 1, respectively; and is approximately the same in the heat source and heat sink cases. Finally
Directory of Open Access Journals (Sweden)
P. Janhunen
2005-03-01
Full Text Available Velocity dispersed ion signatures (VDIS occurring at the plasma sheet boundary layer (PSBL are a well reported feature. Theory has, however, predicted the existence of multiple ion beamlets, similar to VDIS, in the boundary plasma sheet (BPS, i.e. at latitudes below the PSBL. In this study we show evidence for the multiple ion beamlets in Polar/TIMAS ion data and basic properties of the ion beamlets will be presented. Statistics of the occurrence frequency of ion multiple beamlets show that they are most common in the midnight MLT sector and for altitudes above 4 RE, while at low altitude (≤3 RE, single beamlets at PSBL (VDIS are more common. Distribution functions of ion beamlets in velocity space have recently been shown to correspond to 3-dimensional hollow spheres, containing a large amount of free energy. We also study correlation with ~100 Hz waves and electron anisotropies and consider the possibility that ion beamlets correspond to stable auroral arcs.
DEFF Research Database (Denmark)
2013-01-01
The invention relates to a method for determining stretch values and movement of body parts, e.g. a foot, by analysing stretch data from a stretch sensor. By analysing data from the stretch sensor it is possible to determine stretch samples which are associated with particular motion phases...
The stretch zone of automotive steel sheets
Indian Academy of Sciences (India)
Author Affiliations. Ľ Ambriško1 L Pešek2. Institute of Structural Engineering, Faculty of Civil Engineering, Technical University of Košice, Vysokoškolská 4, 042 00 Košice, Slovak Republic; Department of Materials Science, Faculty of Metallurgy, Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic ...
Webber, W R
2014-01-01
The paper describes differences in the intensity as a function of radial distance of anomalous and galactic cosmic rays in the N-S heliosheaths as observed by the Voyager 1 and 2 spacecraft respectively. The anomalous cosmic ray (ACR) intensities above a few MeV in the N heliosheath reach a maximum at ~2009.5, about 16 AU beyond the heliospheric current sheet (HTS), thus indicating a possible source location for these higher energy particles. The galactic cosmic ray electron and nuclei intensities continue to increase rapidly throughout the entire N-heliosheath out to 121.7 AU. Two sudden increases of these electrons at 16.6 and 22.2 AU beyond the HTS suggest that the V1 spacecraft passed significant heliosheath structures at these times. Later, at 121.7 AU, which is a distance of 27.6 AU beyond the initial HTS crossing distance, V1 in the N heliosheath appears to pass beyond the ACR trapping region as the anomalous particles disappear suddenly and completely. At V2 in the S heliosheath, large 42-21 day perio...
Energy Technology Data Exchange (ETDEWEB)
Bowden, Gordon; /SLAC
2005-09-06
Stretched wires are beginning to play an important role in the alignment of accelerators and synchrotron light sources. Stretched wires are proposed for the alignment of the 130 meter long LCLS undulator. Wire position technology has reached sub-micron resolution yet analyses of perturbations to wire straightness are hard to find. This paper considers possible deviations of stretched wire from the simple 2-dimensional catenary form.
Vardiman, Phillip; Carrand, David; Gallagher, Philip M.
2010-01-01
Stretching prior to activity is universally accepted as an important way to improve performance and help prevent injury. Likewise, limited flexibility has been shown to decrease functional ability and predispose a person to injuries. Although this is commonly accepted, appropriate stretching for children and adolescents involved with sports and…
Antibubbles and fine cylindrical sheets of air
Beilharz, D.; Guyon, A.; Li, E.Q.; Thoraval, Marie-Jean; Thoroddsen, S.T.
2015-01-01
Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a
Directory of Open Access Journals (Sweden)
Mohamed Abd El-Aziz
2016-07-01
Full Text Available The steady stagnation-point flow and heat transfer of a viscous, incompressible and heat generating/absorbing fluid over a shrinking sheet in the presence of a non-uniform heat source/sink is considered. The system of partial differential equations was transformed to a system of ordinary differential equations, which was solved numerically. Numerical results were obtained for the skin friction coefficient, the surface temperature as well as the velocity and temperature profiles for some values of the governing parameters. The study reveals that the range of velocity ratio parameter for which the solution exists increases as the magnetic field increase.
... stretching each week? Resources American College of Sports Medicine, Basic Injury Prevention Concepts National Institutes of Health: National Institute on Aging Last Updated: January 2017 This article was contributed by: familydoctor.org editorial staff Categories: ...
Directory of Open Access Journals (Sweden)
A. M. Salem
2013-01-01
Full Text Available A numerical model is developed to study the effects of temperature-dependent viscosity on heat and mass transfer flow of magnetohydrodynamic(MHD micropolar fluids with medium molecular weight along a permeable stretching surface embedded in a non-Darcian porous medium in the presence of viscous dissipation and chemical reaction. The governing boundary equations for momentum, angular momentum (microrotation, and energy and mass transfer are transformed to a set of nonlinear ordinary differential equations by using similarity solutions which are then solved numerically by shooting technique. A comparison between the analytical and the numerical solutions has been included. The effects of the various physical parameters entering into the problem on velocity, microrotation, temperature and concentration profiles are presented graphically. Finally, the effects of pertinent parameters on local skin-friction coefficient, local Nusselt number and local Sherwood number are also presented graphically. One important observation is that for some kinds of mixtures (e.g., H2, air with light and medium molecular weight, the magnetic field and temperature-dependent viscosity effects play a significant role and should be taken into consideration as well.
Directory of Open Access Journals (Sweden)
Ali Fedakar
2011-04-01
Full Text Available Upper limb aneurysms are less frequently seen than the other aneurysm. Radial arterial aneurysm is usually associated with the trauma. Interventional procedures can cause pseudoaneurysm at the radial artery puncture sites. Radial artery aneurysm may cause the thromboembolic events at the fingers and the hand. We present a case of isolated radial arterial aneurysm with idiopathic origin.
Viscous flows stretching and shrinking of surfaces
Mehmood, Ahmer
2017-01-01
This authored monograph provides a detailed discussion of the boundary layer flow due to a moving plate. The topical focus lies on the 2- and 3-dimensional case, considering axially symmetric and unsteady flows. The author derives a criterion for the self-similar and non-similar flow, and the turbulent flow due to a stretching or shrinking sheet is also discussed. The target audience primarily comprises research experts in the field of boundary layer flow, but the book will also be beneficial for graduate students.
Stretching & Flexibility: An Interactive Encyclopedia of Stretching. [CD-ROM].
2002
This CD-ROM offers 140 different stretches in full-motion video sequences. It focuses on the proper techniques for overall physical fitness, injury prevention and rehabilitation, and 23 different sports (e.g., golf, running, soccer, skiing, climbing, football, and baseball). Topics include stretching for sports; stretching awareness and education…
Martin, Gregory
2016-01-01
Sheet music is a handwritten or printed form of music notation that uses modern musical symbols. Like its analogs – books, pamphlets, etc. – the medium of sheet music typically is paper (or, in earlier times, parchment), although the access to musical notation in recent years also includes presentation on computer screens. Use of the term "sheet" is intended to differentiate written music from an audio presentation, as in a sound recording, broadcast or live performance, which may involve vid...
Dynamics and structure of stretched flames
Energy Technology Data Exchange (ETDEWEB)
Law, C.K. [Princeton Univ., NJ (United States)
1993-12-01
This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.
Investigation of deformation in stretch forming based on distributed displacement loading
Chen, Qingmin; Sun, Lirong; Yan, Xueping
2017-09-01
Stretch forming based on distributed displacement loading is a new stretch forming process, in which distributed displacements are applied at a series of discrete points, therefore, the deformation in different positions of sheet metal can be individually controlled. To investigate the deformation of sheet metal in stretch forming, the rational loading trajectory is designed, and it is determined by the respective length of longitudinal cross-section curve. The numerical simulation results show that, the loading trajectory is valid to form three-dimensional surface parts, and the relatively small shape errors between the simulated results and target results make it possible to form qualified parts. Meanwhile, the longitudinal strains are uniformly distributed along the longitudinal material lines, and longitudinal strains increase evenly with the process of stretch forming. Finally, experimental tests proved the effectiveness and feasibility of the stretch forming based on distributed displacement loading.
Nelken, Miranda
2010-01-01
This article presents a lesson that allows students to make bird ornaments using a metal tooling as it can be textured, cut, and colored. In this lesson, students choose a bird and sketch it on a piece of paper. Once the sketches are complete, students copy their pictures on a second piece of paper by taping the sketch over a sheet of blank paper…
Brand, Brand Stretching, and Brand Stretching Plan for JAC
Lei CHEN
2012-01-01
With the consistent crisis of world economic, companies are encountering problems with their expansion. Introducing all new brands for expanding is hard to be accepted due to the high level of costs and risks. Using brand stretching as companies’ expansion strategy efficiently reduces the costs and risks today. Therefore, getting clear about brand stretching seems quite important for most companies nowadays. The objectives of this thesis is introducing brand stretching theory and making a...
Viscous flow and heat transfer over an unsteady stretching surface
Directory of Open Access Journals (Sweden)
Ene Remus-Daniel
2016-01-01
Full Text Available In this paper we have studied the flow and heat transfer of a horizontal sheet in a viscous fluid. The stretching rate and temperature of the sheet vary with time. The governing equations for momentum and thermal energy are reduced to ordinary differential equations by means of similarity transformation. These equations are solved approximately by means of the Optimal Homotopy Asymptotic Method (OHAM which provides us with a convenient way to control the convergence of approximation solutions and adjust convergence rigorously when necessary. Some examples are given and the results obtained reveal that the proposed method is effective and easy to use.
Detail-replicating shape stretching
Alhashim, Ibraheem Abbas
2011-01-01
Mesh deformation methods are useful for creating shape variations. Existing deformation techniques work on preserving surface details under bending and twisting operations. Stretching different parts of a shape is also a useful operation for generating shape variations. Under stretching, texture-like geometric details should not be preserved but rather replicated. We propose a simple method that help create model variation by applying non-uniform stretching on 3D models. The method replicates...
Directory of Open Access Journals (Sweden)
V. A. Sergeev
2005-09-01
Full Text Available Transition from the growth phase to the substorm expansion during a well-isolated substorm with a strong growth phase is investigated using a unique radial (THEMIS-like spacecraft constellation near midnight, including the probing of the tail current at ~16 RE with Cluster, of the transition region at ~9 RE with Geotail and Polar, and of the inner region at 6.6 RE with two LANL spacecraft. The activity development on both a global scale and near the spacecraft footpoints was monitored with global auroral images (from the IMAGE spacecraft and the ground network. Magnetospheric models, tuned using in-situ observations, indicated a strong tail stretching and plasma sheet thinning, which included the growth of the near-Earth current (approaching 30 nA/m2 and possible formation of a local B minimum in the neutral sheet (~5 nT at ~10–12 RE near the substorm onset. However, there were no indications that the substorm onset was initiated just in this region. We emphasize the rather weak magnetic and plasma flow perturbations observed outside the thinned plasma sheet at Cluster, which could be interpreted as the effects of localized earthward-contracting newly-reconnected plasma tubes produced by the impulsive reconnection in the midtail plasma sheet. In that case the time delays around the distinct substorm onset are consistent with the activity propagation from the midtail to the inner magnetosphere. A peculiar feature of this substorm was that 12min prior to this distinct onset, a clear soft plasma injection to the GEO orbit was recorded which has little associated effects both in the ionosphere and in the transition region at ~9 RE. This pseudo-breakup was probably due to either a localized ballooning-type activity or due to the braking of a very narrow BBF whose signatures were also recorded by Cluster. This event manifested the (previously unknown phenomenon, a strong tail overloading (excessive storage of magnetic energy contrasted to the modest
Ebert, Todd A [West Palm Beach, FL; Carella, John A [Jupiter, FL
2012-03-13
A triple acting radial seal used as an interstage seal assembly in a gas turbine engine, where the seal assembly includes an interstage seal support extending from a stationary inner shroud of a vane ring, the interstage seal support includes a larger annular radial inward facing groove in which an outer annular floating seal assembly is secured for radial displacement, and the outer annular floating seal assembly includes a smaller annular radial inward facing groove in which an inner annular floating seal assembly is secured also for radial displacement. A compliant seal is secured to the inner annular floating seal assembly. The outer annular floating seal assembly encapsulates the inner annular floating seal assembly which is made from a very low alpha material in order to reduce thermal stress.
DEFF Research Database (Denmark)
Horstmann, Alexander
2014-01-01
In this paper, I hope to add a complementary perspective to James Scott’s recent work on avoidance strategies of subaltern mountain people by focusing on what I call the refugee public. The educated Karen elite uses the space of exile in the Thai borderland to reconstitute resources and to re......-enter Karen state in Eastern Burma as humanitarians, providing medical, educational resources and help to document human rights violations and do advocacy work. In addition, local missionaries and faith-based groups also use the corridor to spread the word of God. I argue that Karen humanitarian community......-based organizations succeed to stretch the border by establishing a firm presence that is supported by the international humanitarian economy in the refugee camps in Northwestern Thailand....
The star shaped pattern on broken thin sheets
Vandenberghe, Nicolas; Vermorel, Romain; Villermaux, Emmanuel
2011-03-01
We study transverse impacts of rigid objects on a thin elastic sheet made of acrylic. After impact, a transverse wave propagates on the sheet and orthoradial stresses lead to the formation of radial cracks. The result of this fragmentation process is the star shaped pattern frequently observed on broken windows. We investigate the variation of the pattern and in particular the number of radial cracks with impact speed and material properties. The formation of rayed craters by meteorite impacts will be briefly discussed.
Longitudinal Stretching for Maturation of Vascular Tissues Using Magnetic Forces
Directory of Open Access Journals (Sweden)
Timothy R. Olsen
2016-11-01
Full Text Available Cellular spheroids were studied to determine their use as “bioinks” in the biofabrication of tissue engineered constructs. Specifically, magnetic forces were used to mediate the cyclic longitudinal stretching of tissues composed of Janus magnetic cellular spheroids (JMCSs, as part of a post-processing method for enhancing the deposition and mechanical properties of an extracellular matrix (ECM. The purpose was to accelerate the conventional tissue maturation process via novel post-processing techniques that accelerate the functional, structural, and mechanical mimicking of native tissues. The results of a forty-day study of JMCSs indicated an expression of collagen I, collagen IV, elastin, and fibronectin, which are important vascular ECM proteins. Most notably, the subsequent exposure of fused tissue sheets composed of JMCSs to magnetic forces did not hinder the production of these key proteins. Quantitative results demonstrate that cyclic longitudinal stretching of the tissue sheets mediated by these magnetic forces increased the Young’s modulus and induced collagen fiber alignment over a seven day period, when compared to statically conditioned controls. Specifically, the elastin and collagen content of these dynamically-conditioned sheets were 35- and three-fold greater, respectively, at seven days compared to the statically-conditioned controls at three days. These findings indicate the potential of using magnetic forces in tissue maturation, specifically through the cyclic longitudinal stretching of tissues.
Printable low-cost, sustained and dynamic cell stretching apparatus.
Toume, Samer; Gefen, Amit; Weihs, Daphne
2016-05-24
Deformations that are applied on body tissues during daily activities, as a result of morbid conditions, or during various medical treatments, affect cell viability and biological function. Such mechanobiological phenomena are often studied in vitro, in monolayer cultures. To facilitate such studies cost effectively, we have developed a novel, printable cell stretching apparatus. The apparatus is used to apply tensile strains on cells cultured on elastic, stretchable substrata, either by sustained or by dynamic-cyclic application. Most of the apparatus parts are three-dimensionally printed (excluding motors), and stretching is automatically performed by two direct current geared motors that are controlled by a programmable microcontroller platform. To demonstrate functionality of this novel printable device, which can be produced in multiple copies in research labs at a cost of under 100 US$ per unit, including motors and controller, we performed cell culture studies monitored by fluorescence microscopy. Specifically, we have applied sustained and cyclic, radial stretching at large strains to NIH3T3 mouse fibroblasts, and have demonstrated that cell viability, adhesion and morphology were maintained following stretching. Our apparatus is designed to be low-cost, rapidly manufactured at a university or small-company setting, and simple to use and control, where its flexible, versatile design allows users to experimentally induce different stretching regimes with varying amplitudes and frequencies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Curved Piezoelectric Actuators for Stretching Optical Fibers
Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.
2008-01-01
Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.
Experimental study of the dynmamics of a stretched vortex
Petitjeans, Philippe; Bottausci, Frederic; Maurel, Agnes
2001-11-01
Numerical simulations of turbulent flows as well as real experiments indicates that a large part of vorticity in generic velocity fields is concentrated in localized regions in the form of filaments. The creation of such structures can be accounted for by the action of stretching on vorticity field, e.g. secondary instability mechanism in stretched vortex sheets. An experiment is performed in order to create a single stretched vortex that is supposed to have the same dynamics than these filaments of vorticity. The initial vorticity comes from a laminar boundary layer flow in a low velocity water channel, and the stretching is produced by succion through two holes located on the lateral walls of the channel. When the stretching is strong enough, a vortex is created that remains at its location attached to the succion holes. Recent results on the charateristics of this vortex will be presented. Instabilities of such a structure may produce the explosion of the vortex as a turbulent spot. This behaviour will be described and characterized.
Stretch-minimising stream surfaces
Barton, Michael
2015-05-01
We study the problem of finding stretch-minimising stream surfaces in a divergence-free vector field. These surfaces are generated by motions of seed curves that propagate through the field in a stretch minimising manner, i.e., they move without stretching or shrinking, preserving the length of their arbitrary arc. In general fields, such curves may not exist. How-ever, the divergence-free constraint gives rise to these \\'stretch-free\\' curves that are locally arc-length preserving when infinitesimally propagated. Several families of stretch-free curves are identified and used as initial guesses for stream surface generation. These surfaces are subsequently globally optimised to obtain the best stretch-minimising stream surfaces in a given divergence-free vector field. Our algorithm was tested on benchmark datasets, proving its applicability to incompressible fluid flow simulations, where our stretch-minimising stream surfaces realistically reflect the flow of a flexible univariate object. © 2015 Elsevier Inc. All rights reserved.
Prevention of crack in stretch flanging process using hot stamping technique
Syafiq, Y. Mohd; Hamedon, Z.; Azila Aziz, Wan; Razlan Yusoff, Ahmad
2017-10-01
Demand for enhancing of passenger safety as well as weight reduction of automobiles has increased the use of high strength steel sheets. As a sheet metal is a lightweight having high strength is suitable for producing automotive parts such as white body panel. The stretch flanging of the high strength steel sheet is a problem due to high springback and easy to crack. This study uses three methods to stretch flange the sheets; using lubricants, shear-edge polishing and hot stamping. The effectiveness of these methods will be measured by comparing the flange length of each methods can achieved. For stretch flange with lubricant and polished sheared edge, the flange length failed to achieve the target 15 mm while hot stamping improved the formability of the sheet and preventing the occurrence of the springback and crack. Hot stamping not only improved formability of the sheet but also transformed the microstructure into martensite thus improve the hardness and the strength of the sheet after been quenched with the dies.
Poh, Gangkai; Slavin, James A.; Jia, Xianzhe; Raines, Jim M.; Imber, Suzanne M.; Sun, Wei-Jie; Gershman, Daniel J.; DiBraccio, Gina A.; Genestreti, Kevin J.; Smith, Andy W.
2017-08-01
We analyzed MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) magnetic field and plasma measurements taken during 319 crossings of Mercury's cross-tail current sheet. We found that the measured BZ in the current sheet is higher on the dawnside than the duskside by a factor of ≈3 and the asymmetry decreases with downtail distance. This result is consistent with expectations based upon MHD stress balance. The magnetic fields threading the more stretched current sheet in the duskside have a higher plasma beta than those on the dawnside, where they are less stretched. This asymmetric behavior is confirmed by mean current sheet thickness being greatest on the dawnside. We propose that heavy planetary ion (e.g., Na+) enhancements in the duskside current sheet provides the most likely explanation for the dawn-dusk current sheet asymmetries. We also report the direct measurement of Mercury's substorm current wedge (SCW) formation and estimate the total current due to pileup of magnetic flux to be ≈11 kA. The conductance at the foot of the field lines required to close the SCW current is found to be ≈1.2 S, which is similar to earlier results derived from modeling of Mercury's Region 1 field-aligned currents. Hence, Mercury's regolith is sufficiently conductive for the current to flow radially then across the surface of Mercury's highly conductive iron core. Mercury appears to be closely coupled to its nightside magnetosphere by mass loading of upward flowing heavy planetary ions and electrodynamically by field-aligned currents that transfer momentum and energy to the nightside auroral oval crust and interior. Heavy planetary ion enhancements in Mercury's duskside current sheet provide explanation for cross-tail asymmetries found in this study. The total current due to the pileup of magnetic flux and conductance required to close the SCW current is found to be ≈11 kA and 1.2 S. Mercury is coupled to magnetotail by mass loading of heavy ions
Huang, Jiangshui; Suo, Zhigang; Clarke, David
2013-03-01
The performance of dielectric elastomer actuators is limited by electrical breakdown. Attempts to measure this are confounded by the voltage-induced thinning of the elastomer. A test configuration is introduced that avoids this problem: A thin sheet of elastomer is stretched, crossed-wire electrodes attached, and then embedded in a stiff polymer. The applied electric field at breakdown EB is found to depend on both the deformed thickness, h, and the stretch applied, λ. For the acrylic elastomer investigated, the breakdown field scales as EB = 51h - 0 . 25λ 0 . 63 . The test configuration allows multiple individual tests to be made on the same sheet of elastomer.
Bartoníček, J; Naňka, O; Tuček, M
2015-10-01
In the clinical practice, radial shaft may be exposed via two approaches, namely the posterolateral Thompson and volar (anterior) Henry approaches. A feared complication of both of them is the injury to the deep branch of the radial nerve. No consensus has been reached, yet, as to which of the two approaches is more beneficial for the proximal half of radius. According to our anatomical studies and clinical experience, Thompson approach is safe only in fractures of the middle and distal thirds of the radial shaft, but highly risky in fractures of its proximal third. Henry approach may be used in any fracture of the radial shaft and provides a safe exposure of the entire lateral and anterior surfaces of the radius.The Henry approach has three phases. In the first phase, incision is made along the line connecting the biceps brachii tendon and the styloid process of radius. Care must be taken not to damage the lateral cutaneous nerve of forearm.In the second phase, fascia is incised and the brachioradialis identified by the typical transition from the muscle belly to tendon and the shape of the tendon. On the lateral side, the brachioradialis lines the space with the radial artery and veins and the superficial branch of the radial nerve running at its bottom. On the medial side, the space is defined by the pronator teres in the proximal part and the flexor carpi radialis in the distal part. The superficial branch of the radial nerve is retracted together with the brachioradialis laterally, and the radial artery medially.In the third phase, the attachment of the pronator teres is identified by its typical tendon in the middle of convexity of the lateral surface of the radial shaft. The proximal half of the radius must be exposed very carefully in order not to damage the deep branch of the radial nerve. Dissection starts at the insertion of the pronator teres and proceeds proximally along its lateral border in interval between this muscle and insertion of the supinator
Chemisorption of hydrogen atoms and hydroxyl groups on stretched graphene: A coupled QM/QM study
Katin, Konstantin P.; Prudkovskiy, Vladimir S.; Maslov, Mikhail M.
2017-09-01
Using the density functional theory coupled with the nonorthogonal tight-binding model, we analyze the chemisorption of hydrogen atoms and hydroxyl groups on the unstrained and stretched graphene sheets. Drawback of finite cluster model of graphene for the chemisorption energy calculation in comparison with the QM/QM approach applied is discussed. It is shown that the chemisorption energy for the hydroxyl group is sufficiently lower than for hydrogen at stretching up to 7.5%. The simultaneous paired chemisorption of hydrogen and hydroxyl groups on the same hexagon has also been examined. Adsorption of two radicals in ortho and para positions is found to be more energetically favorable than those in meta position at any stretching considered. In addition the energy difference between adsorbent pairs in ortho and para positions decreases as the stretching rises. It could be concluded that the graphene stretching leads to the loss of preferred mutual arrangement of two radicals on its surface.
The Establishment of Surface Roughness as Failure Criterion of Al–Li Alloy Stretch-Forming Process
Directory of Open Access Journals (Sweden)
Jing-Wen Feng
2016-01-01
Full Text Available Taking Al–Li–S4–T8 Al–Li alloy as the study object, based on the stretching and deforming characteristics of sheet metals, this paper proposes a new approach of critical orange peel state characterizations on the basis of the precise measurement of stretch-forming surface roughness and establishes the critical criterion for the occurrence of orange peel surface defects in the stretch-forming process of Al–Li alloy sheet metals. Stretching experiments of different strain paths are conducted on the specimens with different notches so as to establish the Al–Li–S4–T8 Al–Li alloy, forming limit diagram and forming limit curve equation, with the surface roughness of characteristic critical orange peel structure as the stretch-forming failure criterion.
Smith, Karl H.
2002-01-01
A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.
Lubricant Test Methods for Sheet Metal Forming
DEFF Research Database (Denmark)
Bay, Niels; Olsson, David Dam; Andreasen, Jan Lasson
2008-01-01
Sheet metal forming of tribologically difficult materials such as stainless steel, Al-alloys and Ti-alloys or forming in tribologically difficult operations like ironing, punching or deep drawing of thick plate requires often use of environmentally hazardous lubricants such as chlorinated paraffin...... proven successful and has in a number of examples assisted the substitution of environmentally hazardous lubricants by more friendly ones in industrial production....... appearing in different sheet forming operations such as stretch forming, deep drawing, ironing and punching. The laboratory tests have been especially designed to model the conditions in industrial production. Application of the tests for evaluating new lubricants before introducing them in production has...
Formability of spherical and large aluminum sheets
Zimmermann, F.; Brosius, A.; Beyer, E.; Standfuß, J.; Jahn, A.
2017-10-01
The novel aluminum alloy AlMgSc (AA5028) shows a high potential for aeronautical applications, especially to replace the currently used material for structural components within metallic aircraft fuselages [1]. As AlMgSc sheets cannot be stretch formed at room temperature due to cracking in the clamping zones, an alternative technology called "creep-forming" was investigated by Jambu [2]. Nevertheless, creep-forming is only applicable for panels to be formed in moulds with small curvatures, because shaping double-curved geometries with small radii of curvature tends to buckling [3]. Hence, the formability of large spherical aluminum sheets as double-curved geometries is investigated.
Relationship Between Stretch Duration And Shoulder Musculature ...
African Journals Online (AJOL)
To date, studies focussing on the effect of stretching on flexibility have focused almost solely on the effect of chronic stretching rather than the effects of acute stretching performed immediately prior to physical activity. The effects of different static stretches were assessed on passive shoulder range of motion (ROM).
Radially truncated galactic discs
de Grijs, R; Kregel, M; Wesson, KH
2001-01-01
We present the first results of a systematic analysis of radially truncated exponential discs for four galaxies of a complete sample of disc-dominated edge-on spiral galaxies. The discs of our sample galaxies are truncated at similar radii on either side of their centres. With the possible exception
Radially truncated galactic discs
Grijs, R. de; Kregel, M.; Wesson, K H
2000-01-01
Abstract: We present the first results of a systematic analysis of radially truncatedexponential discs for four galaxies of a sample of disc-dominated edge-onspiral galaxies. Edge-on galaxies are very useful for the study of truncatedgalactic discs, since we can follow their light distributions out
Atomic Stretch: Optimally bounded real-time stretching and beyond
DEFF Research Database (Denmark)
Jensen, Rasmus Ramsbøl; Nielsen, Jannik Boll
2016-01-01
Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color-modification, co......Atomic Stretch is a plugin for your preferred Adobe video editing tool, allowing real-time smooth and optimally bounded retarget-ting from and to any aspect ratio. The plugin allows preserving of high interest pixels through a protected region, attention redirection through color...
Stretching Rubber, Stretching Minds: a polymer physics lab for teaching entropy
Brzinski, Theodore A
2015-01-01
Entropy is a difficult concept to teach using real-world examples. Unlike temperature, pressure, volume, or work, it's not a quantity which most students encounter in their day-to-day lives. Even the way entropy is often qualitatively described, as a measure of disorder, is incomplete and can be misleading. In an effort to address these obstacles, we have developed a simple laboratory activity, the stretching of an elastic rubber sheet, intended to give students hands-on experience with the concepts of entropy, temperature and work in both adiabatic and quasistatic processes. We present two versions of the apparatus: a double-lever system, which may be reproduced with relatively little cost, and a commercial materials testing system, which provides students experience with scientific instrumentation that is used in research.
Soleus stretch reflex during cycling.
Grey, M J; Pierce, C W; Milner, T E; Sinkjaer, T
2001-01-01
The modulation and strength of the human soleus short latency stretch reflex was investigated by mechanically perturbing the ankle during an unconstrained pedaling task. Eight subjects pedaled at 60 rpm against a preload of 10 Nm. A torque pulse was applied to the crank at various positions during the crank cycle, producing ankle dorsiflexion perturbations of similar trajectory. The stretch reflex was greatest during the power phase of the crank cycle and was decreased to the level of background EMG during recovery. Matched perturbations were induced under static conditions at the same crank angle and background soleus EMG as recorded during the power phase of active pedaling. The magnitude of the stretch reflex was not statistically different from that during the static condition throughout the power phase of the movement. The results of this study indicate that the stretch reflex is not depressed during active cycling as has been shown with the H-reflex. This lack of depression may reflect a decreased susceptibility of the stretch reflex to inhibition, possibly originating from presynaptic mechanisms.
Radial Halbach Magnetic Bearings
Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.
2009-01-01
Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while
Convective Flow of Sisko Fluid over a Bidirectional Stretching Surface.
Directory of Open Access Journals (Sweden)
Asif Munir
Full Text Available The present investigation focuses the flow and heat transfer characteristics of the steady three-dimensional Sisko fluid driven by a bidirectional stretching sheet. The modeled partial differential equations are reduced to coupled ordinary differential equations by a suitable transformation. The resulting equations are solved numerically by the shooting method using adaptive Runge Kutta algorithm in combination with Newton's method in the domain [0,∞. The numerical results for the velocity and temperature fields are graphically presented and effects of the relevant parameters are discussed in detail. Moreover, the skin-friction coefficient and local Nusselt number for different values of the power-law index and stretching ratio parameter are presented through tabulated data. The numerical results are also verified with the results obtained analytically by the homotopy analysis method (HAM. Additionally, the results are validated with previously published pertinent literature as a limiting case of the problem.
Deformation scenarios of combined stretching and bending in complex shaped deep drawing parts
Kitting, D.; Ofenheimer, A.; van den Boogaard, Antonius H.; Dietmaier, P.
2013-01-01
Bending effects, especially for Advanced High Strength Steels (AHSS), are known to influence the material formability when stretching and bending is combined in sheet forming. Traditional formability measures (e.g. the conventional forming limit curve (FLC)) fail to reliably predict formability when
Energy Technology Data Exchange (ETDEWEB)
Akbar, Noreen Sher, E-mail: noreensher@yahoo.com [DBS& H, CEME, National University of Sciences and Technology, Islamabad (Pakistan); Khan, Zafar Hayat [Department of Mathematics, University of Malakand, Dir (Lower), Khyber Pakhtunkhwa (Pakistan)
2016-07-15
The combine effects of magnetic field bioconvection, Brownian motion and thermophoresis on a free convection nanofluid flow over a stretching sheet containing gyrotactic microorganisms are investigated. The self-similar Buongiorno model is analyzed first time for stretching sheet numerically. The present results are compared with available data and are found in an excellent agreement. Pertinent results are presented graphically and discussed quantitatively with respect to variation in bioconvection parameters. - Highlights: • Two dimensional MHD flow in a suspension of gyrotactic microorganisms and nanoparticles over a stretching surface is discussed first paper in literature. • Governed problem for proposed model solved numerically using fourth-order Runge–Kutta–Fehlberg method. • Good agreement in comparison with previous studies. • Tabulated physical quantities and graphics of all flow profiles. • Graphics of reduced skin friction coefficient, when the different flow parameters vary.
Jordan, Robert W.; Jones, Alistair DR.
2017-01-01
Background: Radial head fractures are common elbow injuries in adults and are frequently associated with additional soft tissue and bone injuries. Methods: A literature search was performed and the authors’ personal experiences are reported. Results: Mason type I fractures are treated non-operatively with splinting and early mobilisation. The management of Mason type II injuries is less clear with evidence supporting both non-operative treatment and internal fixation. The degree of intra-arti...
Jordan, Robert W.; Jones, Alistair DR.
2017-01-01
Background: Radial head fractures are common elbow injuries in adults and are frequently associated with additional soft tissue and bone injuries. Methods: A literature search was performed and the authors’ personal experiences are reported. Results: Mason type I fractures are treated non-operatively with splinting and early mobilisation. The management of Mason type II injuries is less clear with evidence supporting both non-operative treatment and internal fixation. The degree of intra-articular displacement and angulation acceptable for non-operative management has yet to be conclusively defined. Similarly the treatment of type III and IV fractures remain controversial. Traditional radial head excision is associated with valgus instability and should be considered only for patients with low functional demands. Comparative studies have shown improved results from internal fixation over excision. Internal fixation should only be attempted when anatomic reduction and initiation of early motion can be achieved. Authors have reported that results from fixation are poorer and complication rates are higher if more than three fragments are present. Radial head arthroplasty aims to reconstruct the native head and is indicated when internal fixation is not feasible and in the presence of complex elbow injuries. Overstuffing of the radiocapitellar joint is a frequent technical fault and has significant adverse effects on elbow biomechanics. Modular design improves the surgeon’s ability to reconstruct the native joint. Two randomised controlled trials have shown improved clinical outcomes and lower complication rate following arthroplasty when compared to internal fixation. Conclusion: We have presented details regarding the treatment of various types of radial head fractures - further evidence, however, is still required to provide clarity over the role of these different management strategies. PMID:29290880
Acute stretch perception alteration contributes to the success of the PNF "contract-relax" stretch.
