WorldWideScience

Sample records for radial wave number

  1. Low-to-High Confinement Transition Mediated by Turbulence Radial Wave Number Spectral Shift in a Fusion Plasma.

    Science.gov (United States)

    Xu, G S; Wan, B N; Wang, H Q; Guo, H Y; Naulin, V; Rasmussen, J Juul; Nielsen, A H; Wu, X Q; Yan, N; Chen, L; Shao, L M; Chen, R; Wang, L; Zhang, W

    2016-03-04

    A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L-H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment.

  2. On helicon wave induced radial plasma transport

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1993-04-01

    Estimates of helicon wave induced radial plasma transport are presented. The wave induced transport grows or decreases in dependence on the sign of the azimuthal wave number; these changes in transport may play an important role in helicon wave plasma sources. (author) 5 figs., 18 refs

  3. Waves on radial film flows

    Science.gov (United States)

    Cholemari, Murali R.; Arakeri, Jaywant H.

    2005-08-01

    We study the stability of surface waves on the radial film flow created by a vertical cylindrical water jet striking a horizontal plate. In such flows, surface waves have been found to be unstable and can cause transition to turbulence. This surface-wave-induced transition is different from the well-known Tollmien-Schlichting wave-induced transition. The present study aims at understanding the instability and the transition process. We do a temporal stability analysis by assuming the flow to be locally two-dimensional but including spatial variations to first order in the basic flow. The waves are found to be dispersive, mostly unstable, and faster than the mean flow. Spatial variation is the major destabilizing factor. Experiments are done to test the results of the linear stability analysis and to document the wave breakup and transition. Comparison between theory and experiments is fairly good and indicates the adequacy of the model.

  4. Low-to-high confinement transition mediated by turbulence radial wave number spectral shift in a fusion plasma

    DEFF Research Database (Denmark)

    Xu, G. S.; Wan, B. N.; Wang, H. Q.

    2016-01-01

    A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett.110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wa...

  5. On radio frequency wave induced radial transport and wave helicity

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1992-09-01

    Expressions for wave induced radial transport are derived allowing simple estimates. The transport is enhanced due to the presence of poloidal magnetostatic field and in the vicinity of the ion cyclotron resonance. The direction of the wave induced transport depends also on the wave polarization. (author) 19 refs

  6. Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves.

    Science.gov (United States)

    Torrent, Daniel; Sánchez-Dehesa, José

    2009-08-07

    We demonstrate that metamaterials with anisotropic properties can be used to develop a new class of periodic structures that has been named radial wave crystals. They can be sonic or photonic, and wave propagation along the radial directions is obtained through Bloch states like in usual sonic or photonic crystals. The band structure of the proposed structures can be tailored in a large amount to get exciting novel wave phenomena. For example, it is shown that acoustical cavities based on radial sonic crystals can be employed as passive devices for beam forming or dynamically orientated antennas for sound localization.

  7. Nonlinear radial propagation of drift wave turbulence

    International Nuclear Information System (INIS)

    Prakash, M.

    1985-01-01

    We study the linear and the nonlinear radial propagation of drift wave energy in an inhomogeneous plasma. The drift mode excited in such a plasma is dispersive in nature. The drift wave energy spreads out symmetrically along the direction of inhomogeneity with a finite group velocity. To study the effect of the nonlinear coupling on the propagation of energy in a collision free plasma, we solve the Hasegawa-Mima equation as a mixed initial boundary-value problem. The solutions of the linearized equation are used to check the reliability of our numerical calculations. Additional checks are also performed on the invariants of the system. Our results reveal that a pulse gets distorted as it propagates through the medium. The peak of the pulse propagates with a finite velocity that depends on the amplitude of the initial pulse. The polarity of propagation depends on the initial parameters of the pulse. We have also studied drift wave propagation in a resistive plasma. The Hasegawa-Wakatani equations are used to investigate this problem

  8. Radial extension of drift waves in presence of velocity profiles

    International Nuclear Information System (INIS)

    Sen, S.; Weiland, J.

    1994-01-01

    The effect of a radially varying poloidal velocity field on the recently found radially extended toroidal drift waves is investigated analytically. The role of velocity curvature (υ φ '') is found to have robust effects on the radial model structure of the mode. For a positive value of the curvature (Usually found in the H-mode edges) the radial model envelope, similar to the sheared slab case, becomes fully outgoing. The mode is therefore stable. On the other hand, for a negative value of the curvature (usually observed in the L-mode edges) all the characteristics of conventional drift waves return back. The radial mode envelope reduces to a localized Gaussian shape and the mode is therefore unstable again for typical (magnetic) shear values in tokamaks. Velocity shear (υ φ ??) on the other hand is found to have rather insignificant role both in determining the radial model structure and stability

  9. Computer network defense through radial wave functions

    Science.gov (United States)

    Malloy, Ian J.

    The purpose of this research is to synthesize basic and fundamental findings in quantum computing, as applied to the attack and defense of conventional computer networks. The concept focuses on uses of radio waves as a shield for, and attack against traditional computers. A logic bomb is analogous to a landmine in a computer network, and if one was to implement it as non-trivial mitigation, it will aid computer network defense. As has been seen in kinetic warfare, the use of landmines has been devastating to geopolitical regions in that they are severely difficult for a civilian to avoid triggering given the unknown position of a landmine. Thus, the importance of understanding a logic bomb is relevant and has corollaries to quantum mechanics as well. The research synthesizes quantum logic phase shifts in certain respects using the Dynamic Data Exchange protocol in software written for this work, as well as a C-NOT gate applied to a virtual quantum circuit environment by implementing a Quantum Fourier Transform. The research focus applies the principles of coherence and entanglement from quantum physics, the concept of expert systems in artificial intelligence, principles of prime number based cryptography with trapdoor functions, and modeling radio wave propagation against an event from unknown parameters. This comes as a program relying on the artificial intelligence concept of an expert system in conjunction with trigger events for a trapdoor function relying on infinite recursion, as well as system mechanics for elliptic curve cryptography along orbital angular momenta. Here trapdoor both denotes the form of cipher, as well as the implied relationship to logic bombs.

  10. Effects of Radial Electric Fields on ICRF Waves

    International Nuclear Information System (INIS)

    Phillips, C.K.; Hosea, J.C.; Ono, M.; Wilson, J.R.

    2001-01-01

    Equilibrium considerations infer that large localized radial electric fields are associated with internal transport barrier structures in tokamaks and other toroidal magnetic confinement configurations. In this paper, the effects of an equilibrium electric field on fast magnetosonic wave propagation are considered in the context of a cold plasma model

  11. Radial energy transport by magnetospheric ULF waves: Effects of magnetic curvature and plasma pressure

    Science.gov (United States)

    Kouznetsov, Igor; Lotko, William

    1995-01-01

    The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the

  12. Improved WKB radial wave functions in several bases

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.; Department of Physics, University of Wisconsin, Madison, Wisconsin 53706)

    1986-01-01

    We develop approximate WKB-like solutions to the radial Schroedinger equation for problems with an angular momentum barrier using Riccati-Bessel, Coulomb, and harmonic-oscillator functions as basis functions. The solutions treat the angular momentum singularity near the origin more accurately in leading approximation than the standard WKB solutions based on sine waves. The solutions based on Riccati-Bessel and free Coulomb wave functions continue smoothly through the inner turning point and are appropriate for scattering problems. The solutions based on oscillator and bound Coulomb wave functions incorporate both turning points smoothly and are particularly appropriate for bound-state problems; no matching of piecewise solutions using Airy functions is necessary

  13. Blocking Radial Diffusion in a Double-Waved Hamiltonian Model

    International Nuclear Information System (INIS)

    Martins, Caroline G L; De Carvalho, R Egydio; Marcus, F A; Caldas, I L

    2011-01-01

    A non-twist Hamiltonian system perturbed by two waves with particular wave numbers can present Robust Tori, barriers created by the vanishing of the perturbing Hamiltonian at some defined positions. When Robust Tori exist, any trajectory in phase space passing close to them is blocked by emergent invariant curves that prevent the chaotic transport. We analyze the breaking up of the RT as well the transport dependence on the wave numbers and on the wave amplitudes. Moreover, we report the chaotic web formation in the phase space and how this pattern influences the transport.

  14. Parametric analysis of change in wave number of surface waves

    Directory of Open Access Journals (Sweden)

    Tadić Ljiljana

    2015-01-01

    Full Text Available The paper analyzes the dependence of the change wave number of materials soil constants, ie the frequency of the waves. The starting point in this analysis cosists of wave equation and dynamic stiffness matrix of soil.

  15. Variations of helicon wave induced radial plasma transport in different experimental conditions

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1993-08-01

    Variations of the helicon wave induced radial plasma transport are presented in dependence on values of the plasma radius, magnetostatic field, plasma density, frequency of the helicon wave and on the ion charge. 22 refs., 14 figs

  16. Study on Meshfree Hermite Radial Point Interpolation Method for Flexural Wave Propagation Modeling and Damage Quantification

    Directory of Open Access Journals (Sweden)

    Hosein Ghaffarzadeh

    Full Text Available Abstract This paper investigates the numerical modeling of the flexural wave propagation in Euler-Bernoulli beams using the Hermite-type radial point interpolation method (HRPIM under the damage quantification approach. HRPIM employs radial basis functions (RBFs and their derivatives for shape function construction as a meshfree technique. The performance of Multiquadric(MQ RBF to the assessment of the reflection ratio was evaluated. HRPIM signals were compared with the theoretical and finite element responses. Results represent that MQ is a suitable RBF for HRPIM and wave propagation. However, the range of the proper shape parameters is notable. The number of field nodes is the main parameter for accurate wave propagation modeling using HRPIM. The size of support domain should be less thanan upper bound in order to prevent high error. With regard to the number of quadrature points, providing the minimum numbers of points are adequate for the stable solution, but the existence of more points in damage region does not leads to necessarily the accurate responses. It is concluded that the pure HRPIM, without any polynomial terms, is acceptable but considering a few terms will improve the accuracy; even though more terms make the problem unstable and inaccurate.

  17. Radial shock wave therapy in dogs with hip osteoarthritis.

    Science.gov (United States)

    Souza, Alexandre N A; Ferreira, Marcio P; Hagen, Stefano C F; Patrício, Geni C F; Matera, Julia M

    2016-01-01

    The study aims were to evaluate the effects of radial shock wave therapy (RSWT) in dogs with hip osteoarthritis (OA) using clinical assessment and kinetic analysis. Thirty dogs diagnosed with bilateral hip OA and 30 healthy dogs were used. In OA dogs, one limb was randomly selected for treatment with RSWT while the contralateral limb served as an untreated control. Dogs were evaluated while walking on a pressure walkway. Peak vertical force (PVF) and vertical impulse (VI) were documented; symmetry index (SI) was also calculated. Blinded clinical evaluation was performed using a visual analogue scale (VAS). Owner perception data regarding levels of physical activity were also collected. The RSWT protocol (2000 pulses, 10 Hz, 2-3.4 bars) consisted of three weekly treatment sessions (days 1, 8 and 16). Follow-up data were collected 30, 60 and 90 days after the first session. Data were compared between time points, groups and limbs pairs. At the end of the experimental period, mean PVF and VI values had increased (25.9 to 27.6%BW and 2.1 to 12.7%BW × s respectively) in treated limbs, with no significant differences in control limbs; SI values suggest improvement. Mean PVF and VI remained lower in the treated compared to the healthy group following treatment. The VAS scores suggested improvement in pain and lameness in treated dogs. Owner perception data suggested improved levels of physical activity following treatment. Outcomes of this study suggested beneficial effects of RSWT in dogs with hip osteoarthritis.

  18. Analysis of linguistic terms of variables representing the wave of arterial diameter variation in radial arteries using fuzzy entropies

    International Nuclear Information System (INIS)

    Nuno Almirantearena, F; Introzzi, A; Clara, F; Burillo Lopez, P

    2007-01-01

    In this work we use 53 Arterial Diameter Variation (ADV) waves extracted from radial artery of normotense males, along with the values of variables that represent the ADV wave, obtained by means of multivariate analysis. Then, we specify the linguistic variables and the linguistic terms. The variables are fuzzified using triangular and trapezoidal fuzzy numbers. We analyze the fuzziness of the linguistic terms by applying discrete and continuous fuzzy entropies. Finally, we infer which variable presents the greatest disorder associated to the loss of arterial elasticity in radial artery

  19. Inversion of Surface Wave Phase Velocities for Radial Anisotropy to an Depth of 1200 km

    Science.gov (United States)

    Xing, Z.; Beghein, C.; Yuan, K.

    2012-12-01

    This study aims to evaluate three dimensional radial anisotropy to an depth of 1200 km. Radial anisotropy describes the difference in velocity between horizontally polarized Rayleigh waves and vertically polarized Love waves. Its presence in the uppermost 200 km mantle has well been documented by different groups, and has been regarded as an indicator of mantle convection which aligns the intrinsically anisotropic minerals, largely olivine, to form large scale anisotropy. However, there is no global agreement on whether anisotropy exists in the region below 200 km. Recent models also associate a fast vertically polarized shear wave with vertical upwelling mantle flow. The data used in this study is the globally isotropic phase velocity models of fundamental and higher mode Love and Rayleigh waves (Visser, 2008). The inclusion of higher mode surface wave phase velocity provides sensitivities to structure at depth that extends to below the transition zone. While the data is the same as used by Visser (2008), a quite different parameterization is applied. All the six parameters - five elastic parameters A, C, F, L, N and density - are now regarded as independent, which rules out possible biased conclusions induced by scaling relation method used in several previous studies to reduce the number of parameters partly due to limited computing resources. The data need to be modified by crustal corrections (Crust2.0) as we want to look at the mantle structure only. We do this by eliminating the perturbation in surface wave phase velocity caused by the difference in crustal structure with respect to the referent model PREM. Sambridge's Neighborhood Algorithm is used to search the parameter space. The introduction of such a direct search technique pales the traditional inversion method, which requires regularization or some unnecessary priori restriction on the model space. On the contrary, the new method will search the full model space, providing probability density

  20. Recurrent formulas and some exact relations for radial integrals with Dirac and Schroedinger wave functions

    International Nuclear Information System (INIS)

    Shabaev, V.M.

    1984-01-01

    Some exact relations are derived for radial integrals with Dirac wave functions. These relations are used for calculating radial integrals in the case of the Coulomb field. The threedimensional harmonic oscillator is also considered and exact formulae for the dipole transition probabilities are obtained using general relations between matrix elements

  1. Approximate relativistic corrections to atomic radial wave functions

    International Nuclear Information System (INIS)

    Cowan, R.D.; Griffin, D.C.

    1976-01-01

    The mass-velocity and Darwin terms of the one-electron-atom Pauli equation have been added to the Hartree-Fock differential equations by using the HX formula to calculate a local central field potential for use in these terms. Introduction of the quantum number j is avoided by omitting the spin-orbit term of the Pauli equation. The major relativistic effects, both direct and indirect, are thereby incorporated into the wave functions, while allowing retention of the commonly used nonrelativistic formulation of energy level calculations. The improvement afforded in calculated total binding energies, excitation energies, spin-orbit parameters, and expectation values of r/sub m/ is comparable with that provided by fully relativistic Dirac-Hartree-Fock calculations

  2. Ambipolarons: Solitary wave solutions for the radial electric field in a plasma

    International Nuclear Information System (INIS)

    Hastings, D.E.; Hazeltine, R.D.; Morrison, P.J.

    1986-01-01

    The ambipolar radial electric field in a nonaxisymmetric plasma can be described by a nonlinear diffusion equation. This equation is shown to possess solitary wave solutions. A model nonlinear diffusion equation with a cubic nonlinearity is studied. An explicit analytic step-like form for the solitary wave is found. It is shown that the solitary wave solutions are linearly stable against all but translational perturbations. Collisions of these solitary waves are studied and three possible final states are found: two diverging solitary waves, two stationary solitary waves, or two converging solitary waves leading to annihilation

  3. Sensitivities of surface wave velocities to the medium parameters in a radially anisotropic spherical Earth and inversion strategies

    Directory of Open Access Journals (Sweden)

    Sankar N. Bhattacharya

    2015-11-01

    Full Text Available Sensitivity kernels or partial derivatives of phase velocity (c and group velocity (U with respect to medium parameters are useful to interpret a given set of observed surface wave velocity data. In addition to phase velocities, group velocities are also being observed to find the radial anisotropy of the crust and mantle. However, sensitivities of group velocity for a radially anisotropic Earth have rarely been studied. Here we show sensitivities of group velocity along with those of phase velocity to the medium parameters VSV, VSH , VPV, VPH , h and density in a radially anisotropic spherical Earth. The peak sensitivities for U are generally twice of those for c; thus U is more efficient than c to explore anisotropic nature of the medium. Love waves mainly depends on VSH while Rayleigh waves is nearly independent of VSH . The sensitivities show that there are trade-offs among these parameters during inversion and there is a need to reduce the number of parameters to be evaluated independently. It is suggested to use a nonlinear inversion jointly for Rayleigh and Love waves; in such a nonlinear inversion best solutions are obtained among the model parameters within prescribed limits for each parameter. We first choose VSH, VSV and VPH within their corresponding limits; VPV and h can be evaluated from empirical relations among the parameters. The density has small effect on surface wave velocities and it can be considered from other studies or from empirical relation of density to average P-wave velocity.

  4. Non-axial-symmetric Alfven waves in cylindrical, radial inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Raeuchle, E.

    1978-08-01

    The propagation of nonaxialsymmetric Alfven waves is investigated theoretically. Eigenfunctions and dispersion relations are calculated numerically for radial inhomogeneous cylindrical plasmas. In the MHD treatment resistivity, neutral particle loading and ion cyclotron effects are included. The investigations are of importance for plasma heating by Alfven waves. (orig.) [de

  5. radial

    Directory of Open Access Journals (Sweden)

    JOHN WILLIAM BRANCH

    2007-01-01

    Full Text Available La creación de modelos de objetos reales es una tarea compleja para la cual se ha visto que el uso de técnicas tradicionales de modelamiento tiene restricciones. Para resolver algunos de estos problemas, los sensores de rango basados en láser se usan con frecuencia para muestrear la superficie de un objeto desde varios puntos de vista, lo que resulta en un conjunto de imágenes de rango que son registradas e integradas en un modelo final triangulado. En la práctica, debido a las propiedades reflectivas de la superficie, las oclusiones, y limitaciones de acceso, ciertas áreas de la superficie del objeto usualmente no son muestreadas, dejando huecos que pueden crear efectos indeseables en el modelo integrado. En este trabajo, presentamos un nuevo algoritmo para el llenado de huecos a partir de modelos triangulados. El algoritmo comienza localizando la frontera de las regiones donde están los huecos. Un hueco consiste de un camino cerrado de bordes de los triángulos en la frontera que tienen al menos un borde que no es compartido con ningún otro triangulo. El borde del hueco es entonces adaptado mediante un B-Spline donde la variación promedio de la torsión del la aproximación del B-spline es calculada. Utilizando un simple umbral de la variación promedio a lo largo del borde, se puede clasificar automáticamente, entre huecos reales o generados por intervención humana. Siguiendo este proceso de clasificación, se usa entonces una versión automatizada del interpolador de funciones de base radial para llenar el interior del hueco usando los bordes vecinos.

  6. On the stability of atmospheric waves with low waves numbers

    Energy Technology Data Exchange (ETDEWEB)

    Wiin-Nielsen, A [The Royal Danish Academy of Sciences and Letters, Copenhagen (Denmark)

    2001-01-01

    The stability of atmospheric waves with low wave numbers is investigated using a quasi-geostrophic model of the second kind. Such a model is base on the thermodynamic equation, the continuity equation and a rigorous use of the geostrophic relations. The boundary conditions at the surface of the earth is formulated in two ways. The effects of a boundary condition at 1000 hpa, where the vertical p-velocity is zero, is compared with the effects of a second condition, where w is zero. The two boundary conditions are used to determine the stability of the low wave number waves. The second condition introduces waves with large positive and negative phase velocities, especially in the low latitudes, but has also an influence on the stability of these waves. The main result of the comparative investigation is that the more correct boundary condition in general will produce stronger instabilities than the simpler boundary condition. The e-folding times obtained with the more general model is in closer agreement with the results obtained by observational studies. [Spanish] Se investiga la estabilidad de las ondas atmosfericas con numero bajo de ondas, mediante un modelo quasi-geostrofico de segunda clase. Tal modelo esta basado en la ecuacion termodinamica, la de continuidad y un empleo riguroso de las relaciones geostroficas. La condicion de frontera en la superficie terrestre se formula de dos maneras. Los efectos de una condicion fronteriza a los 1000 hPa, donde la velocidad vertical P es nula, se comparan con los efectos de una segunda condicion, donde W es cero. Las dos condiciones fronterizas se usan para determinar la estabilidad de las ondas de numero bajo. La segunda condicion introduce ondas grandes, tanto con velocidades de fase positivas como negativas, especialmente en las bajas latitudes, pero tiene tambien una influencia sobre la estabilidad de estas ondas. El resultado principal de la investigacion comparativa es que entre mas realista es la condicion de

  7. Polarization reversal of electron cyclotron wave due to radial boundary condition

    International Nuclear Information System (INIS)

    Takahashi, K.; Kaneko, T.; Hatakeyama, R.

    2004-01-01

    The electron cyclotron wave is an important plasma wave in the fields of basic plasma physics and nuclear fusion. Propagation and absorption of electromagnetic waves with electron cyclotron resonance (ECR) frequency are experimentally and theoretically investigated for the case of inhomogeneously magnetized plasma column with peripheral vacuum layer, when a left-hand polarized wave (LHPW) is selectively launched. The polarization reversal from the LHPW to the right-hand polarized wave is found to occur near the ECR point. As a result, it is clarified that the LHPW, which has been considered not to be absorbed at the ECR point, is absorbed near the ECR point. The phenomena can be explained by taking into account the effects of the radial boundary conditions. In addition, it is found that the polarization reversal point can be adjusted by the external parameters, for example, plasma radius. (authors)

  8. Reconstruction of gastric slow wave from finger photoplethysmographic signal using radial basis function neural network.

    Science.gov (United States)

    Mohamed Yacin, S; Srinivasa Chakravarthy, V; Manivannan, M

    2011-11-01

    Extraction of extra-cardiac information from photoplethysmography (PPG) signal is a challenging research problem with significant clinical applications. In this study, radial basis function neural network (RBFNN) is used to reconstruct the gastric myoelectric activity (GMA) slow wave from finger PPG signal. Finger PPG and GMA (measured using Electrogastrogram, EGG) signals were acquired simultaneously at the sampling rate of 100 Hz from ten healthy subjects. Discrete wavelet transform (DWT) was used to extract slow wave (0-0.1953 Hz) component from the finger PPG signal; this slow wave PPG was used to reconstruct EGG. A RBFNN is trained on signals obtained from six subjects in both fasting and postprandial conditions. The trained network is tested on data obtained from the remaining four subjects. In the earlier study, we have shown the presence of GMA information in finger PPG signal using DWT and cross-correlation method. In this study, we explicitly reconstruct gastric slow wave from finger PPG signal by the proposed RBFNN-based method. It was found that the network-reconstructed slow wave provided significantly higher (P wave than the correlation obtained (≈0.7) between the PPG slow wave from DWT and the EEG slow wave. Our results showed that a simple finger PPG signal can be used to reconstruct gastric slow wave using RBFNN method.

  9. Gravitational waves from nonlinear couplings of radial and polar nonradial modes in relativistic stars

    International Nuclear Information System (INIS)

    Passamonti, Andrea; Stergioulas, Nikolaos; Nagar, Alessandro

    2007-01-01

    The postbounce oscillations of newly-born relativistic stars are expected to lead to gravitational-wave emission through the excitation of nonradial oscillation modes. At the same time, the star is oscillating in its radial modes, with a central density variation that can reach several percent. Nonlinear couplings between radial oscillations and polar nonradial modes lead to the appearance of combination frequencies (sums and differences of the linear mode frequencies). We study such combination frequencies using a gauge-invariant perturbative formalism, which includes bilinear coupling terms between different oscillation modes. For typical values of the energy stored in each mode we find that gravitational waves emitted at combination frequencies could become detectable in galactic core-collapse supernovae with advanced interferometric or wideband resonant detectors

  10. Expected number of real roots for random linear combinations of orthogonal polynomials associated with radial weights

    OpenAIRE

    Bayraktar, Turgay

    2017-01-01

    In this note, we obtain asymptotic expected number of real zeros for random polynomials of the form $$f_n(z)=\\sum_{j=0}^na^n_jc^n_jz^j$$ where $a^n_j$ are independent and identically distributed real random variables with bounded $(2+\\delta)$th absolute moment and the deterministic numbers $c^n_j$ are normalizing constants for the monomials $z^j$ within a weighted $L^2$-space induced by a radial weight function satisfying suitable smoothness and growth conditions.

  11. Radial frequency stimuli and sine-wave gratings seem to be processed by distinct contrast brain mechanisms

    Directory of Open Access Journals (Sweden)

    M.L.B. Simas

    2005-03-01

    Full Text Available An assumption commonly made in the study of visual perception is that the lower the contrast threshold for a given stimulus, the more sensitive and selective will be the mechanism that processes it. On the basis of this consideration, we investigated contrast thresholds for two classes of stimuli: sine-wave gratings and radial frequency stimuli (i.e., j0 targets or stimuli modulated by spherical Bessel functions. Employing a suprathreshold summation method, we measured the selectivity of spatial and radial frequency filters using either sine-wave gratings or j0 target contrast profiles at either 1 or 4 cycles per degree of visual angle (cpd, as the test frequencies. Thus, in a forced-choice trial, observers chose between a background spatial (or radial frequency alone and the given background stimulus plus the test frequency (1 or 4 cpd sine-wave grating or radial frequency. Contrary to our expectations, the results showed elevated thresholds (i.e., inhibition for sine-wave gratings and decreased thresholds (i.e., summation for radial frequencies when background and test frequencies were identical. This was true for both 1- and 4-cpd test frequencies. This finding suggests that sine-wave gratings and radial frequency stimuli are processed by different quasi-linear systems, one working at low luminance and contrast level (sine-wave gratings and the other at high luminance and contrast levels (radial frequency stimuli. We think that this interpretation is consistent with distinct foveal only and foveal-parafoveal mechanisms involving striate and/or other higher visual areas (i.e., V2 and V4.

  12. On guided circumferential waves in soft electroactive tubes under radially inhomogeneous biasing fields

    Science.gov (United States)

    Wu, Bin; Su, Yipin; Chen, Weiqiu; Zhang, Chuanzeng

    2017-02-01

    Soft electroactive (EA) tube actuators and many other cylindrical devices have been proposed recently in literature, which show great advantages over those made from conventional hard solid materials. However, their practical applications may be limited because these soft EA devices are prone to various failure modes. In this paper, we present an analysis of the guided circumferential elastic waves in soft EA tube actuators, which has potential applications in the in-situ nondestructive evaluation (NDE) or online structural health monitoring (SHM) to detect structural defects or fatigue cracks in soft EA tube actuators and in the self-sensing of soft EA tube actuators based on the concept of guided circumferential elastic waves. Both circumferential SH and Lamb-type waves in an incompressible soft EA cylindrical tube under inhomogeneous biasing fields are considered. The biasing fields, induced by the application of an electric voltage difference to the electrodes on the inner and outer cylindrical surfaces of the EA tube in addition to an axial pre-stretch, are inhomogeneous in the radial direction. Dorfmann and Ogden's theory of nonlinear electroelasticity and the associated linear theory for small incremental motion constitute the basis of our analysis. By means of the state-space formalism for the incremental wave motion along with the approximate laminate technique, dispersion relations are derived in a particularly efficient way. For a neo-Hookean ideal dielectric model, the proposed approach is first validated numerically. Numerical examples are then given to show that the guided circumferential wave propagation characteristics are significantly affected by the inhomogeneous biasing fields and the geometrical parameters. Some particular phenomena such as the frequency veering and the nonlinear dependence of the phase velocity on the radial electric voltage are discussed. Our numerical findings demonstrate that it is feasible to use guided circumferential

  13. Wave structure in the radial film flow with a circular hydraulic jump

    Science.gov (United States)

    Rao, A.; Arakeri, J. H.

    A circular hydraulic jump is commonly seen when a circular liquid jet impinges on a horizontal plate. Measurements of the film thickness, jump radius and the wave structure for various jet Reynolds numbers are reported. Film thickness measurements are made using an electrical contact method for regions both upstream and downstream of the jump over circular plates without a barrier at the edge. The jump radius and the separation bubble length are measured for various flow rates, plate edge conditions, and radii. Flow visualization using high-speed photography is used to study wave structure and transition. Waves on the jet amplify in the film region upstream of the jump. At high flow rates, the waves amplify enough to cause three-dimensional breakdown and what seems like transition to turbulence. This surface wave induced transition is different from the traditional route and can be exploited to enhance heat and mass transfer rates.

  14. Wave structure in the radial film flow with a circular hydraulic jump

    Energy Technology Data Exchange (ETDEWEB)

    Rao, A.; Arakeri, J.H. [Indian Inst. of Science, Bangalore (India). Dept. of Mechanical Engineering

    2001-11-01

    A circular hydraulic jump is commonly seen when a circular liquid jet impinges on a horizontal plate. Measurements of the film thickness, jump radius and the wave structure for various jet Reynolds numbers are reported. Film thickness measurements are made using an electrical contact method for regions both upstream and downstream of the jump over circular plates without a barrier at the edge. The jump radius and the separation bubble length are measured for various flow rates, plate edge conditions, and radii. Flow visualization using high-speed photography is used to study wave structure and transition. Waves on the jet amplify in the film region upstream of the jump. At high flow rates, the waves amplify enough to cause three-dimensional breakdown and what seems like transition to turbulence. This surface wave induced transition is different from the traditional route and can be exploited to enhance heat and mass transfer rates. (orig.)

  15. Focused and Radial Shock Wave Therapy in the Treatment of Tennis Elbow: A Pilot Randomised Controlled Study

    Directory of Open Access Journals (Sweden)

    Król Piotr

    2015-09-01

    Full Text Available The purpose of this article was to evaluate and compare the efficacy of radial and focused shock wave therapies applied to treat tennis elbow. Patients with tennis elbow were randomized into two comparative groups: focused shock wave therapy (FSWT; n=25 and radial shock wave therapy (RSWT; n=25. Subjects in the FSWT and RSWT groups were applied with a focused shock wave (3 sessions, 2000 shocks, 4 Hz, 0.2 mJ/mm2 and a radial shock wave (3 sessions, 2000 + 2000 shocks, 8 Hz, 2.5 bar, respectively. The primary study endpoints were pain relief and functional improvement (muscle strength one week after therapy. The secondary endpoint consisted of the results of the follow-up observation (3, 6 and 12 weeks after the study. Successive measurements showed that the amount of pain patients felt decreased in both groups. At the same time grip strength as well as strength of wrist extensors and flexors of the affected extremity improved significantly. Both focused and radial shock wave therapies can comparably and gradually reduce pain in subjects with tennis elbow. This process is accompanied by steadily improved strength of the affected extremity.

  16. Numerical study of radial stepwise fuel load reshuffling traveling wave reactor

    International Nuclear Information System (INIS)

    Zhang Dalin; Zheng Meiyin; Tian Wenxi; Qiu Suizheng; Su Guanghui

    2015-01-01

    Traveling wave reactor is a new conceptual fast breeder reactor, which can adopt natural uranium, depleted uranium and thorium directly to realize the self sustainable breeding and burning to achieve very high fuel utilization fraction. Based on the mechanism of traveling wave reactor, a concept of radial stepwise fuel load reshuffling traveling wave reactor was proposed for realistic application. It was combined with the typical design of sodium-cooled fast reactors, with which the asymptotic characteristics of the inwards stepwise fuel load reshuffling were studied numerically in two-dimension. The calculated results show that the asymptotic k_e_f_f parabolically varies with the reshuffling cycle length, while the burnup increases linearly. The highest burnup satisfying the reactor critical condition is 38%. The power peak shifts from the fuel discharging zone (core centre) to the fuel uploading zone (core periphery) and correspondingly the power peaking factor decreases along with the reshuffling cycle length. In addition, at the high burnup case the axial power distribution close to the core centre displays the M-shaped deformation. (authors)

  17. A numerical method for determining the radial wave motion correction in plane wave couplers

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Barrera Figueroa, Salvador; Torras Rosell, Antoni

    2016-01-01

    Microphones are used for realising the unit of sound pressure level, the pascal (Pa). Electro-acoustic reciprocity is the preferred method for the absolute determination of the sensitivity. This method can be applied in different sound fields: uniform pressure, free field or diffuse field. Pressure...... solution is an analytical expression that estimates the difference between the ideal plane wave sound field and a more complex lossless sound field created by a non-planar movement of the microphone’s membranes. Alternatively, a correction may be calculated numerically by introducing a full model...... of the microphone-coupler system in a Boundary Element formulation. In order to obtain a realistic representation of the sound field, viscous losses must be introduced in the model. This paper presents such a model, and the results of the simulations for different combinations of microphones and couplers...

  18. E × B shear pattern formation by radial propagation of heat flux waves

    Energy Technology Data Exchange (ETDEWEB)

    Kosuga, Y., E-mail: kosuga@riam.kyushu-u.ac.jp [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); IAS and RIAM, Kyushu University, Fukuoka (Japan); Diamond, P. H. [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); CASS and CMTFO, University of California, San Diego, California 92093 (United States); Dif-Pradalier, G. [CEA, IRFM, Paul-lez-Durance Cedex (France); Gürcan, Ö. D. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France)

    2014-05-15

    A novel theory to describe the formation of E×B flow patterns by radially propagating heat flux waves is presented. A model for heat avalanche dynamics is extended to include a finite delay time between the instantaneous heat flux and the mean flux, based on an analogy between heat avalanche dynamics and traffic flow dynamics. The response time introduced here is an analogue of the drivers' response time in traffic dynamics. The microscopic foundation for the time delay is the time for mixing of the phase space density. The inclusion of the finite response time changes the model equation for avalanche dynamics from Burgers equation to a nonlinear telegraph equation. Based on the telegraph equation, the formation of heat flux jams is predicted. The growth rate and typical interval of jams are calculated. The connection of the jam interval to the typical step size of the E×B staircase is discussed.

  19. Radial shock wave treatment alone is less efficient than radial shock wave treatment combined with tissue-specific plantar fascia-stretching in patients with chronic plantar heel pain.

    Science.gov (United States)

    Rompe, Jan D; Furia, John; Cacchio, Angelo; Schmitz, Christoph; Maffulli, Nicola

    2015-12-01

    Whether shock wave therapy or shock wave therapy combined with plantar fascia-specific stretching is more efficient in treating chronic plantar heel pain remains unclear. The aim of the study was to test the null hypothesis of no difference of these two forms of management for patients who had unilateral plantar fasciopathy for a minimum duration of twelve months and which had failed at least three other forms of treatment. One hundred and fifty-two patients with chronic plantar fasciopathy were assigned to receive repetitive low-energy radial shock-wave therapy without local anesthesia, administered weekly for three weeks (Group 1, n = 73) or to receive the identical shock wave treatment and to perform an eight-week plantar fascia-specific stretching program (Group 2, n = 79). All patients completed the nine-item pain subscale of the validated Foot Function Index and a subject-relevant outcome questionnaire. Patients were evaluated at baseline, and at two, four, and twenty-four months after baseline. The primary outcome measures were a mean change in the Foot Function Index sum score at two months after baseline, a mean change in item 2 (pain during the first steps of walking in the morning) on this Index, and satisfaction with treatment. No difference in mean age, sex, weight or duration of symptoms was found between the groups at baseline. At two months after baseline, the Foot Function Index sum score showed significantly greater changes for the patients managed with shock-wave therapy plus plantar fascia-specific stretching than those managed with shock-wave therapy alone (p plantar fascia in combination with repetitive low-energy radial shock-wave therapy is more efficient than repetitive low-energy radial shock-wave therapy alone for the treatment of chronic symptoms of proximal plantar fasciopathy. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  20. Program for the calculation of the semiempirical radial wave functions by means of the variable Tomas-Fermi potential and for the determination of the radial integrals of the dipole transitions

    International Nuclear Information System (INIS)

    Kuzmitskite, L.L.

    1980-01-01

    The program is meant for the determination of the semiempirical radial wave functions of the positive ions and the calculation of the radial integrals of the dipole transition. The semiempirical wave functions are calculated using Tomas-Fermi potential with the variable parameter, which provides for the coincidence of the energy obtained with the ionization energy of the state under consideration. The program is written in the FORTRAN language for the BESM-6 computer

  1. Electromagnetic frozen waves with radial, azimuthal, linear, circular, and elliptical polarizations

    Science.gov (United States)

    Corato-Zanarella, Mateus; Zamboni-Rached, Michel

    2016-11-01

    Frozen waves (FWs) are a class of diffraction- and attenuation-resistant beams whose intensity pattern along the direction of propagation can be chosen arbitrarily, thus making them relevant for engineering the spatial configuration of optical fields. To date, analyses of such beams have been done essentially for the scalar case, with the vectorial nature of the electromagnetic fields often neglected. Although it is expected that the field components keep the fundamental properties of the scalar FWs, a deeper understanding of their electromagnetic counterparts is mandatory in order to exploit their different possible polarization states. The purpose of this paper is to study the properties of electromagnetic FWs with radial, azimuthal, linear, circular, and elliptical polarizations under paraxial and nonparaxial regimes in nonabsorbing media. An intensity pattern is chosen for a scalar FW, and the vectorial solutions are built after it via the use of Maxwell's equations. The results show that the field components and the longitudinal component of the time-averaged Poynting vector closely follow the pattern chosen even under highly nonparaxial conditions, showing the robustness of the FW structure to parameters variations.

  2. [Radial shock wave therapy in calcifying tendinitis of the rotator cuff--a prospective study].

    Science.gov (United States)

    Magosch, P; Lichtenberg, S; Habermeyer, P

    2003-01-01

    The aim of the study is to evaluate the influence of radial shock wave therapy (RSWT) on the course of calcifying tendinitis of the rotator cuff. 35 patients with a mean age of 47.5 years suffering from calcifying tendinitis stage Gaertner 2 with a mean size of 16.6 mm in typical location (true-ap view) for a mean of 28 months were treated by low-energy RSWT three times. The acromio-humeral distance averaged 10.4 mm measured at the true-ap view. All patients were clinically and radiologically followed-up at 4 weeks, 3, 6 and 12 months after the last treatment. The Constant score improved significantly (p energy RSWT leads within the first 4 weeks to a significant pain relief and an improvement of shoulder function. In consideration of the long history, the size and the spontaneous resorption rate of the calcific deposit, an inductive effect of RSWT on the resorption of the calcific deposit can be assumed.

  3. Testing strong gravity with gravitational waves and Love numbers

    International Nuclear Information System (INIS)

    Franzin, E; Cardoso, V; Raposo, G; Pani, P

    2017-01-01

    The LIGO observation of GW150914 has inaugurated the gravitational-wave astronomy era and the possibility of testing gravity in extreme regimes. While distorted black holes are the most convincing sources of gravitational waves, similar signals might be produced also by other compact objects. In particular, we discuss what the gravitational-wave ringdown could tell us about the nature of the emitting object, and how measurements of the tidal Love numbers could help us in understanding the internal structure of compact dark objects. (paper)

  4. Investigations of toroidal wave numbers of the kink instabilities in a toroidal pinch plasma

    International Nuclear Information System (INIS)

    Hamajima, Takataro; Irisawa, Juichi; Tsukada, Tokuaki; Sugito, Osamu; Maruyama, Hideaki

    1979-01-01

    The axial toroidal wave numbers of the kink instability of toroidal pinch plasma were measured and investigated with a specially designed coil, and the results were compared with the MHD theory. The schematic figure and the particulars of the experimental apparatus are briefly illustrated in the first part. The method of generating theta-Z pinch plasma, the wave form of the magnetic flux density in Z-direction and the plasma current are also explained. The 360 deg stereoscopic framing photographs were taken with an image converter camera at the intervals of 0.5 μs after the initiation of the main electric discharge in Z-circuit. From these photographs, the growth of the kink instability was observed. The measured magnetic field distribution at t = 2 μs is presented. In the second part, the radial displacement of plasma and toroidal wave number were measured from the above framing photographs. Then the spectra of plasma displacement were analyzed by the Fourier analysis. The measured results of toroidal wave number was analyzed by both the skin current model and the diffuse current model. Many new results obtained from the present study were mainly derived from the observation of the framing photographs, and they are summarized in the final part of this paper. (Aoki, K.)

  5. Wave number determination of Pc 1-2 mantle waves considering He++ ions: A Cluster study

    Science.gov (United States)

    Grison, B.; Escoubet, C. P.; Santolík, O.; Cornilleau-Wehrlin, N.; Khotyaintsev, Y.

    2014-09-01

    The present case study concerns narrowband electromagnetic emission detected in the distant cusp region simultaneously with upgoing plasma flows. The wave properties match the usual properties of the Pc 1-2 mantle waves: small angle between the wave vector and the magnetic field line, left-hand polarization, and propagation toward the ionosphere. We report here the first direct wave vector measurement of these waves (about 1.2 × 10- 2 rad/km) through multi spacecraft analysis using the three magnetic components and, at the same time, through single spacecraft analysis based on the refractive index analysis using the three magnetic components and two electric components. The refractive index analysis offers a simple way to estimate wave numbers in this frequency range. Numerical calculations are performed under the observed plasma conditions. The obtained results show that the ion distribution functions are unstable to ion cyclotron instability at the observed wave vector value, due to the large ion temperature anisotropy. We thus show that these electromagnetic ion cyclotron (EMIC) waves are amplified in the distant cusp region. The Poynting flux of the waves is counterstreaming with respect to the plasma flow. This sense of propagation is consistent with the time necessary to amplify the emissions to the observed level. We point out the role of the wave damping at the He++ gyrofrequency to explain that such waves cannot be observed from the ground at the cusp foot print location.

  6. Excitation of higher radial modes of azimuthal surface waves in the electron cyclotron frequency range by rotating relativistic flow of electrons in cylindrical waveguides partially filled by plasmas

    Science.gov (United States)

    Girka, Igor O.; Pavlenko, Ivan V.; Thumm, Manfred

    2018-05-01

    Azimuthal surface waves are electromagnetic eigenwaves of cylindrical plasma-dielectric waveguides which propagate azimuthally nearby the plasma-dielectric interface across an axial external stationary magnetic field. Their eigenfrequency in particular can belong to the electron cyclotron frequency range. Excitation of azimuthal surface waves by rotating relativistic electron flows was studied in detail recently in the case of the zeroth radial mode for which the waves' radial phase change within the layer where the electrons gyrate is small. In this case, just the plasma parameters cause the main influence on the waves' dispersion properties. In the case of the first and higher radial modes, the wave eigenfrequency is higher and the wavelength is shorter than in the case of the zeroth radial mode. This gain being of interest for practical applications can be achieved without any change in the device design. The possibility of effective excitation of the higher order radial modes of azimuthal surface waves is demonstrated here. Getting shorter wavelengths of the excited waves in the case of higher radial modes is shown to be accompanied by decreasing growth rates of the waves. The results obtained here are of interest for developing new sources of electromagnetic radiation, in nano-physics and in medical physics.

  7. Configuration interaction wave functions: A seniority number approach

    International Nuclear Information System (INIS)

    Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Oña, Ofelia B.

    2014-01-01

    This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure

  8. Configuration interaction wave functions: A seniority number approach

    Energy Technology Data Exchange (ETDEWEB)

    Alcoba, Diego R. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Torre, Alicia; Lain, Luis, E-mail: qfplapel@lg.ehu.es [Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao (Spain); Massaccesi, Gustavo E. [Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Oña, Ofelia B. [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata (Argentina)

    2014-06-21

    This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure.

  9. Lower energy radial shock wave therapy improves characteristics of hypertrophic scar in a rabbit ear model.

    Science.gov (United States)

    Zhao, Jing-Chun; Zhang, Bo-Ru; Shi, Kai; Wang, Jian; Yu, Qing-Hua; Yu, Jia-Ao

    2018-01-01

    The aim of the present study was to investigate the effects of radial extracorporeal shock wave therapy (rESWT) on scar characteristics and transforming growth factor (TGF)-β1/Smad signaling in order to explore a potential modality for the treatment of hypertrophic scars (HS). The HS model was generated in rabbit ears, then rabbits were randomly divided into 3 groups: Lower (L)-ESWT [treated with rESWT with lower energy flux density (EFD) of 0.1 mJ/mm 2 ], higher (H)-ESWT (treated with a higher EFD of 0.18 mJ/mm 2 ) and the sham ESWT group (S-ESWT; no ESWT treatment). Scar characteristics (wrinkles, texture, diameter, area, volume of elevation, hemoglobin and melanin) were assessed using the Antera 3D ® system. The protein and mRNA expression of TGF-β1, Smad2, Smad3 and Smad7 was assessed by enzyme-linked immunosorbent assay and reverse transcription-quantitative polymerase chain reaction, respectively. The Antera 3D ® results indicated that wrinkles and hemoglobin of the HS were significantly improved in both of the rESWT groups when compared with the S-ESWT group. However, these changes appeared much earlier in the L-ESWT group than the H-ESWT. Scar texture was also improved in the L-ESWT group. However, rESWT did not influence HS diameter, area, volume of elevation or melanin levels. rESWT had no effect on TGF-β1 or Smad7 expression in either of rESWT groups. Although no difference was observed in Smad2 mRNA expression in the L-ESWT group, the Smad3 mRNA and protein expression significantly decreased when compared with the H-ESWT and S-ESWT groups. By contrast, Smad2 and Smad3 mRNA expression were upregulated in the H-ESWT group. These results demonstrated that rESWT with 0.1 mJ/mm 2 EFD improved some characteristics of the HS tissue. Downregulation of Smad3 expression may underlie this inhibitory effect. Inhibition of the TGF-β1/Smad signal transduction pathway may be a potential therapeutic target for the management of HS.

  10. Effects of high- and low-energy radial shock waves therapy combined with physiotherapy in the treatment of rotator cuff tendinopathy: a retrospective study.

    Science.gov (United States)

    Su, Xiangzheng; Li, Zhongli; Liu, Zhengsheng; Shi, Teng; Xue, Chao

    2017-06-09

    The aim of this study was to investigate the efficacy of high- and low-energy radial shock waves combined with physiotherapy for rotator cuff tendinopathy patients. Data from rotator cuff tendinopathy patients received high- or low-energy radial shock waves combined with physiotherapy or physiotherapy alone were collected. The Constant and Murley score and visual analog scale score were collected to assess the effectiveness of treatment in three groups at 4, 8, 12, and 24 weeks. In total, 94 patients were involved for our retrospective study. All groups showed remarkable improvement in the visual analog scale and Constant and Murley score compared to baseline at 24 weeks. The high-energy radial shock waves group had more marked improvement in the Constant and Murley score compared to the physiotherapy group at 4 and 8 weeks and at 4 weeks when compared with low-energy group. Furthermore, high-energy radial shock waves group had superior results on the visual analog scale at 4, 8, and 12 weeks compared to low-energy and physiotherapy groups. This retrospective study supported the usage of high-energy radial shock waves as a supplementary therapy over physiotherapy alone for rotator cuff tendinopathy by relieving the symptoms rapidly and maintaining symptoms at a satisfactory level for 24 weeks. Implications for Rehabilitation High-energy radial shock waves can be a supplemental therapy to physiotherapy for rotator cuff tendinopathy. We recommend the usage of high-energy radial shock waves during the first 5 weeks, at an interval of 7 days, of physiotherapy treatment. High-energy radial shock waves treatment combined with physiotherapy can benefit rotator cuff tendinopathy by relieving symptoms rapidly and maintain these improvements at a satisfactory level for quite a long time.

  11. Radial extracorporeal shock wave therapy improves cerebral blood flow and neurological function in a rat model of cerebral ischemia.

    Science.gov (United States)

    Kang, Nan; Zhang, Jing; Yu, Xiaotong; Ma, Yuewen

    2017-01-01

    We performed middle cerebral artery occlusion (MCAO) in rats to investigate the effect and some of the underlying mechanisms of radial extracorporeal shock wave therapy (rESWT) in cerebral ischemia rats. We measured neurological function and cerebral blood flow (CBF) using a full-field laser perfusion imager and brain infarct volume on days 3, 12, and 30. Immunofluorescence, western blot, and real-time polymerase chain reaction (PCR) techniques were used to detect the expression of vascular endothelial growth factor (VEGF), neuron-specific enolase (NSE), nestin, Wnt3a, and β-catenin in the ischemic hemisphere. The dose of rESWT used on the head revealed remarkable advantages over sham rESWT, as demonstrated by improved neurological function scores, increased CBF, and reduced brain infarct volume. Furthermore, applying rESWT to the head and limbs enhanced short-term neurological function. Our results confirmed that rESWT can induce VEGF expression over an extended period with a profound effect, which may be the primary reason for CBF recovery. High NSE and nestin expression levels suggest that rESWT enhanced the number of neurons and neural stem cells (NSCs). Wnt3a and β-catenin expression were up-regulated in the ischemic hemisphere, indicating that rESWT promoted NSC proliferation and differentiation via the Wnt/β-catenin pathway. Overall, our findings suggest that an appropriate rESWT dose delivered to the head of rats helps restore neurological function and CBF, and additional application of rESWT to the limbs is more effective than treating the head alone.

  12. On the Self-Focusing of Whistler Waves in a Radial Inhomogeneous Plasma

    DEFF Research Database (Denmark)

    Balmashnov, A. A.

    1980-01-01

    The process of whistler wave self-focusing is experimentally investigated. It was found that a whistler wave propagating along the plasma column with a density crest excites a longitudinal wave of the same frequency propagating across the external magnetic field. The amplitude modulation of the l......The process of whistler wave self-focusing is experimentally investigated. It was found that a whistler wave propagating along the plasma column with a density crest excites a longitudinal wave of the same frequency propagating across the external magnetic field. The amplitude modulation...... of the latter wave is accompanied by a density modification, which leads to trapping of the whistler wave in a density trough in the center of the plasma column....

  13. Phase diagrams and radial distribution of the electric field components of coaxial discharges with outer dielectric tube at different wave modes

    International Nuclear Information System (INIS)

    Neichev, Z; Benova, E; Gamero, A; Sola, A

    2007-01-01

    The purpose of this work is to investigate phase diagrams and electric field radial distribution of coaxial discharges, sustained by a traveling electromagnetic wave, assuming finite and infinite thickness of the discharge chamber in the model. The calculations are made for azimuthally symmetric and dipolar wave modes. The phase diagrams and the radial profiles of the electric field at various thicknesses of the outer dielectric tube of the chamber and different discharge conditions are obtained. For the purpose of low pressure coaxial plasma modelling, radial profiles of the electric field at different discharge conditions have been investigated experimentally and compared with the theoretical results

  14. Stress wave velocity patterns in the longitudinal-radial plane of trees for defect diagnosis

    Science.gov (United States)

    Guanghui Li; Xiang Weng; Xiaocheng Du; Xiping Wang; Hailin Feng

    2016-01-01

    Acoustic tomography for urban tree inspection typically uses stress wave data to reconstruct tomographic images for the trunk cross section using interpolation algorithm. This traditional technique does not take into account the stress wave velocity patterns along tree height. In this study, we proposed an analytical model for the wave velocity in the longitudinal–...

  15. Global well-posedness for the radial defocusing cubic wave equation on $R^3$ and for rough data

    Directory of Open Access Journals (Sweden)

    Tristan Roy

    2007-11-01

    Full Text Available We prove global well-posedness for the radial defocusing cubic wave equation $$displaylines{ partial_{tt} u - Delta u = -u^{3} cr u(0,x = u_{0}(x cr partial_{t} u(0,x = u_{1}(x }$$ with data $(u_0, u_1 in H^{s} imes H^{s-1}$, $1 > s >7/10$. The proof relies upon a Morawetz-Strauss-type inequality that allows us to control the growth of an almost conserved quantity.

