WorldWideScience

Sample records for radial velocity curve

  1. Radial velocity curves of ellipsoidal red giant binaries in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Nie, J. D.; Wood, P. R.

    2014-01-01

    Ellipsoidal red giant binaries are close binary systems where an unseen, relatively close companion distorts the red giant, leading to light variations as the red giant moves around its orbit. These binaries are likely to be the immediate evolutionary precursors of close binary planetary nebula and post-asymptotic giant branch and post-red giant branch stars. Due to the MACHO and OGLE photometric monitoring projects, the light variability nature of these ellipsoidal variables has been well studied. However, due to the lack of radial velocity curves, the nature of their masses, separations, and other orbital details has so far remained largely unknown. In order to improve this situation, we have carried out spectral monitoring observations of a large sample of 80 ellipsoidal variables in the Large Magellanic Cloud and we have derived radial velocity curves. At least 12 radial velocity points with good quality were obtained for most of the ellipsoidal variables. The radial velocity data are provided with this paper. Combining the photometric and radial velocity data, we present some statistical results related to the binary properties of these ellipsoidal variables.

  2. Photoelectric Radial Velocities, Paper XIX Additional Spectroscopic ...

    Indian Academy of Sciences (India)

    ian velocity curve that does justice to the measurements, but it cannot be expected to have much predictive power. Key words. Stars: late-type—stars: radial velocities—spectroscopic binaries—orbits. 0. Preamble. The 'Redman K stars' are a lot of seventh-magnitude K stars whose radial velocities were first observed by ...

  3. A Refined Radial Velocity Curve for the L Dwarf Donor of WZ Sagittae

    Science.gov (United States)

    Harrison, Thomas E.

    2017-12-01

    We have obtained a radial velocity curve for the L dwarf donor in WZ Sagittae using phase-resolved J-band spectra obtained with GNIRS on Gemini-north. We find a radial velocity semi-amplitude of {K}2=525+/- 11 {km} {{{s}}}-1. This result reduces the error bar by a factor of three over previous attempts. A relatively strong, unidentified emission line centered near 1.177 μm, corrupts the blue K i doublet in these data. While an H i emission feature near 1.2527 μm distorts the depth of the red K i doublet. In addition, a weak H i emission line at 1.1969 μm falls in the middle of the strongest FeH feature in these spectra. The combination of these contaminants prevents us from precisely constraining the spectral type of the donor. The strength of the absorption features remains consistent with an early L spectral type. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  4. VizieR Online Data Catalog: l Car radial velocity curves (Anderson, 2016)

    Science.gov (United States)

    Anderson, R. I.

    2018-02-01

    Line-of-sight (radial) velocities of the long-period classical Cepheid l Carinae were measured from 925 high-quality optical spectra recorded using the fiber-fed high-resolution (R~60,000) Coralie spectrograph located at the Euler telescope at La Silla Observatory, Chile. The data were taken between 2014 and 2016. This is the full version of Tab. 2 presented partially in the paper. Line shape parameters (depth, width, asymmetry) are listed for the computed cross-correlation profiles (CCFs). Radial velocities were determined using different techniques (Gaussian, bi-Gaussian) and measured on CCFs computed using three different numerical masks (G2, weak lines, strong lines). (1 data file).

  5. Light and velocity curve bumps for BW Vulpeculae

    International Nuclear Information System (INIS)

    Pesnell, W.D.; Cox, A.N.

    1980-01-01

    Bumps in the light and radial velocity curves of the Beta Cephei star BW Vulpeculae were modeled. Two mechanisms, a resonance phenomena and non-linear pulsations, were investigated. The resonance condition was clearly not fulfilled, the calculated period ratio being approximately 0.60, where a value of 0.50 L +- 0.03 is required for resonance. In the non-linear calculation, the bump appears, with the correct phase, but was found at an amplitude that is too large. Further, the light curve does not show any bump-like feature. The cause of the bump is the large spurious boost given the star's velocity field by the solution methods. The calculated periods of the stellar models are shorter than those of previous calculations, enhancing the possibility that these stars pulsate in a radial fundamental mode

  6. Solar updraft power generator with radial and curved vanes

    Science.gov (United States)

    Hafizh, Hadyan; Hamsan, Raziff; Zamri, Aidil Azlan Ahmad; Keprawi, Mohamad Fairuz Mohamad; Shirato, Hiromichi

    2018-02-01

    Solar radiation is the largest source of energy available on earth and the solar updraft power generator (SUPG) is a renewable energy facility capable of harnessing its abundant power. Unlike the conventional wind turbines that harness natural wind in the atmosphere and often encounter with the intermittent issue or even complete cut-off from airflow, the SUPG creates artificial wind as a result of solar-induced convective flows. However, the SUPG has an inherent low total efficiency due to the conversion of thermal energy into pressure energy. Acknowledging the low efficiency and considering its potential as a renewable energy facility, the current work aims to increase the total efficiency by installing a series of guide walls inside the collector. Two types of guide walls were used i.e. radial and curved vanes. The result with curved vanes showed that the updraft velocity is higher compare to those without vanes. About 18% and 64% improvement of updraft velocity and mechanical power were attained respectively. Furthermore, it was observed that the role of radial vanes configuration was more to produce a smooth updraft velocity profile rather than increasing the total efficiency.

  7. Influence of radial magnetic field on the peristaltic flow of Williamson fluid in a curved complaint walls channel

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available Peristaltic transport of Williamson fluid in a curved geometry is modeled. Problem formulation is completed by complaint walls of channel. Radial magnetic field in the analysis is taken into account. Resulting problem formulation is simplified using long wavelength and low Reynolds number approximations. Series solution is obtained for small Weissenberg number. Influences of different embedded parameters on the axial velocity and stream function are examined. As expected the velocity in curved channel is not symmetric. Axial velocity is noticed decreasing for Hartman number. Trapped bolus increases for Hartman and curvature parameters. Keywords: Williamson fluid, Curved channel, Radial magnetic field, Complaint walls

  8. Radial velocities of RR Lyrae stars

    International Nuclear Information System (INIS)

    Hawley, S.L.; Barnes, T.G. III

    1985-01-01

    283 spectra of 57 RR Lyrae stars have been obtained using the 2.1-m telescope at McDonald Observatory. Radial velocities were determined using a software cross-correlation technique. New mean radial velocities were determined for 46 of the stars. 11 references