Mitchell, Ulrike H; Myrer, J William; Hopkins, J Ty; Hunter, Iain; Feland, J Brent; Hilton, Sterling C
2007-05-01
Some researchers have suggested that an alteration of stretch perception could be responsible for the success of the contract-relax (CR) stretch, a stretch technique derived from proprioceptive neuromuscular facilitation (PNF). This study was conducted to determine if the alteration of the stretch perception is a possible explanation for the range of motion (ROM) gains of the CR stretch. Eighteen subjects performed two stretches in randomized order: the slow stretch and the CR stretch. The stretch intensity was controlled. The stretch force was measured and compared between the slow stretch and CR stretch. There was a significant difference between the stretch force that could be applied in the PNF stretch (126.0 N) and the slow stretch (108.4 N); P = 0.00086. The average stretch tolerance progressively increased with successive trials from 120.6 N in the first trial to 132.4 N in the fourth trial. The alteration of stretch perception plays a role in the success of the CR form of PNF stretching. At least four repetitions of the CR stretch are recommended to get the greatest ROM gain.
... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... sheet Pelvic Inflammatory Disease (PID) – CDC fact sheet Gonorrhea – CDC fact sheet STDs Home Page Bacterial Vaginosis ( ...
Radial multiresolution in dimension three.
Rauhut, H.; Rösler, M.M.
2005-01-01
Abstract We present a construction of a wavelet-type orthonormal basis for the space of radial $L^2$-functions in {\\bf R}$^3$ via the concept of a radial multiresolution analysis. The elements of the basis are obtained from a single radial wavelet by usual dilations and generalized translations.
Transient filament stretching rheometer II
DEFF Research Database (Denmark)
Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole
1997-01-01
The Lagrangian sspecification is used to simulate the transient stretching filament rheometer. Simulations are performed for dilute PIB-solutions modeled as a four mode Oldroyd-B fluid and a semidilute PIB-solution modeled as a non-linear single integral equation. The simulations are compared...
Optical tweezers stretching of chromatin
Pope, L.H.; Bennink, Martin L.; Greve, Jan
2003-01-01
Recently significant success has emerged from exciting research involving chromatin stretching using optical tweezers. These experiments, in which a single chromatin fibre is attached by one end to a micron-sized bead held in an optical trap and to a solid surface or second bead via the other end,
Fragmentation of stretched liquid ligaments
Marmottant, P.G.M.; Villermaux, Emmanuel
2004-01-01
The dynamics and fragmentation of stretched liquid ligaments is investigated. The ligaments are produced by the withdrawal of a tube initially dipping at a free surface. Time resolved high speed motion experiments reveal two different elongation behaviors, depending on the nondimensional number t,
Soleus stretch reflex during cycling
DEFF Research Database (Denmark)
Grey, Michael James; Pierce, C. W.; Milner, T. E.
2001-01-01
The modulation and strength of the human soleus short latency stretch reflex was investigated by mechanically perturbing the ankle during an unconstrained pedaling task. Eight subjects pedaled at 60 rpm against a preload of 10 Nm. A torque pulse was applied to the crank at various positions durin...
A Purposeful Dynamic Stretching Routine
Leon, Craig; Oh, Hyun-Ju; Rana, Sharon
2012-01-01
Dynamic stretching, which involves moving parts of the body and gradually increases range of motion, speed of movement, or both through controlled, sport-specific movements, has become the popular choice of pre-exercise warm-up. This type of warm-up has evolved to encompass several variations, but at its core is the principle theme that preparing…
Antibubbles and fine cylindrical sheets of air
Beilharz, D.
2015-08-14
Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.
Movement and stretching imagery during flexibility training.
Vergeer, I.; Roberts, J.
2006-01-01
The aim of this study was to examine the effect of movement and stretching imagery on increases in flexibility. Thirty volunteers took part in a 4 week flexibility training programme. They were randomly assigned to one of three groups: (1) movement imagery, where participants imagined moving the limb they were stretching; (2) stretching imagery, where participants imagined the physiological processes involved in stretching the muscle; and (3) control, where participants did not engage in ment...
Analysis of a filament stretching rheometer
DEFF Research Database (Denmark)
Kolte, Mette Irene; Rasmussen, Henrik K.; Hassager, Ole
1996-01-01
A finite element analysis of the stretching filament rheometer of Tirtaadmadja and Sridhar (1993) is presenetd. Simulations of the stretching of a filament of the polymet test solution, fluid A, between two plates are shown.......A finite element analysis of the stretching filament rheometer of Tirtaadmadja and Sridhar (1993) is presenetd. Simulations of the stretching of a filament of the polymet test solution, fluid A, between two plates are shown....
Time stretch and its applications
Mahjoubfar, Ata; Churkin, Dmitry V.; Barland, Stéphane; Broderick, Neil; Turitsyn, Sergei K.; Jalali, Bahram
2017-06-01
Observing non-repetitive and statistically rare signals that occur on short timescales requires fast real-time measurements that exceed the speed, precision and record length of conventional digitizers. Photonic time stretch is a data acquisition method that overcomes the speed limitations of electronic digitizers and enables continuous ultrafast single-shot spectroscopy, imaging, reflectometry, terahertz and other measurements at refresh rates reaching billions of frames per second with non-stop recording spanning trillions of consecutive frames. The technology has opened a new frontier in measurement science unveiling transient phenomena in nonlinear dynamics such as optical rogue waves and soliton molecules, and in relativistic electron bunching. It has also created a new class of instruments that have been integrated with artificial intelligence for sensing and biomedical diagnostics. We review the fundamental principles and applications of this emerging field for continuous phase and amplitude characterization at extremely high repetition rates via time-stretch spectral interferometry.
Prophylactic stretching does not reduce cramp susceptibility.
Miller, Kevin C; Harsen, James D; Long, Blaine C
2017-08-10
Some clinicians advocate stretching to prevent muscle cramps. It is unknown whether static or proprioceptive neuromuscular facilitation (PNF) stretching increases cramp threshold frequency (TFc ), a quantitative measure of cramp susceptibility. Fifteen individuals completed this randomized, counterbalanced, cross-over study. We measured passive hallux range of motion (ROM) and then performed 3 minutes of either static stretching, PNF stretching (hold-relax-with agonist contraction), or no stretching. ROM was reassessed and TFc was measured. PNF stretching increased hallux extension (pre-PNF 81 ± 11°, post-PNF 90 ± 10°; P PNF 40 ± 7°, post-PNF 40 ± 7°; P > 0.05). Static stretching increased hallux extension (pre-static 80 ± 11°, post-static 88 ± 9°; P 0.05). No ROM changes occurred with no stretching (P > 0.05). TFc was unaffected by stretching (no stretching 18 ± 7 Hz, PNF 16 ± 4 Hz, static 16 ± 5 Hz; P = 0.37). Static and PNF stretching increased hallux extension, but neither increased TFc . Acute stretching may not prevent muscle cramping. Muscle Nerve, 2017. © 2017 Wiley Periodicals, Inc.
BSDB: the Biomolecule Stretching Database
Cieplak, Marek; Sikora, Mateusz; Sulkowska, Joanna I.; Witkowski, Bartlomiej
2011-03-01
Despite more than a decade of experiments on single biomolecule manipulation, mechanical properties of only several scores of proteins have been measured. A characteristic scale of the force of resistance to stretching, Fmax , has been found to range between ~ 10 and 480 pN. The Biomolecule Stretching Data Base (BSDB) described here provides information about expected values of Fmax for, currently, 17 134 proteins. The values and other characteristics of the unfolding proces, including the nature of identified mechanical clamps, are available at www://info.ifpan.edu.pl/BSDB/. They have been obtained through simulations within a structure-based model which correlates satisfactorily with the available experimental data on stretching. BSDB also lists experimental data and results of the existing all-atom simulations. The database offers a Protein-Data-Bank-wide guide to mechano-stability of proteins. Its description is provided by a forthcoming Nucleic Acids Research paper. Supported by EC FUNMOL project FP7-NMP-2007-SMALL-1, and European Regional Development Fund: Innovative Economy (POIG.01.01.02-00-008/08).
Rothdiener, Miriam; Hegemann, Miriam; Uynuk-Ool, Tatiana; Walters, Brandan; Papugy, Piruntha; Nguyen, Phong; Claus, Valentin; Seeger, Tanja; Stoeckle, Ulrich; Boehme, Karen A.; Aicher, Wilhelm K.; Stegemann, Jan P.; Hart, Melanie L.; Kurz, Bodo; Klein, Gerd; Rolauffs, Bernd
2016-10-01
Using matrix elasticity and cyclic stretch have been investigated for inducing mesenchymal stromal cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage but not in combination. We hypothesized that combining lineage-specific stiffness with cyclic stretch would result in a significantly increased expression of SMC markers, compared to non-stretched controls. First, we generated dense collagen type I sheets by mechanically compressing collagen hydrogels. Atomic force microscopy revealed a nanoscale stiffness range known to support myogenic differentiation. Further characterization revealed viscoelasticity and stable biomechanical properties under cyclic stretch with >99% viable adherent human MSC. MSCs on collagen sheets demonstrated a significantly increased mRNA but not protein expression of SMC markers, compared to on culture flasks. However, cyclic stretch of MSCs on collagen sheets significantly increased both mRNA and protein expression of α-smooth muscle actin, transgelin, and calponin versus plastic and non-stretched sheets. Thus, lineage-specific stiffness and cyclic stretch can be applied together for inducing MSC differentiation towards SMCs without the addition of recombinant growth factors or other soluble factors. This represents a novel stimulation method for modulating the phenotype of MSCs towards SMCs that could easily be incorporated into currently available methodologies to obtain a more targeted control of MSC phenotype.
... at a slower pace. For example, if you're about to go for a brisk run, warm up with a light jog, and if you're going to go for a swim, do a couple of slow freestyle warm-up laps. If you play a sport, focus ...
Wei, Huidong; Menary, Gary
2017-10-01
Stretch blow moulding process has been used for the manufacture of bioresorbable vascular scaffold (BVS) made by poly (l-lactic acid) (PLLA) to improve its mechanical performance. In order to better understand the process, thermomechanical properties of PLLA were investigated by experimental method. Extruded PLLA sheets were biaxial stretched under strain rate of 1s-1, 4s-1 and 16s-1 to simulate the deformation process applicable in the blow moulding process. Both the equal-biaxial stretch and constant-width stretch were conducted by an in-house developed equipment. By differential scanning calorimeter (DSC), thermal analysis for materials before and after stretch were compared to evaluate the microstructural change of PLLA materials in the deformation process. A constitutive model based on glass rubber model was presented to simulate the mechanical behaviour of PLLA above glass transition under biaxial deformation.
1983-01-01
There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water
Magneto-hydrodynamics of coupled fluid–sheet interface with mass suction and blowing
Energy Technology Data Exchange (ETDEWEB)
Ahmad, R., E-mail: uqrahma3@uq.edu.au
2016-01-15
There are large number of studies which prescribe the kinematics of the sheet and ignore the sheet's mechanics. However, the current boundary layer analysis investigates the mechanics of both the electrically conducting fluid and a permeable sheet, which makes it distinct from the other studies in the literature. One of the objectives of the current study is to (i) examine the behaviour of magnetic field effect for both the surface and the electrically conducting fluid (ii) investigate the heat and mass transfer between a permeable sheet and the surrounding electrically conducting fluid across the hydro, thermal and mass boundary layers. Self-similar solutions are obtained by considering the RK45 technique. Analytical solution is also found for the stretching sheet case. The skin friction dual solutions are presented for various types of sheet. The influence of pertinent parameters on the dimensionless velocity, shear stress, temperature, mass concentration, heat and mass transfer rates on the fluid–sheet interface is presented graphically as well as numerically. The obtained results are of potential benefit for studying the electrically conducting flow over various soft surfaces such as synthetic plastics, soft silicone sheet and soft synthetic rubber sheet. These surfaces are easily deformed by thermal fluctuations or thermal stresses. - Highlights: • The momentum equation is modelled for both the surrounding MHD fluid and the sheet with the effects of mass suction and blowing. • The current study further investigates the heat and mass transfer characteristics between a permeable sheet and the surrounding electrically conducting fluid across the thermal and mass boundary layers. • Both the approximated and analytical techniques have been included for the purpose of comparison, and the perfect numerical agreements have been established with the previous studies. • Dual solutions for the skin friction coefficients are found for various categories of
Butterflies on the Stretched Horizon
Susskind, Leonard
2013-01-01
In this paper I return to the question of what kind of perturbations on Alice's side of an Einstein-Rosen bridge can send messages to Bob as he enters the horizon at the other end. By definition "easy" operators do not activate messages and "hard" operators do, but there are no clear criteria to identify the difference between easy and hard. In this paper I argue that the difference is related to the time evolution of a certain measure of computational complexity, associated with the stretche...
Bending and stretching of plates
Mansfield, E H; Hemp, W S
1964-01-01
The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a
Effect of stretching techniques on hamstring flexibility in female ...
African Journals Online (AJOL)
Flexibility can be achieved by a variety of stretching techniques and the benefits of stretching are known. However, controversy remains about the best type of stretching for achieving a particular goal or outcome. The four most basic stretches are static stretching, dynamic stretching, PNF hold-relax and PNF contract-relax ...
Turbine with radial acting seal
Energy Technology Data Exchange (ETDEWEB)
Eng, Darryl S; Ebert, Todd A
2016-11-22
A floating brush seal in a rim cavity of a turbine in a gas turbine engine, where the floating brush seal includes a seal holder in which the floating brush seal floats, and a expandable seal that fits within two radial extending seal slots that maintains a seal with radial displacement of the floating brush seal and the seal holder.
Energy Technology Data Exchange (ETDEWEB)
Krausche, S.; Ohlsson, Johan
1998-04-01
The objective of this work was to develop a program dealing with design point calculations of radial turbine machinery, including both compressor and turbine, with as few input data as possible. Some simple stress calculations and turbine metal blade temperatures were also included. This program was then implanted in a German thermodynamics program, Gasturb, a program calculating design and off-design performance of gas turbines. The calculations proceed with a lot of assumptions, necessary to finish the task, concerning pressure losses, velocity distribution, blockage, etc., and have been correlated with empirical data from VAT. Most of these values could have been input data, but to prevent the user of the program from drowning in input values, they are set as default values in the program code. The output data consist of geometry, Mach numbers, predicted component efficiency etc., and a number of graphical plots of geometry and velocity triangles. For the cases examined, the error in predicted efficiency level was within {+-} 1-2% points, and quite satisfactory errors in geometrical and thermodynamic conditions were obtained Examination paper. 18 refs, 36 figs
Indentation of a stretched elastomer
Zheng, Yue; Crosby, Alfred J.; Cai, Shengqiang
2017-10-01
Indentation has been intensively used to characterize mechanical properties of soft materials such as elastomers, gels, and soft biological tissues. In most indentation measurements, residual stress or stretch which can be commonly found in soft materials is ignored. In this article, we aim to quantitatively understand the effects of prestretches of an elastomer on its indentation measurement. Based on surface Green's function, we analytically derive the relationship between indentation force and indentation depth for a prestretched Neo-Hookean solid with a flat-ended cylindrical indenter as well as a spherical indenter. In addition, for a non-equal biaxially stretched elastomer, we obtain the equation determining the eccentricity of the elliptical contacting area between a spherical indenter and the elastomer. Our results clearly demonstrate that the effects of prestretches of an elastomer on its indentation measurement can be significant. To validate our analytical results, we further conduct correspondent finite element simulations of indentation of prestretched elastomers. The numerical results agree well with our analytical predictions.
... sheets Fact files Questions & answers Features Multimedia Contacts Zika virus Fact sheet Updated 6 September 2016 Key facts ... and last for 2-7 days. Complications of Zika virus disease Based on a systematic review of the ...
... sheets Fact files Questions & answers Features Multimedia Contacts Cholera Fact sheet Updated December 2017 Key facts Cholera ... behaviour and to the control of cholera. Oral cholera vaccines Currently there are three WHO pre-qualified ...
He, XiaoCong
2017-01-01
Abstract Latest developments in the clinching of sheet materials are reviewed in this article. Important issues are discussed, such as tool design, process parameters and joinability of some new lightweight sheet materials. Hybrid and modified clinching processes are introduced to a general reader. Several unaddressed issues in the clinching of sheet materials are identified.
National Research Council Canada - National Science Library
Draper, David O; Castro, Jennifer L; Feland, Brent; Schulthies, Shane; Eggett, Dennis
2004-01-01
A randomized, counterbalanced 2x3x5 repeated-measures design. To compare changes in hamstring flexibility after treatments of pulsed shortwave diathermy and prolonged stretch, sham diathermy and prolonged stretch, and control...
Molecular stretching modulates mechanosensing pathways.
Hu, Xian; Margadant, Felix Martin; Yao, Mingxi; Sheetz, Michael Patrick
2017-07-01
For individual cells in tissues to create the diverse forms of biological organisms, it is necessary that they must reliably sense and generate the correct forces over the correct distances and directions. There is considerable evidence that the mechanical aspects of the cellular microenvironment provide critical physical parameters to be sensed. How proteins sense forces and cellular geometry to create the correct morphology is not understood in detail but protein unfolding appears to be a major component in force and displacement sensing. Thus, the crystallographic structure of a protein domain provides only a starting point to then analyze what will be the effects of physiological forces through domain unfolding or catch-bond formation. In this review, we will discuss the recent studies of cytoskeletal and adhesion proteins that describe protein domain dynamics. Forces applied to proteins can activate or inhibit enzymes, increase or decrease protein-protein interactions, activate or inhibit protein substrates, induce catch bonds and regulate interactions with membranes or nucleic acids. Further, the dynamics of stretch-relaxation can average forces or movements to reliably regulate morphogenic movements. In the few cases where single molecule mechanics are studied under physiological conditions such as titin and talin, there are rapid cycles of stretch-relaxation that produce mechanosensing signals. Fortunately, the development of new single molecule and super-resolution imaging methods enable the analysis of single molecule mechanics in physiologically relevant conditions. Thus, we feel that stereotypical changes in cell and tissue shape involve mechanosensing that can be analyzed at the nanometer level to determine the molecular mechanisms involved. © 2017 The Protein Society.
A COMPARISION BETWEEN CROSSBODY STRETCH VERSUS SLEEPER STRETCH IN PERIARTHRITIS OF SHOULDER
Directory of Open Access Journals (Sweden)
Shaik Raheem Saheb
2015-12-01
Full Text Available Background: Recently Cross body stretch and Sleeper stretch are used to improve internal rotation Range of motion in Shoulder Pathologies. It was proposed to study the effect of cross body stretch and sleeper stretch in subjects with periarthritis of shoulder. Methods: 60 subjects with a mean age of 53 years having clinical diagnosis of Periarthritis of shoulder and full filled the inclusive criteria are taken. After the initial measurements, the subjects are randomly assigned into 2 stretching groups. Group-A performed the Sleeper stretch. Group-B performed a Cross body stretch. Both Groups performed the Stretch in Duration of 6weeks – once daily for 5 repetitions holding each stretch for 30 seconds for 5 days a week. Along with this technique conventional physiotherapy like IFT, overhead pulleys, Pendula exercises, Wall climbing exercises, mariners wheel exercises are performed. After the treatment, subjects were evaluated for their pain profile using visual analogue scale, Goniometer for measuring Range of motion. Results: For within group comparison we used Paired t-test analysis, For Between group comparison we used Independent t-test for statistical analysis. At the end of 6 weeks It was found that subjects treated with cross-body stretch showed significant improvement in terms of VAS scores and Range of motion scores (P=0.000 and patients treated with Sleeper stretch showed significant improvement in terms of VAS scores and Range of motion scores (P=0.000. When compared between Groups the VAS and Range of motion scores showed a significant improvement in Cross body stretch Group than the Sleeper stretch Group (P=0.000. Conclusion: It was concluded that both stretching techniques were found improvement in Range of motion and VAS and Cross-body Stretch showed more Significant improvement than the sleeper Stretch after 6 weeks treatment.
Dedicated radial ventriculography pigtail catheter
Energy Technology Data Exchange (ETDEWEB)
Vidovich, Mladen I., E-mail: miv@uic.edu
2013-05-15
A new dedicated cardiac ventriculography catheter was specifically designed for radial and upper arm arterial access approach. Two catheter configurations have been developed to facilitate retrograde crossing of the aortic valve and to conform to various subclavian, ascending aortic and left ventricular anatomies. The “short” dedicated radial ventriculography catheter is suited for horizontal ascending aortas, obese body habitus, short stature and small ventricular cavities. The “long” dedicated radial ventriculography catheter is suited for vertical ascending aortas, thin body habitus, tall stature and larger ventricular cavities. This new design allows for improved performance, faster and simpler insertion in the left ventricle which can reduce procedure time, radiation exposure and propensity for radial artery spasm due to excessive catheter manipulation. Two different catheter configurations allow for optimal catheter selection in a broad range of patient anatomies. The catheter is exceptionally stable during contrast power injection and provides equivalent cavity opacification to traditional femoral ventriculography catheter designs.
STRETCHING IMPACTS INFLAMMATION RESOLUTION IN CONNECTIVE TISSUE
Berrueta, Lisbeth; Muskaj, Igla; Olenich, Sara; Butler, Taylor; Badger, Gary J.; Colas, Romain A.; Spite, Matthew; Serhan, Charles N.; Langevin, Helene M.
2016-01-01
Acute inflammation is accompanied from its outset by the release of specialized pro-resolving mediators (SPMs), including resolvins, that orchestrate the resolution of local inflammation. We showed earlier that, in rats with subcutaneous inflammation of the back induced by carrageenan, stretching for 10 minutes twice daily reduced inflammation and improved pain, two weeks after carrageenan injection. In this study, we hypothesized that stretching of connective tissue activates local pro-resolving mechanisms within the tissue in the acute phase of inflammation. In rats injected with carrageenan and randomized to stretch vs. no stretch for 48 hours, stretching reduced inflammatory lesion thickness and neutrophil count, and increased resolvin (RvD1) concentrations within lesions. Furthermore, subcutaneous resolvin injection mimicked the effect of stretching. In ex vivo experiments, stretching of connective tissue reduced the migration of neutrophils and increased tissue RvD1 concentration. These results demonstrate a direct mechanical impact of stretching on inflammation-regulation mechanisms within connective tissue. PMID:26588184
Anisotropic instability of a stretching film
Xu, Bingrui; Li, Minhao; Deng, Daosheng
2017-11-01
Instability of a thin liquid film, such as dewetting arising from Van der Waals force, has been well studied, and is typically characterized by formation of many droplets. Interestingly, a thin liquid film subjected to an applied stretching during a process of thermal drawing is evolved into an array of filaments, i.e., continuity is preserved along the direction of stretching while breakup occurs exclusively in the plane of cross section. Here, to understand this anisotropic instability, we build a physical model by considering both Van der Waals force and the effect of stretching. By using the linear instability analysis method and then performing a numerical calculation, we find that the growth rate of perturbations at the cross section is larger than that along the direction of stretching, resulting in the anisotropic instability of the stretching film. These results may provide theoretical guidance to achieve more diverse structures for nanotechnology.
Energy Technology Data Exchange (ETDEWEB)
Davydov, V.G.; Siniavski, V.S.; Ber, L.B.; Valkov, V.D.; Kalinin, V.D.; Titkova, Ye.V.; Ukolova, O.G.; Lukina, Ye.A.; Shvechkov, Ye.I.; Kaputkin, Ye.Ya. [All-Union Inst. of Light Alloys, Moscow (Russian Federation); Rendigs, K.-H.; Tempus, G.
2000-07-01
The influence of solid solution treatment temperature (SSTT), stretching and two- and three-stage ageing regimes on the tensile properties, IGC, K{sub c} (K{sub c{sub 0}}) and FCPR of sheets from 6013 alloy in comparison with properties of 6013T6 and 6056T78 alloys sheets has been investigated. The recommended regimes including stretching and two- and three-stage ageing allow to eliminate IGC and to increase strength properties of sheets from 6013 alloy, providing for the higher values of the strength, fracture toughness and the decrease of FCPR in comparison with 6056T78. The precipitates phase composition in body of grains and on the GB is the same - Q'({beta}')-phases. Their sizes and the width of PFZ are lower than after the standard overageing regime (T78). (orig.)
MHD biconvective flow of Powell Eyring nanofluid over stretched surface
Naseem, Faiza; Shafiq, Anum; Zhao, Lifeng; Naseem, Anum
2017-06-01
The present work is focused on behavioral characteristics of gyrotactic microorganisms to describe their role in heat and mass transfer in the presence of magnetohydrodynamic (MHD) forces in Powell-Eyring nanofluids. Implications concerning stretching sheet with respect to velocity, temperature, nanoparticle concentration and motile microorganism density were explored to highlight influential parameters. Aim of utilizing microorganisms was primarily to stabilize the nanoparticle suspension due to bioconvection generated by the combined effects of buoyancy forces and magnetic field. Influence of Newtonian heating was also analyzed by taking into account thermophoretic mechanism and Brownian motion effects to insinuate series solutions mediated by homotopy analysis method (HAM). Mathematical model captured the boundary layer regime that explicitly involved contemporary non linear partial differential equations converted into the ordinary differential equations. To depict nanofluid flow characteristics, pertinent parameters namely bioconvection Lewis number Lb, traditional Lewis number Le, bioconvection Péclet number Pe, buoyancy ratio parameter Nr, bioconvection Rayleigh number Rb, thermophoresis parameter Nt, Hartmann number M, Grashof number Gr, and Eckert number Ec were computed and analyzed. Results revealed evidence of hydromagnetic bioconvection for microorganism which was represented by graphs and tables. Our findings further show a significant effect of Newtonian heating over a stretching plate by examining the coefficient values of skin friction, local Nusselt number and the local density number. Comparison was made between Newtonian fluid and Powell-Eyring fluid on velocity field and temperature field. Results are compared of with contemporary studies and our findings are found in excellent agreement with these studies.
Capillary stretching of elastic fibers
Protiere, Suzie; Stone, Howard A.; Duprat, Camille
2014-11-01
Fibrous media consisting of constrained flexible fibers can be found in many engineered systems (membranes in filters, woven textile, matted paper). When such materials interact with a liquid, the presence of liquid/air interfaces induces capillary forces that deform the fibers. To model this interaction we study the behaviour of a finite volume of liquid deposited on two parallel flexible fibers clamped at both ends. A tension along the fibers is imposed and may be varied. We show that the system undergoes various morphological changes as the interfiber distance, the elasticity and the tension of the fibers are varied. For a certain range of parameters, the liquid spreads along the fibers and pulls them together, leading to the ``zipping'' of the fibers. This capillary adhesion can then be enhanced or reduced by changing the tension within the fibers. We will show that balancing stretching and capillary forces allows the prediction of this transition as well as the conditions for which detachment of the fibers occurs. These results may be used to prevent the clogging of fibrous membranes or to optimize the capture of liquids.
DEFF Research Database (Denmark)
Hvidberg, Christine Schøtt
2016-01-01
Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions....... On page 590 of this issue, MacGregor et al. (2) estimate the mean rates of snow accumulation and ice flow of the Greenland Ice Sheet over the past 9000 years based on an ice sheet-wide dated radar stratigraphy (3). They show that the present changes of the Greenland Ice Sheet are partly an ongoing...... response to the last deglaciation. The results help to clarify how sensitive the ice sheet is to climate changes....
Lü, C. F.; Yang, J. S.; Wang, J.; Chen, W. Q.
2009-09-01
Transmission of electric energy through an elastic hollow cylinder by acoustic waves is investigated using the linear theories of piezoelectricity and elasticity. The elastic cylinder is between two perfectly bonded piezoelectric layers of piezoelectric ceramics with radial polarization. Power transmission is achieved through the electrical excitation of axisymmetric thickness-stretch vibrations. An exact solution is obtained which is validated by comparison with a solution from the state space method (SSM). Numerical results are presented for the transmitted voltage, power, efficiency, input admittance, and the radial distributions of displacement and stress. The effects of the load impedance and driving frequency are examined.
Stretching DNA Molecules on a Polymer Surface
Rosenberg, Jonathan; Zhu, Ke; Budassi, Julia; Sokolov, Jonathan
2012-02-01
DNA's stretched form is one of great importance to the study of its structural characteristics and sequence. In our experiment, we studied the effects of stretching on lambda DNA, deposited onto Polydimethyl siloxane (PDMS, silicone) using the evaporating drop method. The DNA was dyed with SyBr Gold dye, or YOYO dye, which does not drastically affect the stretching properties of the DNA molecules while being deposited. Different DNA concentrations were used to optimize the density of the DNA on the surface. Once deposited, the DNA was imaged using a confocal microscope, for further measurements and to image stretching, in situ. To stretch the DNA molecules after deposition onto PDMS, the PDMS sample was placed onto a modified linear stage, pinched at the ends. The DNA length was measured throughout stretching. The result shows we successfully stretched DNA strands by 68% without breakage of the strands and without the strands coming off of the PDMS surface. This study is supported by NSF-DMR-MRSEC program.
Stretching micropatterned cells on a PDMS membrane.
Carpi, Nicolas; Piel, Matthieu
2014-01-22
Mechanical forces exerted on cells and/or tissues play a major role in numerous processes. We have developed a device to stretch cells plated on a PolyDiMethylSiloxane (PDMS) membrane, compatible with imaging. This technique is reproducible and versatile. The PDMS membrane can be micropatterned in order to confine cells or tissues to a specific geometry. The first step is to print micropatterns onto the PDMS membrane with a deep UV technique. The PDMS membrane is then mounted on a mechanical stretcher. A chamber is bound on top of the membrane with biocompatible grease to allow gliding during the stretch. The cells are seeded and allowed to spread for several hours on the micropatterns. The sample can be stretched and unstretched multiple times with the use of a micrometric screw. It takes less than a minute to apply the stretch to its full extent (around 30%). The technique presented here does not include a motorized device, which is necessary for applying repeated stretch cycles quickly and/or computer controlled stretching, but this can be implemented. Stretching of cells or tissue can be of interest for questions related to cell forces, cell response to mechanical stress or tissue morphogenesis. This video presentation will show how to avoid typical problems that might arise when doing this type of seemingly simple experiment.
Stretch due to Penile Prosthesis Reservoir Migration
Directory of Open Access Journals (Sweden)
E. Baten
2016-03-01
Full Text Available A 43-year old patient presented to the emergency department with stretch, due to impossible deflation of the penile prosthesis, 4 years after successful implant. A CT-scan showed migration of the reservoir to the left rectus abdominis muscle. Refilling of the reservoir was inhibited by muscular compression, causing stretch. Removal and replacement of the reservoir was performed, after which the prosthesis was well-functioning again. Migration of the penile prosthesis reservoir is extremely rare but can cause several complications, such as stretch.
Teng, Fei; Zhang, Wanxi; Liang, Jicai; Gao, Song
2015-11-01
Most of the existing studies use constant force to reduce springback while researching stretch force. However, variable stretch force can reduce springback more efficiently. The current research on springback prediction in stretch bending forming mainly focuses on artificial neural networks combined with the finite element simulation. There is a lack of springback prediction by support vector regression (SVR). In this paper, SVR is applied to predict springback in the three-dimensional stretch bending forming process, and variable stretch force trajectory is optimized. Six parameters of variable stretch force trajectory are chosen as the input parameters of the SVR model. Sixty experiments generated by design of experiments (DOE) are carried out to train and test the SVR model. The experimental results confirm that the accuracy of the SVR model is higher than that of artificial neural networks. Based on this model, an optimization algorithm of variable stretch force trajectory using particle swarm optimization (PSO) is proposed. The springback amount is used as the objective function. Changes of local thickness are applied as the criterion of forming constraints. The objection and constraints are formulated by response surface models. The precision of response surface models is examined. Six different stretch force trajectories are employed to certify springback reduction in the optimum stretch force trajectory, which can efficiently reduce springback. This research proposes a new method of springback prediction using SVR and optimizes variable stretch force trajectory to reduce springback.
Effect of modified hold-relax stretching and static stretching on hamstring muscle flexibility.
Ahmed, Hashim; Iqbal, Amir; Anwer, Shahnawaz; Alghadir, Ahmad
2015-02-01
[Purpose] The aim of present study was to compare the effectiveness of modified hold-relax stretching and static stretching in improving the hamstring muscle flexibility. [Subjects and Methods] Forty-five male subjects with hamstring tightness were included in this study. The subjects were randomly placed into three groups: the modified hold-relax stretching, static stretching and control groups. The modified hold-relax stretching group performed 7 seconds of isometric contraction and then relaxed for 5 seconds, and this was repeated five times daily for five consecutive days. The static stretching group received 10 minutes of static stretching with the help of a pulley and weight system for five consecutive days. The control group received only moist heat for 20 minutes for five consecutive days. A baseline reading of passive knee extension (PKE) was taken prior to the intervention; rest measurements were taken immediate post intervention on day 1, day 3, day 5, and after a 1 week follow-up, i.e., at the 12th day. [Results] On comparing the baseline readings of passive knee extension (PKE), there was no difference noted between the three groups. On comparing the posttest readings on day 5 between the 3 groups, a significant difference was noted. However, post hoc analysis revealed an insignificant difference between the modified hold-relax stretching and static stretching groups. There was a significant difference between the static stretching and control groups and between the modified hold-relax stretching and control groups. [Conclusion] The results of this study indicate that both the modified hold-relax stretching technique and static stretching are equally effective, as there was no significant difference in improving the hamstring muscle flexibility between the two groups.
Detonation in supersonic radial outflow
Kasimov, Aslan R.
2014-11-07
We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.
CONGENITAL RADIAL DYSPLASIA: A CASE REPORT
Directory of Open Access Journals (Sweden)
Venkatram Reddy
2015-08-01
Full Text Available Congenital radial dysplasia, also referred to as radial club hand , means deficiency along the preaxial or radial side of the extremity. It ranges from hypoplasia of the thumb to variou s degrees of radial hypoplasia. We present one such rare case of type 4 congenital unilateral isolated radial dysplasia with carpel anomaly , reported to our department in SVS medical C ollege, Mahabubanagar, Telangana state
Peres, Steven E.; Draper, David O.; Knight, Kenneth L.; Ricard, Mark D.
2002-01-01
Objective: To compare the effects of 3 treatments on ankle dorsiflexion range of motion: prolonged long-duration stretching, pulsed shortwave diathermy followed by stretching, and pulsed shortwave diathermy, stretching, and ice combined.
Akkerman, Remko; Pronk, Ruud M.