  16. Plantar fascia-specific stretching versus radial shock-wave therapy as initial treatment of plantar fasciopathy.

    Science.gov (United States)

    Rompe, Jan D; Cacchio, Angelo; Weil, Lowell; Furia, John P; Haist, Joachim; Reiners, Volker; Schmitz, Christoph; Maffulli, Nicola

    2010-11-03

    Whether plantar fascia-specific stretching or shock-wave therapy is effective as an initial treatment for proximal plantar fasciopathy remains unclear. The aim of this study was to test the null hypothesis of no difference in the effectiveness of these two forms of treatment for patients who had unilateral plantar fasciopathy for a maximum duration of six weeks and which had not been treated previously. One hundred and two patients with acute plantar fasciopathy were randomly assigned to perform an eight-week plantar fascia-specific stretching program (Group I, n = 54) or to receive repetitive low-energy radial shock-wave therapy without local anesthesia, administered weekly for three weeks (Group II, n = 48). All patients completed the seven-item pain subscale of the validated Foot Function Index and a patient-relevant outcome questionnaire. Patients were evaluated at baseline and at two, four, and fifteen months after baseline. The primary outcome measures were a mean change in the Foot Function Index sum score at two months after baseline, a mean change in item 2 (pain during the first few steps of walking in the morning) on this index, and satisfaction with treatment. No difference in mean age, sex, weight, or duration of symptoms was found between the groups at baseline. At two months after baseline, the Foot Function Index sum score showed significantly greater changes for the patients managed with plantar fascia-specific stretching than for those managed with shock-wave therapy (p plantar fascia is superior to repetitive low-energy radial shock-wave therapy for the treatment of acute symptoms of proximal plantar fasciopathy.

  17. Low-wave-number statistics of randomly advected passive scalars

    International Nuclear Information System (INIS)

    Kerstein, A.R.; McMurtry, P.A.

    1994-01-01

    A heuristic analysis of the decay of a passive scalar field subject to statistically steady random advection, predicts two low-wave-number spectral scaling regimes analogous to the similarity states previously identified by Chasnov [Phys. Fluids 6, 1036 (1994)]. Consequences of their predicted coexistence in a single flow are examined. The analysis is limited to the idealized case of narrow band advection. To complement the analysis, and to extend the predictions to physically more realistic advection processes, advection diffusion is simulated using a one-dimensional stochastic model. An experimental test of the predictions is proposed

  18. Radial diffusion of toroidally trapped particles induced by lower hybrid and fast waves

    International Nuclear Information System (INIS)

    Krlin, L.

    1992-10-01

    The interaction of RF field with toroidally trapped particles (bananas) can cause their intrinsic stochastically diffusion both in the configuration and velocity space. In RF heating and/or current drive regimes, RF field can interact with plasma particles and with thermonuclear alpha particles. The aim of this contribution is to give some analytical estimates of induced radial diffusion of alphas and of ions. (author)

  19. Negative values of quasidistributions and quantum wave and number statistics

    Science.gov (United States)

    Peřina, J.; Křepelka, J.

    2018-04-01

    We consider nonclassical wave and number quantum statistics, and perform a decomposition of quasidistributions for nonlinear optical down-conversion processes using Bessel functions. We show that negative values of the quasidistribution do not directly represent probabilities; however, they directly influence measurable number statistics. Negative terms in the decomposition related to the nonclassical behavior with negative amplitudes of probability can be interpreted as positive amplitudes of probability in the negative orthogonal Bessel basis, whereas positive amplitudes of probability in the positive basis describe classical cases. However, probabilities are positive in all cases, including negative values of quasidistributions. Negative and positive contributions of decompositions to quasidistributions are estimated. The approach can be adapted to quantum coherence functions.

  20. Wave number determination of Pc 1–2 mantle waves considering He++ ions: A Cluster study

    Czech Academy of Sciences Publication Activity Database

    Grison, Benjamin; Escoubet, C. P.; Santolík, Ondřej; Cornilleau-Wehrlin, N.; Khotyaintsev, Y.

    2014-01-01

    Roč. 119, č. 9 (2014), s. 7601-7614 ISSN 2169-9380 R&D Projects: GA MŠk 7E12026; GA ČR(CZ) GPP209/11/P848; GA MŠk LH12231 Institutional support: RVO:68378289 Keywords : EMIC * refractive index * wave number * k-filtering * Pc 1–2 mantle wave * distant cusp Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.426, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/2013JA019719/abstract

  1. Variation in Differential and Total Cross Sections Due to Different Radial Wave Functions

    Science.gov (United States)

    Williamson, W., Jr.; Greene, T.

    1976-01-01

    Three sets of analytical wave functions are used to calculate the Na (3s---3p) transition differential and total electron excitation cross sections by Born approximations. Results show expected large variations in values. (Author/CP)

  2. Bayesian inversion of surface-wave data for radial and azimuthal shear-wave anisotropy, with applications to central Mongolia and west-central Italy

    Science.gov (United States)

    Ravenna, Matteo; Lebedev, Sergei

    2018-04-01

    Seismic anisotropy provides important information on the deformation history of the Earth's interior. Rayleigh and Love surface-waves are sensitive to and can be used to determine both radial and azimuthal shear-wave anisotropies at depth, but parameter trade-offs give rise to substantial model non-uniqueness. Here, we explore the trade-offs between isotropic and anisotropic structure parameters and present a suite of methods for the inversion of surface-wave, phase-velocity curves for radial and azimuthal anisotropies. One Markov chain Monte Carlo (McMC) implementation inverts Rayleigh and Love dispersion curves for a radially anisotropic shear velocity profile of the crust and upper mantle. Another McMC implementation inverts Rayleigh phase velocities and their azimuthal anisotropy for profiles of vertically polarized shear velocity and its depth-dependent azimuthal anisotropy. The azimuthal anisotropy inversion is fully non-linear, with the forward problem solved numerically at different azimuths for every model realization, which ensures that any linearization biases are avoided. The computations are performed in parallel, in order to reduce the computing time. The often challenging issue of data noise estimation is addressed by means of a Hierarchical Bayesian approach, with the variance of the noise treated as an unknown during the radial anisotropy inversion. In addition to the McMC inversions, we also present faster, non-linear gradient-search inversions for the same anisotropic structure. The results of the two approaches are mutually consistent; the advantage of the McMC inversions is that they provide a measure of uncertainty of the models. Applying the method to broad-band data from the Baikal-central Mongolia region, we determine radial anisotropy from the crust down to the transition-zone depths. Robust negative anisotropy (Vsh < Vsv) in the asthenosphere, at 100-300 km depths, presents strong new evidence for a vertical component of asthenospheric

  3. Considerations for SphygmoCor radial artery pulse wave analysis: side selection and peripheral arterial blood pressure calibration.

    Science.gov (United States)

    Martin, Jeffrey S; Borges, Alexandra R; Christy, John B; Beck, Darren T

    2015-10-01

    Methods employed for pulse wave analysis (PWA) and peripheral blood pressure (PBP) calibration vary. The purpose of this study was to evaluate the agreement of SphygmoCor PWA parameters derived from radial artery tonometry when considering (1) timing (before vs. after tonometry) and side selection (ipsilateral vs. contralateral limb) for PBP calibration and (2) side selection for tonometry (left vs. right arm). In 34 subjects (aged 21.9 ± 2.3 years), bilateral radial artery tonometry was performed simultaneously on three instances. PBP assessment via oscillometric sphygmomanometry in the left arm only and both arms simultaneously occurred following the first and second instances of tonometry, respectively. Significant within arm differences in PWA parameters derived before and after PBP measurement were observed in the right arm only (for example, aortic systolic blood pressure, Δ=0.38 ± 0.64 mm Hg). Simultaneously captured bilateral PWA variables demonstrated significant between arm differences in 88% (14/16) and 56% (9/16) of outcome variables when calibrated to within arm and equivalent PBP, respectively. Moreover, the right arm consistently demonstrated lower values for clinical PWA variables (for example, augmentation index, bias=-2.79%). However, 26% (n=9) of participants presented with clinically significant differences (>10 mm Hg) in bilateral PBP and their exclusion from analysis abolished most between arm differences observed. SphygmoCor PWA in the right radial artery results in greater variability independent of the timing of PBP measurement and magnitude of calibration pressures in young subjects. Moreover, bilateral PBP measurement is imperative to identify subjects in whom a significant difference in bilateral PWA outcomes may exist.

  4. Zonal Wave Number 2 Rossby Wave (3.5-day oscillation) Over The Martian Lower Atmosphere

    Science.gov (United States)

    Ghosh, P.; Thokuluwa, R. K.

    2013-12-01

    to get decreasing monotonously to the statistically significant lowest power of 20 K^2 in the height of 450 Pascal level. Similar to the 0-30E longitude region, there is no significant wave in all the heights above the 450 Pascal level. The 190-230 E region shows similar wave characteristics (both the power and height structure) as observed for the 0-30 E region. This would indicate that the here reporting 3.5 day wave might be associated with eastward propagating (observed the zonal phase speed of ~0.5 days per 30 degree longitude) wave number 2 Rossby wave as the wave shows similar characteristics in the two longitude regions of 0-30E and 190-230 E with the longitudinal interval of 180 degrees. Peculiarly, in the 250-280 E region, the wave shows maximum power (120 K^2) in the two heights of 550 and 700 Pascal levels. As a further support for the zonal wave number 2 structure, there is no significant 3.5-day oscillation in all the height levels in the 290-320 E longitude region which is similar to what observed in the 35-60E longitude sector. A detailed investigation of this 3.5 day oscillation will be presented also for other periods of different years.

  5. Gap eigenmode of radially localized helicon waves in a periodic structure

    International Nuclear Information System (INIS)

    Chang, L; Hole, M J; Breizman, B N

    2013-01-01

    An ElectroMagnetic Solver (Chen et al 2006 Phys. Plasmas 13 123507) is employed to model a spectral gap and a gap eigenmode in a periodic structure in the whistler frequency range. A radially localized helicon mode (Breizman and Arefiev 2000 Phys. Rev. Lett. 84 3863) is considered. We demonstrate that the computed gap frequency and gap width agree well with a theoretical analysis, and find a discrete eigenmode inside the gap by introducing a defect to the system's periodicity. The axial wavelength of the gap eigenmode is close to twice the system's periodicity, which is consistent with Bragg's law. Such an eigenmode could be excited by energetic electrons, similar to the excitation of toroidal Alfvén eigenmodes by energetic ions in tokamaks. Experimental identification of this mode is conceivable on the large plasma device (Gekelman et al 1991 Rev. Sci. Instrum. 62 2875). (paper)

  6. Lamb wave band gaps in one-dimensional radial phononic crystal plates with periodic double-sided corrugations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinggang [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); School of Transportation, Wuhan University of Technology, Wuhan 430070 (China); Chen, Tianning [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); Wang, Xiaopeng, E-mail: xpwang@mail.xjtu.edu.cn [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China); Li, Suobin [School of Mechanical Engineering and State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, 710049 (China)

    2015-11-01

    In this paper, we present the theoretical investigation of Lamb wave propagation in one-dimensional radial phononic crystal (RPC) plates with periodic double-sided corrugations. The dispersion relations, the power transmission spectra, and the displacement fields of the eigenmodes are studied by using the finite element method based on two-dimensional axial symmetry models in cylindrical coordinates. Numerical results show that the proposed RPC plates with periodic double-sided corrugations can yield several band gaps with a variable bandwidth for Lamb waves. The formation mechanism of band gaps in the double-sided RPC plates is attributed to the coupling between the Lamb modes and the in-phase and out-phases resonant eigenmodes of the double-sided corrugations. We investigate the evolution of band gaps in the double-sided RPC plates with the corrugation heights on both sides arranged from an asymmetrical distribution to a symmetrical distribution gradually. Significantly, with the introduction of symmetric double-sided corrugations, the antisymmetric Lamb mode is suppressed by the in-phase resonant eigenmodes of the double-sided corrugations, resulting in the disappearance of the lowest band gap. Furthermore, the effects of the geometrical parameters on the band gaps are further explored numerically.

  7. EFFECT OF LOW ENERGY VERSUS MEDIUM ENERGY RADIAL SHOCK WAVE THERAPY IN THE TREATMENT OF CHRONIC PLANTER FASCIITIS

    Directory of Open Access Journals (Sweden)

    Khaled Z. Fouda

    2016-02-01

    Full Text Available Background: Plantar fasciitis (PF is the most common cause of heel pain and it can often be a challenge for clinicians to treat successfully. Radial shock wave therapy (RSWT has been introduced recently for treatment of musculoskeletal disorders. Different energy levels of shock wave therapy have been used in the literatures for treatment of PF with no clear settled parameters. Therefore, the purpose of this study was intended to investigate and compare the efficacy of two different energy levels of RSWT on PF patients. Methods: Forty patients having unilateral chronic PF were recruited for the study from orthopedic outpatient clinics of Cairo University hospitals and National Institute of Neuromotor System Cairo Egypt, with a mean age of (47.15±4.57 years. Patients were randomly assigned into two equal groups. Group (A treated with low intensity level of 1.6 bars (0.16 mJ/mm2 RSWT and group (B treated with medium intensity level of 4 bars (0.38 mJ/mm2 RSWT. Functional assessment of the foot based on Foot Function Index (FFI and Present pain intensity was measured during rest by Visual Analogue Scale (VAS. Results: There was as significant decreased in the total FFI scores from (118.42 ±6.51 to (81.37 ±3.46 for group (A and from (118.93 ±6.85 to (58.50 ±3.22 for group (B. Also regarding VAS Scores there was as significant decreased in the pain intensity from (5.11 ±0.41 to (2.85 ±0.31 for group (A and from (4.95 ±0.39 to (2.05 ±0.22 for group (B. Conclusion: Radial shock wave therapy is an effective modality that should be considered in the treatment of chronic PF, while the medium energy level RSWT is better than the low energy level RSWT in regarding to the measured treatment outcomes.

  8. Singular behavior of the Laplace operator in polar spherical coordinates and some of its consequences for the radial wave function at the origin of coordinates

    International Nuclear Information System (INIS)

    Khelashvili, A.A.; Nadareishvili, T.P.

    2015-01-01

    Singular behavior of the Laplace operator in spherical coordinates is investigated. It is shown that in course of transition to the reduced radial wave function in the Schreodinger equation there appears additional term including the Dirac delta function, which was unnoted during the full history of physics and mathematics. The possibility of avoiding this contribution from the reduced radial equation is discussed. It is demonstrated that for this aim the necessary and sufficient condition is the requirement of the fast enough falling of the wave function at the origin. The result does not depend on character of potential - whether it is regular or singular. The various manifestations and consequences of this observation are considered as well. The cornerstone in our approach is the natural requirement that the solution of the radial equation at the same time must obey the full equation. [ru

  9. Radial extracorporeal shock-wave therapy in patients with chronic rotator cuff tendinitis: a prospective randomised double-blind placebo-controlled multicentre trial

    NARCIS (Netherlands)

    Kolk, A. van der; Yang, K.G.; Tamminga, R.; Hoeven, H. van der

    2013-01-01

    The aim of this study was to determine the effect of radial extracorporeal shock-wave therapy (rESWT) on patients with chronic tendinitis of the rotator cuff. This was a randomised controlled trial in which 82 patients (mean age 47 years (24 to 67)) with chronic tendinitis diagnosed clinically were

  10. Effects of Acupuncture Stimulation on the Radial artery’s Pressure Pulse Wave in Healthy Young Participants: Protocol for a prospective, single-Arm, Exploratory, Clinical Study

    Directory of Open Access Journals (Sweden)

    Jae-Young Shin

    2016-09-01

    Full Text Available Introduction: This study aims to investigate the effects of acupuncture stimulation on the radial artery’s pressure pulse wave, along with various hemodynamic parameters, and to explore the possible underlying mechanism of pulse diagnosis in healthy participants in their twenties. Methods and analysis: This study is a prospective, si

  11. A numerical solution to the radial equation of the tidal wave propagation

    International Nuclear Information System (INIS)

    Makarious, S.H.

    1981-08-01

    The tidal wave function y(x) is a solution to an inhomogeneous, linear, second-order differential equation with variable coefficient. Numerical values for the height-dependence terms, in the observed tides, have been utilized in finding y(x) as a solution to an initial-value problem. Complex Fast Fourier Transform technique is also used to obtain the solution in a complex form. Based on a realistic temperature structure, the atmosphere - below 110 km - has been divided into layers with distinct characteristics, and thus the technique of propagation in stratified media has been applied. The reduced homogeneous equation assumes the form of Helmholtz equation and with initial conditions the general solution is obtained. (author)

  12. Doppler Frequency Shift in Ocean Wave Measurements: Frequency Downshift of a Fixed Spectral Wave Number Component by Advection of Wave Orbital Velocity

    National Research Council Canada - National Science Library

    Hwang, Paul

    2006-01-01

    ... at he expected intrinsic frequency in the frequency spectrum measured by a stationary probe. The advection of the wave number component by the orbital current of background waves produces a net downshift in the encounter frequency...

  13. Effects of gravity-induced upper-limb blood pressure changes on wave transmission and arterial radial waveform.

    Science.gov (United States)

    Pucci, Giacomo; Battista, Francesca; Anastasio, Fabio; Sanesi, Leandro; Gavish, Benjamin; Butlin, Mark; Avolio, Alberto; Schillaci, Giuseppe

    2016-06-01

    Local blood pressure (BP) changes induced by arm tilting may influence pressure wave transmission and reflection. We investigated the effects of upper-limb tilting on radial augmentation index (rAIx) and related central measures [aortic augmentation index (aAIx)]. In 45 volunteers (age 49 ± 19 years), supine brachial BP and radial artery waveforms were obtained by applanation tonometry with the dominant arm stretched and gently supported in three different positions: at the heart level, with the BP cuff 15 cm above heart level (approximately +30°), and 15 cm below heart level (-30°). Brachial SBP/DBP was 120/68 ± 17/8 mmHg. Mean arterial pressure changed predictably with arm tilting (99 ± 12 mmHg at -30°, 88 ± 10 mmHg at 0°, 77 ± 11 mmHg at +30°, all P < 0.001). rAIx decreased at -30° (69 ± 22%), and increased at +30° (93 ± 20%) compared with 0° (82 ± 20%, all P less than 0.001). Changes in rAIx (value at +30° minus value at -30°) showed an inverse relationship with age (r = -0.32, P = 0.03). Heart rate, BP and rAIx did not change in the contralateral arm, which was held at the heart level during the examination. aAIx followed the same pattern as rAIx (123 ± 27% at -30°, 144 ± 33% at +30°, 136 ± 31% at 0°, all P less than 0.001); changes in rAIx and aAIx were strongly related each other (r = 0.82, P < 0.001). Acute gravitational upper-limb BP changes generate opposite, profound changes in rAIx, and major artifactual changes in aAIx. These findings provide a rationale for recommending to keep the upper limb at the heart level during radial waveform assessment.

  14. Drift motion of a charged particle in the crossed axial magnetic and radial electric fields, and the electric field of a rotating potential wave

    International Nuclear Information System (INIS)

    Eliseev, Yu.N.; Stepanov, K.N.

    1983-01-01

    In the drift motion approximation solution of the problem is obtained on the motion of a nonrelativistic charged particle in the crossed axial magnetic and radial electric fields, and the electric field of a rotating potential wave under cherenkov and modified cyclotron resonances. The static radial electric field potential is supposed to be close to the parabolic one. The drift motion equations and their integrals are preseOted. The experimentally obtained effect of plasma ionic component division in the crossed fields under the excitation of ion cyclotron oscillations is explained with the help of the theory developed in the paper

  15. Evaluation of bispectrum in the wave number domain based on multi-point measurements

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2008-10-01

    Full Text Available We present an estimator of the bispectrum, a measure of three-wave couplings. It is evaluated directly in the wave number domain using a limited number of detectors. The ability of the bispectrum estimator is examined numerically and then it is applied to fluctuations of magnetic field and electron density in the terrestrial foreshock region observed by the four Cluster spacecraft, which indicates the presence of a three-wave coupling in space plasma.

  16. Estimación de la velocidad de propagación aórtica basada en el análisis de la onda de pulso radial Velocity estimation of aortic propagation based on radial pulse wave analysis

    Directory of Open Access Journals (Sweden)

    Fernando Clara

    2011-06-01

    Full Text Available Se exploró la posibilidad de utilizar la morfología del registro de onda de pulso radial obtenida mediante un transductor de movimiento para evaluar la velocidad de propagación aórtica. Se efectuó el registro de onda de pulso en arteria radial mediante un transductor apoyado sobre la zona de palpación del pulso, sobre un conjunto de 167 voluntarios varones sanos normotensos de edades comprendidas entre la 2ª y la 7ª década. Se identificó en los registros la onda reflejada y se definió un coeficiente de velocidad como el cociente entre la talla del individuo y el tiempo transcurrido entre el máximo de la onda sistólica y el instante de llegada de dicha onda. Se halló que en los normotensos el coeficiente mencionado aumentó en forma lineal con la edad, en una proporción similar al aumento de velocidad de propagación aórtica medido con otros métodos. Se repitió el procedimiento en otro conjunto de 125 varones hipertensos sin otros factores de riesgo, de edades entre la 3ª y la 7ª década, hallándose valores similares a los normotensos solamente en la 3ª década, a partir de la cual se registró un incremento significativo de dicho índice. Tales hallazgos sustentan la factibilidad de utilizar tal tipo de registros para evaluar indirectamente la velocidad de propagación junto con el índice de aumentación, un parámetro habitualmente utilizado en el análisis de onda de pulso.We analyzed the possibility of using the radial pulse wave morphology, obtained by a movement transducer, to evaluate the aortic pulse wave velocity. The radial pulse wave signals were obtained by using a transducer, located on the pulse palpation area, in 167 healthy normotensive male volunteers, ages 20 to 70. The reflected wave was identified in every case. Also, a speed coefficient was defined as the ratio between the individual's height and the time between the maximum systolic wave and the arrival time of the reflected wave. We found that the

  17. The Field Radiated by a Ring Quasi-Array of an Infinite Number of Tangential or Radial Dipoles

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1953-01-01

    A homogeneous ring array of axial dipoles will radiate a vertically polarized field that concentrates to an increasing degree around the horizontal plane with increasing increment of the current phase per revolution. There is reason to believe that by using a corresponding antenna system with tan......A homogeneous ring array of axial dipoles will radiate a vertically polarized field that concentrates to an increasing degree around the horizontal plane with increasing increment of the current phase per revolution. There is reason to believe that by using a corresponding antenna system...... with tangential or radial dipoles, a field may be obtained that has a similar useful structure as the above-mentioned ring array, but which in contrast to the latter is essentially horizontally polarized. In this paper a systematic investigation has been made of the field from such an antenna system...... with tangential or radial dipoles. Recently it was stated in the literature that it is impossible to treat the general case where the increase of the current phase per revolution is arbitrarily large by using ordinary functions. The results obtained in this paper disprove this statement. A similar investigation...

  18. Effect of a radial space-charge field on the movement of particles in a magneto-static field and under the influence of a circularly polarized wave

    International Nuclear Information System (INIS)

    Buffa, A.

    1967-06-01

    The effect of a circularly polarized wave on a cylindrical plasma in a axial magnetostatic field and a radial space-charge field proportional to r is studied. Single particle motion is considered. The electrostatic field produces a shift in the cyclotron resonance frequency and,in case of high charge density, a radial movement of the off-resonance particles. In these conditions a radio-frequency-particle resonance is also possible called 'drift-resonance'. The drift resonance can be produced, with whistler mode, and may be employed in ion acceleration. Afterwards parametrical resonances produced by space-charge field oscillations and collisional limits of theory are studied. Cases in which ion acceleration is possible are considered on the basis of a quantitative analysis of results. (author) [fr

  19. Comparison of noninvasive assessments of central blood pressure using general transfer function and late systolic shoulder of the radial pressure wave.

    Science.gov (United States)

    Wohlfahrt, Peter; Krajcoviechová, Alena; Seidlerová, Jitka; Mayer, Otto; Filipovsky, Jan; Cífková, Renata

    2014-02-01

    Central systolic blood pressure (cSBP) can be derived by the general transfer function of the radial pressure wave, as used in the SphygmoCor device, or by regression equation from directly measured late systolic shoulder of the radial pressure wave (pSBP2), as used in the Omron HEM-9000AI device. The aim of this study was to compare the SphygmoCor estimates of cSBP with 2 estimates of cSBP provided by the Omron HEM-9000AI (cSBP, pSBP2) in a large cohort of the white population. In 391 patients aged 52.3±13.5 years (46% men) from the Czech post-MONICA Study, cSBP was measured using the SphygmoCor and Omron HEM-9000AI devices in random order. Omron cSBP and pSBP2 were perfectly correlated (r = 1.0; P wave provides a comparable accuracy with the validated general transfer function. When comparing Omron HEM-9000AI and SphygmoCor estimates of cSBP, Omron pSBP2 should be used. The difference between both devices in cSBP may be explained by differences in calibration.

  20. Model for modulated and chaotic waves in zero-Prandtl-number ...

    Indian Academy of Sciences (India)

    KCD) [20] for thermal convection in zero-Prandtl-number fluids in the presence of Coriolis force showed the possibility of self-tuned temporal quasiperiodic waves at the onset of thermal convection. However, the effect of modulation when the.

  1. Frequency modulation at a moving material interface and a conservation law for wave number. [acoustic wave reflection and transmission

    Science.gov (United States)

    Kleinstein, G. G.; Gunzburger, M. D.

    1976-01-01

    An integral conservation law for wave numbers is considered. In order to test the validity of the proposed conservation law, a complete solution for the reflection and transmission of an acoustic wave impinging normally on a material interface moving at a constant speed is derived. The agreement between the frequency condition thus deduced from the dynamic equations of motion and the frequency condition derived from the jump condition associated with the integral equation supports the proposed law as a true conservation law. Additional comparisons such as amplitude discontinuities and Snells' law in a moving media further confirm the stated proposition. Results are stated concerning frequency and wave number relations across a shock front as predicted by the proposed conservation law.

  2. Study of Perturbations on High Mach Number Blast Waves in Various Gasses

    Science.gov (United States)

    Edens, A.; Adams, R.; Rambo, P.; Shores, J.; Smith, I.; Atherton, B.; Ditmire, T.

    2006-10-01

    We have performed a series of experiments examining the properties of high Mach number blast waves. Experiments were conducted on the Z-Beamlet^1 laser at Sandia National Laboratories. We created blast waves in the laboratory by using 10 J- 1000 J laser pulses to illuminate millimeter scale solid targets immersed in gas. Our experiments studied the validity of theories forwarded by Vishniac and Ryu^2-4 to explain the dynamics of perturbations on astrophysical blast waves. These experiments consisted of an examination of the evolution of perturbations of known primary mode number induced on the surface of blast waves by means of regularly spaced wire arrays. The temporal evolution of the amplitude of the induced perturbations relative to the mean radius of the blast wave was fit to a power law in time. Measurements were taken for a number of different mode numbers and background gasses and the results show qualitative agreement with previously published theories for the hydrodynamics of thin shell blast wave. The results for perturbations on nitrogen gas have been recently published^5. .^1 P. K. Rambo, I. C. Smith, J. L. Porter, et al., Applied Optics 44, 2421 (2005). ^2 D. Ryu and E. T. Vishniac, Astrophysical Journal 313, 820 (1987). ^3 D. Ryu and E. T. Vishniac, Astrophysical Journal 368, 411 (1991). ^4 E. T. Vishniac, Astrophysical Journal 274, 152 (1983). ^5 A. D. Edens, T. Ditmire, J. F. Hansen, et al., Physical Review Letters 95 (2005).

  3. Wave-Number Spectra and Intermittency in the Terrestrial Foreshock Region

    International Nuclear Information System (INIS)

    Narita, Y.; Glassmeier, K.-H.; Treumann, R. A.

    2006-01-01

    Wave-number spectra of magnetic field fluctuations are directly determined in the terrestrial foreshock region (upstream of a quasiparallel collisionless shock wave) using four-point Cluster spacecraft measurements. The spectral curve is characterized by three ranges reminiscent of turbulence: energy injection, inertial, and dissipation range. The spectral index for the inertial range spectrum is close to Kolmogorov's slope, -5/3. On the other hand, the fluctuations are highly anisotropic and intermittent perpendicular to the mean magnetic field direction. These results suggest that the foreshock is in a weakly turbulent and intermittent state in which parallel propagating Alfven waves interact with one another, resulting in the phase coherence or the intermittency

  4. BEHAVIOR OF SOLUTIONS FOR RADIALLY SYMMETRIC SOLUTIONS FOR BURGERS EQUATION WITH A BOUNDARY CORRESPONDING TO THE RAREFACTION WAVE

    OpenAIRE

    Hashimoto, Itsuko

    2016-01-01

    We investigate the large-time behavior of the radially symmetric solution for Burgers equation on the exterior of a small ball in multi-dimensional space, where the boundary data and the data at the far field are prescribed. In a previous paper [1], we showed that, for the case in which the boundary data is equal to $0$ or negative, the asymptotic stability is the same as that for the viscous conservation law. In the present paper, it is proved that if the boundary data i...

  5. Multi-core and GPU accelerated simulation of a radial star target imaged with equivalent t-number circular and Gaussian pupils

    Science.gov (United States)

    Greynolds, Alan W.

    2013-09-01

    Results from the GelOE optical engineering software are presented for the through-focus, monochromatic coherent and polychromatic incoherent imaging of a radial "star" target for equivalent t-number circular and Gaussian pupils. The FFT-based simulations are carried out using OpenMP threading on a multi-core desktop computer, with and without the aid of a many-core NVIDIA GPU accessing its cuFFT library. It is found that a custom FFT optimized for the 12-core host has similar performance to a simply implemented 256-core GPU FFT. A more sophisticated version of the latter but tuned to reduce overhead on a 448-core GPU is 20 to 28 times faster than a basic FFT implementation running on one CPU core.

  6. Odd number of coupled antiferromagnetic anisotropic Heisenberg chains: Spin wave theory

    International Nuclear Information System (INIS)

    Benyoussef, A.

    1996-10-01

    The effect of the chain and perpendicular anisotropies on the energy gap for odd number of coupled quantum spin-1/2 antiferromagnetic anisotropic Heisenberg chains is investigated using a spin wave theory. The energy gap opens above a critical anisotropic value. The known results of the isotropic case have been obtained. (author). 11 refs, 4 figs

  7. Competition Between Radial Loss and EMIC Wave Scattering of MeV Electrons During Strong CME-shock Driven Storms

    Science.gov (United States)

    Hudson, M. K.; Jaynes, A. N.; Li, Z.; Malaspina, D.; Millan, R. M.; Patel, M.; Qin, M.; Shen, X.; Wiltberger, M. J.

    2017-12-01

    The two strongest storms of Solar Cycle 24, 17 March and 22 June 2015, provide a contrast between magnetospheric response to CME-shocks at equinox and solstice. The 17 March CME-shock initiated storm produced a stronger ring current response with Dst = - 223 nT, while the 22 June CME-shock initiated storm reached a minimum Dst = - 204 nT. The Van Allen Probes ECT instrument measured a dropout in flux for both events which can be characterized by magnetopause loss at higher L values prior to strong recovery1. However, rapid loss is seen at L 3 for the June storm at high energies with maximum drop in the 5.2 MeV channel of the REPT instrument coincident with the observation of EMIC waves in the H+ band by the EMFISIS wave instrument. The rapid time scale of loss can be determined from the 65 minute delay in passage of the Probe A relative to the Probe B spacecraft. The distinct behavior of lower energy electrons at higher L values has been modeled with MHD-test particle simulations, while the rapid loss of higher energy electrons is examined in terms of the minimum resonant energy criterion for EMIC wave scattering, and compared with the timescale for loss due to EMIC wave scattering which has been modeled for other storm events.2 1Baker, D. N., et al. (2016), Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015, J. Geophys. Res. Space Physics, 121, 6647-6660, doi:10.1002/2016JA022502. 2Li, Z., et al. (2014), Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations, Geophys. Res. Lett., 41, 8722-8729, doi:10.1002/2014GL062273.

  8. Focusing millimeter wave radar for radial gap measurements in power plant combustion turbines; Fokussierendes Radarverfahren im Millimeterwellenbereich zur Radialspaltmessung in Kraftwerksturbinen

    Energy Technology Data Exchange (ETDEWEB)

    Schicht, Andreas

    2011-07-11

    In this work a method for spatially resolved radial gap measurements in power plant combustion turbines by means of an autofocusing imaging radar technique in the millimeter wave range was developed and verified experimentally. The radial gap measurement has been subject of engineering studies for many years, as a reliable, simple solution does not seem to be possible due to the given boundary conditions. These include on the one hand the adverse measurement conditions such as high temperature and pressure, corrosive atmosphere and high speed of motion. On the other hand, the geometrical structure of the rotor blades at their tips turns out to be a key problem for the distance measurement. In particular, the blade tip is composed of small extended portions forming thin ribs of only a few millimeters width. Many established distance sensors like e. g. capacitive sensors cannot detect the correct tip clearance of the blade edge independently from other structures on the blade end only due to their large surface area and thus their lack of spatial resolution. The problem of small structure sizes is overcome by choosing a synthetic aperture radar (SAR) in the millimeter wave range capable of resolving the edges of a typical blade tip. The clearance is determined by measuring the reflection at the blade tip while passing by the antenna, subsequently focusing the data by means of a matched filter operation and interpreting the phase of the blade edge reflection according to the CW radar principle. For this, an autofocus approach was developed, which provides an estimate of the clearance as a first result, which is utilized to overcome the phase ambiguity and thus to increase the measurement range. The autofocus algorithm applies a weighted phase gradient of the point-like blade edge reflection as cost function and sensitive indicator for the focal quality.

  9. Wave-number spectra and intermittency in the terrestrial foreshock region.

    Science.gov (United States)

    Narita, Y; Glassmeier, K-H; Treumann, R A

    2006-11-10

    Wave-number spectra of magnetic field fluctuations are directly determined in the terrestrial foreshock region (upstream of a quasiparallel collisionless shock wave) using four-point Cluster spacecraft measurements. The spectral curve is characterized by three ranges reminiscent of turbulence: energy injection, inertial, and dissipation range. The spectral index for the inertial range spectrum is close to Kolmogorov's slope, -5/3. On the other hand, the fluctuations are highly anisotropic and intermittent perpendicular to the mean magnetic field direction. These results suggest that the foreshock is in a weakly turbulent and intermittent state in which parallel propagating Alfvén waves interact with one another, resulting in the phase coherence or the intermittency.

  10. Radial reflection diffraction tomography

    Science.gov (United States)

    Lehman, Sean K.

    2012-12-18

    A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.

  11. Improved Holistic Analysis of Rayleigh Waves for Single- and Multi-Offset Data: Joint Inversion of Rayleigh-Wave Particle Motion and Vertical- and Radial-Component Velocity Spectra

    Science.gov (United States)

    Dal Moro, Giancarlo; Moustafa, Sayed S. R.; Al-Arifi, Nassir S.

    2018-01-01

    Rayleigh waves often propagate according to complex mode excitation so that the proper identification and separation of specific modes can be quite difficult or, in some cases, just impossible. Furthermore, the analysis of a single component (i.e., an inversion procedure based on just one objective function) necessarily prevents solving the problems related to the non-uniqueness of the solution. To overcome these issues and define a holistic analysis of Rayleigh waves, we implemented a procedure to acquire data that are useful to define and efficiently invert the three objective functions defined from the three following "objects": the velocity spectra of the vertical- and radial-components and the Rayleigh-wave particle motion (RPM) frequency-offset data. Two possible implementations are presented. In the first case we consider classical multi-offset (and multi-component) data, while in a second possible approach we exploit the data recorded by a single three-component geophone at a fixed offset from the source. Given the simple field procedures, the method could be particularly useful for the unambiguous geotechnical exploration of large areas, where more complex acquisition procedures, based on the joint acquisition of Rayleigh and Love waves, would not be economically viable. After illustrating the different kinds of data acquisition and the data processing, the results of the proposed methodology are illustrated in a case study. Finally, a series of theoretical and practical aspects are discussed to clarify some issues involved in the overall procedure (data acquisition and processing).

  12. Higher P-Wave Dispersion in Migraine Patients with Higher Number of Attacks

    Directory of Open Access Journals (Sweden)

    A. Koçer

    2012-01-01

    Full Text Available Objective and Aim. An imbalance of the sympathetic system may explain many of the clinical manifestations of the migraine. We aimed to evaluate P-waves as a reveal of sympathetic system function in migraine patients and healthy controls. Materials and Methods. Thirty-five episodic type of migraine patients (complained of migraine during 5 years or more, BMI < 30 kg/m2 and 30 controls were included in our study. We measured P-wave durations (minimum, maximum, and dispersion from 12-lead ECG recording during pain-free periods. ECGs were transferred to a personal computer via a scanner and then used for magnification of x400 by Adobe Photoshop software. Results. P-wave durations were found to be similar between migraine patients and controls. Although P WD (P-wave dispersion was similar, the mean value was higher in migraine subjects. P WD was positively correlated with P max (P<0.01. Attacks number per month and male gender were the factors related to the P WD (P<0.01. Conclusions. Many previous studies suggested that increased sympathetic activity may cause an increase in P WD. We found that P WD of migraine patients was higher than controls, and P WD was related to attacks number per month and male gender. Further studies are needed to explain the chronic effects of migraine.

  13. Gyrokinetic theory of fast-wave transmission with arbitrary parallel wave number in a non-uniformly magnetized plasma

    International Nuclear Information System (INIS)

    Lashmore-Davies, C.N.; Dendy, R.O.

    1990-01-01

    The gyrokinetic theory of ion cyclotron resonance is extended to include propagation at arbitrary angles to a straight equilibrium magnetic field with a linear perpendicular gradient in strength. The case of the compressional Alfven wave propagating in a D( 3 He) plasma is analyzed in detail, for arbitrary concentrations of the two species. A self-consistent local dispersion relation is obtained using a single mode description; this approach enables three-dimensional effects to be included and permits efficient calculation of the transmission coefficient. The dependence of this quantity on the species density ratio, minority temperature, plasma density, magnetic field and equilibrium scale length is obtained. A self-consistent treatment of the variation of the field polarization across the resonant region is included. Families of transmission curves are given as a function of the normalized parallel wave number for parameters relevant to Joint European Torus. Perpendicular absorption by the minority ions is also discussed, and shown to depend on a single parameter, the ratio of the ion thermal velocity to the Alfven speed. (author)

  14. Estimates of azimuthal numbers associated with elementary elliptic cylinder wave functions

    Science.gov (United States)

    Kovalev, V. A.; Radaev, Yu. N.

    2014-05-01

    The paper deals with issues related to the construction of solutions, 2 π-periodic in the angular variable, of the Mathieu differential equation for the circular elliptic cylinder harmonics, the associated characteristic values, and the azimuthal numbers needed to form the elementary elliptic cylinder wave functions. A superposition of the latter is one possible form for representing the analytic solution of the thermoelastic wave propagation problem in long waveguides with elliptic cross-section contour. The classical Sturm-Liouville problem for the Mathieu equation is reduced to a spectral problem for a linear self-adjoint operator in the Hilbert space of infinite square summable two-sided sequences. An approach is proposed that permits one to derive rather simple algorithms for computing the characteristic values of the angular Mathieu equation with real parameters and the corresponding eigenfunctions. Priority is given to the application of the most symmetric forms and equations that have not yet been used in the theory of the Mathieu equation. These algorithms amount to constructing a matrix diagonalizing an infinite symmetric pentadiagonal matrix. The problem of generalizing the notion of azimuthal number of a wave propagating in a cylindrical waveguide to the case of elliptic geometry is considered. Two-sided mutually refining estimates are constructed for the spectral values of the Mathieu differential operator with periodic and half-periodic (antiperiodic) boundary conditions.

  15. Effect of thermo-solutal Marangoni convection on the azimuthal wave number in a liquid bridge

    Science.gov (United States)

    Minakuchi, H.; Okano, Y.; Dost, S.

    2017-06-01

    A numerical simulation study was carried out to investigate the effect of thermo-solutal Marangoni convection on the flow patterns and the azimuthal wave number (m) in a liquid bridge under zero-gravity. The liquid bridge in the model represents a three dimensional half-zone configuration of the Floating Zone (FZ) growth system. Three dimensional field equations of the liquid zone, i.e. continuity, momentum, energy, and diffusion equations, were solved by the PISO algorithm. The physical properties of the silicon-germanium melt were used (Pr=6.37×10-3 and Sc=14.0, where Pr and Sc stand for the Prandtl number and the Schmidt number). The aspect ratio Asp was set to 0.5 (Asp= L/a, where L and a stand for the length of free surface and the radius of liquid bridge). Computations were performed using the open source software OpenFOAM. The numerical simulation results show that the co-existence of thermal and solutal Marangoni convections significantly affects the azimuthal wave number m in the liquid bridge.

  16. Radial extracorporeal shock-wave therapy in patients with chronic rotator cuff tendinitis: a prospective randomised double-blind placebo-controlled multicentre trial.

    Science.gov (United States)

    Kolk, A; Yang, K G Auw; Tamminga, R; van der Hoeven, H

    2013-11-01

    The aim of this study was to determine the effect of radial extracorporeal shock-wave therapy (rESWT) on patients with chronic tendinitis of the rotator cuff. This was a randomised controlled trial in which 82 patients (mean age 47 years (24 to 67)) with chronic tendinitis diagnosed clinically were randomly allocated to a treatment group who received low-dose rESWT (three sessions at an interval 10 to 14 days, 2000 pulses, 0.11 mJ/mm(2), 8 Hz) or to a placebo group, with a follow-up of six months. The patients and the treating orthopaedic surgeon, who were both blinded to the treatment, evaluated the results. A total of 44 patients were allocated to the rESWT group and 38 patients to the placebo group. A visual analogue scale (VAS) score for pain, a Constant-Murley (CMS) score and a simple shoulder test (SST) score significantly improved in both groups at three and six months compared with baseline (all p ≤ 0.012). The mean VAS was similar in both groups at three (p = 0.43) and six months (p = 0.262). Also, the mean CMS and SST scores were similar in both groups at six months (p = 0.815 and p = 0.834, respectively). It would thus seem that low-dose rESWT does not reduce pain or improve function in patients chronic rotator cuff tendinitis compared with placebo treatment.

  17. Reynolds Number Effect on Spatial Development of Viscous Flow Induced by Wave Propagation Over Bed Ripples

    Science.gov (United States)

    Dimas, Athanassios A.; Kolokythas, Gerasimos A.

    Numerical simulations of the free-surface flow, developing by the propagation of nonlinear water waves over a rippled bottom, are performed assuming that the corresponding flow is two-dimensional, incompressible and viscous. The simulations are based on the numerical solution of the Navier-Stokes equations subject to the fully-nonlinear free-surface boundary conditions and appropriate bottom, inflow and outflow boundary conditions. The equations are properly transformed so that the computational domain becomes time-independent. For the spatial discretization, a hybrid scheme is used where central finite-differences, in the horizontal direction, and a pseudo-spectral approximation method with Chebyshev polynomials, in the vertical direction, are applied. A fractional time-step scheme is used for the temporal discretization. Over the rippled bed, the wave boundary layer thickness increases significantly, in comparison to the one over flat bed, due to flow separation at the ripple crests, which generates alternating circulation regions. The amplitude of the wall shear stress over the ripples increases with increasing ripple height or decreasing Reynolds number, while the corresponding friction force is insensitive to the ripple height change. The amplitude of the form drag forces due to dynamic and hydrostatic pressures increase with increasing ripple height but is insensitive to the Reynolds number change, therefore, the percentage of friction in the total drag force decreases with increasing ripple height or increasing Reynolds number.

  18. Role of Shape and Numbers of Ridges and Valleys in the Insulating Effects of Topography on the Rayleigh Wave Characteristics

    Science.gov (United States)

    Narayan, J. P.; Kumar, Neeraj; Chauhan, Ranu

    2018-03-01

    This research work is inspired by the recently accepted concept that high frequency Rayleigh waves are generated in the epicentral zone of shallow earthquakes. Such high frequency Rayleigh waves with large amplitude may develop much of spatial variability in ground motion which in turn may cause unexpected damage to long-span structures like bridges, underground pipelines, dams, etc., in the hilly regions. Further, it has been reported that topography acts as an insulator for the Rayleigh waves (Ma et al. BSSA 97:2066-2079, 2007). The above mentioned scientific developments stimulated to quantify the role of shape and number of ridges and valleys falling in the path of Rayleigh wave in the insulating effect of topography on the Rayleigh waves. The simulated results reveals very large amplification of the horizontal component of Rayleigh wave near the top of a triangular ridge which may cause intensive landslides under favorable condition. The computed snapshots of the wave-field of Rayleigh wave reveals that the interaction of Rayleigh wave with the topography causes reflection, splitting, and diffraction of Rayleigh wave in the form of body waves which in turn provides the insulating capacity to the topography. Insulating effects of single valley is more than that of single ridge. Further this effect was more in case of elliptical ridge/valley than triangular ridge/valley. The insulating effect of topography was proportional to the frequency of Rayleigh wave and the number of ridges and valleys in the string. The obtained level of insulation effects of topography on the Rayleigh wave (energy of Rayleigh wave reduced to less than 4% after crossing a topography of span 4.5 km) calls for the consideration of role of hills and valleys in seismic hazard prediction, particularly in case of shallow earthquakes.

  19. Modification of AMD wave functions and application to the breaking of the N=20 magic number

    International Nuclear Information System (INIS)

    Kimura, Masaaki; Horiuchi, Hisashi

    2001-01-01

    By using the deformed Gaussian instead of the spherical one, we have modified the AMD (Antisymmetrized Molecular Dynamics) wave functions. The calculation results with this modified AMD shows the drastic improvement of the deformation properties of Mg isotopes. This improvement means that this new version of AMD can treat the deformation of mean field properly than before and the deformation of mean field is important in Mg isotopes. With this new version of AMD, we have also calculated 32Mg in which the breaking of magic number N=20 is experimentally known. In this nucleus, β-energy surface is also drastically changed by the modification AMD wave function. Our results show that this nucleus is indeed deformed and neutron's 2p2h state is dominant in its ground state. This ground state reproduces the experimental data and shows the breaking of the magic number N=20 clearly. Additionally, near the ground state, there is also very interesting state which has neutron's 4p4h structure and shows parity violating density distribution and cluster-like nature. (author)

  20. Modification of AMD wave functions and application to the breaking of the N=20 magic number

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Masaaki; Horiuchi, Hisashi [Kyoto Univ. (Japan). Dept. of Physics

    2001-09-01

    By using the deformed Gaussian instead of the spherical one, we have modified the AMD (Antisymmetrized Molecular Dynamics) wave functions. The calculation results with this modified AMD shows the drastic improvement of the deformation properties of Mg isotopes. This improvement means that this new version of AMD can treat the deformation of mean field properly than before and the deformation of mean field is important in Mg isotopes. With this new version of AMD, we have also calculated 32Mg in which the breaking of magic number N=20 is experimentally known. In this nucleus, {beta}-energy surface is also drastically changed by the modification AMD wave function. Our results show that this nucleus is indeed deformed and neutron's 2p2h state is dominant in its ground state. This ground state reproduces the experimental data and shows the breaking of the magic number N=20 clearly. Additionally, near the ground state, there is also very interesting state which has neutron's 4p4h structure and shows parity violating density distribution and cluster-like nature. (author)

  1. Radial Extracorporeal Shock Wave Therapy Is Not More Effective Than Placebo in the Management of Lateral Epicondylitis: A Double-Blind, Randomized, Placebo-Controlled Trial.

    Science.gov (United States)

    Capan, Nalan; Esmaeilzadeh, Sina; Oral, Aydan; Basoglu, Ceyhun; Karan, Ayse; Sindel, Dilsad

    2016-07-01

    The aim of this study was to investigate the effects of radial extracorporeal shock wave therapy (rESWT) on pain, function, and grip strength in the treatment of patients with lateral epicondylitis unresponsive to previous treatments. A double-blind, randomized, placebo-controlled trial was conducted in outpatient clinics in a medical faculty hospital. Fifty-six patients with lateral epicondylitis were randomized to rESWT (n = 28) or sham rESWT (n = 28) groups. Both the patients and the outcome assessing investigator were blinded to group assignment. The rESWT was administered to the painful epicondyle at the elbow with a total of 2000 pulses of 10 Hz frequency at a 1.8 bar of air pressure at each session at three once weekly sessions. Sham rESWT was applied without the contact of the applicator at the same area. Study patients were assessed at baseline and at 1 and 3 mos after treatment using a visual analog scale for pain and Roles and Maudsley scale and Patient-Rated Tennis Elbow Evaluation for pain and function. Grip strength of the affected extremity was also measured using a hand dynamometer. Both rESWT and sham rESWT groups showed a significant improvement in all outcome measures at posttreatment follow-up points. Favorable absolute and percentage changes in assessments at 1- and 3-mo posttreatment did not show any significant difference between groups. The rESWT does not seem to be more effective either in reducing pain or improving function or grip strength in patients with lateral epicondylitis at least at 3 mos after treatment when compared with sham rESWT.

  2. Transition of torque pattern in undulatory locomotion due to wave number variation in resistive force dominated media

    Science.gov (United States)

    Ding, Yang; Ming, Tingyu

    2016-11-01

    In undulatory locomotion, torque (bending moment) is required along the body to overcome the external forces from environments and bend the body. Previous observations on animals using less than two wavelengths on the body showed such torque has a single traveling wave pattern. Using resistive force theory model and considering the torque generated by external force in a resistive force dominated media, we found that as the wave number (number of wavelengths on the locomotor's body) increases from 0.5 to 1.8, the speed of the traveling wave of torque decreases. When the wave number increases to 2 and greater, the torque pattern transits from a single traveling wave to a two traveling waves and then a complex pattern that consists two wave-like patterns. By analyzing the force distribution and its contribution to the torque, we explain the speed decrease of the torque wave and the pattern transition. This research is partially supported by the Recruitment Program of Global Young Experts (China).

  3. The number of degrees of freedom for statistical distribution of s wave reduced neutron width for several nuclei

    International Nuclear Information System (INIS)

    Zhixiang, Z.

    1983-01-01

    The least squares fit has been performed using chi-squared distribution function for all available evaluated data for s-wave reduced neutron width of several nuclei. The number of degrees of freedom and average value have been obtained. The missing levels of weak s-wave resonances and extra p-wave levels have been taken into account, if any. For 75 As and 103 Rh, s-wave population has been separated by Bayes' theorem before making fit. The results thus obtained are consistent with Porter-Thomas distribution, i.e., chi-squared distribution with γ=1, as one would expect. It has not been found in this work that the number of degrees of freedom for the distribution of s-wave reduced neutron width might be greater than one as reported by H.C.Sharma et al. (1976) at the international conference on interactions of neutrons with nuclei. (Auth.)

  4. Constraining neutron-star tidal Love numbers with gravitational-wave detectors

    International Nuclear Information System (INIS)

    Flanagan, Eanna E.; Hinderer, Tanja

    2008-01-01

    Ground-based gravitational wave detectors may be able to constrain the nuclear equation of state using the early, low frequency portion of the signal of detected neutron star-neutron star inspirals. In this early adiabatic regime, the influence of a neutron star's internal structure on the phase of the waveform depends only on a single parameter λ of the star related to its tidal Love number, namely, the ratio of the induced quadrupole moment to the perturbing tidal gravitational field. We analyze the information obtainable from gravitational wave frequencies smaller than a cutoff frequency of 400 Hz, where corrections to the internal-structure signal are less than 10%. For an inspiral of two nonspinning 1.4M · neutron stars at a distance of 50 Megaparsecs, LIGO II detectors will be able to constrain λ to λ≤2.0x10 37 g cm 2 s 2 with 90% confidence. Fully relativistic stellar models show that the corresponding constraint on radius R for 1.4M · neutron stars would be R≤13.6 km (15.3 km) for a n=0.5 (n=1.0) polytrope with equation of state p∝ρ 1+1/n

  5. Configuration mixing of mean-field wave functions projected on angular momentum and particle number: Application to 24Mg

    International Nuclear Information System (INIS)

    Valor, A.; Heenen, P.-H.; Bonche, P.