  9. RADIAL VELOCITY OBSERVATIONS AND LIGHT CURVE NOISE MODELING CONFIRM THAT KEPLER-91b IS A GIANT PLANET ORBITING A GIANT STAR

    International Nuclear Information System (INIS)

    Barclay, Thomas; Huber, Daniel; Rowe, Jason F.; Quintana, Elisa V.; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Foreman-Mackey, Daniel

    2015-01-01

    Kepler-91b is a rare example of a transiting hot Jupiter around a red giant star, providing the possibility to study the formation and composition of hot Jupiters under different conditions compared to main-sequence stars. However, the planetary nature of Kepler-91b, which was confirmed using phase-curve variations by Lillo-Box et al., was recently called into question based on a re-analysis of Kepler data. We have obtained ground-based radial velocity observations from the Hobby-Eberly Telescope and unambiguously confirm the planetary nature of Kepler-91b by simultaneously modeling the Kepler and radial velocity data. The star exhibits temporally correlated noise due to stellar granulation which we model as a Gaussian Process. We hypothesize that it is this noise component that led previous studies to suspect Kepler-91b to be a false positive. Our work confirms the conclusions presented by Lillo-Box et al. that Kepler-91b is a 0.73 ± 0.13 M Jup planet orbiting a red giant star

  10. VizieR Online Data Catalog: Radial velocity curve of 51 Peg (Birkby+, 2017)

    Science.gov (United States)

    Birkby, J. L.; de Kok, R. J.; Brogi, M.; Schwarz, H.; Snellen, I. A. G.

    2017-07-01

    We observed the bright star 51 Peg (G2.5V, V=5.46mag, K=3.91mag) for 3.7hr during the night beginning 2010 October 21, using the CRyogenic InfraRed Echelle Spectrograph (CRIRES) mounted at Nasmyth A at the VLT (8.2 m UT1/Antu), Cerro Paranal, Chile. The observations were collected as part of the ESO large program 186.C-0289. The instrument setup consisted of a 0.2 arcsec slit centred on 3236nm (order 17), in combination with the Multi-Application Curvature Adaptive Optic system (MACAO). The CRIRES infrared detector is comprised of four Aladdin III InSb-arrays, each with 1024*512 pixels, and separated by a gap of 280 pixels. The resulting wavelength coverage of the observations was 3.1806R{approx}100000 per resolution element. We observed 51 Peg continuously while its hot Jupiter companion passed through orbital phases 0.55data are given in Table 1 and span observing dates from 1994 September 15 to 2014 July 9, resulting in 639 radial velocity measurements over 20 years. The table includes the discovery measurements from the ELODIE spectrograph at Observatoire Haute Provence and subsequent additional monitoring. We took these radial velocity measurements from the Naef et al. 2004 (Cat. J/A+A/414/351) compilation. We also included the legacy data set from Lick Observatory observed with the Hamilton spectrograph, taking measurements from the self-consistent reprocessing of all the Lick spectra presented by Fischer et al. 2014 (Cat. J/ApJS/210/5). Finally, we included more recent additional monitoring from the High Resolution Echelle Spectrometer (HIRES) at the Keck Observatory, and extracted RVs from observations with the High Accuracy Radial velocity Planet Searcher (HARPS) at the ESO-3.6m telescope in 2013 (ESO program ID 091.C-0271, PI: Santos). The reduced HARPS spectra were obtained from the ESO Science Archive (http://archive.eso.org/wdb/wdb/adp/phase3_spectral/query). (1 data file).

  11. Current density and polarization curves for radial flow field patterns applied to PEMFCs (Proton Exchange Membrane Fuel Cells)

    International Nuclear Information System (INIS)

    Cano-Andrade, S.; Hernandez-Guerrero, A.; Spakovsky, M.R. von; Damian-Ascencio, C.E.; Rubio-Arana, J.C.

    2010-01-01

    A numerical solution of the current density and velocity fields of a 3-D PEM radial configuration fuel cell is presented. The energy, momentum and electrochemical equations are solved using a computational fluid dynamics (CFD) code based on a finite volume scheme. There are three cases of principal interest for this radial model: four channels, eight channels and twelve channels placed in a symmetrical path over the flow field plate. The figures for the current-voltage curves for the three models proposed are presented, and the main factors that affect the behavior of each of the curves are discussed. Velocity contours are presented for the three different models, showing how the fuel cell behavior is affected by the velocity variations in the radial configuration. All these results are presented for the case of high relative humidity. The favorable results obtained for this unconventional geometry seems to indicate that this geometry could replace the conventional commercial geometries currently in use.

  12. Illumination Profile & Dispersion Variation Effects on Radial Velocity Measurements

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil B.; Ma, Bo; Li, Rui; SDSS-III

    2015-01-01

    The Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) measures radial velocities using a fiber-fed dispersed fixed-delay interferometer (DFDI) with a moderate dispersion spectrograph. This setup allows a unique insight into the 2D illumination profile from the fiber on to the dispersion grating. Illumination profile investigations show large changes in the profile over time and fiber location. These profile changes are correlated with dispersion changes and long-term radial velocity offsets, a major problem within the MARVELS radial velocity data. Characterizing illumination profiles creates a method to both detect and correct radial velocity offsets, allowing for better planet detection. Here we report our early results from this study including improvement of radial velocity data points from detected giant planet candidates. We also report an illumination profile experiment conducted at the Kitt Peak National Observatory using the EXPERT instrument, which has a DFDI mode similar to MARVELS. Using profile controlling octagonal-shaped fibers, long term offsets over a 3 month time period were reduced from ~50 m/s to within the photon limit of ~4 m/s.

  13. A New Filtering Algorithm Utilizing Radial Velocity Measurement

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-feng; DU Zi-cheng; PAN Quan

    2005-01-01

    Pulse Doppler radar measurements consist of range, azimuth, elevation and radial velocity. Most of the radar tracking algorithms in engineering only utilize position measurement. The extended Kalman filter with radial velocity measureneut is presented, then a new filtering algorithm utilizing radial velocity measurement is proposed to improve tracking results and the theoretical analysis is also given. Simulation results of the new algorithm, converted measurement Kalman filter, extended Kalman filter are compared. The effectiveness of the new algorithm is verified by simulation results.