1997-01-01
Thermoforming is a widely used process for the manufacture of foam sheet products. Polystyrene foam food trays for instance can be produced by first heating the thermoplastic foam sheet, causing the gas contained to build up pressure and expand, after which a vacuum pressure can be applied to draw
Draper, David O; Castro, Jennifer L; Feland, Brent; Schulthies, Shane; Eggett, Dennis
2004-01-01
A randomized, counterbalanced 2x3x5 repeated-measures design. To compare changes in hamstring flexibility after treatments of pulsed shortwave diathermy and prolonged stretch, sham diathermy and prolonged stretch, and control. Heat and stretch techniques have been touted for years. To date, the effect of shortwave diathermy and hamstring stretching has not been studied. Because diathermy heats a large area and penetrates deep into the muscle, use of this device prior to or during hamstring stretching may increase flexibility. Thirty college-age students (mean age, 21.5 years) with tight hamstrings (inability to achieve greater than 160 degrees knee extension at 90 degrees hip flexion) participated. Subjects were assigned to 1 of 3 groups: diathermy and stretch, sham diathermy and stretch, and control). Range of motion was recorded before and after each treatment for 5 days and on day 8. A straight leg-raise stretch was performed using a mechanical apparatus. Subjects in the diathermy-and-stretch group received 10 minutes of diathermy (distal hamstrings) followed by 5 minutes of simultaneous diathermy and stretch, followed by 5 minutes of stretching only. Subjects in the sham-diathermy-and-stretch group followed the same protocol, but with the diathermy unit turned off. Subjects in the control group lay on the table for 20 minutes. Data were analyzed using an ANOVA and post hoc t tests. Mean (+/- pooled SE) increases in knee extension after 5 days were 15.8 degrees 2.2 degrees for the diathermy-and-stretch group, 5.2 degrees +/- 2.2 degrees for the sham-diathermy-and-stretch group, and -0.3 degrees +/- 2.2 degrees for the control group. Seventy-two hours after the last treatment, the diathermy-and-stretch group lost 1.9 degrees +/- 2.2 degrees, the sham-diathermy-and-stretch group lost 3.0 degrees +/- 2.2 degrees, and the control group changed -0.4 degrees +/- 2.2 degrees. These results suggest that hamstring flexibility can be greatly improved when shortwave
Vortex stretching in a homogeneous isotropic turbulence
Hirota, M.; Nishio, Y.; Izawa, S.; Fukunishi, Y.
2017-04-01
Stretching vortices whose sizes are in the inertial subrange of a homogeneous isotropic turbulence are picked up, and the geometric relations with the neighboring vortices whose scales are twice larger are studied. Hierarchical vortices are extracted using a Fourier band-pass filter, and each extracted vortex is reconstructed as a set of short cylindrical segments along the vortex axis to discuss the vortex interactions. As a result, it is shown that the directions of larger vortices near the segments of the fast stretching vortices tend to be orthogonal to the direction of the stretching segments, and the locations of the larger vortices that contribute most to the stretching of smaller vortex segments are likely to be found in the direction with the relative angle of 45° from the axes of the stretching vortex segments. And, the vortices with the second highest contributions tend to be in the directions 45° from the stretching segments’ axes and orthogonal to the directions of the highest contributing vortices.
About "axial" and "radial" diffusivities.
Wheeler-Kingshott, Claudia A M; Cercignani, Mara
2009-05-01
This article presents the potential problems arising from the use of "axial" and "radial" diffusivities, derived from the eigenvalues of the diffusion tensor, and their interpretation in terms of the underlying biophysical properties, such as myelin and axonal density. Simulated and in vivo data are shown. The simulations demonstrate that a change in "radial" diffusivity can cause a fictitious change in "axial" diffusivity and vice versa in voxels characterized by crossing fibers. The in vivo data compare the direction of the principle eigenvector in four different subjects, two healthy and two affected by multiple sclerosis, and show that the angle, alpha, between the principal eigenvectors of corresponding voxels of registered datasets is greater than 45 degrees in areas of low anisotropy, severe pathology, and partial volume. Also, there are areas of white matter pathology where the "radial" diffusivity is 10% greater than that of the corresponding normal tissue and where the direction of the principal eigenvector is altered by more than 45 degrees compared to the healthy case. This should strongly discourage researchers from interpreting changes of the "axial" and "radial" diffusivities on the basis of the underlying tissue structure, unless accompanied by a thorough investigation of their mathematical and geometrical properties in each dataset studied. (c) 2009 Wiley-Liss, Inc.
Radial head prosthesis: results overview.
Carità, E; Donadelli, A; Cugola, L; Perazzini, P
2017-12-01
Radial head replacement is frequently used in treatment of radial head fractures or sequela. Impossibility to restore a correct anatomy, acute elbow traumatic instability and failure of osteosynthesis hardware are the most common indications. The authors describe their case studies and results on the implantation of various radial head prostheses. Between June 2005 and June 2016, 28 radial head prostheses were implanted in the same number of patients with an average follow-up of 49 months (6-104). Indications for implantation were: Mason type III and IV radial head fractures and post-traumatic arthritis due to failure of previous treatments. Monopolar prostheses were used and were press-fit implanted via Kaplan's lateral access and Kocher's anconeus approach to the humeroradial joint. At the follow-up, assessments were made of the pain, according to the visual analogic scale, range of motion (ROM), stability and functionality according to the Mayo Elbow Performance Score, presence of osteolysis and mobilization during radiography tests, personal satisfaction of the patients, Disabilities of the Arm, Shoulder and Hand and Patient-Rated Wrist Evaluation outcomes measurements. At the follow-up, we recorded an average level of pain of 1.8 in patients under acute treatments for radial head fractures and a marked reduction in the remaining cases from 6.7 to 2.1. ROM was found on average to be 107° of flexion-extension and 159° of pronosupination. Personal satisfaction was good-excellent in 23 cases. There was no case of infection; removal of the implant was necessary in three cases due to mobilization of the stem and oversized implants. In six cases, bone resorption was seen at the level of the prosthetic collar and it was in all cases asymptomatic. The results of this study suggest that the use of prostheses, if well positioned, is a valid solution in the treatment of secondary arthritis and fractures of the radial head with poor prognosis, with good results in the
Individually programmable cell stretching microwell arrays actuated by a Braille display.
Kamotani, Yoko; Bersano-Begey, Tommaso; Kato, Nobuhiro; Tung, Yi-Chung; Huh, Dongeun; Song, Jonathan W; Takayama, Shuichi
2008-06-01
Cell culture systems are often static and are therefore nonphysiological. In vivo, many cells are exposed to dynamic surroundings that stimulate cellular responses in a process known as mechanotransduction. To recreate this environment, stretchable cell culture substrate systems have been developed, however, these systems are limited by being macroscopic and low throughput. We have developed a device consisting of 24 miniature cell stretching chambers with flexible bottom membranes that are deformed using the computer-controlled, piezoelectrically actuated pins of a Braille display. We have also developed efficient image capture and analysis protocols to quantify morphological responses of the cells to applied strain. Human dermal microvascular endothelial cells (HDMECs) were found to show increasing degrees of alignment and elongation perpendicular to the radial strain in response to cyclic stretch at increasing frequencies of 0.2, 1, and 5 Hz, after 2, 4, and 12h. Mouse myogenic C2C12 cells were also found to align in response to the stretch, while A549 human lung adenocarcinoma epithelial cells did not respond to stretch.
Reed, Nat
2011-01-01
For grades 6-8, our State Standards-based combined resource meets the algebraic concepts addressed by the NCTM standards and encourages the students to review the concepts in unique ways. The task sheets introduce the mathematical concepts to the students around a central problem taken from real-life experiences, while the drill sheets provide warm-up and timed practice questions for the students to strengthen their procedural proficiency skills. Included are opportunities for problem-solving, patterning, algebraic graphing, equations and determining averages. The combined task & drill sheets
Near surface radial anisotropy in the Rigan area/SE Iran
Shirzad, Taghi; Shomali, Zaher-Hossein; Riahi, Mohammad-Ali; Jarrahi, Maziar
2017-01-01
By analyzing Rayleigh and Love wave empirical Green's functions extracted from ambient seismic noise and earthquake data, we obtained near surface radial anisotropy structure beneath the hidden part of the Kahurak fault in the Rigan region, in the southeast of Iran. The deduced seismic radial anisotropy within the hidden part of the Kahurak fault can reveal record of shallow crustal deformation caused by the Rigan earthquake (MW 6.5) occurred on 20 December 2010. Significant radial anisotropy with positive magnitude (VSH > VSV) appears in the shallow subsurface of the upper part of the crust. The magnitude of radial anisotropy varies from predominantly positive (VSH > VSV) to mostly negative (VSH VSV) values with increasing depth which is correlated with a known sedimentary layer. The sedimentary layer is observed with prominent positive radial anisotropy (VSH > VSV). The thickness of the sedimentary layer varies between 1 and 3 km from the south to the north beneath the study area with an average radial anisotropy of about 5%. However, cross-section profiles indicate that negative anomaly stretches inside a thick sedimentary layer where the aftershocks occurred. Also, the investigation of cross-section profiles reveals that a dipping angle of the hidden part of Kahurak fault is resolved at approximately 85° using the anisotropy pattern. Moreover, the aftershocks generally occurred in the transitional zones where signs of radial anisotropy anomalies change. Our study indicates that the influence of different resolving powers and path coverage density of Rayleigh and Love waves, which can be artificially interpreted as radial anisotropy, have minor effect on calculated radial anisotropy and they are estimated in the range of - 2% to + 2%.
Growth of sinuous waves on thin liquid sheets: Comparison of predictions with experiments
Majumdar, Nayanika; Tirumkudulu, Mahesh S.
2016-05-01
A recent theory [M. S. Tirumkudulu and M. Paramati, "Stability of a moving radial liquid sheet: Time dependent equations," Phys. Fluids 25(10), 102-107 (2013)] has shown that a radially expanding liquid sheet is unstable to sinuous wave disturbances due to the thinning of the liquid sheet while ignoring the presence of a surrounding gas phase. In this work, we compare the predictions of the aforementioned theory with the measurements of Crapper et al. ["Large amplitude Kelvin-Helmholtz waves on thin liquid sheets," Proc. R. Soc. London, Ser. A 342(1629), 209-224 (1975)] who measured the amplitude and spatial growth rates of sinuous waves induced in radially expanding liquid sheets produced by fan spray nozzles. The predicted growth rates are remarkably close to the measurements over a range of forcing frequencies and amplitudes even though the experiments were performed in the presence of a surrounding gas phase. This is in contrast to large discrepancies observed by Crapper et al. when the same measurements were compared with the predictions of a spatial stability analysis for a moving liquid sheet that accounts for the inertia of the surrounding gas phase but ignores the thickness variation of the sheet.
Solar cell sheet. Taiyo denchi sheet
Energy Technology Data Exchange (ETDEWEB)
Suzuki, Kazutomi; Nakatani, Kenji; Okaniwa, Hiroshi.
1989-08-09
This invention consists of a module sheet containing a thin film solar cell formed on a polymer film substrate, a cushioning sticky film layer and a protective film layer; thickness of module sheet is less than 1000 micron and its bending rigidity of 5 mm thick sample is less than 100 kg-mm {sup 2}. By this, the soalr cell can be wound and unwound in small roll of several cm level. This eliminates the internal wiring in the plural number of cells giving high durability of integrated amorphous solar cell against the repeated bending. The polymer film is films of PET, polysulphone, polyamide, with proper thickness of 30 - 300 micron. 2 figs.
Axillary nerve repair in 99 patients with 101 stretch injuries.
Kline, David G; Kim, Daniel H
2003-10-01
The purpose of this paper was to analyze outcomes in patients at the Louisiana State University Health Sciences Center (LSUHSC) who presented with contusion-stretch injuries to the axillary nerve. These injuries resulted from shoulder injury either with or without fracture/dislocation. Although recovery of deltoid function can occur spontaneously, this was not always the case. Severe deficits persisting for several months led the patients to undergo surgery. Operative categories included isolated axillary palsy (56 procedures), combined axillary and suprascapular palsies (11 procedures), axillary and radial palsies (14 procedures), and axillary palsy with another deficit, usually infraclavicular plexus loss (20 procedures). Deltoid function was evaluated pre- and postoperatively by applying the LSUHSC grading system. An anterior infraclavicular approach was usually followed during surgery, but in three patients an additional posterior approach was used. Axillary lesions usually began in the proximal portion of the posterior cord. Although several patients had distraction of the nerve, lesions in continuity were found in more than 90% of cases. Intraoperative nerve action potential (NAP) recordings were performed to determine the need for resection. Most repairs were made using grafts, although in three patients with relatively focal lesions suture was used. When an NAP was recorded across the lesion and neurolysis was performed, recovery was judged to be a mean Grade 4 according to the LSUHSC in 30 cases. Recovery following suture repairs was a mean Grade 3.8, whereas recovery after 66 graft repairs was a mean Grade 3.7. In cases in which suprascapular palsies were associated with axillary injuries, the former recovered but the latter did not necessarily do so without surgery. If the radial nerve was also injured, recovery of the triceps and brachioradialis muscles and wrist extension was usually obtained, but it was far more difficult to reverse the loss of finger
Codreanu, I; Robson, M D; Rider, O J; Pegg, T J; Dasanu, C A; Jung, B A; Rotaru, N; Clarke, K; Holloway, C J
2014-05-01
Obtaining new details of radial motion of left ventricular (LV) segments using velocity-encoding cardiac MRI. Cardiac MR examinations were performed on 14 healthy volunteers aged between 19 and 26 years. Cine images for navigator-gated phase contrast velocity mapping were acquired using a black blood segmented κ-space spoiled gradient echo sequence with a temporal resolution of 13.8 ms. Peak systolic and diastolic radial velocities as well as radial velocity curves were obtained for 16 ventricular segments. Significant differences among peak radial velocities of basal and mid-ventricular segments have been recorded. Particular patterns of segmental radial velocity curves were also noted. An additional wave of outward radial movement during the phase of rapid ventricular filling, corresponding to the expected timing of the third heart sound, appeared of particular interest. The technique has allowed visualization of new details of LV radial wall motion. In particular, higher peak systolic radial velocities of anterior and inferior segments are suggestive of a relatively higher dynamics of anteroposterior vs lateral radial motion in systole. Specific patterns of radial motion of other LV segments may provide additional insights into LV mechanics. The outward radial movement of LV segments impacted by the blood flow during rapid ventricular filling provides a potential substrate for the third heart sound. A biphasic radial expansion of the basal anteroseptal segment in early diastole is likely to be related to the simultaneous longitudinal LV displacement by the stretched great vessels following repolarization and their close apposition to this segment.
... Fact files Questions & answers Features Multimedia Contacts Zika virus Fact sheet Updated 6 September 2016 Key facts ... last for 2-7 days. Complications of Zika virus disease Based on a systematic review of the ...
Energy Technology Data Exchange (ETDEWEB)
NWCC Wildlife Work Group
2004-12-01
OAK-B135 After conducting four national research meetings, producing a document guiding research: Metrics and Methods for Determining or Monitoring Potential Impacts on Birds at Existing and Proposed Wind Energy Sites, 1999, and another paper, Avian Collisions with Wind Turbines: A Summary of Existing Studies and Comparisons to Other Sources of Avian Collision Mortality in the United States, 2001, the subcommittee recognized a need to summarize in a short fact sheet what is known about avian-wind interaction and what questions remain. This fact sheet attempts to summarize in lay terms the result of extensive discussion about avian-wind interaction on land. This fact sheet does not address research conducted on offshore development. This fact sheet is not intended as a conclusion on the subject; rather, it is a summary as of Fall/Winter 2002.
... Education About NIGMS NIGMS Home > Science Education > Sepsis Sepsis Tagline (Optional) Middle/Main Content Area PDF Version ( ... KB) En español Other Fact Sheets What is sepsis? Sepsis is a serious medical condition. It is ...
Spear, Alexander Grenbeaux
The DARPA HiFIVE project uses a pulsed electron sheet beam gun to power a traveling wave tube amplifier operating at 220 GHz. Presented is a method for characterizing the high current density 0.1 mm by 1 mm sheet electron beam. A tungsten tipped probe was scanned through the cross section of the sheet electron beam inside of a vacuum vessel. The probe was controlled with sub-micron precision using stepper motors and LabView computer control while boxcar averaging hardware sampled the pulsed beam. Matlab algorithms were used to interpret the data, calculate beam dimensions and current density, and create 2-dimensional cross section images. Full characterization of two separate HiFIVE sheet electron guns was accomplished and is also presented.
... NIGMS NIGMS Home > Science Education > Physical Trauma Physical Trauma Tagline (Optional) Middle/Main Content Area PDF Version (572 KB) Other Fact Sheets What is physical trauma? Physical trauma is a serious injury to the ...
... of most of these problems is the body’s explosive inflammatory response. A normal inflammatory response protects the ... your website or other digital platform? This fact sheet and others are available for syndication through the ...
Does motor imagery enhance stretching and flexibility?
Guillot, Aymeric; Tolleron, Coralie; Collet, Christian
2010-02-01
Although several studies have demonstrated that motor imagery can enhance learning processes and improve motor performance, little is known about its effect on stretching and flexibility. The increased active and passive range of motion reported in preliminary research has not been shown to be elicited by motor imagery training alone. We thus compared flexibility scores in 21 synchronized swimmers before and after a 5-week mental practice programme that included five stretching exercises in active and passive conditions. The imagery training programme resulted in selective increased flexibility, independently of the stretching method. Overall, the improvement in flexibility was greater in the imagery group than in the control group for the front split (F(1,18) = 4.9, P = 0.04), the hamstrings (F(1,18) = 5.2, P = 0.035), and the ankle stretching exercises (F(1,18) = 5.6, P = 0.03). There was no difference in shoulders and side-split flexibility (F(1,18) = 0.1, P = 0.73 and F(1,18) = 3.3, P = 0.08 respectively). Finally, there was no correlation between individual imagery ability and improvement in flexibility. Psychological and physiological effects of motor imagery could explain the increase in range of motion, suggesting that imagery enhances joint flexibility during both active and passive stretching.
Movement and stretching imagery during flexibility training.
Vergeer, Ineke; Roberts, Jenny
2006-02-01
The aim of this study was to examine the effect of movement and stretching imagery on increases in flexibility. Thirty volunteers took part in a 4 week flexibility training programme. They were randomly assigned to one of three groups: (1) movement imagery, where participants imagined moving the limb they were stretching; (2) stretching imagery, where participants imagined the physiological processes involved in stretching the muscle; and (3) control, where participants did not engage in mental imagery. Active and passive range of motion around the hip was assessed before and after the programme. Participants provided specific ratings of vividness and comfort throughout the programme. Results showed significant increases in flexibility over time, but no differences between the three groups. A significant relationship was found, however, between improved flexibility and vividness ratings in the movement imagery group. Furthermore, both imagery groups scored significantly higher than the control group on levels of comfort, with the movement imagery group also scoring significantly higher than the stretching imagery group. We conclude that the imagery had stronger psychological than physiological effects, but that there is potential for enhancing physiological effects by maximizing imagery vividness, particularly for movement imagery.
Forming limit diagrams for anisotropic metal sheets with different yield criteria
DEFF Research Database (Denmark)
Kuroda, M.; Tvergaard, Viggo
2000-01-01
For thin metal sheets subject to stretching under various in-plane tensile stress histories, localized necking is analyzed by using the M-K-model approach, and forming limit diagrams are drawn based on the critical strains for localization. The analyses account for plastic anisotropy, and predict......) 2000 Elsevier Science Ltd. Ail rights reserved....
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhenzhen; Ying, Ye; Li, Li; Xu, Ting; Wu, Yiping; Guo, Xiaoyu; Wang, Feng; Shen, Haojie; Wen, Ying, E-mail: ying.wen@shnu.edu.cn; Yang, Haifeng, E-mail: Hfyang@shnu.edu.cn
2017-02-28
Highlights: • A new DA sensor is constructed with RGO and electrospun polymer fiber film. • RGO sheets can be mechanically stretched by the as-fabricated net-brackets. • The DA sensor shows highly catalytic activity toward the oxidation of dopamine. • The as-prepared sensor is used to detect DA in injection or urine. • The protocol to make sensors in large scale way has good reproducibility. - Abstract: A net-bracket built out from the core@shell structure of chemically oxidized polypyrrole (PPy) coated electrospun polycaprolactone (PCL) nanofibers, and the following surface modification of a thin layer of positively charged poly(dimethyl diallyl ammonium chloride) (PDDA) has been applied for stretching the reduced graphene oxide (RGO) sheets to some extent with the electrochemical deposition method. The as-formed RGO/PDDA/PCL@PPy nanocomposites were investigated by using scanning electron microscopy, transmission electron microscope, X-ray diffraction and Raman spectroscopy. The graphene tented by the net-bracket showed remarkable electrocatalytic properties in detecting the neurotransmitter dopamine (DA). Low detection limit of 0.34 μM (S/N = 3) with the wide linear detection range from 4 μM to 690 μM was obtained. The successful determination of DA in real urine samples and DA injection were achieved. Such attractive fabrication strategy can be extended to make other graphene sheet-based sensors.
Energy Technology Data Exchange (ETDEWEB)
2014-06-01
This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-07-01
The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.
CURRENT CONCEPTS IN MUSCLE STRETCHING FOR EXERCISE AND REHABILITATION
2012-01-01
Stretching is a common activity used by athletes, older adults, rehabilitation patients, and anyone participating in a fitness program. While the benefits of stretching are known, controversy remains about the best type of stretching for a particular goal or outcome. The purpose of this clinical commentary is to discuss the current concepts of muscle stretching interventions and summarize the evidence related to stretching as used in both exercise and rehabilitation. PMID:22319684
Radial magnetic bearings: An overview
Directory of Open Access Journals (Sweden)
Weiyu Zhang
Full Text Available Radial magnetic bearings (RMBs are one of the most commonly used magnetic bearings. They are used widely in the field of ultra-high speed and ultra-precise numerical control machine tools, bearingless motors, high speed flywheels, artificial heart pumps, and molecular pumps, and they are being strengthened and extended in various important areas. In this paper, a comprehensive overview is given of different bearing topologies of RMBs with different stator poles that differ in their construction, the driving mode of electromagnets, power consumption, cost, magnetic circuits, and symmetry. RMBs with different poles and couplings between the two bearing axes in the radial direction responsible for cross-coupling generation are compared. In addition, different shaped rotors are compared, as the performances of magnetic bearing-rotor systems are of great concern to rotor constructions. Furthermore, the parameter design methods, the mathematical models and control strategies of the RMBs are described in detail. From the comparison of topologies, models and control methods for RMBs, the advantages, disadvantages and utilizable perspectives are also analyzed. Moreover, several possible development trends of the RMBs are discussed. Keywords: Radial magnetic bearings (RMBs, Topologies, Mathematical mode, Control strategies, Development trends
Velocidades radiales en Collinder 121
Arnal, M.; Morrell, N.
Se han llevado a cabo observaciones espectroscópicas de unas treinta estrellas que son posibles miembros del cúmulo abierto Collinder 121. Las mismas fueron realizadas con el telescopio de 2.15m del Complejo Astronómico El Leoncito (CASLEO). El análisis de las velocidades radiales derivadas del material obtenido, confirma la realidad de Collinder 121, al menos desde el punto de vista cinemático. La velocidad radial baricentral (LSR) del cúmulo es de +17 ± 3 km.s-1. Esta velocidad coincide, dentro de los errores, con la velocidad radial (LSR) de la nebulosa anillo S308, la cual es de ~20 ± 10 km.s-1. Como S308 se encuentra físicamente asociada a la estrella Wolf-Rayet HD~50896, es muy probable que esta última sea un miembro de Collinder 121. Desde un punto de vista cinemático, la supergigante roja HD~50877 (K3Iab) también pertenecería a Collinder 121. Basándonos en la pertenencia de HD~50896 a Collinder 121, y en la interacción encontrada entre el viento de esta estrella y el medio interestelar circundante a la misma, se estima para este cúmulo una distancia del orden de 1 kpc.
Comparing AquaStretch with supervised land based stretching for Chronic Lower Back Pain.
Keane, Lynda G
2017-04-01
Chronic Lower Back Pain (CLBP) is a major health problem affecting 70-85% of the population in the UK. AquaStretch, a new form of assisted stretching in water, is compared with supervised land based stretching (LBS) for subjects with CLBP looking at pain reduction, kinesiophobia and disability. 29 subjects were randomly allocated into three groups, LBS (N = 10), AquaStretch (N = 10) and Control (N = 9). Modified Oswestry Low Back Pain Questionnaire (MOLBPQ) and Tampa Scale of Kinesiophobia (TSK) questionnaires were completed in weeks 1, 6, and 12. Visual Analogue Scale (VAS) pain scores were collected weekly till week 12. Treatment groups received two 30 min sessions per week for 12 weeks, control group continued their normal physical activity. Statistical significance (p < 0.05) was observed in the AquaStretch group for pain reduction (P = 0.006), kinesiophobia (P = 0.029), and perceived disability (P = 0.001). Both techniques are suggested to be beneficial for CLBP patients however AquaStretch has key additional benefits including time efficiency, cost effectiveness and the ability to be performed by qualified individuals other than physiotherapists. A reduction in pain post eight weeks of treatment using AquaStretch versus twelve weeks of land based stretching could result in potentially less treatment time needed and a possibility of less medication. Future research is recommended to determine the duration of AquaStretch benefits, and to compare AquaStretch with land based physical therapy programmes for CLBP and to research the potential reduction of Medication required for chronic pain conditions for both its relative clinical effectiveness together with potential health cost savings. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optofluidic time-stretch quantitative phase microscopy.
Guo, Baoshan; Lei, Cheng; Wu, Yi; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Lee, Sangwook; Isozaki, Akihiro; Li, Ming; Jiang, Yiyue; Yasumoto, Atsushi; Di Carlo, Dino; Tanaka, Yo; Yatomi, Yutaka; Ozeki, Yasuyuki; Goda, Keisuke
2017-10-12
Innovations in optical microscopy have opened new windows onto scientific research, industrial quality control, and medical practice over the last few decades. One of such innovations is optofluidic time-stretch quantitative phase microscopy - an emerging method for high-throughput quantitative phase imaging that builds on the interference between temporally stretched signal and reference pulses by using dispersive properties of light in both spatial and temporal domains in an interferometric configuration on a microfluidic platform. It achieves the continuous acquisition of both intensity and phase images with a high throughput of more than 10,000 particles or cells per second by overcoming speed limitations that exist in conventional quantitative phase imaging methods. Applications enabled by such capabilities are versatile and include characterization of cancer cells and microalgal cultures. In this paper, we review the principles and applications of optofluidic time-stretch quantitative phase microscopy and discuss its future perspective. Copyright © 2017 Elsevier Inc. All rights reserved.
Optical data compression in time stretch imaging.
Directory of Open Access Journals (Sweden)
Claire Lifan Chen
Full Text Available Time stretch imaging offers real-time image acquisition at millions of frames per second and subnanosecond shutter speed, and has enabled detection of rare cancer cells in blood with record throughput and specificity. An unintended consequence of high throughput image acquisition is the massive amount of digital data generated by the instrument. Here we report the first experimental demonstration of real-time optical image compression applied to time stretch imaging. By exploiting the sparsity of the image, we reduce the number of samples and the amount of data generated by the time stretch camera in our proof-of-concept experiments by about three times. Optical data compression addresses the big data predicament in such systems.
Bias of purine stretches in sequenced chromosomes
DEFF Research Database (Denmark)
Ussery, David; Soumpasis, Dikeos Mario; Brunak, Søren
2002-01-01
We examined more than 700 DNA sequences (full length chromosomes and plasmids) for stretches of purines (R) or pyrimidines (Y) and alternating YR stretches; such regions will likely adopt structures which are different from the canonical B-form. Since one turn of the DNA helix is roughly 10 bp, we...... to contain 1.0% of purine tracts and also 1.0% of the alternating pyr/pur tracts. In the vast majority of cases, there are more purine tracts than would be expected from a random sequence, with an average of 3.5%, significantly larger than the expectation value. The fraction of the chromosomes containing pyr......, in eukaryotes there is an abundance of long stretches of purines or alternating purine/pyrimidine tracts, which cannot be explained in this way; these sequences are likely to play an important role in eukaryotic chromosome organisation....
Nanofluid flow over an unsteady stretching surface in presence of thermal radiation
Directory of Open Access Journals (Sweden)
Kalidas Das
2014-09-01
Full Text Available This paper investigates the unsteady boundary layer flow of a nanofluid over a heated stretching sheet with thermal radiation. The transport model employed includes the effects of Brownian motion and thermophoresis. The unsteadiness in the flow field is caused by the time-dependence of the stretching velocity, free stream velocity and the surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using a shooting method together with Runge–Kutta–Fehlberg scheme. The clear liquid results from this study are in agreement with the results reported in the literature. It is found that the heat transfer rate at the surface increases in the presence of Brownian motion but reverse effect occurs for thermophoresis.
Filament stretching rheometer: inertia compensation revisited
DEFF Research Database (Denmark)
Szabo, Peter; McKinley, Gareth H.
2003-01-01
The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end of the e......The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end...
Salazar-Torres, J De J; Pandyan, A D; Price, C I M; Davidson, R I; Barnes, M P; Johnson, G R
2004-06-17
To characterize the stretch reflex response of the biceps brachii in stroke patients with elbow spasticity (prior to or within 15 min of treatment with botulinum toxin) and non-impaired volunteers with the aim of quantifying the stretch reflex excitability and observe the differences between the groups. A cross-sectional study. Stretch reflexes from the biceps brachii were elicited following a controlled elbow extension. The amplitude, latency, rise time and duration, calculated from surface EMG recordings from the biceps brachii, were used to characterize the stretch reflex response. Seventeen non-impaired and 14 stroke patients participated. The amplitude was significantly lower in stroke patients than in non-impaired volunteers (p0.10). Reduction in the amplitude in stroke patients was unexpected suggesting the stretch reflex is not necessarily hyper-excitable in people with clinically diagnosed spasticity. Latency differences suggest decreased presynaptic inhibition and/or increased motor neurone excitability can occur following a stroke. However, carry over effects from previous botulinum toxin treatment may have confounded amplitude measurements. Further work evaluating the excitability of the stretch reflex independent of Botulinum toxin and its contribution to resistance to passive stretching is being conducted.
Countercurrent aortography via radial artery
Energy Technology Data Exchange (ETDEWEB)
Sohn, Hyung Kuk; Lee, Young Chun; Lee, Seung Chul; Jeon, Seok Chol; Joo, Kyung Bin; Lee, Seung Ro; Kim, Soon Yong [College of Medicine, Hanyang University, Seoul (Korea, Republic of)
1987-06-15
Countercurrent aortography via radial artery was performed for detection of aortic arch anomalies in 4 infants with congenital heart disease. Author's cases of aortic arch anomalies were 3 cases of PDA, 1 case of coarctation of aorta, and 1 case of occlusion of anastomosis site on subclavian artery B-T shunt. And aberrant origin of the right SCA, interrupted aortic arch, hypoplastic aorta, anomalous origin of the right pulmonary artery from the ascending aorta can be demonstrated by this method. Countercurrent aortography affords an safe and simple method for detection of aortic arch anomalies without retrograde arterial catheterization, especially in small infants or premature babies.
Fractional behaviour at cyclic stretch-bending
Emmens, W.C.; van den Boogaard, Antonius H.; Kazantzis, A.V.; de Hosson, J.Th.M.; Kolleck, R
2010-01-01
The fractional behaviour at cyclic stretch-bending has been studied by performing tensile tests at long specimens that are cyclically bent at the same time, on mild steel, dual-phase steel, stainless steel, aluminium and brass. Several types of fracture are observed, these are discussed, as are the
Filament stretching rheometry of polymer melts
DEFF Research Database (Denmark)
Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz
2005-01-01
The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...
Linear viscoelastic characterization from filament stretching rheometry
DEFF Research Database (Denmark)
Wingstrand, Sara Lindeblad; Alvarez, Nicolas J.; Hassager, Ole
viscoelasticity well into the nonlinear regime. Therefore at present, complete rheological characterization of a material requires two apparatuses: a shear and an extensional rheometer. This work is focused on developing a linear viscoelastic protocol for the filament stretching rheometer (FSR) in order...
An almost sure CLT for stretched polymers
Ioffe, Dmitry; Velenik, Yvan Alain
2013-01-01
We prove an almost sure central limit theorem (CLT) for spatial extension of stretched (meaning subject to a non-zero pulling force) polymers at very weak disorder in all dimensions $d+1\\geq 4$.
An experimental study on particle effects in liquid sheets
Directory of Open Access Journals (Sweden)
Sauret Alban
2017-01-01
Full Text Available Many industrial processes, such as surface coating or liquid transport in tubes, involve liquid sheets or thin films of suspensions. In these situations, the thickness of the liquid film becomes comparable to the particle size, which leads to unexpected dynamics. In addition, the classical constitutive rheological law for suspensions cannot be applied as the continuum approximation is no longer valid. Here, we consider experimentally a transient particle-laden liquid sheet that expands radially. We characterize the influence of the particles on the shape of the liquid film and the atomization process. We highlight that the presence of particles modifies the thickness and stability of the liquid sheet. Our study suggests that the influence of particles through capillary effects can modify significantly the dynamics of processes that involve suspensions and particles confined in liquid films.
HSE Unit
2013-01-01
You never know when you might be faced with questions such as: when/how should I dispose of a gas canister? Where can I find an inspection report? How should I handle/store/dispose of a chemical substance…? The SI section of the DGS/SEE Group is primarily responsible for safety inspections, evaluating the safety conditions of equipment items, premises and facilities. On top of this core task, it also regularly issues “Safety Advice Sheets” on various topics, designed to be of assistance to users but also to recall and reinforce safety rules and procedures. These clear and concise sheets, complete with illustrations, are easy to display in the appropriate areas. The following safety advice sheets have been issued so far: Other sheets will be published shortly. Suggestions are welcome and should be sent to the SI section of the DGS/SEE Group. Please send enquiries to general-safety-visits.service@cern.ch.