    2000-01-01

    We present in this paper the general framework of a method which permits to restore the rotational and particle number symmetries of wave functions obtained in Skyrme HF + BCS calculations. This restoration is nothing but a projection of mean-field intrinsic wave functions onto good particle number and good angular momentum. The method allows us also to mix projected wave functions. Such a configuration mixing is discussed for sets of HF + BCS intrinsic states generated in constrained calculations with suitable collective variables. This procedure gives collective states which are eigenstates of the particle number and the angular momentum operators and between which transition probabilities are calculated. An application to 24 Mg is presented, with mean-field wave functions generated by axial quadrupole constraints. Theoretical spectra and transition probabilities are compared to the experiment

  6. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    International Nuclear Information System (INIS)

    Sati, Priti; Tripathi, V. K.

    2012-01-01

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

  7. Simultaneous projection of particle-number and angular momentum BCS wave-functions in the rare-earth nuclei

    International Nuclear Information System (INIS)

    Oudih, M.R.; Benhamouda, N.; Fellah, M.; Allal, N.H.

    2000-01-01

    A method of simultaneous particle-number and angular-momentum projection of the BCS wave-function is presented. The particle number projection method is of FBCS type. In the frame work of the adiabatic approximation, the rotational energies of the axially symmetric even-even nuclei are established and numerically calculated for the rare-earth region. (author)

  8. Evaluation of magnetic helicity density in the wave number domain using multi-point measurements in space

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2009-10-01

    Full Text Available We develop an estimator for the magnetic helicity density, a measure of the spiral geometry of magnetic field lines, in the wave number domain as a wave diagnostic tool based on multi-point measurements in space. The estimator is numerically tested with a synthetic data set and then applied to an observation of magnetic field fluctuations in the Earth foreshock region provided by the four-point measurements of the Cluster spacecraft. The energy and the magnetic helicity density are determined in the frequency and the wave number domain, which allows us to identify the wave properties in the plasma rest frame correcting for the Doppler shift. In the analyzed time interval, dominant wave components have parallel propagation to the mean magnetic field, away from the shock at about Alfvén speed and a left-hand spatial rotation sense of helicity with respect to the propagation direction, which means a right-hand temporal rotation sense of polarization. These wave properties are well explained by the right-hand resonant beam instability as the driving mechanism in the foreshock. Cluster observations allow therefore detailed comparisons with various theories of waves and instabilities.

  9. An improved method to experimentally determine temperature and pressure behind laser-induced shock waves at low Mach numbers

    International Nuclear Information System (INIS)

    Hendijanifard, Mohammad; Willis, David A

    2011-01-01

    Laser-matter interactions are frequently studied by measuring the propagation of shock waves caused by the rapid laser-induced material removal. An improved method for calculating the thermo-fluid parameters behind shock waves is introduced in this work. Shock waves in ambient air, induced by pulsed Nd : YAG laser ablation of aluminium films, are measured using a shadowgraph apparatus. Normal shock solutions are applied to experimental data for shock wave positions and used to calculate pressure, temperature, and velocity behind the shock wave. Non-dimensionalizing the pressure and temperature with respect to the ambient values, the dimensionless pressure and temperature are estimated to be as high as 90 and 16, respectively, at a time of 10 ns after the ablation pulse for a laser fluence of F = 14.5 J cm -2 . The results of the normal shock solution and the Taylor-Sedov similarity solution are compared to show that the Taylor-Sedov solution under-predicts pressure when the Mach number of the shock wave is small. At a fluence of 3.1 J cm -2 , the shock wave Mach number is less than 3, and the Taylor-Sedov solution under-predicts the non-dimensional pressure by as much as 45%.

  10. Exploring the resonant vibration of thin plates: Reconstruction of Chladni patterns and determination of resonant wave numbers.

    Science.gov (United States)

    Tuan, P H; Wen, C P; Chiang, P Y; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F

    2015-04-01

    The Chladni nodal line patterns and resonant frequencies for a thin plate excited by an electronically controlled mechanical oscillator are experimentally measured. Experimental results reveal that the resonant frequencies can be fairly obtained by means of probing the variation of the effective impedance of the exciter with and without the thin plate. The influence of the extra mass from the central exciter is confirmed to be insignificant in measuring the resonant frequencies of the present system. In the theoretical aspect, the inhomogeneous Helmholtz equation is exploited to derive the response function as a function of the driving wave number for reconstructing experimental Chladni patterns. The resonant wave numbers are theoretically identified with the maximum coupling efficiency as well as the maximum entropy principle. Substituting the theoretical resonant wave numbers into the derived response function, all experimental Chladni patterns can be excellently reconstructed. More importantly, the dispersion relationship for the flexural wave of the vibrating plate can be determined with the experimental resonant frequencies and the theoretical resonant wave numbers. The determined dispersion relationship is confirmed to agree very well with the formula of the Kirchhoff-Love plate theory.

  11. EDF: Computing electron number probability distribution functions in real space from molecular wave functions

    Science.gov (United States)

    Francisco, E.; Pendás, A. Martín; Blanco, M. A.

    2008-04-01

    : 2.80 GHz Intel Pentium IV CPU Operating system: GNU/Linux RAM: 55 992 KB Word size: 32 bits Classification: 2.7 External routines: Netlib Nature of problem: Let us have an N-electron molecule and define an exhaustive partition of the physical space into m three-dimensional regions. The edf program computes the probabilities P(n,n,…,n)≡P({n}) of all possible allocations of n electrons to Ω, n electrons to Ω,…, and n electrons to Ω,{n} being integers. Solution method: Let us assume that the N-electron molecular wave function, Ψ(1,N), is a linear combination of M Slater determinants, Ψ(1,N)=∑rMCψ(1,N). Calling SΩrs the overlap matrix over the 3D region Ω between the (real) molecular spin-orbitals (MSO) in ψ(χ1r,…χNr) and the MSOs in ψ,(χ1s,…,χNs), edf finds all the P({n})'s by solving the linear system ∑{n}{∏kmtkn}P({n})=∑r,sMCCdet[∑kmtSΩrs], where t=1 and t,…,t are arbitrary real numbers. Restrictions: The number of {n} sets grows very fast with m and N, so that the dimension of the linear system (1) soon becomes very large. Moreover, the computer time required to obtain the determinants in the second member of Eq. (1) scales quadratically with M. These two facts limit the applicability of the method to relatively small molecules. Unusual features: Most of the real variables are of precision real*16. Running time: 0.030, 2.010, and 0.620 seconds for Test examples 1, 2, and 3, respectively. References: [1] A. Martín Pendás, E. Francisco, M.A. Blanco, Faraday Discuss. 135 (2007) 423-438. [2] A. Martín Pendás, E. Francisco, M.A. Blanco, J. Phys. Chem. A 111 (2007) 1084-1090. [3] A. Martín Pendás, E. Francisco, M.A. Blanco, Phys. Chem. Chem. Phys. 9 (2007) 1087-1092. [4] E. Francisco, A. Martín Pendás, M.A. Blanco, J. Chem. Phys. 126 (2007) 094102. [5] A. Martín Pendás, E. Francisco, M.A. Blanco, C. Gatti, Chemistry: A European Journal 113 (2007) 9362-9371.

  12. Calculating the number of shock waves, expulsion time, and optimum stone parameters based on noncontrast computerized tomography characteristics.

    Science.gov (United States)

    Foda, Khaled; Abdeldaeim, Hussein; Youssif, Mohamed; Assem, Akram

    2013-11-01

    To define the parameters that accompanied a successful extracorporeal shock wave lithotripsy (ESWL), namely the number of shock waves (SWs), expulsion time (ET), mean stone density (MSD), and the skin-to-stone distance (SSD). A total of 368 patients diagnosed with renal calculi using noncontrast computerized tomography had their MSD, diameter, and SSD recorded. All patients were treated using a Siemens lithotripter. ESWL success meant a stone-free status or presence of residual fragments 934 HUs and SSD >99 mm. The required number of SWs and the expected ET can be anticipated. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Stability of radial swirl flows

    International Nuclear Information System (INIS)

    Dou, H S; Khoo, B C

    2012-01-01

    The energy gradient theory is used to examine the stability of radial swirl flows. It is found that the flow of free vortex is always stable, while the introduction of a radial flow will induce the flow to be unstable. It is also shown that the pure radial flow is stable. Thus, there is a flow angle between the pure circumferential flow and the pure radial flow at which the flow is most unstable. It is demonstrated that the magnitude of this flow angle is related to the Re number based on the radial flow rate, and it is near the pure circumferential flow. The result obtained in this study is useful for the design of vaneless diffusers of centrifugal compressors and pumps as well as other industrial devices.

  14. Concepts of radial and angular kinetic energies

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Schleich, W.P.

    2002-01-01

    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...

  15. Dynamics of a radially expanding liquid sheet: Experiments

    Science.gov (United States)

    Majumdar, Nayanika; Tirumkudulu, Mahesh

    2017-11-01

    A recent theory predicts that sinuous waves generated at the center of a radially expanding liquid sheet grow spatially even in absence of a surrounding gas phase. Unlike flat liquid sheets, the thickness of a radially expanding liquid sheet varies inversely with distance from the center of the sheet. To test the predictions of the theory, experiments were carried out on a horizontal, radially expanding liquid sheet formed by collision of a single jet on a solid impactor. The latter was placed on a speaker-vibrator with controlled amplitude and frequency. The growth of sinuous waves was determined by measuring the wave surface inclination angle using reflected laser light under both atmospheric and sub-atmospheric pressure conditions. It is shown that the measured growth rate matches with the predictions of the theory over a large range of Weber numbers for both pressure conditions suggesting that the thinning of the liquid sheet plays a dominant role in setting the growth rate of sinuous waves with minimal influence of the surrounding gas phase on its dynamics. IIT Bombay.

  16. Effect of a radial space-charge field on the movement of particles in a magneto-static field and under the influence of a circularly polarized wave; L'effet d'un champ de charge d'espace radial sur le mouvement des particules dans un champ magnetique statique et sous l'action d'une onde polarisee circulairement

    Energy Technology Data Exchange (ETDEWEB)

    Buffa, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-06-15

    The effect of a circularly polarized wave on a cylindrical plasma in a axial magnetostatic field and a radial space-charge field proportional to r is studied. Single particle motion is considered. The electrostatic field produces a shift in the cyclotron resonance frequency and,in case of high charge density, a radial movement of the off-resonance particles. In these conditions a radio-frequency-particle resonance is also possible called 'drift-resonance'. The drift resonance can be produced, with whistler mode, and may be employed in ion acceleration. Afterwards parametrical resonances produced by space-charge field oscillations and collisional limits of theory are studied. Cases in which ion acceleration is possible are considered on the basis of a quantitative analysis of results. (author) [French] On etudie l'effet d'une onde polarisee circulairement sur un plasma cylindrique place dans un champ magnetique axial constant, en supposant etre en presence d'un, champ de charge d'espace radial proportionnel a r. L'etude est faite du point de vue de la particule individuelle. Le champ electrostatique deplace la frequence de resonance cyclotron et, dans le cas de forte densite, donne lieu a un mouvement radial des particules qui ne sont pas en resonance. Dans ces champs, il peut aussi se produire une resonance qu'on a appele 'de derive', entre un R.F. et la particule. Cette resonance peut se produire avec le mode siffleur et peut etre utilisee pour l'acceleration des ions. On considere ensuite les resonances parametriques, qui se manifestent lorsque le champ de charge d'espace oscille, et les limites a la theorie posees par les collisions. Une discussion quantitative des resultats fait ressortir les cas dans lesquels on peut accelerer les ions. (auteur)

  17. Radial nerve dysfunction

    Science.gov (United States)

    Neuropathy - radial nerve; Radial nerve palsy; Mononeuropathy ... Damage to one nerve group, such as the radial nerve, is called mononeuropathy . Mononeuropathy means there is damage to a single nerve. Both ...

  18. Numerical Study of Mixed Convective Peristaltic Flow through Vertical Tube with Heat Generation for Moderate Reynolds and Wave Numbers

    Science.gov (United States)

    Javed, Tariq; Ahmed, B.; Sajid, M.

    2018-04-01

    The current study focuses on the numerical investigation of the mixed convective peristaltic mechanism through a vertical tube for non-zero Reynolds and wave number. In the set of constitutional equations, energy equation contains the term representing heat generation parameter. The problem is formulated by dropping the assumption of lubrication theory that turns the model mathematically into a system of the nonlinear partial differential equations. The results of the long wavelength in a creeping flow are deduced from the present analysis. Thus, the current study explores the neglected features of peristaltic heat flow in the mixed convective model by considering moderate values of Reynolds and wave numbers. The finite element based on Galerkin’s weighted residual scheme is applied to solve the governing equations. The computed solution is presented in the form of contours of streamlines and isothermal lines, velocity and temperature profiles for variation of different involved parameters. The investigation shows that the strength of circulation for stream function increases by increasing the wave number and Reynolds number. Symmetric isotherms are reported for small values of time-mean flow. Linear behavior of pressure is noticed by vanishing inertial forces while the increase in pressure is observed by amplifying the Reynolds number.

  19. Loss of hyperbolicity changes the number of wave groups in Riemann problems

    OpenAIRE

    Vítor Matos; Julio D. Silva; Dan Marchesin

    2016-01-01

    Themain goal of ourwork is to showthat there exists a class of 2×2 Riemann problems for which the solution comprises a singlewave group for an open set of initial conditions. This wave group comprises a 1-rarefaction joined to a 2-rarefaction, not by an intermediate state, but by a doubly characteristic shock, 1-left and 2-right characteristic. In order to ensure that perturbations of initial conditions do not destroy the adjacency of the waves, local transversality between a composite curve ...

  20. Shear-Velocity Structure and Azimuthal and Radial Anisotropy Beneath the Kaapvaal Craton From Bayesian Inversion of Surface-Wave Data: Inferences for the Architecture and Early Evolution of Cratons

    Science.gov (United States)

    Lebedev, S.; Ravenna, M.; Adam, J.

    2017-12-01

    Seismic anisotropy provides essential information on the deformation of the lithosphere. Knowledge of anisotropy also allows us to isolate the isotropic-average seismic velocities, relatable to the lithospheric temperature and composition. We use Rayleigh and Love-wave phase velocities and their azimuthal anisotropy measured in broad period ranges across the footprint of the Southern Africa Seismic Experiment (SASE), from the Kaapvaal Craton to the Limpopo Belt. We invert the data using our recently developed, fully non-linear Markov Chain Monte Carlo method and determine, for the first time, both the isotropic-average S velocity and its radial and azimuthal anisotropy as a function of depth from the upper crust down to the asthenosphere. The probabilistic inversion provides a way to quantify non-uniqueness, using direct parameter-space sampling, and assess model uncertainties. The high-velocity anomaly indicative of the cold cratonic lithosphere bottoms at 200-250 km beneath the central and western Kaapvaal Craton, underlain by a low-velocity zone. Beneath northern Kaapvaal and Limpopo, by contrast, high velocities extend down to 300-350 km. Although this does not require a lithosphere that has maintained this thickness over a geologically long time, the data does require the mantle to be anomalously cold down to 300-350 km. Interestingly, topography correlates with the thickness of this high-velocity layer, with lower elevations where the lid is thicker. Radial shear-wave anisotropy is in the 2-5 percent range (Vsh > Vsv) from the lower crust down to 200 km, below which depth it decreases gradually. Radial variations in the amplitude of radial anisotropy show no clear relationship with those in the amplitude of azimuthal anisotropy or isotropic-average Vs anomalies. Azimuthal anisotropy changes the fast-propagation direction near the base of the lithosphere (200-300 km depth), from the laterally varying fast azimuths in the lower lithosphere to a spatially

  1. Effects of Defect Size and Number Density on the Transmission and Reflection of Guided Elastic Waves

    Science.gov (United States)

    2016-04-22

    localized region, a photoacoustic source generates elastic waves on one side of the damaged region, and then two ultrasound transducers measure the...Panther OPO) operating at 1.55um and with a pulse width of 7ns, a repetition rate of 30Hz and an average power of 65mW. This configuration seems...where the defects are of the same order as the wavelength of the ultrasound , we find ourselves confronted with Mie scattering, which has weaker

  2. Improved Holistic Analysis of Rayleigh Waves for Single- and Multi-Offset Data: Joint Inversion of Rayleigh-Wave Particle Motion and Vertical- and Radial-Component Velocity Spectra

    Czech Academy of Sciences Publication Activity Database

    Dal Moro, Giancarlo; Moustafa, S.S.R.; Al-Arifi, N.

    2018-01-01

    Roč. 175, č. 1 (2018), s. 67-88 ISSN 0033-4553 Institutional support: RVO:67985891 Keywords : surface wave dispersion * joint inversion of seismic data * Rayleigh waves * holistic analysis of surface waves Impact factor: 1.591, year: 2016

  3. Single-wave-number representation of nonlinear energy spectrum in elastic-wave turbulence of the Föppl-von Kármán equation: energy decomposition analysis and energy budget.

    Science.gov (United States)

    Yokoyama, Naoto; Takaoka, Masanori

    2014-12-01

    A single-wave-number representation of a nonlinear energy spectrum, i.e., a stretching-energy spectrum, is found in elastic-wave turbulence governed by the Föppl-von Kármán (FvK) equation. The representation enables energy decomposition analysis in the wave-number space and analytical expressions of detailed energy budgets in the nonlinear interactions. We numerically solved the FvK equation and observed the following facts. Kinetic energy and bending energy are comparable with each other at large wave numbers as the weak turbulence theory suggests. On the other hand, stretching energy is larger than the bending energy at small wave numbers, i.e., the nonlinearity is relatively strong. The strong correlation between a mode a(k) and its companion mode a(-k) is observed at the small wave numbers. The energy is input into the wave field through stretching-energy transfer at the small wave numbers, and dissipated through the quartic part of kinetic-energy transfer at the large wave numbers. Total-energy flux consistent with energy conservation is calculated directly by using the analytical expression of the total-energy transfer, and the forward energy cascade is observed clearly.

  4. Polynomial reconstruction of radial catalyst concentration distribution in an experimental type FCC riser for a low number of transversal projections in gamma ray tomography

    International Nuclear Information System (INIS)

    Melo, Silvio B.; Simoes, Francisco P.M.; Oliveira, Eric F. de; Santos, Maria das Gracas dos; Dantas, Carlos C.

    2007-01-01

    In the FCC - Fluid Catalytic Cracking process the Riser is an opaque cylinder, so that, in order to investigate the catalyst concentration inside, a gamma- ray based tomography is employed. Each section is submitted to a parallel beam and by means of the Beer-Lambert transmission is calculated. This tomography session is repeated from different angles, in manual tomographic experiments where the source/detector pair is rotated, producing in each direction what we called a transversal projection. In order to reconstruct the concentration of the present catalyst in a given moment some methods use successfully the inverse Radon transform through the filtered back-projection algorithm. The results are fully satisfactory for a large number of projections, widely seen as better than those produced by the algebraic methods. For a low number of projections, however, the algebraic methods become more competitive. In practice, simple experimental set-ups work with less than 10 projections, due to the time taken by the whole process. In this work, we present an investigation of polynomial reconstructions by using Bezier surfaces of arbitrary degree, adjusted to the experimental data through a least squares method. A computational algorithm was developed to implement the mathematical reconstruction for the 3D graphics presentation. (author)

  5. Nonlinear density waves in a marginally stable gravitating disk

    International Nuclear Information System (INIS)

    Korchagin, V.I.

    1986-01-01

    The evolution of short nonlinear density waves in a disk at the stability limit is studied for arbitrary values of the radial wave number k/sub r/. For waves with wave numbers that do not lie at the minimum of the dispersion curve, the behavior of the amplitude is described by a nonlinear parabolic equation; however, stationary soliton solutions cannot exist in such a system since there is no dispersion spreading of a packet. For wave numbers lying at the minimum of the dispersion curve, soliton structures with determined amplitude are possible. In stable gravitating disks and in a disk at the stability limit, two physically different types of soliton can exist

  6. From the CERN web: gravitational waves, magic numbers, innovation and more

    CERN Multimedia

    2016-01-01

    This section highlights articles, blog posts and press releases published in the CERN web environment over the past weeks. This way, you won’t miss a thing...     Simulation of two massive black holes merging, based on data collected from the LIGO collaboration on 14 September 2015. (Image: LIGO Collaboration © 2016 SXS) The hills are alive, with the sound of gravitational waves 12 February – ATLAS Collaboration It’s 16:00 CET at CERN and I’m sitting in the CERN Main Auditorium. The room is buzzing with excitement, not unlike the day in 2012 when the Higgs discovery was announced in this very room. But today the announcement is not from CERN, but the LIGO experiment which is spread across two continents. Many expect the announcement to be about a discovery of gravitational waves, as predicted by Einstein in 1916, but which have remained elusive until today… Continue to read…   The laser launch st...

  7. Long-term MST radar observations of vertical wave number spectra of gravity waves in the tropical troposphere over Gadanki (13.5° N, 79.2° E: comparison with model spectra

    Directory of Open Access Journals (Sweden)

    S. Vijaya Bhaskara Rao

    2008-06-01

    Full Text Available The potential utility of Mesosphere-Stratosphere-Troposphere (MST radar measurements of zonal, meridional and vertical winds for divulging the gravity wave vertical wave number spectra is discussed. The data collected during the years 1995–2004 are used to obtain the mean vertical wave number spectra of gravity wave kinetic energy in the tropical troposphere over Gadanki (13.5° N, 79.2° E. First, the climatology of 3-dimensional wind components is developed using ten years of radar observations, for the first time, over this latitude. This climatology brought out the salient features of background tropospheric winds over Gadanki. Further, using the second order polynomial fit as background, the day-to-day wind anomalies are estimated. These wind anomalies in the 4–14 km height regions are used to estimate the profiles of zonal, meridional and vertical kinetic energy per unit mass, which are then used to estimate the height profile of total kinetic energy. Finally, the height profiles of total kinetic energy are subjected to Fourier analysis to obtain the monthly mean vertical wave number spectra of gravity wave kinetic energy. The monthly mean vertical wave number spectra are then compared with a saturation spectrum predicted by gravity wave saturation theory. A slope of 5/3 is used for the model gravity wave spectrum estimation. In general, the agreement is good during all the months. However, it is noticed that the model spectrum overestimates the PSD at lower vertical wave numbers and underestimates it at higher vertical wave numbers, which is consistently observed during all the months. The observed discrepancies are attributed to the differences in the slopes of theoretical and observed gravity wave spectra. The slopes of the observed vertical wave number spectra are estimated and compared with the model spectrum slope, which are in good agreement. The estimated slopes of the observed monthly vertical wave number spectra are in the

  8. Simultaneous projection of particle-number and angular momentum BCS wave-functions in the rare-earth nuclei

    International Nuclear Information System (INIS)

    Oudih, M.R.; Fellah, M.; Allal, N.H.; Benhamouda, N.

    1999-01-01

    It is well established that the BCS wave-functions are neither eigen-functions of the particle-number operator nor of the angular momentum operator. In a previous paper, we have developed a particle-number projection before variation method (of FBCS type). This discrete projection method is based on the SBCS wave-function. The aim of the present contribution is to perform a subsequent angular momentum projection by means of the Peierls-Yoccoz method. The general expression of the system energy, after the double projection, is established in the case of axial symmetry. For practical calculations, an approximation method is introduced. It leads to a semi-classical form of the rotational energy. The rotational spectra have been evaluated numerically for some even-even rare-earth nuclei. The single-particle energies and eigen-states are those of a deformed Woods-Saxon mean field. The obtained results are compared on one hand, to the experimental data, and on the other hand, to the theoretical spectra evaluated by a particle-number projection after variation method (of PBCS type). For all studied nuclei, the spectra determined by the FBCS method reproduce the experimental data better than those of the PBCS method. However, even if the present method is satisfying for low angular momenta, the agreement with the experimental data is lesser for I ≥ 8, particularly for the lighter studied nuclei. (authors)

  9. Measurement of wave number spectrums; Mesure des spectres de nombres d'onde

    Energy Technology Data Exchange (ETDEWEB)

    Perceval, F. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-03-01

    To measure wave lengths in an ionized medium, the cross-correlation product of the signal collected by a fixed probe and that collected by a movable one exploring the medium, is carried out by an interferometer. In order to determine the various modes, we have made a device which computes the Fourier transform of the signal. The influence of the phase at the origin, of the damping of the signal and of the finite explored length has been studied in order to make a numerical calculation of the Fourier transform. (author) [French] Pour mesurer des longueurs d'onde dans un milieu ionise, nous effectuons a l'aide d'un interferometre un produit d'intercorrelation entre le signal collecte par une sonde fixe et celui d'une sonde mobile explorant le milieu. Afin de pouvoir determiner les differents modes constituant ces signaux, nous avons realise un dispositif qui effectue l'analyse de Fourier de tels enregistrements. L'influence de la phase a l'origine, de l'amortissement du signal et de la longueur finie d'exploration, a ete etudiee en vue du calcul numerique de la transformee de Fourier. (auteur)

  10. Model for modulated and chaotic waves in zero-Prandtl-number ...

    Indian Academy of Sciences (India)

    The effects of time-periodic forcing in a few-mode model for zero-Prandtl-number convection with rigid body rotation is investigated. The time-periodic modulation of the rotation rate about the vertical axis and gravity modulation are considered separately. In the presence of periodic variation of the rotation rate, the model ...

  11. Transfinite ordinals as axiom number symbols for unification of quantum and electromagnetic wave functions

    International Nuclear Information System (INIS)

    Honig, W.M.

    1976-01-01

    The mapping of axioms into transfinite number fields provides a method whereby axioms and the magnitudes of experimental values can be distinguished in a clear manner. This procedure is shown also to result in a logical interpretation for the presence of exponential forms and for their imaginary arguments. (author)

  12. Two types of nonlinear wave equations for diffractive beams in bubbly liquids with nonuniform bubble number density.

    Science.gov (United States)

    Kanagawa, Tetsuya

    2015-05-01

    This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.

  13. Experimental investigation of acoustic streaming in a cylindrical wave guide up to high streaming Reynolds numbers.

    Science.gov (United States)

    Reyt, Ida; Bailliet, Hélène; Valière, Jean-Christophe

    2014-01-01

    Measurements of streaming velocity are performed by means of Laser Doppler Velocimetry and Particle Image Velociimetry in an experimental apparatus consisting of a cylindrical waveguide having one loudspeaker at each end for high intensity sound levels. The case of high nonlinear Reynolds number ReNL is particularly investigated. The variation of axial streaming velocity with respect to the axial and to the transverse coordinates are compared to available Rayleigh streaming theory. As expected, the measured streaming velocity agrees well with the Rayleigh streaming theory for small ReNL but deviates significantly from such predictions for high ReNL. When the nonlinear Reynolds number is increased, the outer centerline axial streaming velocity gets distorted towards the acoustic velocity nodes until counter-rotating additional vortices are generated near the acoustic velocity antinodes. This kind of behavior is followed by outer streaming cells only and measurements in the near wall region show that inner streaming vortices are less affected by this substantial evolution of fast streaming pattern. Measurements of the transient evolution of streaming velocity provide an additional insight into the evolution of fast streaming.

  14. The impact of wave number selection and spin up time when using spectral nudging for dynamical downscaling applications

    Science.gov (United States)

    Gómez, Breogán; Miguez-Macho, Gonzalo

    2017-04-01

    Nudging techniques are commonly used to constrain the evolution of numerical models to a reference dataset that is typically of a lower resolution. The nudged model retains some of the features of the reference field while incorporating its own dynamics to the solution. These characteristics have made nudging very popular in dynamic downscaling applications that cover from shot range, single case studies, to multi-decadal regional climate simulations. Recently, a variation of this approach called Spectral Nudging, has gained popularity for its ability to maintain the higher temporal and spatial variability of the model results, while forcing the large scales in the solution with a coarser resolution field. In this work, we focus on a not much explored aspect of this technique: the impact of selecting different cut-off wave numbers and spin-up times. We perform four-day long simulations with the WRF model, daily for three different one-month periods that include a free run and several Spectral Nudging experiments with cut-off wave numbers ranging from the smallest to the largest possible (full Grid Nudging). Results show that Spectral Nudging is very effective at imposing the selected scales onto the solution, while allowing the limited area model to incorporate finer scale features. The model error diminishes rapidly as the nudging expands over broader parts of the spectrum, but this decreasing trend ceases sharply at cut-off wave numbers equivalent to a length scale of about 1000 km, and the error magnitude changes minimally thereafter. This scale corresponds to the Rossby Radius of deformation, separating synoptic from convective scales in the flow. When nudging above this value is applied, a shifting of the synoptic patterns can occur in the solution, yielding large model errors. However, when selecting smaller scales, the fine scale contribution of the model is damped, thus making 1000 km the appropriate scale threshold to nudge in order to balance both effects

  15. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....

  16. Plasma wave profiles of Earth's bow shock at low Mach number: ISEE 3 observations on the far flank

    International Nuclear Information System (INIS)

    Greenstadt, E.W.; Coroniti, F.V.; Moses, S.L.; Smith, E.J.

    1992-01-01

    The Earth's bow shock is weak along its distant flanks where the projected component of solar wind velocity normal to the hyperboloidal surface is only a fraction of the total free stream velocity, severely reducing the local Mach number. The authors present a survey of selected crossings far downstream from the subsolar shock, delineating the overall plasma wave (pw) behavior of a selected set of nearly perpendicular crossings and another set of limited Mach number but broad geometry; they include their immediate upstream regions. The result is a generalizable pw signature, or signatures, of low Mach number shocks and some likely implications of those signatures for the weak shock's plasma physical processes on the flank. They find the data consistent with the presence of ion beam interactions producing noise ahead of the shock in the ion acoustic frequency range. One subcritical case was found whose pw noise was presumably related to a reflected ion population just as in stronger events. The presence or absence, and the amplitudes, of pw activity are explainable by the presence or absence of a population of upstream ions controlled by the component of interplanetary magnetic field normal to the solar wind flow

  17. Aortic-Radial Pulse Wave Velocity Ratio in End-stage Renal Disease Patients: Association with Age, Body Tissue Hydration Status, Renal Failure Etiology and Five Years of Hemodialysis.

    Science.gov (United States)

    Bia, Daniel; Valtuille, Rodolfo; Galli, Cintia; Wray, Sandra; Armentano, Ricardo; Zócalo, Yanina; Cabrera-Fischer, Edmundo

    2017-03-01

    The etiology of the end-stage renal disease (ESRD) and the hydration status may be involved in the arterial stiffening process observed in hemodialyzed patients. The ratio between carotid-femoral and carotid-radial pulse wave velocity (PWV ratio) was recently proposed to characterize the patient-specific stiffening process. to analyze: (1) the PWV-ratio in healthy and hemodialyzed subjects, analyzing potential changes associated to etiologies of the ESRD, (2) the PWV-ratio and hydration status using multiple-frequency bioimpedance and, (3) the effects of hemodialysis on PWV-ratio in a 5-year follow-up. PWV-ratio was evaluated in 151 patients differentiated by the pathology determining their ESRD. Total body fluid (TBF), intra and extra cellular fluid (ICF, ECF) were measured in 65 of these patients using bioelectrical-impedance. The association between arterial, hemodynamic or fluid parameters was analyzed. PWV-ratio was evaluated in a group of patients (n = 25) 5 years later (follow-up study). PWV-ratio increased in the ESRD cohort with respect to the control group (1.03 ± 0.23 vs. 1.31 ± 0.37; p hydration status, but not with the blood pressure. PWV-ratio could be considered a blood pressure-independent parameter, associated with the age and hydration status of the patient.

  18. Radial gas turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Krausche, S.; Ohlsson, Johan

    1998-04-01

    The objective of this work was to develop a program dealing with design point calculations of radial turbine machinery, including both compressor and turbine, with as few input data as possible. Some simple stress calculations and turbine metal blade temperatures were also included. This program was then implanted in a German thermodynamics program, Gasturb, a program calculating design and off-design performance of gas turbines. The calculations proceed with a lot of assumptions, necessary to finish the task, concerning pressure losses, velocity distribution, blockage, etc., and have been correlated with empirical data from VAT. Most of these values could have been input data, but to prevent the user of the program from drowning in input values, they are set as default values in the program code. The output data consist of geometry, Mach numbers, predicted component efficiency etc., and a number of graphical plots of geometry and velocity triangles. For the cases examined, the error in predicted efficiency level was within {+-} 1-2% points, and quite satisfactory errors in geometrical and thermodynamic conditions were obtained Examination paper. 18 refs, 36 figs

  19. A theory of self-organized zonal flow with fine radial structure in tokamak

    Science.gov (United States)

    Zhang, Y. Z.; Liu, Z. Y.; Xie, T.; Mahajan, S. M.; Liu, J.

    2017-12-01

    The (low frequency) zonal flow-ion temperature gradient (ITG) wave system, constructed on Braginskii's fluid model in tokamak, is shown to be a reaction-diffusion-advection system; it is derived by making use of a multiple spatiotemporal scale technique and two-dimensional (2D) ballooning theory. For real regular group velocities of ITG waves, two distinct temporal processes, sharing a very similar meso-scale radial structure, are identified in the nonlinear self-organized stage. The stationary and quasi-stationary structures reflect a particular feature of the poloidal group velocity. The equation set posed to be an initial value problem is numerically solved for JET low mode parameters; the results are presented in several figures and two movies that show the spatiotemporal evolutions as well as the spectrum analysis—frequency-wave number spectrum, auto power spectrum, and Lissajous diagram. This approach reveals that the zonal flow in tokamak is a local traveling wave. For the quasi-stationary process, the cycle of ITG wave energy is composed of two consecutive phases in distinct spatiotemporal structures: a pair of Cavitons growing and breathing slowly without long range propagation, followed by a sudden decay into many Instantons that carry negative wave energy rapidly into infinity. A spotlight onto the motion of Instantons for a given radial position reproduces a Blob-Hole temporal structure; the occurrence as well as the rapid decay of Caviton into Instantons is triggered by zero-crossing of radial group velocity. A sample of the radial profile of zonal flow contributed from 31 nonlinearly coupled rational surfaces near plasma edge is found to be very similar to that observed in the JET Ohmic phase [J. C. Hillesheim et al., Phys. Rev. Lett. 116, 165002 (2016)]. The theory predicts an interior asymmetric dipole structure associated with the zonal flow that is driven by the gradients of ITG turbulence intensity.

  20. Radial breathing vibration of double-walled carbon nanotubes subjected to pressure

    International Nuclear Information System (INIS)

    Lei, Xiao-Wen; Natsuki, Toshiaki; Shi, Jin-Xing; Ni, Qing-Qing

    2011-01-01

    A theoretical vibrational analysis of the radial breathing mode (RBM) of double-walled carbon nanotubes (DWCNTs) subjected to pressure is presented based on an elastic continuum model. The results agree with reported experimental results obtained under different conditions. Frequencies of the RBM in DWCNTs subjected to increasing pressure depend strongly on circumferential wave numbers, but weakly on the aspect ratio and axial half-wave numbers. For the inner and outer tubes of DWCNTs, the frequency of the RBM increases obviously as the pressure increases under different conditions. The range of variation is smaller for the inner tube than the outer tube. -- Highlights: → An elastic continuum model is used in the theoretical analysis of RBM of DWCNTs. → The RBM of DWCNTs subjected to pressure is analyzed. → Frequency of RBM depends on wave number and aspect ratio. → Frequencies of RBM in inner and outer tubes change in different trends and ranges.

  1. Saturation of single toroidal number Alfvén modes

    International Nuclear Information System (INIS)

    Wang, X; Briguglio, S

    2016-01-01

    The results of numerical simulations are presented to illustrate the saturation mechanism of a single toroidal number Alfvén mode, driven unstable, in a tokamak plasma, by the resonant interaction with energetic ions. The effects of equilibrium geometry non-uniformities and finite mode radial width on the wave-particle nonlinear dynamics are discussed. Saturation occurs as the fast-ion density flattening produced by the radial flux associated to the resonant particles captured in the potential well of the Alfvén wave extends over the whole region where mode-particle power exchange can take place. The occurrence of two different saturation regimes is shown. In the first regime, dubbed resonance detuning, that region is limited by the resonance radial width (that is, the width of the region where the fast-ion resonance frequency matches the mode frequency). In the second regime, called radial decoupling, the power exchange region is limited by the mode radial width. In the former regime, the mode saturation amplitude scales quadratically with the growth rate; in the latter, it scales linearly. The occurrence of one or the other regime can be predicted on the basis of linear dynamics: in particular, the radial profile of the fast-ion resonance frequency and the mode structure. Here, we discuss how such properties can depend on the considered toroidal number and compare simulation results with the predictions obtained from a simplified nonlinear pendulum model. (paper)

  2. Radial nerve dysfunction (image)

    Science.gov (United States)

    The radial nerve travels down the arm and supplies movement to the triceps muscle at the back of the upper arm. ... the wrist and hand. The usual causes of nerve dysfunction are direct trauma, prolonged pressure on the ...

  3. Research on Radial Vibration of a Circular Plate

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2016-01-01

    Full Text Available Radial vibration of the circular plate is presented using wave propagation approach and classical method containing Bessel solution and Hankel solution for calculating the natural frequency theoretically. In cylindrical coordinate system, in order to obtain natural frequency, propagation and reflection matrices are deduced at the boundaries of free-free, fixed-fixed, and fixed-free using wave propagation approach. Furthermore, radial phononic crystal is constructed by connecting two materials periodically for the analysis of band phenomenon. Also, Finite Element Simulation (FEM is adopted to verify the theoretical results. Finally, the radial and piezoelectric effects on the band are also discussed.

  4. Spectral dependence efficiency and localization of non-inductive current-drive via helicity injection by global Alfven waves in Tokamak plasmas

    International Nuclear Information System (INIS)

    Komoshvili, K.; Cuperman, S.; Bruma, C.

    1996-01-01

    The non-inductive current drive via helicity injection by Global Alfven eigenmode (GAE) waves is studied. For illustration, the first radial mode of the discrete resonant GAE spectrum is considered. The following aspects are given special attention: spectral analysis, radial dependence and efficiency - all these as functions of the characteristics of the waves launched by an external, concentric antenna (i.e, wave frequency and poloidal and toroidal wave numbers). The results reveal the following conclusions. Generation of GAE waves. In the range of poloidal wave numbers -3 0 for m = -l, -2, -3 and -20 10; I-BAR < 0 for m = +1, +2, +3 and n < 10. (iv) The efficiency of the current drive, η = absolute I-BAR/absolute P-BAR, increases in the cases m = -1, -2, -3 with absolute m and absolute 1/n. (v) Detailed information on the relative direction and radial (core) localization of the current drive is obtained. (authors)

  5. Focusing Leaky Waves: A Class of Electromagnetic Localized Waves with Complex Spectra

    Science.gov (United States)

    Fuscaldo, Walter; Comite, Davide; Boesso, Alessandro; Baccarelli, Paolo; Burghignoli, Paolo; Galli, Alessandro

    2018-05-01

    Localized waves, i.e., the wide class of limited-diffraction, limited-dispersion solutions to the wave equation are generally characterized by real wave numbers. We consider the role played by localized waves with generally complex "leaky" wave numbers. First, the impact of the imaginary part of the wave number (i.e., the leakage constant) on the diffractive (spatial broadening) features of monochromatic localized solutions (i.e., beams) is rigorously evaluated. Then general conditions are derived to show that only a restricted class of spectra (either real or complex) allows for generating a causal localized wave. It turns out that backward leaky waves fall into this category. On this ground, several criteria for the systematic design of wideband radiators, namely, periodic radial waveguides based on backward leaky waves, are established in the framework of leaky-wave theory. An effective design method is proposed to minimize the frequency dispersion of the proposed class of devices and the impact of the "leakage" on the dispersive (temporal broadening) features of polychromatic localized solutions (i.e., pulses) is accounted for. Numerical results corroborate the concept, clearly highlighting the advantages and limitations of the leaky-wave approach for the generation of localized pulses at millimeter-wave frequencies, where energy focusing is in high demand in modern applications.

  6. Number of Heat Wave Deaths by Diagnosis, Sex, Age Groups, and Area, in Slovenia, 2015 vs. 2003

    Science.gov (United States)

    Perčič, Simona; Kukec, Andreja; Cegnar, Tanja; Hojs, Ana

    2018-01-01

    Background: Number of deaths increases during periods of elevated heat. Objectives: To examine whether differences in heat-related deaths between 2003 and 2015 occurred in Slovenia. Materials and Methods: We estimated relative risks for deaths for the observed diagnoses, sex, age, and area, as well as 95% confidence intervals and excess deaths associated with heat waves occurring in 2015 and 2003. For comparison between 2015 and 2003, we calculated relative risks ratio and 95% confidence intervals. Results: Statistically significant in 2015 were the following: age group 75+, all causes of deaths (RR = 1.10, 95% CI 1.00–1.22); all population, circulatory system diseases (RR = 1.14, 95% CI 1.01–1.30) and age group 75+, diseases of circulatory system (RR = 1.17, 95% CI 1.01–1.34). Statistically significant in 2003 were the following: female, age group 5–74, circulatory system diseases (RR = 1.69, 95% CI 1.08–2.62). Discussion: Comparison between 2015 and 2003, all, circulatory system diseases (RRR = 1.25, 95% CI 1.01–1.55); male, circulatory system diseases (RRR = 1.85, 95% CI 1.41–2.43); all, age group 75+ circulatory system diseases (RRR = 1.34, 95% CI 1.07–1.69); male, age group 75+, circulatory system diseases (RRR = 1.52, 95% CI 1.03–2.25) and female, age group 75+, circulatory system diseases (RRR = 1.43, 95% CI 1.08–1.89). Conclusions: Public health efforts are urgent and should address circulatory system causes and old age groups. PMID:29361792

  7. High speed photography for studying the shock wave propagation at high Mach numbers through a reflection nozzle

    International Nuclear Information System (INIS)

    Zaytsev, S.G.; Lazareva, E.V.; Mikhailova, A.V.; Nikolaev-Kozlov, V.L.; Chebotareva, E.I.

    1979-01-01

    Propagation of intensive shock waves with a temperature of about 1 eV has been studied in a two-dimensional reflection nozzle mounted at the exit of a shock tube. The Toepler technique has been involved along with the interference scheme with a laser light source allowing the multiple-frame recording to be done. Density distribution in the nozzle as well as the wave pattern occurring at the shock propagation are presented. (author)

  8. Autoresonant control of drift waves

    DEFF Research Database (Denmark)

    Shagalov, A.G.; Rasmussen, Jens Juul; Naulin, Volker

    2017-01-01

    The control of nonlinear drift waves in a magnetized plasmas column has been investigated. The studies are based on the Hasegawa–Mima model, which is solved on a disk domain with radial inhomogeneity of the plasma density. The system is forced by a rotating potential with varying frequency defined...... on the boundary. To excite and control the waves we apply the autoresonant effect, taking place when the amplitude of the forcing exceeds a threshold value and the waves are phase-locked with the forcing. We demonstrate that the autoresonant approach is applicable for excitation of a range of steady nonlinear...... waves of the lowest azimuthal mode numbers and for controlling their amplitudes and phases. We also demonstrate the excitation of zonal flows (m = 0 modes), which are controlled via the forced modes....

  9. Radial wedge flange clamp

    Science.gov (United States)

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  10. Radial excitations in nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Carbonell, J.; Gignoux, C.

    1986-01-01

    In the non-relativistic constituent quark model, the role of the radial excitations of the nucleon is studied within a resonating group approach of the nucleon-nucleon scattering. It is shown that, rather than the inclusion of new channels, it is important to include mixed-symmetry spin-isospin components in the nucleon wave function. It is also found that during the collision there is no significant deformation of the nucleon. (orig.)

  11. Nonlinear excitation of geodesic acoustic modes by drift waves

    International Nuclear Information System (INIS)

    Chakrabarti, N.; Singh, R.; Kaw, P. K.; Guzdar, P. N.

    2007-01-01

    In this paper, two mode-coupling analyses for the nonlinear excitation of the geodesic acoustic modes (GAMs) in tokamak plasmas by drift waves are presented. The first approach is a coherent parametric process, which leads to a three-wave resonant interaction. This investigation allows for the drift waves and the GAMs to have comparable scales. The second approach uses the wave-kinetic equations for the drift waves, which then couples to the GAMs. This requires that the GAM scale length be large compared to the wave packet associated with the drift waves. The resonance conditions for these two cases lead to specific predictions of the radial wave number of the excited GAMs

  12. Sirenomelia with radial dysplasia.

    Science.gov (United States)

    Kulkarni, M L; Abdul Manaf, K M; Prasannakumar, D G; Kulkarni, Preethi M

    2004-05-01

    Sirenomelia is a rare anomaly usually associated with other multiple malformations. In this communication the authors report a case of sirenomelia associated with multiple malformations, which include radial hypoplasia also. Though several theories have been proposed regarding the etiology of multiple malformation syndromes in the past, the recent theory of primary developmental defect during blastogenesis holds good in this case.

  13. Radially truncated galactic discs

    NARCIS (Netherlands)

    Grijs, R. de; Kregel, M.; Wesson, K H

    2000-01-01

    Abstract: We present the first results of a systematic analysis of radially truncatedexponential discs for four galaxies of a sample of disc-dominated edge-onspiral galaxies. Edge-on galaxies are very useful for the study of truncatedgalactic discs, since we can follow their light distributions out

  14. Wave disc engine apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Norbert; Piechna, Janusz; Sun, Guangwei; Parraga, Pablo-Francisco

    2018-01-02

    A wave disc engine apparatus is provided. A further aspect employs a constricted nozzle in a wave rotor channel. A further aspect provides a sharp bend between an inlet and an outlet in a fluid pathway of a wave rotor, with the bend being spaced away from a peripheral edge of the wave rotor. A radial wave rotor for generating electricity in an automotive vehicle is disclosed in yet another aspect.

  15. High-resolution wave number spectrum using multi-point measurements in space – the Multi-point Signal Resonator (MSR technique

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2011-02-01

    Full Text Available A new analysis method is presented that provides a high-resolution power spectrum in a broad wave number domain based on multi-point measurements. The analysis technique is referred to as the Multi-point Signal Resonator (MSR and it benefits from Capon's minimum variance method for obtaining the proper power spectral density of the signal as well as the MUSIC algorithm (Multiple Signal Classification for considerably reducing the noise part in the spectrum. The mathematical foundation of the analysis method is presented and it is applied to synthetic data as well as Cluster observations of the interplanetary magnetic field. Using the MSR technique for Cluster data we find a wave in the solar wind propagating parallel to the mean magnetic field with relatively small amplitude, which is not identified by the Capon spectrum. The Cluster data analysis shows the potential of the MSR technique for studying waves and turbulence using multi-point measurements.

  16. Three-dimensional instability of standing waves

    Science.gov (United States)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2003-12-01

    We investigate the three-dimensional instability of finite-amplitude standing surface waves under the influence of gravity. The analysis employs the transition matrix (TM) approach and uses a new high-order spectral element (HOSE) method for computation of the nonlinear wave dynamics. HOSE is an extension of the original high-order spectral method (HOS) wherein nonlinear wave wave and wave body interactions are retained up to high order in wave steepness. Instead of global basis functions in HOS, however, HOSE employs spectral elements to allow for complex free-surface geometries and surface-piercing bodies. Exponential convergence of HOS with respect to the total number of spectral modes (for a fixed number of elements) and interaction order is retained in HOSE. In this study, we use TM-HOSE to obtain the stability of general three-dimensional perturbations (on a two-dimensional surface) on two classes of standing waves: plane standing waves in a rectangular tank; and radial/azimuthal standing waves in a circular basin. For plane standing waves, we confirm the known result of two-dimensional side-bandlike instability. In addition, we find a novel three-dimensional instability for base flow of any amplitude. The dominant component of the unstable disturbance is an oblique (standing) wave oriented at an arbitrary angle whose frequency is close to the (nonlinear) frequency of the original standing wave. This finding is confirmed by direct long-time simulations using HOSE which show that the nonlinear evolution leads to classical Fermi Pasta Ulam recurrence. For the circular basin, we find that, beyond a threshold wave steepness, a standing wave (of nonlinear frequency Omega) is unstable to three-dimensional perturbations. The unstable perturbation contains two dominant (standing-wave) components, the sum of whose frequencies is close to 2Omega. From the cases we consider, the critical wave steepness is found to generally decrease/increase with increasing radial

  17. Beat-wave excitation and current driven in tokamak plasma. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, B F [Plasma physics Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    Wave heating current drive in tokamaks is a growing subject in the plasma physics literature. For current drive in tokamaks by electromagnetic waves, different methods have been proposed recently. One of the promising schemes for current drive remains the beat wave scheme. This technique employs two CO- or counterpropagating monochromatic laser beams (or microwaves) whose frequency difference matches the plasma frequency, while the wave number difference (or sum, in the case of counterpropagating) determine the wave number of the resulting plasma beat wave. In this work, the basic analysis of a beat wave current drive scheme in which collinear waves are used is discussed. by assuming a Gaussian profile for the amplitude of these pump waves, the amplitudes of the longitudinal and radial fields of the beat wave due to the nonlinear wave interactions have been calculated. Besides, the transfer of momentum flux that accompanies the transfer of wave action in beat-wave scattering will be used to drive the toroidal radial currents in tokamaks. self-generated magnetic fields due to those currents were also calculated. 1 fig.

  18. Variable stator radial turbine

    Science.gov (United States)

    Rogo, C.; Hajek, T.; Chen, A. G.

    1984-01-01

    A radial turbine stage with a variable area nozzle was investigated. A high work capacity turbine design with a known high performance base was modified to accept a fixed vane stagger angle moveable sidewall nozzle. The nozzle area was varied by moving the forward and rearward sidewalls. Diffusing and accelerating rotor inlet ramps were evaluated in combinations with hub and shroud rotor exit rings. Performance of contoured sidewalls and the location of the sidewall split line with respect to the rotor inlet was compared to the baseline. Performance and rotor exit survey data are presented for 31 different geometries. Detail survey data at the nozzle exit are given in contour plot format for five configurations. A data base is provided for a variable geometry concept that is a viable alternative to the more common pivoted vane variable geometry radial turbine.

  19. Estimation of Radial Runout

    OpenAIRE

    Nilsson, Martin

    2007-01-01

    The demands for ride comfort quality in today's long haulage trucks are constantly growing. A part of the ride comfort problems are represented by internal vibrations caused by rotating mechanical parts. This thesis work focus on the vibrations generated from radial runout on the wheels. These long haulage trucks travel long distances on smooth highways, with a constant speed of 90 km/h resulting in a 7 Hz oscillation. This frequency creates vibrations in the cab, which can be found annoying....

  20. Radial Fuzzy Systems

    Czech Academy of Sciences Publication Activity Database

    Coufal, David

    2017-01-01

    Roč. 319, 15 July (2017), s. 1-27 ISSN 0165-0114 R&D Projects: GA MŠk(CZ) LD13002 Institutional support: RVO:67985807 Keywords : fuzzy systems * radial functions * coherence Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.718, year: 2016

  1. Radial Field Piezoelectric Diaphragms

    Science.gov (United States)

    Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.

    2002-01-01

    A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.

  2. Perceived radial translation during centrifugation

    NARCIS (Netherlands)

    Bos, J.E.; Correia Grácio, B.J.

    2015-01-01

    BACKGROUND: Linear acceleration generally gives rise to translation perception. Centripetal acceleration during centrifugation, however, has never been reported giving rise to a radial, inward translation perception. OBJECTIVE: To study whether centrifugation can induce a radial translation

  3. Bounded dust-acoustic waves in a cylindrically bounded collisional dusty plasma with dust charge variation

    International Nuclear Information System (INIS)

    Wei Nanxia; Xue Jukui

    2006-01-01

    Taking into account the boundary, particle collisions, and dust charging effects, dust-acoustic waves in a uniform cylindrically bounded dusty plasma is investigated analytically, and the dispersion relation for the dust-acoustic wave is obtained. The effects of boundary, dust charge variation, particle collision, and dust size on the dust-acoustic wave are discussed in detail. Due to the bounded cylindrical boundary effects, the radial wave number is discrete, i.e., the spectrum is discrete. It is shown that the discrete spectrum, the adiabatic dust charge variation, dust grain size, and the particle collision have significant effects on the dust-acoustic wave

  4. Development of stochastic webs in a wave-driven linear oscillator

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Sato, Tetsuya; Hasegawa, Akira.