  14. Radial velocity observations of VB10

    Science.gov (United States)

    Deshpande, R.; Martin, E.; Zapatero Osorio, M. R.; Del Burgo, C.; Rodler, F.; Montgomery, M. M.

    2011-07-01

    VB 10 is the smallest star known to harbor a planet according to the recent astrometric study of Pravdo & Shaklan [1]. Here we present near-infrared (J-band) radial velocity of VB 10 performed from high resolution (R~20,000) spectroscopy (NIRSPEC/KECK II). Our results [2] suggest radial velocity variability with amplitude of ~1 km/s, a result that is consistent with the presence of a massive planet companion around VB10 as found via long-term astrometric monitoring of the star by Pravdo & Shaklan. Employing an entirely different technique we verify the results of Pravdo & Shaklan.

  15. Frequentist and Bayesian Orbital Parameter Estimaton from Radial Velocity Data Using RVLIN, BOOTTRAN, and RUN DMC

    Science.gov (United States)

    Nelson, Benjamin Earl; Wright, Jason Thomas; Wang, Sharon

    2015-08-01

    For this hack session, we will present three tools used in analyses of radial velocity exoplanet systems. RVLIN is a set of IDL routines used to quickly fit an arbitrary number of Keplerian curves to radial velocity data to find adequate parameter point estimates. BOOTTRAN is an IDL-based extension of RVLIN to provide orbital parameter uncertainties using bootstrap based on a Keplerian model. RUN DMC is a highly parallelized Markov chain Monte Carlo algorithm that employs an n-body model, primarily used for dynamically complex or poorly constrained exoplanet systems. We will compare the performance of these tools and their applications to various exoplanet systems.

  16. SOAP-T: a tool to study the light curve and radial velocity of a system with a transiting planet and a rotating spotted star

    Science.gov (United States)

    Oshagh, M.; Boisse, I.; Boué, G.; Montalto, M.; Santos, N. C.; Bonfils, X.; Haghighipour, N.

    2013-01-01

    We present an improved version of SOAP named "SOAP-T", which can generate the radial velocity variations and light curves for systems consisting of a rotating spotted star with a transiting planet. This tool can be used to study the anomalies inside transit light curves and the Rossiter-McLaughlin effect, to better constrain the orbital configuration and properties of planetary systems and the active zones of their host stars. Tests of the code are presented to illustrate its performance and to validate its capability when compared with analytical models and real data. Finally, we apply SOAP-T to the active star, HAT-P-11, observed by the NASA Kepler space telescope and use this system to discuss the capability of this tool in analyzing light curves for the cases where the transiting planet overlaps with the star's spots. The tool's public interface is available at http://www.astro.up.pt/resources/soap-t/

  17. A new method of measuring centre-of-mass velocities of radially pulsating stars from high-resolution spectroscopy

    Science.gov (United States)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Fossati, L.

    2018-03-01

    We present a radial velocity analysis of 20 solar neighbourhood RR Lyrae and three Population II Cepheid variables. We obtained high-resolution, moderate-to-high signal-to-noise ratio spectra for most stars; these spectra covered different pulsation phases for each star. To estimate the gamma (centre-of-mass) velocities of the programme stars, we use two independent methods. The first, `classic' method is based on RR Lyrae radial velocity curve templates. The second method is based on the analysis of absorption-line profile asymmetry to determine both pulsational and gamma velocities. This second method is based on the least-squares deconvolution (LSD) technique applied to analyse the line asymmetry that occurs in the spectra. We obtain measurements of the pulsation component of the radial velocity with an accuracy of ±3.5 km s-1. The gamma velocity was determined with an accuracy of ±10 km s-1, even for those stars having a small number of spectra. The main advantage of this method is the possibility of obtaining an estimation of gamma velocity even from one spectroscopic observation with uncertain pulsation phase. A detailed investigation of LSD profile asymmetry shows that the projection factor p varies as a function of the pulsation phase - this is a key parameter, which converts observed spectral line radial velocity variations into photospheric pulsation velocities. As a by-product of our study, we present 41 densely spaced synthetic grids of LSD profile bisectors based on atmospheric models of RR Lyr covering all pulsation phases.

  18. Radial extension of drift waves in presence of velocity profiles

    International Nuclear Information System (INIS)

    Sen, S.; Weiland, J.

    1994-01-01

    The effect of a radially varying poloidal velocity field on the recently found radially extended toroidal drift waves is investigated analytically. The role of velocity curvature (υ φ '') is found to have robust effects on the radial model structure of the mode. For a positive value of the curvature (Usually found in the H-mode edges) the radial model envelope, similar to the sheared slab case, becomes fully outgoing. The mode is therefore stable. On the other hand, for a negative value of the curvature (usually observed in the L-mode edges) all the characteristics of conventional drift waves return back. The radial mode envelope reduces to a localized Gaussian shape and the mode is therefore unstable again for typical (magnetic) shear values in tokamaks. Velocity shear (υ φ ??) on the other hand is found to have rather insignificant role both in determining the radial model structure and stability

  19. SEVEN NEW BINARIES DISCOVERED IN THE KEPLER LIGHT CURVES THROUGH THE BEER METHOD CONFIRMED BY RADIAL-VELOCITY OBSERVATIONS

    International Nuclear Information System (INIS)

    Faigler, S.; Mazeh, T.; Tal-Or, L.; Quinn, S. N.; Latham, D. W.

    2012-01-01

    We present seven newly discovered non-eclipsing short-period binary systems with low-mass companions, identified by the recently introduced BEER algorithm, applied to the publicly available 138-day photometric light curves obtained by the Kepler mission. The detection is based on the beaming effect (sometimes called Doppler boosting), which increases (decreases) the brightness of any light source approaching (receding from) the observer, enabling a prediction of the stellar Doppler radial-velocity (RV) modulation from its precise photometry. The BEER algorithm identifies the BEaming periodic modulation, with a combination of the well-known Ellipsoidal and Reflection/heating periodic effects, induced by short-period companions. The seven detections were confirmed by spectroscopic RV follow-up observations, indicating minimum secondary masses in the range 0.07-0.4 M ☉ . The binaries discovered establish for the first time the feasibility of the BEER algorithm as a new detection method for short-period non-eclipsing binaries, with the potential to detect in the near future non-transiting brown-dwarf secondaries, or even massive planets.