Stretched flow of Oldroyd-B fluid with Cattaneo-Christov heat flux
Directory of Open Access Journals (Sweden)
T. Hayat
Full Text Available The objective of present attempt is to analyse the flow and heat transfer in the flow of an Oldroyd-B fluid over a non-linear stretching sheet having variable thickness. Characteristics of heat transfer are analyzed with temperature dependent thermal conductivity and heat source/sink. Cattaneo-Christov heat flux model is considered rather than Fourierâs law of heat conduction in the present flow analysis. Thermal conductivity varies with temperature. Resulting partial differential equations through laws of conservation of mass, linear momentum and energy are converted into ordinary differential equations by suitable transformations. Convergent series solutions for the velocity and temperature distributions are developed and discussed. Keywords: Oldroyd-B fluid, Variable sheet thickness, Cattaneo-Christov heat flux model, Heat source/sink, Temperature dependent thermal conductivity
Stretching single fibrin fibers hampers their lysis.
Li, Wei; Lucioni, Tomas; Li, Rongzhong; Bonin, Keith; Cho, Samuel S; Guthold, Martin
2017-09-15
Blood clots, whose main structural component is a mesh of microscopic fibrin fibers, experience mechanical strain from blood flow, clot retraction and interactions with platelets and other cells. We developed a transparent, striated and highly stretchable substrate made from fugitive glue (a styrenic block copolymer) to investigate how mechanical strain affects lysis of single, suspended fibrin fibers. In this suspended fiber assay, lysis manifested itself by fiber elongation, thickening (disassembly), fraying and collapse. Stretching single fibrin fibers significantly hampered their lysis. This effect was seen in uncrosslinked and crosslinked fibers. Crosslinking (without stretching) also hampered single fiber lysis. Our data suggest that strain is a novel mechanosensitive factor that regulates blood clot dissolution (fibrinolysis) at the single fiber level. At the molecular level of single fibrin molecules, strain may distort, or hinder access to, plasmin cleavage sites and thereby hamper lysis. Fibrin fibers are the major structural component of a blood clot. We developed a highly stretchable substrate made from fugitive glue and a suspended fibrin fiber lysis assay to investigate the effect of stretching on single fibrin fibers lysis. The key findings from our experiments are: 1) Fibers thicken and elongate upon lysis; 2) stretching strongly reduces lysis; 3) this effect is more pronounced for uncrosslinked fibers; and 4) stretching fibers has a similar effect on reducing lysis as crosslinking fibers. At the molecular level, strain may distort plasmin cleavage sites, or restrict access to those sites. Our results suggest that strain may be a novel mechanobiological factor that regulates fibrinolysis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
1993-12-02
The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the general public. Written for the general public, the EIA publication Energy Information Sheets was developed to provide information on various aspects of fuel production, prices, consumption and capability. The information contained herein pertains to energy data as of December 1991. Additional information on related subject matter can be found in other EIA publications as referenced at the end of each sheet.
DEFF Research Database (Denmark)
Mikkelsen, Troels Bøgeholm
Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known...... as Dansgaard-Oeschger (DO) events would add to our knowledge of the climatic system and – hopefully – enable better forecasts. Likewise, to forecast possible future sea level rise it is crucial to correctly model the large ice sheets on Greenland and Antarctica. This project is divided into two parts...
Sheet molding composite recycling
Energy Technology Data Exchange (ETDEWEB)
Jost, K.
1995-08-01
This article describes how the SMC Automotive Alliance is helping to develop commercial processes to convert sheet molding composite scrap into new raw materials. A projected 200 million pounds of sheet molding composite (SMC) will be used by the auto industry in 1995. The increasing use of SMC in automobiles has prompted the industry to resolve some of the technical challenges involved with recycling the material. The SMC Automotive Alliance, composed of 30 molders and raw materials suppliers, has implemented cooperative research and development programs that have led to the commercialization of processes to recycle and reuse both postindustrial and eventually post-consumer SMC in new automotive applications.
Liquid Film Migration in Warm Formed Aluminum Brazing Sheet
Benoit, M. J.; Whitney, M. A.; Wells, M. A.; Jin, H.; Winkler, S.
2017-10-01
Warm forming has previously proven to be a promising manufacturing route to improve formability of Al brazing sheets used in automotive heat exchanger production; however, the impact of warm forming on subsequent brazing has not previously been studied. In particular, the interaction between liquid clad and solid core alloys during brazing through the process of liquid film migration (LFM) requires further understanding. Al brazing sheet comprised of an AA3003 core and AA4045 clad alloy, supplied in O and H24 tempers, was stretched between 0 and 12 pct strain, at room temperature and 523K (250 °C), to simulate warm forming. Brazeability was predicted through thermal and microstructure analysis. The rate of solid-liquid interactions was quantified using thermal analysis, while microstructure analysis was used to investigate the opposing processes of LFM and core alloy recrystallization during brazing. In general, liquid clad was consumed relatively rapidly and LFM occurred in forming conditions where the core alloy did not recrystallize during brazing. The results showed that warm forming could potentially impair brazeability of O temper sheet by extending the regime over which LFM occurs during brazing. No change in microstructure or thermal data was found for H24 sheet when the forming temperature was increased, and thus warm forming was not predicted to adversely affect the brazing performance of H24 sheet.
Peres, Steven E; Draper, David O; Knight, Kenneth L; Ricard, Mark D
2002-03-01
OBJECTIVE: To compare the effects of 3 treatments on ankle dorsiflexion range of motion: prolonged long-duration stretching, pulsed shortwave diathermy followed by stretching, and pulsed shortwave diathermy, stretching, and ice combined. DESIGN AND SETTING: A 2 x 5 x 15 repeated-measures (on 2 factors) design guided this study. Range-of-motion change in triceps surae flexibility was the dependent variable. The 3 independent variables were treatment group, pretest and posttest measurements, and day. Treatment group had 4 levels: control, stretching (10 minutes of stretching via the weight and pulley), diathermy and stretching (20 minutes of diathermy and 10 minutes of stretching), and diathermy, stretching, and ice (20 minutes of diathermy, 10 minutes of stretching applied after 15 minutes of diathermy, and 5 minutes of ice applied during the last 5 minutes of stretching). Each subject received 14 treatments throughout 3 weeks, with a follow-up measurement taken 6 days after the last treatment. SUBJECTS: Forty-four healthy college-student volunteers not involved in any flexibility program. MEASUREMENTS: We measured ankle dorsiflexion using a digital inclinometer before and after treatment. RESULTS: After 14 days of treatment, the range-of-motion increase was greater after heat and stretching than after stretching alone. After 6 additional days of rest, the heat and stretching range-of-motion increase was greater than that for stretching alone. CONCLUSION: Pulsed shortwave diathermy application before prolonged long-duration static stretching was more effective than stretching alone in increasing flexibility throughout 3 weeks. After 14 treatments, prolonged long-duration stretching combined with pulsed shortwave diathermy followed by ice application caused greater immediate and net range-of-motion increases than prolonged long-duration stretching alone.
Peres, Steven E.; Draper, David O.; Knight, Kenneth L.; Ricard, Mark D.
2002-01-01
Objective: To compare the effects of 3 treatments on ankle dorsiflexion range of motion: prolonged long-duration stretching, pulsed shortwave diathermy followed by stretching, and pulsed shortwave diathermy, stretching, and ice combined. Design and Setting: A 2 × 5 × 15 repeated-measures (on 2 factors) design guided this study. Range-of-motion change in triceps surae flexibility was the dependent variable. The 3 independent variables were treatment group, pretest and posttest measurements, and day. Treatment group had 4 levels: control, stretching (10 minutes of stretching via the weight and pulley), diathermy and stretching (20 minutes of diathermy and 10 minutes of stretching), and diathermy, stretching, and ice (20 minutes of diathermy, 10 minutes of stretching applied after 15 minutes of diathermy, and 5 minutes of ice applied during the last 5 minutes of stretching). Each subject received 14 treatments throughout 3 weeks, with a follow-up measurement taken 6 days after the last treatment. Subjects: Forty-four healthy college-student volunteers not involved in any flexibility program. Measurements: We measured ankle dorsiflexion using a digital inclinometer before and after treatment. Results: After 14 days of treatment, the range-of-motion increase was greater after heat and stretching than after stretching alone. After 6 additional days of rest, the heat and stretching range-of-motion increase was greater than that for stretching alone. Conclusion: Pulsed shortwave diathermy application before prolonged long-duration static stretching was more effective than stretching alone in increasing flexibility throughout 3 weeks. After 14 treatments, prolonged long-duration stretching combined with pulsed shortwave diathermy followed by ice application caused greater immediate and net range-of-motion increases than prolonged long-duration stretching alone. PMID:12937443
How to determine local stretching and tension in a flow-stretched DNA molecule
Pedersen, Jonas N.; Marie, Rodolphe; Kristensen, Anders; Flyvbjerg, Henrik
2016-04-01
We determine the nonuniform stretching of and tension in a mega base pairs-long fragment of deoxyribonucleic acid (DNA) that is flow stretched in a nanofluidic chip. We use no markers, do not know the contour length of the DNA, and do not have the full DNA molecule inside our field of view. Instead, we analyze the transverse thermal motion of the DNA. Tension at the center of the DNA adds up to 16 pN, giving almost fully stretched DNA. This method was devised for optical mapping of DNA, specifically, DNA denaturation patterns. It may be useful also for other studies, e.g., DNA-protein interactions, specifically, their tension dependence. Generally, wherever long strands of DNA—e.g., native DNA extracted from human cells or bacteria—must be stretched with ease for inspection, this method applies.
EFFECTIVENESS OF PNF STRETCHING AND CYCLIC STRETCHING OF CALF TIGHTNESS ON COLLEGE GOING GIRLS
Directory of Open Access Journals (Sweden)
Ashlesha Sirari
2015-06-01
Full Text Available Background: Flexibility helps with injury prevention, the reduction of soreness following a workout, and a general sense of well-being. There are different stretching techniques and protocols for improvements in calf extensibility and flexibility. The purpose of the study was to investigate the effectiveness of two techniques i.e. CYCLIC and PNF stretching which improves calf flexibility. This study was done to find the effectiveness of calf Cyclic and PNF stretching technique to improve calf flexibility. Methods: 30 subjects with age group 21-22 years were randomly allocated to 2 groups equally. Group 1(n=15 were given CYCLIC and group 2(n=15 were given PNF stretching technique. Plantar flexion was used to measure the calf tightness which was done before and after the treatment. Treatment was given for 7 days and on the 7th day the calf tightness was again measured. Results: The mean difference of the CYCLIC is 4.6 and mean difference of PNF is 4.7 which indicate that CYCLIC and PNF both are effective to improve calf flexibility but PNF is more effective than CYCLIC to improve calf flexibility. Conclusion: The neurophysiological basis of PNF, stating that the excitatory efficient of the neuromuscular spindle or the inhibitory afferent of the Golgi tendon organ (GTO or both are responsible for the effects. During PNF stretch and isometric contraction of stretched agonists for extended period may cause activation of its neuromuscular spindle. The increase in tension created during the isometric contraction of the pre – lengthened agonist contracts concentrically. Both the fascia & the spindle of the agonist adjust to the nearly lengthened position. These impulses travel via causing post synaptic inhibition of the motor neuron to agonist increasing the tension from the GTO. These impulses can override the impulses coming from the neuromuscular spindles arousing the muscle to reflexly resist to the change in length, thus helping in lengthening
How to determine local stretching and tension in a flow-stretched DNA molecule
DEFF Research Database (Denmark)
Pedersen, Jonas Nyvold; Marie, Rodolphe; Kristensen, Anders
2016-01-01
We determine the nonuniform stretching of and tension in amega base pairs-long fragment of deoxyribonucleic acid (DNA) that is flow stretched in a nanofluidic chip. We use no markers, do not know the contour length of the DNA, and do not have the full DNA molecule inside our field of view. Instea......-protein interactions, specifically, their tension dependence. Generally, wherever long strands of DNA—e.g., native DNA extracted from human cells or bacteria—must be stretched with ease for inspection, this method applies.......We determine the nonuniform stretching of and tension in amega base pairs-long fragment of deoxyribonucleic acid (DNA) that is flow stretched in a nanofluidic chip. We use no markers, do not know the contour length of the DNA, and do not have the full DNA molecule inside our field of view. Instead......, we analyze the transverse thermal motion of the DNA. Tension at the center of the DNA adds up to 16 pN, giving almost fully stretched DNA. This method was devised for optical mapping of DNA, specifically, DNA denaturation patterns. It may be useful also for other studies, e.g., DNA...
Production (information sheets)
2007-01-01
Documentation sheets: Geo energy 2 Integrated System Approach Petroleum Production (ISAPP) The value of smartness 4 Reservoir permeability estimation from production data 6 Coupled modeling for reservoir application 8 Toward an integrated near-wellbore model 10 TNO conceptual framework for "E&P
Collisionless current sheet equilibria
Neukirch, T.; Wilson, F.; Allanson, O.
2018-01-01
Current sheets are important for the structure and dynamics of many plasma systems. In space and astrophysical plasmas they play a crucial role in activity processes, for example by facilitating the release of magnetic energy via processes such as magnetic reconnection. In this contribution we will focus on collisionless plasma systems. A sensible first step in any investigation of physical processes involving current sheets is to find appropriate equilibrium solutions. The theory of collisionless plasma equilibria is well established, but over the past few years there has been a renewed interest in finding equilibrium distribution functions for collisionless current sheets with particular properties, for example for cases where the current density is parallel to the magnetic field (force-free current sheets). This interest is due to a combination of scientific curiosity and potential applications to space and astrophysical plasmas. In this paper we will give an overview of some of the recent developments, discuss their potential applications and address a number of open questions.
Energy Technology Data Exchange (ETDEWEB)
2015-01-01
Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.
... wear the escape hood and get the expected protection? Respirator Fact Sheet [PDF - 706 KB] Follow NIOSH Facebook Flickr Pinterest Twitter ... PDF, DOC, PPT, MPEG) on this site? Adobe PDF file Microsoft PowerPoint file Microsoft Word ... last updated: June 6, 2014 Content source: National Institute for Occupational Safety and Health Education ...
On the Analytical Solution of Non-Orthogonal Stagnation Point Flow towards a Stretching Sheet
DEFF Research Database (Denmark)
Kimiaeifar, Amin; Bagheri, G. H.; Barari, Amin
2011-01-01
An analytical solution for non-orthogonal stagnation point for the steady flow of a viscous and incompressible fluid is presented. The governing nonlinear partial differential equations for the flow field are reduced to ordinary differential equations by using similarity transformations existed...... in the literature and are solved analytically by means of the Homotopy Analysis Method (HAM). The comparison of results from this paper and those published in the literature confirms the precise accuracy of the HAM. The resulting analytical equation from HAM is valid for entire physical domain and effective...
On the Arrhenius reacting flow over a stretching sheet in the ...
African Journals Online (AJOL)
We present an analysis of the boundary layer flow of a reacting fluid. We show that the problem has a solution. We present an analytical solution for the limiting case of the Frank-Kamenetskii parameter ε . Numerical Results feature preliminary when ε = O(1) . Journal of the Nigerian Association of Mathematical Physics, ...
Flow and Heat Transfer in a Liquid Film over a Permeable Stretching Sheet
Directory of Open Access Journals (Sweden)
R. C. Aziz
2013-01-01
the time-dependent boundary layer equations are reduced to a set of nonlinear ordinary differential equations. The resulting parameter problem and velocity as well as temperature fields are solved using the homotopy analysis method (HAM. Analytic series solutions are given, and numerical results for velocity and the temperature profiles are presented through graphs of different values for pertinent parameter. The effects of unsteadiness parameter and permeability parameter on the velocity and temperature profiles are explored for different values of blowing or suction parameter.
Quantity effect of radial cracks on the cracking propagation behavior and the crack morphology.
Chen, Jingjing; Xu, Jun; Liu, Bohan; Yao, Xuefeng; Li, Yibing
2014-01-01
In this letter, the quantity effect of radial cracks on the cracking propagation behavior as well as the circular crack generation on the impacted glass plate within the sandwiched glass sheets are experimentally investigated via high-speed photography system. Results show that the radial crack velocity on the backing glass layer decreases with the crack number under the same impact conditions during large quantities of repeated experiments. Thus, the "energy conversion factor" is suggested to elucidate the physical relation between the cracking number and the crack propagation speed. Besides, the number of radial crack also takes the determinative effect in the crack morphology of the impacted glass plate. This study may shed lights on understanding the cracking and propagation mechanism in laminated glass structures and provide useful tool to explore the impact information on the cracking debris.
Formulas for Radial Transport in Protoplanetary Disks
Desch, Steven J.; Estrada, Paul R.; Kalyaan, Anusha; Cuzzi, Jeffrey N.
2017-05-01
The quantification of the radial transport of gaseous species and solid particles is important to many applications in protoplanetary disk evolution. An especially important example is determining the location of the water snow lines in a disk, which requires computing the rates of outward radial diffusion of water vapor and the inward radial drift of icy particles; however, the application is generalized to evaporation fronts of all volatiles. We review the relevant formulas using a uniform formalism. This uniform treatment is necessary because the literature currently contains at least six mutually exclusive treatments of radial diffusion of gas, only one of which is correct. We derive the radial diffusion equations from first principles using Fick's law. For completeness, we also present the equations for radial transport of particles. These equations may be applied to studies of diffusion of gases and particles in protoplanetary and other accretion disks.
VanOsdol, John G.
2013-06-25
The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.
Rubella - Fact Sheet for Parents
... this page: About CDC.gov . Redirect for the Rubella fact sheet page. The current fact sheet can ... http://www.cdc.gov/vaccines/parents/diseases/child/rubella.html Print page Share Compartir File Formats Help: ...
Stirling Engine With Radial Flow Heat Exchangers
Vitale, N.; Yarr, George
1993-01-01
Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.
Live Cell Imaging during Mechanical Stretch
Rápalo, Gabriel; Herwig, Josh D.; Hewitt, Robert; Wilhelm, Kristina R.; Waters, Christopher M.; Roan, Esra
2015-01-01
There is currently a significant interest in understanding how cells and tissues respond to mechanical stimuli, but current approaches are limited in their capability for measuring responses in real time in live cells or viable tissue. A protocol was developed with the use of a cell actuator to distend live cells grown on or tissues attached to an elastic substrate while imaging with confocal and atomic force microscopy (AFM). Preliminary studies show that tonic stretching of human bronchial ...
Electron transport in stretched monoatomic gold wires.
Grigoriev, A; Skorodumova, N V; Simak, S I; Wendin, G; Johansson, B; Ahuja, R
2006-12-08
The conductance of monoatomic gold wires containing 3-7 gold atoms has been obtained from ab initio calculations. The transmission is found to vary significantly depending on the wire stretching and the number of incorporated atoms. Such oscillations are determined by the electronic structure of the one-dimensional (1D) part of the wire between the contacts. Our results indicate that the conductivity of 1D wires can be suppressed without breaking the contact.
NASA/MSFC Large Stretch Press Study
Choate, M. W.; Nealson, W. P.; Jay, G. C.; Buss, W. D.
1985-01-01
The purpose of this study was to: A. assess and document the advantages/disadvantages of a government agency investment in a large stretch form press on the order of 5000 tons capacity (per jaw); B. develop a procurement specification for the press; and C. provide trade study data that will permit an optimum site location. Tasks were separated into four major elements: cost study, user survey, site selection, and press design/procurement specification.
Laser treatment of stretch marks: preliminary results
Longo, Leonardo; Piccinetti, A. L.; Monache, G. D.; Botta, G.; Mancini, S.
2000-06-01
The best treatment of these stretch mark is still unknown. Some authors proposed the treatment with flash-lamp-pumped dye laser 585 nm, with fluence over 8 J/cm2. Reviewing our experiences on no-surgical effects of lasers in the various phases of the wound healing, including the re- epithelization, we would like to apply the no-surgical laser therapy treating the stretch marks of breast, abdomen and lumbo-sacral region. The goal is to inhibit the fibrous tissue metabolism, encouraging the destruction of the collagen fibers with inflammatory mechanism, and increasing the reconstitution of the superficial dermis layers. We treated five cases of stretch marks in women 22-35 years old, since May 1999, with a cycle of applications of double lasers, 511 and 577 nm, with energy of 20 Joule for spot, respecting the maximum thermal relaxation times of the skin. We waited two weeks interval between the applications. Results obtained after five applications are very positive, and we are encouraged to continue this experimentation.
Wong, Del P.; Chaouachi, Anis; Lau, Patrick W.C.; Behm, David G.
2011-01-01
This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key points The duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). No significant differences in RSA and COD between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. PMID:24149890
Influence of heat treatment on mechanical property of steel hollow sphere and its sheet construction
Yoshida, Yoshinori; Ozawa, Sho
2017-10-01
Heat treatments, water quenching and annealing, are performed on the metallic hollow spheres (MHS) made from steel with 4.0 mm in outer diameter. They are pierced then put on a piece of tungsten alloy wire for making a MHS thread. The thread is set in between two neighboring warps of the tungsten alloy and the thread is placed in a reticular pattern. The MHS fabric sheet which has plain weave structure is produced by the weaving process. Furthermore, a sandwich construction of the sheet with 2 sheets of aluminum plate. The influence of the heat treatments on difference of mechanical and energy absorption property are evaluated by mean of compression test for the sheet along with the thickness direction. In addition, an aluminum pipe is filled with a heat treated MHS sheet and compression test is performed for the pipe along the radial direction. Its difference of compression load and energy consumption property is investigated.
Bodis, Pavol; Schwartz, Erik; Koepf, Matthieu; Cornelissen, Jeroen J L M; Rowan, Alan E; Nolte, Roeland J M; Woutersen, Sander
2009-09-28
Self-trapping of NH-stretch vibrational excitations in synthetic beta-sheet helices is observed using femtosecond infrared pump-probe spectroscopy. In a dialanine-based beta-sheet helix, the transient-absorption change upon exciting the NH-stretch mode exhibits a negative absorption change at the fundamental frequency and two positive peaks at lower frequencies. These two induced-absorption peaks are characteristic for a state in which the vibrational excitation is self-trapped on essentially a single NH-group in the hydrogen-bonded NH...OC chain, forming a small (Holstein) vibrational polaron. By engineering the structure of the polymer we can disrupt the hydrogen-bonded NH...OC chain, allowing us to eliminate the self-trapping, as is confirmed from the NH-stretch pump-probe response. We also investigate a trialanine-based beta-sheet helix, where each side chain participates in two NH...OC chains with different hydrogen-bond lengths. The chain with short hydrogen bonds shows the same self-trapping behavior as the dialanine-based beta-sheet helix, whereas in the chain with long hydrogen bonds the self-trapping is too weak to be observable.
Nonlinear stretch reflex interaction during cocontraction.
Carter, R R; Crago, P E; Gorman, P H
1993-03-01
1. We investigated the role of stretch reflexes in controlling two antagonist muscles acting at the interphalangeal joint in the normal human thumb. Reflex action was compared when either muscle contracted alone and during cocontraction. 2. The total torque of the flexor pollicis longus (FPL) and extensor pollicis longus (EPL) muscles was measured in response to an externally imposed extension of the interphalangeal joint. The initial joint angle and the amplitude of the extension were constant in all experiments, and the preload of the active muscle(s) was varied. Joint torque was measured at the peak of short-latency stretch reflex action during contraction of the FPL alone, contraction of the EPL alone, and during cocontraction. Incremental joint stiffness was calculated as the change in torque divided by the change in angle. 3. Incremental stiffness increased in proportion to the preload torque during single muscle contractions of either the FPL (lengthening disturbances) or the EPL (shortening disturbances). Thus stiffness was not regulated to a constant value in the face of varying loads for either single muscle stretch or release. 4. Incremental stiffness varied across the range of cocontraction levels while the net torque was maintained at approximately 0. Thus net torque alone did not determine the stiffness during cocontraction. 5. The contributions of each muscle to the net intrinsic torque during cocontraction were estimated by scaling the individual muscles' responses so that their sum gave the best fit (in a least-squares sense) to the cocontraction torque before reflex action. The solution is unique because the individual torques have opposite signs, but the stiffnesses add. This gave estimates of the initial torques of both muscles during cocontraction. 6. The contributions of the two muscles during cocontraction were used to estimate the active joint stiffness that would be expected if the two muscles were activated independently to the same levels
Radial head button holing: a cause of irreducible anterior radial head dislocation
Energy Technology Data Exchange (ETDEWEB)
Shin, Su-Mi; Chai, Jee Won; You, Ja Yeon; Park, Jina [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Bae, Kee Jeong [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Orthopedic Surgery, Seoul (Korea, Republic of)
2016-10-15
''Buttonholing'' of the radial head through the anterior joint capsule is a known cause of irreducible anterior radial head dislocation associated with Monteggia injuries in pediatric patients. To the best of our knowledge, no report has described an injury consisting of buttonholing of the radial head through the annular ligament and a simultaneous radial head fracture in an adolescent. In the present case, the radiographic findings were a radial head fracture with anterior dislocation and lack of the anterior fat pad sign. Magnetic resonance imaging (MRI) clearly demonstrated anterior dislocation of the fractured radial head through the torn annular ligament. The anterior joint capsule and proximal portion of the annular ligament were interposed between the radial head and capitellum, preventing closed reduction of the radial head. Familiarity with this condition and imaging findings will aid clinicians to make a proper diagnosis and fast decision to perform an open reduction. (orig.)
Spontaneous curling of graphene sheets with reconstructed edges.
Shenoy, Vivek B; Reddy, Chilla Damodara; Zhang, Yong-Wei
2010-08-24
Recent microscopy experiments have revealed novel reconstructions of the commonly observed zigzag and armchair edges in graphene. We show that tensile edge stresses at these reconstructed edges lead to large-scale curling of graphene sheets into cylindrical surfaces, in contrast to the warping instabilities predicted for unreconstructed edges. Using atomic-scale simulations and large deformation plate models, we have derived scaling laws for the curvature and strain of the curled sheets in terms of the edge stress, shape, and the bending and stretching moduli. For graphene nanoribbons, we show that tensile edge stress leads to periodic ripples, whose morphologies are distinct from those observed due to thermal fluctuations or thermally generated mismatch strains. Since the electronic properties of graphene can be altered by both curvatures and strain, our work provides a route for potentially fabricating nanoelectronic devices such as sensors or switches that can detect stresses induced by dopants at the edges.
Optical modeling of radial keratotomy incision patterns.
Schwiegerling, J; Greivenkamp, J E; Miller, J M; Snyder, R W; Palmer, M L
1996-12-01
To determine the optical effects of higher-order corneal shape variations resulting from radial keratotomy. Videokeratoscopic height data were obtained postoperatively from several patients who had undergone radial keratotomy. For each of clear central zone sizes 3.00 mm, 4.00 mm, and 4.75 mm, two patients were chosen randomly from the larger study group. Data obtained 2 weeks postoperatively from these six patients were decomposed into the Zernike polynomials, and the low-order expansion terms were removed to disclose corneal height variations (the radial keratotomy artifact). The artifact was applied to a schematic eye model, and exact ray-tracing was used to evaluate visual performance, which was defined as a function of pupil diameter, optical zone (central clear zone) size, and radial keratotomy artifact centration. The radial keratotomy artifact degrades visual performance at midspatial frequencies more than it does at high spatial frequencies. This effect is most pronounced for smaller optical zones and for a pupil diameter of 4 mm. Visual performance remains nearly constant for small decentration (0.5 mm or less) of the radial keratotomy optical zone from the corneal apex. Residual refractive error, corneal asphericity, and the radial keratotomy artifact all affect visual performance after radial keratotomy. Isolated effects of the radial keratotomy artifact degrade visual performance, with the level of degradation dependent on pupil size, optical zone size, and centration of the procedure. More research is necessary to combine the radial keratotomy artifact with changes in corneal asphericity and to further quantify the optical effects of radial keratotomy.
Light Sheet Fluorescence Microscopy
Santi, Peter A.
2011-01-01
Light sheet fluorescence microscopy (LSFM) functions as a non-destructive microtome and microscope that uses a plane of light to optically section and view tissues with subcellular resolution. This method is well suited for imaging deep within transparent tissues or within whole organisms, and because tissues are exposed to only a thin plane of light, specimen photobleaching and phototoxicity are minimized compared to wide-field fluorescence, confocal, or multiphoton microscopy. LSFMs produce well-registered serial sections that are suitable for three-dimensional reconstruction of tissue structures. Because of a lack of a commercial LSFM microscope, numerous versions of light sheet microscopes have been constructed by different investigators. This review describes development of the technology, reviews existing devices, provides details of one LSFM device, and shows examples of images and three-dimensional reconstructions of tissues that were produced by LSFM. PMID:21339178
Biomolecular Science (Fact Sheet)
Energy Technology Data Exchange (ETDEWEB)
2012-04-01
A brief fact sheet about NREL Photobiology and Biomolecular Science. The research goal of NREL's Biomolecular Science is to enable cost-competitive advanced lignocellulosic biofuels production by understanding the science critical for overcoming biomass recalcitrance and developing new product and product intermediate pathways. NREL's Photobiology focuses on understanding the capture of solar energy in photosynthetic systems and its use in converting carbon dioxide and water directly into hydrogen and advanced biofuels.
Energy Technology Data Exchange (ETDEWEB)
NREL
1999-05-01
The U.S. Department of Energy (DOE) is promoting the use of alternative fuels and alternative fuel vehicles (AFVs). The National Renewable Energy Laboratory (NREL) has been directed to conduct projects to evaluate the performance and acceptability of light-duty AFVs. This fact sheet describes the test results on 1998 Honda Civics: one dedicated CNG and a gasoline model as closely matched as possible.
The Relevance of Stretch Intensity and Position: A Systematic Review
Directory of Open Access Journals (Sweden)
Nikos eApostolopoulos
2015-08-01
Full Text Available Stretching exercises to increase the range of motion (ROM of joints have been used by sports coaches and medical professionals for improving performance and rehabilitation. The ability of connective and muscular tissues to change their architecture in response to stretching is important for their proper function, repair and performance. Given the dearth of relevant data in the literature, this review examined two key elements of stretching: stretch intensity and stretch position; and their significance to ROM, delayed onset muscle soreness (DOMS, and inflammation in different populations. A search of three databases, Pub-Med, Google Scholar, and Cochrane Reviews, identified 152 articles, which were subsequently categorized into four groups; athletes (n = 24, clinical (n = 29, elderly (n = 12, and general population (n = 87. The use of different populations facilitated a wider examination of the stretching components and their effects. All 152 articles incorporated information regarding duration, frequency and stretch position, whereas only 79 referred to the intensity of stretching and 22 of these 79 studies were deemed high quality. It appears that the intensity of stretching is relatively under-researched, and the importance of body position and its influence on stretch intensity, is largely unknown. In conclusion, this review has highlighted areas for future research, including stretch intensity and position and their effect on musculo-tendinous tissue, in relation to the sensation of pain, delayed onset muscle soreness, inflammation, as well as muscle health and performance
Habituation and conditioning of the human long latency stretch reflex.
Rothwell, J C; Day, B L; Berardelli, A; Marsden, C D
1986-01-01
The effects of stretch repetition rate, prior warning stimuli and self administered stretch were examined on the size of the short and long latency components of the stretch reflex electromyographic EMG response in flexor pollicis longus and the flexor muscles of the wrist and fingers. Stretches of constant velocity and extent were given every 10 s, 5 s, 2 s, or 1 s to either the wrist or thumb during a small background contraction of the flexor muscles. The size of the long latency component of the stretch reflex (measured as the area under the averaged rectified EMG responses) declined dramatically at faster repetition rates, especially in the wrist and finger flexors. The size of the short latency component was relatively unaffected. The size of the electrically elicited H-reflex in forearm muscles also failed to habituate under the same conditions. If each individual trial of a series was examined, the long latency component of the stretch reflex EMG could be seen to decrease in size over the first three to six stretches if stretches were given every 1 s, but not if stretches were given every 10 s. When stretches were given every 5 s to either wrist or thumb, an electrical stimulus applied to the digital nerves of the opposite hand 1 s before stretch reduced the size of the long latency component of the reflex EMG response. The short latency component was unaffected.(ABSTRACT TRUNCATED AT 250 WORDS)
Effects of cervical self-stretching on slow vital capacity.
Han, Dongwook; Yoon, Nayoon; Jeong, Yeongran; Ha, Misook; Nam, Kunwoo
2015-07-01
[Purpose] This study investigated the effects of self-stretching of cervical muscles, because the accessory inspiratory muscle is considered to improve pulmonary function. [Subjects] The subjects were 30 healthy university students 19-21 years old who did not have any lung disease, respiratory dysfunction, cervical injury, or any problems upon cervical stretching. [Methods] Spirometry was used as a pulmonary function test to measure the slow vital capacity before and after stretching. The slow vital capacity of the experimental group was measured before and after cervical self-stretching. Meanwhile, the slow vital capacity of the control group, which did not perform stretching, was also measured before and after the intervention. [Results] The expiratory vital capacity, inspiratory reserve volume, and expiratory reserve volume of the experimental group increased significantly after the cervical self-stretching. [Conclusion] Self-stretching of the cervical muscle (i.e., the inspiratory accessory muscle) improves slow vital capacity.
Concepts of radial and angular kinetic energies
DEFF Research Database (Denmark)
Dahl, Jens Peder; Schleich, W.P.
2002-01-01
We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...
National Research Council Canada - National Science Library
Ren, Yanhong; Zhan, Qingyuan; Hu, Qinghua; Sun, Bing; Yang, Chun; Wang, Chen
2009-01-01
Background: Static stretch is frequently observed in the lung. Both static stretch and cyclic stretch can induce cell death and Na /K -ATPase trafficking, but stretch-induced alveolar epithelial cell (AEC...
The role of radial nodes of atomic orbitals for chemical bonding and the periodic table.
Kaupp, Martin
2007-01-15
The role of radial nodes, or of their absence, in valence orbitals for chemical bonding and periodic trends is discussed from a unified viewpoint. In particular, we emphasize the special role of the absence of a radial node whenever a shell with angular quantum number l is occupied for the first time (lack of "primogenic repulsion"), as with the 1s, 2p, 3d, and 4f shells. Although the consequences of the very compact 2p shell (e.g. good isovalent hybridization, multiple bonding, high electronegativity, lone-pair repulsion, octet rule) are relatively well known, it seems that some of the aspects of the very compact 3d shell in transition-metal chemistry are less well appreciated, e.g., the often weakened and stretched bonds at equilibrium structure, the frequently colored complexes, and the importance of nondynamical electron-correlation effects in bonding. Copyright (c) 2006 Wiley Periodicals, Inc.