    1988-01-01

    We present developments of stochastic webs in a linear oscillator which is driven by a finite number (N) of external waves with frequency ω o (harmonic of the linear oscillator frequency). The expansion of the stochastic domain as functions of the number of waves and their amplitudes is studied numerically. The results with small amplitude waves compares well with the perturbation theory. When the amplitude of external waves is small a leaf structure which expands with N develops radially in the phase space. (author)

  5. Automatic Identification of the Repolarization Endpoint by Computing the Dominant T-wave on a Reduced Number of Leads.

    Science.gov (United States)

    Giuliani, C; Agostinelli, A; Di Nardo, F; Fioretti, S; Burattini, L

    2016-01-01

    Electrocardiographic (ECG) T-wave endpoint (Tend) identification suffers lack of reliability due to the presence of noise and variability among leads. Tend identification can be improved by using global repolarization waveforms obtained by combining several leads. The dominant T-wave (DTW) is a global repolarization waveform that proved to improve Tend identification when computed using the 15 (I to III, aVr, aVl, aVf, V1 to V6, X, Y, Z) leads usually available in clinics, of which only 8 (I, II, V1 to V6) are independent. The aim of the present study was to evaluate if the 8 independent leads are sufficient to obtain a DTW which allows a reliable Tend identification. To this aim Tend measures automatically identified from 15-dependent-lead DTWs of 46 control healthy subjects (CHS) and 103 acute myocardial infarction patients (AMIP) were compared with those obtained from 8-independent-lead DTWs. Results indicate that Tend distributions have not statistically different median values (CHS: 340 ms vs. 340 ms, respectively; AMIP: 325 ms vs. 320 ms, respectively), besides being strongly correlated (CHS: ρ=0.97, AMIP: 0.88; Pautomatic Tend identification from DTW, the 8 independent leads can be used without a statistically significant loss of accuracy but with a significant decrement of computational effort. The lead dependence of 7 out of 15 leads does not introduce a significant bias in the Tend determination from 15 dependent lead DTWs.

  6. Relativistic Energy Analysis of Five-Dimensional q-Deformed Radial Rosen-Morse Potential Combined with q-Deformed Trigonometric Scarf Noncentral Potential Using Asymptotic Iteration Method

    International Nuclear Information System (INIS)

    Pramono, Subur; Suparmi, A.; Cari, Cari

    2016-01-01

    We study the exact solution of Dirac equation in the hyperspherical coordinate under influence of separable q-deformed quantum potentials. The q-deformed hyperbolic Rosen-Morse potential is perturbed by q-deformed noncentral trigonometric Scarf potentials, where all of them can be solved by using Asymptotic Iteration Method (AIM). This work is limited to spin symmetry case. The relativistic energy equation and orbital quantum number equation l_D_-_1 have been obtained using Asymptotic Iteration Method. The upper radial wave function equations and angular wave function equations are also obtained by using this method. The relativistic energy levels are numerically calculated using Matlab, and the increase of radial quantum number n causes the increase of bound state relativistic energy level in both dimensions D=5 and D=3. The bound state relativistic energy level decreases with increasing of both deformation parameter q and orbital quantum number n_l.

  7. Lattice dynamical investigation of the Raman and infrared wave numbers and heat capacity properties of the pyrochlores R2Zr2O7 (R = La, Nd, Sm, Eu)

    Science.gov (United States)

    Nandi, S.; Jana, Y. M.; Gupta, H. C.

    2018-04-01

    A short-range electrostatic forcefield model has been applied for the first time to investigate the Raman and infrared wave numbers in pyrochlore zirconates R2Zr2O7 (R3+ = La, Nd, Sm, Eu). The calculations of phonons involve five stretching and four bending force constants in the Wilson GF matrix method. The calculated phonon wave numbers are in reasonable agreement with the observed spectra in infrared and Raman excitation zones for all of these isomorphous compounds. The contributions of force constants to each mode show a similar trend of variation for all of these compounds. Furthermore, to validate the established forcefield model, we calculated the standard thermodynamic functions, e.g., molar heat capacity, entropy and enthalpy, and compared the results with the previous experimental data for each compound. Using the derived wave numbers for the acoustic and optical modes, the total phonon contribution to the heat capacity was calculated for all these zirconate compounds. The Schottky heat capacity contributions were also calculated for the magnetic compounds, Nd2Zr2O7, Sm2Zr2O7 and Eu2Zr2O7, taking account of crystal-field level schemes of the lanthanide ions. The derived total heat capacity and the integrated values of molar entropy and molar enthalpy showed satisfactory correlations at low temperatures with the experimental results available in the literature for these compounds. At higher temperatures, the discrepancies may be caused by the anharmonic effects of vibrations, phonon dispersion, distribution of phonon density of states, etc.

  8. Improved wave functions for large-N expansions

    International Nuclear Information System (INIS)

    Imbo, T.; Sukhatme, U.

    1985-01-01

    Existing large-N expansions of radial wave functions phi/sub n/,l(r) are only accurate near the minimum of the effective potential. Within the framework of the shifted 1/N expansion, we use known analytic results to motivate a simple modification so that the improved wave functions are accurate over a wide range of r and any choice of quantum numbers n and l. It is shown that these wave functions yield simple and accurate analytic expressions for certain quantities of interest in quarkonium physics

  9. Radial semiconductor drift chambers

    International Nuclear Information System (INIS)

    Rawlings, K.J.

    1987-01-01

    The conditions under which the energy resolution of a radial semiconductor drift chamber based detector system becomes dominated by the step noise from the detector dark current have been investigated. To minimise the drift chamber dark current attention should be paid to carrier generation at Si/SiO 2 interfaces. This consideration conflicts with the desire to reduce the signal risetime: a higher drift field for shorter signal pulses requires a larger area of SiO 2 . Calculations for the single shaping and pseudo Gaussian passive filters indicate that for the same degree of signal risetime sensitivity in a system dominated by the step noise from the detector dark current, the pseudo Gaussian filter gives only a 3% improvement in signal/noise and 12% improvement in rate capability compared with the single shaper performance. (orig.)

  10. ISR Radial Field Magnet

    CERN Multimedia

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  11. The ARCS radial collimator

    International Nuclear Information System (INIS)

    Stone, M.B.; Abernathy, D.L.; Niedziela, J.L.; Overbay, M.A.

    2015-01-01

    We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. The collimator is composed of collimating blades (or septa). The septa are 12 micron thick Kapton foils coated on each side with 39 microns of enriched boron carbide ( 10 B 4 C with 10 B > 96%) in an ultra-high vacuum compatible binder. The collimator blades represent an additional 22 m 2 of surface area. In the article we present collimator's design and performance and methodologies for its effective use

  12. Antiproton compression and radial measurements

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jorgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile, and its relation to that of the electron plasma. We also measure the outer radial profile by ejecting antiprotons to the trap wall using an octupole magnet.

  13. Radial profiles of hard X-ray emission during steady state current drive in the TRIAM-1M tokamak

    International Nuclear Information System (INIS)

    Nakamura, Y.; Takabatake, Y.; Jotaki, E.; Moriyama, S.; Nagao, A.; Nakamura, K.; Hiraki, N.; Itoh, S.

    1990-01-01

    The hard X-ray emission from the TRIAM-1M tokamak plasma during steady state lower hybrid current drive with a discharge duration of a few minutes was measured with sodium iodide scintillation spectrometers. The radial profiles of the X-ray emission were also measured and indicate that, in the low density regime (n e =(1-3)x10 12 cm -3 ), the current carrying high energy electrons are mainly in the inner region of the plasma column and their radial profile remains unchanged during current drive. On the other hand, high density discharges (n e =(3-6)x10 12 cm -3 ) are always accompanied by an abrupt drop of the plasma current, and the X-ray emission profile changes from peaked to broad. This change can be attributed to the conditions of wave accessibility. As the electron density increases, the accessibility of the plasma to lower hybrid waves with low values of the parallel wave number n parallel is significantly reduced and high energy electrons resonating with the waves are produced at the plasma periphery. Interaction of these electrons with the limiters causes an increase of the electron density in this region; waves with low n parallel then become completely excluded from the inner part of the plasma column. This interpretation is supported by measurements of the density profile and impurity radiation, and has been confirmed in an investigation of discharges with additional gas puffing. (author). 17 refs, 21 figs

  14. Beyond the relativistic mean-field approximation. II. Configuration mixing of mean-field wave functions projected on angular momentum and particle number

    International Nuclear Information System (INIS)

    Niksic, T.; Vretenar, D.; Ring, P.

    2006-01-01

    The framework of relativistic self-consistent mean-field models is extended to include correlations related to the restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is used to perform configuration mixing of angular-momentum and particle-number projected relativistic wave functions. The geometry is restricted to axially symmetric shapes, and the intrinsic wave functions are generated from the solutions of the relativistic mean-field+Lipkin-Nogami BCS equations, with a constraint on the mass quadrupole moment. The model employs a relativistic point-coupling (contact) nucleon-nucleon effective interaction in the particle-hole channel, and a density-independent δ-interaction in the pairing channel. Illustrative calculations are performed for 24 Mg, 32 S, and 36 Ar, and compared with results obtained employing the model developed in the first part of this work, i.e., without particle-number projection, as well as with the corresponding nonrelativistic models based on Skyrme and Gogny effective interactions

  15. Radial expansion and multifragmentation

    International Nuclear Information System (INIS)

    Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Kerambrun, A.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Meslin, C.; Nakagawa, T.; Patry, J.P.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    The light systems 36 Ar + 27 Al and 64 Zn + nat Ti were measured at several bombarding energies between ∼ 35 and 95 MeV/nucleon. It was found that the predominant part of the cross section is due to binary collisions. In this paper the focus is placed on the properties of the quasi-projectile nuclei. In the central collisions the excitation energies of the quasi-projectile reach values exceeding largely 10 MeV/nucleon. The slope of the high energy part of the distribution can give only an upper limit of the apparent temperature (the average temperature along the decay chain). The highly excited quasi-projectile may get rapidly fragmented rather than sequentially. The heavy fragments are excited and can emit light particles (n, p, d, t, 3 He, α,...) what perturbs additionally the spectrum of these particles. Concerning the expansion energy, one can determine the average kinetic energies of the product (in the quasi-projectile-framework) and compare with simulation values. To fit the experimental data an additional radial expansion energy is to be considered. The average expansion energy depends slightly on the impact parameter but it increases with E * / A, ranging from 0.4 to 1,2 MeV/nucleon for an excitation energy increasing from 7 to 10.5 MeV/nucleon. This collective radial energy seems to be independent of the fragment mass, what is possibly valid for the case of larger quasi-projectile masses. The origin of the expansion is to be determined. It may be due to a compression in the interaction zone at the initial stage of the collision, which propagates in the quasi-projectile and quasi-target, or else, may be due, simply, to the increase of thermal energy leading to a rapid fragment emission. The sequential de-excitation calculation overestimates light particle emission and consequently heavy residues, particularly, at higher excitation energies. This disagreement indicates that a sequential process can not account for the di-excitation of very hot nuclei

  16. SURFACE ALFVEN WAVES IN SOLAR FLUX TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T. [Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Arregui, I.; Terradas, J., E-mail: marcel.goossens@wis.kuleuven.be [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2012-07-10

    Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

  17. Radial flow heat exchanger

    Science.gov (United States)

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  18. Asymptotic Solutions of Serial Radial Fuel Shuffling

    Directory of Open Access Journals (Sweden)

    Xue-Nong Chen

    2015-12-01

    Full Text Available In this paper, the mechanism of traveling wave reactors (TWRs is investigated from the mathematical physics point of view, in which a stationary fission wave is formed by radial fuel drifting. A two dimensional cylindrically symmetric core is considered and the fuel is assumed to drift radially according to a continuous fuel shuffling scheme. A one-group diffusion equation with burn-up dependent macroscopic coefficients is set up. The burn-up dependent macroscopic coefficients were assumed to be known as functions of neutron fluence. By introducing the effective multiplication factor keff, a nonlinear eigenvalue problem is formulated. The 1-D stationary cylindrical coordinate problem can be solved successively by analytical and numerical integrations for associated eigenvalues keff. Two representative 1-D examples are shown for inward and outward fuel drifting motions, respectively. The inward fuel drifting has a higher keff than the outward one. The 2-D eigenvalue problem has to be solved by a more complicated method, namely a pseudo time stepping iteration scheme. Its 2-D asymptotic solutions are obtained together with certain eigenvalues keff for several fuel inward drifting speeds. Distributions of the neutron flux, the neutron fluence, the infinity multiplication factor kinf and the normalized power are presented for two different drifting speeds.

  19. Guided Circumferential Waves in Layered Poroelastic Cylinders

    Directory of Open Access Journals (Sweden)

    Shah S.A.

    2016-12-01

    Full Text Available The present paper investigates the propagation of time harmonic circumferential waves in a two-dimensional hollow poroelastic cylinder with an inner shaft (shaft-bearing assembly. The hollow poroelastic cylinder and inner shaft are assumed to be infinite in axial direction. The outer surface of the cylinder is stress free and at the interface, between the inner shaft and the outer cylinder, it is assumed to be free sliding and the interfacial shear stresses are zero, also the normal stress and radial displacements are continuous. The frequency equation of guided circumferential waves for a permeable and an impermeable surface is obtained. When the angular wave number vanish the frequency equation of guided circumferential waves for a permeable and an impermeable surface degenerates and the dilatational and shear waves are uncoupled. Shear waves are independent of the nature of surface. The frequency equation of a permeable and an impermeable surface for bore-piston assembly is obtained as a particular case of the model under consideration when the outer radius of the hollow poroelastic cylinder tends to infinity. Results of previous studies are obtained as a particular case of the present study. Nondimensional frequency as a function of wave number is presented graphically for two types of models and discussed. Numerical results show that, in general, the first modes are linear for permeable and impermeable surfaces and the frequency of a permeable surface is more than that of an impermeable surface.

  20. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    Science.gov (United States)

    Shrestha, Suman K.

    Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was

  1. Radial retinotomy in the macula.

    Science.gov (United States)

    Bovino, J A; Marcus, D F

    1984-01-01

    Radial retinotomy is an operative procedure usually performed in the peripheral or equatorial retina. To facilitate retinal attachment, the authors used intraocular scissors to perform radial retinotomy in the macula of two patients during vitrectomy surgery. In the first patient, a retinal detachment complicated by periretinal proliferation and macula hole formation was successfully reoperated with the aid of three radial cuts in the retina at the edges of the macular hole. In the second patient, an intraoperative retinal tear in the macula during diabetic vitrectomy was also successfully repaired with the aid of radial retinotomy. In both patients, retinotomy in the macula was required because epiretinal membranes, which could not be easily delaminated, were hindering retinal reattachment.

  2. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.; Korneev, Svyatoslav

    2014-01-01

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations

  3. Dedicated radial ventriculography pigtail catheter

    Energy Technology Data Exchange (ETDEWEB)

    Vidovich, Mladen I., E-mail: miv@uic.edu

    2013-05-15

    A new dedicated cardiac ventriculography catheter was specifically designed for radial and upper arm arterial access approach. Two catheter configurations have been developed to facilitate retrograde crossing of the aortic valve and to conform to various subclavian, ascending aortic and left ventricular anatomies. The “short” dedicated radial ventriculography catheter is suited for horizontal ascending aortas, obese body habitus, short stature and small ventricular cavities. The “long” dedicated radial ventriculography catheter is suited for vertical ascending aortas, thin body habitus, tall stature and larger ventricular cavities. This new design allows for improved performance, faster and simpler insertion in the left ventricle which can reduce procedure time, radiation exposure and propensity for radial artery spasm due to excessive catheter manipulation. Two different catheter configurations allow for optimal catheter selection in a broad range of patient anatomies. The catheter is exceptionally stable during contrast power injection and provides equivalent cavity opacification to traditional femoral ventriculography catheter designs.

  4. Stability of a radial immiscible drive

    Energy Technology Data Exchange (ETDEWEB)

    Bataille, J

    1968-11-01

    The stability of the displacement front between 2 immiscible fluids of radial flow between 2 parallel plates (Hele-Shaw model) is studied mathematically by superposing onto the circular displacement front a sinusoidal perturbation. The equations are reduced to dimensionless variables, and it is shown that the stable and unstable domains in a plot: dimensionless viscosity vs. dimensionless time are separated by a polygonal contour, each side of the contour being characterized by the (integer) number of perturbations along the circumference. There is a critical reduced time below which the perturbations are amortized but beyond which they are amplified. Experimental results have been in fair general agreement with theoretical results, the divergence between them being attributable to neglecting capillary phenomena, which may become very important at large radial distances. One test with miscible fluids has shown that even in this case, there is a critical time or an equivalent critical radius.

  5. Estimating Outer Zone Radial Diffusion Coefficients from Drift Scale Fluctuations in Van Allen Particle Data

    Science.gov (United States)

    O'Brien, T. P., III; Claudepierre, S. G.

    2017-12-01

    During geomagnetic storms, the Earth's outer radiation belt experiences enhanced radial transport. This transport occurs via phase-dependent radial displacements of particles, either by impulsive events or drift resonant waves. Because transport is phase dependent, it produces drift phase bunching, which can be observed with in situ particle detectors. We provide bounds on the radial diffusion coefficients derived from this drift phase structure as seen by NASA's Van Allen Probes. We compare these bounds to published radial diffusion coefficient models, particularly those derived independently from electromagnetic field observations.

  6. Characteristics of electron cyclotron waves creating field-aligned and transverse plasma-potential structures

    International Nuclear Information System (INIS)

    Takahashi, K; Kaneko, T; Hatakeyama, R; Fukuyama, A

    2009-01-01

    Characteristics of electromagnetic waves of azimuthal mode number m = ±1 are investigated experimentally, analytically and numerically when the waves triggering the field-aligned and transverse plasma-potential structure modification near an electron cyclotron resonance (ECR) point are injected into an inhomogeneously magnetized plasma with high-speed ion flow. The waves of m = +1 and -1 modes generate an electric double layer near the ECR point at the radially central and peripheral areas of the plasma column, respectively, and the transverse electric fields are consequently formed. At these areas the waves have a right-handed polarization and are absorbed through the ECR mechanism, where the experimental and analytical results do show the polarization reversal along the radial axis. The numerical results by plasma analysis by finite element method (FEM)/wave analysis by FEM (PAF/WF) code show that the wave-absorption area is localized at the radially central and peripheral areas for m = +1 and -1 mode waves, respectively, being consistent with the experimental and analytical ones.

  7. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  8. Wave-particle interactions in rotating mirrorsa)

    Science.gov (United States)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-05-01

    Wave-particle interactions in E ×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  9. Wave-particle Interactions In Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-01-11

    Wave-particle interactions in E×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  10. Wave-particle interactions in rotating mirrors

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Wave-particle interactions in ExB rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  11. Wave-particle Interactions In Rotating Mirrors

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Wave-particle interactions in E-B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  12. Re-ionization of a partially ionized plasma by an Alfven wave of moderate amplitude

    International Nuclear Information System (INIS)

    Brennan, M.H.; Sawley, M.L.

    1980-01-01

    The use of forced magnetic-acoustic oscillations to investigate the effect of a torsional hydromagnetic (Alfven) wave pulse of moderate amplitude on the properties of a partially ionized afterglow helium plasma is reported. Observations of the magnetic flux associated with the oscillations, measured at a number of frequencies are used to determine radial density profiles and to provide estimates of plasma temperature. The torsional wave is shown to cause significant re-ionization of the plasma with no corresponding increase in the plasma temperature. The presence of a number of energetic particles is evidenced by the production of a significant number of doubly charged helium ions. (author)

  13. Self-consistent radial sheath

    International Nuclear Information System (INIS)

    Hazeltine, R.D.

    1988-12-01

    The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig

  14. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.

    2014-11-07

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.

  15. Vortex Whistle in Radial Intake

    National Research Council Canada - National Science Library

    Tse, Man-Chun

    2004-01-01

    In a radial-to-axial intake with inlet guide vanes (IGV) at the entry, a strong flow circulation Gamma can be generated from the tangential flow components created by the IGVs when their setting exceed about halfclosing (approx. 45 deg...

  16. Radial head dislocation during proximal radial shaft osteotomy.

    Science.gov (United States)

    Hazel, Antony; Bindra, Randy R

    2014-03-01

    The following case report describes a 48-year-old female patient with a longstanding both-bone forearm malunion, who underwent osteotomies of both the radius and ulna to improve symptoms of pain and lack of rotation at the wrist. The osteotomies were templated preoperatively. During surgery, after performing the planned radial shaft osteotomy, the authors recognized that the radial head was subluxated. The osteotomy was then revised from an opening wedge to a closing wedge with improvement of alignment and rotation. The case report discusses the details of the operation, as well as ways in which to avoid similar shortcomings in the future. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  17. Endoscopic versus open radial artery harvest and mammario-radial versus aorto-radial grafting in patients undergoing coronary artery bypass surgery

    DEFF Research Database (Denmark)

    Carranza, Christian L; Ballegaard, Martin; Werner, Mads U

    2014-01-01

    the postoperative complications will be registered, and we will evaluate muscular function, scar appearance, vascular supply to the hand, and the graft patency including the patency of the central radial artery anastomosis. A patency evaluation by multi-slice computer tomography will be done at one year...... to aorto-radial revascularisation techniques but this objective is exploratory. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT01848886.Danish Ethics committee number: H-3-2012-116.Danish Data Protection Agency: 2007-58-0015/jr.n:30-0838....

  18. Assimilation of Wave Imaging Radar Observations for Real-Time Wave-by-Wave Forecasting

    Science.gov (United States)

    Haller, M. C.; Simpson, A. J.; Walker, D. T.; Lynett, P. J.; Pittman, R.; Honegger, D.

    2016-02-01

    It has been shown in various studies that a controls system can dramatically improve Wave Energy Converter (WEC) power production by tuning the device's oscillations to the incoming wave field, as well as protect WEC devices by decoupling them in extreme wave conditions. A requirement of the most efficient controls systems is a phase-resolved, "deterministic" surface elevation profile, alerting the device to what it will experience in the near future. The current study aims to demonstrate a deterministic method of wave forecasting through the pairing of an X-Band marine radar with a predictive Mild Slope Equation (MSE) wave model. Using the radar as a remote sensing technique, the wave field up to 1-4 km surrounding a WEC device can be resolved. Individual waves within the radar scan are imaged through the contrast between high intensity wave faces and low intensity wave troughs. Using a recently developed method, radar images are inverted into the radial component of surface slope, shown in the figure provided using radar data from Newport, Oregon. Then, resolved radial slope images are assimilated into the MSE wave model. This leads to a best-fit model hindcast of the waves within the domain. The hindcast is utilized as an initial condition for wave-by-wave forecasting with a target forecast horizon of 3-5 minutes (tens of wave periods). The methodology is currently being tested with synthetic data and comparisons with field data are imminent.

  19. Effects of Radial Gap Ratio between Impeller and Vaned Diffuser on Performance of Centrifugal Compressors

    Directory of Open Access Journals (Sweden)

    Mohammadjavad Hosseini

    2017-07-01

    Full Text Available A high-performance centrifugal compressor is needed for numerous industry applications nowadays. The radial gap ratio between the impeller and the diffuser vanes plays an important role in the improvement of the compressor performance. In this paper, the effects of the radial gap ratio on a high-pressure ratio centrifugal compressor are investigated using numerical simulations. The performance and the flow field are compared for six different radial gap ratios and five rotational speeds. The minimal radial gap ratio was 1.04 and the maximal was 1.14. Results showed that reducing the radial gap ratio decreases the choke mass flow rate. For the tip-speed Mach number (impeller inlet with Mu < 1, the pressure recovery and the loss coefficients are not sensitive to the radial gap ratio. However, for Mu ≥ 1, the best radial gap ratio is 1.08 for the pressure recovery and the loss coefficients. Furthermore, the impeller pressure ratio and efficiency are reduced by increasing the radial gap ratio. Finally, the compressor efficiency was compared for different radial gap ratios. For Mu < 1, the radial gap ratio does not have noticeable effects. In comparison, the radial gap ratio of 1.08 has the best performance for Mu ≥ 1.

  20. The environmental effect on the radial breathing mode of carbon nanotubes in water

    Science.gov (United States)

    Longhurst, M. J.; Quirke, N.

    2006-06-01

    We investigate, using molecular dynamics, the effect on the radial breathing mode (RBM) frequency of immersion in water for a range of single-walled carbon nanotubes. We find that nanotube-water interactions are responsible for an upshift in the RBM frequency of the order of 4-10 wave numbers. The upshift is comprised of two components: increased hydrostatic pressure on the nanotube due to curvature effects, and the dynamic coupling of the RBM with its solvation shell. In contrast to much of the current literature, we find that the latter of the two effects is dominant. This could serve as an innovative tool for determining the interaction potential between nanotubes/graphitic surfaces and fluids.

  1. Evidence for Radial Anisotropy in Earth's Upper Inner Core from Normal Modes

    Science.gov (United States)

    Lythgoe, K.; Deuss, A. F.

    2017-12-01

    The structure of the uppermost inner core is related to solidification of outer core material at the inner core boundary. Previous seismic studies using body waves indicate an isotropic upper inner core, although radial anisotropy has not been considered since it cannot be uniquely determined by body waves. Normal modes, however, do constrain radial anisotropy in the inner core. Centre frequency measurements indicate 2-5 % radial anisotropy in the upper 100 km of the inner core, with a fast direction radially outwards and a slow direction along the inner core boundary. This seismic structure provides constraints on solidification processes at the inner core boundary and appears consistent with texture predicted due to anisotropic inner core growth.

  2. RADIAL STABILITY IN STRATIFIED STARS

    International Nuclear Information System (INIS)

    Pereira, Jonas P.; Rueda, Jorge A.

    2015-01-01

    We formulate within a generalized distributional approach the treatment of the stability against radial perturbations for both neutral and charged stratified stars in Newtonian and Einstein's gravity. We obtain from this approach the boundary conditions connecting any two phases within a star and underline its relevance for realistic models of compact stars with phase transitions, owing to the modification of the star's set of eigenmodes with respect to the continuous case

  3. Velocidades radiales en Collinder 121

    Science.gov (United States)

    Arnal, M.; Morrell, N.

    Se han llevado a cabo observaciones espectroscópicas de unas treinta estrellas que son posibles miembros del cúmulo abierto Collinder 121. Las mismas fueron realizadas con el telescopio de 2.15m del Complejo Astronómico El Leoncito (CASLEO). El análisis de las velocidades radiales derivadas del material obtenido, confirma la realidad de Collinder 121, al menos desde el punto de vista cinemático. La velocidad radial baricentral (LSR) del cúmulo es de +17 ± 3 km.s-1. Esta velocidad coincide, dentro de los errores, con la velocidad radial (LSR) de la nebulosa anillo S308, la cual es de ~20 ± 10 km.s-1. Como S308 se encuentra físicamente asociada a la estrella Wolf-Rayet HD~50896, es muy probable que esta última sea un miembro de Collinder 121. Desde un punto de vista cinemático, la supergigante roja HD~50877 (K3Iab) también pertenecería a Collinder 121. Basándonos en la pertenencia de HD~50896 a Collinder 121, y en la interacción encontrada entre el viento de esta estrella y el medio interestelar circundante a la misma, se estima para este cúmulo una distancia del orden de 1 kpc.

  4. Numerical simulation of liquid-metal-flows in radial-toroidal-radial bends

    International Nuclear Information System (INIS)

    Molokov, S.; Buehler, L.

    1993-09-01

    Magnetohydrodynamic flows in a U-bend and right-angle bend are considered with reference to the radial-toroidal-radial concept of a self-cooled liquid-metal blanket. The ducts composing bends have rectangular cross-section. The applied magnetic field is aligned with the toroidal duct and perpendicular to the radial ones. At high Hartmann number the flow region is divided into cores and boundary layers of different types. The magnetohydrodynamic equations are reduced to a system of partial differential equations governing wall electric potentials and the core pressure. The system is solved numerically by two different methods. The first method is iterative with iteration between wall potential and the core pressure. The second method is a general one for the solution of the core flow equations in curvilinear coordinates generated by channel geometry and magnetic field orientation. Results obtained are in good agreement. They show, that the 3D-pressure drop of MHD flows in a U-bend is not a critical issue for blanket applications. (orig./HP) [de

  5. Turbulence in tokamak plasmas. Effect of a radial electric field shear; Turbulence dans les plasmas de tokamaks. Effet d`un cisaillement de champ electrique radial

    Energy Technology Data Exchange (ETDEWEB)

    Payan, J

    1994-05-01

    After a review of turbulence and transport phenomena in tokamak plasmas and the radial electric field shear effect in various tokamaks, experimental measurements obtained at Tore Supra by the means of the ALTAIR plasma diagnostic technique, are presented. Electronic drift waves destabilization mechanisms, which are the main features that could describe the experimentally observed microturbulence, are then examined. The effect of a radial electric field shear on electronic drift waves is then introduced, and results with ohmic heating are studied together with relations between turbulence and transport. The possible existence of ionic waves is rejected, and a spectral frequency modelization is presented, based on the existence of an electric field sheared radial profile. The position of the inversion point of this field is calculated for different values of the mean density and the plasma current, and the modelization is applied to the TEXT tokamak. The radial electric field at Tore Supra is then estimated. The effect of the ergodic divertor on turbulence and abnormal transport is then described and the density fluctuation radial profile in presence of the ergodic divertor is modelled. 80 figs., 120 refs.

  6. Radial viscous fingering of hot asthenosphere within the Icelandic plume beneath the North Atlantic Ocean

    Science.gov (United States)

    Schoonman, C. M.; White, N. J.; Pritchard, D.

    2017-06-01

    The Icelandic mantle plume has had a significant influence on the geologic and oceanographic evolution of the North Atlantic Ocean during Cenozoic times. Full-waveform tomographic imaging of this region shows that the planform of this plume has a complex irregular shape with significant shear wave velocity anomalies lying beneath the lithospheric plates at a depth of 100-200 km. The distribution of these anomalies suggests that about five horizontal fingers extend radially beneath the fringing continental margins. The best-imaged fingers lie beneath the British Isles and beneath western Norway where significant departures from crustal isostatic equilibrium have been measured. Here, we propose that these radial fingers are generated by a phenomenon known as the Saffman-Taylor instability. Experimental and theoretical analyses show that fingering occurs when a less viscous fluid is injected into a more viscous fluid. In radial, miscible fingering, the wavelength and number of fingers are controlled by the mobility ratio (i.e. the ratio of viscosities), by the Péclet number (i.e. the ratio of advective and diffusive transport rates), and by the thickness of the horizontal layer into which fluid is injected. We combine shear wave velocity estimates with residual depth measurements around the Atlantic margins to estimate the planform distribution of temperature and viscosity within a horizontal asthenospheric layer beneath the lithospheric plate. Our estimates suggest that the mobility ratio is at least 20-50, that the Péclet number is O (104), and that the asthenospheric channel is 100 ± 20 km thick. The existence and planform of fingering is consistent with experimental observations and with theoretical arguments. A useful rule of thumb is that the wavelength of fingering is 5 ± 1 times the thickness of the horizontal layer. Our proposal has been further tested by examining plumes of different vigor and planform (e.g. Hawaii, Cape Verde, Yellowstone). Our results

  7. Radial Photonic Crystal for detection of frequency and position of radiation sources.

    Science.gov (United States)

    Carbonell, J; Díaz-Rubio, A; Torrent, D; Cervera, F; Kirleis, M A; Piqué, A; Sánchez-Dehesa, J

    2012-01-01

    Based on the concepts of artificially microstructured materials, i.e. metamaterials, we present here the first practical realization of a radial wave crystal. This type of device was introduced as a theoretical proposal in the field of acoustics, and can be briefly defined as a structured medium with radial symmetry, where the constitutive parameters are invariant under radial geometrical translations. Our practical demonstration is realized in the electromagnetic microwave spectrum, because of the equivalence between the wave problems in both fields. A device has been designed, fabricated and experimentally characterized. It is able to perform beam shaping of punctual wave sources, and also to sense position and frequency of external radiators. Owing to the flexibility offered by the design concept, other possible applications are discussed.

  8. Assessment of consistency in the dimension of gutta-percha cones of ProTaper Next and WaveOne with their corresponding number files

    Science.gov (United States)

    Bajaj, Nitika; Monga, Prashant; Mahajan, Pardeep

    2017-01-01

    Objectives: To compare the dimensions of gutta-percha (GP) cones of ProTaper Next (25/0.06) and WaveOne (25/0.08) in relation to their corresponding instruments of the same dimension, respectively. Materials and Methods: Two groups of GP cones were made with 25 cones in each group. Group 1 consisted of 25 GP cones # 25/0.06 (ProTaper Next). Group 2 consisted of 25 GP cones # 25/0.08 (WaveOne). Measurements were done at D1 (1 mm short of the tip), D3 (3 mm short of the tip), and D11 (11 mm short of the tip) for GP cones of both groups and were compared with their corresponding instruments. Results: Group 1 (ProTaper) 25/.06 GP points showed greater diameters than those of the corresponding instrument, which was statistically significant. Group 2 (WaveOne) 25/0.08 GP points showed greater diameters than those of the corresponding instrument which was statistically significant whereas it was nonsignificant at level D1. Conclusion: Diameters of both ProTaper Next and WaveOne GP cones were greater than their corresponding instruments. Hence, there are chances of under obturation with both systems. PMID:28729793

  9. Exceptional circles of radial potentials

    International Nuclear Information System (INIS)

    Music, M; Perry, P; Siltanen, S

    2013-01-01

    A nonlinear scattering transform is studied for the two-dimensional Schrödinger equation at zero energy with a radial potential. Explicit examples are presented, both theoretically and computationally, of potentials with nontrivial singularities in the scattering transform. The singularities arise from non-uniqueness of the complex geometric optics solutions that define the scattering transform. The values of the complex spectral parameter at which the singularities appear are called exceptional points. The singularity formation is closely related to the fact that potentials of conductivity type are ‘critical’ in the sense of Murata. (paper)

  10. Experimental observation of Alfven wave cones

    International Nuclear Information System (INIS)

    Gekelman, W.; Leneman, D.; Maggs, J.; Vincena, S.

    1994-01-01

    The spatial evolution of the radial profile of the magnetic field of a shear Alfven wave launched by a disk exciter with radius on the order of the electron skin depth has been measured. The waves are launched using wire mesh disk exciters of 4 mm and 8 mm radius into a helium plasma of density about 1.0x10 12 cm -3 and magnetic field 1.1 kG. The electron skin depth δ=c/ω pe is about 5 mm. The current channel associated with the shear Alfven wave is observed to spread with distance away from the exciter. The spreading follows a cone-like pattern whose angle is given by tan θ=k A δ, where k A is the Alfven wave number. The dependence of the magnetic profiles on wave frequency and disk size are presented. The effects of dissipation by electron--neutral collisions and Landau damping are observed. The observations are in excellent agreement with theoretical predictions [Morales et al., Phys. Plasmas 1, 3765 (1994)

  11. Thin viscoelastic disc subjected to radial non-stationary loading

    Directory of Open Access Journals (Sweden)

    Adámek V.

    2010-07-01

    Full Text Available The investigation of non-stationary wave phenomena in isotropic viscoelastic solids using analytical approaches is the aim of this paper. Concretely, the problem of a thin homogeneous disc subjected to radial pressure load nonzero on the part of its rim is solved. The external excitation is described by the Heaviside function in time, so the nonstationary state of stress is induced in the disc. Dissipative material behaviour of solid studied is represented by the discrete material model of standard linear viscoelastic solid in the Zener configuration. After the derivation of motion equations final form, the method of integral transforms in combination with the Fourier method is used for finding the problem solution. The solving process results in the derivation of integral transforms of radial and circumferential displacement components. Finally, the type of derived functions singularities and possible methods for their inverse Laplace transform are mentioned.

  12. MESSENGER Observations of ULF Waves in Mercury's Foreshock Region

    Science.gov (United States)

    Le, Guan; Chi, Peter J.; Bardsen, Scott; Blanco-Cano, Xochitl; Slavin, James A.; Korth, Haje

    2012-01-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth s is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury s bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury s foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury s foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the 1-Hz waves in the Earth s foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth s foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.

  13. An unambiguous determination of the propagation of a compressional Pc 5 wave

    International Nuclear Information System (INIS)

    Lin, N.; McPherron, R.L.; Kivelson, M.G.; Williams, D.J.

    1988-01-01

    During a 3-hour interval on August 21 and 22, 1978, a compressional Pc 5 event was observed by the ISEE-1 magnetometer and medium energetic particle experiment instrument. The finite Larmor radii of the energetic protons allow the authors to determine unambiguously both the azimuthal and radial components of the phase velocity, and consequently the wave length and the azimuthal wave number. A 2nπ ambiguity in evaluating the phase velocity is removed by finding a consistent and physically reasonable solution for different energy channels. As the spacecraft approached the plasmapause, a quasi-sinusoidal wave form having a 165-s period was observed; it was found to be propagating azimuthally westward with a phase velocity of about 33 km/s and an azimuthal wave number of 60. In the outer magnetosphere, more irregular wave forms were observed. These waves also porpagated azimuthally westward and may possibly have had a small earthward (radial) component of phase velocity. To examine the effect of heavy ions on the estimated wavelength, the authors have derived the perturbation of differential flux by calculating the first-order perturbed phase space distribution of plasma consisting of two ion species. They found that, for the detector they used, the effect is very small even there is a significant fraction of heavy ions present. In all cases the modulation amplitude of ion fluxes decreases with an increasing ratio of the ion Larmor radius to the wavelength

  14. Theoretical and experimental investigation of plasma and wave characteristics of coaxial discharges at low pressures

    International Nuclear Information System (INIS)

    Neichev, Z; Benova, E; Gamero, A; Sola, A

    2006-01-01

    The paper discusses a new configuration of the surface-wave sustained plasma - 'the coaxial structure'. The coaxial structure is investigated on the base of one-dimensional axial fluid model. That model is adequate enough for low pressure plasma, when the main process for charged particles production is the direct ionization from the ground state and the loss of electrons is due to diffusion to the wall. The role of the geometric factors is evaluated and discussed, varying the discharge conditions in the theoretical model. The main equations of the model - the local dispersion relation and the wave energy balance equation are obtained from Maxwell's equations with appropriate boundary conditions. The phase diagrams, the radial profiles of the electric field and the axial profiles of dimensionless electron number density, wave number, wave power are obtained at various plasma radii and dielectric tube thickness. The results are compared with those for the typical cylindrical plasma column at similar conditions. For the purpose of modelling at low pressure of a coaxial discharge sustained by a travelling electromagnetic wave, some important characteristics of the propagation of surface waves have been investigated experimentally. The axial profiles of the propagation coefficient and radial profiles of the electric field at different experimental conditions have been obtained and discussed

  15. The effect of radial migration on galactic disks

    International Nuclear Information System (INIS)

    Vera-Ciro, Carlos; D'Onghia, Elena; Navarro, Julio; Abadi, Mario

    2014-01-01

    We study the radial migration of stars driven by recurring multi-arm spiral features in an exponential disk embedded in a dark matter halo. The spiral perturbations redistribute angular momentum within the disk and lead to substantial radial displacements of individual stars, in a manner that largely preserves the circularity of their orbits and that results, after 5 Gyr (∼40 full rotations at the disk scale length), in little radial heating and no appreciable changes to the vertical or radial structure of the disk. Our results clarify a number of issues related to the spatial distribution and kinematics of migrators. In particular, we find that migrators are a heavily biased subset of stars with preferentially low vertical velocity dispersions. This 'provenance bias' for migrators is not surprising in hindsight, for stars with small vertical excursions spend more time near the disk plane, and thus respond more readily to non-axisymmetric perturbations. We also find that the vertical velocity dispersion of outward migrators always decreases, whereas the opposite holds for inward migrators. To first order, newly arrived migrators simply replace stars that have migrated off to other radii, thus inheriting the vertical bias of the latter. Extreme migrators might therefore be recognized, if present, by the unexpectedly small amplitude of their vertical excursions. Our results show that migration, understood as changes in angular momentum that preserve circularity, can strongly affect the thin disk, but cast doubts on models that envision the Galactic thick disk as a relic of radial migration.

  16. Reproducibility of Radial Pulse Wave Analysis in Healthy Subjects

    Czech Academy of Sciences Publication Activity Database

    Filipovský, J.; Svoboda, V.; Pecen, Ladislav

    2000-01-01

    Roč. 18, č. 8 (2000), s. 1033-1040 ISSN 0263-6352 Institutional research plan: AV0Z1030915 Keywords : blood pressure * heart - rate * predictor * risk Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 3.640, year: 2000

  17. Wave induced supersonic rotation in mirrors

    Science.gov (United States)

    Fetterman, Abraham

    2010-11-01

    Wave-particle interactions in ExB supersonically rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy [1]. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field [2]. In the rotating frame, this perturbation is seen as a wave near the alpha particle cyclotron harmonic, and can break the azimuthal symmetry and magnetic moment conservation without changing the particle's total energy. The particle may exit if it reduces its kinetic energy and becomes more trapped if it gains kinetic energy, leading to a steady state current that maintains the field. Simulations of single particles in rotating mirrors show that a stationary wave can extract enough energy from alpha particles for a reactor to be self-sustaining. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation [3]. [4pt] [1] A. J. Fetterman and N. J. Fisch, Phys Rev Lett 101, 205003 (2008). [0pt] [2] A. J. Fetterman and N. J. Fisch, Phys. Plasmas 17, 042112 (2010). [0pt] [3] A. J. Fetterman and N. J. Fisch, Plasma Sources Sci. Tech. 18, 045003 (2009).

  18. Seismic Linear Noise Attenuation with Use of Radial Transform

    Science.gov (United States)

    Szymańska-Małysa, Żaneta

    2018-03-01

    One of the goals of seismic data processing is to attenuate the recorded noise in order to enable correct interpretation of the image. Radial transform has been used as a very effective tool in the attenuation of various types of linear noise, both numerical and real (such as ground roll, direct waves, head waves, guided waves etc). The result of transformation from offset - time (X - T) domain into apparent velocity - time (R - T) domain is frequency separation between reflections and linear events. In this article synthetic and real seismic shot gathers were examined. One example was targeted at far offset area of dataset where reflections and noise had similar apparent velocities and frequency bands. Another example was a result of elastic modelling where linear artefacts were produced. Bandpass filtering and scaling operation executed in radial domain attenuated all discussed types of linear noise very effectively. After noise reduction all further processing steps reveal better results, especially velocity analysis, migration and stacking. In all presented cases signal-to-noise ratio was significantly increased and reflections covered previously by noise were revealed. Power spectra of filtered seismic records preserved real dynamics of reflections.

  19. Hybrid simulations of radial transport driven by the Rayleigh-Taylor instability

    Science.gov (United States)

    Delamere, P. A.; Stauffer, B. H.; Ma, X.

    2017-12-01

    Plasma transport in the rapidly rotating giant magnetospheres is thought to involve a centrifugally-driven flux tube interchange instability, similar to the Rayleigh-Taylor (RT) instability. In three dimensions, the convective flow patterns associated with the RT instability can produce strong guide field reconnection, allowing plasma mass to move radially outward while conserving magnetic flux (Ma et al., 2016). We present a set of hybrid (kinetic ion / fluid electron) plasma simulations of the RT instability using high plasma beta conditions appropriate for Jupiter's inner and middle magnetosphere. A density gradient, combined with a centrifugal force, provide appropriate RT onset conditions. Pressure balance is achieved by initializing two ion populations: one with fixed temperature, but varying density, and the other with fixed density, but a temperature gradient that offsets the density gradient from the first population and the centrifugal force (effective gravity). We first analyze two-dimensional results for the plane perpendicular to the magnetic field by comparing growth rates as a function of wave vector following Huba et al. (1998). Prescribed perpendicular wave modes are seeded with an initial velocity perturbation. We then extend the model to three dimensions, introducing a stabilizing parallel wave vector. Boundary conditions in the parallel direction prohibit motion of the magnetic field line footprints to model the eigenmodes of the magnetodisc's resonant cavity. We again compare growth rates based on perpendicular wave number, but also on the parallel extent of the resonant cavity, which fixes the size of the largest parallel wavelength. Finally, we search for evidence of strong guide field magnetic reconnection within the domain by identifying areas with large parallel electric fields or changes in magnetic field topology.

  20. Radial smoothing and closed orbit

    International Nuclear Information System (INIS)

    Burnod, L.; Cornacchia, M.; Wilson, E.

    1983-11-01

    A complete simulation leading to a description of one of the error curves must involve four phases: (1) random drawing of the six set-up points within a normal population having a standard deviation of 1.3 mm; (b) random drawing of the six vertices of the curve in the sextant mode within a normal population having a standard deviation of 1.2 mm. These vertices are to be set with respect to the axis of the error lunes, while this axis has as its origins the positions defined by the preceding drawing; (c) mathematical definition of six parabolic curves and their junctions. These latter may be curves with very slight curvatures, or segments of a straight line passing through the set-up point and having lengths no longer than one LSS. Thus one gets a mean curve for the absolute errors; (d) plotting of the actually observed radial positions with respect to the mean curve (results of smoothing)

  1. Radial flow gas dynamic laser

    International Nuclear Information System (INIS)

    Damm, F.C.

    1975-01-01

    The unique gas dynamic laser provides outward radial supersonic flow from a toroidal shaped stacked array of a plurality of nozzles, through a diffuser having ring shaped and/or linear shaped vanes, and through a cavity which is cylindrical and concentric with the stacked array, with the resultant laser beam passing through the housing parallel to the central axis of the diffuser which is coincident with the axis of the gas dynamic laser. Therefore, greater beam extraction flexibility is attainable, because of fewer flow shock disturbances, as compared to the conventional unidirectional flow gas dynamic laser in which unidirectional supersonic flow sweeps through a rectangular cavity and is exhausted through a two-dimensional diffuser. (auth)

  2. Ulnar nerve entrapment complicating radial head excision

    Directory of Open Access Journals (Sweden)

    Kevin Parfait Bienvenu Bouhelo-Pam

    Full Text Available Introduction: Several mechanisms are involved in ischemia or mechanical compression of ulnar nerve at the elbow. Presentation of case: We hereby present the case of a road accident victim, who received a radial head excision for an isolated fracture of the radial head and complicated by onset of cubital tunnel syndrome. This outcome could be the consequence of an iatrogenic valgus of the elbow due to excision of the radial head. Hitherto the surgical treatment of choice it is gradually been abandoned due to development of radial head implant arthroplasty. However, this management option is still being performed in some rural centers with low resources. Discussion: The radial head plays an important role in the stability of the elbow and his iatrogenic deformity can be complicated by cubital tunnel syndrome. Conclusion: An ulnar nerve release was performed with favorable outcome. Keywords: Cubital tunnel syndrome, Peripheral nerve palsy, Radial head excision, Elbow valgus

  3. Radial behavior of the average local ionization energies of atoms

    International Nuclear Information System (INIS)

    Politzer, P.; Murray, J.S.; Grice, M.E.; Brinck, T.; Ranganathan, S.

    1991-01-01

    The radial behavior of the average local ionization energy bar I(r) has been investigated for the atoms He--Kr, using ab initio Hartree--Fock atomic wave functions. bar I(r) is found to decrease in a stepwise manner with the inflection points serving effectively to define boundaries between electronic shells. There is a good inverse correlation between polarizability and the ionization energy in the outermost region of the atom, suggesting that bar I(r) may be a meaningful measure of local polarizabilities in atoms and molecules

  4. Stirling Engine With Radial Flow Heat Exchangers

    Science.gov (United States)

    Vitale, N.; Yarr, George

    1993-01-01

    Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.

  5. Turbulence in tokamak plasmas. Effect of a radial electric field shear

    International Nuclear Information System (INIS)

    Payan, J.

    1994-05-01

    After a review of turbulence and transport phenomena in tokamak plasmas and the radial electric field shear effect in various tokamaks, experimental measurements obtained at Tore Supra by the means of the ALTAIR plasma diagnostic technique, are presented. Electronic drift waves destabilization mechanisms, which are the main features that could describe the experimentally observed microturbulence, are then examined. The effect of a radial electric field shear on electronic drift waves is then introduced, and results with ohmic heating are studied together with relations between turbulence and transport. The possible existence of ionic waves is rejected, and a spectral frequency modelization is presented, based on the existence of an electric field sheared radial profile. The position of the inversion point of this field is calculated for different values of the mean density and the plasma current, and the modelization is applied to the TEXT tokamak. The radial electric field at Tore Supra is then estimated. The effect of the ergodic divertor on turbulence and abnormal transport is then described and the density fluctuation radial profile in presence of the ergodic divertor is modelled. 80 figs., 120 refs

  6. Sharp Dissection versus Electrocautery for Radial Artery Harvesting

    Science.gov (United States)

    Marzban, Mehrab; Arya, Reza; Mandegar, Mohammad Hossein; Karimi, Abbas Ali; Abbasi, Kiomars; Movahed, Namvar; Abbasi, Seyed Hesameddin

    2006-01-01

    Radial arteries have been increasingly used during the last decade as conduits for coronary artery revascularization. Although various harvesting techniques have been described, there has been little comparative study of arterial damage and patency. A radial artery graft was used in 44 consecutive patients, who were randomly divided into 2 groups. In the 1st group, the radial artery was harvested by sharp dissection and in the 2nd, by electrocautery. These groups were compared with regard to radial artery free flow, harvest time, number of clips used, complications, and endothelial damage. Radial artery free flow before and after intraluminal administration of papaverine was significantly greater in the electrocautery group (84.3 ± 50.7 mL/min and 109.7 ± 68.5 mL/min) than in the sharp-dissection group (52.9 ± 18.3 mL/min and 69.6 ± 28.2 mL/ min) (P =0.003). Harvesting time by electrocautery was significantly shorter (25.4 ± 4.3 min vs 34.4 ± 5.9 min) (P =0.0001). Electrocautery consumed an average of 9.76 clips, versus 22.45 clips consumed by sharp dissection. The 2 groups were not different regarding postoperative complications, except for 3 cases of temporary paresthesia of the thumb in the electrocautery group; histopathologic examination found no endothelial damage. We conclude that radial artery harvesting by electrocautery is faster and more economical than harvesting by sharp dissection and is associated with better intraoperative flow and good preservation of endothelial integrity. PMID:16572861

  7. Shallow crustal radial anisotropy beneath the Tehran basin of Iran from seismic ambient noise tomography

    Science.gov (United States)

    Shirzad, Taghi; Shomali, Z. Hossein

    2014-06-01

    We studied the shear wave velocity structure and radial anisotropy beneath the Tehran basin by analyzing the Rayleigh wave and Love wave empirical Green's functions obtained from cross-correlation of seismic ambient noise. Approximately 199 inter-station Rayleigh and Love wave empirical Green's functions with sufficient signal-to-noise ratios extracted from 30 stations with various sensor types were used for phase velocity dispersion analysis of periods ranging from 1 to 7 s using an image transformation analysis technique. Dispersion curves extracted from the phase velocity maps were inverted based on non-linear damped least squares inversion method to obtain a quasi-3D model of crustal shear wave velocities. The data used in this study provide an unprecedented opportunity to resolve the spatial distribution of radial anisotropy within the uppermost crust beneath the Tehran basin. The quasi-3D shear wave velocity model obtained in this analysis delineates several distinct low- and high-velocity zones that are generally separated by geological boundaries. High-shear-velocity zones are located primarily around the mountain ranges and extend to depths of 2.0 km, while the low-shear-velocity zone is located near regions with sedimentary layers. In the shallow subsurface, our results indicate strong radial anisotropy with negative magnitude (VSV > VSH) primarily associated with thick sedimentary deposits, reflecting vertical alignment of cracks. With increasing depth, the magnitude of the radial anisotropy shifts from predominantly negative (less than -10%) to predominantly positive (greater than 5%). Our results show a distinct change in radial anisotropy between the uppermost sedimentary layer and the bedrock.

  8. Radial head button holing: a cause of irreducible anterior radial head dislocation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Su-Mi; Chai, Jee Won; You, Ja Yeon; Park, Jina [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Bae, Kee Jeong [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Orthopedic Surgery, Seoul (Korea, Republic of)

    2016-10-15

    ''Buttonholing'' of the radial head through the anterior joint capsule is a known cause of irreducible anterior radial head dislocation associated with Monteggia injuries in pediatric patients. To the best of our knowledge, no report has described an injury consisting of buttonholing of the radial head through the annular ligament and a simultaneous radial head fracture in an adolescent. In the present case, the radiographic findings were a radial head fracture with anterior dislocation and lack of the anterior fat pad sign. Magnetic resonance imaging (MRI) clearly demonstrated anterior dislocation of the fractured radial head through the torn annular ligament. The anterior joint capsule and proximal portion of the annular ligament were interposed between the radial head and capitellum, preventing closed reduction of the radial head. Familiarity with this condition and imaging findings will aid clinicians to make a proper diagnosis and fast decision to perform an open reduction. (orig.)