  20. A radial velocity survey of the Carina Nebula's O-type stars

    Science.gov (United States)

    Kiminki, Megan M.; Smith, Nathan

    2018-03-01

    We have obtained multi-epoch observations of 31 O-type stars in the Carina Nebula using the CHIRON spectrograph on the CTIO/SMARTS 1.5-m telescope. We measure their radial velocities to 1-2 km s-1 precision and present new or updated orbital solutions for the binary systems HD 92607, HD 93576, HDE 303312, and HDE 305536. We also compile radial velocities from the literature for 32 additional O-type and evolved massive stars in the region. The combined data set shows a mean heliocentric radial velocity of 0.6 km s-1. We calculate a velocity dispersion of ≤9.1 km s-1, consistent with an unbound, substructured OB association. The Tr 14 cluster shows a marginally significant 5 km s-1 radial velocity offset from its neighbor Tr 16, but there are otherwise no correlations between stellar position and velocity. The O-type stars in Cr 228 and the South Pillars region have a lower velocity dispersion than the region as a whole, supporting a model of distributed massive-star formation rather than migration from the central clusters. We compare our stellar velocities to the Carina Nebula's molecular gas and find that Tr 14 shows a close kinematic association with the Northern Cloud. In contrast, Tr 16 has accelerated the Southern Cloud by 10-15 km s-1, possibly triggering further massive-star formation. The expansion of the surrounding H II region is not symmetric about the O-type stars in radial velocity space, indicating that the ionized gas is constrained by denser material on the far side.

  1. A radial velocity survey of the Carina Nebula's O-type stars

    Science.gov (United States)

    Kiminki, Megan M.; Smith, Nathan

    2018-06-01

    We have obtained multi-epoch observations of 31 O-type stars in the Carina Nebula using the CHIRON spectrograph on the CTIO/SMARTS 1.5-m telescope. We measure their radial velocities to 1-2 km s-1 precision and present new or updated orbital solutions for the binary systems HD 92607, HD 93576, HDE 303312, and HDE 305536. We also compile radial velocities from the literature for 32 additional O-type and evolved massive stars in the region. The combined data set shows a mean heliocentric radial velocity of 0.6 km s-1. We calculate a velocity dispersion of ≤9.1 km s-1, consistent with an unbound, substructured OB association. The Tr 14 cluster shows a marginally significant 5 km s-1 radial velocity offset from its neighbour Tr 16, but there are otherwise no correlations between stellar position and velocity. The O-type stars in Cr 228 and the South Pillars region have a lower velocity dispersion than the region as a whole, supporting a model of distributed massive star formation rather than migration from the central clusters. We compare our stellar velocities to the Carina Nebula's molecular gas and find that Tr 14 shows a close kinematic association with the Northern Cloud. In contrast, Tr 16 has accelerated the Southern Cloud by 10-15 km s-1, possibly triggering further massive star formation. The expansion of the surrounding H II region is not symmetric about the O-type stars in radial velocity space, indicating that the ionized gas is constrained by denser material on the far side.

  2. THE RADIAL VELOCITY EXPERIMENT (RAVE): THIRD DATA RELEASE

    International Nuclear Information System (INIS)

    Siebert, A.; Williams, M. E. K.; Siviero, A.; Boeche, C.; Steinmetz, M.; De Jong, R. S.; Enke, H.; Anguiano, B.; Reid, W.; Ritter, A.; Fulbright, J.; Wyse, R. F. G.; Munari, U.; Zwitter, T.; Watson, F. G.; Burton, D.; Cass, C. J. P.; Fiegert, K.; Hartley, M.; Russel, K. S.

    2011-01-01

    We present the third data release of the RAdial Velocity Experiment (RAVE) which is the first milestone of the RAVE project, releasing the full pilot survey. The catalog contains 83,072 radial velocity measurements for 77,461 stars in the southern celestial hemisphere, as well as stellar parameters for 39,833 stars. This paper describes the content of the new release, the new processing pipeline, as well as an updated calibration for the metallicity based upon the observation of additional standard stars. Spectra will be made available in a future release. The data release can be accessed via the RAVE Web site.

  3. Radial velocity asymmetries from jets with variable velocity profiles

    International Nuclear Information System (INIS)

    Cerqueira, A. H.; Vasconcelos, M. J.; Velazquez, P. F.; Raga, A. C.; De Colle, F.

    2006-01-01

    We have computed a set of 3-D numerical simulations of radiatively cooling jets including variabilities in both the ejection direction (precession) and the jet velocity (intermittence), using the Yguazu-a code. In order to investigate the effects of jet rotation on the shape of the line profiles, we also introduce an initial toroidal rotation velocity profile. Since the Yguazu-a code includes an atomic/ionic network, we are able to compute the emission coefficients for several emission lines, and we generate line profiles for the Hα, [O I]λ6300, [S II]λ6716 and [N II]λ6548 lines. Using initial parameters that are suitable for the DG Tau microjet, we show that the computed radial velocity shift for the medium-velocity component of the line profile as a function of distance from the jet axis is strikingly similar for rotating and non-rotating jet models

  4. Radial Velocity Survey of T Tauri Stars in Taurus-Auriga

    Science.gov (United States)

    Crockett, Christopher; Mahmud, N.; Huerta, M.; Prato, L.; Johns-Krull, C.; Hartigan, P.; Jaffe, D.

    2009-01-01

    Is the frequency of giant planet companions to young stars similar to that seen around old stars? Is the "brown dwarf desert" a product of how low-mass companion objects form, or of how they evolve? Some models indicate that both giant planets and brown dwarfs should be common at young ages within 3 AU of a primary star, but migration induced by massive disks drive brown dwarfs into the parent stars, leaving behind proportionally more giant planets. Our radial velocity survey of young stars will provide a census of the young giant planet and brown dwarf population in Taurus-Auriga. In this poster we present our progress in quantifying how spurious radial velocity signatures are caused by stellar activity and in developing models to help distinguish between companion induced and spot induced radial velocity variations. Early results stress the importance of complementary observations in both visible light and NIR. We present our technique to determine radial velocities by fitting telluric features and model stellar features to our observed spectra. Finally, we discuss ongoing observations at McDonald Observatory, KPNO, and the IRTF, and several new exoplanet host candidates.