Secondary structure of double-stranded DNA under stretching: Elucidation of the stretched form
Maaloum, M.; Beker, A.-F.; Muller, P.
2011-03-01
Almost two decades ago, measurements of force versus extension on isolated double-stranded DNA molecules revealed a force plateau. This unusual stretching phenomenon in DNA suggests that the long molecules may be extended from the usual B form into a new conformation. Different models have been proposed to describe the nature of DNA in its stretched form, S-DNA. Using atomic force microscopy combined with a molecular combing method, we identified the structure of λ-phage DNA for different stretching values. We provide strong evidence for the existence of a first-order transition between B form and S form. Beyond a certain extension of the natural length, DNA molecules adopt a new double-helix conformation characterized by a diameter of 1.2 nm and a helical pitch of 18 nm.
Directory of Open Access Journals (Sweden)
Del P. Wong
2011-06-01
Full Text Available This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA and change of direction (COD. Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s. Three dynamic stretching exercises of 30 s duration were then performed (90 s total. Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p < 0.001. However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (< 90 s static stretching may not have provided sufficient stimulus to elicit performance impairments
Haruta, Masayuki; Mukouyama, Yukinobu; Tabota, Norimi; Ito, Katsuya; Nonomura, Chisato
Heat shrinkable film made of stretched film is widely used for decorative labels by attaching on PET bottles with heat shrinkage by steam or dry heating. Trouble cancellation in the installation process of the PET bottle is necessary. The purpose of this study is development of uniaxially heat shrinkable co-polyester film that has strength both in the machine direction (MD) and transverse direction (TD). The film production was performed using sequential biaxial stretched process that combined roll stretching with TD stretching. Cast film was processed in the order of TD stretching-Anneal 1-MD stretching-Anneal 2. As a result, the heat shrinkable film that shrunk only in MD got high tensile strength both in MD and TD. The anneal 1 temperature over Tg (Glass transition temperature) of material resin was needed to obtain the heat shrinkable film shrunk in MD after TD stretching.
To Stretch and Search for Better Ways
Moore, John W.
2000-06-01
There's a lot to do to get each issue of this Journal ready for publication, and there's a lot that can go awry during that process. We the editorial staff do our utmost to make certain that each issue is the best it can possibly be, but, of necessity, a lot of our effort is focused on solving problems, correcting errors, and avoiding pitfalls. It is not surprising that we sometimes lose sight of the bigger picture--all of the things that came out as well as or better than we hoped they would. Therefore it gives us great pleasure when a reader applauds (and thereby rewards) our efforts. One such communication inspired this editorial. I have appreciated the extra effort put forward by the staff to make the Journal really come alive. The high quality of the Journal serves as an incentive to chemical educators to stretch and search for better ways to inspire our students. I fervently hope that we do encourage you "to stretch and search for better ways", not only to inspire students but in everything you do. Stretching and searching for better ways is what life, science, chemistry, and teaching are all about, and it is a wonderfully stimulating and exciting way to approach anything and everything. Sometimes, though, one's ability to stretch is akin to that of a rubber band exposed too long to sunlight. Change becomes a threat or a burden instead of an opportunity. This often happens in one area but not others, as in the case of someone doing original research but whose lecture notes are yellow with age, or someone who experiments with new teaching approaches but neglects the latest chemical discoveries. Whatever its manifestation, failure to stretch and search for better ways is a great loss, both for the individual directly involved and for others. Fortunately there are many who continually stretch and search, often in conjunction with JCE. For example, some time ago the Chair of the Board of Publication, Jerry Bell, challenged Journal readers to become Journal
Hallock, Ashley K.; Polzin, Kurt A.; Bonds, Kevin W.; Emsellem, Gregory D.
2011-01-01
Results are presented demonstrating the e ect of inductive coil geometry and current sheet trajectory on the exhaust velocity of propellant in conical theta pinch pulsed induc- tive plasma accelerators. The electromagnetic coupling between the inductive coil of the accelerator and a plasma current sheet is simulated, substituting a conical copper frustum for the plasma. The variation of system inductance as a function of plasma position is obtained by displacing the simulated current sheet from the coil while measuring the total inductance of the coil. Four coils of differing geometries were employed, and the total inductance of each coil was measured as a function of the axial displacement of two sep- arate copper frusta both having the same cone angle and length as the coil but with one compressed to a smaller size relative to the coil. The measured relationship between total coil inductance and current sheet position closes a dynamical circuit model that is used to calculate the resulting current sheet velocity for various coil and current sheet con gura- tions. The results of this model, which neglects the pinching contribution to thrust, radial propellant con nement, and plume divergence, indicate that in a conical theta pinch ge- ometry current sheet pinching is detrimental to thruster performance, reducing the kinetic energy of the exhausting propellant by up to 50% (at the upper bound for the parameter range of the study). The decrease in exhaust velocity was larger for coils and simulated current sheets of smaller half cone angles. An upper bound for the pinching contribution to thrust is estimated for typical operating parameters. Measurements of coil inductance for three di erent current sheet pinching conditions are used to estimate the magnetic pressure as a function of current sheet radial compression. The gas-dynamic contribution to axial acceleration is also estimated and shown to not compensate for the decrease in axial electromagnetic acceleration
How does static stretching influence the tendons mechanical response?
Rossetto, Nathalia Polisello; Fabbro, Inácio Maria Dal; Piedade, Sérgio Rocha
2013-01-01
Analyze in vitro the mechanical response of bovine calcaneus tendons subjected to static stretching in three different intervals (15, 30, 45 s). Six groups of bovine calcaneus tendons (n=10) were formed according to the static stretching protocol: three different intervals (15, 30, 45 s) and initial stretching percentage (2.5% and 3.5%). The control group (n=10) did not perform prior stretching. At the end of the stretching tests, the specimens were subjected to stress rupture tests. The values for force relaxation presented stability after the 30(th) second (p<0.0001) at both levels of deformation. Greater force relaxation (p<0.0026) and the least tensile strength (p=0.0123) was observed in the group that was subjected to the highest stretch percentage (3.5%). No difference was observed between the rupture parameters of the stretch and control groups. The variables, stretch duration and percentage did not demonstrate interaction. In relation to force relaxation, the 30 second interval seems to be the most effective when stretching tendons. This fact should be considered when establishing new clinical stretching protocols. Laboratory investigation.
Dynamics of Knot Relaxation in Stretched DNA
Klotz, Alexander; Narsimhan, Vivek; Soh, Beatrice; Doyle, Patrick
Knots occur naturally in biological DNA and have been shown to be relevant for next-generation sequencing applications. Knots and other topological constraints in bulk polymer systems have been shown to influence the overall dynamical behavior of aggregate materials, but it is an open question as to the role that individual knots play in polymer dynamics. Here, we investigated the dynamics of polymer knot relaxation by stretching knotted DNA with an extensional field in a microfluidic device and allowing it to relax to its coiled state, measuring the growth rate of the knot using fluorescence microscopy. We find that knots swell during relaxation with a timescale comparable to that of the end-to-end relaxation. The knot growth timescale in insensitive to differences in the perceived topological complexity of the knot and increases with polymer chain length with the same scaling as the end-to-end relaxation timescale. These findings suggest that the timescale governing the swelling of knots in initially stretched chains is subject to global rather than local polymer dynamics. NSF, SMART, NSERC.
Kay, Anthony D; Blazevich, Anthony J
2010-03-01
The effects of concentric contractions and passive stretching on musculotendinous stiffness and muscle activity were studied in 18 healthy human volunteers. Passive and concentric plantar flexor joint moment data were recorded on an isokinetic dynamometer with simultaneous electromyogram (EMG) monitoring of the triceps surae, real-time motion analysis of the lower leg, and ultrasound imaging of the Achilles-medial gastrocnemius muscle-tendon junction. The subjects then performed six 8-s ramped maximal voluntary concentric contractions before repeating both the passive and concentric trials. Concentric moment was significantly reduced (6.6%; P static plantar flexor stretches before being retested 2 and 30 min poststretch. A further reduction in concentric joint moment (5.8%; P activity or Achilles tendon stiffness, but a significant increase in muscle operating length and decrease in tendon length was apparent at this range of motion (P stretching, muscle activity significantly recovered to pre-maximal voluntary concentric contractions levels, whereas concentric moment and Achilles tendon stiffness remained depressed. These data show that the performance of maximal concentric contractions can substantially reduce neuromuscular activity and muscle force, but this does not prevent a further stretch-induced loss in active plantar flexor joint moment. Importantly, the different temporal changes in EMG and concentric joint moment indicate that a muscle-based mechanism was likely responsible for the force losses poststretch.
Spectral distortion in a radially inhomogeneous cosmology
Caldwell, R. R.; Maksimova, N. A.
2013-11-01
The spectral distortion of the cosmic microwave background blackbody spectrum in a radially inhomogeneous space-time, designed to exactly reproduce a ΛCDM expansion history along the past light cone, is shown to exceed the upper bound established by COBE-FIRAS by a factor of approximately 3700. This simple observational test helps uncover a slew of pathological features that lie hidden inside the past light cone, including a radially contracting phase at decoupling and, if followed to its logical extreme, a naked singularity at the radially inhomogeneous big bang.
Scintillating Lustre Induced by Radial Fins
Directory of Open Access Journals (Sweden)
Kohske Takahashi
2012-02-01
Full Text Available Radial lines of Ehrenstein patterns induce illusory scintillating lustre in gray disks inserted into the central gaps (scintillating-lustre effect. We report a novel variant of this illusion by replacing the radial lines with white and black radial fins. Both white and gray disks inserted into the central gaps were perceived as scintillating, if the ratio of the black/white fin width were balanced (ie, close to 1.0. Thus, the grayness of the central disk is not a prerequisite for the scintillation. However, the scintillation was drastically reduced when the ratio was imbalanced. Furthermore, the optimal ratio depended on the color of the center disks.
Larour, P.; Freudenthaler, J.; Weissböck, T.
2017-09-01
This contribution deals with the use of maximum thinning and reduction of sample cross section area at fracture after tensile testing and applications for industrial flat sheet steels. Although included in all usual tensile testing standards, this mechanical property (“Z-value”) has long been neglected for flat sheet materials. It happens however to include some most valuable information on local ductility at fracture of sheet steels. This is increasingly needed for a more suitable description and ranking of newly developed advanced high strength sheet steels with regard to local ductility (stretch-flangeability, bendability, crash-ability) versus global ductility (deep-drawability). It is shown in this investigation that the ISO16630 punched and milled hole expansion ratio correlates linearly with the relative thickness reduction at fracture. A classification of cold rolled AHSS-UHSS sheet steels is attempted by plotting the relative thickness & area reduction at fracture vs. uniform and fracture elongation.
Marques, Isabela Alves; Silva, Maristella Borges; Silva, Andrei Nakagawa; Luiz, Luiza Maire David; Soares, Alcimar Barbosa; Naves, Eduardo Lázaro Martins
2017-10-02
The most commonly used method for the clinical evaluation of spasticity is the modified Ashworth scale (MAS), which is subjective. In this regard, the spasticity assessment through the tonic stretch reflex threshold, which is an objective method, has emerged as an alternative. It is based on the value of the dynamic stretch reflex threshold, which is measured at different stretch velocities. However, by this definition, it is not possible to define the speed at which passive stretches should be performed during evaluation. This study aimed to evaluate whether the speed-variation sequence used to acquire the dynamic stretch reflex threshold influences the tonic stretch reflex threshold (TSRT) and, consequently, the estimation of spasticity by this method. Three forms of stretching-variation speed were adopted, i.e., increasing, decreasing, and randomised. The study was performed using 10 post-stroke patients. The results showed that the stretch protocols were not all the same and that the method of increasing was most suitable for performing manual passive stretches to evaluate TSRT in these patients. Another analysis was the correlation between MAS and tonic stretch reflex threshold; a weak correlation was observed between the increasing and decreasing methods, and moderate correlation was observed between the random methods. Implications for Rehabilitation We demonstrated that the protocol of execution of passive stretches influences in the measurement of the tonic stretch reflex threshold (TSRT). We recommend the method of increasing velocity for performing manual passive stretches. We also build software with a reliable biological data acquisition system, which makes acquisition and processing of data in real time. In this way, the TSRT is a promising quantitative measure to assess post-stroke spasticity, calculated automatically. We also we provided the use of portable instruments to facilitate the assessment of spasticity in clinical practice.
Effects of stretching the scalene muscles on slow vital capacity.
Lee, Juncheol; Hwang, Sehee; Han, Seungim; Han, Dongwook
2016-06-01
[Purpose] The purpose of this study was to examine whether stretching of the scalene muscles would improve slow vital capacity (SVC). [Subjects and Methods] The subjects of this study were 20 healthy female students to whom the study's methods and purpose were explained and their agreement for participation was obtained. The SVC was measured using spirometry (Pony FX, COSMED Inc., Italy). The intervention used was stretching of the scalene muscles. Stretching was carried out for 15 min, 10 times at per each portion of scalene muscles: the anterior, middle, and posterior parts. [Results] Expiratory vital capacity (EVC) and tidal volume (Vt) noticeably increased after stretching. However, there were no changes in any of the SVC items in the control group. [Conclusion] This study demonstrated that stretching of the scalene muscles can effectively improve SVC. In particular, we confirmed that stretching of the scalene muscles was effective in increasing EVC and Vt, which are items of SVC.
The effectiveness of passive stretching in children with cerebral palsy.
Pin, Tamis; Dyke, Paula; Chan, Michael
2006-10-01
Passive stretching is widely used for individuals with spasticity in a belief that tightness or contracture of soft tissues can be corrected and lengthened. Evidence for the efficacy of passive stretching on individuals with spasticity is limited. The aim of this review was to evaluate the evidence on the effectiveness of passive stretching in children with spastic cerebral palsy. Seven studies were selected according to the selection criteria and scored against the Physiotherapy Evidence Database scale. Effect size and 95% confidence intervals were calculated for comparison. There was limited evidence that manual stretching can increase range of movements, reduce spasticity, or improve walking efficiency in children with spasticity. It appeared that sustained stretching of longer duration was preferable to improve range of movements and to reduce spasticity of muscles around the targeted joints. Methods of passive stretching were varied. Further research is required given the present lack of knowledge about treatment outcomes and the wide use of this treatment modality.
Radial Equilibrium of Extended Object in a Circular Orbit
Directory of Open Access Journals (Sweden)
V. V. Korovin
2016-01-01
Full Text Available Over the past decades the problems in mechanics of orbital motion and equilibrium of extended objects draw attention of domestic and foreign experts because of their interest in such projects as the space tether systems and space elevators.The article deals with the nonlinear equations of equilibrium one-dimensional objects in a central gravitational field in a circular orbit. It considers transition from the material point to the objects in the form of dumbbells, a homogeneous rod, and a type of garland. It is shown that the motion of the mass center of these objects is non-Keplerian. In some cases the analytical expressions of the angular velocity of the center of mass are obtained.A point of the object extended in the radial direction, called the orbital center, has a Keplerian angular velocity. The orbital center is characterized by a zero gravity and a maximum of the tension force. The orbital center is always below the center of mass.The gravitation-centrifugal forces provide stretching the extended object in orbit. The analytic expressions for the tension force in typical cases have been received, and their properties have been analyzed. The article shows the nature and acceleration value in the sections of the radially extended objects of acceleration that is determined by difference between gravitational and centrifugal forces.The article offers to consider a gravitation-centrifugal load, which acts on the extended object, as the self-balanced system of forces of the apparent weight with the variable apparent acceleration along a radius. This gives a simple general formula for determining the tensile force in the cross sections of the radially oriented one-dimensional objects.The calculation of the simplest space elevator has been fulfilled. Provided that there is a lack of compressive stresses, have been determined the minimum length of an elevator as a homogeneous rod, distribution of the tensile force by length, and requirements for
Proprioceptive neuromuscular facilitation stretching : mechanisms and clinical implications.
Sharman, Melanie J; Cresswell, Andrew G; Riek, Stephan
2006-01-01
Proprioceptive neuromuscular facilitation (PNF) stretching techniques are commonly used in the athletic and clinical environments to enhance both active and passive range of motion (ROM) with a view to optimising motor performance and rehabilitation. PNF stretching is positioned in the literature as the most effective stretching technique when the aim is to increase ROM, particularly in respect to short-term changes in ROM. With due consideration of the heterogeneity across the applied PNF stretching research, a summary of the findings suggests that an 'active' PNF stretching technique achieves the greatest gains in ROM, e.g. utilising a shortening contraction of the opposing muscle to place the target muscle on stretch, followed by a static contraction of the target muscle. The inclusion of a shortening contraction of the opposing muscle appears to have the greatest impact on enhancing ROM. When including a static contraction of the target muscle, this needs to be held for approximately 3 seconds at no more than 20% of a maximum voluntary contraction. The greatest changes in ROM generally occur after the first repetition and in order to achieve more lasting changes in ROM, PNF stretching needs to be performed once or twice per week. The superior changes in ROM that PNF stretching often produces compared with other stretching techniques has traditionally been attributed to autogenic and/or reciprocal inhibition, although the literature does not support this hypothesis. Instead, and in the absence of a biomechanical explanation, the contemporary view proposes that PNF stretching influences the point at which stretch is perceived or tolerated. The mechanism(s) underpinning the change in stretch perception or tolerance are not known, although pain modulation has been suggested.
FIBROBLAST CYTOSKELETAL REMODELING INDUCED BY TISSUE STRETCH INVOLVES ATP SIGNALING
Langevin, HM; Fujita, T.; Bouffard, NA; Takano, T; Koptiuch, C; Badger, GJ; Nedergaard, M
2013-01-01
Fibroblasts in whole areolar connective tissue respond to static stretching of the tissue by expanding and remodeling their cytoskeleton within minutes both ex vivo and in vivo. This study tested the hypothesis that the mechanism of fibroblast expansion in response to tissue stretch involves extracellular ATP signaling. In response to tissue stretch ex vivo, ATP levels in the bath solution increased significantly, and this increase was sustained for 20 minutes, returning to baseline at 60 min...
Effects of three different stretching techniques on vertical jumping performance.
Kirmizigil, Berkiye; Ozcaldiran, Bahtiyar; Colakoglu, Muzaffer
2014-05-01
The aim of this study was to evaluate 3 different flexibility techniques: (a) ballistic stretching (BS), (b) proprioceptive neuromuscular facilitation stretching (PNF) + BS, and (c) PNF + static stretching (SS) on vertical jump (VJ) performance and to determine the most appropriate stretching method during warm-up period before explosive force disciplines. One hundred voluntary male athletes participated in this study. All subjects performed aerobic warm-up (5-minute jog) followed by BS (5 seconds for each stretching exercise), PNF + BS (PNF performed followed by 5 seconds of BS), and PNF + SS (PNF performed followed by 30 seconds of SS) treatment protocol, respectively in the same day. Each stretching treatment was applied for 4 sets bilaterally. In all stretching treatments, lumbar extensor, gluteus maximus, and hamstring muscles were stretched with a single stretching exercise. After a 2-minute brief rest period, participants performed 3 trials of VJ test followed by one of the treatment protocols. Vertical jump performance was evaluated by countermovement jump (CMJ). Participants were divided into 3 groups according to their flexibility and prejump performances after warm-up. For each individual group and the whole group, after all treatments, differences in CMJ values were obtained (p ≤ 0.05). Ballistic stretching increased the VJ performance in the groups with low and average flexibility, poor prejumping performance, and also in the whole group (p ≤ 0.05). Proprioceptive neuromuscular facilitation stretching + BS affected VJ performance in the group of participants with high flexibility (p ≤ 0.05). Proprioceptive neuromuscular facilitation + SS decreased VJ performance in groups of participants with high flexibility, moderate, and high prejumping performance and in whole group (p ≤ 0.05). Ballistic stretching method increased VJ height, therefore seems to be more suitable than PNF + SS and PNF + BS before events that rely on explosive power as a part
Radial pseudoaneurysm following diagnostic coronary angiography
Directory of Open Access Journals (Sweden)
Shankar Laudari
2015-06-01
Full Text Available The radial artery access has gained popularity as a method of diagnostic coronary catheterization compared to femoral artery puncture in terms of vascular complications and early ambulation. However, very rare complication like radial artery pseudoaneurysm may occur following cardiac catheterization which may give rise to serious consequences. Here, we report a patient with radial pseudoaneurysm following diagnostic coronary angiography. Adequate and correct methodology of compression of radial artery following puncture for maintaining hemostasis is the key to prevention.DOI: http://dx.doi.org/10.3126/jcmsn.v10i3.12776 Journal of College of Medical Sciences-Nepal, 2014, Vol-10, No-3, 48-50
Aberrant Radial Artery Causing Carpal Tunnel Syndrome
Directory of Open Access Journals (Sweden)
Zinon T. Kokkalis
2016-07-01
Full Text Available Anatomical vascular variations are rare causes of carpal tunnel syndrome. An aberrant medial artery is the most common vascular variation, while an aberrant radial artery causing carpal tunnel syndrome is even more rare, with an incidence ranging less than 3%. This article reports a patient with compression of the median nerve at the carpal tunnel by an aberrant superficial branch of the radial artery. An 80- year- old man presented with a 5-year history of right hand carpal tunnel syndrome; Tinel sign, Phalen test and neurophysiological studies were positive. Open carpal tunnel release showed an aberrant superficial branch of the radial artery with its accompanying veins running from radially to medially, almost parallel to the median nerve, ending at the superficial palmar arterial arch. The median nerve was decompressed without ligating the aberrant artery. At the last follow-up, 2 years after diagnosis and treatment the patient is asymptomatic.
Aberrant Radial Artery Causing Carpal Tunnel Syndrome.
Kokkalis, Zinon T; Tolis, Konstantinos E; Megaloikonomos, Panayiotis D; Panagopoulos, Georgios N; Igoumenou, Vasilios G; Mavrogenis, Andreas F
2016-06-01
Anatomical vascular variations are rare causes of carpal tunnel syndrome. An aberrant medial artery is the most common vascular variation, while an aberrant radial artery causing carpal tunnel syndrome is even more rare, with an incidence ranging less than 3%. This article reports a patient with compression of the median nerve at the carpal tunnel by an aberrant superficial branch of the radial artery. An 80- year- old man presented with a 5-year history of right hand carpal tunnel syndrome; Tinel sign, Phalen test and neurophysiological studies were positive. Open carpal tunnel release showed an aberrant superficial branch of the radial artery with its accompanying veins running from radially to medially, almost parallel to the median nerve, ending at the superficial palmar arterial arch. The median nerve was decompressed without ligating the aberrant artery. At the last follow-up, 2 years after diagnosis and treatment the patient is asymptomatic.
One-year treatment follow-up of plantar fasciitis: radial shockwaves vs. conventional physiotherapy
Directory of Open Access Journals (Sweden)
Marcus Vinicius Grecco
2013-01-01
Full Text Available OBJECTIVE: To compare radial shockwave treatment with conventional physiotherapy for plantar fasciitis after 12 months of follow-up. METHOD: This was a randomized, prospective, comparative clinical study. Forty patients with a diagnosis of plantar fasciitis were divided randomly into two treatment groups: group 1, with 20 patients who underwent ten physiotherapy sessions comprising ultrasound, kinesiotherapy and guidance for home-based stretching; and group 2, with 20 patients who underwent three applications of radial shockwaves, once a week, and guidance for home-based stretching. All patients were assessed regarding pain and functional abilities before treatment, immediately after and 12 months after treatment. The mean age was 49.6 ±11.8 years (range: 25-68 years, 85% were female, 88% were overweight, 63% were affected bilaterally, and 83% used analgesics regularly. RESULTS: At the 12-month follow-up, both treatments were effective for improving pain and functional ability among the patients with plantar fasciitis. The improvement with shockwaves was faster. CONCLUSION: Shockwave treatment was not more effective than conventional physiotherapy treatment 12 months after the end of the treatment.
Comparison of radial shockwaves and conventional physiotherapy for treating plantar fasciitis
Directory of Open Access Journals (Sweden)
Júlia Maria D'Andréa Greve
2009-02-01
Full Text Available OBJECTIVE: To compare radial shockwave treatment and conventional physiotherapy for plantar fasciitis. MATERIALS AND METHODS: Thirty-two patients with plantar fasciitis were included in this study. They were randomly divided into two groups. Group 1 was composed of 16 patients who underwent 10 physiotherapy sessions each, consisting of ultrasound, kinesiotherapy and instruction for stretching exercises at home. Group 2 was composed of 16 patients who underwent three applications of radial shockwaves (once a week and received instruction for stretching exercises at home. Pain and ability to function were evaluated before treatment, immediately afterwards, and three months later. The mean age of the patients was 47.3 ± 10.3 years (range 25-68; 81% were female, 87% were overweight, 56% had bilateral impairment, and 75% used analgesics regularly. RESULTS: Both treatments were effective for pain reduction and for improving the functional abilities of patients with plantar fasciitis. The effect of the shockwaves was apparent sooner than physiotherapy after the onset of treatment. CONCLUSION: Shockwave treatment was no more effective than conventional physiotherapy treatment when evaluated three months after the end of treatment.
One-year treatment follow-up of plantar fasciitis: radial shockwaves vs. conventional physiotherapy
Grecco, Marcus Vinicius; Brech, Guilherme Carlos; Greve, Júlia Maria D'Andrea
2013-01-01
OBJECTIVE: To compare radial shockwave treatment with conventional physiotherapy for plantar fasciitis after 12 months of follow-up. METHOD: This was a randomized, prospective, comparative clinical study. Forty patients with a diagnosis of plantar fasciitis were divided randomly into two treatment groups: group 1, with 20 patients who underwent ten physiotherapy sessions comprising ultrasound, kinesiotherapy and guidance for home-based stretching; and group 2, with 20 patients who underwent three applications of radial shockwaves, once a week, and guidance for home-based stretching. All patients were assessed regarding pain and functional abilities before treatment, immediately after and 12 months after treatment. The mean age was 49.6±11.8 years (range: 25-68 years), 85% were female, 88% were overweight, 63% were affected bilaterally, and 83% used analgesics regularly. RESULTS: At the 12-month follow-up, both treatments were effective for improving pain and functional ability among the patients with plantar fasciitis. The improvement with shockwaves was faster. CONCLUSION: Shockwave treatment was not more effective than conventional physiotherapy treatment 12 months after the end of the treatment. PMID:24037003
Enhancement of multispectral thermal infrared images - Decorrelation contrast stretching
Gillespie, Alan R.
1992-01-01
Decorrelation contrast stretching is an effective method for displaying information from multispectral thermal infrared (TIR) images. The technique involves transformation of the data to principle components ('decorrelation'), independent contrast 'stretching' of data from the new 'decorrelated' image bands, and retransformation of the stretched data back to the approximate original axes, based on the inverse of the principle component rotation. The enhancement is robust in that colors of the same scene components are similar in enhanced images of similar scenes, or the same scene imaged at different times. Decorrelation contrast stretching is reviewed in the context of other enhancements applied to TIR images.
600 Volt Stretched Lens Array for Solar Electric Propulsion Project
National Aeronautics and Space Administration — ENTECH, Auburn, NASA, and others have recently developed a new space photovoltaic array called the Stretched Lens Array (SLA), offering unprecedented performance...
21 CFR 866.4800 - Radial immunodiffusion plate.
2010-04-01
...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4800 Radial immunodiffusion plate. (a) Identification. A radial immunodiffusion plate for clinical use...
MHD Flow with Hall Current and Ion-Slip Effects due to a Stretching Porous Disk
Directory of Open Access Journals (Sweden)
Faiza M. N. El-Fayez
2013-01-01
Full Text Available A partially ionized fluid is driven by a stretching disk, in the presence of a magnetic field that is strong enough to produce significant hall current and ion-slip effects. The limiting behavior of the flow is studied, as the magnetic field strength grows indefinitely. The flow variables are properly scaled, and uniformly valid asymptotic expansions of the velocity components are obtained. The leading order approximations show sinusoidal behavior that is decaying exponentially, as we move away from the disk surface. The two-term expansions of the radial and azimuthal surface shear stress components, as well as the far field inflow speed, compare well with the corresponding finite difference solutions, even at moderate magnetic fields. The effect of mass transfer (suction or injection through the disk is also considered.
Nanoemulsion Through Stretching-Folding Instability
Ohl, Claus-Dieter; Chan, Chon U.
2009-11-01
A new kind of instability sets in when a oil filament is focused by surrounding water-flow through a thin constriction commonly used in fluid focusing devices. At sufficiently high flow rates the oil filament is forced into harmonic oscillations through interfacial forces. Past the constriction the liquid is suddenly slowed down which leads to rapid shortening of the filament's wavelength. At sufficiently high amplitudes the co-flowing water stream breaks up and pinches off micrometer and sub-micrometer sized droplets in a very repeatable manner, thus producing a water-in-oil emulsion. This pinch off is caused by a stretching and folding instability when the oscillating flow impinges into the quasi stagnant reservoir past the constriction. We will present high-speed movies at up to 300,000 frames per second resolving details of the very fast events. A simple model based on restoring interfacial forces is able to predict the kilohertz oscillation frequency observed.
Development of a stretched-membrane dish
1991-07-01
Solar Kinetics, Inc., successfully designed and constructed the optical element of a 7 m diameter stretched membrane dish as Task 2 of the second phase of a contract directed by Sandia National Laboratories. Earlier work on this project defined the configuration of the optical element and demonstrated the membrane forming process on 1.4- and 3.7 m diameter membranes. In Task 2, the membrane forming process was successfully scaled to 7 m in diameter, and an innovative hub-and-spoke structure optical element was fabricated. The slope error, as measured with Solar Kinetics' laser-ray-trace system, was within 3.6 mrad of a perfect parabola. Four major technical issues were successfully addressed in this work: (1) The technique of large-scale membrane forming was shown to be predictable, accurate, and repeatable. Three 7 m membranes were formed without any contoured tooling. (2) A tensioned hub-and-spoke structure was demonstrated to be practical to fabricate. This innovative structure, like a bicycle wheel, was shown to be very stiff. Optical effects from ring distortion were not apparent. (3) The use of field-replaceable, unattached polymer reflective membrane was demonstrated. This approach allows for the practical field replacement of the reflective membrane when it has degraded due to weathering. (4) A technique was developed and demonstrated to ship the formed membranes from the factory to the dish-installation site. This allows the critical forming of the membrane to be performed in a controlled factory environment, and the membrane then to be shipped using standard dimension shipping containers. This development further reduces manufacturing and installation costs of the completed dish. This effort indicates that the stretch membrane dish concept is a promising approach for solar concentration. The prototype optical element is a significant step in the development of the complete, full-sized dish.
Directory of Open Access Journals (Sweden)
Meena .V
2016-10-01
Full Text Available Background: Osteoarthritis (OA is a degenerative joint disease and one of the major public health problem that causesfunctional impairment and reduced quality of life. To compare the effectiveness of PNF Hold relax stretching versus Static stretching on pain and flexibility of hamstring following moist heat in individuals with knee osteoarthritis. Hamstring tightness is the major problem in knee osteoarthritis individuals. Therefore the need of study is comparing the effectiveness of PNF Hold relax stretching versus static stretching on pain and flexibility of hamstrings following moist heat in knee osteoarthritis participants. Determining the effects of PNF Hold relax stretching versus Static stretching along with moist heat on pain and hamstring flexibility by VAS and Active knee extension range of motion in knee osteoarthritis individuals. Methods: 30 subjects with symptoms of knee osteoarthritis were randomly distributed into 2 groups 15 in each group. PNF Hold relax stretching along with moist heat is compared to Static stretching along with moist heat. Pain was measured by Visual Analogue Scale (VAS and hamstring flexibility by Active knee Extension Range of Motion (AKEROM by universal goniometer. Measurements are taken pre and post intervention. Results: The results indicated PNF Hold relax stretching along with moist heat showed a statistically significant improvement in pain (p<0.05 and improvement in hamstring flexibility (p<0.05 when compared to Static stretching along with moist heat. Conclusion: Subjects with PNF Hold relax stretching along with moist heat showed significant improvement in pain reduction and improving hamstring flexibility than Static stretching along with moist heat.
DEFF Research Database (Denmark)
Balle, S S; Magnusson, S P; McHugh, M P
2015-01-01
The purpose of this study was to determine the acute effects of contract-relax stretching (CRS) vs static stretching (SS) on strength loss and the length-tension relationship. We hypothesized that there would be a greater muscle length-specific effect of CRS vs SS. Isometric hamstring strength...... loss compared with SS. These results support the use of SS for stretching the hamstrings....
Energy Technology Data Exchange (ETDEWEB)
None
2016-02-01
This fact sheet is an overview of the Photovoltaics (PV) subprogram at the U.S. Department of Energy SunShot Initiative. The U.S. Department of Energy (DOE)’s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar PV, which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot supports research and development to aggressively advance PV technology by improving efficiency and reliability and lowering manufacturing costs. SunShot’s PV portfolio spans work from early-stage solar cell research through technology commercialization, including work on materials, processes, and device structure and characterization techniques.
Energy Technology Data Exchange (ETDEWEB)
None
2016-05-01
This fact sheet is an overview of the systems integration subprogram at the U.S. Department of Energy SunShot Initiative. Soft costs can vary significantly as a result of a fragmented energy marketplace. In the U.S., there are 18,000 jurisdictions and 3,000 utilities with different rules and regulations for how to go solar. The same solar equipment may vary widely in its final installation price due to process and market variations across jurisdictions, creating barriers to rapid industry growth. SunShot supports the development of innovative solutions that enable communities to build their local economies and establish clean energy initiatives that meet their needs, while at the same time creating sustainable solar market conditions.
Stretch not flex: programmable rubber keyboard
Xu, Daniel; Tairych, Andreas; Anderson, Iain A.
2016-01-01
Stretchability is a property that brings versatility and design freedom to human interface devices. We present a soft, flexible and stretchable keyboard made from a dielectric elastomer sensor sheet. Using a multi-frequency capacitance sensing technique based on a transmission line model, we demonstrate how this keyboard can detect touch in two dimensions, programmable to increase the number of keys and into different layouts, all without adding any new wires, connections or modifying the hardware. The method is efficient and scalable for large sensing systems with multiple degrees of freedom.