  9. ION-SCALE TURBULENCE IN THE INNER HELIOSPHERE: RADIAL DEPENDENCE

    Energy Technology Data Exchange (ETDEWEB)

    Comisel, H.; Motschmann, U.; Büchner, J.; Narita, Y.; Nariyuki, Y. [University of Toyama, Faculty of Human Development, 3190, Gofuku, Toyama, 930-8555 (Japan)

    2015-10-20

    The evolution of the ion-scale plasma turbulence in the inner heliosphere is studied by associating the plasma parameters for hybrid-code turbulence simulations to the radial distance from the Sun via a Solar wind model based mapping procedure. Using a mapping based on a one-dimensional solar wind expansion model, the resulting ion-kinetic scale turbulence is related to the solar wind distance from the Sun. For this purpose the mapping is carried out for various values of ion beta that correspond to the heliocentric distance. It is shown that the relevant normal modes such as ion cyclotron and ion Bernstein modes will occur first at radial distances of about 0.2–0.3 AU, i.e., near the Mercury orbit. This finding can be used as a reference, a prediction to guide the in situ measurements to be performed by the upcoming Solar Orbiter and Solar Probe Plus missions. Furthermore, a radial dependence of the wave-vector anisotropy was obtained. For astrophysical objects this means that the spatial scales of filamentary structures in interstellar media or astrophysical jets can be predicted for photometric observations.

  10. Non-linear radial spinwave modes in thin magnetic disks

    International Nuclear Information System (INIS)

    Helsen, M.; De Clercq, J.; Vansteenkiste, A.; Van Waeyenberge, B.; Gangwar, A.; Back, C. H.; Weigand, M.

    2015-01-01

    We present an experimental investigation of radial spin-wave modes in magnetic nano-disks with a vortex ground state. The spin-wave amplitude was measured using a frequency-resolved magneto-optical spectrum analyzer, allowing for high-resolution resonance curves to be recorded. It was found that with increasing excitation amplitude up to about 10 mT, the lowest-order mode behaves strongly non-linearly as the mode frequency redshifts and the resonance peak strongly deforms. This behavior was quantitatively reproduced by micromagnetic simulations. Micromagnetic simulations showed that at higher excitation amplitudes, the spinwaves are transformed into a soliton by self-focusing, and collapse onto the vortex core, dispersing the energy in short-wavelength spinwaves. Additionally, this process can lead to switching of the vortex polarization through the injection of a Bloch point

  11. Stochastic generation of MAC waves and implications for convection in Earth's core

    Science.gov (United States)

    Buffett, Bruce; Knezek, Nicholas

    2018-03-01

    Convection in Earth's core can sustain magnetic-Archemedes-Coriolis (MAC) waves through a variety of mechanisms. Buoyancy and Lorentz forces are viable sources for wave motion, together with the effects of magnetic induction. We develop a quantitative description for zonal MAC waves and assess the source mechanisms using a numerical dynamo model. The largest sources at conditions accessible to the dynamo model are due to buoyancy forces and magnetic induction. However, when these sources are extrapolated to conditions expected in Earth's core, the Lorentz force emerges as the dominant generation mechanism. This source is expected to produce wave velocities of roughly 2 km yr-1 when the internal magnetic field is characterized by a dimensionless Elsasser number of roughly Λ ≈ 10 and the root-mean-square convective velocity defines a magnetic Reynolds number of Rm ≈ 103. Our preferred model has a radially varying stratification and a constant (radial) background magnetic field. It predicts a broad power spectrum for the wave velocity with most power distributed across periods from 30 to 100 yr.

  12. Waves in strong centrifugal fields: dissipationless gas

    Science.gov (United States)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    2015-04-01

    Linear waves are investigated in a rotating gas under the condition of strong centrifugal acceleration of the order 106 g realized in gas centrifuges for separation of uranium isotopes. Sound waves split into three families of the waves under these conditions. Dispersion equations are obtained. The characteristics of the waves strongly differ from the conventional sound waves on polarization, velocity of propagation and distribution of energy of the waves in space for two families having frequencies above and below the frequency of the conventional sound waves. The energy of these waves is localized in rarefied region of the gas. The waves of the third family were not specified before. They propagate exactly along the rotational axis with the conventional sound velocity. These waves are polarized only along the rotational axis. Radial and azimuthal motions are not excited. Energy of the waves is concentrated near the wall of the rotor where the density of the gas is largest.

  13. Revisiting Earth's radial seismic structure using a Bayesian neural network approach

    NARCIS (Netherlands)

    de Wit, R.W.L.

    2015-01-01

    The gross features of seismic observations can be explained by relatively simple spherically symmetric (1-D) models of wave velocities, density and attenuation, which describe the Earth's average(radial) structure. 1-D earth models are often used as a reference for studies on Earth's thermo-chemical

  14. Radially resolved simulation of a high-gain free electron laser amplifier

    International Nuclear Information System (INIS)

    Fawley, W.M.; Prosnitz, D.; Doss, S.; Gelinas, R.

    1983-01-01

    The results of a two-dimensional simulation of a high-gain free electron laser (FEL) amplifier is presented. The simulation solves the inhomogeneous paraxial wave equation. The source term is radially resolved and is obtained by tracking the interaction of the laser field with localized macroparticles

  15. Photoelectric Radial Velocities, Paper XIX Additional Spectroscopic ...

    Indian Academy of Sciences (India)

    ian velocity curve that does justice to the measurements, but it cannot be expected to have much predictive power. Key words. Stars: late-type—stars: radial velocities—spectroscopic binaries—orbits. 0. Preamble. The 'Redman K stars' are a lot of seventh-magnitude K stars whose radial velocities were first observed by ...

  16. Radial velocities of RR Lyrae stars

    International Nuclear Information System (INIS)

    Hawley, S.L.; Barnes, T.G. III

    1985-01-01

    283 spectra of 57 RR Lyrae stars have been obtained using the 2.1-m telescope at McDonald Observatory. Radial velocities were determined using a software cross-correlation technique. New mean radial velocities were determined for 46 of the stars. 11 references

  17. Impact of radial magnetic field on peristalsis in curved channel with convective boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Tanveer, Anum, E-mail: qau14@yahoo.com [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alsaadi, Fuad [Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Mousa, Ghassan [Department of Mechanical Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2016-04-01

    This paper addresses the peristaltic flow in curved channel with combined heat/mass transfer and convective effects. The channel walls are flexible. An imposed magnetic field is applied in radial direction to increase the wave amplitude (used in ECG for synchronization purposes). The pseudoplastic fluid comprising shear-thinning/shear thickening effects has been used in mathematical modeling. Small Reynolds number assumption is employed to neglect inertial effects. Half channel-width to wavelength ratio is small enough for the pressure to be considered uniform over the cross-section. The graphical results obtained are compared with planar channel. Results show the non-symmetric behavior of sundry parameters in contrary to the planar case. Additionally more clear results are seen when the curved channel is approached. - Highlights: • The behavior of curvature parameter k on velocity is not symmetric. • Temperature is decreasing function of Biot number Bi. • Hartman number has similar qualitative effects on both velocity and temperature. • Behavior of concentration is opposite to that of temperature in a qualitative sense. • Bolus size via curvature parameter has opposite effect near the upper and lower channel walls.

  18. Surface interpolation with radial basis functions for medical imaging

    International Nuclear Information System (INIS)

    Carr, J.C.; Beatson, R.K.; Fright, W.R.

    1997-01-01

    Radial basis functions are presented as a practical solution to the problem of interpolating incomplete surfaces derived from three-dimensional (3-D) medical graphics. The specific application considered is the design of cranial implants for the repair of defects, usually holes, in the skull. Radial basis functions impose few restrictions on the geometry of the interpolation centers and are suited to problems where interpolation centers do not form a regular grid. However, their high computational requirements have previously limited their use to problems where the number of interpolation centers is small (<300). Recently developed fast evaluation techniques have overcome these limitations and made radial basis interpolation a practical approach for larger data sets. In this paper radial basis functions are fitted to depth-maps of the skull's surface, obtained from X-ray computed tomography (CT) data using ray-tracing techniques. They are used to smoothly interpolate the surface of the skull across defect regions. The resulting mathematical description of the skull's surface can be evaluated at any desired resolution to be rendered on a graphics workstation or to generate instructions for operating a computer numerically controlled (CNC) mill

  19. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)

  20. The stability of internal transport barriers to MHD ballooning modes and drift waves: A formalism for low magnetic shear and for velocity shear

    International Nuclear Information System (INIS)

    Connor, J.W.; Hastie, R.J.; Webster, A.J.; Wilson, H.R.

    2005-01-01

    Tokamak discharges with internal transport barriers (ITBs) provide improved confinement, so it is important to understand their stability properties. The stability to an important class of modes with high wave-numbers perpendicular to the magnetic field, is usually studied with the standard ballooning transformation and eikonal approach. However, ITBs are often characterised by radial q profiles that have regions of negative or low magnetic shear and by radially sheared electric fields. Both these features affect the validity of the standard method. A new approach to calculating stability in these circumstances is developed and applied to ideal MHD ballooning modes and to micro-instabilities responsible for anomalous transport. (author)

  1. Interaction of the precessional wave with free-boundary Alfven surface waves in tandem mirrors

    International Nuclear Information System (INIS)

    Berk, H.L.; Kaiser, T.B.

    1984-04-01

    We consider a symmetric tandem mirror plugging a long central cell, with plugs stabilized by a hot component plasma. The system is taken to have a flat pressure profile with a steep edge gradient. We then consider the interaction of the precessional mode with Alfven waves generated in the central cell. This analysis is non-eikonal and is valid when mΔ/r < 1 (m is the azimuthal mode number. r the plasma radius and Δ the radial gradient scale length) for long-wavelength radial modes. We find that without FLR effects the precessional mode is always destabilized by the excitation of the Alfven waves for m greater than or equal to 2. For m=1, it is possible to achieve stabilization with conducting walls. A discussion is given of how FLR affects stabilization of the m greater than or equal to 2 long-wavelength modes and of finite-Larmor-radius stabilization of modes described in the eikonal approximation

  2. Radial artery spasm occurred in transradial coronary intervention for coronary heart disease: its occurrence and predictors

    International Nuclear Information System (INIS)

    Zhong Jiming; Li Lang; Lu Yongguang; Zeng Shuyi

    2011-01-01

    Objective: To discuss the incidence and clinical predictors of radial artery spasm occurred in performing transradial coronary intervention for coronary heart disease. Methods: A total of 1020 patients, who underwent transradial coronary procedures for coronary heart disease during the period of May 2007 Jan 2010 in authors' hospital, were enrolled in this study. All clinical information and medication were recorded in detail. Arteriography via radial artery was performed in all patients. The diameter of the radial artery as well as the arterial anatomy, including arterial variations, were determined and observed, which was follow by coronary angiography or percutaneous coronary intervention. Multivariate Logistic regression analysis was adopted to evaluate the variables, such as clinical parameters, angiographic characteristics of the radial artery and procedure-related factors, in predicting the occurrence of radial artery spasm. Results: Radial artery spasm occurred in 209 (20.5%) patients. Multivariate Logistic regression analysis showed that the following eight factors were independently associated with the occurrence of radial artery spasm. These factors were as follows: female gender (OR=2.8, 95% CI 2.5-5.8; P=0.001), age (OR=0.68, 95% CI 0.60-0.92; P=0.003), smoking (OR=2.3, 95% CI 1.8-4.1; P=0.026), moderate-to-severe pain of forearm during radial artery cannulation (OR=3.0, 95% CI 2.3-4.8; P=0.006), radial artery anatomical abnormalities (OR=4.7, 95% CI 3.6-7.2; P=0.002), the ratio of radial artery diameter to patient's height (RAH) (OR=5.2, 95% CI 3.7-8.1; P=0.012), the ratio of radial artery diameter to outer diameter of the sheath (RAOD) (OR=5.8, 95% CI 4.2-6.9; P=0.006) and the number of catheter exchange (OR=2.3, 95% CI 1.4-4.3; P=0.038). Conclusion: Radial artery spasm occurred in performing transradial coronary intervention for coronary heart disease is frequently seen in clinical practice. Female gender, younger age, smoking, forearm pain during

  3. revivals of Rydberg wave packets

    International Nuclear Information System (INIS)

    Bluhm, R.; Kostelecky, V.A.; Tudose, B.

    1998-01-01

    We examine the revival structure of Rydberg wave packets. The effects of quantum defects on wave packets in alkali-metal atoms and a squeezed-state description of the initial wave packets are also described. We then examine the revival structure of Rydberg wave packets in the presence of an external electric field, i.e., the revival structure of Stark wave packets. These wave packets have energies that depend on two quantum numbers and exhibit new types of interference behaviour

  4. Radial electric fields for improved tokamak performance

    International Nuclear Information System (INIS)

    Downum, W.B.

    1981-01-01

    The influence of externally-imposed radial electric fields on the fusion energy output, energy multiplication, and alpha-particle ash build-up in a TFTR-sized, fusing tokamak plasma is explored. In an idealized tokamak plasma, an externally-imposed radial electric field leads to plasma rotation, but no charge current flows across the magnetic fields. However, a realistically-low neutral density profile generates a non-zero cross-field conductivity and the species dependence of this conductivity allows the electric field to selectively alter radial particle transport

  5. Radial MR images of the knee

    International Nuclear Information System (INIS)

    Hewes, R.C.; Miller, T.R.

    1988-01-01

    To profile optimally each portion of the meniscus, the authors use the multiangle, multisection feature of a General Electric SIGNA 1.5-T imager to produce radial images centered on each meniscus. A total of 12-15 sections are imaged at 10 0 -15 0 intervals of each meniscus, yielding perpendicular images of the entire meniscus, comparable with the arthrographic tangential views. The authors review their technique and demonstrate correlation cases between the radial gradient recalled acquisition in a steady state sequences, sagittal and coronal MR images, and arthrograms. Radial images should be a routine part of knee MR imaging

  6. Radial pattern of nuclear decay processes

    International Nuclear Information System (INIS)

    Iskra, W.; Mueller, M.; Rotter, I.; Technische Univ. Dresden

    1994-05-01

    At high level density of nuclear states, a separation of different time scales is observed (trapping effect). We calculate the radial profile of partial widths in the framework of the continuum shell model for some 1 - resonances with 2p-2h nuclear structure in 16 O as a function of the coupling strength to the continuum. A correlation between the lifetime of a nuclear state and the radial profile of the corresponding decay process is observed. We conclude from our numerical results that the trapping effect creates structures in space and time characterized by a small radial extension and a short lifetime. (orig.)

  7. Model validation for radial electric field excitation during L-H transition in JFT-2M tokamak

    Science.gov (United States)

    Kobayashi, T.; Itoh, K.; Ido, T.; Kamiya, K.; Itoh, S.-I.; Miura, Y.; Nagashima, Y.; Fujisawa, A.; Inagaki, S.; Ida, K.; Hoshino, K.

    2017-07-01

    In this paper, we elaborate the electric field excitation mechanism during the L-H transition in the JFT-2M tokamak. Using time derivative of the Poisson’s equation, models of the radial electric field excitation is examined. The sum of the loss-cone loss current and the neoclassical bulk viscosity current is found to behave as the experimentally evaluated radial current that excites the radial electric field. The turbulent Reynolds stress only plays a minor role. The wave convection current that produces a negative current at the edge can be important to explain the ambipolar condition in the L-mode.

  8. Investigation of the organic Rankine cycle (ORC) system and the radial-inflow turbine design

    International Nuclear Information System (INIS)

    Li, Yan; Ren, Xiao-dong

    2016-01-01

    Highlights: • The thermodynamic analysis of an ORC system is introduced. • A radial turbine design method has been proposed based on the real gas model. • A radial turbine with R123 is designed and numerically analyzed. - Abstract: Energy and environment issue set utilizing low-grade heat noticed. Organic Rankine Cycle (ORC) has been demonstrated to be a promising technology to recover waste heat. As a critical component of ORC system, the turbine selection has an enormous influence on the system performance. This paper carries out a study on the thermodynamic analysis of ORC system and the aerodynamic design of an organic radial turbine. The system performance is evaluated with various working fluids. The aerodynamic design of the organic radial-inflow turbine is focused due to the high molecule weight and the low sound speed of the organic working fluid. An aerodynamic and profile design system is developed. A radial-inflow turbine with R123 as the working fluid is designed and the numerical analysis is conducted. The simulation results indicate that the shock wave caused by the high expansion ratio in the nozzle is well controlled. Compared with the one-dimensional design results, the performance of the radial-inflow turbine in this paper reaches the design requirements.

  9. Radial scar/complex sclerosing lesion of the breast--value of ultrasound.

    Science.gov (United States)

    Grunwald, S; Heyer, H; Kühl, A; Schwesinger, G; Schimming, A; Köhler, G; Ohlinger, R

    2007-04-01

    Although benign, radial scar/complex sclerosing adenosis is a lesion which histopathologically resembles tubular carcinoma. On physical examination, it is difficult to distinguish radial scar from a malignant tumour. Mammography cannot differentiate radial scar from malignancy. This clinical study aims to delineate the role of preoperative ultrasonography with emphasis on the question whether ultrasonography could lower the number of false-positive readings and therefore the number of open biopsies required. In this examination, we present the clinical, mammographic, ultrasonographic, and histopathological features of 6 cases of radial scars. Although most authors describe radial scars as non-palpable, 2 of 6 lesions were indeed palpable. On mammograms, radial scars have a spiculated appearance, a feature observed in all of our cases. Numerous ultrasonographic characteristics are listed in the literature, but ultrasonography is not reported to have clear-cut advantages. Although this study did not elucidate any unique ultrasonographic features to characterise these lesions, the analysis of all ultrasonographic results made us recognise a set of "nearly specific ultrasonographic features" of radial scars. Current B-mode imaging does not appear to lead to the desirable reduction of the rate of unnecessary open biopsies.

  10. Radio-frequency wave excitation and damping on a high β plasma column

    International Nuclear Information System (INIS)

    Meuth, H.

    1984-01-01

    Azimuthally symmetric (m = 0) radio-frequency (RF) waves for zero and for finite axial wave number k/sub z/ are investigated on the High BETA Q Machine, a two-meter, 20 cm-diameter, low-compression linear theta pinch (T greater than or equal to 200 eV, n approx. = 10 15 cm -3 ) fast rising (0.4 μs) compression field. The (k/sub z/ = 0) modes occur spontaneously following the implosion phase of the discharge. A novel 100-MW 1 to 1.3 MHz, short wavelength current drive excites the plasma column in the vicinity of the lowest fast magnetoacoustic mode at various filling pressures. This current drive is designed as an integral part of the compression coil, which is segmented with a 20-cm axial wavelength (k/sub z/ = 0.314 cm -1 ). The electron density oscillations along major and minor chords at various positions are measured by interferometry perpendicular to the pinch axis. The oscillatory radial magnetic field component between pinch wall and hot plasma edge is measured by probes. Phases, amplitudes and radial mode structure are studied for the free (k = 0) modes and the externally driven (k does not equal 0) modes for various filling pressures of deuterium. The energy deposition from the externally driven RF wave leads to a radial expansion of the plasma column, as observed by axial interferometry and by excluded flux measurements

  11. Radial pseudoaneurysm following diagnostic coronary angiography

    Directory of Open Access Journals (Sweden)

    Shankar Laudari

    2015-06-01

    Full Text Available The radial artery access has gained popularity as a method of diagnostic coronary catheterization compared to femoral artery puncture in terms of vascular complications and early ambulation. However, very rare complication like radial artery pseudoaneurysm may occur following cardiac catheterization which may give rise to serious consequences. Here, we report a patient with radial pseudoaneurysm following diagnostic coronary angiography. Adequate and correct methodology of compression of radial artery following puncture for maintaining hemostasis is the key to prevention.DOI: http://dx.doi.org/10.3126/jcmsn.v10i3.12776 Journal of College of Medical Sciences-Nepal, 2014, Vol-10, No-3, 48-50

  12. Linear analysis of rotationally invariant, radially variant tomographic imaging systems

    International Nuclear Information System (INIS)

    Huesmann, R.H.

    1990-01-01

    This paper describes a method to analyze the linear imaging characteristics of rotationally invariant, radially variant tomographic imaging systems using singular value decomposition (SVD). When the projection measurements from such a system are assumed to be samples from independent and identically distributed multi-normal random variables, the best estimate of the emission intensity is given by the unweighted least squares estimator. The noise amplification of this estimator is inversely proportional to the singular values of the normal matrix used to model projection and backprojection. After choosing an acceptable noise amplification, the new method can determine the number of parameters and hence the number of pixels that should be estimated from data acquired from an existing system with a fixed number of angles and projection bins. Conversely, for the design of a new system, the number of angles and projection bins necessary for a given number of pixels and noise amplification can be determined. In general, computing the SVD of the projection normal matrix has cubic computational complexity. However, the projection normal matrix for this class of rotationally invariant, radially variant systems has a block circulant form. A fast parallel algorithm to compute the SVD of this block circulant matrix makes the singular value analysis practical by asymptotically reducing the computation complexity of the method by a multiplicative factor equal to the number of angles squared

  13. FDTD simulation of trapping nanowires with linearly polarized and radially polarized optical tweezers.

    Science.gov (United States)

    Li, Jing; Wu, Xiaoping

    2011-10-10

    In this paper a model of the trapping force on nanowires is built by three dimensional finite-difference time-domain (FDTD) and Maxwell stress tensor methods, and the tightly focused laser beam is expressed by spherical vector wave functions (VSWFs). The trapping capacities on nanoscale-diameter nanowires are discussed in terms of a strongly focused linearly polarized beam and radially polarized beam. Simulation results demonstrate that the radially polarized beam has higher trapping efficiency on nanowires with higher refractive indices than linearly polarized beam.

  14. Transverse spin in the scattering of focused radially and azimuthally polarized vector beams

    Science.gov (United States)

    Singh, Ankit Kumar; Saha, Sudipta; Gupta, Subhasish Dutta; Ghosh, Nirmalya

    2018-04-01

    We study the effect of focusing of the radially and azimuthally polarized vector beams on the spin angular momentum (SAM) density and Poynting vector of scattered waves from a Mie particle. Remarkably, the study reveals that the SAM density of the scattered field is solely transverse in nature for radially and azimuthally polarized incident vector beams; however, the Poynting vector shows the usual longitudinal character. We also demonstrate that the transverse SAM density can further be tuned with wavelength and focusing of the incident beam by exploiting the interference of different scattering modes. These results may stimulate further experimental techniques to detect the transverse spin and Belinfante's spin-momentum densities.

  15. Wave attenuation charcteristics of tethered float system

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.

    incident wave height transmitted wave height G wave number float mass number of rows of floats drag power transmitted wave power incident wave power 111 112 P. Vethamony float radius wave period time velocity and acceleration of fluid... particles, respectively wave attenuation in percentage displacement, velocity and acceleration of float, respectively amplitude of float displacement added mass damping coefficient fluid particle displacement amplitude of fluid particle displacement...

  16. Radial transport with perturbed magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hazeltine, R. D. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-05-15

    It is pointed out that the viscosity coefficient describing radial transport of toroidal angular momentum is proportional to the second power of the gyro-radius—like the corresponding coefficients for particle and heat transport—regardless of any geometrical symmetry. The observation is widely appreciated, but worth emphasizing because some literature gives the misleading impression that asymmetry can allow radial moment transport in first-order.

  17. Radial transport with perturbed magnetic field

    International Nuclear Information System (INIS)

    Hazeltine, R. D.

    2015-01-01

    It is pointed out that the viscosity coefficient describing radial transport of toroidal angular momentum is proportional to the second power of the gyro-radius—like the corresponding coefficients for particle and heat transport—regardless of any geometrical symmetry. The observation is widely appreciated, but worth emphasizing because some literature gives the misleading impression that asymmetry can allow radial moment transport in first-order

  18. Production of gravitation waves by electromagnetic radiation

    International Nuclear Information System (INIS)

    Buchner, K.; Rosca, R.

    1980-01-01

    An exact solution of Einstein's equations is presented that corresponds to an axisymmetric bundle of electromagnetic waves with finite cross section. Outside this bundle, there is gravitational radiation parallel to the electromagnetic radiation. If no static electromagnetic fields are present, the frequency of the gravitational waves is twice the frequency of the electromagnetic waves. Einstein's energy complex vanishes identically. The covariant energy complex, however, yields also a radial momentum. (author)

  19. Stability of radial and non-radial pulsation modes of massive ZAMS models

    International Nuclear Information System (INIS)

    Odell, A.P.; Pausenwein, A.; Weiss, W.W.; Hajek, A.

    1987-01-01

    The authors have computed non-adiabatic eigenvalues for radial and non-radial pulsation modes of star models between 80 and 120 M solar with composition of chi=0.70 and Z=0.02. The radial fundamental mode is unstable in models with mass greater than 95 M solar , but the first overtone mode is always stable. The non-radial modes are all stable for all models, but the iota=2 f-mode is the closest to being driven. The non-radial modes are progressively more stable with higher iota and with higher n (for both rho- and g-modes). Thus, their results indicate that radial pulsation limits the upper mass of a star

  20. Effects of applied dc radial electric fields on particle transport in a bumpy torus plasma

    Science.gov (United States)

    Roth, J. R.

    1978-01-01

    The influence of applied dc radial electric fields on particle transport in a bumpy torus plasma is studied. The plasma, magnetic field, and ion heating mechanism are operated in steady state. Ion kinetic temperature is more than a factor of ten higher than electron temperature. The electric fields raise the ions to energies on the order of kilovolts and then point radially inward or outward. Plasma number density profiles are flat or triangular across the plasma diameter. It is suggested that the radial transport processes are nondiffusional and dominated by strong radial electric fields. These characteristics are caused by the absence of a second derivative in the density profile and the flat electron temperature profiles. If the electric field acting on the minor radius of the toroidal plasma points inward, plasma number density and confinement time are increased.

  1. 21 CFR 866.4800 - Radial immunodiffusion plate.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4800 Radial immunodiffusion plate. (a) Identification. A radial immunodiffusion plate for clinical use...

  2. Solar system plasma waves

    Science.gov (United States)

    Gurnett, Donald A.

    1995-01-01

    An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.

  3. On the excitation of ULF waves by solar wind pressure enhancements

    Directory of Open Access Journals (Sweden)

    P. T. I. Eriksson

    2006-11-01

    Full Text Available We study the onset and development of an ultra low frequency (ULF pulsation excited by a storm sudden commencement. On 30 August 2001, 14:10 UT, the Cluster spacecraft are located in the dayside magnetosphere and observe the excitation of a ULF pulsation by a threefold enhancement in the solar wind dynamic pressure. Two different harmonics are observed by Cluster, one at 6.8 mHz and another at 27 mHz. We observe a compressional wave and the development of a toroidal and poloidal standing wave mode. The toroidal mode is observed over a narrow range of L-shells whereas the poloidal mode is observed to have a much larger radial extent. By looking at the phase difference between the electric and magnetic fields we see that for the first two wave periods both the poloidal and toroidal mode are travelling waves and then suddenly change into standing waves. We estimate the azimuthal wave number for the 6.8 mHz to be m=10±3. For the 27 mHz wave, m seems to be several times larger and we discuss the implications of this. We conclude that the enhancement in solar wind pressure excites eigenmodes of the geomagnetic cavity/waveguide that propagate tailward and that these eigenmodes in turn couple to toroidal and poloidal mode waves. Thus our observations give firm support to the magnetospheric waveguide theory.

  4. Reproductive number and serial interval of the first wave of influenza A(H1N1pdm09 virus in South Africa.

    Directory of Open Access Journals (Sweden)

    Brett N Archer

    Full Text Available Describing transmissibility parameters of past pandemics from diverse geographic sites remains critical to planning responses to future outbreaks. We characterize the transmissibility of influenza A(H1N1pdm09 (hereafter pH1N1 in South Africa during 2009 by estimating the serial interval (SI, the initial effective reproductive number (initial R(t and the temporal variation of R(t.We make use of data from a central registry of all pH1N1 laboratory-confirmed cases detected throughout South Africa. Whenever date of symptom onset is missing, we estimate it from the date of specimen collection using a multiple imputation approach repeated 100 times for each missing value. We apply a likelihood-based method (method 1 for simultaneous estimation of initial R(t and the SI; estimate initial R(t from SI distributions established from prior field studies (method 2; and the Wallinga and Teunis method (method 3 to model the temporal variation of R(t.12,360 confirmed pH1N1 cases were reported in the central registry. During the period of exponential growth of the epidemic (June 21 to August 3, 2009, we simultaneously estimate a mean R(t of 1.47 (95% CI: 1.30-1.72 and mean SI of 2.78 days (95% CI: 1.80-3.75 (method 1. Field studies found a mean SI of 2.3 days between primary cases and laboratory-confirmed secondary cases, and 2.7 days when considering both suspected and confirmed secondary cases. Incorporating the SI estimate from field studies using laboratory-confirmed cases, we found an initial R(t of 1.43 (95% CI: 1.38-1.49 (method 2. The mean R(t peaked at 2.91 (95% CI: 0.85-2.91 on June 21, as the epidemic commenced, and R(t>1 was sustained until August 22 (method 3.Transmissibility characteristics of pH1N1 in South Africa are similar to estimates reported by countries outside of Africa. Estimations using the likelihood-based method are in agreement with field findings.

  5. RADIAL VELOCITY MONITORING OF KEPLER HEARTBEAT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Shporer, Avi [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Fuller, Jim [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, Caltech, Pasadena, CA 91125 (United States); Isaacson, Howard [Department of Astronomy, University of California, Berkeley CA 94720 (United States); Hambleton, Kelly; Prša, Andrej [Department of Astrophysics and Planetary Science, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 (United States); Thompson, Susan E. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Kurtz, Donald W. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE (United Kingdom); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); O’Leary, Ryan M. [JILA, University of Colorado and NIST, 440 UCB, Boulder, 80309-0440 (United States)

    2016-09-20

    Heartbeat stars (HB stars) are a class of eccentric binary stars with close periastron passages. The characteristic photometric HB signal evident in their light curves is produced by a combination of tidal distortion, heating, and Doppler boosting near orbital periastron. Many HB stars continue to oscillate after periastron and along the entire orbit, indicative of the tidal excitation of oscillation modes within one or both stars. These systems are among the most eccentric binaries known, and they constitute astrophysical laboratories for the study of tidal effects. We have undertaken a radial velocity (RV) monitoring campaign of Kepler HB stars in order to measure their orbits. We present our first results here, including a sample of 22 Kepler HB systems, where for 19 of them we obtained the Keplerian orbit and for 3 other systems we did not detect a statistically significant RV variability. Results presented here are based on 218 spectra obtained with the Keck/HIRES spectrograph during the 2015 Kepler observing season, and they have allowed us to obtain the largest sample of HB stars with orbits measured using a single instrument, which roughly doubles the number of HB stars with an RV measured orbit. The 19 systems measured here have orbital periods from 7 to 90 days and eccentricities from 0.2 to 0.9. We show that HB stars draw the upper envelope of the eccentricity–period distribution. Therefore, HB stars likely represent a population of stars currently undergoing high eccentricity migration via tidal orbital circularization, and they will allow for new tests of high eccentricity migration theories.

  6. RADIAL VELOCITY MONITORING OF KEPLER HEARTBEAT STARS

    International Nuclear Information System (INIS)

    Shporer, Avi; Fuller, Jim; Isaacson, Howard; Hambleton, Kelly; Prša, Andrej; Thompson, Susan E.; Kurtz, Donald W.; Howard, Andrew W.; O’Leary, Ryan M.

    2016-01-01

    Heartbeat stars (HB stars) are a class of eccentric binary stars with close periastron passages. The characteristic photometric HB signal evident in their light curves is produced by a combination of tidal distortion, heating, and Doppler boosting near orbital periastron. Many HB stars continue to oscillate after periastron and along the entire orbit, indicative of the tidal excitation of oscillation modes within one or both stars. These systems are among the most eccentric binaries known, and they constitute astrophysical laboratories for the study of tidal effects. We have undertaken a radial velocity (RV) monitoring campaign of Kepler HB stars in order to measure their orbits. We present our first results here, including a sample of 22 Kepler HB systems, where for 19 of them we obtained the Keplerian orbit and for 3 other systems we did not detect a statistically significant RV variability. Results presented here are based on 218 spectra obtained with the Keck/HIRES spectrograph during the 2015 Kepler observing season, and they have allowed us to obtain the largest sample of HB stars with orbits measured using a single instrument, which roughly doubles the number of HB stars with an RV measured orbit. The 19 systems measured here have orbital periods from 7 to 90 days and eccentricities from 0.2 to 0.9. We show that HB stars draw the upper envelope of the eccentricity–period distribution. Therefore, HB stars likely represent a population of stars currently undergoing high eccentricity migration via tidal orbital circularization, and they will allow for new tests of high eccentricity migration theories.

  7. Modeling Marine Electromagnetic Survey with Radial Basis Function Networks

    Directory of Open Access Journals (Sweden)

    Agus Arif

    2014-11-01

    Full Text Available A marine electromagnetic survey is an engineering endeavour to discover the location and dimension of a hydrocarbon layer under an ocean floor. In this kind of survey, an array of electric and magnetic receivers are located on the sea floor and record the scattered, refracted and reflected electromagnetic wave, which has been transmitted by an electric dipole antenna towed by a vessel. The data recorded in receivers must be processed and further analysed to estimate the hydrocarbon location and dimension. To conduct those analyses successfuly, a radial basis function (RBF network could be employed to become a forward model of the input-output relationship of the data from a marine electromagnetic survey. This type of neural networks is working based on distances between its inputs and predetermined centres of some basis functions. A previous research had been conducted to model the same marine electromagnetic survey using another type of neural networks, which is a multi layer perceptron (MLP network. By comparing their validation and training performances (mean-squared errors and correlation coefficients, it is concluded that, in this case, the MLP network is comparatively better than the RBF network[1].[1] This manuscript is an extended version of our previous paper, entitled Radial Basis Function Networks for Modeling Marine Electromagnetic Survey, which had been presented on 2011 International Conference on Electrical Engineering and Informatics, 17-19 July 2011, Bandung, Indonesia.

  8. MESSENGER Magnetic Field Observations of Upstream Ultra-Low Frequency Waves at Mercury

    Science.gov (United States)

    Le, G.; Chi, P. J.; Boardsen, S.; Blanco-Cano, X.; Anderosn, B. J.; Korth, H.

    2012-01-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth's is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury's bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury's foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury's foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the I-Hz waves in the Earth's foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth's foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at near 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at near 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.

  9. Blade bowing effects on radial equilibrium of inlet flow in axial compressor cascades

    Directory of Open Access Journals (Sweden)

    Han XU

    2017-10-01

    Full Text Available The circumferentially averaged equation of the inlet flow radial equilibrium in axial compressor was deduced. It indicates that the blade inlet radial pressure gradient is closely related to the radial component of the circumferential fluctuation (CF source item. Several simplified cascades with/without aerodynamic loading were numerically studied to investigate the effects of blade bowing on the inlet flow radial equilibrium. A data reduction program was conducted to obtain the CF source from three-dimensional (3D simulation results. Flow parameters at the passage inlet were focused on and each term in the radial equilibrium equation was discussed quantitatively. Results indicate that the inviscid blade force is the inducement of the inlet CF due to geometrical asymmetry. Blade bowing induces variation of the inlet CF, thus changes the radial pressure gradient and leads to flow migration before leading edge (LE in the cascades. Positive bowing drives the inlet flow to migrate from end walls to mid-span and negative bowing turns it to the reverse direction to build a new equilibrium. In addition, comparative studies indicate that the inlet Mach number and blade loading can efficiently impact the effectiveness of blade bowing on radial equilibrium in compressor design.

  10. Numerical model for radial transport in the ELMO Bumpy Torus

    International Nuclear Information System (INIS)

    Jaeger, E.F.; Hedrick, C.L.

    1977-11-01

    Neutral and charged particle densities and temperatures are calculated as functions of radius for the toroidal plasma in the ELMO Bumpy Torus (EBT) experiment. Energy dependent ionization and charge-exchange rates, ambipolar diffusion, and self-consistent radial electric field profiles are included. Variation in magnetic field due to finite plasma pressure, effects of energetic electron rings, and transport due to drift waves and magnetic field errors are neglected. Diffusion is assumed to be neoclassical with enhanced losses at low collisionalities. The model reproduces many of the observed features of EBT operation in the quiescent toroidal (T) mode. The self-consistently calculated electric field is everywhere positive (not as in experiments) unless enhanced electron collisionality is included. Solutions for advanced EBT's are obtained and confinement parameters predicted

  11. Anomalies of radial and ulnar arteries

    Directory of Open Access Journals (Sweden)

    Rajani Singh

    Full Text Available Abstract During dissection conducted in an anatomy department of the right upper limb of the cadaver of a 70-year-old male, both origin and course of the radial and ulnar arteries were found to be anomalous. After descending 5.5 cm from the lower border of the teres major, the brachial artery anomalously bifurcated into a radial artery medially and an ulnar artery laterally. In the arm, the ulnar artery lay lateral to the median nerve. It followed a normal course in the forearm. The radial artery was medial to the median nerve in the arm and then, at the level of the medial epicondyle, it crossed from the medial to the lateral side of the forearm, superficial to the flexor muscles. The course of the radial artery was superficial and tortuous throughout the arm and forearm. The variations of radial and ulnar arteries described above were associated with anomalous formation and course of the median nerve in the arm. Knowledge of neurovascular anomalies are important for vascular surgeons and radiologists.

  12. SAUSAGE WAVES IN TRANSVERSELY NONUNIFORM MONOLITHIC CORONAL TUBES

    Energy Technology Data Exchange (ETDEWEB)

    Lopin, I. [Ussuriisk astrophysical observatory, Russion Academy of Sciences (Russian Federation); Nagorny, I., E-mail: lopin78@mail.ru [Institute of Automation and Control Processes FEB RAS, Vladivostok (Russian Federation)

    2015-09-10

    We investigate fast sausage waves in a monolithic coronal magnetic tube, modeled as a local density inhomogeneity with a continuous radial profile. This work is a natural extension of our previous results, obtained for a slab loop model for the case of cylindrical geometry. Using Kneser’s oscillating theorem, we provided the criteria for the existence of trapped and leaky wave regimes as a function of the profile features. For a number of density profiles there are only trapped modes for the entire range of longitudinal wave numbers. The phase speed of these modes tends toward the external Alfvén speed in the long wavelength limit. The generalized results were supported by the analytic solution of the wave equation for the specific density profiles. The approximate Wentzel–Kramers–Brillouin solutions allowed us to obtain the desired dispersion relations and to study their properties as a function of the profile parameters. The multicomponent quasi-periodic pulsations in flaring loops, observed on 2001 May 2 and 2002 July 3, are interpreted in terms of the transversely fundamental trapped fast sausage mode with several longitudinal harmonics in a smooth coronal waveguide.

  13. Physical mechanism determining the radial electric field and its radial structure in a toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi; Miura, Yukitoshi; Itoh, Sanae

    1994-10-01

    Radial structures of plasma rotation and radial electric field are experimentally studied in tokamak, heliotron/torsatron and stellarator devices. The perpendicular and parallel viscosities are measured. The parallel viscosity, which is dominant in determining the toroidal velocity in heliotron/torsatron and stellarator devices, is found to be neoclassical. On the other hand, the perpendicular viscosity, which is dominant in dictating the toroidal rotation in tokamaks, is anomalous. Even without external momentum input, both a plasma rotation and a radial electric field exist in tokamaks and heliotrons/torsatrons. The observed profiles of the radial electric field do not agree with the theoretical prediction based on neoclassical transport. This is mainly due to the existence of anomalous perpendicular viscosity. The shear of the radial electric field improves particle and heat transport both in bulk and edge plasma regimes of tokamaks. (author) 95 refs

  14. Manufacturing of Precision Forgings by Radial Forging

    International Nuclear Information System (INIS)

    Wallner, S.; Harrer, O.; Buchmayr, B.; Hofer, F.

    2011-01-01

    Radial forging is a multi purpose incremental forging process using four tools on the same plane. It is widely used for the forming of tool steels, super alloys as well as titanium- and refractory metals. The range of application goes from reducing the diameters of shafts, tubes, stepped shafts and axels, as well as for creating internal profiles for tubes in Near-Net-Shape and Net-Shape quality. Based on actual development of a weight optimized transmission input shaft, the specific features of radial forging technology is demonstrated. Also a Finite Element Model for the simulation of the process is shown which leads to reduced pre-processing effort and reduced computing time compared to other published simulation methods for radial forging. The finite element model can be applied to quantify the effects of different forging strategies.

  15. Capillary waves in slow motion

    International Nuclear Information System (INIS)

    Seydel, Tilo; Tolan, Metin; Press, Werner; Madsen, Anders; Gruebel, Gerhard

    2001-01-01

    Capillary wave dynamics on glycerol surfaces has been investigated by means of x-ray photon correlation spectroscopy performed at grazing angles. The measurements show that thermally activated capillary wave motion is slowed down exponentially when the sample is cooled below 273 K. This finding directly reflects the freezing of the surface waves. The wave-number dependence of the measured time constants is in quantitative agreement with theoretical predictions for overdamped capillary waves

  16. The Matlab Radial Basis Function Toolbox

    Directory of Open Access Journals (Sweden)

    Scott A. Sarra

    2017-03-01

    Full Text Available Radial Basis Function (RBF methods are important tools for scattered data interpolation and for the solution of Partial Differential Equations in complexly shaped domains. The most straight forward approach used to evaluate the methods involves solving a linear system which is typically poorly conditioned. The Matlab Radial Basis Function toolbox features a regularization method for the ill-conditioned system, extended precision floating point arithmetic, and symmetry exploitation for the purpose of reducing flop counts of the associated numerical linear algebra algorithms.

  17. Radial velocity observations of VB10

    Science.gov (United States)

    Deshpande, R.; Martin, E.; Zapatero Osorio, M. R.; Del Burgo, C.; Rodler, F.; Montgomery, M. M.

    2011-07-01

    VB 10 is the smallest star known to harbor a planet according to the recent astrometric study of Pravdo & Shaklan [1]. Here we present near-infrared (J-band) radial velocity of VB 10 performed from high resolution (R~20,000) spectroscopy (NIRSPEC/KECK II). Our results [2] suggest radial velocity variability with amplitude of ~1 km/s, a result that is consistent with the presence of a massive planet companion around VB10 as found via long-term astrometric monitoring of the star by Pravdo & Shaklan. Employing an entirely different technique we verify the results of Pravdo & Shaklan.

  18. Plasma Signatures of Radial Field Power Dropouts

    International Nuclear Information System (INIS)

    Lucek, E.A.; Horbury, T.S.; Balogh, A.; McComas, D.J.

    1998-01-01

    A class of small scale structures, with a near-radial magnetic field and a drop in magnetic field fluctuation power, have recently been identified in the polar solar wind. An earlier study of 24 events, each lasting for 6 hours or more, identified no clear plasma signature. In an extension of that work, radial intervals lasting for 4 hours or more (89 in total), have been used to search for a statistically significant plasma signature. It was found that, despite considerable variations between intervals, there was a small but significant drop, on average, in plasma temperature, density and β during these events

  19. Reble, a radially converging electron beam accelerator

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Prestwich, K.R.

    1976-01-01

    The Reble accelerator at Sandia Laboratories is described. This accelerator was developed to provide an experimental source for studying the relevant diode physics, beam propagation, beam energy deposition in a gas using a radially converging e-beam. The nominal parameters for Reble are 1 MV, 200 kA, 20 ns e-beam pulse. The anode and cathode are concentric cylinders with the anode as the inner cylinder. The radial beam can be propagated through the thin foil anode into the laser gas volume. The design and performance of the various components of the accelerator are presented

  20. Probability of primordial black hole formation and its dependence on the radial profile of initial configurations

    International Nuclear Information System (INIS)

    Hidalgo, J. C.; Polnarev, A. G.

    2009-01-01

    In this paper we derive the probability of the radial profiles of spherically symmetric inhomogeneities in order to provide an improved estimation of the number density of primordial black holes (PBHs). We demonstrate that the probability of PBH formation depends sensitively on the radial profile of the initial configuration. We do this by characterizing this profile with two parameters chosen heuristically: the amplitude of the inhomogeneity and the second radial derivative, both evaluated at the center of the configuration. We calculate the joint probability of initial cosmological inhomogeneities as a function of these two parameters and then find a correspondence between these parameters and those used in numerical computations of PBH formation. Finally, we extend our heuristic study to evaluate the probability of PBH formation taking into account for the first time the radial profile of curvature inhomogeneities.

  1. Feedback control of current drive by using hybrid wave in tokamaks

    International Nuclear Information System (INIS)

    Wijnands, T.J.; CEA Centre d'Etudes de Cadarache, 13 - Saint-Paul-lez-Durance

    1997-03-01

    This work is focussed on an important and recent development in present day Controlled Nuclear Fusion Research and Tokamaks. The aim is to optimise the energy confinement for a certain magnetic configuration by adapting the radial distribution of the current. Of particular interest are feedback control scenarios with stationary modifications of the current profile using current, driven by Lower Hybrid waves. A new feedback control system has been developed for Tore Supra and has made a large number of new operation scenarios possible. In one of the experiments described here, there is no energy exchange between the poloidal field system and the plasma, the current is controlled by the power of the Lower Hybrid waves while the launched wave spectrum is used to optimise the current profile shape and the energy confinement. (author)

  2. The Next Wave. Volume 19, Number 2

    Science.gov (United States)

    2012-01-01

    Kong © 2.60% Q ^Vietnam Malaysia -^ °-10% 0.550/0 ^ J~ Singapore 0.34% © South Africa 0.16% / > Percentage of Malware Sources...defenses like dynamic reputation systems. Security researchers are currently debating whether personalization online could become a form of censorship

  3. Sequences of extremal radially excited rotating black holes.

    Science.gov (United States)

    Blázquez-Salcedo, Jose Luis; Kunz, Jutta; Navarro-Lérida, Francisco; Radu, Eugen

    2014-01-10

    In the Einstein-Maxwell-Chern-Simons theory the extremal Reissner-Nordström solution is no longer the single extremal solution with vanishing angular momentum, when the Chern-Simons coupling constant reaches a critical value. Instead a whole sequence of rotating extremal J=0 solutions arises, labeled by the node number of the magnetic U(1) potential. Associated with the same near horizon solution, the mass of these radially excited extremal solutions converges to the mass of the extremal Reissner-Nordström solution. On the other hand, not all near horizon solutions are also realized as global solutions.

  4. Secondary Flow Phenomena in Rotating Radial Straight Pipes

    OpenAIRE

    Cheng, K. C.; Wang, Liqiu

    1995-01-01

    Flow visualization results for secondary flow phenomena near the exit of a rotating radial-axis straight pipe (length ࡁ = 82 cm, inside diameter d = 3.81 cm, ࡁ/d 21.52) are presented to study the stabilizing (relaminarization) and destabilizing (early transition from laminar to turbulent flow) effects of Coriolis forces for Reynolds numbers Re = 500 ∼ 4,500 and rotating speeds n = 0 ∼ 200 rpm. The flow visualization was realised by smoke injection method. The main features of the trans...

  5. Revivals of Rydberg wave packets

    International Nuclear Information System (INIS)

    Bluhm, R.; Kostelecky, V.A.; Tudose, B.

    1998-01-01

    We examine the revival structure of Rydberg wave packets. These wave packets exhibit initial classical periodic motion followed by a sequence of collapse, fractional (or full) revivals, and fractional (or full) superrevivals. The effects of quantum defects on wave packets in alkali-metal atoms and a squeezed-state description of the initial wave packets are also considered. We then examine the revival structure of Rydberg wave packets in the presence of an external electric field - that is, the revival structure of Stark wave packets. These wave packets have energies that depend on two quantum numbers and exhibit new types of interference behavior

  6. Fluid dynamic propagation of initial baryon number perturbations on a Bjorken flow background

    CERN Document Server

    Floerchinger, Stefan

    2015-01-01

    Baryon number density perturbations offer a possible route to experimentally measure baryon number susceptibilities and heat conductivity of the quark gluon plasma. We study the fluid dynamical evolution of local and event-by-event fluctuations of baryon number density, flow velocity and energy density on top of a (generalized) Bjorken expansion. To that end we use a background-fluctuation splitting and a Bessel-Fourier decomposition for the fluctuating part of the fluid dynamical fields with respect to the azimuthal angle, the radius in the transverse plane and rapidity. We examine how the time evolution of linear perturbations depends on the equation of state as well as on shear viscosity, bulk viscosity and heat conductivity for modes with different azimuthal, radial and rapidity wave numbers. Finally we discuss how this information is accessible to experiments in terms of the transverse and rapidity dependence of correlation functions for baryonic particles in high energy nuclear collisions.

  7. Wave reflections from breakwaters

    OpenAIRE

    Dickson, William S.

    1994-01-01

    A new method is presented for estimating the reflection of a random, multi-directional sea from a coastal structure. The technique is applicable to an array of wave gauges of arbitrary geometry deployed seaward of the reflector. An expansion for small oblique wave incidence angles is used to derive an approximate relationship between measured array cross-spectra and a small number of parameters that describe the incident wave properties and the reflectivity of the structure. Model tests with ...

  8. Analysis of influence of the radial electric field on turbulent transport in tandem mirror plasma

    International Nuclear Information System (INIS)

    Khvesyuk, Vladimir I.; Chirkov, Alexei Yu.; Pshenichnikov, Anton A.

    2000-01-01

    The model of anomalous transport in cylindrical non-uniform steady state plasma in uniform magnetic field under the influence of many mode drift wave oscillations is suggested. The effect of anomalous transport suppression due to radial electric field is studied, and physical picture of H mode in plasma of GAMMA-10 tandem mirror device is considered. Presented theoretical and numerical results agree with the experimental data obtained on GAMMA-10. (author)

  9. Supersymmetric approach for Killingbeck radial potential plus noncentral potential in Schrodinger equation

    International Nuclear Information System (INIS)

    Cari, C.; Suparmi, A.; Yunianto, M.; Pratiwi, B. N.

    2016-01-01

    Killingbeck radial potential, which consists of harmonic oscillator, linier and Coulomb potentials, is combined with non-central potential. The solution of three dimensional Schrodinger equation for Killingbeck potential is combined with Poschl-Teller potential and Symmetrical Top non-central potentials are investigated using supersymmetry (SUSY) operator. The non-relativistic energy is obtained which is infuenced by potentials and the wave functions are produced by using SUSY operator. (paper)

  10. Radial anisotropy of Northeast Asia inferred from Bayesian inversions of ambient noise data

    Science.gov (United States)

    Lee, S. J.; Kim, S.; Rhie, J.

    2017-12-01

    The eastern margin of the Eurasia plate exhibits complex tectonic settings due to interactions with the subducting Pacific and Philippine Sea plates and the colliding India plate. Distributed extensional basins and intraplate volcanoes, and their heterogeneous features in the region are not easily explained with a simple mechanism. Observations of radial anisotropy in the entire lithosphere and the part of the asthenosphere provide the most effective evidence for the deformation of the lithosphere and the associated variation of the lithosphere-asthenosphere boundary (LAB). To infer anisotropic structures of crustal and upper-mantle in this region, radial anisotropy is measured using ambient noise data. In a continuation of previous Rayleigh wave tomography study in Northeast Asia, we conduct Love wave tomography to determine radial anisotropy using the Bayesian inversion techniques. Continuous seismic noise recordings of 237 broad-band seismic stations are used and more than 55,000 group and phase velocities of fundamental mode are measured for periods of 5-60 s. Total 8 different types of dispersion maps of Love wave from this study (period 10-60 s), Rayleigh wave from previous tomographic study (Kim et al., 2016; period 8-70 s) and longer period data (period 70-200 s) from a global model (Ekstrom, 2011) are jointly inverted using a hierarchical and transdimensional Bayesian technique. For each grid-node, boundary depths, velocities and anisotropy parameters of layers are sampled simultaneously on the assumption of the layered half-space model. The constructed 3-D radial anisotropy model provides much more details about the crust and upper mantle anisotropic structures, and about the complex undulation of the LAB.