  5. Effects of tidal distortion on binary-star velocity curves and ellipsoidal variation

    International Nuclear Information System (INIS)

    Wilson, R.E.; Sofia, S.

    1976-01-01

    Radial velocity curves for the more massive components of binaries with extreme mass ratios can show a large distortion due to tides, as first recognized by Sterne. Binaries in which the effect is large should be rare because nearly all such binaries would be in the rapid phase of mass transfer. However, the optical counterparts of some X-ray binaries may show the effect, which would then serve as a new means of extracting considerable information from the observations. The essential parts of the computational procedure are given. Light curves for ellipsoidal variables with extreme mass ratios were also computed, and were found to be less sinusoidal than those with normal mass ratios

  6. Radial velocities for the HIPPARCOS-Gaia Hundred-Thousand-Proper-Motion project

    Science.gov (United States)

    de Bruijne, J. H. J.; Eilers, A.-C.

    2012-10-01

    Context. The Hundred-Thousand-Proper-Motion (HTPM) project will determine the proper motions of ~113 500 stars using a ~23-year baseline. The proper motions will be based on space-based measurements exclusively, with the Hipparcos data, with epoch 1991.25, as first epoch and with the first intermediate-release Gaia astrometry, with epoch ~2014.5, as second epoch. The expected HTPM proper-motion standard errors are 30-190 μas yr-1, depending on stellar magnitude. Aims: Depending on the astrometric characteristics of an object, in particular its distance and velocity, its radial velocity can have a significant impact on the determination of its proper motion. The impact of this perspective acceleration is largest for fast-moving, nearby stars. Our goal is to determine, for each star in the Hipparcos catalogue, the radial-velocity standard error that is required to guarantee a negligible contribution of perspective acceleration to the HTPM proper-motion precision. Methods: We employ two evaluation criteria, both based on Monte-Carlo simulations, with which we determine which stars need to be spectroscopically (re-)measured. Both criteria take the Hipparcos measurement errors into account. The first criterion, the Gaussian criterion, is applicable to nearby stars. For distant stars, this criterion works but returns overly pessimistic results. We therefore use a second criterion, the robust criterion, which is equivalent to the Gaussian criterion for nearby stars but avoids biases for distant stars and/or objects without literature radial velocity. The robust criterion is hence our prefered choice for all stars, regardless of distance. Results: For each star in the Hipparcos catalogue, we determine the confidence level with which the available radial velocity and its standard error, taken from the XHIP compilation catalogue, are acceptable. We find that for 97 stars, the radial velocities available in the literature are insufficiently precise for a 68.27% confidence

  7. The Milky Way's Circular Velocity Curve and Its Constraint on the Galactic Mass with RR Lyrae Stars

    Energy Technology Data Exchange (ETDEWEB)

    Ablimit, Iminhaji; Zhao, Gang, E-mail: iminhaji@nao.cas.cn, E-mail: gzhao@nao.cas.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-09-01

    We present a sample of 1148 ab-type RR Lyrae (RRLab) variables identified from Catalina Surveys Data Release 1, combined with SDSS DR8 and LAMOST DR4 spectral data. We first use a large sample of 860 Galactic halo RRLab stars and derive the circular velocity distributions for the stellar halo. With the precise distances and carefully determined radial velocities (the center-of-mass radial velocities) and by considering the pulsation of the RRLab stars in our sample, we can obtain a reliable and comparable stellar halo circular velocity curve. We follow two different prescriptions for the velocity anisotropy parameter β in the Jeans equation to study the circular velocity curve and mass profile. Additionally, we test two different solar peculiar motions in our calculation. The best result we obtained with the adopted solar peculiar motion 1 of ( U , V , W ) = (11.1, 12, 7.2) km s{sup −1} is that the enclosed mass of the Milky Way within 50 kpc is (3.75 ± 1.33) × 10{sup 11} M {sub ⊙} based on β = 0 and the circular velocity 180 ± 31.92 (km s{sup −1}) at 50 kpc. This result is consistent with dynamical model results, and it is also comparable to the results of previous similar works.

  8. RADIAL VELOCITY STUDIES OF CLOSE BINARY STARS. XIV

    International Nuclear Information System (INIS)

    Pribulla, Theodor; Rucinski, Slavek M.; DeBond, Heide; De Ridder, Archie; Karmo, Toomas; Thomson, J. R.; Croll, Bryce; Ogloza, Waldemar; Pilecki, Bogumil; Siwak, Michal

    2009-01-01

    Radial velocity (RV) measurements and sine curve fits to the orbital RV variations are presented for 10 close binary systems: TZ Boo, VW Boo, EL Boo, VZ CVn, GK Cep, RW Com, V2610 Oph, V1387 Ori, AU Ser, and FT UMa. Our spectroscopy revealed two quadruple systems, TZ Boo and V2610 Oph, while three stars showing small photometric amplitudes, EL Boo, V1387 Ori, and FT UMa, were found to be triple systems. GK Cep is a close binary with a faint third component. While most of the studied eclipsing systems are contact binaries, VZ CVn and GK Cep are detached or semidetached double-lined binaries, and EL Boo, V1387 Ori, and FT UMa are close binaries of uncertain binary type. The large fraction of triple and quadruple systems found in this sample supports the hypothesis of formation of close binaries in multiple stellar systems; it also demonstrates that low photometric amplitude binaries are a fertile ground for further discoveries of multiple systems.

  9. A radial velocity survey of extremely hydrogen-deficient stars

    International Nuclear Information System (INIS)

    Jeffery, C.S.; Kiel Univ.; Drilling, J.S.; Heber, U.