A Catapult (Slingshot) Current Sheet Relaxation Model for Substorm Triggering
Machida, S.; Miyashita, Y.; Ieda, A.
2010-12-01
Based on the results of our superposed epoch analysis of Geotail data, we have proposed a catapult (slingshot) current sheet relaxation model in which earthward flows are produced in the central plasma sheet (CPS) due to the catapult (slingshot) current sheet relaxation, together with the rapid enhancement of Poynting flux toward the CPS in the lobe around X ~ -15 Re about 4 min before the substrom onset. These earthward flows are characterized by plasma pressure decrease and large amplitude magnetic field fluctuations. When these flows reach X ~ 12Re in the magnetotail, they give significant disturbances to the inner magnetosphere to initiate some instability such as a ballooning instability or other instabilities, and the substorm starts in the inner magnetosphere. The occurrence of the magnetic reconnection is a natural consequence of the initial convective earthward flows, because the relaxation of a highly stretched catapult current sheet produces a very thin current at its tailward edge being surrounded by intense magnetic fields which were formerly the off-equatorial lobe magnetic fields. Recently, Nishimura et al. [2010] reported that the substorm onset begins when faint poleward discrete arcs collide with equatorward quiet arcs. The region of earthward convective flows correlatively moves earthward prior to the onset. Thus, this region of the earthward convective flows seems to correspond to the faint poleward discrete arcs. Interestingly, our statistical analysis shows that the earthward convective flows are not produced by the magnetic reconnection, but they are attributed to the dominance of the earthward JxB force over the tailward pressure associated with the progress of the plasma sheet thinning.
Directory of Open Access Journals (Sweden)
Shamik Bhattacharjee
2016-04-01
Full Text Available Background: Healthy individuals, to ease and accomplish their activities of daily living they need flexible body without any tightness in the muscles, particularly those used for a definite function. Cooling soft tissues in a lengthened position after stretching has been shown to promote more lasting increases in soft tissue length and minimize post stretch muscle soreness. There are less documented studies which compared modified proprioceptive neuromuscular facilitation (PNF stretch over passive manual stretch with cold application commonly after the interventions. Methods: Thirty high school going healthy students were divided into two groups- Group I received Passive Manual stretching (n=15 and Group II received modified PNF stretching (n=15 and both groups received cold application after the interventions for 10 minutes commonly for 5 days. ROM was taken on day 1, day 5 and day 7. Results: After day 7, Group II with Modified PNF stretching along with cold application showed a significant increase in range of motion tested with active knee extension test (AKET. Conclusion: Modified PNF stretching is considered to be the effective intervention in increasing and maintaining ROM in AKET over passive manual stretching with cold applications commonly after the interventions.
Radial artery access for peripheral endovascular procedures.
Kumar, Avnee J; Jones, Lauren E; Kollmeyer, Kenneth R; Feldtman, Robert W; Ferrara, Craig A; Moe, Michelle N; Chen, Julia F; Richmond, Jasmine L; Ahn, Sam S
2017-09-01
The radial artery is often used for coronary angiography, with a demonstrated decrease in local complications and an increase in postoperative mobility of the patient. Data on radial artery access for peripheral endovascular procedures, however, are limited. We describe our experience with radial artery access for diagnostic and endovascular interventions. Between February 2012 and March 2015, there were 95 endovascular procedures performed using radial artery access in 80 unique patients. Demographic and clinical data were recorded. Perioperative, postoperative, and 30-day follow-up data were evaluated retrospectively for major and minor complications. Major adverse events included any immediate hospitalization admission, stroke, hand amputation, bleeding requiring transfusion, hematoma requiring surgery, and death. Minor complications included superficial bleeding and hematoma. The patients (52.6% male, 47.4% female) had a mean age of 72.1 ± 9.4 years. Radial artery access was used for diagnostic purposes in 15.8% of all procedures and for therapeutic intervention, including angioplasty and stenting, in 84.2%. The radial artery was the only access point in 80% of patients and was accessed in conjunction with other sites in 20%. Percutaneous access was achieved in 100% of patients with a 100% technical success rate. Hemostasis after catheterization was achieved by manual compression (22.1%) and TR band (Terumo Medical, Tokyo, Japan; 77.9%). Major adverse events occurred in three cases (3.2%) and were unrelated to radial artery access. Radial artery access site-related complications occurred in three cases (3.2%), all of which were minor hematomas that required no treatment. The risk of radial artery complication was not associated with procedure type, vessels treated, or use of heparin. The incidence of stroke, hand ischemia, and upper extremity limb or finger loss was 0%. Radial artery access for peripheral endovascular procedures appears to be safe and
Methodologies for analysis of patterning in the mouse RPE sheet.
Boatright, Jeffrey H; Dalal, Nupur; Chrenek, Micah A; Gardner, Christopher; Ziesel, Alison; Jiang, Yi; Grossniklaus, Hans E; Nickerson, John M
2015-01-01
Our goal was to optimize procedures for assessing shapes, sizes, and other quantitative metrics of retinal pigment epithelium (RPE) cells and contact- and noncontact-mediated cell-to-cell interactions across a large series of flatmount RPE images. The two principal methodological advances of this study were optimization of a mouse RPE flatmount preparation and refinement of open-access software to rapidly analyze large numbers of flatmount images. Mouse eyes were harvested, and extra-orbital fat and muscles were removed. Eyes were fixed for 10 min, and dissected by puncturing the cornea with a sharp needle or a stab knife. Four radial cuts were made with iridectomy scissors from the puncture to near the optic nerve head. The lens, iris, and the neural retina were removed, leaving the RPE sheet exposed. The dissection and outcomes were monitored and evaluated by video recording. The RPE sheet was imaged under fluorescence confocal microscopy after staining for ZO-1 to identify RPE cell boundaries. Photoshop, Java, Perl, and Matlab scripts, as well as CellProfiler, were used to quantify selected parameters. Data were exported into Excel spreadsheets for further analysis. A simplified dissection procedure afforded a consistent source of images that could be processed by computer. The dissection and flatmounting techniques were illustrated in a video recording. Almost all of the sheet could be routinely imaged, and substantial fractions of the RPE sheet (usually 20-50% of the sheet) could be analyzed. Several common technical problems were noted and workarounds developed. The software-based analysis merged 25 to 36 images into one and adjusted settings to record an image suitable for large-scale identification of cell-to-cell boundaries, and then obtained quantitative descriptors of the shape of each cell, its neighbors, and interactions beyond direct cell-cell contact in the sheet. To validate the software, human- and computer-analyzed results were compared. Whether
Chang, Gerard; Ilyas, Asif M
2018-02-01
Radial nerve palsies are a common complication associated with humeral shaft fractures. The authors propose classifying these injuries into 4 types based on intraoperative findings: type 1 stretch/neuropraxia, type 2 incarcerated, type 3 partial transection, and type 4 complete transection. The initial management of radial nerve palsies associated with closed fractures of the humerus remains a controversial topic, with early exploration reserved for open fractures, fractures that cannot achieve an adequate closed reduction requiring fracture repair, fractures with associated vascular injuries, and polytrauma patients. Outside of these recommendations, expectant observation for spontaneous recovery is recommended. Copyright © 2017 Elsevier Inc. All rights reserved.
The stretch reflex and the contributions of C David Marsden
Directory of Open Access Journals (Sweden)
Kalyan B Bhattacharyya
2017-01-01
Full Text Available The stretch reflex or myotatic reflex refers to the contraction of a muscle in response to its passive stretching by increasing its contractility as long as the stretch is within physiological limits. For ages, it was thought that the stretch reflex was of short latency and it was synonymous with the tendon reflex, subserving the same spinal reflex arc. However, disparities in the status of the two reflexes in certain clinical situations led Marsden and his collaborators to carry out a series of experiments that helped to establish that the two reflexes had different pathways. That the two reflexes are dissociated has been proved by the fact that the stretch reflex and the tendon reflex, elicited by stimulation of the same muscle, have different latencies, that of the stretch reflex being considerably longer. They hypothesized that the stretch reflex had a transcortical course before it reached the spinal motor neurons for final firing. Additionally, the phenomenon of stimulus-sensitive cortical myoclonus lent further evidence to the presence of the transcortical loop where the EEG correlate preceded the EMG discharge. This concept has been worked out by later neurologists in great detail , and the general consensus is that indeed, the stretch reflex is endowed with a conspicuous transcortical component.
Chaperones in Polyglutamine Aggregation : Beyond the Q-Stretch
Kuiper, E. F. E.; de Mattos, Eduardo P.; Jardim, Laura B.; Kampinga, Harm H.; Bergink, Steven
2017-01-01
Expanded polyglutamine (polyQ) stretches in at least nine unrelated proteins lead to inherited neuronal dysfunction and degeneration. The expansion size in all diseases correlates with age at onset (AO) of disease and with polyQ protein aggregation, indicating that the expanded polyQ stretch is the
Do Stretch Durations Affect Muscle Mechanical and Neurophysiological Properties?
Opplert, J; Genty, J-B; Babault, N
2016-08-01
The aim of the study was to determine whether stretching durations influence acute changes of mechanical and neurophysiological properties of plantar flexor muscles. Plantar flexors of 10 active males were stretched in passive conditions on an isokinetic dynamometer. Different durations of static stretching were tested in 5 randomly ordered experimental trials (1, 2, 3, 4 and 10×30-s). Fascicle stiffness index, evoked contractile properties and spinal excitability (Hmax/Mmax) were examined before (PRE), immediately after (POST0) and 5 min after (POST5) stretching. No stretch duration effect was recorded for any variable. Moreover, whatever the stretching duration, stiffness index, peak twitch torque and rate of force development were significantly lower at POST0 and POST5 as compared to PRE (Pstretch duration, no significant changes of Hmax/Mmax ratio were recorded. In conclusion, 30 s of static stretching to maximum tolerated discomfort is sufficient enough to alter mechanical properties of plantar flexor muscles, but 10×30 s does not significantly affect these properties further. Stretching does not impair spinal excitability. © Georg Thieme Verlag KG Stuttgart · New York.
Vitamin and Mineral Supplement Fact Sheets
... website Submit Search NIH Office of Dietary Supplements Vitamin and Mineral Supplement Fact Sheets Search the list ... Supplements: Background Information Botanical Dietary Supplements: Background Information Vitamin and Mineral Fact Sheets Botanical Supplement Fact Sheets ...
Tissue Dynamics and the Forces the Drive Cell Sheet Morphogenesis
Edwards, Glenn; Hutson, M. Shane; Tokutake, Yoichiro; Chang, Ming-Shien; Venakides, Stephanos; Bloor, James; Kiehart, Daniel
2003-03-01
Dorsal closure is an early stage of fly development when sheets of cells move in a coordinated pattern exhibiting symmetries on the hundred-micron length scale and consequently is ideal for biophysical investigation. We image these patterns by genetically labeling the cytoskeleton with green fluorescent protein, where a visible laser scans the tissue to excite florescence as measured in real time with confocal microscopy. To selectively remove classes of tissue and the forces they produce, we developed a UV-laser microbeam, with subcellular spatial resolution, that can be steered in two-dimensions. By modeling the response to a chosen set of laser incisions, we account for these experimental observations and consequently map the force field. We find that the overall mechanism for dorsal closure is redundant and robust and governed by four processes: two types of contractile mechanisms for force production; reaction force due to stretching of cell sheets; and the intersection of three sheets of tissues that produces a lengthening seam and apparently synchronizes the overall mechanism. Moreover, we are investigating mutant flies that fail to close in a normal way and are beginning to identify the connection between mutations and modified force fields. Identifying the forces that result from the genetic blueprint and how they manifest themselves in tissue dynamics has applications to, for example, developmental biology and wound healing.
Acute Effects of Different Stretching Method on High-Speed Motor Capacities in Soccer Players
Directory of Open Access Journals (Sweden)
Mohammadtaghi Amiri-Khorasani
2013-08-01
Full Text Available The purpose of this study was to examine the effects of different stretching methods during warm-up on the acceleration and speed in soccer players. Therefore, twenty male soccer players (height: 177.25 ± 5.31cm; mass: 65.10 ± 5.62 kg; age: 16.85 ± 0.87 years were tested for acceleration and speed using 10 and 20 meter tests, respectively, after different warm-up protocols consisting of static stretching, dynamic stretching, combined (static + dynamic stretching, and no stretching. There was a significant increase in acceleration and speed time after static stretching versus dynamic stretching and combined stretching, separately, but there were no significant differences between dynamic stretching versus combined and no stretching. We concluded that soccer players probably perform better acceleration and speed after dynamic stretching and could be started with combined stretching; they can adapt their body with this stretching condition to perform better performances.
Acute effect of different stretching methods on isometric muscle strength
Directory of Open Access Journals (Sweden)
Gabriel Vasconcellos de Lima Costa e Silva
2014-03-01
This study investigated the acute effect of static stretching methods (SS and proprioceptive neuromuscular facilitation (PNF on the static muscle strength (SMS. Eleven young male subjects with strength training experience, performed 3 tests with a 48h interval between them, randomly selected, where each one subject carried out all procedures: a hand grip without stretching; b hand grip preceded by static stretching of wrist flexors muscles; c hand grip preceded by PNF stretching of wrist flexors muscles. The Shapiro-Wilk test verified the normality of data, and a one-way ANOVA with repeated measures, followed by Tukey’s post hoc test, evaluated the differences between the groups. The significance was set at p 0.05. In conclusion, both stretching methods had caused negative effects on isometric strength, reducing its levels.
Linear and nonlinear buckling analysis of a locally stretched plate
Energy Technology Data Exchange (ETDEWEB)
Kilardj, Madina; Ikhenzzen, Ghania [University of Sciences and Technology Houari Boumediene (U.S.T.H.B), Bab Ezzouar, Algiers (Algeria); Merssager, Tanguy; Kanit, Toufik [Laboratoire de Mecanique de Lille Universite Lille 1, Cite ScientifiqueVilleneuve d' Ascq cedex (France)
2016-08-15
Uniformly stretched thin plates do not buckle unless they are in special boundary conditions. However, buckling commonly occurs around discontinuities, such as cracks, cuts, narrow slits, holes, and different openings, of such plates. This study aims to show that buckling can also occur in thin plates that contain no defect or singularity when the stretching is local. This specific stability problem is analyzed with the finite element method. A brief literature review on stretched plates is presented. Linear and nonlinear buckling stress analyses are conducted for a partially stretched rectangular plate, and various load cases are considered to investigate the influence of the partial loading expanse on the critical tensile buckling load. Results are summarized in iso-stress areas, tables and graphs. Local stretching on one end of the plate induces buckling in the thin plate even without geometrical imperfection.
Bruxism: Is There an Indication for Muscle-Stretching Exercises?
Gouw, Simone; de Wijer, Anton; Creugers, Nico Hj; Kalaykova, Stanimira I
Bruxism is a common phenomenon involving repetitive activation of the masticatory muscles. Muscle-stretching exercises are a recommended part of several international guidelines for musculoskeletal disorders and may be effective in management of the jaw muscle activity that gives rise to bruxism. However, most studies of muscle-stretching exercises have mainly focused on their influence on performance (eg, range of motion, coordination, and muscle strength) of the limb or trunk muscles of healthy individuals or individuals with sports-related injuries. Very few have investigated stretching of the human masticatory muscles and none muscle-stretching exercises in the management of (sleep) bruxism. This article reviews the literature on muscle-stretching exercises and their potential role in the management of sleep bruxism or its consequences in the musculoskeletal system.
Mechanisms, role of vorticity, and time scales for planar liquid sheet breakup
Zandian, Arash; Sirignano, William; Hussain, Fazle
2016-11-01
The 3D, temporal instabilities on a planar liquid sheet are studied using DNS with level-set and VoF surface tracking methods. λ2 contours relate the vorticity to the surface dynamics. The breakup character depends on the Ohnesorge number (Oh). At high Oh , hairpin vortices form on the braid and overlap with the lobe hairpins, thinning the lobes, which puncture creating holes and bridges. The bridges break, creating ligaments that stretch and break into droplets by capillary action. At low Oh , lobe stretching and thinning is hindered by high surface tension and splitting of the original Kelvin-Helmholtz vortex, preventing early hole formation. Corrugations form on the lobe edges, influenced by the split vortices, and stretch to form ligaments. Both mechanisms are present in a transition region that shifts in Oh values based on the liquid/gas density ratio. Different characteristic times exist for the hole formation and the lobe and ligament stretching, related to surface tension and liquid viscosity, respectively. In the transition region, both times are of the same order. Streamwise vorticity triggers the 3D instabilities. Vorticity stretching and baroclinicity dominate, while the spanwise and cross-flow vorticity tilting are less important early in the breakup.
Teunis, Teun; Thornton, Emily R; Guitton, Thierry G; Vranceanu, Ana-Maria; Ring, David
2016-01-01
Prospective cohort. Elbow stiffness is the most common adverse event after isolated radial head fractures. To assess the effect of coaching on elbow motion during the same office visit in patients with such fractures. We enrolled 49 adult patients with minimally displaced radial head fractures, within 14 days of injury. After diagnosis, we measured demographics, catastrophic thinking, health anxiety, symptoms of depression, upper extremity-specific symptoms and disability, pain, and elbow and wrist motion. The patient was taught to apply an effective stretch in spite of the pain to limit stiffness, and elbow motion was measured again. With the exception of radial deviation and pronation, motion measures improved slightly but significantly on average immediately after coaching. Elbow flexion improved from 79% (110° ± 22°) of the uninjured side to 88% (122° ± 18°) after coaching (P coaching patients regarding painful stretches might help clarify the optimal approach. Therapeutic level 4. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Buckling of thin viscous sheets with inhomogenous viscosity under extensional flows
Srinivasan, Siddarth; Wei, Zhiyan; Mahadevan, L.
2016-11-01
We investigate the dynamics, shape and stability of a thin viscous sheet subjected to an extensional flow under an imposed non-uniform temperature field. Using finite element simulations, we first solve for the stretching flow to determine the pre-buckling sheet thickness and in-plane flow velocities. Next, we use this solution as the base state and solve the linearized partial differential equation governing the out-of-plane deformation of the mid-surface as a function of two dimensionless operating parameters: the normalized stretching ratio α and a dimensionless width of the heating zone β. We show the sheet can become unstable via a buckling instability driven by the development of localized compressive stresses, and determine the global shape and growth rates of the most unstable mode. The growth rate is shown to exhibit a transition from stationary to oscillatory modes in region upstream of the heating zone. Finally, we investigate the effect of surface tension and present an operating diagram that indicates regions of the parameter space that minimizes or entirely suppresses the instability while achieving desired outlet sheet thickness. Therefore, our work is directly relevant to various industrial processes including the glass redraw & float-glass method.
Late radial head dislocation with radial head fracture and ulnar plastic deformation
Heinrich, Stephen D.; Butler, R. Allen
Type 11 Monteggia lesion equivalents produced by plastic deformation of the ulna are rare. Radial head fractures in skeletally immature patients are also uncommon. We report a late presentation of a Type 11 Monteggia equivalent injury with a fracture of the radial head and neck and plastic
Elastic-plastic analysis of an infinite sheet having a circular hole under pressure
Hsu, Y. C.; Forman, R. G.
1975-01-01
An exact elastic-plastic solution for the stresses in an infinite sheet having a circular hole subject to pressure is obtained on the basis of J2 deformation theory together with a modified Ramberg-Osgood law. The sheet is orthotropic but isotropic in its plane. The results are assessed on the basis of Budiansky's criterion for the acceptability of J2 deformation theory. By using exact elastic-plastic stresses, the function connecting the pressure at the hole with the radial enlargement is obtained. Upon release of the pressure, residual stresses around the hole are produced.
Houck, Jeff; Neville, Christopher; Tome, Josh; Flemister, Adolph
2015-09-01
The value of strengthening and stretching exercises combined with orthosis treatment in a home-based program has not been evaluated. The purpose of this study was to compare the effects of augmenting orthosis treatment with either stretching or a combination of stretching and strengthening in participants with stage II tibialis posterior tendon dysfunction (TPTD). Participants included 39 patients with stage II TPTD who were recruited from a medical center and then randomly assigned to a strengthening or stretching treatment group. Excluding 3 dropouts, there were 19 participants in the strengthening group and 17 in the stretching group. The stretching treatment consisted of a prefabricated orthosis used in conjunction with stretching exercises. The strengthening treatment consisted of a prefabricated orthosis used in conjunction with the stretching and strengthening exercises. The main outcome measures were self-report (ie, Foot Function Index and Short Musculoskeletal Function Assessment) and isometric deep posterior compartment strength. Two-way analysis of variance was used to test for differences between groups at 6 and 12 weeks after starting the exercise programs. Both groups significantly improved in pain and function over the 12-week trial period. The self-report measures showed minimal differences between the treatment groups. There were no differences in isometric deep posterior compartment strength. A moderate-intensity, home-based exercise program was minimally effective in augmenting orthosis wear alone in participants with stage II TPTD. Level I, prospective randomized study. © The Author(s) 2015.
On the internal structure of the current sheet in the pulsar wind
Prokofev, V. V.; Arzamasskiy, L. I.; Beskin, V. S.
2018-02-01
We investigate the internal structure of the current sheet in the pulsar wind within force-free and two-fluid MHD approximations. Within the force-free approximation we obtain general asymptotic solution of the Grad-Shafranov equation for quasi-spherical pulsar wind up to the second order in small parameter ɛ = (Ωr/c)-1. The solution allows an arbitrary latitudinal structure of the radial magnetic field, including that obtained in the numerical simulations of oblique rotators. It is also shown that the shape of the current sheet does not depend on the latitudinal structure. For the internal region of the current sheet outside the fast magnetosonic surface where the force-free approximation is not valid we use two-fluid MHD approximation. Carrying out calculations in the comoving reference frame, we succeed in determining intrinsic electric and magnetic fields of a sheet. It allows us to analyse time-dependent effects which were not investigated up to now. In particular, we estimate the efficiency of the particle acceleration inside the sheet. Finally, after investigating the motion of individual particles in the time-dependent current sheet, we find the width of the sheet and its time evolution self-consistent.
Directory of Open Access Journals (Sweden)
Montalbán Josefina
2017-01-01
Full Text Available The success of asteroseismology in characterising G-K giants has motivated the extension of the same techniques to stars after the central He-burning and M-giants. The latter have been usually studied only as radial pulsators; the presence, however, of fine-structure in the period-luminosity diagram of red variables in the Magellanic Clouds could result from the presence of non-radial oscillations, offering the potential of observational indexes based on non-radial oscillations also for luminous red giants. We present here the results of a first approach aiming to identify the origin of the sub-ridges in the sequence A of the LMC red variables.
Dispersion-free radial transmission lines
Caporaso, George J [Livermore, CA; Nelson, Scott D [Patterson, CA
2011-04-12
A dispersion-free radial transmission line ("DFRTL") preferably for linear accelerators, having two plane conductors each with a central hole, and an electromagnetically permeable material ("EPM") between the two conductors and surrounding a channel connecting the two holes. At least one of the material parameters of relative magnetic permeability, relative dielectric permittivity, and axial width of the EPM is varied as a function of radius, so that the characteristic impedance of the DFRTL is held substantially constant, and pulse transmission therethrough is substantially dispersion-free. Preferably, the EPM is divided into concentric radial sections, with the varied material parameters held constant in each respective section but stepwise varied between sections as a step function of the radius. The radial widths of the concentric sections are selected so that pulse traversal time across each section is the same, and the varied material parameters of the concentric sections are selected to minimize traversal error.
Transmural sheet strains in the lateral wall of the ovine left ventricle.
Cheng, Allen; Langer, Frank; Rodriguez, Filiberto; Criscione, John C; Daughters, George T; Miller, D Craig; Ingels, Neil B
2005-09-01
In an attempt to provide a better understanding of our finding that regions with contracting left ventricular myofibers need not develop a significant transmural systolic wall thickening gradient, the analytic approach of Costa et al. was applied to the four-dimensional dynamic data obtained 1 and 8 wk after surgical implantation of transmural radiopaque beads in the lateral equatorial left ventricular wall in seven ovine hearts. Quantitative histology of tissue blocks demonstrated that fiber angles varied linearly across the wall in this region from -37 degrees in the subepicardium to +18 degrees in the subendocardium. Sheet angles exhibited a pleated-sheet behavior, alternating sign from subepicardium to subendocardium. From end diastole (reference configuration) to end systole (deformed configuration), fiber strain was uniformly negative, sheet extension and sheet thickening were uniformly positive, and sheet-normal shear contributed to wall thickening at all wall depths. Subepicardial radial wall thickening increased significantly from week 1 to week 8, with significant increases in the contributions from subepicardial sheet extension and sheet-normal shear. At 1 and 8 wk, the contribution of sheet-normal shear to wall thickening was substantial at all transmural depths; the contribution of sheet extension to wall thickening was greatest in the subepicardium and least in the subendocardium, and the contribution of sheet thickening to wall thickening was greatest in the subendocardium and least in the subepicardium. A mechanistic model is proposed that provides a working hypothesis that a selective decrease in subepicardial intercellular matrix stiffness is responsible for elimination of the transmural wall thickening gradient 1-8 wk after marker implantation surgery.
Optical stretching on chip with acoustophoretic prefocusing
DEFF Research Database (Denmark)
Khoury Arvelo, Maria; Laub Busk, L.; Bruus, Henrik
2012-01-01
We demonstrate the use of a two-beam optical trap (an optical stretcher) in a low-cost microuidic system with the purpose of measuring the mechanical properties of cells and vesicles. Delivery of micrometer-sized particles and cells to the optical stretcher is obtained by acoustophoretic prefocus......We demonstrate the use of a two-beam optical trap (an optical stretcher) in a low-cost microuidic system with the purpose of measuring the mechanical properties of cells and vesicles. Delivery of micrometer-sized particles and cells to the optical stretcher is obtained by acoustophoretic...... prefocusing. This focusing mechanism aims for target particles to always ow in the correct height relative to the optical stretcher, and is induced by a piezo-electric ultrasound transducer attached underneath the chip and driven at a frequency leading to a vertical standing ultrasound wave...... in the microchannel. Trapping and manipulation is demonstrated for dielectric beads. In addition, we show trapping, manipulation and stretching of red blood cells and vesicles, whereby we extract the elastic properties of these objects. Our design points towards the construction of a low-cost, high-throughput lab-on-a-chip...
Reflectors Made from Membranes Stretched Between Beams
Dooley, Jennifer; Dragovan, Mark; Tolomeo, Jason
2009-01-01
Lightweight cylindrical reflectors of a proposed type would be made from reflective membranes stretched between pairs of identically curved and identically oriented end rails. In each such reflector, the curvature of the two beams would define the reflector shape required for the intended application. For example, the beams could be curved to define a reflector of parabolic cross section, so that light incident along the axis of symmetry perpendicular to the cylindrical axis would be focused to a line. In addition, by applying suitable forces to the ends of the beams, one could bend the beams to adjust the reflector surface figure to within a precision of the order of the wavelength of the radiation to be reflected. The figure depicts an example of beams shaped so that in the absence of applied forces, each would be flat on one side and would have a radius of curvature R on the opposite side. Alternatively, the curvature of the reflector-membrane side could be other than circular. In general, the initial curvature would be chosen to optimize the final reflector shape. Then by applying forces F between the beam ends in the positions and orientations shown in the figure, one could bend beams to adjust their shape to a closer approximation of the desired precise circular or noncircular curvature.
Radial Interventions: Present and Future Indications.
Voudris, Konstantinos V; Georgiadou, Panagiota; Charitakis, Konstantinos; Marmagkiolis, Konstantinos
2016-01-01
Since its first introduction, radial access for diagnostic and interventional cardiovascular procedures has progressively evolved with advances in understanding, capabilities, and ease of operation. Numerous studies have demonstrated its safety, efficacy, and cost-effectiveness. Overall, radial catheterization is a valid alternative to the femoral approach with additional benefits of shorter length of hospital stay and reduced patient costs when performed by experienced interventionists. Moreover, with reduced rates of access site complications and enhanced patient satisfaction, the transradial approach has emerged as the preferred vascular access route for most coronary interventions, even in cases of acute myocardial infarction.
Radial velocity observations of VB10
Directory of Open Access Journals (Sweden)
Rodler F.
2011-07-01
Full Text Available VB 10 is the smallest star known to harbor a planet according to the recent astrometric study of Pravdo & Shaklan [1]. Here we present near-infrared (J-band radial velocity of VB 10 performed from high resolution (R~20,000 spectroscopy (NIRSPEC/KECK II. Our results [2] suggest radial velocity variability with amplitude of ~1 km/s, a result that is consistent with the presence of a massive planet companion around VB10 as found via long-term astrometric monitoring of the star by Pravdo & Shaklan. Employing an entirely different technique we verify the results of Pravdo & Shaklan.
Reconstruction for Type IV Radial Polydactyly.
Wall, Lindley B; Goldfarb, Charles A
2015-09-01
Type IV radial polydactyly represents a thumb with an extra proximal and distal phalanx. Assessment of the thumb for surgical reconstruction includes observing thumb function, evaluating thumb size and stability, and assessing the first web space. Reconstruction includes excision of the smaller thumb, typically the radial thumb, and re-creating thumb stability and alignment by addressing tendon insertion and joint orientation. Although surgical results are satisfying and complications are uncommon, additional surgical intervention may be required over time owing to thumb malalignment or instability. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Combined Radiation Belt - Plasma Sheet System Modeling
Aseev, Nikita; Shprits, Yuri; Kellerman, Adam; Drozdov, Alexander; Zhu, Hui
2017-04-01
Recent years have given rise to numerous mathematical models of the Earth's radiation belt dynamics. Driven by observations at geosynchronous orbit (GEO) where satellites (e.g. GOES and LANL) provide extensive in-situ measurements, radiation belt models usually take into account only diffusion processes in the energetic electron belts (100 keV and greater), leaving aside the dynamics of colder source population (tens of keV). Such models are able to reconstruct the radiation belt state, but they are not capable of predicting the electron dynamics at GEO, where many communication and navigation satellites currently operate. In this work we present combined four-dimensional electron radiation belt - plasma sheet model accounting for adiabatic advective transport, radial diffusion due to interaction with ULF waves, local acceleration of electrons, scattering into the atmosphere, magnetopause shadowing, and adiabatic effects due to contraction and expansion of the magnetic field. The developed model is applicable to energetic, relativistic and ultrarelativistic electrons as well as to source electron population. The model provides spatial particle distribution allowing us to compare and validate the model with multiple satellite measurements at different MLT sectors (e.g. Van Allen Probes, GOES, LANL, THEMIS). The model can be helpful for the prediction of crucial for satellite operators geosynchronous electron fluxes and electron radiation belt dynamics including the heart of the outer belt, slot region and inner belt.
STRETCH FABRICS IN LEATHER MANUFACTURING: PERFORMANCE PROPERTIES OF STRECH LEATHERS
Directory of Open Access Journals (Sweden)
ORK Nilay
2016-05-01
Full Text Available Product variability of manufactured leather goods such as garment leathers could be closely related to the wear comfort because each material forming the garments are affected the comfort properties of the products. Considering the significant demand to elastic woven stretch fabrics and the advantages provided to leather goods like allowing easy body movements, well-fitting and keeping the shape make the use of stretch fabrics focus in interest. In this study, the performance properties of stretch leathers, leathers and spandex fabrics were presented and the differences between the characteristic properties of the leathers were described. For this purpose, physical characteristics of leathers were investigated in terms of thickness, weight, drape ability, stiffness, bending stiffness, air and water vapor permeability. The drape ability, stiffness and bending stiffness properties were significantly affected by the stretch fabrics laminated on the suede side of the leathers. The drape ability, stiffness and bending values were increased due to the implementation of stretch fabrics. There was no significant difference between the air permeability values of the leathers prior and after the implementation of stretch fabrics in contrast to water vapor permeability. The results of this study showed that the aesthetic behavior of clothing materials such as drape and stiffness properties as well as water vapor permeability was mainly affected from the implementation of the stretch fabrics.
Does the parental stretching programs improve metatarsus adductus in newborns?
Eamsobhana, Perajit; Rojjananukulpong, Karn; Ariyawatkul, Thanase; Chotigavanichaya, Chatupon; Kaewpornsawan, Kamolporn
2017-01-01
Metatarsus adductus (MA) is a common pediatric foot deformity. Current recommendations suggest observation until 4-6 months, then casting if the deformity persists. Based on our review of the literatures, no randomized controlled trial has been conducted to study the effectiveness of parental stretching in the correction of MA in newborn. Ninety-four newborn feet that were diagnosed as MA by clinical examination were enrolled. Feet were randomized into two groups: observation group and stretching group. Outcome measurements were performed to compare success rate between groups. According to Pearson's χ(2) test, there were no statistically significant differences between groups with regard to the overall success of the parental stretching program ( p = 0.191). There was also no significant difference between groups for mild degree or moderate-to-severe degree ( p = 0.134, p = 0.274, respectively). A more rapid success rate was observed in the stretching group at the first month follow-up, but rate of improvement then decreased. The stretching group tended to have a lower success rate compared to the observation group in moderate-to-severe feet, but the difference was not statistically significant. Parental stretching program found no benefit over observation group in this study. Parental stretching program should not be applied for newborn babies with moderate-to-severe MA as the result from the study appeared to have lower success rate compared to observation group. Observe until 4-6 months, then corrective casting for the persisting deformity is recommended.
Cyclic stretching of soft substrates induces spreading and growth
Cui, Yidan; Hameed, Feroz M.; Yang, Bo; Lee, Kyunghee; Pan, Catherine Qiurong; Park, Sungsu; Sheetz, Michael
2015-01-01
In the body, soft tissues often undergo cycles of stretching and relaxation that may affect cell behaviour without changing matrix rigidity. To determine whether transient forces can substitute for a rigid matrix, we stretched soft pillar arrays. Surprisingly, 1–5% cyclic stretching over a frequency range of 0.01–10 Hz caused spreading and stress fibre formation (optimum 0.1 Hz) that persisted after 4 h of stretching. Similarly, stretching increased cell growth rates on soft pillars comparative to rigid substrates. Of possible factors linked to fibroblast growth, MRTF-A (myocardin-related transcription factor-A) moved to the nucleus in 2 h of cyclic stretching and reversed on cessation; but YAP (Yes-associated protein) moved much later. Knockdown of either MRTF-A or YAP blocked stretch-dependent growth. Thus, we suggest that the repeated pulling from a soft matrix can substitute for a stiff matrix in stimulating spreading, stress fibre formation and growth. PMID:25704457
Whole body vibration as an adjunct to static stretching.