  11. The effect of radial head implant shape on radiocapitellar kinematics during in vitro forearm rotation.

    Science.gov (United States)

    Shannon, Hannah L; Deluce, Simon R; Giles, Joshua W; Johnson, James A; King, Graham J W

    2015-02-01

    A number of radial head implants are in clinical use for the management of radial head fractures and their sequelae. However, the optimal shape of a radial head implant to ensure proper tracking relative to the capitellum has not been established. This in vitro biomechanical study compared radiocapitellar joint kinematics for 3 radial head implant designs as well as the native head. Eight cadaveric upper extremities were tested using a forearm rotation simulator with the elbow at 90° of flexion. Motion of the radius relative to the capitellum was optically tracked. A stem was navigated into a predetermined location and cemented in place. Three unipolar implant shapes were tested: axisymmetric, reverse-engineered patient-specific, and population-based quasi-anatomic. The patient-specific and quasi-anatomic implants were derived from measurements performed on computed tomography models. Medial-lateral and anterior-posterior translation of the radial head with respect to the capitellum varied with forearm rotation and radial head condition. A significant difference in medial-lateral (P = .03) and anterior-posterior (P = .03) translation was found between the native radial head and the 3 implants. No differences were observed among the radial head conditions except for a difference in medial-lateral translation between the axisymmetric and patient-specific implants (P = .04). Radiocapitellar kinematics of the tested radial head implants were similar in all but one comparison, and all had different kinematics from the native radial head. Patient-specific radial head implants did not prove advantageous relative to conventional implant designs. The shape of the fixed stem unipolar radial head implants had little influence on radiocapitellar kinematics when optimally positioned in this testing model. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  12. High Reynolds Number Wave Force Investigation in a Wave Flume.

    Science.gov (United States)

    1985-03-01

    RESULTS 43 6.0 CONCLUSIONS 45 7.0 REFERENCES 49 8.0 ACKNOWLEDGEMENTS 51 9.0 TABLES 53 10.0 FIGURES 93 11.0 APPENDIX A" 11.1 Druck Pressure Transducer...adjoining test cylinder by 0.7 mm, which had a negligible influence on the resulting measurements. After the Druck pressure transducers were installed and...dC C 3d 4 ;88dC 38dC CI8 cninfl"nV0to .t" o ,t in cv d-. ,0 en w . nC M..r nin - -0 - I!- I!- V! - -i !V L4JN C; .0 d C0000000 40000008 o .6 C

  13. Slow Wave Propagation and Sheath Interaction for ICRF Waves in the Tokamak SOL

    International Nuclear Information System (INIS)

    Myra, J. R.; D'Ippolito, D. A.

    2009-01-01

    In previous work we studied the propagation of slow-wave resonance cones launched parasitically by a fast-wave antenna into a tenuous magnetized plasma. Here we extend the previous calculation to ''dense'' scrape-off-layer (SOL) plasmas where the usual slow wave is evanescent. Using the sheath boundary condition, it is shown that for sufficiently close limiters, the slow wave couples to a sheath plasma wave and is no longer evanescent, but radially propagating. A self-consistent calculation of the rf-sheath width yields the resulting sheath voltage in terms of the amplitude of the launched SW, plasma parameters and connection length.

  14. Revealing the radial modes in vortex beams

    CSIR Research Space (South Africa)

    Sephton, Bereneice C

    2016-10-01

    Full Text Available Light beams that carry orbital angular momentum are often approximated by modulating an initial beam, usually Gaussian, with an azimuthal phase variation to create a vortex beam. Such vortex beams are well defined azimuthally, but the radial profile...

  15. Measurement of Wear in Radial Journal Bearings

    NARCIS (Netherlands)

    Ligterink, D.J.; Ligterink, D.J.; de Gee, A.W.J.

    1996-01-01

    this article, the measurement of wear in radial journal bearings is discussed, where a distinction is made between stationary and non-stationary contact conditions. Starting with Holm/Archard's wear law, equations are derived for the calculation of the specific wear rate k of the bearing material as

  16. Radial interchange motions of plasma filaments

    DEFF Research Database (Denmark)

    Garcia, O.E.; Bian, N.H.; Fundamenski, W.

    2006-01-01

    on a biperiodic domain perpendicular to the magnetic field. It is demonstrated that a blob-like plasma structure develops dipolar vorticity and electrostatic potential fields, resulting in rapid radial acceleration and formation of a steep front and a trailing wake. While the dynamical evolution strongly depends...

  17. Radial transfer effects for poloidal rotation

    Science.gov (United States)

    Hallatschek, Klaus

    2010-11-01

    Radial transfer of energy or momentum is the principal agent responsible for radial structures of Geodesic Acoustic Modes (GAMs) or stationary Zonal Flows (ZF) generated by the turbulence. For the GAM, following a physical approach, it is possible to find useful expressions for the individual components of the Poynting flux or radial group velocity allowing predictions where a mathematical full analysis is unfeasible. Striking differences between up-down symmetric flux surfaces and asymmetric ones have been found. For divertor geometries, e.g., the direction of the propagation depends on the sign of the ion grad-B drift with respect to the X-point, reminiscent of a sensitive determinant of the H-mode threshold. In nonlocal turbulence computations it becomes obvious that the linear energy transfer terms can be completely overwhelmed by the action of the turbulence. In contrast, stationary ZFs are governed by the turbulent radial transfer of momentum. For sufficiently large systems, the Reynolds stress becomes a deterministic functional of the flows, which can be empirically determined from the stress response in computational turbulence studies. The functional allows predictions even on flow/turbulence states not readily obtainable from small amplitude noise, such as certain transport bifurcations or meta-stable states.

  18. Spectral problem for the radial Schroedinger equation

    International Nuclear Information System (INIS)

    Vshivtsev, A.S.; Tatarintsev, A.V.; Prokopov, A.V.; Sorokin, V. N.

    1998-01-01

    For the first time, a procedure for determining spectra on the basis of generalized integral transformations is implemented for a wide class of radial Schroedinger equations. It is shown that this procedure works well for known types of potentials. Concurrently, this method makes it possible to obtain new analytic results for the Cornell potential. This may prove important for hadron physics

  19. Computing modal dispersion characteristics of radially Asymmetric ...

    African Journals Online (AJOL)

    We developed a matrix theory that applies to with non-circular/circular but concentric layers fibers. And we compute the dispersion characteristics of radially unconventional fiber, known as Asymmetric Bragg fiber. An attempt has been made to determine how the modal characteristics change as circular Bragg fiber is ...

  20. Radial Fingering in a Porous Medium Digitation radiale dans un milieu poreux

    Directory of Open Access Journals (Sweden)

    Ni W.

    2006-11-01

    Full Text Available The theory of immiscible radial displacement in a Hele-Shaw cell is extended to the case of a porous medium contained between two closely-spaced parallel plates, and experiments are described for the displacement of glycerine by paraffin oil in such a system. Data are presented for the number of fingers, the breakthrough time, and the glycerine recovery, for a range of flowrates varying through three orders of magnitude. Good agreement between theory and experiment is observed. La théorie s'appliquant aux déplacements radiaux dans les cellules Hele-Shaw a été étendue à un système qui consiste en une couche mince de milieux poreux encapsulée entre deux plaques en verre. Dans cet article, on examine les déplacements de la glycérine par de l'huile de paraffine. En faisant varier le débit de l'huile de paraffine dans un intervalle de trois ordres de grandeur, on a étudié les variables telles que le nombre de digitations, le temps de percée et le taux de récupération de la glycérine. On a observé un bon accord entre la théorie et les résultats expérimentaux.

  1. Variations in the usage and composition of a radial cocktail during radial access coronary angiography procedures.

    LENUS (Irish Health Repository)

    Pate, G

    2011-10-01

    A survey was conducted of medication administered during radial artery cannulation for coronary angiography in 2009 in Ireland; responses were obtained for 15 of 20 centres, in 5 of which no radial access procedures were undertaken. All 10 (100%) centres which provided data used heparin and one or more anti-spasmodics; verapamil in 9 (90%), nitrate in 1 (10%), both in 2 (20%). There were significant variations in the doses used. Further work needs to be done to determine the optimum cocktail to prevent radial artery injury following coronary angiography.

  2. Upper Mantle Shear Wave Structure Beneath North America From Multi-mode Surface Wave Tomography

    Science.gov (United States)

    Yoshizawa, K.; Ekström, G.

    2008-12-01

    The upper mantle structure beneath the North American continent has been investigated from measurements of multi-mode phase speeds of Love and Rayleigh waves. To estimate fundamental-mode and higher-mode phase speeds of surface waves from a single seismogram at regional distances, we have employed a method of nonlinear waveform fitting based on a direct model-parameter search using the neighbourhood algorithm (Yoshizawa & Kennett, 2002). The method of the waveform analysis has been fully automated by employing empirical quantitative measures for evaluating the accuracy/reliability of estimated multi-mode phase dispersion curves, and thus it is helpful in processing the dramatically increasing numbers of seismic data from the latest regional networks such as USArray. As a first step toward modeling the regional anisotropic shear-wave velocity structure of the North American upper mantle with extended vertical resolution, we have applied the method to long-period three-component records of seismic stations in North America, which mostly comprise the GSN and US regional networks as well as the permanent and transportable USArray stations distributed by the IRIS DMC. Preliminary multi-mode phase-speed models show large-scale patterns of isotropic heterogeneity, such as a strong velocity contrast between the western and central/eastern United States, which are consistent with the recent global and regional models (e.g., Marone, et al. 2007; Nettles & Dziewonski, 2008). We will also discuss radial anisotropy of shear wave speed beneath North America from multi-mode dispersion measurements of Love and Rayleigh waves.

  3. Radial gradient and radial deviation radiomic features from pre-surgical CT scans are associated with survival among lung adenocarcinoma patients.

    Science.gov (United States)

    Tunali, Ilke; Stringfield, Olya; Guvenis, Albert; Wang, Hua; Liu, Ying; Balagurunathan, Yoganand; Lambin, Philippe; Gillies, Robert J; Schabath, Matthew B

    2017-11-10

    The goal of this study was to extract features from radial deviation and radial gradient maps which were derived from thoracic CT scans of patients diagnosed with lung adenocarcinoma and assess whether these features are associated with overall survival. We used two independent cohorts from different institutions for training (n= 61) and test (n= 47) and focused our analyses on features that were non-redundant and highly reproducible. To reduce the number of features and covariates into a single parsimonious model, a backward elimination approach was applied. Out of 48 features that were extracted, 31 were eliminated because they were not reproducible or were redundant. We considered 17 features for statistical analysis and identified a final model containing the two most highly informative features that were associated with lung cancer survival. One of the two features, radial deviation outside-border separation standard deviation, was replicated in a test cohort exhibiting a statistically significant association with lung cancer survival (multivariable hazard ratio = 0.40; 95% confidence interval 0.17-0.97). Additionally, we explored the biological underpinnings of these features and found radial gradient and radial deviation image features were significantly associated with semantic radiological features.

  4. Fast Waves Mode Conversion and Energy Deposition in Simulated, Pre-Heated, Neoclassical, Tight Aspect Ratio Tokamak Plasmas

    International Nuclear Information System (INIS)

    Bruma, C.; Cuperman, S.; Komoshvili, K.

    1999-01-01

    Some basic aspects of wave-plasma interaction of interest for tight aspect ratio spherical tokamaks are investigated theoretically. The following scenario is considered: A. Fast magnetosonic waves are launched by an external antenna into a simulated spherical Tokamak plasma; these waves are converted to Alfven waves at points (layer) satisfying the Alfven resonance condition. B. The simulated spherical tokamaks-plasma has a circular cross-section and toroidicity effects are simulated by Grad-Shafranov type, radially dependent axial magnetic field and its shear. (J. Actual equilibrium profiles (magnetic field, pressure and current) observed in the low field side (LFS) of spherical tokamaks (viz., START at Culham, UK) are used. D. The study is based on the numerical solution of the full e.m. wave equation which includes a quite general resistive MHD dielectric tensor, with consideration of equilibrium current and neoclassical effects. Two kinds of results will be presented: I. Proofs validating the computational algorithm used and including convergence and energy conservation. II. Exact quantitative results concerning (i) the structure and space dependence of the mode-converted Alfven waves and (ii) the basic features of the deposited p over . The dependence of the results on the launched wave characteristics (wave numbers, frequency and intensity) as well as on those of the equilibrium plasma (equilibrium current, neoclassical resistivity and electron inertia) will be discussed

  5. Fast waves mode conversion and energy deposition in simulated, pre-heated, neoclassical, tight aspect ratio tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bruma, C.; Komoshvili, K. [Tel Aviv Univ. (Israel). School of Physics and Astronomy; Coll. of Judea and Samaria, Ariel (Israel); Cuperman, S. [Tel Aviv Univ. (Israel). School of Physics and Astronomy

    2000-11-01

    Some basic aspects of wave-plasma interaction of special interest for tight aspect ratio (spherical) tokamaks (ST's) are investigated numerically; these aspects include fast mode conversion and energy deposition. The study is based on the numerical solution of the full electro-magnetic (e.m.) wave equation which includes a quite general two-fluid, resistive MHD dielectric tensor, with consideration of equilibrium current and neoclassical effects. A generalized expression for the power absorption appropriate for the above scenario, with consideration of all the basic effects also present in the dielectric tensor-operator, was derived and used. The current-carrying ST-plasma has a circular cross-section and toroidicity effects are simulated by a Grad-Shafranov type, radially dependent axial magnetic field and its shear; however, the Shafranov shift is not considered. Actually, the equilibrium parameters and radial profiles (magnetic field, pressure and current) observed in the low field side (LFS) of spherical tokamaks (viz., START at Culham, UK) are used. Fast magnetosonic waves are launched from an external antenna into this simulated spherical tokamak plasma; these waves are converted to Alfven waves at points (layers) satisfying the Alfven resonance condition. Quantitative-results concerning (i) the structure and space dependence of the mode-converted Alfven waves and (ii) the basic features of the deposited power are presented. Their dependence on the equilibrium plasma current, neoclassical resistivity and electron inertia as well as on those of the antenna launched wave (wave numbers, frequency and current intensity) is systematically studied and discussed. (orig.)

  6. Fast waves mode conversion and energy deposition in simulated, pre-heated, neoclassical, tight aspect ratio tokamak plasmas

    International Nuclear Information System (INIS)

    Bruma, C.; Komoshvili, K.; Cuperman, S.

    2000-01-01

    Some basic aspects of wave-plasma interaction of special interest for tight aspect ratio (spherical) tokamaks (ST's) are investigated numerically; these aspects include fast mode conversion and energy deposition. The study is based on the numerical solution of the full electro-magnetic (e.m.) wave equation which includes a quite general two-fluid, resistive MHD dielectric tensor, with consideration of equilibrium current and neoclassical effects. A generalized expression for the power absorption appropriate for the above scenario, with consideration of all the basic effects also present in the dielectric tensor-operator, was derived and used. The current-carrying ST-plasma has a circular cross-section and toroidicity effects are simulated by a Grad-Shafranov type, radially dependent axial magnetic field and its shear; however, the Shafranov shift is not considered. Actually, the equilibrium parameters and radial profiles (magnetic field, pressure and current) observed in the low field side (LFS) of spherical tokamaks (viz., START at Culham, UK) are used. Fast magnetosonic waves are launched from an external antenna into this simulated spherical tokamak plasma; these waves are converted to Alfven waves at points (layers) satisfying the Alfven resonance condition. Quantitative-results concerning (i) the structure and space dependence of the mode-converted Alfven waves and (ii) the basic features of the deposited power are presented. Their dependence on the equilibrium plasma current, neoclassical resistivity and electron inertia as well as on those of the antenna launched wave (wave numbers, frequency and current intensity) is systematically studied and discussed. (orig.)

  7. The environmental effect on the radial breathing mode of carbon nanotubes. II. Shell model approximation for internally and externally adsorbed fluids

    Science.gov (United States)

    Longhurst, M. J.; Quirke, N.

    2006-11-01

    We have previously shown that the upshift in the radial breathing mode (RBM) of closed (or infinite) carbon nanotubes in solution is almost entirely due to coupling of the RBM with an adsorbed layer of fluid on the nanotube surface. The upshift can be modeled analytically by considering the adsorbed fluid as an infinitesimally thin shell, which interacts with the nanotube via a continuum Lennard-Jones potential. Here we extend the model to include internally as well as externally adsorbed waterlike molecules, and find that filling the nanotubes leads to an additional upshift of two to six wave numbers. We show that using molecular dynamics, the RBM can be accurately reproduced by replacing the fluid molecules with a mean field harmonic shell potential, greatly reducing simulation times.

  8. WWER radial reflector modeling by diffusion codes

    International Nuclear Information System (INIS)

    Petkov, P. T.; Mittag, S.

    2005-01-01

    The two commonly used approaches to describe the WWER radial reflectors in diffusion codes, by albedo on the core-reflector boundary and by a ring of diffusive assembly size nodes, are discussed. The advantages and disadvantages of the first approach are presented first, then the Koebke's equivalence theory is outlined and its implementation for the WWER radial reflectors is discussed. Results for the WWER-1000 reactor are presented. Then the boundary conditions on the outer reflector boundary are discussed. The possibility to divide the library into fuel assembly and reflector parts and to generate each library by a separate code package is discussed. Finally, the homogenization errors for rodded assemblies are presented and discussed (Author)

  9. Oculoauriculovertebral spectrum with radial anomaly in child.

    Science.gov (United States)

    Taksande, Amar; Vilhekar, Krishna

    2013-01-01

    Oculoauriculovertebral spectrum (OAVS) or Goldenhar syndrome is a wide spectrum of congenital anomalies that involves structures arising from the first and second branchial arches. It is characterized by a wide spectrum of symptoms and physical features. These abnormalities mainly involve the cheekbones, jaws, mouth, ears, eyes, or vertebrae. Other conditions with ear and/or radial involvement, such as, the Nager syndrome, Holt-Oram syndrome, Radial-renal syndrome, facioauriculoradial dysplasia, Fanconi anemia, and Vertebral, Anal atresia, Cardiac, Trachea, Esophageal, Renal, and Limb (VACTERL) association should be considered for differential diagnosis. Here we report a child who had facial asymmetry, microsomia, microtia, congenital facial nerve palsy, conductive hearing loss, skin tags, iris coloboma, and preaxial polydactyly.

  10. Oculoauriculovertebral spectrum with radial anomaly in child

    Directory of Open Access Journals (Sweden)

    Amar Taksande

    2013-01-01

    Full Text Available Oculoauriculovertebral spectrum (OAVS or Goldenhar syndrome is a wide spectrum of congenital anomalies that involves structures arising from the first and second branchial arches. It is characterized by a wide spectrum of symptoms and physical features. These abnormalities mainly involve the cheekbones, jaws, mouth, ears, eyes, or vertebrae. Other conditions with ear and/or radial involvement, such as, the Nager syndrome, Holt-Oram syndrome, Radial-renal syndrome, facioauriculoradial dysplasia, Fanconi anemia, and Vertebral, Anal atresia, Cardiac, Trachea, Esophageal, Renal, and Limb (VACTERL association should be considered for differential diagnosis. Here we report a child who had facial asymmetry, microsomia, microtia, congenital facial nerve palsy, conductive hearing loss, skin tags, iris coloboma, and preaxial polydactyly.

  11. Linear radial pulsation theory. Lecture 5

    International Nuclear Information System (INIS)

    Cox, A.N.

    1983-01-01

    We describe a method for getting an equilibrium stellar envelope model using as input the total mass, the envelope mass, the surface effective temperature, the total surface luminosity, and the composition of the envelope. Then wih the structure of the envelope model known, we present a method for obtaining the raidal pulsation periods and growth rates for low order modes. The large amplitude pulsations observed for the yellow and red giants and supergiants are always these radial models, but for the stars nearer the main sequence, as for all of our stars and for the white dwarfs, there frequently are nonradial modes occuring also. Application of linear theory radial pulsation theory is made to the giant star sigma Scuti variables, while the linear nonradial theory will be used for the B stars in later lectures

  12. SpicyNodes Radial Map Engine

    Science.gov (United States)

    Douma, M.; Ligierko, G.; Angelov, I.

    2008-10-01

    The need for information has increased exponentially over the past decades. The current systems for constructing, exploring, classifying, organizing, and searching information face the growing challenge of enabling their users to operate efficiently and intuitively in knowledge-heavy environments. This paper presents SpicyNodes, an advanced user interface for difficult interaction contexts. It is based on an underlying structure known as a radial map, which allows users to manipulate and interact in a natural manner with entities called nodes. This technology overcomes certain limitations of existing solutions and solves the problem of browsing complex sets of linked information. SpicyNodes is also an organic system that projects users into a living space, stimulating exploratory behavior and fostering creative thought. Our interactive radial layout is used for educational purposes and has the potential for numerous other applications.

  13. In situ statistical observations of EMIC waves by Arase satellite

    Science.gov (United States)

    Nomura, R.; Matsuoka, A.; Teramoto, M.; Nose, M.; Yoshizumi, M.; Fujimoto, A.; Shinohara, M.; Tanaka, Y.

    2017-12-01

    We present in situ statistical survey of electromagnetic ion cyclotron (EMIC) waves observed by Arase satellite from 3 March to 16 July 2017. We identified 64 events using the fluxgate magnetometer (MGF) on the satellite. The EMIC wave is the key phenomena to understand the loss dynamics of MeV-energy electrons in the radiation belt. We will show the radial and latitudinal dependence of the wave occurance rate and the wave parameters (frequency band, coherence, polarization, and ellipticity). Especially the EMIC waves observed at localized weak background magnetic field will be discussed for the wave excitation mechanism in the deep inner magnetosphere.

  14. Determination of elastic anisotropy of rocks from P- and S-wave velocities: numerical modelling and lab measurements

    Science.gov (United States)

    Svitek, Tomáš; Vavryčuk, Václav; Lokajíček, Tomáš; Petružálek, Matěj

    2014-12-01

    The most common type of waves used for probing anisotropy of rocks in laboratory is the direct P wave. Information potential of the measured P-wave velocity, however, is limited. In rocks displaying weak triclinic anisotropy, the P-wave velocity depends just on 15 linear combinations of 21 elastic parameters, called the weak-anisotropy parameters. In strong triclinic anisotropy, the P-wave velocity depends on the whole set of 21 elastic parameters, but inversion for six of them is ill-conditioned and these parameters are retrieved with a low accuracy. Therefore, in order to retrieve the complete elastic tensor accurately, velocities of S waves must also be measured and inverted. For this purpose, we developed a lab facility which allows the P- and S-wave ultrasonic sounding of spherical rock samples in 132 directions distributed regularly over the sphere. The velocities are measured using a pair of P-wave sensors with the transmitter and receiver polarized along the radial direction and using two pairs of S-wave sensors with the transmitter and receiver polarized tangentially to the spherical sample in mutually perpendicular directions. We present inversion methods of phase and ray velocities for elastic parameters describing general triclinic anisotropy. We demonstrate on synthetic tests that the inversion becomes more robust and stable if the S-wave velocities are included. This applies even to the case when the velocity of the S waves is measured in a limited number of directions and with a significantly lower accuracy than that of the P wave. Finally, we analyse velocities measured on a rock sample from the Outokumpu deep drill hole, Finland. We present complete sets of elastic parameters of the sample including the error analysis for several levels of confining pressure ranging from 0.1 to 70 MPa.

  15. Radial oxygen gradients over rat cortex arterioles

    OpenAIRE

    Galler, Michael

    2011-01-01

    Purpose: We present the results of the visualisation of radial oxygen gradients in rats’ cortices and their use in neurocritical management. Methods: PO2 maps of the cortex of 10 wistar rats were obtained with a camera (SensiMOD, PCO, Kehlheim, Germany). Those pictures were analyzed and edited by a custom-made software. We chose a vessel for examination. A matrix, designed to evaluate the cortical O2 partial pressure, was placed vertically to the artery and afterwards multiple regio...

  16. Variational method for integrating radial gradient field

    Science.gov (United States)

    Legarda-Saenz, Ricardo; Brito-Loeza, Carlos; Rivera, Mariano; Espinosa-Romero, Arturo

    2014-12-01

    We propose a variational method for integrating information obtained from circular fringe pattern. The proposed method is a suitable choice for objects with radial symmetry. First, we analyze the information contained in the fringe pattern captured by the experimental setup and then move to formulate the problem of recovering the wavefront using techniques from calculus of variations. The performance of the method is demonstrated by numerical experiments with both synthetic and real data.

  17. Moment approach to tandem mirror radial transport

    International Nuclear Information System (INIS)

    Siebert, K.D.; Callen, J.D.

    1986-02-01

    A moment approach is proposed for the study of tandem mirror radial transport in the resonant plateau regime. The salient features of the method are described with reference to axisymmetric tokamak transport theory. In particular, the importance of momentum conservation to the establishment of the azimuthal variations in the electrostatic potential is demonstrated. Also, an ad hoc drift kinetic equation is solved to determine parallel viscosity coefficients which are required to close the moment system

  18. Numerical simulation of radial compressor stage

    Science.gov (United States)

    Syka, T.; Luňáček, O.

    2013-04-01

    Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.

  19. Numerical simulation of radial compressor stage

    OpenAIRE

    Luňáček O.; Syka T.

    2013-01-01

    Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.

  20. Numerical simulation of radial compressor stage

    Directory of Open Access Journals (Sweden)

    Luňáček O.

    2013-04-01

    Full Text Available Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.

  1. Learning Methods for Radial Basis Functions Networks

    Czech Academy of Sciences Publication Activity Database

    Neruda, Roman; Kudová, Petra

    2005-01-01

    Roč. 21, - (2005), s. 1131-1142 ISSN 0167-739X R&D Projects: GA ČR GP201/03/P163; GA ČR GA201/02/0428 Institutional research plan: CEZ:AV0Z10300504 Keywords : radial basis function networks * hybrid supervised learning * genetic algorithms * benchmarking Subject RIV: BA - General Mathematics Impact factor: 0.555, year: 2005

  2. Expansions for Coulomb wave functions

    NARCIS (Netherlands)

    Boersma, J.

    1969-01-01

    In this paper we derive a number of expansions for Whittaker functions, regular and irregular Coulomb wave functions. The main result consists of a new expansion for the irregular Coulomb wave functions of orders zero and one in terms of regular Coulomb wave functions. The latter expansions are

  3. Wave Dragon Buoyancy Regulation Study

    DEFF Research Database (Denmark)

    Jakobsen, Jens; Kofoed, Jens Peter

    Wave Dragon is a wave energy converter, which was deployed offshore at Nissum Bredning in Denmark in 2003. The experience gained from operating Wave Dragon during 2003 and 2004 has shown that the buoyancy regulation system can be improved in a number of ways. This study describes the current...

  4. Fast radial basis functions for engineering applications

    CERN Document Server

    Biancolini, Marco Evangelos

    2017-01-01

    This book presents the first “How To” guide to the use of radial basis functions (RBF). It provides a clear vision of their potential, an overview of ready-for-use computational tools and precise guidelines to implement new engineering applications of RBF. Radial basis functions (RBF) are a mathematical tool mature enough for useful engineering applications. Their mathematical foundation is well established and the tool has proven to be effective in many fields, as the mathematical framework can be adapted in several ways. A candidate application can be faced considering the features of RBF:  multidimensional space (including 2D and 3D), numerous radial functions available, global and compact support, interpolation/regression. This great flexibility makes RBF attractive – and their great potential has only been partially discovered. This is because of the difficulty in taking a first step toward RBF as they are not commonly part of engineers’ cultural background, but also due to the numerical complex...

  5. Fuel radial design using Path Relinking

    International Nuclear Information System (INIS)

    Campos S, Y.

    2007-01-01

    The present work shows the obtained results when implementing the combinatory optimization technique well-known as Path Re linking (Re-linkage of Trajectories), to the problem of the radial design of nuclear fuel assemblies, for boiling water reactors (BWR Boiling Water Reactor by its initials in English), this type of reactors is those that are used in the Laguna Verde Nucleo electric Central, Veracruz. As in any other electric power generation plant of that make use of some fuel to produce heat and that it needs each certain time (from 12 to 14 months) to make a supply of the same one, because this it wears away or it burns, in the nucleolectric plants to this activity is denominated fuel reload. In this reload different activities intervene, among those which its highlight the radial and axial designs of fuel assemblies, the patterns of control rods and the multi cycles study, each one of these stages with their own complexity. This work was limited to study in independent form the radial design, without considering the other activities. These phases are basic for the fuel reload design and of reactor operation strategies. (Author)

  6. Development of a Radial Deconsolidation Method

    Energy Technology Data Exchange (ETDEWEB)

    Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Fred C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    A series of experiments have been initiated to determine the retention or mobility of fission products* in AGR fuel compacts [Petti, et al. 2010]. This information is needed to refine fission product transport models. The AGR-3/4 irradiation test involved half-inch-long compacts that each contained twenty designed-to-fail (DTF) particles, with 20-μm thick carbon-coated kernels whose coatings were deliberately fabricated such that they would crack under irradiation, providing a known source of post-irradiation isotopes. The DTF particles in these compacts were axially distributed along the compact centerline so that the diffusion of fission products released from the DTF kernels would be radially symmetric [Hunn, et al. 2012; Hunn et al. 2011; Kercher, et al. 2011; Hunn, et al. 2007]. Compacts containing DTF particles were irradiated at Idaho National Laboratory (INL) at the Advanced Test Reactor (ATR) [Collin, 2015]. Analysis of the diffusion of these various post-irradiation isotopes through the compact requires a method to radially deconsolidate the compacts so that nested-annular volumes may be analyzed for post-irradiation isotope inventory in the compact matrix, TRISO outer pyrolytic carbon (OPyC), and DTF kernels. An effective radial deconsolidation method and apparatus appropriate to this application has been developed and parametrically characterized.

  7. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Friis-Madsen, Erik

    2006-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57!27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world’s first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. In the period May 2003 to January 2005 an extensive...

  8. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter Bak; Friis-Madsen, Erik

    2004-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57 x 27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world's first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. During the last months, extensive testing has started...

  9. Stress Wave Propagation in Larch Plantation Trees-Numerical Simulation

    Science.gov (United States)

    Fenglu Liu; Fang Jiang; Xiping Wang; Houjiang Zhang; Wenhua Yu

    2015-01-01

    In this paper, we attempted to simulate stress wave propagation in virtual tree trunks and construct two dimensional (2D) wave-front maps in the longitudinal-radial section of the trunk. A tree trunk was modeled as an orthotropic cylinder in which wood properties along the fiber and in each of the two perpendicular directions were different. We used the COMSOL...

  10. Hupa Numbers.

    Science.gov (United States)

    Bennett, Ruth, Ed.; And Others

    An introduction to the Hupa number system is provided in this workbook, one in a series of numerous materials developed to promote the use of the Hupa language. The book is written in English with Hupa terms used only for the names of numbers. The opening pages present the numbers from 1-10, giving the numeral, the Hupa word, the English word, and…

  11. Triangular Numbers

    Indian Academy of Sciences (India)

    Admin

    Triangular number, figurate num- ber, rangoli, Brahmagupta–Pell equation, Jacobi triple product identity. Figure 1. The first four triangular numbers. Left: Anuradha S Garge completed her PhD from. Pune University in 2008 under the supervision of Prof. S A Katre. Her research interests include K-theory and number theory.

  12. Proth Numbers

    Directory of Open Access Journals (Sweden)

    Schwarzweller Christoph

    2015-02-01

    Full Text Available In this article we introduce Proth numbers and prove two theorems on such numbers being prime [3]. We also give revised versions of Pocklington’s theorem and of the Legendre symbol. Finally, we prove Pepin’s theorem and that the fifth Fermat number is not prime.

  13. Rogue waves in shallow water

    Science.gov (United States)

    Soomere, T.

    2010-07-01

    Most of the processes resulting in the formation of unexpectedly high surface waves in deep water (such as dispersive and geometrical focusing, interactions with currents and internal waves, reflection from caustic areas, etc.) are active also in shallow areas. Only the mechanism of modulational instability is not active in finite depth conditions. Instead, wave amplification along certain coastal profiles and the drastic dependence of the run-up height on the incident wave shape may substantially contribute to the formation of rogue waves in the nearshore. A unique source of long-living rogue waves (that has no analogues in the deep ocean) is the nonlinear interaction of obliquely propagating solitary shallow-water waves and an equivalent mechanism of Mach reflection of waves from the coast. The characteristic features of these processes are (i) extreme amplification of the steepness of the wave fronts, (ii) change in the orientation of the largest wave crests compared with that of the counterparts and (iii) rapid displacement of the location of the extreme wave humps along the crests of the interacting waves. The presence of coasts raises a number of related questions such as the possibility of conversion of rogue waves into sneaker waves with extremely high run-up. Also, the reaction of bottom sediments and the entire coastal zone to the rogue waves may be drastic.

  14. Linear theory radial and nonradial pulsations of DA dwarf stars

    International Nuclear Information System (INIS)

    Starrfield, S.; Cox, A.N.; Hodson, S.; Pesnell, W.D.

    1982-01-01

    The Los Alamos stellar envelope and radial linear non-adiabatic computer code, along with a new Los Alamos non-radial code are used to investigate the total hydrogen mass necessary to produce the non-radial instability of DA dwarfs

  15. Radial distribution of ions in pores with a surface charge

    NARCIS (Netherlands)

    Stegen, J.H.G. van der; Görtzen, J.; Kuipers, J.A.M.; Hogendoorn, J.A.; Versteeg, G.F.

    2001-01-01

    A sorption model applicable to calculate the radial equilibrium concentrations of ions in the pores of ion-selective membranes with a pore structure is developed. The model is called the radial uptake model. Because the model is applied to a Nafion sulfonic layer with very small pores and the radial

  16. Sagan numbers

    OpenAIRE

    Mendonça, J. Ricardo G.

    2012-01-01

    We define a new class of numbers based on the first occurrence of certain patterns of zeros and ones in the expansion of irracional numbers in a given basis and call them Sagan numbers, since they were first mentioned, in a special case, by the North-american astronomer Carl E. Sagan in his science-fiction novel "Contact." Sagan numbers hold connections with a wealth of mathematical ideas. We describe some properties of the newly defined numbers and indicate directions for further amusement.

  17. The pattern of eigenfrequencies of radial overtones which is predicted for a specified Earth-model

    Directory of Open Access Journals (Sweden)

    E. R. LAPWOOD

    1977-06-01

    Full Text Available In 1974 Anderssen and Cleary examined the distribution of eigenfrequencies
    of radial overtones in torsional oscillations of Earth-models.
    They pointed out that according to Sturm-Liouville theory this distribution
    should approach asymptotically, for large overtone number m,
    the value nnz/y, where y is the time taken by a shear-wave to travel
    along a radius from the core-mantle interface to the surface, provided
    elastic parameters vary continuously along the radius. They found that,
    for all the models which they considered, the distributions of eigenfrequencies
    deviated from the asymptote by amounts which depended on
    the existence and size of internal discontinuities. Lapwood (1975 showed
    that such deviations were to be expected from Sturm-Liouville theory,
    and McNabb, Anderssen and Lapwood (1976 extended Sturm-Liouville
    theory to apply to differential equations with discontinuous coefficients.
    Anderssen (1977 used their results to show how to predict the pattern
    of deviations —called by McNabb et al. the solotone effect— for a
    given discontinuity in an Earth-model.
    Recently Sato and Lapwood (1977, in a series of papers which will
    be referred to here simply as I, II, III, have explored the solotone effect
    for layered spherical shells, using approximations derived from an exacttheory which holds for uniform layering. They have shown how the
    form of the pattern of eigenfrequencies, which is the graph of
    S — YMUJI/N — m against m, where ,„CJI is the frequency of the m"'
    overtone in the I"' (Legendre mode of torsional oscillation, is determined
    as to periodicity (or quasi-periodicity by the thicknesses and velocities
    of the layers, and as to amplitude by the amounts of the discontinuities
    (III. The pattern of eigenfrequencies proves to be extremely sensitive
    to small changes in layer-thicknesses in a model.
    In

  18. Efficiency of wave-driven rigid body rotation toroidal confinement

    Science.gov (United States)

    Rax, J. M.; Gueroult, R.; Fisch, N. J.

    2017-03-01

    The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared with compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.

  19. Development of a Tonometric Sensor with a Decoupled Circular Array for Precisely Measuring Radial Artery Pulse

    Directory of Open Access Journals (Sweden)

    Min-Ho Jun

    2016-05-01

    Full Text Available The radial artery pulse is one of the major diagnostic indices used clinically in both Eastern and Western medicine. One of the prominent methods for measuring the radial artery pulse is the piezoresistive sensor array. Independence among channels and an appropriate sensor arrangement are important for effectively assessing the spatial-temporal information of the pulse. This study developed a circular-type seven-channel piezoresistive sensor array using face-down bonding (FDB as one of the sensor combination methods. The three-layered housing structure that included independent pressure sensor units using the FDB method not only enabled elimination of the crosstalk among channels, but also allowed various array patterns to be created for effective pulse measurement. The sensors were arranged in a circular-type arrangement such that they could estimate the direction of the radial artery and precisely measure the pulse wave. The performance of the fabricated sensor array was validated by evaluating the sensor sensitivity per channel, and the possibility of estimating the blood vessel direction was demonstrated through a radial artery pulse simulator. We expect the proposed sensor to allow accurate extraction of the pulse indices for pulse diagnosis.

  20. Radial electromagnetic force calculation of induction motor based on multi-loop theory

    Directory of Open Access Journals (Sweden)

    HE Haibo

    2017-12-01

    Full Text Available [Objectives] In order to study the vibration and noise of induction motors, a method of radial electromagnetic force calculation is established on the basis of the multi-loop model.[Methods] Based on the method of calculating air-gap magneto motive force according to stator and rotor fundamental wave current, the analytic formulas are deduced for calculating the air-gap magneto motive force and radial electromagnetic force generated in accordance with any stator winding and rotor conducting bar current. The multi-loop theory and calculation method for the electromagnetic parameters of a motor are introduced, and a dynamic simulation model of an induction motor built to achieve the current of the stator winding and rotor conducting bars, and obtain the calculation formula of radial electromagnetic force. The radial electromagnetic force and vibration are then estimated.[Results] The experimental results indicate that the vibration acceleration frequency and amplitude of the motor are consistent with the experimental results.[Conclusions] The results and calculation method can support the low noise design of converters.

  1. Probability density functions for radial anisotropy: implications for the upper 1200 km of the mantle

    Science.gov (United States)

    Beghein, Caroline; Trampert, Jeannot

    2004-01-01

    The presence of radial anisotropy in the upper mantle, transition zone and top of the lower mantle is investigated by applying a model space search technique to Rayleigh and Love wave phase velocity models. Probability density functions are obtained independently for S-wave anisotropy, P-wave anisotropy, intermediate parameter η, Vp, Vs and density anomalies. The likelihoods for P-wave and S-wave anisotropy beneath continents cannot be explained by a dry olivine-rich upper mantle at depths larger than 220 km. Indeed, while shear-wave anisotropy tends to disappear below 220 km depth in continental areas, P-wave anisotropy is still present but its sign changes compared to the uppermost mantle. This could be due to an increase with depth of the amount of pyroxene relative to olivine in these regions, although the presence of water, partial melt or a change in the deformation mechanism cannot be ruled out as yet. A similar observation is made for old oceans, but not for young ones where VSH> VSV appears likely down to 670 km depth and VPH> VPV down to 400 km depth. The change of sign in P-wave anisotropy seems to be qualitatively correlated with the presence of the Lehmann discontinuity, generally observed beneath continents and some oceans but not beneath ridges. Parameter η shows a similar age-related depth pattern as shear-wave anisotropy in the uppermost mantle and it undergoes the same change of sign as P-wave anisotropy at 220 km depth. The ratio between dln Vs and dln Vp suggests that a chemical component is needed to explain the anomalies in most places at depths greater than 220 km. More tests are needed to infer the robustness of the results for density, but they do not affect the results for anisotropy.

  2. Regional modeling approach for analyzing harmonic stability in radial power electronics based power system

    DEFF Research Database (Denmark)

    Yoon, Changwoo; Bai, Haofeng; Wang, Xiongfei

    2015-01-01

    Stability analysis of distributed power generation system becomes complex when there are many numbers of grid inverters in the system. In order to analyze system stability, the overall network impedance will be lumped and needs to be analyzed one by one. However, using a unified bulky transfer-fu...... and then it is expanded for generalizing its concept to an overall radial structured network....

  3. Eulerian numbers

    CERN Document Server

    Petersen, T Kyle

    2015-01-01

    This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group. The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions. The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties. There are four supplemental chapters throughout, ...

  4. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  5. Methods and apparatus for radially compliant component mounting

    Science.gov (United States)

    Bulman, David Edward [Cincinnati, OH; Darkins, Jr., Toby George; Stumpf, James Anthony [Columbus, IN; Schroder, Mark S [Greenville, SC; Lipinski, John Joseph [Simpsonville, SC

    2012-03-27

    Methods and apparatus for a mounting assembly for a liner of a gas turbine engine combustor are provided. The combustor includes a combustor liner and a radially outer annular flow sleeve. The mounting assembly includes an inner ring surrounding a radially outer surface of the liner and including a plurality of axially extending fingers. The mounting assembly also includes a radially outer ring coupled to the inner ring through a plurality of spacers that extend radially from a radially outer surface of the inner ring to the outer ring.

  6. Kinesthetic Transverse Wave Demonstration

    Science.gov (United States)

    Pantidos, Panagiotis; Patapis, Stamatis

    2005-09-01

    This is a variation on the String and Sticky Tape demonstration "The Wave Game," suggested by Ron Edge. A group of students stand side by side, each one holding a card chest high with both hands. The teacher cues the first student to begin raising and lowering his card. When he starts lowering his card, the next student begins to raise his. As succeeding students move their cards up and down, a wave such as that shown in the figure is produced. To facilitate the process, students' motions were synchronized with the ticks of a metronome (without such synchronization it was nearly impossible to generate a satisfactory wave). Our waves typically had a frequency of about 1 Hz and a wavelength of around 3 m. We videotaped the activity so that the students could analyze the motions. The (17-year-old) students had not received any prior instruction regarding wave motion and did not know beforehand the nature of the exercise they were about to carry out. During the activity they were asked what a transverse wave is. Most of them quickly realized, without teacher input, that while the wave propagated horizontally, the only motion of the transmitting medium (them) was vertical. They located the equilibrium points of the oscillations, the crests and troughs of the waves, and identified the wavelength. The teacher defined for them the period of the oscillations of the motion of a card to be the total time for one cycle. The students measured this time and then several asserted that it was the same as the wave period. Knowing the length of the waves and the number of waves per second, the next step can easily be to find the wave speed.

  7. RADIALLY MAGNETIZED PROTOPLANETARY DISK: VERTICAL PROFILE

    International Nuclear Information System (INIS)

    Russo, Matthew; Thompson, Christopher

    2015-01-01

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field B r ∼ (10 −4 –10 −2 )(r/ AU) −2 G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ∼1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10 −8 M ⊙ yr −1 are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper

  8. RADIALLY MAGNETIZED PROTOPLANETARY DISK: VERTICAL PROFILE

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Matthew [Department of Physics, University of Toronto, 60 St. George St., Toronto, ON M5S 1A7 (Canada); Thompson, Christopher [Canadian Institute for Theoretical Astrophysics, 60 St. George St., Toronto, ON M5S 3H8 (Canada)

    2015-11-10

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field B{sub r} ∼ (10{sup −4}–10{sup −2})(r/ AU){sup −2} G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ∼1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10{sup −8} M{sub ⊙} yr{sup −1} are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.

  9. Demonstration of Electron Bernstein Wave Heating in a Reversed Field Pinch

    Science.gov (United States)

    Seltzman, Andrew H.

    The Electron Bernstein wave (EBW) presents an alternative to conventional electron cyclotron resonance heating and current drive in overdense plasmas, where electromagnetic waves are inaccessible. The first observation of rf heating in a reversed field pinch (RFP) using the EBW has been demonstrated on Madison Symmetric Torus (MST). The EBW propagates radially inward through a magnetic field that is either stochastic or has broken flux surfaces, before absorption on a substantially Doppler-shifted cyclotron resonance (? = n*?_ce - k_parallel*v_parallel), where n is the harmonic number. Deposition depth is controllable with plasma current on a broad range (n=1-7) of harmonics. Novel techniques were required to measure the suprathermal electron tail generated by EBW heating in the presence of intense Ohmic heating. In the thick-shelled MST RFP, the radial accessibility of the EBW is limited to r/a > 0.8 ( 10 cm), where a=52cm is the minor radius, by magnetic field error induced by the porthole necessary for the antenna; accessibility in a thin-shelled device with actively controlled saddle coils (without the burden of substantial porthole field error) is likely to be r/a> 0.5 in agreement with ray tracing studies. Measured electron loss rates with falloff time constants in the 10s of micros imply a large, non-collisional radial diffusivity; collisional times with background particles are on the order of one millisecond. EBW-heated test electrons are used as a probe of edge (r/a > 0.9) radial transport, showing a modest transition from 'standard' to reduced-tearing RFP operation.

  10. Frequentist and Bayesian Orbital Parameter Estimaton from Radial Velocity Data Using RVLIN, BOOTTRAN, and RUN DMC

    Science.gov (United States)

    Nelson, Benjamin Earl; Wright, Jason Thomas; Wang, Sharon

    2015-08-01

    For this hack session, we will present three tools used in analyses of radial velocity exoplanet systems. RVLIN is a set of IDL routines used to quickly fit an arbitrary number of Keplerian curves to radial velocity data to find adequate parameter point estimates. BOOTTRAN is an IDL-based extension of RVLIN to provide orbital parameter uncertainties using bootstrap based on a Keplerian model. RUN DMC is a highly parallelized Markov chain Monte Carlo algorithm that employs an n-body model, primarily used for dynamically complex or poorly constrained exoplanet systems. We will compare the performance of these tools and their applications to various exoplanet systems.

  11. Radial fractional Laplace operators and Hessian inequalities

    Science.gov (United States)

    Ferrari, Fausto; Verbitsky, Igor E.

    In this paper we deduce a formula for the fractional Laplace operator ( on radially symmetric functions useful for some applications. We give a criterion of subharmonicity associated with (, and apply it to a problem related to the Hessian inequality of Sobolev type: ∫Rn |(u| dx⩽C∫Rn -uFk[u] dx, where Fk is the k-Hessian operator on Rn, 1⩽kFerrari et al. [5] contains the extremal functions for the Hessian Sobolev inequality of X.-J. Wang (1994) [15]. This is proved using logarithmic convexity of the Gaussian ratio of hypergeometric functions which might be of independent interest.

  12. Convex and Radially Concave Contoured Distributions

    Directory of Open Access Journals (Sweden)

    Wolf-Dieter Richter

    2015-01-01

    Full Text Available Integral representations of the locally defined star-generalized surface content measures on star spheres are derived for boundary spheres of balls being convex or radially concave with respect to a fan in Rn. As a result, the general geometric measure representation of star-shaped probability distributions and the general stochastic representation of the corresponding random vectors allow additional specific interpretations in the two mentioned cases. Applications to estimating and testing hypotheses on scaling parameters are presented, and two-dimensional sample clouds are simulated.

  13. On radial flow between parallel disks

    International Nuclear Information System (INIS)

    Wee, A Y L; Gorin, A

    2015-01-01

    Approximate analytical solutions are presented for converging flow in between two parallel non rotating disks. The static pressure distribution and radial component of the velocity are developed by averaging the inertial term across the gap in between parallel disks. The predicted results from the first approximation are favourable to experimental results as well as results presented by other authors. The second approximation shows that as the fluid approaches the center, the velocity at the mid channel slows down which is due to the struggle between the inertial term and the flowrate. (paper)

  14. Intraluminal milrinone for dilation of the radial artery graft.

    Science.gov (United States)

    García-Rinaldi, R; Soltero, E R; Carballido, J; Mojica, J

    1999-01-01

    There is renewed interest in the use of the radial artery as a conduit for coronary artery bypass surgery. The radial artery is, however, a very muscular artery, prone to vasospasm. Milrinone, a potent vasodilator, has demonstrated vasodilatory properties superior to those of papaverine. In this report, we describe our technique of radial artery harvesting and the adjunctive use of intraluminal milrinone as a vasodilator in the preparation of this conduit for coronary artery bypass grafting. We have used these techniques in 25 patients who have undergone coronary artery bypass grafting using the radial artery. No hand ischemic complications have been observed in this group. Intraluminal milrinone appears to dilate and relax the radial artery, rendering this large conduit spasm free and very easy to use. We recommend the skeletonization technique for radial artery harvesting and the use of intraluminal milrinone as a radial artery vasodilator in routine myocardial revascularization. PMID:10524740

  15. Transfinite Numbers

    Indian Academy of Sciences (India)

    Transfinite Numbers. What is Infinity? S M Srivastava. In a series of revolutionary articles written during the last quarter of the nineteenth century, the great Ger- man mathematician Georg Cantor removed the age-old mistrust of infinity and created an exceptionally beau- tiful and useful theory of transfinite numbers. This is.

  16. Matrix transformation relation for the radial integrals of lepton scattering processes

    International Nuclear Information System (INIS)

    Sud, K.K.; Soto Vargas, C.W.; Sharma, D.K.

    1988-01-01

    The radial integrals of many physical problems involving products of initial- and final-state wave functions and the Coulomb interaction are expressible in terms of special cases of generalized hypergeometric functions. In the present work, the generalized hypergeometric functions become elements of a gamma vector which, by means of a partial differential equation and a matrix transformation relation, can be used in calculating the gamma vector in physical regions where the hypergeometric functions are nonconvergent or very slowly converging. Our matrix transformation relation contains the special cases of Gauss' hypergeometric functions 2 F 1 , Appell's hypergeometric functions F 2 , and Lauricella's functions L F transformation relations. The use of contiguous relations along with the transformation relations presented in this paper will facilitate the calculation of physical processes involving such radial integrals

  17. Scattering by multiple parallel radially stratified infinite cylinders buried in a lossy half space.

    Science.gov (United States)

    Lee, Siu-Chun

    2013-07-01

    The theoretical solution for scattering by an arbitrary configuration of closely spaced parallel infinite cylinders buried in a lossy half space is presented in this paper. The refractive index and permeability of the half space and cylinders are complex in general. Each cylinder is radially stratified with a distinct complex refractive index and permeability. The incident radiation is an arbitrarily polarized plane wave propagating in the plane normal to the axes of the cylinders. Analytic solutions are derived for the electric and magnetic fields and the Poynting vector of backscattered radiation emerging from the half space. Numerical examples are presented to illustrate the application of the scattering solution to calculate backscattering from a lossy half space containing multiple homogeneous and radially stratified cylinders at various depths and different angles of incidence.

  18. Parsimonious Surface Wave Interferometry

    KAUST Repository

    Li, Jing

    2017-10-24

    To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.

  19. Parsimonious Surface Wave Interferometry

    KAUST Repository

    Li, Jing; Hanafy, Sherif; Schuster, Gerard T.

    2017-01-01

    To decrease the recording time of a 2D seismic survey from a few days to one hour or less, we present a parsimonious surface-wave interferometry method. Interferometry allows for the creation of a large number of virtual shot gathers from just two reciprocal shot gathers by crosscoherence of trace pairs, where the virtual surface waves can be inverted for the S-wave velocity model by wave-equation dispersion inversion (WD). Synthetic and field data tests suggest that parsimonious wave-equation dispersion inversion (PWD) gives S-velocity tomograms that are comparable to those obtained from a full survey with a shot at each receiver. The limitation of PWD is that the virtual data lose some information so that the resolution of the S-velocity tomogram can be modestly lower than that of the S-velocity tomogram inverted from a conventional survey.

  20. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...