    1987-01-01

    A radial velocity survey of hot extremely hydrogen-deficient stars has been carried out in order to search for possible binaries. The survey found three stars to have large velocity variations. Of these, two are known hydrogen-deficient binaries and one, HDE 320156 (= LSS 4300), is a suspected binary. HDE 320156 (= LSS 4300) is therefore confirmed to be a single-lined spectroscopic hydrogen-deficient binary. The hydrogen-deficient binary stars all show weak C-lines. The remaining stars in the sample are C-strong extreme-helium (EHe) stars and did not show large-amplitude velocity variations. Small-amplitude radial velocity variations known to be present amongst the EHe stars are largely undetected. Evidence for variability is, however, present in the known variable V2076 Oph (HD 160641) and in LS IV - 1 0 2 with amplitudes between 10 and 20 km s -1 . (author)

  10. Axial and radial velocities in the creeping flow in a pipe

    Directory of Open Access Journals (Sweden)

    Zuykov Andrey L'vovich

    2014-05-01

    Full Text Available The article is devoted to analytical study of transformation fields of axial and radial velocities in uneven steady creeping flow of a Newtonian fluid in the initial portion of the cylindrical channel. It is shown that the velocity field of the flow is two-dimensional and determined by the stream function. The article is a continuation of a series of papers, where normalized analytic functions of radial axial distributions in uneven steady creeping flow in a cylindrical tube with azimuthal vorticity and stream function were obtained. There is Poiseuille profile for the axial velocity in the uniform motion of a fluid at an infinite distance from the entrance of the pipe (at x = ∞, here taken equal to zero radial velocity. There is uniform distribution of the axial velocity in the cross section at the tube inlet at x = 0, at which the axial velocity is constant along the current radius. Due to the axial symmetry of the flow on the axis of the pipe (at r = 0, the radial velocities and the partial derivative of the axial velocity along the radius, corresponding to the condition of the soft function extremum, are equal to zero. The authors stated vanishing of the velocity of the fluid on the walls of the pipe (at r = R , where R - radius of the tube due to its viscous sticking and tightness of the walls. The condition of conservation of volume flow along the tube was also accepted. All the solutions are obtained in the form of the Fourier - Bessel. It is shown that the hydraulic losses at uniform creeping flow of a Newtonian fluid correspond to Poiseuille - Hagen formula.

  11. VizieR Online Data Catalog: HD20794 HARPS radial velocities (Feng+, 2017)

    Science.gov (United States)

    Feng, F.; Tuomi, M.; Jones, H. R. A.

    2017-05-01

    HARPS radial velocities, activity indices and differential radial velocities for HD 20794. The HARPS spectra are available in the European Southern Observatory archive, and are processed using the TERRA algorithm (Anglada-Escude and Butler, 2012, Cat. J/ApJS/200/15). (1 data file).

  12. Radial Velocity Detection of Extra-Solar Planetary Systems

    Science.gov (United States)

    Cochran, William D.

    2004-01-01

    This NASA Origins Program grant supported four closely related research programs at The University of Texas at Austin: 1) The McDonald Observatory Planetary Search (MOPS) Program, using the McDonald Observatory 2.7m Harlan Smith telescope and its 2dcoude spectrometer, 2) A high-precision radial-velocity survey of Hyades dwarfs, using the Keck telescope and its HIRES spectrograph, 3) A program at McDonald Observatory to obtain spectra of the parent stars of planetary systems at R = 210,000, and 4) the start of high precision radial velocity surveys using the Hobby-Eberly Telescope. The most important results from NASA support of these research programs are described. A list of all papers published under support of this grant is included at the end.

  13. Determinations of its Absolute Dimensions and Distance by the Analyses of Light and Radial-Velocity Curves of the Contact Binary -I. V417 Aquilae

    Directory of Open Access Journals (Sweden)

    Jae Woo Lee

    2004-06-01

    Full Text Available New photometric and spectroscopic solutions of W-type overcontact binary V417 Aql were obtained by solving the UBV light curves of Samec et al. (1997 and radial-velocity ones of Lu & Rucinski (1999 with the 2003 version of the Wilson-Devinney binary code. In the light curve synthesis the light of a third-body, which Qian (2003 proposed, was considered and obtained about 2.7%, 2.2%, and 0.4% for U, B, and V bandpasses, respectively. The model with third-light is better fitted to eclipse parts than that with no third-light. Absolute dimensions of V417 Aql are determined from our solution as M1=0.53 M⊙, M2=1.45 M⊙, R1=0.84 R⊙ and R2=1.31 M⊙, and the distance to it is deduced as about 216pc. Our distance is well consistent with that (204pc derived from Rucinski & Duerbeck's (1997 relation, MV=MV(log P, B-V, but is more distant than that (131±40pc determined by the Hipparcos trigonometric parallax. The difference may result from the relatively large error of Hipparcos parallax for V417 Aql.

  14. Transit and radial velocity survey efficiency comparison for a habitable zone Earth

    International Nuclear Information System (INIS)

    Burke, Christopher J.; McCullough, P. R.

    2014-01-01

    Transit and radial velocity searches are two techniques for identifying nearby extrasolar planets to Earth that transit bright stars. Identifying a robust sample of these exoplanets around bright stars for detailed atmospheric characterization is a major observational undertaking. In this study we describe a framework that answers the question of whether a transit or radial velocity survey is more efficient at finding transiting exoplanets given the same amount of observing time. Within the framework we show that a transit survey's window function can be approximated using the hypergeometric probability distribution. We estimate the observing time required for a transit survey to find a transiting Earth-sized exoplanet in the habitable zone (HZ) with an emphasis on late-type stars. We also estimate the radial velocity precision necessary to detect the equivalent HZ Earth-mass exoplanet that also transits when using an equal amount of observing time as the transit survey. We find that a radial velocity survey with σ rv ∼ 0.6 m s –1 precision has comparable efficiency in terms of observing time to a transit survey with the requisite photometric precision σ phot ∼ 300 ppm to find a transiting Earth-sized exoplanet in the HZ of late M dwarfs. For super-Earths, a σ rv ∼ 2.0 m s –1 precision radial velocity survey has comparable efficiency to a transit survey with σ phot ∼ 2300 ppm.

  15. Photoelectric Radial Velocities, Paper XVIII Spectroscopic Orbits for ...

    Indian Academy of Sciences (India)

    The fundamental origin of the work presented here rests with the radial-velocity spectrometer that .... surfaces inevitably degrade rather rapidly in the environment in which they are called ...... are not safe to incorporate in the data set here.