Feland, J B; Hawks, M; Hopkins, J T; Hunter, I; Johnson, A W; Eggett, D L
2010-08-01
This study was a randomized control trial. The purpose of this study was twofold: 1) to determine if stretching the hamstrings during whole-body-vibration (WBV) is more effective than static stretching alone; and 2) to monitor retention of flexibility changes. The main outcome measure was hamstring flexibility as measured in degrees using a passive knee extension test. Thirty-four recreationally active college-age subjects (23.4+/-1.7 yrs) completed this study (22 males, 12 females, avg. ht.=175.6+/-6.4 cm, avg. wt.=74.9+/-11.8 kg). Subjects were assigned to a control group (C), a static stretch group (SS), or a vibration + static stretch group (V). Subjects stretched 5 days/wk for 4-weeks and were followed for 3-weeks after cessation to monitor retention. Analysis showed a significant difference between treatment groups (pstretching for the SS and V groups respectively. Three-week follow-up showed SS returning to baseline with V group still 6.4 degrees (11%+/-3.88% (SEM)) more flexible than at baseline. Stretching concurrently with vibration on a WBV platform appears to be a good adjunct to static stretching with the potential to enhance retention of flexibility gains. (c) Georg Thieme Verlag KG Stuttgart . New York.
... Submit Search The CDC Chronic Obstructive Pulmonary Disease (COPD) Note: Javascript is disabled or is not supported ... message, please visit this page: About CDC.gov . COPD Homepage Data and Statistics Fact Sheets Publications Publications ...
2008 Swimming Season Fact Sheets
To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.
2010 Swimming Season Fact Sheets
To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.
2009 Swimming Season Fact Sheets
To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.
2007 Swimming Season Fact Sheets
To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.
2006 Swimming Season Fact Sheets
To help beachgoers make informed decisions about swimming at U.S. beaches, EPA annually publishes state-by-state data about beach closings and advisories for the previous year's swimming season. These fact sheets summarize that information by state.
Modelling the Antarctic Ice Sheet
DEFF Research Database (Denmark)
Pedersen, Jens Olaf Pepke; Holm, A.
2015-01-01
The Antarctic ice sheet is a major player in the Earth’s climate system and is by far the largest depository of fresh water on the planet. Ice stored in the Antarctic ice sheet (AIS) contains enough water to raise sea level by about 58 m, and ice loss from Antarctica contributed significantly...... to sea level high stands during past interglacial periods. A number of AIS models have been developed and applied to try to understand the workings of the AIS and to form a robust basis for future projections of the AIS contribution to sea level change. The recent DCESS (Danish Center for Earth System...... Science) Antarctic Ice Sheet (DAIS) model (Shaffer 2014) is forced by reconstructed time series of Antarctic temperature, global sea level and ocean subsurface temperature over the last two glacial cycles. In this talk a modelling work of the Antarctic ice sheet over most of the Cenozoic era using...
Industrial Stormwater Fact Sheet Series
Fact sheets for the industrial sectors regulated by the MSGP. Each describes the types of facilities included in the sector, typical pollutants associated with the sector, and types of stormwater control measures used to minimize pollutant discharge.
Energy information sheets, July 1998
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-07-01
The National Energy Information Center (NEIC), as part of its mission, provides energy information and referral assistance to Federal, State, and local governments, the academic community, business and industrial organizations, and the public. The Energy Information Sheets was developed to provide general information on various aspects of fuel production, prices, consumption, and capability. Additional information on related subject matter can be found in other Energy Information Administration (EIA) publications as referenced at the end of each sheet.
Flow visualization by laser sheet
Chlebanowski, Joseph S., Jr.
1988-01-01
Approved for public release; distribution is unlimited. A flow visualization system using smoke and a laser sheet for illumination has been designed and developed for use in the 32- x 45-inch low speed wind tunnel. Major design features include a portable smoke rake designed for ease of installation and removal, the use of fiber optics to transport the laser light in a safe and convenient manner, and a portable traversing mechanism to traverse and orient the laser light sheet. The capabili...
DEFF Research Database (Denmark)
Carranza, Christian L; Ballegaard, Martin; Werner, Mads U
2014-01-01
BACKGROUND: Coronary artery bypass grafting using the radial artery has, since the 1990s, gone through a revival. Observational studies have indicated better long-term patency when using radial arteries. Therefore, radial artery might be preferred especially in younger patients where long time pa...
Unsteady convection flow and heat transfer over a vertical stretching surface.
Directory of Open Access Journals (Sweden)
Wenli Cai
Full Text Available This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.
Wang, Zhenzhen; Ying, Ye; Li, Li; Xu, Ting; Wu, Yiping; Guo, Xiaoyu; Wang, Feng; Shen, Haojie; Wen, Ying; Yang, Haifeng
2017-02-01
A net-bracket built out from the core@shell structure of chemically oxidized polypyrrole (PPy) coated electrospun polycaprolactone (PCL) nanofibers, and the following surface modification of a thin layer of positively charged poly(dimethyl diallyl ammonium chloride) (PDDA) has been applied for stretching the reduced graphene oxide (RGO) sheets to some extent with the electrochemical deposition method. The as-formed RGO/PDDA/PCL@PPy nanocomposites were investigated by using scanning electron microscopy, transmission electron microscope, X-ray diffraction and Raman spectroscopy. The graphene tented by the net-bracket showed remarkable electrocatalytic properties in detecting the neurotransmitter dopamine (DA). Low detection limit of 0.34 μM (S/N = 3) with the wide linear detection range from 4 μM to 690 μM was obtained. The successful determination of DA in real urine samples and DA injection were achieved. Such attractive fabrication strategy can be extended to make other graphene sheet-based sensors.
Unsteady convection flow and heat transfer over a vertical stretching surface.
Cai, Wenli; Su, Ning; Liu, Xiangdong
2014-01-01
This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.
Structural Transitions in Supercoiled Stretched DNA
v, Croquette
1998-03-01
Using magnetic micromanipulation techniques [Strick 96]( uc(T.R.) Strick, J.-F. Allemand, D. Bensimon, A. Bensimon) and uc(V.) Croquette, "The elasticity of a single supercoiled DNA molecule", Science, 271, 1835 (1996)., we have studied the mechanical properties (force versus extension) of single DNA molecules under a wide range of torsional stresses (supercoiling). We show that unwinding the DNA double helix leads to a phase separation between regular B-DNA and denaturation bubbles. The fraction of denatured molecule increases linearly with the degree of unwinding, beginning at a value of 1% unwinding. We have confirmed this denatured state by hybridization of homologous single-stranded DNA probes and by a chemical attack of the exposed bases. Surprisingly, when we overwind the molecule, the elasticity curves we obtain may also be interpreted by the coexistence of two phases, B-DNA and a new phase which we note P-DNA. The fraction of this new phase increases smoothly with overwinding, beginning at 3 % and continuing up to 300 %. Our results indicate that this new phase is four times more twisted that the standard B-DNA and is 1.75 times longer. Although the structure of this phase is not yet known, such a high twisting can only be attained if the sugar-phosphate backbones of the two strands are twisted closely while the bases are expelled outside of the molecule's core, in a structure reminiscent of the one proposed by Pauling. Indeed we have shown that this new phase is sensitive to chemical attack whereas the B-DNA is not. This new phase begins to appear on a molecule overwound by 3 % and stretched by a force of 5 pN, conditions typically encountered in vivo during gene transcription. This new phase may thus play a biological role biophysique-ADN>(for more details).
AI-augmented time stretch microscopy
Mahjoubfar, Ata; Chen, Claire L.; Lin, Jiahao; Jalali, Bahram
2017-02-01
Cell reagents used in biomedical analysis often change behavior of the cells that they are attached to, inhibiting their native signaling. On the other hand, label-free cell analysis techniques have long been viewed as challenging either due to insufficient accuracy by limited features, or because of low throughput as a sacrifice of improved precision. We present a recently developed artificial-intelligence augmented microscope, which builds upon high-throughput time stretch quantitative phase imaging (TS-QPI) and deep learning to perform label-free cell classification with record high-accuracy. Our system captures quantitative optical phase and intensity images simultaneously by frequency multiplexing, extracts multiple biophysical features of the individual cells from these images fused, and feeds these features into a supervised machine learning model for classification. The enhanced performance of our system compared to other label-free assays is demonstrated by classification of white blood T-cells versus colon cancer cells and lipid accumulating algal strains for biofuel production, which is as much as five-fold reduction in inaccuracy. This system obtains the accuracy required in practical applications such as personalized drug development, while the cells remain intact and the throughput is not sacrificed. Here, we introduce a data acquisition scheme based on quadrature phase demodulation that enables interruptionless storage of TS-QPI cell images. Our proof of principle demonstration is capable of saving 40 TB of cell images in about four hours, i.e. pictures of every single cell in 10 mL of a sample.
Radial periodic perturbations of the Kepler problem
Fonda, Alessandro; Gallo, Anna Chiara
2017-11-01
We consider radial periodic perturbations of a central force field and prove the existence of rotating periodic solutions, whose orbits are nearly circular. The proof is mainly based on the Implicit Function Theorem, and it permits to handle some small perturbations involving the velocity, as well. Our results apply, in particular, to the classical Kepler problem.
Photoelectric Radial Velocities, Paper XIX Additional Spectroscopic ...
Indian Academy of Sciences (India)
for about 35 years, the radial velocity of HD 3345 began to decline in the new century, and in seven years it had fallen by 6 km s. −1 . The observations are listed in Table 2, with the phases and residuals that correspond to the adopted orbital parameters. The descending (minimum-velocity) node was passed early in 2009, a.
A Radial Actin Network in Apical Constriction.
Lv, Zhiyi; Großhans, Jörg
2016-11-07
Contractile actomyosin networks are central to cell shape change, rearrangements, and migration during animal tissue morphogenesis. In this issue of Developmental Cell, Coravos and Martin (2016) report that the actin network is radially polarized in apically constricting cells, suggesting a constriction model similar to the contraction mechanism in muscle sarcomeres. Copyright © 2016 Elsevier Inc. All rights reserved.
Revealing the radial modes in vortex beams
CSIR Research Space (South Africa)
Sephton, Bereneice C
2016-10-01
Full Text Available Light beams that carry orbital angular momentum are often approximated by modulating an initial beam, usually Gaussian, with an azimuthal phase variation to create a vortex beam. Such vortex beams are well defined azimuthally, but the radial profile...
Five Lectures on Radial Basis Functions
DEFF Research Database (Denmark)
Powell, Mike J.D.
2005-01-01
Professor Mike J. D. Powell spent three weeks at IMM in November - December 2004. During the visit he gave five lectures on radial basis functions. These notes are a TeXified version of his hand-outs, made by Hans Bruun Nielsen, IMM....
JPC = ODD-- Radial Trajectories for Light Mesons
Dumanoglu, I.; Peaslee, D. C.
2003-01-01
Versification of the Veneziano model for light meson radial trajectories has found surprising constancy of slope for several different sequences of resonant states with JPC = even++. Efforts to extend this result to JPC = odd-- trajectories have been hampered by a comparative scarcity of data, but we present an early survey to seek similarities and differences with even++ resonances.
Three versus four radial keratotomy incisions.
Melles, G R; Go, A T; Beekhuis, W H; van Rij, G; Binder, P S
1992-01-01
Radial keratotomy (RK) is currently performed with four or eight semi-radial incisions. To evaluate the effect of a theoretically more stable three-incision RK pattern, centripetal incisions were made in 16 human donor eyes (eight pairs), using a double-edged diamond blade set to 90% of central pachymetry and a 3.5 mm optical clear zone. Intraocular pressure was maintained at 15 mm Hg during surgery and while keratometry readings were made. One randomly selected eye of each pair had three radial incisions made at 12, 4 and 8 o'clock; the other eye had four radial incisions at 12, 3, 6, and 9 o'clock. Corneal flattening was 6.08 diopters (D) with four incisions and 4.84 D with three incisions (P less than .05). Astigmatism increased 0.44 D and 0.69 D, respectively (P greater than .1). Histologically measured mean incision depth (77.4%) did not differ significantly between the groups (P greater than .1). This study shows that 80% of the effect of a four-incision RK pattern can be obtained with a theoretically more stable three-incision pattern.
Khan, Sami Ullah; Ali, Nasir; Abbas, Zaheer
2015-01-01
An analysis is carried out to study the heat transfer in unsteady two-dimensional boundary layer flow of a magnetohydrodynamics (MHD) second grade fluid over a porous oscillating stretching surface embedded in porous medium. The flow is induced due to infinite elastic sheet which is stretched periodically. With the help of dimensionless variables, the governing flow equations are reduced to a system of non-linear partial differential equations. This system has been solved numerically using the finite difference scheme, in which a coordinate transformation is used to transform the semi-infinite physical space to a bounded computational domain. The influence of the involved parameters on the flow, the temperature distribution, the skin-friction coefficient and the local Nusselt number is shown and discussed in detail. The study reveals that an oscillatory sheet embedded in a fluid-saturated porous medium generates oscillatory motion in the fluid. The amplitude and phase of oscillations depends on the rheology of the fluid as well as on the other parameters coming through imposed boundary conditions, inclusion of body force term and permeability of the porous medium. It is found that amplitude of flow velocity increases with increasing viscoelastic and mass suction/injection parameters. However, it decreases with increasing the strength of the applied magnetic field. Moreover, the temperature of fluid is a decreasing function of viscoelastic parameter, mass suction/injection parameter and Prandtl number.
Torrent, Daniel; Sánchez-Dehesa, José
2009-08-07
We demonstrate that metamaterials with anisotropic properties can be used to develop a new class of periodic structures that has been named radial wave crystals. They can be sonic or photonic, and wave propagation along the radial directions is obtained through Bloch states like in usual sonic or photonic crystals. The band structure of the proposed structures can be tailored in a large amount to get exciting novel wave phenomena. For example, it is shown that acoustical cavities based on radial sonic crystals can be employed as passive devices for beam forming or dynamically orientated antennas for sound localization.
LENUS (Irish Health Repository)
Pate, G
2011-10-01
A survey was conducted of medication administered during radial artery cannulation for coronary angiography in 2009 in Ireland; responses were obtained for 15 of 20 centres, in 5 of which no radial access procedures were undertaken. All 10 (100%) centres which provided data used heparin and one or more anti-spasmodics; verapamil in 9 (90%), nitrate in 1 (10%), both in 2 (20%). There were significant variations in the doses used. Further work needs to be done to determine the optimum cocktail to prevent radial artery injury following coronary angiography.
FDTD modeling of thin impedance sheets
Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
Thin sheets of resistive or dielectric material are commonly encountered in radar cross section calculations. Analysis of such sheets is simplified by using sheet impedances. In this paper it is shown that sheet impedances can be modeled easily and accurately using Finite Difference Time Domain (FDTD) methods.
Morphology and Density Structure of Post-CME Current Sheets
Vrsnak, B.; Poletto, G.; Vujic, E.; Vourlidas, A.
2009-01-01
Eruption of a coronal mass ejection (CME) is believed to drag and open the coronal magnetic field, presumably leading to the formation of a large-scale current sheet and field relaxation by magnetic reconnection. This paper analyzes the physical characteristics of ray-like coronal features formed in the aftermath of CMEs, to confirm whether interpreting such phenomena in terms of a reconnecting current sheet is consistent with observations. Methods: The study focuses on UVCS/SOHO and LASCO/SOHO measurements of the ray width, density excess, and coronal velocity field as a function of the radial distance. The morphology of the rays implies that they are produced by Petschek-like reconnection in the large-scale current sheet formed in the wake of CME. The hypothesis is supported by the flow pattern, often showing outflows along the ray, and sometimes also inflows into the ray. The inferred inflow velocities range from 3 to 30 km/s, and are consistent with the narrow opening-angle of rays, which add up to a few degrees. The density of rays is an order of magnitude higher than in the ambient corona. The model results are consistent with the observations, revealing that the main cause of the density excess in rays is a transport of the dense plasma from lower to higher heights by the reconnection outflow.
Near-Earth plasma sheet boundary dynamics during substorm dipolarization
Nakamura, Rumi; Nagai, Tsugunobu; Birn, Joachim; Sergeev, Victor A.; Le Contel, Olivier; Varsani, Ali; Baumjohann, Wolfgang; Nakamura, Takuma; Apatenkov, Sergey; Artemyev, Anton; Ergun, Robert E.; Fuselier, Stephen A.; Gershman, Daniel J.; Giles, Barbara J.; Khotyaintsev, Yuri V.; Lindqvist, Per-Arne; Magnes, Werner; Mauk, Barry; Russell, Christopher T.; Singer, Howard J.; Stawarz, Julia; Strangeway, Robert J.; Anderson, Brian; Bromund, Ken R.; Fischer, David; Kepko, Laurence; Le, Guan; Plaschke, Ferdinand; Slavin, James A.; Cohen, Ian; Jaynes, Allison; Turner, Drew L.
2017-09-01
We report on the large-scale evolution of dipolarization in the near-Earth plasma sheet during an intense (AL -1000 nT) substorm on August 10, 2016, when multiple spacecraft at radial distances between 4 and 15 R E were present in the night-side magnetosphere. This global dipolarization consisted of multiple short-timescale (a couple of minutes) B z disturbances detected by spacecraft distributed over 9 MLT, consistent with the large-scale substorm current wedge observed by ground-based magnetometers. The four spacecraft of the Magnetospheric Multiscale were located in the southern hemisphere plasma sheet and observed fast flow disturbances associated with this dipolarization. The high-time-resolution measurements from MMS enable us to detect the rapid motion of the field structures and flow disturbances separately. A distinct pattern of the flow and field disturbance near the plasma boundaries was found. We suggest that a vortex motion created around the localized flows resulted in another field-aligned current system at the off-equatorial side of the BBF-associated R1/R2 systems, as was predicted by the MHD simulation of a localized reconnection jet. The observations by GOES and Geotail, which were located in the opposite hemisphere and local time, support this view. We demonstrate that the processes of both Earthward flow braking and of accumulated magnetic flux evolving tailward also control the dynamics in the boundary region of the near-Earth plasma sheet.[Figure not available: see fulltext.
The effects of acute self myofascial release (MFR) and stretching ...
African Journals Online (AJOL)
MFR) techniques and different stretching techniques on physical fitness parameters among university students. This was a prospective randomised controlled study involving 30 university students who participate in team sports. Baseline ...
Stretch reflex regulation in healthy subjects and patients with spasticity
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Petersen, Nicolas; Crone, Clarissa
2005-01-01
during voluntary muscle contraction in part because of depression of the inhibitory mechanisms that are affected in spasticity. In spastic patients, these inhibitory mechanisms are already depressed at rest and cannot be depressed further in connection with a contraction. In relation to most normal......In recent years, part of the muscle resistance in spastic patients has been explained by changes in the elastic properties of muscles. However, the adaptive spinal mechanisms responsible for the exaggeration of stretch reflex activity also contribute to muscle stiffness. The available data suggest...... of the spastic symptoms. A recent finding also shows no sign of exaggerated stretch reflexes in muscles voluntarily activated by the spastic patient in general. This is easily explained by the control of stretch reflex activity in healthy subjects. In healthy subjects, the stretch reflex activity is increased...
600 Volt Stretched Lens Array for Solar Electric Propulsion Project
National Aeronautics and Space Administration — Over the past six years, ENTECH, Auburn, NASA, and other organizations have developed a new space photovoltaic array called the Stretched Lens Array (SLA), which...
Effects of Static Stretching and Playing Soccer on Knee Laxity
Baumgart, Christian; Gokeler, Alli; Donath, Lars; Hoppe, Matthias W.; Freiwald, Juergen
2015-01-01
Objective: This study investigated exercise-induced effects of static stretching and playing soccer on anterior tibial translation (ATT) of the knee joint. Design: Randomized controlled trial. Setting: University biomechanics laboratory. Participants: Thirty-one athletes were randomly assigned into
A New Tool to Assess the Perception of Stretching Intensity.
Freitas, Sandro R; Vaz, João R; Gomes, Luis; Silvestre, Rui; Hilário, Edgar; Cordeiro, Nuno; Carnide, Filomena; Pezarat-Correia, Pedro; Mil-Homens, Pedro
2015-09-01
This study aimed to develop a valid and reliable scale to assess the perception of stretching intensity below and above the maximal range of motion. Experiments were conducted through a passive leg extension angle-torque assessment to healthy population (n = 90). In the study's first phase, the visual, numerical, and description of the stretching intensity scale (SIS) components were developed. The visual analog scale (VAS) score, absolute magnitude estimation (AME) score, and verbal stretching intensity symptom descriptors were assessed for different stretching intensities. In the second phase, the SIS was tested for validity, reliability, scale production, and estimation properties as well as responsiveness to stretching. In the first phase, a high correlation was found between SIS score and range of motion (ROM), as well as SIS and torque in both submaximal (intraclass correlation coefficient [ICC] = 0.89-0.99, r = 0.88-0.99) and supramaximal (ICC = 0.75-0.86, r = 0.68-0.88) stretching intensities. The AME and VAS scores fitted well in an exponential model for submaximal stretching intensities (y = 14.829e, ICC = 0.97 [0.83-0.99], r = 0.98), and in a linear model for supramaximal stretching intensities (y = 0.7667x - 25.751, ICC = 0.97 [0.89-0.99], r = 0.9594). For the second phase, a high correlation was found between SIS score and ROM (r = 0.70-0.76, ICC = 0.76-0.85), as well as SIS and torque (r = 0.62-0.88, ICC = 0.57-0.85). The interday reliability was high to produce (r = 0.70, ICC = 0.70 [0.50-0.83]) or estimate (r = 0.89, ICC = 0.89 [0.82-0.93]) stretching intensities. The acute stretching effects on ROM and passive torque were detectable using the SIS. It is expected a high application in assessing the stretch intensity using the SIS in future studies and practical interventions.
STATIC STRETCHING DOES NOT REDUCE VARIABILITY, JUMP AND SPEED PERFORMANCE.
de Oliveira, Fábio Carlos Lucas; Rama, Luís Manuel Pinto Lopes
2016-04-01
Stretching is often part of the warm-up routine prior to athletic participation; however, controversial evidence exists on the effects of stretching on countermovement jump (CMJ) and sprint performance. Additionally, analysis of variability between repeated tasks is useful for monitoring players, to analyze factors that could affect the performance, and to guide clinical decisions for training strategies. The purpose of this study was to examine whether static stretching (SS) prior to CMJ and 20-meter (20-m) sprint would affect performance, and to investigate whether SS affects an athlete's ability to perform these tasks consistently. Twenty-two trained healthy athletes (23.2 ± 5.0 years) attended, randomly, two testing sessions, separated by 48 hours. At session one, all participants underwent 10 minutes of dynamic running warm-up followed by the experimental tasks (three CMJ and three 20-m sprint), whereas five minutes of stretching was added after the warm-up routine at session two. All participants performed the same experimental tasks in both sessions. The stretching protocol consisted of five stretching exercises for each lower limb. The paired-samples t-test revealed no significant differences between the stretching protocol condition and no stretching condition for the 20-m sprint (t(21)=.920; p=.368) and CMJ (t(21)=.709; p=.486). There were no significant differences in trial-by-trial variability on 20-m sprint (t(21)=1.934; p=.067) and CMJ scores (t(21)=.793; p=.437) as result of SS. The SS protocol did not modify jumping and running ability in trained healthy athletes. The SS prior to training or competition may not cause detrimental effects to athletic performance. Level III, Nonrandomized controlled trial.
Pretesting static and dynamic stretching does not affect maximal strength.
Beedle, Barry; Rytter, Scott J; Healy, Ryan C; Ward, Tara R
2008-11-01
The purpose of this study was to determine whether there was a significant difference in static stretching (SS), dynamic stretching (DS), and no stretching (NS) on maximal strength (one-repetition maximum [1RM]) in the bench and leg presses using free weights on 19 college-aged men and 32 women. Most of the participants were moderately to very active and had previous experience with weight training. The design was repeated measures, with each treatment being randomly assigned. Each testing session was separated by 72 hours. Moderate-intensity stretching was defined as stretching as far as possible without any assistance, and subjects were encouraged to do their best. For the SS routine, the chest, shoulder, triceps, quadriceps, and hamstrings were stretched. Three repetitions were performed for 15 seconds, each separated by a 10-second rest. For DS, the upper-body stretch was swinging each arm, one at a time, as far forward and then as far backward as possible in a diagonal plane. For the legs, the same movement was done for each leg, except performed in a sagittal plane. Each forward and backward movement took about 2 seconds. Three 30-second sets were administered, and a 10-second rest was allowed between sets. Next, 1RM was determined for the bench and leg presses in random order. Two warm-up sets were given, followed by several 1RM attempts. The last successful lift was recorded as the 1RM. Data were reported using means +/- SD. A one-way ANOVA with repeated measures was used with alpha set at 0.05. There was no significant difference among the treatments. Moderate-intensity stretching does not seem to adversely affect 1RM in the bench and leg presses.
The effects of stretching in spasticity: a systematic review.
Bovend'Eerdt, Thamar J; Newman, Meredith; Barker, Karen; Dawes, Helen; Minelli, Cosetta; Wade, Derick T
2008-07-01
To investigate the general effect of stretching on spasticity and to explore the complexity of stretching in patients with spasticity. Two researchers independently performed a systematic literature search using the databases: Medline, PEDro, Cochrane library, Web of Science, CINAHL, and Allied and Complementary Medicine. Studies on adults receiving a stretching technique to reduce spasticity were included. Randomized controlled trials (RCTs) were assessed on the PEDro scale for methodologic quality. Thirteen items from the CONSORT list and the Critical Appraisal Skills Program guideline were used to assess the methodologic quality of the other studies. RCTs (n=10) and other clinical trials (n=11) were included. The methodologic quality of the RCTs was low, varying between 4 and 8 on the PEDro scale. All studies show great diversity at the levels of methodology, population, intervention, and outcome measures making a meta-analysis not feasible. Both manual and mechanical stretching methods were studied. Stretching protocols were generally inadequately described and poorly standardized. The outcome measures used often assessed impairments such as available range of motion but were unable to distinguish between neural and nonneural components of spasticity. Associated functional benefits were not usually investigated. Although there is some positive evidence supporting the immediate effects of 1 stretching session, it remains unclear how long these effects abide and its long-term consequences. There is a wide diversity in studies investigating the effects of stretching on spasticity, and the available evidence on its clinical benefit is overall inconclusive. We recognize the need for consensus on a paradigm for stretching and for good-quality studies. Future research should address this issue and should investigate the clinical importance of the short- and long-term effects.
Hwang, K.-J.; Goldstein, M. L.; Moore, T. E.; Walsh, B. M.; Baishev, D. G.; Moiseyev, A. V.; Shevtsov, B. M.; Yumoto, K.
2014-01-01
A case study is presented using measurements from the Cluster spacecraft and ground-based magnetometers that show a substorm onset propagating from the inner to outer plasma sheet. On 3 October 2005, Cluster, traversing an ion-scale current sheet at the near-Earth plasma sheet, detected a sudden enhancement of Bz, which was immediately followed by a series of flux rope structures. Both the local Bz enhancement and flux ropes propagated tailward. Approximately 5 min later, another Bz enhancement, followed by a large density decrease, was observed to rapidly propagate earthward. Between the two Bz enhancements, a significant removal of magnetic flux occurred, possibly resulting from the tailward moving Bz enhancement and flux ropes. In our scenario, this flux removal caused the magnetotail to be globally stretched so that the thinnest sheet formed tailward of Cluster. The thinned current sheet facilitated magnetic reconnection that quickly evolved from plasma sheet to lobe and generated the later earthward moving dipolarization front (DF) followed by a reduction in density and entropy. Ground magnetograms located near the meridian of Cluster's magnetic foot points show two-step bay enhancements. The positive bay associated with the first Bz enhancement indicates that the substorm onset signatures propagated from the inner to the outer plasma sheet, consistent with the Cluster observation. The more intense bay features associated with the later DF are consistent with the earthward motion of the front. The event suggests that current disruption signatures that originated in the near-Earth current sheet propagated tailward, triggering or facilitating midtail reconnection, thereby preconditioning the magnetosphere for a later strong substorm enhancement.
Automobile sheet metal part production with incremental sheet forming
Directory of Open Access Journals (Sweden)
İsmail DURGUN
2016-02-01
Full Text Available Nowadays, effect of global warming is increasing drastically so it leads to increased interest on energy efficiency and sustainable production methods. As a result of adverse conditions, national and international project platforms, OEMs (Original Equipment Manufacturers, SMEs (Small and Mid-size Manufacturers perform many studies or improve existing methodologies in scope of advanced manufacturing techniques. In this study, advanced manufacturing and sustainable production method "Incremental Sheet Metal Forming (ISF" was used for sheet metal forming process. A vehicle fender was manufactured with or without die by using different toolpath strategies and die sets. At the end of the study, Results have been investigated under the influence of method and parameters used.Keywords: Template incremental sheet metal, Metal forming
[Sciatica. From stretch rack to microdiscectomy].
Gruber, P; Böni, T
2015-12-01
In ancient times as well as in the Middle Ages treatment options for discogenic nerve compression syndrome were limited and usually not very specific because of low anatomical and pathophysiological knowledge. The stretch rack (scamnum Hippocratis) was particularly prominent but was widely used as a therapeutic device for very different spinal disorders. Since the beginning of the nineteenth century anatomical knowledge increased and the advances in the fields of asepsis, anesthesia and surgery resulted in an increase in surgical interventions on the spine. In 1908 the first successful lumbar discectomy was initiated and performed by the German neurologist Heinrich O. Oppenheim (1858-1919) and the surgeon Fedor Krause (1857-1937); however, neither recognized the true pathological condition of discogenic nerve compression syndrome. With the landmark report in the New England Journal of Medicine in 1934, the two American surgeons William Jason Mixter (1880-1958) and Joseph Seaton Barr (1901-1963) finally clarified the pathomechanism of lumbar disc herniation and furthermore, propagated discectomy as the standard therapy. Since then interventions on intervertebral discs rapidly increased and the treatment options for lumbar disc surgery quickly evolved. The surgical procedures changed over time and were continuously being refined. In the late 1960s the surgical microscope was introduced for spinal surgery by the work of the famous neurosurgeon Mahmut Gazi Yasargil and his colleague Wolfhard Caspar and so-called microdiscectomy was introduced. Besides open discectomy other interventional techniques were developed to overcome the side effects of surgical procedures. In 1964 the American orthopedic surgeon Lyman Smith (1912-1991) introduced chemonucleolysis, a minimally invasive technique consisting only of a cannula and the proteolytic enzyme chymopapain, which is injected into the disc compartment to dissolve the displaced disc material. In 1975 the Japanese orthopedic
Horizontal electromagnetic casting of thin metal sheets
Hull, John R.; Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.
1987-01-01
Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.
Horizontal electromagnetic casting of thin metal sheets
Energy Technology Data Exchange (ETDEWEB)
Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)
1988-01-01
Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.
Fibroblast cytoskeletal remodeling induced by tissue stretch involves ATP signaling.
Langevin, Helene M; Fujita, Takumi; Bouffard, Nicole A; Takano, Takahiro; Koptiuch, Cathryn; Badger, Gary J; Nedergaard, Maiken
2013-09-01
Fibroblasts in whole areolar connective tissue respond to static stretching of the tissue by expanding and remodeling their cytoskeleton within minutes both ex vivo and in vivo. This study tested the hypothesis that the mechanism of fibroblast expansion in response to tissue stretch involves extracellular ATP signaling. In response to tissue stretch ex vivo, ATP levels in the bath solution increased significantly, and this increase was sustained for 20 min, returning to baseline at 60 min. No increase in ATP was observed in tissue incubated without stretch or tissue stretched in the presence of the Rho kinase inhibitor Y27632. The increase in fibroblast cross sectional area in response to tissue stretch was blocked by both suramin (a purinergic receptor blocker) and apyrase (an enzyme that selectively degrades extracellular ATP). Furthermore, connexin channel blockers (octanol and carbenoxolone), but not VRAC (fluoxetine) or pannexin (probenecid) channel blockers, inhibited fibroblast expansion. Together, these results support a mechanism in which extracellular ATP signaling via connexin hemichannels mediate the active change in fibroblast shape that occurs in response to a static increase in tissue length. Copyright © 2013 Wiley Periodicals, Inc.
Efficacy of hamstring stretching programs in schoolchildren. A systematic review
Directory of Open Access Journals (Sweden)
Carlos-Alberto BECERRA FERNANDEZ
2017-03-01
Full Text Available The main purpose of the present review was to examine the scientific literature on the effects of physical education-based stretching programs on hamstring extensibility in schoolchildren aged 6-11 years. For this purpose relevant studies were searched from ten electronic databases dated up through May 2015. Of the 25 potentially relevant articles identified and retrieved for more detailed evaluation, only eight studies were included in the present review because they met the inclusion criteria. The overall results showed that incorporating hamstring stretching as a part of physical education classes produces a significant improvement in the scores of the tests: straight leg raise and classic sit-and-reach, for the experimental groups, but not for control groups. Stretching programs can be included in Physical Education classes, specifically during the warm-up and the cool down periods in order to improve hamstring extensibility. Although it seems that the stretching exercises in the warm-up period could be less effective in gaining flexibility in school children. Studies that use a stretching volume between 4 and 7 minutes per session and 2-4 training classes per week, obtain statistically significant improvements on the levels of hamstring flexibility in the experimental groups. However, after a five-week detraining period, children revert back to their initial flexibility levels. Therefore, it seems appropriate that physical education teachers should implement stretching programs to improve the students´ flexibility during the Physical Education classes.
Intelligent stretching of ankle joints with contracture/spasticity.