  1. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  2. A case report of an isolated fracture through the radial bicipital tuberosity

    Directory of Open Access Journals (Sweden)

    Kanta Imao

    Full Text Available Introduction: Generally, anatomical reduction of shaft fractures through operative treatment is necessary to restore the anatomical relationship of the forearm bones. However, a number of nerves and vessels are located in the proximal radius, which complicates surgery. In this study, we aimed to reduce postoperative complications by using a posterior approach. Presentation of case: We describe an isolated fracture through the radial bicipital tuberosity in a 69-year-old man caused by direct blunt force and our management of the fracture. The patient underwent an operation for the fracture under brachial plexus block. The injury was explored using the posterior approach, and plate fixation was performed after confirming the absence of obstacles to rotation on pronation and supination. One year later, the patient did not have any difficulties in activities of daily living. Discussion: Since an isolated fracture through the radial bicipital tuberosity is more distal than the radial head and neck and more proximal than a common radius diaphysis fracture, we had to consider a different operative approach. The nerve and blood vessels of the forearm, such as the radial nerve and artery, run in a complicated fashion around the proximal radius; thus, we chose the posterior approach because of its simpler surgical technique and lower complication risk, compared with the anterior approach. Conclusion: Surgeons can obtain a favorable treatment result using the posterior approach to the fracture and reduce complications by ensuring with rigid fixation using a locking plate. Keywords: Radial bicipital tuberosity, Posterior approach, Posterior interosseous nerve, Shaft fracture

  3. RadVel: The Radial Velocity Modeling Toolkit

    Science.gov (United States)

    Fulton, Benjamin J.; Petigura, Erik A.; Blunt, Sarah; Sinukoff, Evan

    2018-04-01

    RadVel is an open-source Python package for modeling Keplerian orbits in radial velocity (RV) timeseries. RadVel provides a convenient framework to fit RVs using maximum a posteriori optimization and to compute robust confidence intervals by sampling the posterior probability density via Markov Chain Monte Carlo (MCMC). RadVel allows users to float or fix parameters, impose priors, and perform Bayesian model comparison. We have implemented real-time MCMC convergence tests to ensure adequate sampling of the posterior. RadVel can output a number of publication-quality plots and tables. Users may interface with RadVel through a convenient command-line interface or directly from Python. The code is object-oriented and thus naturally extensible. We encourage contributions from the community. Documentation is available at http://radvel.readthedocs.io.

  4. Interplay between Mach cone and radial expansion in jet events

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Y., E-mail: tachibana@nt.phys.s.u-tokyo.ac.jp [Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198 (Japan); Department of Engineering, Nishinippon Institute of Technology, Fukuoka 800-0344 (Japan); Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Hirano, T., E-mail: hirano@sophia.ac.jp [Department of Physics, Sophia University, Tokyo 102-8554 (Japan)

    2016-12-15

    We study the hydrodynamic response to jet propagation in the expanding QGP and investigate how the particle spectra after the hydrodynamic evolution of the QGP reflect it. We perform simulations of the space-time evolution of the QGP in gamma-jet events by solving (3+1)-dimensional ideal hydrodynamic equations with source terms. Mach cone is induced by the jet energy deposition and pushes back the radial flow of the expanding background. Especially in the case when the jet passage is off-central one, the number of particles emitted in the direction of the push back decreases. This is the signal including the information about the formation of the Mach cone and the jet passage in the QGP fluid.

  5. Interplay between Mach cone and radial expansion in jet events

    International Nuclear Information System (INIS)

    Tachibana, Y.; Hirano, T.

    2016-01-01

    We study the hydrodynamic response to jet propagation in the expanding QGP and investigate how the particle spectra after the hydrodynamic evolution of the QGP reflect it. We perform simulations of the space-time evolution of the QGP in gamma-jet events by solving (3+1)-dimensional ideal hydrodynamic equations with source terms. Mach cone is induced by the jet energy deposition and pushes back the radial flow of the expanding background. Especially in the case when the jet passage is off-central one, the number of particles emitted in the direction of the push back decreases. This is the signal including the information about the formation of the Mach cone and the jet passage in the QGP fluid.

  6. Regulation of radial glial survival by signals from the meninges.

    Science.gov (United States)

    Radakovits, Randor; Barros, Claudia S; Belvindrah, Richard; Patton, Bruce; Müller, Ulrich

    2009-06-17

    Radial glial cells (RGCs) in the developing cerebral cortex are progenitors for neurons and glia, and their processes serve as guideposts for migrating neurons. So far, it has remained unclear whether RGC processes also control the function of RGCs more directly. Here, we show that RGC numbers and cortical size are reduced in mice lacking beta1 integrins in RGCs. TUNEL stainings and time-lapse video recordings demonstrate that beta1-deficient RGCs processes detach from the meningeal basement membrane (BM) followed by apoptotic death of RGCs. Apoptosis is also induced by surgical removal of the meninges. Finally, mice lacking the BM components laminin alpha2 and alpha4 show defects in the attachment of RGC processes at the meninges, a reduction in cortical size, and enhanced apoptosis of RGC cells. Our findings demonstrate that attachment of RGC processes at the meninges is important for RGC survival and the control of cortical size.

  7. An analysis of the variable radial velocity of alpha cygni

    International Nuclear Information System (INIS)

    Lucy, L.B.

    1976-01-01

    On the basis of 447 radial velocities obtained at the Lick Observatory by Paddock in the years 1927--1935, an attempt is made to discover the nature of the semiregular variability of α Cygni (A2 Ia). Harmonic analysis of the 144 velocities obtained in 1931 suggests that this variability is due to the simultaneous excitation of many discrete pulsation modes. The amplitudes and periods of these modes are then determined by least-squares fitting to all the data, and a final solution is obtained that comprises 16 terms with periods from 6.9 to 100.8 days. All terms are found to have highly significant amplitudes, and most terms also pass a test of the stability of their amplitudes and phases. Reasons are given for believing that most terms represent nonradial oscillations, and this leads to the suggestion that the resulting surface motions are to be identified with macroturbulence. An argument is also given for believing that the pulsational instability persists down to periods at which atmospheric oscillations become progressive, and this leads to the suggestion that such waves are observed as microturbulence and give rise to the observed mass loss. The importance of further monitoring of the variability of supergiants is stressed

  8. An axisymmetric inertia-gravity wave generator

    Science.gov (United States)

    Maurer, P.; Ghaemsaidi, S. J.; Joubaud, S.; Peacock, T.; Odier, P.

    2017-10-01

    There has been a rich interplay between laboratory experimental studies of internal waves and advancing understanding of their role in the ocean and atmosphere. In this study, we present and demonstrate the concept for a new form of laboratory internal wave generator that can excite axisymmetric wave fields of arbitrary radial structure. The construction and operation of the generator are detailed, and its capabilities are demonstrated through a pair of experiments using a Bessel function and a bourrelet (i.e., ring-shaped) configuration. The results of the experiments are compared with the predictions of an accompanying analytical model.

  9. Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-18

    This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.

  10. Spherical radial basis functions, theory and applications

    CERN Document Server

    Hubbert, Simon; Morton, Tanya M

    2015-01-01

    This book is the first to be devoted to the theory and applications of spherical (radial) basis functions (SBFs), which is rapidly emerging as one of the most promising techniques for solving problems where approximations are needed on the surface of a sphere. The aim of the book is to provide enough theoretical and practical details for the reader to be able to implement the SBF methods to solve real world problems. The authors stress the close connection between the theory of SBFs and that of the more well-known family of radial basis functions (RBFs), which are well-established tools for solving approximation theory problems on more general domains. The unique solvability of the SBF interpolation method for data fitting problems is established and an in-depth investigation of its accuracy is provided. Two chapters are devoted to partial differential equations (PDEs). One deals with the practical implementation of an SBF-based solution to an elliptic PDE and another which describes an SBF approach for solvi...

  11. Chocolate Numbers

    OpenAIRE

    Ji, Caleb; Khovanova, Tanya; Park, Robin; Song, Angela

    2015-01-01

    In this paper, we consider a game played on a rectangular $m \\times n$ gridded chocolate bar. Each move, a player breaks the bar along a grid line. Each move after that consists of taking any piece of chocolate and breaking it again along existing grid lines, until just $mn$ individual squares remain. This paper enumerates the number of ways to break an $m \\times n$ bar, which we call chocolate numbers, and introduces four new sequences related to these numbers. Using various techniques, we p...

  12. Number theory

    CERN Document Server

    Andrews, George E

    1994-01-01

    Although mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simpl

  13. [Comparison of chemical quality characteristics between radial striations and non-radial striations in tuberous root of Rehmannia glutinosa].

    Science.gov (United States)

    Xie, Cai-Xia; Zhang, Miao; Li, Ya-Jing; Geng, Xiao-Tong; Wang, Feng-Qing; Zhang, Zhong-Yi

    2017-11-01

    An HPLC method was established to determine the contents of catalpol, acteoside, rehmaionoside A, rehmaionoside D, leonuride in three part of Rehmanni glutinosa in Beijing No.1 variety R. glutinosa during the growth period, This method, in combination with its HPLC fingerprint was used to evaluate its overall quality characteristics.The results showed that:① the content of main components of R. glutinosa varied in different growth stages ;② there was a great difference of the content of main components between theradial striations and the non-radial striations; ③ the two sections almost have the same content distribution of catalpol, acteoside and rehmaionoside D; ④the content of rehmaionoside A in non-radial striations was higher than that in radial striations,while the content of leonuride in radial striations was higher than that in non-radial striations.; ⑤the HPLC fingerprint of radial striations, non-radial striations and whole root tuber were basically identical, except for the big difference in the content of chemical components. The result of clustering displayed that the radial striations, non-radial striations, and whole root were divided into two groups. In conclusion, there was a significant difference in the quality characteristics of radial striations and non-radial striations of R. glutinosa. This research provides a reference for quality evaluation and geoherbalism of R. glutinosa. Copyright© by the Chinese Pharmaceutical Association.

  14. Wave phenomena

    CERN Document Server

    Towne, Dudley H

    1988-01-01

    This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.

  15. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  16. Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.

    1998-01-01

    This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies, co...

  17. Energy Performance and Radial Force of a Mixed-Flow Pump with Symmetrical and Unsymmetrical Tip Clearances

    Directory of Open Access Journals (Sweden)

    Yue Hao

    2017-01-01

    Full Text Available The energy performance and radial force of a mixed flow pump with symmetrical and unsymmetrical tip clearance are investigated in this paper. As the tip clearance increases, the pump head and efficiency both decrease. The center of the radial force on the principal axis is located at the coordinate origin when the tip clearance is symmetrical, and moves to the third quadrant when the tip clearance is unsymmetrical. Analysis results show that the total radial force on the principal axis is closely related to the fluctuation of mass flow rate in each single flow channel. Unsteady simulations show that the dominant frequencies of radial force on the hub and blade correspond to the blade number, vane number, or double blade number because of the rotor stator interaction. The radial force on the blade pressure side decreases with the tip clearance increase because of leakage flow. The unsymmetrical tip clearances in an impeller induce uneven leakage flow rate and then result in unsymmetrical work ability of each blade and flow pattern in each channel. Thus, the energy performance decreases and the total radial force increases for a mixed flow pump with unsymmetrical tip clearance.

  18. Shock wave dynamics derivatives and related topics

    CERN Document Server

    Emanuel, George

    2012-01-01

    "...this monograph develops an esoteric niche within shock wave theory. …treats shock waves from an analytical approach assuming perfect gas. Emanuel has made significant contributions to the theory of shock waves and has selected a number of topics that reflect those contributions."-Shock Waves, 2013.

  19. Alfven wave heating studies in Tokapole II tokamak

    International Nuclear Information System (INIS)

    Kortbawi, D.; Witherspoon, F.D.; Zhu, S.Y.; Casavant, T.; Sprott, J.C.; Prager, S.C.

    1984-01-01

    In earlier experiments at low power on the Tokapole II tokamak using the internal divertor rings as a launching structure the authors have observed a resonance with properties consistent with those expected for a shear Alfven wave. With these encouraging results, a second phase of experiments has begun where, eventually, 4 discrete antennas, located ≅180 0 apart in both the toroidal and poloidal directions and phased to establish proper mode numbers are driven from a 1 MW source. A prototype antenna has been installed and tested. It is a 2 turn Faraday shielded loop extending 54 0 along a toroidal arc. This orientation was chosen for the antenna currents based on the earlier experiments and the simple MHD result that the component of the wage magnetic field perpendicular to the equilibrium field is most strongly divergent. To test this the antenna can be rotated +.45 0 . It can also be inserted radially up to 6 cm

  20. Linear augmented plane wave method for self-consistent calculations

    International Nuclear Information System (INIS)

    Takeda, T.; Kuebler, J.

    1979-01-01

    O.K. Andersen has recently introduced a linear augmented plane wave method (LAPW) for the calculation of electronic structure that was shown to be computationally fast. A more general formulation of an LAPW method is presented here. It makes use of a freely disposable number of eigenfunctions of the radial Schroedinger equation. These eigenfunctions can be selected in a self-consistent way. The present formulation also results in a computationally fast method. It is shown that Andersen's LAPW is obtained in a special limit from the present formulation. Self-consistent test calculations for copper show the present method to be remarkably accurate. As an application, scalar-relativistic self-consistent calculations are presented for the band structure of FCC lanthanum. (author)

  1. SSG Wave Energy Converter

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Vicinanza, Diego; Frigaard, Peter

    2008-01-01

    The SSG (Sea Slot-cone Generator) is a wave energy converter of the overtopping type. The structure consists of a number of reservoirs one on the top of each others above the mean water level, in which the water of incoming waves is stored temporary. In each reservoir, expressively designed low...... head hydroturbines are converting the potential energy of the stored water into power. A key to success for the SSG will be the low cost of the structure and its robustness. The construction of the pilot plant is scheduled and this paper aims to describe the concept of the SSG wave energy converter...

  2. Nice numbers

    CERN Document Server

    Barnes, John

    2016-01-01

    In this intriguing book, John Barnes takes us on a journey through aspects of numbers much as he took us on a geometrical journey in Gems of Geometry. Similarly originating from a series of lectures for adult students at Reading and Oxford University, this book touches a variety of amusing and fascinating topics regarding numbers and their uses both ancient and modern. The author intrigues and challenges his audience with both fundamental number topics such as prime numbers and cryptography, and themes of daily needs and pleasures such as counting one's assets, keeping track of time, and enjoying music. Puzzles and exercises at the end of each lecture offer additional inspiration, and numerous illustrations accompany the reader. Furthermore, a number of appendices provides in-depth insights into diverse topics such as Pascal’s triangle, the Rubik cube, Mersenne’s curious keyboards, and many others. A theme running through is the thought of what is our favourite number. Written in an engaging and witty sty...

  3. Computer model analysis of the radial artery pressure waveform.

    Science.gov (United States)

    Schwid, H A; Taylor, L A; Smith, N T

    1987-10-01

    Simultaneous measurements of aortic and radial artery pressures are reviewed, and a model of the cardiovascular system is presented. The model is based on resonant networks for the aorta and axillo-brachial-radial arterial system. The model chosen is a simple one, in order to make interpretation of the observed relationships clear. Despite its simplicity, the model produces realistic aortic and radial artery pressure waveforms. It demonstrates that the resonant properties of the arterial wall significantly alter the pressure waveform as it is propagated from the aorta to the radial artery. Although the mean and end-diastolic radial pressures are usually accurate estimates of the corresponding aortic pressures, the systolic pressure at the radial artery is often much higher than that of the aorta due to overshoot caused by the resonant behavior of the radial artery. The radial artery dicrotic notch is predominantly dependent on the axillo-brachial-radial arterial wall properties, rather than on the aortic valve or peripheral resistance. Hence the use of the radial artery dicrotic notch as an estimate of end systole is unreliable. The rate of systolic upstroke, dP/dt, of the radial artery waveform is a function of many factors, making it difficult to interpret. The radial artery waveform usually provides accurate estimates for mean and diastolic aortic pressures; for all other measurements it is an inadequate substitute for the aortic pressure waveform. In the presence of low forearm peripheral resistance the mean radial artery pressure may significantly underestimate the mean aortic pressure, as explained by a voltage divider model.

  4. Low-wave number analysis of observations and ensemble forecasts to develop metrics for the selection of most realistic members to study multi-scale interactions between the environment and the convective organization of hurricanes: Focus on Rapid Intensification

    Science.gov (United States)

    Hristova-Veleva, S. M.; Chen, H.; Gopalakrishnan, S.; Haddad, Z. S.

    2017-12-01

    Tropical cyclones (TCs) are the product of complex multi-scale processes and interactions. The role of the environment has long been recognized. However, recent research has shown that convective-scale processes in the hurricane core might also play a crucial role in determining TCs intensity and size. Several studies have linked Rapid Intensification to the characteristics of the convective clouds (shallow versus deep), their organization (isolated versus wide-spread) and their location with respect to dynamical controls (the vertical shear, the radius of maximum wind). Yet a third set of controls signifies the interaction between the storm-scale and large-scale processes. Our goal is to use observations and models to advance the still-lacking understanding of these processes. Recently, hurricane models have improved significantly. However, deterministic forecasts have limitations due to the uncertainty in the representation of the physical processes and initial conditions. A crucial step forward is the use of high-resolution ensembles. We adopt the following approach: i) generate a high resolution ensemble forecast using HWRF; ii) produce synthetic data (e.g. brightness temperature) from the model fields for direct comparison to satellite observations; iii) develop metrics to allow us to sub-select the realistic members of the ensemble, based on objective measures of the similarity between observed and forecasted structures; iv) for these most-realistic members, determine the skill in forecasting TCs to provide"guidance on guidance"; v) use the members with the best predictive skill to untangle the complex multi-scale interactions. We will report on the first three goals of our research, using forecasts and observations of hurricane Edouard (2014), focusing on RI. We will focus on describing the metrics for the selection of the most appropriate ensemble members, based on applying low-wave number analysis (WNA - Hristova-Veleva et al., 2016) to the observed and

  5. Calcium waves.

    Science.gov (United States)

    Jaffe, Lionel F

    2008-04-12

    Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.

  6. Wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.

    2011-07-01

    Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)

  7. Residual Liquefaction under Standing Waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    This paper summarizes the results of an experimental study which deals with the residual liquefaction of seabed under standing waves. It is shown that the seabed liquefaction under standing waves, although qualitatively similar, exhibits features different from that caused by progressive waves....... The experimental results show that the buildup of pore-water pressure and the resulting liquefaction first starts at the nodal section and spreads towards the antinodal section. The number of waves to cause liquefaction at the nodal section appears to be equal to that experienced in progressive waves for the same...

  8. Number names and number understanding

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye; Misfeldt, Morten

    2014-01-01

    This paper concerns the results from the first year of a three-year research project involving the relationship between Danish number names and their corresponding digits in the canonical base 10 system. The project aims to develop a system to help the students’ understanding of the base 10 syste...... the Danish number names are more complicated than in other languages. Keywords: A research project in grade 0 and 1th in a Danish school, Base-10 system, two-digit number names, semiotic, cognitive perspectives....

  9. MR accuracy and arthroscopic incidence of meniscal radial tears

    Energy Technology Data Exchange (ETDEWEB)

    Magee, Thomas; Shapiro, Marc; Williams, David [Department of Radiology, Neuroimaging Institute, 27 East Hibiscus Blvd., Melbourne, FL 32901 (United States)

    2002-12-01

    A meniscal radial tear is a vertical tear that involves the inner meniscal margin. The tear is most frequent in the middle third of the lateral meniscus and may extend outward in any direction. We report (1) the arthroscopic incidence of radial tears, (2) MR signs that aid in the detection of radial tears and (3) our prospective accuracy in detection of radial tears. Design and patients. Three musculoskeletal radiologists prospectively read 200 consecutive MR examinations of the knee that went on to arthroscopy by one orthopedic surgeon. MR images were assessed for location and MR characteristics of radial tears. MR criteria used for diagnosis of a radial tear were those outlined by Tuckman et al.: truncation, abnormal morphology and/or lack of continuity or absence of the meniscus on one or more MR images. An additional criterion used was abnormal increased signal in that area on fat-saturated proton density or T2-weighted coronal and sagittal images. Prospective MR readings were correlated with the arthroscopic findings.Results. Of the 200 consecutive knee arthroscopies, 28 patients had radial tears reported arthroscopically (14% incidence). MR readings prospectively demonstrated 19 of the 28 radial tears (68% sensitivity) when the criteria for diagnosis of a radial tear were truncation or abnormal morphology of the meniscus. With the use of the additional criterion of increased signal in the area of abnormal morphology on fat-saturated T2-weighted or proton density weighted sequences, the prospective sensitivity was 25 of 28 radial tears (89% sensitivity). There were no radial tears described in MR reports that were not demonstrated on arthroscopy (i.e., there were no false positive MR readings of radial tears in these 200 patients). Radial tears are commonly seen at arthroscopy. There was a 14% incidence in this series of 200 patients who underwent arthroscopy. Prospective detection of radial tears was 68% as compared with arthroscopy when the criteria as

  10. MR accuracy and arthroscopic incidence of meniscal radial tears

    International Nuclear Information System (INIS)

    Magee, Thomas; Shapiro, Marc; Williams, David

    2002-01-01

    A meniscal radial tear is a vertical tear that involves the inner meniscal margin. The tear is most frequent in the middle third of the lateral meniscus and may extend outward in any direction. We report (1) the arthroscopic incidence of radial tears, (2) MR signs that aid in the detection of radial tears and (3) our prospective accuracy in detection of radial tears. Design and patients. Three musculoskeletal radiologists prospectively read 200 consecutive MR examinations of the knee that went on to arthroscopy by one orthopedic surgeon. MR images were assessed for location and MR characteristics of radial tears. MR criteria used for diagnosis of a radial tear were those outlined by Tuckman et al.: truncation, abnormal morphology and/or lack of continuity or absence of the meniscus on one or more MR images. An additional criterion used was abnormal increased signal in that area on fat-saturated proton density or T2-weighted coronal and sagittal images. Prospective MR readings were correlated with the arthroscopic findings.Results. Of the 200 consecutive knee arthroscopies, 28 patients had radial tears reported arthroscopically (14% incidence). MR readings prospectively demonstrated 19 of the 28 radial tears (68% sensitivity) when the criteria for diagnosis of a radial tear were truncation or abnormal morphology of the meniscus. With the use of the additional criterion of increased signal in the area of abnormal morphology on fat-saturated T2-weighted or proton density weighted sequences, the prospective sensitivity was 25 of 28 radial tears (89% sensitivity). There were no radial tears described in MR reports that were not demonstrated on arthroscopy (i.e., there were no false positive MR readings of radial tears in these 200 patients). Radial tears are commonly seen at arthroscopy. There was a 14% incidence in this series of 200 patients who underwent arthroscopy. Prospective detection of radial tears was 68% as compared with arthroscopy when the criteria as

  11. Influence of radial magnetic field on the peristaltic flow of Williamson fluid in a curved complaint walls channel

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available Peristaltic transport of Williamson fluid in a curved geometry is modeled. Problem formulation is completed by complaint walls of channel. Radial magnetic field in the analysis is taken into account. Resulting problem formulation is simplified using long wavelength and low Reynolds number approximations. Series solution is obtained for small Weissenberg number. Influences of different embedded parameters on the axial velocity and stream function are examined. As expected the velocity in curved channel is not symmetric. Axial velocity is noticed decreasing for Hartman number. Trapped bolus increases for Hartman and curvature parameters. Keywords: Williamson fluid, Curved channel, Radial magnetic field, Complaint walls

  12. Funny Numbers

    Directory of Open Access Journals (Sweden)

    Theodore M. Porter

    2012-12-01

    Full Text Available The struggle over cure rate measures in nineteenth-century asylums provides an exemplary instance of how, when used for official assessments of institutions, these numbers become sites of contestation. The evasion of goals and corruption of measures tends to make these numbers “funny” in the sense of becoming dis-honest, while the mismatch between boring, technical appearances and cunning backstage manipulations supplies dark humor. The dangers are evident in recent efforts to decentralize the functions of governments and corporations using incen-tives based on quantified targets.

  13. Transcendental numbers

    CERN Document Server

    Murty, M Ram

    2014-01-01

    This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker’s theorem, Schanuel’s conjecture, and Schneider’s theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.

  14. An eastward propagating compressional Pc 5 wave observed by AMPTE/CCE in the postmidnight sector

    International Nuclear Information System (INIS)

    Takahashi, K.; McEntire, R.W.; Zanetti, L.J.; Lopez, R.E.; Kistler, L.M.; Ipavich, R.M.

    1987-01-01

    Data from three instruments, the magnetometer, the charge-energy-mass spectrometer, and the medium-energy particle analyzer onboard the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (CCE) spacecraft have been used to study a compressional Pc 5 wave observed at 1925-2200 UT on day 202 (July 21) of 1986 at a radial distance of ≅ 8 R E in the postmidnight sector near the beginning of minor geomagnetic activity. The wave exhibited harmonically related transverse and compressional magnetic oscillations, modulation of the flux of medium energy protons (E approx-gt 10 keV), and a large azimuthal wave number (m ∼ 65). These properties are similar to those of compressional Pc 5 waves observed previously at geostationary orbit. The unique observations associated with the CCE event are the occurrence in the postmidnight sector, the eastward (or sunward) propagation with respect to the spacecraft, and the left-handed polarization of the perturbed magnetic field. These are opposite to previous geostationary observations. The authors propose that the unique propagation and polarization are propagating westward in the plasma rest frame, appears to propagate eastward to the observer because the electric field drift velocity is larger than the wave phase velocity

  15. Radial propagation of microturbulence in tokamaks

    International Nuclear Information System (INIS)

    Garbet, X.; Laurent, L.; Roubin, J.P.; Samain, A.

    1992-01-01

    Energy confinement time in tokamaks exhibits a clear dependence on global plasma parameters. This is not the case for transport coefficients; their dependence on local plasma parameters cannot be precisely established. The aim of the present paper is to give a possible explanation of this behaviour; turbulence propagates radially because of departure from cylindrical geometry. This implies that the turbulence level at a given point and hence transport coefficients are not only functions of local plasma parameters. A quantitative estimate of the propagation velocity is derived from a Lagrangian formalism. Two cases are considered: the effect of toroidicity and the effect of non linear mode-mode coupling. The consequences of this model are discussed. This process does not depend on the type of instability. For the sake of simplicity only electrostatic perturbations are considered

  16. Radial particle distributions in PARMILA simulation beams

    International Nuclear Information System (INIS)

    Boicourt, G.P.

    1984-03-01

    The estimation of beam spill in particle accelerators is becoming of greater importance as higher current designs are being funded. To the present, no numerical method for predicting beam-spill has been available. In this paper, we present an approach to the loss-estimation problem that uses probability distributions fitted to particle-simulation beams. The properties of the PARMILA code's radial particle distribution are discussed, and a broad class of probability distributions are examined to check their ability to fit it. The possibility that the PARMILA distribution is a mixture is discussed, and a fitting distribution consisting of a mixture of two generalized gamma distributions is found. An efficient algorithm to accomplish the fit is presented. Examples of the relative prediction of beam spill are given. 26 references, 18 figures, 1 table

  17. Radial expansion for spinning conformal blocks

    CERN Document Server

    Costa, Miguel S.; Penedones, João; Trevisani, Emilio

    2016-07-12

    This paper develops a method to compute any bosonic conformal block as a series expansion in the optimal radial coordinate introduced by Hogervorst and Rychkov. The method reduces to the known result when the external operators are all the same scalar operator, but it allows to compute conformal blocks for external operators with spin. Moreover, we explain how to write closed form recursion relations for the coefficients of the expansions. We study three examples of four point functions in detail: one vector and three scalars; two vectors and two scalars; two spin 2 tensors and two scalars. Finally, for the case of two external vectors, we also provide a more efficient way to generate the series expansion using the analytic structure of the blocks as a function of the scaling dimension of the exchanged operator.

  18. Hydrostatic radial bearing of centrifugal pump

    International Nuclear Information System (INIS)

    Skalicky, A.

    1976-01-01

    A hydrostatic radial pump is described characterized by the fact that part of the medium off-taken from delivery is used as a lubricating medium. Two additional bodies are placed alongside a hydrostatic bearing with coils in between them and the pump shaft; the coils have an opposite pitch. The feed channel for the hydrostatic bearing pocket is linked to delivery. The coil outlets are connected to the pump suction unit. Two rotating coils placed alongside the hydrostatic bearing will considerably simplify the communication channel design and reduce the dependence on the pump shaft deflections. The addition of another rotating coil in the close vicinity of the pump shaft or directly on the shaft further increases the efficiency. The bearing can be used in designing vertical circulating pumps for the cooling circuits of nuclear reactors. (J.B.)

  19. The radial velocity variations in IC 418

    International Nuclear Information System (INIS)

    Mendez, R.H.; Verga, A.D.

    1981-01-01

    The observations presented are part of a search for spectral and radial velocity variations among central stars of planetary nebulae and include the following new data: 1) Weak, previously undetected C III emissions are visible at 4056, 4186, 4516, 5270 and 5826 A. The famous unidentified emissions at 4485 and 4503 A were also found. 2) The He I absorptions at 4471 and 5875 A are blue-shifted relative to the nebular emissions. The same happens with Hsub(delta) and Hsub(γ), although in this case the shift can be at least partly attributed to blends with the strong He II absorptions, which are estimated to contribute about one half of the equivalent width at Hsub(delta) and Hsub(γ). 3) O III 5592 and C IV 5801, 5811 are also found in absorption. (Auth.)

  20. Doubly stochastic radial basis function methods

    Science.gov (United States)

    Yang, Fenglian; Yan, Liang; Ling, Leevan

    2018-06-01

    We propose a doubly stochastic radial basis function (DSRBF) method for function recoveries. Instead of a constant, we treat the RBF shape parameters as stochastic variables whose distribution were determined by a stochastic leave-one-out cross validation (LOOCV) estimation. A careful operation count is provided in order to determine the ranges of all the parameters in our methods. The overhead cost for setting up the proposed DSRBF method is O (n2) for function recovery problems with n basis. Numerical experiments confirm that the proposed method not only outperforms constant shape parameter formulation (in terms of accuracy with comparable computational cost) but also the optimal LOOCV formulation (in terms of both accuracy and computational cost).

  1. Anomalous Medial Branch of Radial Artery: A Rare Variant

    Directory of Open Access Journals (Sweden)

    Surbhi Wadhwa

    2016-10-01

    Full Text Available Radial artery is an important consistent vessel of the upper limb. It is a useful vascular access site for coronary procedures and its reliable anatomy has resulted in an elevation of radial forearm flaps for reconstructive surgeries of head and neck. Technical failures, in both the procedures, are mainly due to anatomical variations, such as radial loops, ectopic radial arteries or tortuosity in the vessel. We present a rare and a unique anomalous medial branch of the radial artery spiraling around the flexor carpi radialis muscle in the forearm with a high rising superficial palmar branch of radial artery. Developmentally it probably is a remanent of the normal pattern of capillary vessel maintenance and regression. Such a case is of importance for reconstructive surgeons and coronary interventionists, especially in view of its unique medial and deep course.

  2. Novel method for solution of coupled radial Schrödinger equations

    International Nuclear Information System (INIS)

    Ershov, S. N.; Vaagen, J. S.; Zhukov, M. V.

    2011-01-01

    One of the major problems in numerical solution of coupled differential equations is the maintenance of linear independence for different sets of solution vectors. A novel method for solution of radial Schrödinger equations is suggested. It consists of rearrangement of coupled equations in a way that is appropriate to avoid usual numerical instabilities associated with components of the wave function in their classically forbidden regions. Applications of the new method for nuclear structure calculations within the hyperspherical harmonics approach are given.

  3. Optical transitions in semiconductor nanospherical core/shell/shell heterostructure in the presence of radial electrostatic field

    Energy Technology Data Exchange (ETDEWEB)

    Baghdasaryan, D.A. [Russian-Armenian University, H. Emin 123, 0051 Yerevan (Armenia); Hayrapetyan, D.B., E-mail: dhayrap82@gmail.com [Russian-Armenian University, H. Emin 123, 0051 Yerevan (Armenia); Yerevan State University, A. Manoogian 1, 0025 Yerevan (Armenia); Harutyunyan, V.A. [Russian-Armenian University, H. Emin 123, 0051 Yerevan (Armenia)

    2017-04-01

    The electronic states and optical properties of spherical nanolayer in the presence of the electrostatic radial field in the strong size quantization regime have been considered. Both analytical and numerical methods have been applied to the problem of one-electron states in the system. According to the intensity of the external electrostatic field, three regimes have been distinguished: week, intermediate and strong. Perturbative approach have been applied to the case of week, WKB to the case of intermediate and variation approach to the case of strong field intensities. The analytical dependencies of the one electron energy and wave function on the electric field value and geometrical parameters of the nanolayer have been achieved. The comparison of the results obtained by the analytical method with the results of the numerical method have been made. The interband and intraband optical transitions caused by incident optical light polarized in z direction have been considered in this system. The selection rules for this transitions have been obtained. The dependence of the absorption coefficient on the energy of incident light for both cases of interband and intraband transitions for every regime of the electrostatic field value have been received. - Highlights: • The electron energy analytical dependencies on the electric field value have been achieved. • The selection rules for transitions between levels with different quantum numbers are revealed. • The interband and intraband absorption coefficients have been studied.

  4. Modeling of Tsunami Equations and Atmospheric Swirling Flows with a Graphics Processing Unit (GPU) and Radial Basis Functions (RBF)

    Science.gov (United States)

    Schmidt, J.; Piret, C.; Zhang, N.; Kadlec, B. J.; Liu, Y.; Yuen, D. A.; Wright, G. B.; Sevre, E. O.

    2008-12-01

    The faster growth curves in the speed of GPUs relative to CPUs in recent years and its rapidly gained popularity has spawned a new area of development in computational technology. There is much potential in utilizing GPUs for solving evolutionary partial differential equations and producing the attendant visualization. We are concerned with modeling tsunami waves, where computational time is of extreme essence, for broadcasting warnings. In order to test the efficacy of the GPU on the set of shallow-water equations, we employed the NVIDIA board 8600M GT on a MacBook Pro. We have compared the relative speeds between the CPU and the GPU on a single processor for two types of spatial discretization based on second-order finite-differences and radial basis functions. RBFs are a more novel method based on a gridless and a multi- scale, adaptive framework. Using the NVIDIA 8600M GT, we received a speed up factor of 8 in favor of GPU for the finite-difference method and a factor of 7 for the RBF scheme. We have also studied the atmospheric dynamics problem of swirling flows over a spherical surface and found a speed-up of 5.3 using the GPU. The time steps employed for the RBF method are larger than those used in finite-differences, because of the much fewer number of nodal points needed by RBF. Thus, in modeling the same physical time, RBF acting in concert with GPU would be the fastest way to go.

  5. Radial-Electric-Field Piezoelectric Diaphragm Pumps

    Science.gov (United States)

    Bryant, Robert G.; Working, Dennis C.; Mossi, Karla; Castro, Nicholas D.; Mane, Pooma

    2009-01-01

    In a recently invented class of piezoelectric diaphragm pumps, the electrode patterns on the piezoelectric diaphragms are configured so that the electric fields in the diaphragms have symmetrical radial (along-the-surface) components in addition to through-the-thickness components. Previously, it was accepted in the piezoelectric-transducer art that in order to produce the out-of-plane bending displacement of a diaphragm needed for pumping, one must make the electric field asymmetrical through the thickness, typically by means of electrodes placed on only one side of the piezoelectric material. In the present invention, electrodes are placed on both sides and patterned so as to produce substantial radial as well as through-the-thickness components. Moreover, unlike in the prior art, the electric field can be symmetrical through the thickness. Tests have shown in a given diaphragm that an electrode configuration according to this invention produces more displacement than does a conventional one-sided electrode pattern. The invention admits of numerous variations characterized by various degrees of complexity. Figure 1 is a simplified depiction of a basic version. As in other piezoelectric diaphragm pumps of similar basic design, the prime mover is a piezoelectric diaphragm. Application of a suitable voltage to the electrodes on the diaphragm causes it to undergo out-of-plane bending. The bending displacement pushes a fluid out of, or pulls the fluid into, a chamber bounded partly by the diaphragm. Also as in other diaphragm pumps in general, check valves ensure that the fluid flows only in through one port and only out through another port.

  6. Radial stability of anisotropic strange quark stars

    Energy Technology Data Exchange (ETDEWEB)

    Arbañil, José D.V.; Malheiro, M., E-mail: jose.arbanil@upn.pe, E-mail: malheiro@ita.br [ITA—Instituto Tecnológico de Aeronáutica—Departamento de Física, 12228-900, São José dos Campos, São Paulo (Brazil)

    2016-11-01

    The influence of the anisotropy in the equilibrium and stability of strange stars is investigated through the numerical solution of the hydrostatic equilibrium equation and the radial oscillation equation, both modified from their original version to include this effect. The strange matter inside the quark stars is described by the MIT bag model equation of state. For the anisotropy two different kinds of local anisotropic σ = p {sub t} − p {sub r} are considered, where p {sub t} and p {sub r} are respectively the tangential and the radial pressure: one that is null at the star's surface defined by p {sub r} ( R ) = 0, and one that is nonnull at the surface, namely, σ {sub s} = 0 and σ {sub s} {sub ≠} {sub 0}. In the case σ {sub s} = 0, the maximum mass value and the zero frequency of oscillation are found at the same central energy density, indicating that the maximum mass marks the onset of the instability. For the case σ {sub s} {sub ≠} {sub 0}, we show that the maximum mass point and the zero frequency of oscillation coincide in the same central energy density value only in a sequence of equilibrium configurations with the same value of σ {sub s} . Thus, the stability star regions are determined always by the condition dM / d ρ {sub c} {sub >} {sub 0} only when the tangential pressure is maintained fixed at the star surface's p {sub t} ( R ). These results are also quite important to analyze the stability of other anisotropic compact objects such as neutron stars, boson stars and gravastars.

  7. Transfinite Numbers

    Indian Academy of Sciences (India)

    this is a characteristic difference between finite and infinite sets and created an immensely useful branch of mathematics based on this idea which had a great impact on the whole of mathe- matics. For example, the question of what is a number (finite or infinite) is almost a philosophical one. However Cantor's work turned it ...

  8. Neurogenic radial glia in the outer subventricular zone of human neocortex.

    Science.gov (United States)

    Hansen, David V; Lui, Jan H; Parker, Philip R L; Kriegstein, Arnold R

    2010-03-25

    Neurons in the developing rodent cortex are generated from radial glial cells that function as neural stem cells. These epithelial cells line the cerebral ventricles and generate intermediate progenitor cells that migrate into the subventricular zone (SVZ) and proliferate to increase neuronal number. The developing human SVZ has a massively expanded outer region (OSVZ) thought to contribute to cortical size and complexity. However, OSVZ progenitor cell types and their contribution to neurogenesis are not well understood. Here we show that large numbers of radial glia-like cells and intermediate progenitor cells populate the human OSVZ. We find that OSVZ radial glia-like cells have a long basal process but, surprisingly, are non-epithelial as they lack contact with the ventricular surface. Using real-time imaging and clonal analysis, we demonstrate that these cells can undergo proliferative divisions and self-renewing asymmetric divisions to generate neuronal progenitor cells that can proliferate further. We also show that inhibition of Notch signalling in OSVZ progenitor cells induces their neuronal differentiation. The establishment of non-ventricular radial glia-like cells may have been a critical evolutionary advance underlying increased cortical size and complexity in the human brain.

  9. A New Filtering Algorithm Utilizing Radial Velocity Measurement

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-feng; DU Zi-cheng; PAN Quan

    2005-01-01

    Pulse Doppler radar measurements consist of range, azimuth, elevation and radial velocity. Most of the radar tracking algorithms in engineering only utilize position measurement. The extended Kalman filter with radial velocity measureneut is presented, then a new filtering algorithm utilizing radial velocity measurement is proposed to improve tracking results and the theoretical analysis is also given. Simulation results of the new algorithm, converted measurement Kalman filter, extended Kalman filter are compared. The effectiveness of the new algorithm is verified by simulation results.

  10. Vitreous veils and radial lattice in Marshall syndrome.

    Science.gov (United States)

    Brubaker, Jacob W; Mohney, Brian G; Pulido, Jose S; Babovic-Vuksanovic, Dusica

    2008-12-01

    To report the findings of membranous vitreous veils and radial lattice in a child with Marshall syndrome. Observational case report. Retrospective review of medical records and fundus photograph of a 6-year-old boy with Marshall syndrome. Vitreoretinal findings were significant for bilateral membranous vitreous veils and radial lattice degeneration. This case demonstrates the occurrence of vitreous veils and radial lattice degeneration in patients with Marshall syndrome.

  11. Observation of drift wave propagation as a source of tokamak edge turbulence

    International Nuclear Information System (INIS)

    Wang Guiding; Liu Wandong; Yu Changxuan

    1998-01-01

    Core and edge turbulences were measured by Langmuir probe arrays in the KT-5C tokamak plasma. The radial wavenumber spectra show a quasimode like structure which results in a net radial outward propagation of the turbulent fluctuations. The measured fluctuation levels and wave action fluxes are in good agreement with model predictions by Mattor et al., suggesting that drift wave propagation could be a source of edge turbulence

  12. Neuronal spike sorting based on radial basis function neural networks

    Directory of Open Access Journals (Sweden)

    Taghavi Kani M

    2011-02-01

    Full Text Available "nBackground: Studying the behavior of a society of neurons, extracting the communication mechanisms of brain with other tissues, finding treatment for some nervous system diseases and designing neuroprosthetic devices, require an algorithm to sort neuralspikes automatically. However, sorting neural spikes is a challenging task because of the low signal to noise ratio (SNR of the spikes. The main purpose of this study was to design an automatic algorithm for classifying neuronal spikes that are emitted from a specific region of the nervous system."n "nMethods: The spike sorting process usually consists of three stages: detection, feature extraction and sorting. We initially used signal statistics to detect neural spikes. Then, we chose a limited number of typical spikes as features and finally used them to train a radial basis function (RBF neural network to sort the spikes. In most spike sorting devices, these signals are not linearly discriminative. In order to solve this problem, the aforesaid RBF neural network was used."n "nResults: After the learning process, our proposed algorithm classified any arbitrary spike. The obtained results showed that even though the proposed Radial Basis Spike Sorter (RBSS reached to the same error as the previous methods, however, the computational costs were much lower compared to other algorithms. Moreover, the competitive points of the proposed algorithm were its good speed and low computational complexity."n "nConclusion: Regarding the results of this study, the proposed algorithm seems to serve the purpose of procedures that require real-time processing and spike sorting.

  13. INTERFERENCE OF UNIDIRECTIONAL SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-05-01

    Full Text Available Subject of study.We consider interference of unidirectional shock waves or, as they are called, catching up shock waves. The scope of work is to give a classification of the shock-wave structures that arise in this type of interaction of shock waves, and the area of their existence. Intersection of unidirectional shock waves results in arising of a shock-wave structure at the intersection point, which contains the main shock wave, tangential discontinuity and one more reflected gas-dynamic discontinuity of unknown beforehand type. The problem of determining the type of reflected discontinuity is the main problem that one has to solve in the study of catching shock waves interference. Main results.The paper presents the pictures of shock-wave structures arising at the interaction of catching up shock waves. The areas with a regular and irregular unidirectional interaction of shocks are described. Characteristic shock-wave structures are of greatest interest, where reflected gas-dynamic discontinuity degenerates into discontinuous characteristics. Such structures have a number of extreme properties. We have found the areas of existence for such shock-wave structures. There are also areas in which the steady-state solution is not available. The latter has determined revival of interest for the theoretical study of the problem, because the facts of sudden shock-wave structure destruction inside the air intake of supersonic aircrafts at high Mach numbers have been discovered. Practical significance.The theory of interference for unidirectional shock waves and design procedure are usable in the design of supersonic air intakes. It is also relevant for application possibility investigation of catching up oblique shock waves to create overcompressed detonation in perspective detonation air-jet and rocket engines.

  14. Wave calculus based upon wave logic

    International Nuclear Information System (INIS)

    Orlov, Y.F.

    1978-01-01

    A number operator has been introduced based upon the binary (p-nary) presentation of numbers. This operator acts upon a numerical state vector. Generally the numerical state vector describes numbers that are not precise but smeared in a quantum sense. These states are interrupted in wave logic terms, according to which concepts may exist within the inner language of a phenomenon that in principle cannot be translated into the language of the investigator. In particular, states may exist where mean values of a quantity, continuous in classical limits, take only discrete values. Operators for differentiation and integration of operator functions are defined, which take the usual form in the classical limit. (author)

  15. Pseudarthrosis of radial shaft with dislocation of heads of radial and ulnar bones (case report

    Directory of Open Access Journals (Sweden)

    M. E. Puseva

    2013-01-01

    Full Text Available The authors presented a rare clinical case - the injury of forearm complicated by the formation of the pseudarthrosis of the radial shaft in combination with old dislocation of heads the radius and ulna. The differentiated approach to the choice of surgical tactics was proposed, which consists of several consistent stages: taking free autotransplant from the crest of iliac bone, resection of pseudarthrosis of radius with replacement of the bone defect by the graft for restoration of anatomic length, conducting combined strained osteosynthesis and elimination of dislocation of a head of radial and ulnar bones by transosseous osteosynthesis. The chosen treatment strategy allowed to restore the anatomy and function of the upper extremity.

  16. Flow shear suppression of turbulence using externally driven ion Bernstein and Alfven waves

    International Nuclear Information System (INIS)

    Biglari, H.; Ono, M.

    1992-01-01

    The utilization of externally-launched radio-frequency waves as a means of active confinement control through the generation of sheared poloidal flows is explored. For low-frequency waves, kinetic Alfven waves are proposed, and are shown to drive sheared E x B flows as a result of the radial variation in the electromagnetic Reynolds stress. In the high frequency regime, ion Bernstein waves are considered, and shown to generate sheared poloidal rotation through the pondermotive force. In either case, it is shown that modest amounts of absorbed power (∼ few 100 kW) are required to suppress turbulence in a region of several cm radial width

  17. Wave Augmented Diffusers for Centrifugal Compressors

    Science.gov (United States)

    Paxson, Daniel E.; Skoch, Gary J.

    1998-01-01

    A conceptual device is introduced which would utilize unsteady wave motion to slow and turn flows in the diffuser section of a centrifugal compressor. The envisioned device would substantially reduce the size of conventional centrifugal diffusers by eliminating the relatively large ninety degree bend needed to turn the flow from the radial/tangential to the axial direction. The bend would be replaced by a wall and the flow would instead exit through a series of rotating ports located on a disk, adjacent to the diffuser hub, and fixed to the impeller shaft. The ports would generate both expansion and compression waves which would rapidly transition from the hub/shroud (axial) direction to the radial/tangential direction. The waves would in turn induce radial/tangential and axial flow. This paper presents a detailed description of the device. Simplified cycle analysis and performance results are presented which were obtained using a time accurate, quasi-one-dimensional CFD code with models for turning, port flow conditions, and losses due to wall shear stress. The results indicate that a periodic wave system can be established which yields diffuser performance comparable to a conventional diffuser. Discussion concerning feasibility, accuracy, and integration follow.

  18. Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: II. Radial uniformity of the plasma characteristics

    International Nuclear Information System (INIS)

    Zhang Yuru; Xu Xiang; Wang Younian; Bogaerts, Annemie

    2012-01-01

    A two-dimensional fluid model, including the full set of Maxwell equations, has been developed and applied to investigate the effect of a phase shift between two power sources on the radial uniformity of several plasma characteristics in a hydrogen capacitively coupled plasma. This study was carried out at various frequencies in the range 13.56-200 MHz. When the frequency is low, at 13.56 MHz, the plasma density is characterized by an off-axis peak when both power sources are in-phase (φ = 0), and the best radial uniformity is obtained at φ = π. This trend can be explained because the radial nonuniformity caused by the electrostatic edge effect can be effectively suppressed by the phase-shift effect at a phase difference equal to π. When the frequency rises to 60 MHz, the plasma density profiles shift smoothly from edge-peaked over uniform to centre-peaked as the phase difference increases, due to the pronounced standing-wave effect, and the best radial uniformity is reached at φ = 0.3π. At a frequency of 100 MHz, a similar behaviour is observed, except that the maximum of the plasma density moves again towards the radial edge at the reverse-phase case (φ = π), because of the dominant skin effect. When the frequency is 200 MHz, the bulk plasma density increases significantly with increasing phase-shift values, and a better uniformity is obtained at φ = 0.4π. This is because the density in the centre increases faster than at the radial edge as the phase difference rises, due to the increasing power deposition P z in the centre and the decreasing power density P r at the radial edge. As the phase difference increases to π, the maximum near the radial edge becomes obvious again. This is because the skin effect has a predominant influence on the plasma density under this condition, resulting in a high density at the radial edge. Moreover, the axial ion flux increases monotonically with phase difference, and exhibits similar profiles to the plasma density

  19. Gravitation Waves

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.

  20. Fuel radial design using Path Relinking; Diseno radial de combustible usando Path Relinking

    Energy Technology Data Exchange (ETDEWEB)

    Campos S, Y. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    The present work shows the obtained results when implementing the combinatory optimization technique well-known as Path Re linking (Re-linkage of Trajectories), to the problem of the radial design of nuclear fuel assemblies, for boiling water reactors (BWR Boiling Water Reactor by its initials in English), this type of reactors is those that are used in the Laguna Verde Nucleo electric Central, Veracruz. As in any other electric power generation plant of that make use of some fuel to produce heat and that it needs each certain time (from 12 to 14 months) to make a supply of the same one, because this it wears away or it burns, in the nucleolectric plants to this activity is denominated fuel reload. In this reload different activities intervene, among those which its highlight the radial and axial designs of fuel assemblies, the patterns of control rods and the multi cycles study, each one of these stages with their own complexity. This work was limited to study in independent form the radial design, without considering the other activities. These phases are basic for the fuel reload design and of reactor operation strategies. (Author)

  1. ULF waves in the foreshock

    Science.gov (United States)

    Greenstadt, E. W.; Le, G.; Strangeway, R. J.

    1995-01-01

    We review our current knowledge of ULF waves in planetary foreshocks. Most of this knowledge comes from observations taken within a few Earth radii of the terrestrial bow shock. Terrestrial foreshock ULF waves can be divided into three types, large amplitude low frequency waves (approximately 30-s period), upstream propagating whistlers (1-Hz waves), and 3-s waves. The 30-s waves are apparently generated by back-streaming ion beams, while the 1-Hz waves are generated at the bow shock. The source of the 3-s waves has yet to be determined. In addition to issues concerning the source of ULF waves in the foreshock, the waves present a number of challenges, both in terms of data acquisition, and comparison with theory. The various waves have different coherence scales, from approximately 100 km to approximately 1 Earth radius. Thus multi-spacecraft separation strategies must be tailored to the phenomenon of interest. From a theoretical point of view, the ULF waves are observed in a plasma in which the thermal pressure is comparable to the magnetic pressure, and the rest-frame wave frequency can be moderate fraction of the proton gyro-frequency. This requires the use of kinetic plasma wave dispersion relations, rather than multi-fluid MHD. Lastly, and perhaps most significantly, ULF waves are used to probe the ambient plasma, with inferences being drawn concerning the types of energetic ion distributions within the foreshock. However, since most of the data were acquired close to the bow shock, the properties of the more distant foreshock have to be deduced mainly through extrapolation of the near-shock results. A general understanding of the wave and plasma populations within the foreshock, their interrelation, and evolution, requires additional data from the more distant foreshock.

  2. Modulational instability of coupled waves

    International Nuclear Information System (INIS)

    McKinstrie, C.J.; Bingham, R.

    1989-01-01

    The collinear propagation of an arbitrary number of finite-amplitude waves is modeled by a system of coupled nonlinear Schroedinger equations; one equation for each complex wave amplitude. In general, the waves are modulationally unstable with a maximal growth rate larger than the modulational growth rate of any wave alone. Moreover, waves that are modulationally stable by themselves can be driven unstable by the nonlinear coupling. The general theory is then applied to the relativistic modulational instability of two laser beams in a beat-wave accelerator. For parameters typical of a proposed beat-wave accelerator, this instability can seriously distort the incident laser pulse shapes on the particle-acceleration time scale, with detrimental consequences for particle acceleration

  3. Feedback control of current drive by using hybrid wave in tokamaks; Asservissement de la generation de courant par l`onde hybride dans un plasma de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wijnands, T.J. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Sciences de la Matiere

    1997-03-01

    This work is focussed on an important and recent development in present day Controlled Nuclear Fusion Research and Tokamaks. The aim is to optimise the energy confinement for a certain magnetic configuration by adapting the radial distribution of the current. Of particular interest are feedback control scenarios with stationary modifications of the current profile using current, driven by Lower Hybrid waves. A new feedback control system has been developed for Tore Supra and has made a large number of new operation scenarios possible. In one of the experiments described here, there is no energy exchange between the poloidal field system and the plasma, the current is controlled by the power of the Lower Hybrid waves while the launched wave spectrum is used to optimise the current profile shape and the energy confinement. (author) 151 refs.