  16. Stellar magnetometry and Zeeman-Doppler imaging in exo-planets research using the radial velocity method

    International Nuclear Information System (INIS)

    Hebrard, Elodie

    2015-01-01

    Forthcoming instruments dedicated to exo-planets detection through the radial velocity method are numerous, and increasingly more accurate. However this method is indirect: orbiting planets are detected and characterised from variations on the spectrum of the host star. We are therefore sensitive to all activity phenomena impacting the spectrum and producing a radial velocity signal (pulsation, granulation, spots, magnetic cycle...). The detection of rocky Earth-like planets around main-sequence stars, and of hot Jupiters into young systems, are currently limited by the intrinsic magnetic activity of the host stars. The radial velocity fluctuations caused by activity (activity jitter) can easily mimic and hide signals from such planets, whose amplitude is of a few m/s and hundreds of m/s, respectively. As a result, the detection threshold of exo-planets is largely set by the stellar activity level. Currently, efforts are invested to overcome this intrinsic limitation. During my PhD, I studied how to take advantage of imaging tomographic techniques (Zeeman-Doppler imaging, ZDI) to characterize stellar activity and magnetic field topologies, ultimately allowing us to filter out the activity jitter. My work is based on spectro-polarimetric observations of a sample of weakly-active M-dwarfs, and young active T Tauri stars. Using a modified version of ZDI, we are able to reconstruct the distribution of active regions, and then model the induced stellar signal allowing us to clean RV curves from the activity jitter. First tests demonstrate that this technique can be efficient enough to recover the planet signal, especially for the more active ones. (author)

  17. The effect of non-zero radial velocity on the impulse and circulation of starting jets

    Science.gov (United States)

    Krieg, Michael; Mohseni, Kamran

    2011-11-01

    Vortex ring formation dynamics are generally studied using two basic types of vortex generators. Piston cylinder vortex generators eject fluid through a long tube which ensures a purely axial jet; whereas, vortex ring generators which expel fluid through a flat plate with a circular orifice produce 2-D jets (non-zero radial velocity). At the nozzle exit plane of the orifice type vortex generator the radial component of velocity is linearly proportional to the radial distance from the axis of symmetry, reaching a maximum at the edge of the orifice with a magnitude around 10 % of the piston velocity (the ratio of the volume flux and the nozzle area). As the jet advances downstream the radial velocity quickly dissipates, and becomes purely axial less than a diameter away from the nozzle exit plane. The radial velocity gradient in the axial direction plays a key role in the rate at which circulation and impulse are ejected from the vortex generator. Though the radial component of velocity is small compared to the axial velocity, it has a significant effect on both the circulation and impulse of the starting jet because of this gradient. The extent of circulation and impulse enhancement is investigated through experimental DPIV data showing that the orifice device produces nearly double both circulation and energy (with identical piston velocity and stroke ratios).

  18. Radial-Velocity Signatures of Magnetic Features on the Sun Observed as a Star

    Science.gov (United States)

    Palumbo, M. L., III; Haywood, R. D.; Saar, S. H.; Dupree, A. K.; Milbourne, T. W.

    2017-12-01

    In recent years, the search for Earth-mass planets using radial-velocity measurements has become increasingly limited by signals arising from stellar activity. Individual magnetic features induce localized changes in intensity and velocity, which combine to change the apparent radial velocity of the star. Therefore it is critical to identify an indicator of activity-driven radial-velocity variations on the timescale of stellar rotation periods. We use 617.3 nm photospheric filtergrams, magnetograms, and dopplergrams from SDO/HMI and 170.0 nm chromospheric filtergrams from AIA to identify magnetically-driven solar features and reconstruct the integrated solar radial velocity with six samples per day over the course of 2014. Breaking the solar image up into regions of umbrae, penumbrae, quiet Sun, network, and plages, we find a distinct variation in the center-to-limb intensity-weighted velocity for each region. In agreement with past studies, we find that the suppression of convective blueshift is dominated by plages and network, rather than dark photospheric features. In the future, this work will be highly useful for identifying indicators which correlate with rotationally modulated radial-velocity variations. This will allow us to break the activity barrier that currently precludes the precise characterization of exoplanet properties at the lowest masses. This work was supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313. This work was performed in part under contract with the California Institute of Technology (Caltech)/Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute.

  19. Impact of radial magnetic field on peristalsis in curved channel with convective boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Tanveer, Anum, E-mail: qau14@yahoo.com [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alsaadi, Fuad [Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Mousa, Ghassan [Department of Mechanical Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2016-04-01

    This paper addresses the peristaltic flow in curved channel with combined heat/mass transfer and convective effects. The channel walls are flexible. An imposed magnetic field is applied in radial direction to increase the wave amplitude (used in ECG for synchronization purposes). The pseudoplastic fluid comprising shear-thinning/shear thickening effects has been used in mathematical modeling. Small Reynolds number assumption is employed to neglect inertial effects. Half channel-width to wavelength ratio is small enough for the pressure to be considered uniform over the cross-section. The graphical results obtained are compared with planar channel. Results show the non-symmetric behavior of sundry parameters in contrary to the planar case. Additionally more clear results are seen when the curved channel is approached. - Highlights: • The behavior of curvature parameter k on velocity is not symmetric. • Temperature is decreasing function of Biot number Bi. • Hartman number has similar qualitative effects on both velocity and temperature. • Behavior of concentration is opposite to that of temperature in a qualitative sense. • Bolus size via curvature parameter has opposite effect near the upper and lower channel walls.

  20. Analysis of velocity planning interpolation algorithm based on NURBS curve

    Science.gov (United States)

    Zhang, Wanjun; Gao, Shanping; Cheng, Xiyan; Zhang, Feng

    2017-04-01

    To reduce interpolation time and Max interpolation error in NURBS (Non-Uniform Rational B-Spline) inter-polation caused by planning Velocity. This paper proposed a velocity planning interpolation algorithm based on NURBS curve. Firstly, the second-order Taylor expansion is applied on the numerator in NURBS curve representation with parameter curve. Then, velocity planning interpolation algorithm can meet with NURBS curve interpolation. Finally, simulation results show that the proposed NURBS curve interpolator meet the high-speed and high-accuracy interpolation requirements of CNC systems. The interpolation of NURBS curve should be finished.

  1. Radial-velocity variations in Alpha Ori, Alpha Sco, and Alpha Her

    International Nuclear Information System (INIS)

    Smith, M.A.; Patten, B.M.; Goldberg, L.