Zhang, Li-Qun; Chung, Sun G; Bai, Zhiqiang; Xu, Dali; van Rey, Elton M T; Rogers, Mark W; Johnson, Marjorie E; Roth, Elliot J
2002-09-01
An intelligent stretching device was developed to treat the spastic/contractured ankle of neurologically impaired patients. The device stretched the ankle safely throughout the range of motion (ROM) to extreme dorsiflexion and plantarflexion until a specified peak resistance torque was reached with the stretching velocity controlled based on the resistance torque. The ankle was held at the extreme position for a period of time to let stress relaxation occur before it was rotated back to the other extreme position. Stretching was slow at the joint extreme positions, making it possible to reach a larger ROM safely and it was fast in the middle ROM so the majority of the treatment was spent in stretching the problematic extreme ROM. Furthermore, the device evaluated treatment outcome quantitatively in multiple aspects, including active and passive ROM, joint stiffness and viscous damping and reflex excitability. The stretching resulted in considerable changes in joint passive ROM, stiffness, viscous damping and reflex gain. The intelligent control and yet simple design of the device suggest that with appropriate simplification, the device can be made portable and low cost, making it available to patients and therapists for frequent use in clinics/home and allowing more effective treatment and long-term improvement.
Research on Radial Motion Characteristic of the Cropping Hammer in Radial-Forging Cropping Method
Directory of Open Access Journals (Sweden)
Lijun Zhang
2015-01-01
Full Text Available The radial loading form applied to the bar is very important for reducing or avoiding the impact and vibration of the radial-forging cropping system and obtaining the high-quality cross section. A new radial stroke loading curve of the cropping hammer based on the cycloid form is proposed and the dynamic model of radial stroke loading mechanism is built. With the aim of obtaining the equivalent stiffness of the bar with V-shaped notch, which is a key parameter affecting the dynamic characteristic of radial stroke loading mechanism, the analytic model of the bar is built and the simulation experiments are designed by means of the orthogonal test method. The analytical results show that the diameter of the bar has the significant influence on the equivalent stiffness of the bar. Furthermore, the equivalent stiffness of the bar with V-shaped notch can be directly calculated according to the equivalent stiffness of smooth bar when h/d0.15. By using the cycloid stroke curve, the cropping experimental results for 45 steel bars and 20 steel bars show that the radial impact and vibration of the cropping system are decreased and the bar cross-section qualities have been significantly improved.
Soldering sheets using soft solders
Directory of Open Access Journals (Sweden)
Milan Brožek
2013-01-01
Full Text Available The paper contains strength tests results of joints soldered using lead and leadless soft solders. For tests lead solders types Pb60Sn40 and Sn60Pb40 and leadless soft solders types Sn95.5Ag3.8Cu0.7 and Sn96Ag4 were used. As basic materials steel sheet, zinc-coated steel sheet, copper sheet and brass sheet 100 x 20 x 1 mm was the test samples size. Always two sheets were cleaned and jointed together. For heating the propane-butane + air flame was used. Then the tested assemblies were loaded using the universal tensile-strength testing machine till to failure. At the tests the force needed for assemblies failure and failure type (in soldered joint, in basic material were recorded. From measured data the solder strength was calculated. From the experiment results it follows that from the point of view of the soldered joints strength as well of the solder strength relatively small differences were found. At the same time it is evident that the joint strength and solder strength depend on soldered material type and on soldered joint lapping length. On the basis of carried out experiments it can be stated that the substitution of lead solders by leadless solders is possible without risk of soldered joints strength decrease.
Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process.
Chen, Chao; Zhao, Shengdun; Han, Xiaolan; Zhao, Xuzhe; Ishida, Tohru
2017-08-01
Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a) localized deformation; (b) drawing; (c) backward extrusion; and (d) mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures.
Experimental Investigation on the Joining of Aluminum Alloy Sheets Using Improved Clinching Process
Directory of Open Access Journals (Sweden)
Chao Chen
2017-08-01
Full Text Available Aluminum alloy sheets have been widely used to build the thin-walled structures by mechanical clinching technology in recent years. However, there is an exterior protrusion located on the lower sheet and a pit on the upper sheet, which may restrict the application of the clinching technology in visible areas. In the present study, an improved clinched joint used to join aluminum alloy sheets was investigated by experimental method. The improved clinching process used for joining aluminum alloy evolves through four phases: (a localized deformation; (b drawing; (c backward extrusion; and (d mechanical interlock forming. A flat surface can be produced using the improved clinching process. Shearing strength, tensile strength, material flow, main geometrical parameters, and failure mode of the improved clinched joint were investigated. The sheet material was compressed to flow radially and upward using a punch, which generated a mechanical interlock by producing severe localized plastic deformation. The neck thickness and interlock of the improved clinched joint were increased by increasing the forming force, which also contributed to increase the strength of the clinched joint. The improved clinched joint can get high shearing strength and tensile strength. Three main failure modes were observed in the failure process, which were neck fracture mode, button separation mode, and mixed failure mode. The improved clinched joint has better joining quality to join aluminum alloy sheets on the thin-walled structures.
Thermal conductivity of freestanding single wall carbon nanotube sheet by Raman spectroscopy.
Sahoo, Satyaprakash; Chitturi, Venkateswara Rao; Agarwal, Radhe; Jiang, Jin-Wu; Katiyar, Ram S
2014-11-26
Thermal properties of single wall carbon nanotube sheets (SWCNT-sheets) are of significant importance in the area of thermal management, as an isolated SWCNT possesses high thermal conductivity of the value about 3000 W m(-1) K(-1). Here we report an indirect method of estimating the thermal conductivity of a nanometer thick suspended SWCNT-sheet by employing the Raman scattering technique. Tube diameter size is examined by the transmissions electron microscopy study. The Raman analysis of the radial breathing modes predicts narrow diameter size distribution with achiral (armchair) symmetry of the constituent SWCNTs. From the first order temperature coefficient of the A1g mode of the G band along with the laser power dependent frequency shifting of this mode, the thermal conductivity of the suspended SWCNT-sheet is estimated to be about ∼18.3 W m(-1) K(-1). Our theoretical study shows that the thermal conductivity of the SWCNT-sheet has contributions simultaneously from the intratube and intertube thermal transport. The intertube thermal conductivity (with contributions from the van der Waals interaction) is merely around 0.7 W m(-1) K(-1), which is three orders smaller than the intratube thermal conductivity, leading to an abrupt decrease in the thermal conductivity of the SWCNT-sheet as compared to the reported value for isolated SWCNT.
LENUS (Irish Health Repository)
O'Sullivan, Kieran
2009-01-01
BACKGROUND: Warm-up and stretching are suggested to increase hamstring flexibility and reduce the risk of injury. This study examined the short-term effects of warm-up, static stretching and dynamic stretching on hamstring flexibility in individuals with previous hamstring injury and uninjured controls. METHODS: A randomised crossover study design, over 2 separate days. Hamstring flexibility was assessed using passive knee extension range of motion (PKE ROM). 18 previously injured individuals and 18 uninjured controls participated. On both days, four measurements of PKE ROM were recorded: (1) at baseline; (2) after warm-up; (3) after stretch (static or dynamic) and (4) after a 15-minute rest. Participants carried out both static and dynamic stretches, but on different days. Data were analysed using Anova. RESULTS: Across both groups, there was a significant main effect for time (p < 0.001). PKE ROM significantly increased with warm-up (p < 0.001). From warm-up, PKE ROM further increased with static stretching (p = 0.04) but significantly decreased after dynamic stretching (p = 0.013). The increased flexibility after warm-up and static stretching reduced significantly (p < 0.001) after 15 minutes of rest, but remained significantly greater than at baseline (p < 0.001). Between groups, there was no main effect for group (p = 0.462), with no difference in mean PKE ROM values at any individual stage of the protocol (p > 0.05). Using ANCOVA to adjust for the non-significant (p = 0.141) baseline difference between groups, the previously injured group demonstrated a greater response to warm-up and static stretching, however this was not statistically significant (p = 0.05). CONCLUSION: Warm-up significantly increased hamstring flexibility. Static stretching also increased hamstring flexibility, whereas dynamic did not, in agreement with previous findings on uninjured controls. The effect of warm-up and static stretching on flexibility was greater in those with reduced
Kruse, Nicholas T; Scheuermann, Barry W
2017-08-05
Stretching is commonly prescribed with the intended purpose of increasing range of motion, enhancing muscular coordination, and preventing prolonged immobilization induced by aging or a sedentary lifestyle. Emerging evidence suggests that acute or long-term stretching exercise may modulate a variety of cardiovascular responses. Specifically, at the onset of stretch, the mechanical deformation of the vascular bed coupled with stimulation of group III muscle afferent fibers initiates a cascade of events resulting in both peripheral vasodilation and a heart rate-driven increase in cardiac output, blood pressure, and muscle blood flow. This potential to increase shear stress and blood flow without the use of excessive muscle energy expenditure may hold important implications for future therapeutic vascular medicine and cardiac health. However, the idea that a cardiovascular component may be involved in human skeletal muscle stretching is relatively new. Therefore, the primary intent of this review is to highlight topics related to skeletal muscle stretching and cardiovascular regulation and function. The current evidence suggests that acute stretching causes a significant macro- and microcirculatory event that alters blood flow and the relationship between oxygen availability and oxygen utilization. These acute vascular changes if performed chronically may result in improved endothelial function, improved arterial blood vessel stiffness, and/or reduced blood pressure. Although several mechanisms have been postulated, an increased nitric oxide bioavailability has been highlighted as one promising candidate for the improvement in vessel function with stretching. Collectively, the evidence provided in this review suggests that stretching acutely or long term may serve as a novel and alternative low intensity therapeutic intervention capable of improving several parameters of vascular function.
Cataract surgery on post radial keratotomy patients
Directory of Open Access Journals (Sweden)
Alessandro Meduri
2017-07-01
Full Text Available This study aims to evaluate and to compare three different approaches of cataract surgery to patients with previous radial keratotomy (RK, and to analyze the mechanical properties of the cornea after cataract surgery. Three groups of patients, each one including 8 eyes of patients with 16 RK incisions. The first group includes eyes with the first cataract incision superiorly, the second group in the temporal area, the third group in temporal area and a precautionary stabilizing suture across the RK incision adjacent to the main tunnel. In the first group intraoperative dehiscence occurred in three eyes (37.5%: it required immediate application of a suture. In the second group dehiscence occurred intraoperatively in two radial scars (20%: it required immediate application of a suture. In the third group, no intraoperative dehiscences were observed. The stabilizing suture of the RK incision works safer, with a lower risk of dehiscences and less post-operative astigmatism.
Cataract surgery on post radial keratotomy patients
Meduri, Alessandro; Urso, Mario; Signorino, Giuseppe A.; Rechichi, Miguel; Mazzotta, Cosimo; Kaufman, Stephen
2017-01-01
This study aims to evaluate and to compare three different approaches of cataract surgery to patients with previous radial keratotomy (RK), and to analyze the mechanical properties of the cornea after cataract surgery. Three groups of patients, each one including 8 eyes of patients with 16 RK incisions. The first group includes eyes with the first cataract incision superiorly, the second group in the temporal area, the third group in temporal area and a precautionary stabilizing suture across the RK incision adjacent to the main tunnel. In the first group intraoperative dehiscence occurred in three eyes (37.5%): it required immediate application of a suture. In the second group dehiscence occurred intraoperatively in two radial scars (20%): it required immediate application of a suture. In the third group, no intraoperative dehiscences were observed. The stabilizing suture of the RK incision works safer, with a lower risk of dehiscences and less post-operative astigmatism. PMID:28730124
Oculoauriculovertebral spectrum with radial anomaly in child
Directory of Open Access Journals (Sweden)
Amar Taksande
2013-01-01
Full Text Available Oculoauriculovertebral spectrum (OAVS or Goldenhar syndrome is a wide spectrum of congenital anomalies that involves structures arising from the first and second branchial arches. It is characterized by a wide spectrum of symptoms and physical features. These abnormalities mainly involve the cheekbones, jaws, mouth, ears, eyes, or vertebrae. Other conditions with ear and/or radial involvement, such as, the Nager syndrome, Holt-Oram syndrome, Radial-renal syndrome, facioauriculoradial dysplasia, Fanconi anemia, and Vertebral, Anal atresia, Cardiac, Trachea, Esophageal, Renal, and Limb (VACTERL association should be considered for differential diagnosis. Here we report a child who had facial asymmetry, microsomia, microtia, congenital facial nerve palsy, conductive hearing loss, skin tags, iris coloboma, and preaxial polydactyly.
Energy analysis of a DEAP based cylindrical actuator coupled with a radial negative stiffness spring
Chavanne, Jonathan; Civet, Yoan; Perriard, Yves
2017-04-01
The main problem to obtain considerable deformation with dielectric electro-active polymer based technology is the electrical breakdown. A simple solution consists in pre-stretching the elastomer before activating it which cancels the snap-through effect and thus avoid reaching the electrical limit. Due to the stress characteristic of the DEAP, it could be demonstrated that a spring with a negative stiffness provides the best strain. In this paper, a new design of a monostable spring with a negative stiffness is suggested for a DEAP tubular shape actuator. The particularity of the proposed solution is the radial direction of the displacement with a special load characteristic. In order to determine the performance of the system, the mechanical and electrical behaviour are investigated through analytical models with the assumption that the axial stretch stays constant. A finite element method is used to validate these latter and maximal error lower than 2% is reported. The energy chain conversion is developed in detail which allows studying all the energies transferred from both the electrical input and any pre-stretch solution to the membrane during a cycle of activation. From these models, the negative stiffness spring is compared to the common solution, i.e a constant pressure or a linear positive spring, to pre-stretch a cylindrical EAP. The results show that the linear spring always removes the snap-through behaviour contrary to the constant pressure. Depending on the geometry, the monostable solution cancels also this latter and owns a better energy transfer from the power supply to the elastomer (around 50% against 40% for the linear spring) or a better stroke compared to the linear spring. Furthermore, due to the hollow in its stress characteristic, the cylindrical shaped actuator associated to a linear spring or the proposed spring allows increasing the strain. Through the different analytical models, the definition of the electrical breakdown and the
Effects of Static Stretching and Playing Soccer on Knee Laxity.
Baumgart, Christian; Gokeler, Alli; Donath, Lars; Hoppe, Matthias W; Freiwald, Jürgen
2015-11-01
This study investigated exercise-induced effects of static stretching and playing soccer on anterior tibial translation (ATT) of the knee joint. Randomized controlled trial. University biomechanics laboratory. Thirty-one athletes were randomly assigned into a stretching (26.9 ± 6.2 years, 1.77 ± 0.09 m, 67.9 ± 10.7 kg) and a control group (27.9 ± 7.4 years, 1.75 ± 0.08 m, 72.0 ± 14.9 kg). Thirty-one amateur soccer players in an additional soccer group (25.1 ± 5.6 years, 1.74 ± 0.10 m, 71.8 ± 14.8 kg). All participants had no history of knee injury requiring surgery and any previous knee ligament or cartilage injury. The stretching group performed 4 different static stretching exercises with a duration of 2 × 20 seconds interspersed with breaks of 10 seconds. The soccer group completed a 90-minute soccer-specific training program. The control group did not perform any physical activity for approximately 30 minutes. Anterior tibial translation was measured with the KT-1000 knee arthrometer at forces of 67 N, 89 N, and maximal manual force (Max) before and after the intervention. There was a significant increase in ATT after static stretching and playing soccer at all applied forces. Maximal manual testing revealed a mean increase of ATT after static stretching of 2.1 ± 1.6 mm (P soccer of 1.0 ± 1.5 mm (P = 0.001). The ATT increase after static stretching at 67 and 89 N is significantly higher than in controls. At maximum manual testing, significant differences were evident between all groups. Static stretching and playing soccer increase ATT and may consequently influence mechanical factors of the anterior cruciate ligament. The ATT increase after static stretching was greater than after playing soccer. The observed increase in ATT after static stretching and playing soccer may be associated with changes in kinesthetic perception and sensorimotor control, activation of muscles, joint stability, overall performance, and higher injury risk.
Heliospheric current sheet inclinations at Venus and Earth
Directory of Open Access Journals (Sweden)
G. Ma
Full Text Available We investigate the inclinations of heliospheric current sheet at two sites in interplanetary space, which are generated from the same solar source. From the data of solar wind magnetic fields observed at Venus (0.72 AU and Earth (1 AU during December 1978-May 1982 including the solar maximum of 1981, 54 pairs of candidate sector boundary crossings are picked out, of which 16 pairs are identified as sector boundaries. Of the remainder, 12 pairs are transient structures both at Venus and Earth, and 14 pairs are sector boundaries at one site and have transient structures at the other site. It implies that transient structures were often ejected from the coronal streamer belt around the solar maximum. For the 16 pairs of selected sector boundaries, we determine their normals by using minimum variance analysis. It is found that most of the normal azimuthal angles are distributed between the radial direction and the direction perpendicular to the spiral direction both at Venus and Earth. The normal elevations tend to be smaller than ~ 45^{°} with respect to the solar equatorial plane, indicating high inclinations of the heliospheric current sheet, in particular at Earth. The larger scatter in the azimuth and elevation of normals at Venus than at Earth suggests stronger effects of the small-scale structures on the current sheet at 0.72 AU than at 1 AU. When the longitude difference between Venus and Earth is small (<40^{°} longitudinally, similar or the same inclinations are generally observed, especially for the sector boundaries without small-scale structures. This implies that the heliospheric current sheet inclination tends to be maintained during propagation of the solar wind from 0.72 AU to 1 AU. Detailed case studies reveal that the dynamic nature of helmet streamers causes variations of the sector boundary structure.
Key words. Interplanetary physics (interplanetary magnetic fields; sources of solar wind
Cabido, Christian E T; Bergamini, Juliana C; Andrade, André G P; Lima, Fernando V; Menzel, Hans J; Chagas, Mauro H
2014-04-01
The aim of the present study was to compare the acute effects of constant torque (CT) and constant angle (CA) stretching exercises on the maximum range of motion (ROMmax), passive stiffness (PS), and ROM corresponding to the first sensation of tightness in the posterior thigh (FSTROM). Twenty-three sedentary men (age, 19-33 years) went through 1 familiarization session and afterward proceeded randomly to both CA and CT treatment stretching conditions, on separate days. An isokinetic dynamometer was used to analyze hamstring muscles during passive knee extension. The subjects performed 4 stretches of 30 seconds each with a 15-second interval between them. In the CA stretching, the subject reached a certain ROM (95% of ROMmax), and the angle was kept constant. However, in the CT stretching exercise, the volunteer reached a certain resistance torque (corresponding to 95% of ROMmax) and it was kept constant. The results showed an increase in ROMmax for both CA and CT (p muscle-tendon unit and stretch tolerance, as indicated by the results of PS and FSTROM.
Radial Shock Wave Devices Generate Cavitation
Nikolaus B M Császár; Angstman, Nicholas B.; Stefan Milz; Sprecher, Christoph M.; Philippe Kobel; Mohamed Farhat; Furia, John P.; Christoph Schmitz
2015-01-01
Background Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT) devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues. Methods and Findings We used laser fiber optic probe hydrophone (FOPH) measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast; Electro Medical...
Political Accountability as a Radial Concept
STINGA, Laurentiu
2008-01-01
In the current article, I attempt to conceptualize political accountability in a disciplined fashion by proposing a strategy of conceptualization based on the internal radial structure of this difficult social science concept. Furthermore, I argue that accountability is still an under-explored concept. Its meanings are used interchangeably in the literature, which is fraught with definitions based on specific empirical cases. A disciplined conceptualization of political accountability can bri...
The Radial Velocity Experiment (RAVE): Fourth Data Release
Kordopatis, G.; Gilmore, G.; Steinmetz, M.; Boeche, C.; Seabroke, G. M.; Siebert, A.; Zwitter, T.; Binney, J.; de Laverny, P.; Recio-Blanco, A.; Williams, M. E. K.; Piffl, T.; Enke, H.; Roeser, S.; Bijaoui, A.; Wyse, R. F. G.; Freeman, K.; Munari, U.; Carrillo, I.; Anguiano, B.; Burton, D.; Campbell, R.; Cass, C. J. P.; Fiegert, K.; Hartley, M.; Parker, Q. A.; Reid, W.; Ritter, A.; Russell, K. S.; Stupar, M.; Watson, F. G.; Bienaymé, O.; Bland-Hawthorn, J.; Gerhard, O.; Gibson, B. K.; Grebel, E. K.; Helmi, A.; Navarro, J. F.; Conrad, C.; Famaey, B.; Faure, C.; Just, A.; Kos, J.; Matijevič, G.; McMillan, P. J.; Minchev, I.; Scholz, R.; Sharma, S.; Siviero, A.; de Boer, E. Wylie; Žerjal, M.
2013-01-01
We present the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity), radial velocities, individual abundances, and distances determined for 425,561 stars, which constitute the fourth public data release of the RAdial Velocity Experiment (RAVE). The stellar
The radial velocity experiment (RAVE) : Fourth data release
Kordopatis, G.; Gilmore, G.; Steinmetz, M.; Boeche, C.; Seabroke, G. M.; Siebert, A.; Zwitter, T.; Binney, J.; de Laverny, P.; Recio-Blanco, A.; Williams, M. E. K.; Piffl, T.; Enke, H.; Roeser, S.; Bijaoui, A.; Wyse, R. F. G.; Freeman, K.; Munari, U.; Carrillo, I.; Anguiano, B.; Burton, D.; Campbell, R.; Cass, C. J. P.; Fiegert, K.; Hartley, M.; Parker, Q. A.; Reid, W.; Ritter, A.; Russell, K. S.; Stupar, M.; Watson, F. G.; Bienayme, O.; Bland-Hawthorn, J.; Gerhard, O.; Gibson, B. K.; Grebel, E. K.; Helmi, A.; Navarro, J. F.; Conrad, C.; Famaey, B.; Faure, C.; Just, A.; Kos, J.; Matijevic, G.; McMillan, P. J.; Minchev, I.; Scholz, R.; Sharma, S.; Siviero, A.; de Boer, E. Wylie; Zerjal, M.
2013-01-01
We present the stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity), radial velocities, individual abundances, and distances determined for 425,561 stars, which constitute the fourth public data release of the RAdial Velocity Experiment (RAVE). The stellar
Energy Technology Data Exchange (ETDEWEB)
Mahanthesh, B., E-mail: bmanths@gmail.com [Department of Mathematics, AIMS Institutes, Peenya, 560058 Bangalore (India); Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, 577451 Shimoga, Karnataka (India); Gireesha, B.J., E-mail: bjgireesu@rediffmail.com [Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, 577451 Shimoga, Karnataka (India); Department of Mechanical Engineering, Cleveland State University, Cleveland, OH (United States); Gorla, R.S. Reddy, E-mail: r.gorla@csuohio.edu [Department of Mechanical Engineering, Cleveland State University, Cleveland, OH (United States); Abbasi, F.M., E-mail: abbasisarkar@gmail.com [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Shehzad, S.A., E-mail: ali_qau70@yahoo.com [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)
2016-11-01
Numerical solutions of three-dimensional flow over a non-linear stretching surface are developed in this article. An electrically conducting flow of viscous nanoliquid is considered. Heat transfer phenomenon is accounted under thermal radiation, Joule heating and viscous dissipation effects. We considered the variable heat flux condition at the surface of sheet. The governing mathematical equations are reduced to nonlinear ordinary differential systems through suitable dimensionless variables. A well-known shooting technique is implemented to obtain the results of dimensionless velocities and temperature. The obtained results are plotted for multiple values of pertinent parameters to discuss the salient features of these parameters on fluid velocity and temperature. The expressions of skin-friction coefficient and Nusselt number are computed and analyzed comprehensively through numerical values. A comparison of present results with the previous results in absence of nanoparticle volume fraction, mixed convection and magnetic field is computed and an excellent agreement noticed. We also computed the results for both linear and non-linear stretching sheet cases. - Highlights: • Hydromagnetic flow of nanofluid over a bidirectional non-linear stretching surface is examined. • Cu, Al{sub 2}O3 and TiO{sub 2} types nanoparticles are taken into account. • Numerical solutions have been computed and addressed. • The values of skin-friction and Nusselt number are presented.
Development of a Radial Deconsolidation Method
Energy Technology Data Exchange (ETDEWEB)
Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Fred C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-12-01
A series of experiments have been initiated to determine the retention or mobility of fission products* in AGR fuel compacts [Petti, et al. 2010]. This information is needed to refine fission product transport models. The AGR-3/4 irradiation test involved half-inch-long compacts that each contained twenty designed-to-fail (DTF) particles, with 20-μm thick carbon-coated kernels whose coatings were deliberately fabricated such that they would crack under irradiation, providing a known source of post-irradiation isotopes. The DTF particles in these compacts were axially distributed along the compact centerline so that the diffusion of fission products released from the DTF kernels would be radially symmetric [Hunn, et al. 2012; Hunn et al. 2011; Kercher, et al. 2011; Hunn, et al. 2007]. Compacts containing DTF particles were irradiated at Idaho National Laboratory (INL) at the Advanced Test Reactor (ATR) [Collin, 2015]. Analysis of the diffusion of these various post-irradiation isotopes through the compact requires a method to radially deconsolidate the compacts so that nested-annular volumes may be analyzed for post-irradiation isotope inventory in the compact matrix, TRISO outer pyrolytic carbon (OPyC), and DTF kernels. An effective radial deconsolidation method and apparatus appropriate to this application has been developed and parametrically characterized.
Radial interchange motions of plasma filaments
DEFF Research Database (Denmark)
Garcia, O.E.; Bian, N.H.; Fundamenski, W.
2006-01-01
Radial convection of isolated filamentary structures due to interchange motions in magnetized plasmas is investigated. Following a basic discussion of vorticity generation, ballooning, and the role of sheaths, a two-field interchange model is studied by means of numerical simulations on a biperio......Radial convection of isolated filamentary structures due to interchange motions in magnetized plasmas is investigated. Following a basic discussion of vorticity generation, ballooning, and the role of sheaths, a two-field interchange model is studied by means of numerical simulations...... on a biperiodic domain perpendicular to the magnetic field. It is demonstrated that a blob-like plasma structure develops dipolar vorticity and electrostatic potential fields, resulting in rapid radial acceleration and formation of a steep front and a trailing wake. While the dynamical evolution strongly depends...... as the acoustic speed times the square root of the structure size relative to the length scale of the magnetic field. The plasma filament eventually decelerates due to mixing and collisional dissipation. Finally, the role of sheath dissipation is investigated. When included in the simulations, it significantly...
Ice sheet hydrology - a review
Energy Technology Data Exchange (ETDEWEB)
Jansson, Peter; Naeslund, Jens-Ove [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden); Rodhe, Lars [Geological Survey of Sweden, Uppsala (Sweden)
2007-03-15
This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging
Hydrogeological map of Kabo Sheet 80NW topographical sheet 1 ...
African Journals Online (AJOL)
A hydro geological mapping of the Federal Surveys of Nigeria, Kabo Sheet 80 NW, on scale 1:50,000 were made with areal coverage of 729Km2 on the Crystalline Basement Complex, and the hydrogeoogical maps produced are maps of depth to the water table and maps of configuration peak of dry season and wet ...
hydrogeological map of kabo sheet 80 nw topographical sheet 1
African Journals Online (AJOL)
DR. AMINU
ABSTRACT. A hydro geological mapping of the Federal Surveys of Nigeria, Kabo Sheet 80 NW, on scale 1:50,000 were made with areal coverage of 729Km2 on the Crystalline Basement Complex, and the hydrogeoogical maps produced are maps of depth to the water table and maps of configuration peak of dry season ...
A new specimen for out-of-plane shear strength of advanced high strength steel sheets
Gu, B.; He, J.; Li, S. H.; Zhao, Y. X.; Li, Y. F.; Zeng, D.; Xia, Z. C.; Lin, Z. Q.
2017-09-01
Compared with the conventional steels, “shear fracture” is one of the main issues for advanced high strength steels (AHSS). Due to rolling, anisotropy is an intrinsic property for sheet metals. Not only the plastic responses of sheet metals but also the fracture strengths are orientation dependent. In the small radius forming process, for example, the stretch-bending deformation of sheet metals under small radius condition, the normal stress cannot be neglected. Three-dimensional loading condition constructs complex shear stress states of sheet metals especially the out-of-plane shear stress. The out-of-plane performance must be considered in order to better understand the “shear fracture” phenomenon of AHSS. Compared to in-plane shear test, the out-of-plane shear test is more difficult to carry out due to the severe restriction of the dimensions in the thickness direction. In this paper, a new specimen is presented for out-of-plane shear test. Failure of the specimen occurs in shear between two centrally located notches machined halfway through its thickness from opposing sides. Meanwhile, the finite element (FE) model and possible failure modes of this specimen are investigated in detail. At last, brief experimental results between out-of-plane shear fracture strength and the in-plane shear fracture strength are compared for DP980 sheets.
Development of oil canning index model for sheet metal forming products with large curvature
Kim, Honglae; Lee, Seonggi; Murugesan, Mohanraj; Hong, Seokmoo; Lee, Shanghun; Ki, Juncheol; Jung, Hunchul; Kim, Naksoo
2017-09-01
Oil canning is predominantly caused by unequal stretches and heterogeneous stress distributions in steel sheets, which affects the appearance of components and develop noise and vibration problems. This paper proposes the formulation of an Oil canning index (OCI) model that can predict the occurrence of oil canning in the sheet metal. To investigate the influence of material properties, we used electro-galvanized (EGI) and galvanized (GI) steel sheets with different thicknesses and processing conditions. Furthermore, this paper presents an appropriate experimental and numerical procedure for determining the sheet stiffness and indentation properties to evaluate the oil canning results. Experiments were carried out by varying the tensile force over different materials, thicknesses, and bead force. Comparison of the discrete results obtained from these experiments confirmed that the product shape characteristics, such as curvature, have a significant influence on the oil canning occurrence. Based on the results, we propose the new OCI model, which can effectively predict the oil canning occurrence owing to the shape curvature. Verification of the accuracy and usability of our model has been carried out by simulating the experiments that were done with the sheet metal. The authors observed a good agreement between the experimental and numerical results from the model. This research work can be considered as a very effective method for eliminating appearance defects from the automobile products.
Sarcomeric model of stretch-induced stress fiber reorganization
Directory of Open Access Journals (Sweden)
Rol
2010-12-01
Full Text Available Roland Kaunas1, Hui-Ju Hsu1, Shinji Deguchi21Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA; 2Department of Biomedical Engineering, Tohoku University, Sendai, JapanAbstract: Actin stress fibers (SFs are mechanosensitive structural elements that respond to applied stress and strain to regulate cell morphology, signal transduction, and cell function. Results from various studies indicate that SFs tend to maintain stress or strain at a constant level. We developed a simple quantitative sarcomeric model of SFs to predict the role of actomyosin crossbridge cycling in SF tension regulation and reorientation in response to cyclic stretching. Under static conditions, the steady-state levels of SF tension were determined by the fiber passive stiffness and the stall force of the constituent myosin II filaments. When subject to cyclic changes in length at low frequencies, SFs change their unloaded reference length levels through myosin sliding to maintain tension at the original level. At high stretch frequencies, myosin cannot respond quickly enough and the SF behaves elastically. Myosin sliding also contributes to SF turnover, resulting in SF reorientation away from the direction of stretching at high, but not low, stretch frequencies. Using model parameters extracted from the literature, our model describes the dependence of cyclic stretch-induced SF alignment on stretch frequency and pattern consistent with experimental findings. This analysis predicts that myosin II plays multiple roles in regulating the ability of SFs to adapt to a dynamic mechanical environment.Keywords: mechanical stretch, cytoskeletal dynamics, myosin, mechanotransduction
Static versus dynamic stretching: Chronic and acute effects on Agility performance in male athletes
Directory of Open Access Journals (Sweden)
Iman Taleb-Beydokhti
2015-04-01
Full Text Available The purpose of this study was to examine the acute and chronic effects of static & dynamic stretching protocols on agility performance in amateur handball players. Twelve male amateur handball players (age: 19.66 ± 4.02 years old, weight: 67.12 ± 8.73 kg, height: 178.29 ± 7.81 cm participated in this study. The athletes were randomly allocated into two groups: static stretching or dynamic stretching. All of them underwent an initial evaluation and were submitted to the first intervention. They were evaluated once again and at the end of 12 training sessions. The results analyzed using ANOVA showed that there was a significant decrease in agility time after dynamic stretching against no stretching in the acute phase; but, there were no significant differences between dynamic stretching and no stretching in the chronic phase. In addition, there was no a significant difference between no stretching and static stretching in the acute phase; while, There was a significant decrease in agility time after no stretching against static stretching in the chronic phase. It was concluded that acute dynamic stretching as part of a warm-up may decrease agility time performance, whereas static stretching seems to increase agility time performance. Consequently, the acute and chronic static stretching should not be performed prior to an explosive athletic performance. Keywords: Handball, Agility, Dynamic stretching, Static stretching
Neural effects of muscle stretching on the spinal reflexes in multiple lower-limb muscles.
Masugi, Yohei; Obata, Hiroki; Inoue, Daisuke; Kawashima, Noritaka; Nakazawa, Kimitaka
2017-01-01
While previous studies have shown that muscle stretching suppresses monosynaptic spinal reflex excitability in stretched muscles, its effects on non-stretched muscles is still largely unknown. The purpose of this study was to examine the effects of muscle stretching on monosynaptic spinal reflex in non-stretched muscles. Ten healthy male subjects participated in this study. Muscle stretching of the right triceps surae muscle was performed using a motor torque device for 1 minute. Three different dorsiflexion torques (at approximately 5, 10, and 15 Nm) were applied during muscle stretching. Spinal reflexes evoked by transcutaneous spinal cord stimulation were recorded in both the lower-limb muscles before, during, and at 0 and 5 min following muscle stretching. The amplitudes of the spinal reflexes in both the stretched and non-stretched muscles in the right (ipsilateral) leg were smaller during stretching compared to before, and at 0 and 5 min after stretching. Furthermore, the degree of reduction in the amplitude of the spinal reflexes in the right (ipsilateral) leg muscles increased significantly as the dorsiflexion torque (i.e., stretching of the right triceps surae muscles) increased. In contrast, reduction in the amplitude of the spinal reflexes with increasing dorsiflexion torque was not seen in the left (contralateral) leg muscles. Our results clearly indicate that muscle stretching has inhibitory effects on monosynaptic spinal reflexes, not only in stretched muscles, but also in non-stretched muscles of the ipsilateral leg.