  4. Design of radial reinforcement for prestressed concrete containments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shen, E-mail: swang@bechtel.com [Bechtel Power Corporation, 5275 Westview Drive, BP2-2C3, Frederick, MD 21703 (United States); Munshi, Javeed A., E-mail: jamunshi@bechtel.com [Bechtel Power Corporation, 5275 Westview Drive, BP2-2C3, Frederick, MD 21703 (United States)

    2013-02-15

    Highlights: ► A rigorous formulae is proposed to calculate radial stress within prestressed concrete containments. ► The proposed method is validated by finite element analysis in an illustrative practical example. ► A partially prestressed condition is more critical than a fully prestressed condition for radial tension. ► Practical design consideration is provided for detailing of radial reinforcement. -- Abstract: Nuclear containments are critical components for safety of nuclear power plants. Failure can result in catastrophic safety consequences as a result of leakage of radiation. Prestressed concrete containments have been used in large nuclear power plants with significant design internal pressure. These containments are generally reinforced with prestressing tendons in the circumferential (hoop) and meridional (vertical) directions. The curvature effect of the tendons introduces radial tensile stresses in the concrete shell which are generally neglected in the design of such structures. It is assumed that such tensile radial stresses are small as such no radial reinforcement is provided for this purpose. But recent instances of significant delaminations in Crystal River Unit 3 in Florida have elevated the need for reevaluation of the radial tension issue in prestressed containment. Note that currently there are no well accepted industry standards for design and detailing of radial reinforcement. This paper discusses the issue of radial tension in prestressed cylindrical and dome shaped structures and proposes formulae to calculate radial stresses. A practical example is presented to illustrate the use of the proposed method which is then verified by using state of art finite element analysis. This paper also provides some practical design consideration for detailing of radial reinforcement in prestressed containments.

  5. A new trapped-ion instability with large frequency and radial wavenumber

    International Nuclear Information System (INIS)

    Tagger, M.

    1979-01-01

    The need for theoretical previsions concerning anomalous transport in large Tokamaks, as well as the recent results of PLT, ask the question of the process responsible for non-linear saturation of trapped-ion instabilities. This in turn necessitates the knowledge of the linear behaviour of these waves at large frequencies and large radial wavenumbers. We study the linear dispersion relation of these modes, in the radially local approximation, but including a term due to a new physical effect, combining finite banana-width and bounce resonances. Limiting ourselves presently to the first harmonic expansion of the bounce motion of trapped ions, we show that the effect of finite banana-width on the usual trapped-ion mode is complex and quite different from what is generally expected. In addition we show, analytically and numerically, the appearance of a nex branch of this instability. Essentially due to this new effect, it involves large frequencies (ω approximately ωsub(b) and is destabilized by large radial wavelengths (ksub(x) Λ approximately 1, where Λ is the typical banana-width). We discuss the nature of this new mode and its potential relevance of the experiments

  6. Ion temperature via laser scattering on ion Bernstein waves

    International Nuclear Information System (INIS)

    Wurden, G.A.; Ono, M.; Wong, K.L.

    1981-10-01

    Hydrogen ion temperature has been measured in a warm toroidal plasma with externally launched ion Bernstein waves detected by heterodyne CO 2 laser scattering. Radial scanning of the laser beam allows precise determination of k/sub perpendicular to/ for the finite ion Larmor radius wave (ω approx. less than or equal to 2Ω/sub i/). Knowledge of the magnetic field strength and ion concentration then give a radially resolved ion temperature from the dispersion relation. Probe measurements and Doppler broadening of ArII 4806A give excellent agreement

  7. Propagation of fast ionization waves in long discharge tubes filled with a preionized gas

    International Nuclear Information System (INIS)

    Boutine, O.V.; Vasilyak, L.M.

    1999-01-01

    The propagation of fast ionization waves in discharge tubes is modeled with allowance for radial variations in the electric potential, nonlocal dependence of the plasma parameters on the electric field, and nonsteady nature of the electron energy distribution. The wave propagation dynamics and the wave attenuation in helium are described. The plasma parameters at the wave front and behind the front and the energy deposition in the discharge are found. The results obtained are compared with experimental data

  8. Wave propagation downstream of a high power helicon in a dipolelike magnetic field

    International Nuclear Information System (INIS)

    Prager, James; Winglee, Robert; Roberson, B. Race; Ziemba, Timothy

    2010-01-01

    The wave propagating downstream of a high power helicon source in a diverging magnetic field was investigated experimentally. The magnetic field of the wave has been measured both axially and radially. The three-dimensional structure of the propagating wave is observed and its wavelength and phase velocity are determined. The measurements are compared to predictions from helicon theory and that of a freely propagating whistler wave. The implications of this work on the helicon as a thruster are also discussed.

  9. Coherent Wave Measurement Buoy Arrays to Support Wave Energy Extraction

    Science.gov (United States)

    Spada, F.; Chang, G.; Jones, C.; Janssen, T. T.; Barney, P.; Roberts, J.

    2016-02-01

    Wave energy is the most abundant form of hydrokinetic energy in the United States and wave energy converters (WECs) are being developed to extract the maximum possible power from the prevailing wave climate. However, maximum wave energy capture is currently limited by the narrow banded frequency response of WECs as well as extended protective shutdown requirements during periods of large waves. These limitations must be overcome in order to maximize energy extraction, thus significantly decreasing the cost of wave energy and making it a viable energy source. Techno-economic studies of several WEC devices have shown significant potential to improve wave energy capture efficiency through operational control strategies that incorporate real-time information about local surface wave motions. Integral Consulting Inc., with ARPA-E support, is partnering with Sandia National Laboratories and Spoondrift LLC to develop a coherent array of wave-measuring devices to relay and enable the prediction of wave-resolved surface dynamics at a WEC location ahead of real time. This capability will provide necessary information to optimize power production of WECs through control strategies, thereby allowing for a single WEC design to perform more effectively across a wide range of wave environments. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000514.

  10. Stability and magnetic tearing of finite-β modified drift waves

    International Nuclear Information System (INIS)

    Chen, L.; Hsu, J.; Kaw, P.K.; Rutherford, P.H.

    1977-10-01

    A new simplified approach to the analysis of radial eigenmodes of finite-β modified drift waves in a sheared magnetic field is described. Applying this approach to the universal drift mode, one recovers, for the lowest (n = 0) radial eigenmode, the previous result that finite-β effects are stabilizing. For the next (n = 1) radial eigenmode, however, one finds that finite-β effects further destabilize the mode. Moreover, the corresponding mode structure exhibits nonzero radial (tearing) magnetic perturbations around the mode-rational surface. The consequences of a structure of microscopic magnetic islands, created in this way, for plasma transport are also briefly discussed

  11. Development of the Wave Energy Converter -Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, Hans Christian

    2000-01-01

    2Over the years wave energy has gradually been brought into focus, as it has become clear that the fossil energy resources are limited, and cause large environmental problems, e.g. CO2 pollution. On this background a number of different wave energy converters have been proposed. In Denmark the go...

  12. Observational hints of radial migration in disc galaxies from CALIFA

    NARCIS (Netherlands)

    Ruiz-Lara, T.; Pérez, I.; Florido, E.; Sánchez-Blázquez, P.; Méndez-Abreu, J.; Sánchez-Menguiano, L.; Sánchez, S. F.; Lyubenova, M.; Falcón-Barroso, J.; van de Ven, G.; Marino, R. A.; de Lorenzo-Cáceres, A.; Catalán-Torrecilla, C.; Costantin, L.; Bland-Hawthorn, J.; Galbany, L.; García-Benito, R.; Husemann, B.; Kehrig, C.; Márquez, I.; Mast, D.; Walcher, C. J.; Zibetti, S.; Ziegler, B.

    2017-01-01

    Context. According to numerical simulations, stars are not always kept at their birth galactocentric distances but they have a tendency to migrate. The importance of this radial migration in shaping galactic light distributions is still unclear. However, if radial migration is indeed important,

  13. Radial supports of face motors with slack compensation

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, I I; Gelman, A B; Krekina, T V

    1982-01-01

    The design of a radial support of a face motor with slack compensation is described, and gives the results of field tests which confirm the performance capacity of the experimental support both from the viewpoint of durability, and in relation to preventing radial slack of the face motor shaft.

  14. Radial Color Gradient in a Globular Cluster 1. M68

    Directory of Open Access Journals (Sweden)

    Sukyoung Yi

    1990-12-01

    Full Text Available Stars in M68 from the observed color-magnitude diagrams with CCD were integrated to find any radial gradient. The result shows that M68 has a slightly bluer core. The main cause of these calculated radial color variations seems to come from the random distribution of giants.

  15. Modelling and analysis of radial thermal stresses and temperature ...

    African Journals Online (AJOL)

    A theoretical investigation has been undertaken to study operating temperatures, heat fluxes and radial thermal stresses in the valves of a modern diesel engine with and without air-cavity. Temperatures, heat fluxes and radial thermal stresses were measured theoretically for both cases under all four thermal loading ...

  16. Radiographic study of distal radial physeal closure in thoroughbred horses

    International Nuclear Information System (INIS)

    Vulcano, L.C.; Mamprim, M.J.; Muniz, L.M.R.; Moreira, A.F.; Luna, S.P.L.

    1997-01-01

    Monthly radiography was performed to study distal radial physeal closure in ten male and ten female Throughbred horses. The height, thoracic circumference and metacarpus circumference were also measured, Distal radial physeal closure time was sooner in females than males, and took 701 +/- 37 and 748 +/- 55 days respectively

  17. Plasma waves

    National Research Council Canada - National Science Library

    Swanson, D. G

    1989-01-01

    ... Swanson, D.G. (Donald Gary), D a t e - Plasma waves. Bibliography: p. Includes index. 1. Plasma waves. QC718.5.W3S43 1989 ISBN 0-12-678955-X I. Title. 530.4'4 88-34388 Printed in the United Sta...

  18. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Friis-Madsen, Erik

    2008-01-01

    Since March 2003 a prototype of Wave Dragon has been tested in an inland sea in Denmark. This has been a great success with all subsystems tested and improved through working in an offshore environment. The project has proved the Wave Dragon device and has enabled the next stage, a production sized...

  19. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  20. Radial Velocities of 41 Kepler Eclipsing Binaries

    Science.gov (United States)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  1. THE NIRSPEC ULTRACOOL DWARF RADIAL VELOCITY SURVEY

    International Nuclear Information System (INIS)

    Blake, Cullen H.; Charbonneau, David; White, Russel J.

    2010-01-01

    We report the results of an infrared Doppler survey designed to detect brown dwarf and giant planetary companions to a magnitude-limited sample of ultracool dwarfs. Using the NIRSPEC spectrograph on the Keck II telescope, we obtained approximately 600 radial velocity (RV) measurements over a period of six years of a sample of 59 late-M and L dwarfs spanning spectral types M8/L0 to L6. A subsample of 46 of our targets has been observed on three or more epochs. We rely on telluric CH 4 absorption features in Earth's atmosphere as a simultaneous wavelength reference and exploit the rich set of CO absorption features found in the K-band spectra of cool stars and brown dwarfs to measure RVs and projected rotational velocities. For a bright, slowly rotating M dwarf standard we demonstrate an RV precision of 50 m s -1 and for slowly rotating L dwarfs we achieve a typical RV precision of approximately 200 m s -1 . This precision is sufficient for the detection of close-in giant planetary companions to mid-L dwarfs as well as more equal mass spectroscopic binary systems with small separations (a +0.7 -0.6 Gyr, similar to that of nearby sun-like stars. We simulate the efficiency with which we detect spectroscopic binaries and find that the rate of tight (a +8.6 -1.6 %, consistent with recent estimates in the literature of a tight binary fraction of 3%-4%.

  2. Vortex Ring Dynamics in Radially Confined Domains

    Science.gov (United States)

    Stewart, Kelley; Niebel, Casandra; Jung, Sunghwan; Vlachos, Pavlos

    2010-11-01

    Vortex ring dynamics have been studied extensively in semi-infinite quiescent volumes. However, very little is known about vortex-ring formation in wall-bounded domains where vortex wall interaction will affect both the vortex ring pinch-off and propagation velocity. This study addresses this limitation and studies vortex formation in radially confined domains to analyze the affect of vortex-ring wall interaction on the formation and propagation of the vortex ring. Vortex rings were produced using a pneumatically driven piston cylinder arrangement and were ejected into a long cylindrical tube which defined the confined downstream domain. A range of confinement domains were studied with varying confinement diameters Velocity field measurements were performed using planar Time Resolved Digital Particle Image Velocimetry (TRDPIV) and were processed using an in-house developed cross-correlation PIV algorithm. The experimental analysis was used to facilitate the development of a theoretical model to predict the variations in vortex ring circulation over time within confined domains.

  3. Study of Oblique Propagating Whistler Mode Waves in Presence of Parallel DC Electric Field in Magnetosphere of Saturn

    Directory of Open Access Journals (Sweden)

    R. Kaur

    2017-03-01

    Full Text Available In this paper whistler mode waves have been investigated in magnetosphere of Saturn. The derivation for perturbed distribution function, dispersion relation and growth rate have been determined by using the method of characteristic and kinetic approach. Analytical expressions for growth rate and real frequency of whistlers propagating oblique to magnetic field direction are attained. Calculations have been performed at 6 radial distances in plasma sheet region of Saturn’s magnetosphere as per data provided by Cassini. Work has been extended for bi-Maxwellian as well as Loss-cone distribution function. Parametric analysis show that temperature anisotropy, increase in number density, energy density and angle of propagation increases the growth rate of whistler waves along with significant shift in wave number. In case of Loss-cone distribution, increase in growth rate of whistlers is significantly more than for bi-Maxwellian distribution function. Generation of second harmonics can also be seen in the graphs plotted. It is concluded that parallel DC field stabilizes the wave and temperature anisotropy, angle of propagation, number density and energy density of electrons enhances the growth rate. Thus the results are of importance in analyzing observed VLF emissions over wide spectrum of frequency range in Saturnian magnetosphere. The analytical model developed can also be used to study various types of instabilities in planetary magnetospheres.

  4. An iterative reconstruction method of complex images using expectation maximization for radial parallel MRI

    International Nuclear Information System (INIS)

    Choi, Joonsung; Kim, Dongchan; Oh, Changhyun; Han, Yeji; Park, HyunWook

    2013-01-01

    In MRI (magnetic resonance imaging), signal sampling along a radial k-space trajectory is preferred in certain applications due to its distinct advantages such as robustness to motion, and the radial sampling can be beneficial for reconstruction algorithms such as parallel MRI (pMRI) due to the incoherency. For radial MRI, the image is usually reconstructed from projection data using analytic methods such as filtered back-projection or Fourier reconstruction after gridding. However, the quality of the reconstructed image from these analytic methods can be degraded when the number of acquired projection views is insufficient. In this paper, we propose a novel reconstruction method based on the expectation maximization (EM) method, where the EM algorithm is remodeled for MRI so that complex images can be reconstructed. Then, to optimize the proposed method for radial pMRI, a reconstruction method that uses coil sensitivity information of multichannel RF coils is formulated. Experiment results from synthetic and in vivo data show that the proposed method introduces better reconstructed images than the analytic methods, even from highly subsampled data, and provides monotonic convergence properties compared to the conjugate gradient based reconstruction method. (paper)

  5. Influence of the Constitutive Flow Law in FEM Simulation of the Radial Forging Process

    Directory of Open Access Journals (Sweden)

    Olivier Pantalé

    2013-01-01

    Full Text Available Radial forging is a widely used forming process for manufacturing hollow products in transport industry. As the deformation of the workpiece, during the process, is a consequence of a large number of high-speed strokes, the Johnson-Cook constitutive law (taking into account the strain rate seems to be well adapted for representing the material behavior even if the process is performed under cold conditions. But numerous contributions concerning radial forging analysis, in the literature, are based on a simple elastic-plastic formulation. As far as we know, this assumption has yet not been validated for the radial forging process. Because of the importance of the flow law in the effectiveness of the model, our purpose in this paper is to analyze the influence of the use of an elastic-viscoplastic formulation instead of an elastic-plastic one for modeling the cold radial forging process. In this paper we have selected two different laws for the simulations: the Johnson-Cook and the Ludwik ones, and we have compared the results in terms of forging force, product's thickness, strains, stresses, and CPU time. For the presented study we use an AISI 4140 steel, and we denote a fairly good agreement between the results obtained using both laws.

  6. Número e espaçamento entre hastes de guia de onda para medida da umidade do solo com TDR Number and spacing between wave guide rods for measurement of soil water content with TDR

    Directory of Open Access Journals (Sweden)

    Eugênio F. Coelho

    2003-08-01

    feasibility of the use of wave guides of two and three rods with different spacings. Disturbed soil samples were packed in PVC tube segments of 0.075 m diameter. Two sets of 24 have guides were constructed. One of this sets had a capacitor. In each set one half of the wave guides had two rods and the other half contained three rods. The rod spacing varied from 0.009 to 0.022 m. Soil water content data from gravimetry and soil bulk dielectric constant values from Trase System analyzer were collected during drying process with water content values ranging from 0.31 to 0.13 m³ m-3. Five mathematical models were fitted to water content and bulk dielectric constant data. The Malicki's model was the most adequate for estimating soil water content as a function of bulk dielectric constant. The wave guides with three rods 0.017 m apart from each other showed the best performance. The three-rod wave-guides without capacitor performed better for water content determination than the two-rod wave-guides without capacitor. The three-rod wave-guides without capacitor performed better than three-rod wave-guides with capacitor.

  7. Plasma rotation and radial electric field with a density ramp in an ohmically heated tokamak

    International Nuclear Information System (INIS)

    Duval, B.P.; Joye, B.; Marchal, B.

    1991-10-01

    Measurements of toroidal and poloidal rotation of the TCA plasma with Alfven Wave Heating and different levels of gas feed are reported. The temporal evolution of the rotation was inferred from intrinsic spectral lines of CV, CIII and, using injected helium gas, from HeII. The light collection optics and line intensity permitted the evolution of the plasma rotation to be measured with a time resolution of 2ms. The rotation velocities were used to deduce the radial electric field. With Alfven heating there was no observable change of this electric field that could have been responsible for the density rise which is characteristic of the RF experiments on TCA. The behaviour of the plasma rotation with different plasma density ramp rates was investigated. The toroidal rotation was observed to decrease with increasing plasma density. The poloidal rotation was observed to follow the value of the plasma density. With hard gas puffing, changes in the deduced radial electric field were found to coincide with changes in the peaking of the plasma density profile. Finally, with frozen pellet injection, the expected increase in the radial electric field due to the increased plasma density was not observed, which may explain the poorer confinement of the injected particles. Even in an ohmically heated tokamak, the measurement of the plasma rotation and the radial electric field are shown to be strongly related to the confinement. A thorough statistical analysis of the systematic errors is presented and a new and significant source of uncertainty in the experimental technique is identified. (author) 18 figs., 18 refs

  8. Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone.

    Science.gov (United States)

    Gruber, Andreas; Zimmermann, Jolanda; Wieser, Gerhard; Oberhuber, Walter

    2009-08-01

    Within the alpine treeline ecotone tree growth is increasingly restricted by extreme climate conditions. Although intra-annual stem growth recorded by dendrometers can be linked to climate, stem diameter increments in slow-growing subalpine trees are masked by changes in tree water status.We tested the hypothesis that intra-annual radial stem growth in Pinus cembra is influenced by different climate variables along the treeline ecotone in the Austrian Alps. Dendrometer traces were compared with dynamics of xylem cell development to date onset of cambial activity and radial stem growth in spring.Daily fluctuations in stem radius reflected changes in tree water status throughout the treeline ecotone. Extracted daily radial increments were significantly correlated with air temperature at the timberline and treeline only, where budburst, cambial activity and enlargement of first tracheids also occurred quite similarly. A close relationship was detected between radial increment and number of enlarging tracheids throughout the treeline ecotone.We conclude that (i) the relationship between climate and radial stem growth within the treeline ecotone is dependent on a close coupling to atmospheric climate conditions and (ii) initiation of cambial activity and radial growth in spring can be distinguished from stem re-hydration by histological analysis.

  9. Focusing of Shear Shock Waves

    Science.gov (United States)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  10. Low-frequency modes with high toroidal mode numbers. A general formulation

    International Nuclear Information System (INIS)

    Pegoraro, F.; Schep, T.J.

    1979-09-01

    Low-frequency waves with high toroidal mode numbers in an axisymmetric toroidal configuration are studied. In particular, the relationship between the periodicity constraints imposed by the geometry, magnetic shear and the spatial structure of eigenmodes is investigated. By exploiting the radial translational invariance and the poloidal periodicity of the gyrokinetic and Maxwell equations, the two-dimensional problem can be converted into a one-dimensional one and the mode structure can be expressed in terms of a single extended poloidal variable. This representation is used in the description of electromagnetic modes with phase velocities larger than the ion thermal velocity and with frequencies below the ion gyro-frequency. Trapped particle, curvature and compressional effects are retained. The dispersion equations for drift mode and Alfven-type modes are given in general geometry and simplified solutions are presented in the configuration of a double periodic plane slab. (Auth.)

  11. The lifecycle of axisymmetric internal solitary waves

    Directory of Open Access Journals (Sweden)

    J. M. McMillan

    2010-09-01

    Full Text Available The generation and evolution of solitary waves by intrusive gravity currents in an approximate two-layer fluid with equal upper- and lower-layer depths is examined in a cylindrical geometry by way of theory and numerical simulations. The study is limited to vertically symmetric cases in which the density of the intruding fluid is equal to the average density of the ambient. We show that even though the head height of the intrusion decreases, it propagates at a constant speed well beyond 3 lock radii. This is because the strong stratification at the interface supports the formation of a mode-2 solitary wave that surrounds the intrusion head and carries it outwards at a constant speed. The wave and intrusion propagate faster than a linear long wave; therefore, there is strong supporting evidence that the wave is indeed nonlinear. Rectilinear Korteweg-de Vries theory is extended to allow the wave amplitude to decay as r-p with p=½ and the theory is compared to the observed waves to demonstrate that the width of the wave scales with its amplitude. After propagating beyond 7 lock radii the intrusion runs out of fluid. Thereafter, the wave continues to spread radially at a constant speed, however, the amplitude decreases sufficiently so that linear dispersion dominates and the amplitude decays with distance as r-1.

  12. Parabolic approximation method for fast magnetosonic wave propagation in tokamaks

    International Nuclear Information System (INIS)

    Phillips, C.K.; Perkins, F.W.; Hwang, D.Q.

    1985-07-01

    Fast magnetosonic wave propagation in a cylindrical tokamak model is studied using a parabolic approximation method in which poloidal variations of the wave field are considered weak in comparison to the radial variations. Diffraction effects, which are ignored by ray tracing mthods, are included self-consistently using the parabolic method since continuous representations for the wave electromagnetic fields are computed directly. Numerical results are presented which illustrate the cylindrical convergence of the launched waves into a diffraction-limited focal spot on the cyclotron absorption layer near the magnetic axis for a wide range of plasma confinement parameters

  13. Quasitravelling waves

    International Nuclear Information System (INIS)

    Beklaryan, Leva A

    2011-01-01

    A finite difference analogue of the wave equation with potential perturbation is investigated, which simulates the behaviour of an infinite rod under the action of an external longitudinal force field. For a homogeneous rod, describing solutions of travelling wave type is equivalent to describing the full space of classical solutions to an induced one-parameter family of functional differential equations of point type, with the characteristic of the travelling wave as parameter. For an inhomogeneous rod, the space of solutions of travelling wave type is trivial, and their 'proper' extension is defined as solutions of 'quasitravelling' wave type. By contrast to the case of a homogeneous rod, describing the solutions of quasitravelling wave type is equivalent to describing the quotient of the full space of impulsive solutions to an induced one-parameter family of point-type functional differential equations by an equivalence relation connected with the definition of solutions of quasitravelling wave type. Stability of stationary solutions is analyzed. Bibliography: 9 titles.

  14. Identification of waves by RF magnetic probes during lower hybrid wave injection experiments on the TST-2 spherical tokamak

    International Nuclear Information System (INIS)

    Shinya, Takahiro; Ejiri, Akira; Takase, Yuichi

    2014-01-01

    RF magnetic probes can be used to measure not only the wavevector, but also the polarization of waves in plasmas. A 5-channel RF magnetic probe (5ch-RFMP) was installed in the TST-2 spherical tokamak and the waves were studied in detail during lower hybrid wave injection experiments. From the polarization measurements, the poloidal RF magnetic field is found to be dominant. In addition to polarization, components of k perpendicular to the major radial direction were obtained from phase differences among the five channels. The radial wavenumber was obtained by scanning the radial position of the 5ch-RFMP on a shot by shot basis. The measured wavevector and polarization in the plasma edge region were consistent with those calculated from the wave equation for the slow wave branch. While the waves with small and large k ∥ were excited by the antenna, only the small k ∥ component was measured by the 5ch-RFMP; this suggests that the waves with larger k ∥ were absorbed by the plasma. (author)

  15. Encounter Probability of Individual Wave Height

    DEFF Research Database (Denmark)

    Liu, Z.; Burcharth, H. F.

    1998-01-01

    wave height corresponding to a certain exceedence probability within a structure lifetime (encounter probability), based on the statistical analysis of long-term extreme significant wave height. Then the design individual wave height is calculated as the expected maximum individual wave height...... associated with the design significant wave height, with the assumption that the individual wave heights follow the Rayleigh distribution. However, the exceedence probability of such a design individual wave height within the structure lifetime is unknown. The paper presents a method for the determination...... of the design individual wave height corresponding to an exceedence probability within the structure lifetime, given the long-term extreme significant wave height. The method can also be applied for estimation of the number of relatively large waves for fatigue analysis of constructions....

  16. Scaling laws for radial foil bearings

    Science.gov (United States)

    Honavara Prasad, Srikanth

    The effects of fluid pressurization, structural deformation of the compliant members and heat generation in foil bearings make the design and analysis of foil bearings very complicated. The complex fluid-structural-thermal interactions in foil bearings also make modeling efforts challenging because these phenomena are governed by highly non-linear partial differential equations. Consequently, comparison of various bearing designs require detailed calculation of the flow fields (velocities, pressures), bump deflections (structural compliance) and heat transfer phenomena (viscous dissipation in the fluid, frictional heating, temperature profile etc.,) resulting in extensive computational effort (time/hardware). To obviate rigorous computations and aid in feasibility assessments of foil bearings of various sizes, NASA developed the "rule of thumb" design guidelines for estimation of journal bearing load capacity. The guidelines are based on extensive experimental data. The goal of the current work is the development of scaling laws for radial foil bearings to establish an analytical "rule of thumb" for bearing clearance and bump stiffness. The use of scale invariant Reynolds equation and experimentally observed NASA "rule of thumb" yield scale factors which can be deduced from first principles. Power-law relationships between: a. Bearing clearance and bearing radius, and b. bump stiffness and bearing radius, are obtained. The clearance and bump stiffness values obtained from scaling laws are used as inputs for Orbit simulation to study various cases. As the clearance of the bearing reaches the dimensions of the material surface roughness, asperity contact breaks the fluid film which results in wear. Similarly, as the rotor diameter increases (requiring larger bearing diameters), the load capacity of the fluid film should increase to prevent dry rubbing. This imposes limits on the size of the rotor diameter and consequently bearing diameter. Therefore, this thesis aims

  17. Revivals of Quantum Wave Packets

    OpenAIRE

    Bluhm, Robert; Kostelecky, Alan; Porter, James; Tudose, Bogdan

    1997-01-01

    We present a generic treatment of wave-packet revivals for quantum-mechanical systems. This treatment permits a classification of certain ideal revival types. For example, wave packets for a particle in a one-dimensional box are shown to exhibit perfect revivals. We also examine the revival structure of wave packets for quantum systems with energies that depend on two quantum numbers. Wave packets in these systems exhibit quantum beats in the initial motion as well as new types of long-term r...

  18. Electromagnetic waves in stratified media

    CERN Document Server

    Wait, James R; Fock, V A; Wait, J R

    2013-01-01

    International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne

  19. Numerical Investigation of Three-dimensional Instability of Standing Waves

    Science.gov (United States)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2002-11-01

    We study the three-dimensional instability of finite-amplitude standing waves under the influence of gravity using the transition matrix method. For accurate calculation of the transition matrices, we apply an efficient high-order spectral element method for nonlinear wave dynamics in complex domain. We consider two types of standing waves: (a) plane standing waves; and (b) standing waves in a circular tank. For the former, in addition to the confirmation of the side-band-like instability, we find a new three-dimensional instability for arbitrary base standing waves. The dominant component of the unstable disturbance is an oblique standing wave, with an arbitrary angle relative to the base flow, whose frequency is approximately equal to that of the base standing wave. Based on direct simulations, we confirm such a three-dimensional instability and show the occurrence of the Fermi-Pasta-Ulam recurrence phenomenon during nonlinear evolution. For the latter, we find that beyond a threshold wave steepness, the standing wave with frequency Ω becomes unstable to a small three-dimensional disturbance, which contains two dominant standing-wave components with frequencies ω1 and ω_2, provided that 2Ω ω1 + ω_2. The threshold wave steepness is found to decrease/increase as the radial/azimuthal wavenumber of the base standing wave increases. We show that the instability of standing waves in rectangular and circular tanks is caused by third-order quartet resonances between base flow and disturbance.

  20. INTERFERENCE FRINGES OF SOLAR ACOUSTIC WAVES AROUND SUNSPOTS

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Dean-Yi; Zhao Hui; Yang, Ming-Hsu; Liang, Zhi-Chao, E-mail: chou@phys.nthu.edu.tw [Physics Department, National Tsing Hua University, Hsinchu, Taiwan (China)

    2012-10-20

    Solar acoustic waves are scattered by a sunspot due to the interaction between the acoustic waves and the sunspot. The sunspot, excited by the incident wave, generates the scattered wave. The scattered wave is added to the incident wave to form the total wave around the sunspot. The interference fringes between the scattered wave and the incident wave are visible in the intensity of the total wave because the coherent time of the incident wave is of the order of a wave period. The strength of the interference fringes anti-correlates with the width of temporal spectra of the incident wave. The separation between neighboring fringes increases with the incident wavelength and the sunspot size. The strength of the fringes increases with the radial order n of the incident wave from n = 0 to n = 2, and then decreases from n = 2 to n = 5. The interference fringes play a role analogous to holograms in optics. This study suggests the feasibility of using the interference fringes to reconstruct the scattered wavefields of the sunspot, although the quality of the reconstructed wavefields is sensitive to the noise and errors in the interference fringes.

  1. Nonsimilar Solution for Shock Waves in a Rotational Axisymmetric Perfect Gas with a Magnetic Field and Exponentially Varying Density

    Science.gov (United States)

    Nath, G.; Sinha, A. K.

    2017-01-01

    The propagation of a cylindrical shock wave in an ideal gas in the presence of a constant azimuthal magnetic field with consideration for the axisymmetric rotational effects is investigated. The ambient medium is assumed to have the radial, axial, and azimuthal velocity components. The fluid velocities and density of the ambient medium are assumed to vary according to an exponential law. Nonsimilar solutions are obtained by taking into account the vorticity vector and its components. The dependences of the characteristics of the problem on the Alfven-Mach number and time are obtained. It is shown that the presence of a magnetic field has a decaying effect on the shock wave. The pressure and density are shown to vanish at the inner surface (piston), and hence a vacuum forms at the line of symmetry.

  2. Radial head fracture associated with posterior interosseous nerve injury

    Directory of Open Access Journals (Sweden)

    Bernardo Barcellos Terra

    Full Text Available ABSTRACT Fractures of the radial head and radial neck correspond to 1.7-5.4% of all fractures and approximately 30% may present associated injuries. In the literature, there are few reports of radial head fracture with posterior interosseous nerve injury. This study aimed to report a case of radial head fracture associated with posterior interosseous nerve injury. CASE REPORT: A male patient, aged 42 years, sought medical care after falling from a skateboard. The patient related pain and limitation of movement in the right elbow and difficulty to extend the fingers of the right hand. During physical examination, thumb and fingers extension deficit was observed. The wrist extension showed a slight radial deviation. After imaging, it became evident that the patient had a fracture of the radial head that was classified as grade III in the Mason classification. The patient underwent fracture fixation; at the first postoperative day, thumb and fingers extension was observed. Although rare, posterior interosseous nerve branch injury may be associated with radial head fractures. In the present case, the authors believe that neuropraxia occurred as a result of the fracture hematoma and edema.

  3. Nonstandard jump functions for radically symmetric shock waves

    International Nuclear Information System (INIS)

    Baty, Roy S.; Tucker, Don H.; Stanescu, Dan

    2008-01-01

    Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function.

  4. Generation of Internal Waves by Buoyant Bubbles in Galaxy Clusters and Heating of Intracluster Medium

    Science.gov (United States)

    Zhang, Congyao; Churazov, Eugene; Schekochihin, Alexander A.

    2018-05-01

    Buoyant bubbles of relativistic plasma in cluster cores plausibly play a key role in conveying the energy from a supermassive black hole to the intracluster medium (ICM) - the process known as radio-mode AGN feedback. Energy conservation guarantees that a bubble loses most of its energy to the ICM after crossing several pressure scale heights. However, actual processes responsible for transferring the energy to the ICM are still being debated. One attractive possibility is the excitation of internal waves, which are trapped in the cluster's core and eventually dissipate. Here we show that a sufficient condition for efficient excitation of these waves in stratified cluster atmospheres is flattening of the bubbles in the radial direction. In our numerical simulations, we model the bubbles phenomenologically as rigid bodies buoyantly rising in the stratified cluster atmosphere. We find that the terminal velocities of the flattened bubbles are small enough so that the Froude number Fr ≲ 1. The effects of stratification make the dominant contribution to the total drag force balancing the buoyancy force. Clear signs of internal waves are seen in the simulations. These waves propagate horizontally and downwards from the rising bubble, spreading their energy over large volumes of the ICM. If our findings are scaled to the conditions of the Perseus cluster, the expected terminal velocity is ˜100 - 200 km s-1 near the cluster cores, which is in broad agreement with direct measurements by the Hitomi satellite.

  5. Air Turbines for Wave Energy Conversion

    Directory of Open Access Journals (Sweden)

    Manabu Takao

    2012-01-01

    Full Text Available This paper describes the present status of the art on air turbines, which could be used for wave energy conversion. The air turbines included in the paper are as follows: Wells type turbines, impulse turbines, radial turbines, cross-flow turbine, and Savonius turbine. The overall performances of the turbines under irregular wave conditions, which typically occur in the sea, have been compared by numerical simulation and sea trial. As a result, under irregular wave conditions it is found that the running and starting characteristics of the impulse type turbines could be superior to those of the Wells turbine. Moreover, as the current challenge on turbine technology, the authors explain a twin-impulse turbine topology for wave energy conversion.

  6. A Theoretical Investigation of Radial Lateral Wells with Shockwave Completion in Shale Gas Reservoirs

    Science.gov (United States)

    Shan, Jia

    As its role in satisfying the energy demand of the U.S. and as a clean fuel has become more significant than ever, the shale gas production in the U.S. has gained increasing momentum over recent years. Thus, effective and environmentally friendly methods to extract shale gas are critical. Hydraulic fracturing has been proven to be efficient in the production of shale gas. However, environmental issues such as underground water contamination and high usage of water make this technology controversial. A potential technology to eliminate the environmental issues concerning water usage and contamination is to use blast fracturing, which uses explosives to create fractures. It can be further aided by HEGF and multi-pulse pressure loading technology, which causes less crushing effect near the wellbore and induces longer fractures. Radial drilling is another relatively new technology that can bypass damage zones due to drilling and create a larger drainage area through drilling horizontal wellbores. Blast fracturing and radial drilling both have the advantage of cost saving. The successful combination of blast fracturing and radial drilling has a great potential for improving U.S. shale gas production. An analytical productivity model was built in this study, considering linear flow from the reservoir rock to the fracture face, to analyze factors affecting shale gas production from radial lateral wells with shockwave completion. Based on the model analyses, the number of fractures per lateral is concluded to be the most effective factor controlling the productivity index of blast-fractured radial lateral wells. This model can be used for feasibility studies of replacing hydraulic fracturing by blast fracturing in shale gas well completions. Prediction of fracture geometry is recommended for future studies.

  7. Radial-Velocity Signatures of Magnetic Features on the Sun Observed as a Star

    Science.gov (United States)

    Palumbo, M. L., III; Haywood, R. D.; Saar, S. H.; Dupree, A. K.; Milbourne, T. W.

    2017-12-01

    In recent years, the search for Earth-mass planets using radial-velocity measurements has become increasingly limited by signals arising from stellar activity. Individual magnetic features induce localized changes in intensity and velocity, which combine to change the apparent radial velocity of the star. Therefore it is critical to identify an indicator of activity-driven radial-velocity variations on the timescale of stellar rotation periods. We use 617.3 nm photospheric filtergrams, magnetograms, and dopplergrams from SDO/HMI and 170.0 nm chromospheric filtergrams from AIA to identify magnetically-driven solar features and reconstruct the integrated solar radial velocity with six samples per day over the course of 2014. Breaking the solar image up into regions of umbrae, penumbrae, quiet Sun, network, and plages, we find a distinct variation in the center-to-limb intensity-weighted velocity for each region. In agreement with past studies, we find that the suppression of convective blueshift is dominated by plages and network, rather than dark photospheric features. In the future, this work will be highly useful for identifying indicators which correlate with rotationally modulated radial-velocity variations. This will allow us to break the activity barrier that currently precludes the precise characterization of exoplanet properties at the lowest masses. This work was supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313. This work was performed in part under contract with the California Institute of Technology (Caltech)/Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute.

  8. Meshfree Local Radial Basis Function Collocation Method with Image Nodes

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seung Ki; Kim, Minjae [Pukyong National University, Busan (Korea, Republic of)

    2017-07-15

    We numerically solve two-dimensional heat diffusion problems by using a simple variant of the meshfree local radial-basis function (RBF) collocation method. The main idea is to include an additional set of sample nodes outside the problem domain, similarly to the method of images in electrostatics, to perform collocation on the domain boundaries. We can thereby take into account the temperature profile as well as its gradients specified by boundary conditions at the same time, which holds true even for a node where two or more boundaries meet with different boundary conditions. We argue that the image method is computationally efficient when combined with the local RBF collocation method, whereas the addition of image nodes becomes very costly in case of the global collocation. We apply our modified method to a benchmark test of a boundary value problem, and find that this simple modification reduces the maximum error from the analytic solution significantly. The reduction is small for an initial value problem with simpler boundary conditions. We observe increased numerical instability, which has to be compensated for by a sufficient number of sample nodes and/or more careful parameter choices for time integration.

  9. Multicore fibre photonic lanterns for precision radial velocity Science

    Science.gov (United States)

    Gris-Sánchez, Itandehui; Haynes, Dionne M.; Ehrlich, Katjana; Haynes, Roger; Birks, Tim A.

    2018-04-01

    Incomplete fibre scrambling and fibre modal noise can degrade high-precision spectroscopic applications (typically high spectral resolution and high signal to noise). For example, it can be the dominating error source for exoplanet finding spectrographs, limiting the maximum measurement precision possible with such facilities. This limitation is exacerbated in the next generation of infra-red based systems, as the number of modes supported by the fibre scales inversely with the wavelength squared and more modes typically equates to better scrambling. Substantial effort has been made by major research groups in this area to improve the fibre link performance by employing non-circular fibres, double scramblers, fibre shakers, and fibre stretchers. We present an original design of a multicore fibre (MCF) terminated with multimode photonic lantern ports. It is designed to act as a relay fibre with the coupling efficiency of a multimode fibre (MMF), modal stability similar to a single-mode fibre and low loss in a wide range of wavelengths (380 nm to 860 nm). It provides phase and amplitude scrambling to achieve a stable near field and far-field output illumination pattern despite input coupling variations, and low modal noise for increased stability for high signal-to-noise applications such as precision radial velocity (PRV) science. Preliminary results are presented for a 511-core MCF and compared with current state of the art octagonal fibre.

  10. Design and Numerical Simulation of Radial Inflow Turbine Volute

    Science.gov (United States)

    Shah, Samip P.; Channiwala, S. A.; Kulshreshtha, D. B.; Chaudhari, Gaurang

    2014-12-01

    The volute of a radial inflow turbine has to be designed to ensure that the desired rotor inlet conditions like absolute Mach number, flow angle etc. are attained. For the reasonable performance of vaneless volute turbine care has to be taken for reduction in losses at an appropriate flow angle at the rotor inlet, in the direction of volute, whose function is to convert gas energy into kinetic energy and direct the flow towards the rotor inlet at an appropriate flow angle with reduced losses. In literature it was found that the incompressible approaches failed to provide free vortex and uniform flow at rotor inlet for compressible flow regimes. So, this paper describes a non-dimensional design procedure for a vaneless turbine volute for compressible flow regime and investigates design parameters, such as the distribution of area ratio and radius ratio as a function of azimuth angle. The nondimensional design is converted in dimensional form for three different volute cross sections. A commercial computational fluid dynamics code is used to develop numerical models of three different volute cross sections. From the numerical models, losses generation in the different volutes are identified and compared. The maximum pressure loss coefficient for Trapezoidal cross section is 0.1075, for Bezier-trapezoidal cross section is 0.0677 and for circular cross section is 0.0438 near tongue region, which suggested that the circular cross section will give a better efficiency than other types of volute cross sections.

  11. Dynamics of Radially Expanding Liquid Sheets

    Science.gov (United States)

    Majumdar, Nayanika; Tirumkudulu, Mahesh S.

    2018-04-01

    The process of atomization often involves ejecting thin liquid sheets at high speeds from a nozzle that causes the sheet to flap violently and break up into fine droplets. The flapping of the liquid sheet has long been attributed to the sheet's interaction with the surrounding gas phase. Here, we present experimental evidence to the contrary and show that the flapping is caused by the thinning of the liquid sheet as it spreads out from the nozzle exit. The measured growth rates of the waves agree remarkably well with the predictions of a recent theory that accounts for the sheet's thinning but ignores aerodynamic interactions. We anticipate these results to not only lead to more accurate predictions of the final drop-size distribution but also enable more efficient designs of atomizers.

  12. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  13. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  14. Stellar Angular Momentum Distributions and Preferential Radial Migration

    Science.gov (United States)

    Wyse, Rosemary; Daniel, Kathryne J.

    2018-04-01

    I will present some results from our recent investigations into the efficiency of radial migration in stellar disks of differing angular momentum distributions, within a given adopted 2D spiral disk potential. We apply to our models an analytic criterion that determines whether or not individual stars are in orbits that could lead to radial migration around the corotation resonance. We couch our results in terms of the local stellar velocity dispersion and find that the fraction of stars that could migrate radially decreases as the velocity dispersion increases. I will discuss implications and comparisons with the results of other approaches.

  15. Metamaterials and wave control

    CERN Document Server

    Lheurette, Eric

    2013-01-01

    Since the concept was first proposed at the end of the 20th Century, metamaterials have been the subject of much research and discussion throughout the wave community. More than 10 years later, the number of related published articles is increasing significantly. Onthe one hand, this success can be attributed to dreams of new physical objects which are the consequences of the singular properties of metamaterials. Among them, we can consider the examples of perfect lensing and invisibility cloaking. On other hand,metamaterials also provide new tools for the design of well-known wave functions s

  16. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Knapp, W.

    2006-01-01

    Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during this ext......Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during...... this extended period. The prototype is highly instrumented. The overtopping characteristic and the power produced are presented here. This has enabled comparison between the prototype and earlier results from both laboratory model and computer simulation. This gives the optimal operating point and the expected...... power of the device. The project development team has gained much soft experience from working in the harsh offshore environment. In particular the effect of marine growth in the draft tubes of the turbines has been investigated. The control of the device has been a focus for development as is operates...

  17. Adaptive radial basis function mesh deformation using data reduction

    Science.gov (United States)

    Gillebaart, T.; Blom, D. S.; van Zuijlen, A. H.; Bijl, H.

    2016-09-01

    Radial Basis Function (RBF) mesh deformation is one of the most robust mesh deformation methods available. Using the greedy (data reduction) method in combination with an explicit boundary correction, results in an efficient method as shown in literature. However, to ensure the method remains robust, two issues are addressed: 1) how to ensure that the set of control points remains an accurate representation of the geometry in time and 2) how to use/automate the explicit boundary correction, while ensuring a high mesh quality. In this paper, we propose an adaptive RBF mesh deformation method, which ensures the set of control points always represents the geometry/displacement up to a certain (user-specified) criteria, by keeping track of the boundary error throughout the simulation and re-selecting when needed. Opposed to the unit displacement and prescribed displacement selection methods, the adaptive method is more robust, user-independent and efficient, for the cases considered. Secondly, the analysis of a single high aspect ratio cell is used to formulate an equation for the correction radius needed, depending on the characteristics of the correction function used, maximum aspect ratio, minimum first cell height and boundary error. Based on the analysis two new radial basis correction functions are derived and proposed. This proposed automated procedure is verified while varying the correction function, Reynolds number (and thus first cell height and aspect ratio) and boundary error. Finally, the parallel efficiency is studied for the two adaptive methods, unit displacement and prescribed displacement for both the CPU as well as the memory formulation with a 2D oscillating and translating airfoil with oscillating flap, a 3D flexible locally deforming tube and deforming wind turbine blade. Generally, the memory formulation requires less work (due to the large amount of work required for evaluating RBF's), but the parallel efficiency reduces due to the limited

  18. Conditions for sustaining low-pressure plasma columns by travelling electromagnetic UHF waves

    International Nuclear Information System (INIS)

    Benova, E.; Zhelyazkov, I.

    1997-01-01

    The paper considers the conditions for sustaining low-pressure plasma columns by travelling electromagnetic waves in symmetric and dipolar modes, respectively. The treatment is fully electrodynamic. It is shown that the wave energy flux along the plasma column determines the conditions for sustaining the discharge. In particular as the plasma is sustained by a symmetric wave whose flux depends mainly on the radial distribution of the wave electric field whilst for a dipolar wave sustained plasma the flux is specified by the magnitude of the axial wave field component at the plasma-dielectric interface. (orig.)

  19. Radial Variations of Outward and Inward Alfvénic Fluctuations Based on Ulysses Observations

    Science.gov (United States)

    Yang, L.; Lee, L. C.; Li, J. P.; Luo, Q. Y.; Kuo, C. L.; Shi, J. K.; Wu, D. J.

    2017-12-01

    Ulysses magnetic and plasma data are used to study hourly scale Alfvénic fluctuations in the solar polar wind. The calculated energy ratio {R}{vA}2(cal) of inward to outward Alfvén waves is obtained from the observed Walén slope through an analytical expression, and the observed {R}{vA}2(obs) is based on a direct decomposition of original Alfvénic fluctuations into outward- and inward-propagating Alfvén waves. The radial variation of {R}{vA}2(cal) shows a monotonically increasing trend with heliocentric distance r, implying the increasing local generation or contribution of inward Alfvén waves. The contribution is also shown by the radial increase in the occurrence of dominant inward fluctuations. We further pointed out a higher occurrence (˜ 83 % of a day in average) of dominant outward Alfvénic fluctuations in the solar wind than previously estimated. Since {R}{vA}2(cal) is more accurate than {R}{vA}2(obs) in the measurement of the energy ratio for dominant outward fluctuations, the values of {R}{vA}2(cal) in our results are likely more realistic in the solar wind than those previously estimated as well as {R}{vA}2(obs) in our results. The duration ratio R T of dominant inward to all Alfvénic fluctuations increases monotonically with r, and is about two or more times that from Voyager 2 observations at r≥slant 4 {au}. These results reveal new qualitative and quantitative features of Alfvénic fluctuations therein compared with previous studies and put constraints on modeling the variation of solar wind fluctuations.

  20. Propulsion at low Reynolds number

    International Nuclear Information System (INIS)

    Najafi, Ali; Golestanian, Ramin

    2005-01-01

    We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium

  1. Propulsion at low Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Ali [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of); Faculty of Science, Zanjan University, Zanjan 313 (Iran, Islamic Republic of); Golestanian, Ramin [Institute for Advanced Studies in Basic Sciences, Zanjan 45195-159 (Iran, Islamic Republic of)

    2005-04-13

    We study the propulsion of two model swimmers at low Reynolds number. Inspired by Purcell's model, we propose a very simple one-dimensional swimmer consisting of three spheres that are connected by two arms whose lengths can change between two values. The proposed swimmer can swim with a special type of motion, which breaks the time-reversal symmetry. We also show that an ellipsoidal membrane with tangential travelling wave on it can also propel itself in the direction preferred by the travelling wave. This system resembles the realistic biological animals like Paramecium.

  2. Strain Imaging Using Terahertz Waves and Metamaterials

    Science.gov (United States)

    2016-11-01

    predictions. 14. SUBJECT TERMS Birefringence, Terahertz Waves, Metamaterials 15. NUMBER OF PAGES 16 16. PRICE CODE 17. SECURITY...opaque objects by using the principles of strain-induced birefringence. 4 III. CONCEPT To overcome the inability of visual light to penetrate ...opaque objects, terahertz radiation was investigated. Longer wavelength EM waves, such as radio waves, have excellent penetration ability but low image

  3. Stochastic generation of continuous wave spectra

    DEFF Research Database (Denmark)

    Trulsen, J.; Dysthe, K. B.; Pécseli, Hans

    1983-01-01

    Wave packets of electromagnetic or Langmuir waves trapped in a well between oscillating reflectors are considered. An equation for the temporal evolution of the probability distribution for the carrier wave number is derived, and solved analytically in terms of moments in the limits of long...

  4. Wind, Wave, and Tidal Energy Without Power Conditioning

    Science.gov (United States)

    Jones, Jack A.

    2013-01-01

    Most present wind, wave, and tidal energy systems require expensive power conditioning systems that reduce overall efficiency. This new design eliminates power conditioning all, or nearly all, of the time. Wind, wave, and tidal energy systems can transmit their energy to pumps that send high-pressure fluid to a central power production area. The central power production area can consist of a series of hydraulic generators. The hydraulic generators can be variable displacement generators such that the RPM, and thus the voltage, remains constant, eliminating the need for further power conditioning. A series of wind blades is attached to a series of radial piston pumps, which pump fluid to a series of axial piston motors attached to generators. As the wind is reduced, the amount of energy is reduced, and the number of active hydraulic generators can be reduced to maintain a nearly constant RPM. If the axial piston motors have variable displacement, an exact RPM can be maintained for all, or nearly all, wind speeds. Analyses have been performed that show over 20% performance improvements with this technique over conventional wind turbines

  5. Quantum wave packet revivals

    International Nuclear Information System (INIS)

    Robinett, R.W.

    2004-01-01

    The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet ('minipackets' or 'clones') is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems

  6. Granular Corneal Dystrophy Manifesting after Radial Keratotomy

    Directory of Open Access Journals (Sweden)

    Sepehr Feizi

    2008-12-01

    Full Text Available

    PURPOSE: To report manifestation of granular corneal dystrophy after radial keratotomy (RK. CASE REPORT: A 32-year-old man presented with white radial lines in both corneas. He had undergone uncomplicated RK in both eyes 8 years ago. Preoperative refraction had been OD: -3.5 -0.75@180 and OS: -3.0 -0.5@175. Uncorrected visual acuity was OD: 8/10 and OS: 7/10; best corrected visual acuity was 9/10 in both eyes with OD: -0.5 -0.5@60 and OS: -0.75 -0.5@80. Slit lamp examination revealed discrete well-demarcated whitish lesions with clear intervening stroma in the central anterior cornea consistent with granular dystrophy. Similar opacities were present within the RK incisions. CONCLUSION: Granular dystrophy deposits may appear within RK incisions besides other previously reported locations.