    1989-01-01

    Radial-velocity observations of Alpha Ori, Alpha Sco A, and Alpha Her A are used to study radial-velocity periodicities in M supergiants. The data refer to several metallic lines in the H-alpha region and to H-alpha itself. It is shown that Alpha Ori and Alpha Sco A have cycle lengths of about 1 yr and semiamplitudes of 2 km/s. It is suggested that many semiregular red supergiant varibles such as Alpha Ori may be heading toward chaos. All three stars show short-term stochastic flucutations with an amplitude of 1-2 km/s. It is found that the long-term variability of H-alpha velocities may be a consequence of intermittent failed ejections. 58 refs

  2. Long-term radial-velocity variations of the Sun as a star: The HARPS view

    Science.gov (United States)

    Lanza, A. F.; Molaro, P.; Monaco, L.; Haywood, R. D.

    2016-03-01

    Context. Stellar radial velocities play a fundamental role in the discovery of extrasolar planets and the measurement of their physical parameters as well as in the study of stellar physical properties. Aims: We investigate the impact of the solar activity on the radial velocity of the Sun using the HARPS spectrograph to obtain measurements that can be directly compared with those acquired in the extrasolar planet search programmes. Methods: We used the Moon, the Galilean satellites, and several asteroids as reflectors to measure the radial velocity of the Sun as a star and correlated this velocity with disc-integrated chromospheric and magnetic indexes of solar activity that are similar to stellar activity indexes. We discuss in detail the systematic effects that affect our measurements and the methods to account for them. Results: We find that the radial velocity of the Sun as a star is positively correlated with the level of its chromospheric activity at ~95 percent significance level. The amplitude of the long-term variation measured in the 2006-2014 period is 4.98 ± 1.44 m/s, which is in good agreement with model predictions. The standard deviation of the residuals obtained by subtracting a linear best fit is 2.82 m/s and is due to the rotation of the reflecting bodies and the intrinsic variability of the Sun on timescales shorter than the activity cycle. A correlation with a lower significance is detected between the radial velocity and the mean absolute value of the line-of-sight photospheric magnetic field flux density. Conclusions: Our results confirm similar correlations found in other late-type main-sequence stars and provide support to the predictions of radial velocity variations induced by stellar activity based on current models.

  3. Radial velocity follow-up of CoRoT transiting exoplanets

    Directory of Open Access Journals (Sweden)

    Deleuil M.

    2011-02-01

    Full Text Available We report on the results from the radial-velocity follow-up program performed to establish the planetary nature and to characterize the transiting candidates discovered by the space mission CoRoT. We use the SOPHIE at OHP, HARPS at ESO and the HIRES at Keck spectrographs to collect spectra and high-precision radial velocity (RV measurements for several dozens different candidates from CoRoT. We have measured the Rossiter-McLaughlin effect of several confirmed planets, especially CoRoT-1b which revealed that it is another highly inclined system. Such high-precision RV data are necessary for the discovery of new transiting planets. Furthermore, several low mass planet candidates have emerged from our Keck and HARPS data.

  4. Time Variations of the Radial Velocity of H2O Masers in the Semi-Regular Variable R Crt

    Science.gov (United States)

    Sudou, Hiroshi; Shiga, Motoki; Omodaka, Toshihiro; Nakai, Chihiro; Ueda, Kazuki; Takaba, Hiroshi

    2017-12-01

    H2O maser emission {at 22 GHz} in the circumstellar envelope is one of the good tracers of detailed physics and inematics in the mass loss process of asymptotic giant branch stars. Long-term monitoring of an H2O maser spectrum with high time resolution enables us to clarify acceleration processes of the expanding shell in the stellar atmosphere. We monitored the H2O maser emission of the semi-regular variable R Crt with the Kagoshima 6-m telescope, and obtained a large data set of over 180 maser spectra over a period of 1.3 years with an observational span of a few days. Using an automatic peak detection method based on least-squares fitting, we exhaustively detected peaks as significant velocity components with the radial velocity on a 0.1 km s^{-1} scale. This analysis result shows that the radial velocity of red-shifted and blue-shifted components exhibits a change between acceleration and deceleration on the time scale of a few hundred days. These velocity variations are likely to correlate with intensity variations, in particular during flaring state of H2O masers. It seems reasonable to consider that the velocity variation of the maser source is caused by shock propagation in the envelope due to stellar pulsation.However, it is difficult to explain the relationship between the velocity variation and the intensity variation only from shock propagation effects. We found that a time delay of the integrated maser intensity with respect to the optical light curve is about 150 days.

  5. The VLT-FLAMES Tarantula Survey. XVIII. Classifications and radial velocities of the B-type stars

    NARCIS (Netherlands)

    Evans, C.J.; Kennedy, M.B.; Dufton, P.L.; Howarth, I.D.; Walborn, N.R.; Markova, N.; Clark, J.S.; de Mink, S.E.; de Koter, A.; Dunstall, P.R.; Hénault-Brunet, V.; Maíz Apellániz, J.; McEvoy, C.M.; Sana, H.; Simón-Díaz, S.; Taylor, W.D.; Vink, J.S.

    2015-01-01

    We present spectral classifications for 438 B-type stars observed as part of the VLT-FLAMES Tarantula Survey (VFTS) in the 30 Doradus region of the Large Magellanic Cloud. Radial velocities are provided for 307 apparently single stars, and for 99 targets with radial-velocity variations which are

  6. A prospective randomized comparison of curved array and radial echoendoscopy in patients with esophageal cancer

    DEFF Research Database (Denmark)

    Siemsen, Mette; Svendsen, Lars Bo; Knigge, Ulrich

    2003-01-01

    BACKGROUND: Both curved array and radial scanning echoendoscopy are used for locoregional staging of cancer arising in the esophagus or cardia. The accuracy of TNM staging of these malignancies by curved array and radial EUS was compared in a prospective, randomized study. METHODS: Patients...... with cancer of the esophagus or cardia were examined by both curved array and radial echoendoscopy in randomized order by the same endosonographer in an unblinded fashion. The staging results and the examination time for the two echoendoscopies were compared and statistically analyzed, and finally compared......, respectively, 15 and 12 minutes (pcancer of the esophagus or cardia. The choice of echoendoscope for TNM staging in patients with these malignancies is, therefore, a question...

  7. Additional radial velocities of supergiants in the Small Magellanic Cloud

    International Nuclear Information System (INIS)

    Thackeray, A.D.

    1978-01-01

    Additional radial velocities of 28 SMC supergiants determined in the years 1959-69 at the Radcliffe Observatory are presented. These and other measures from ESO and elsewhere are intercompared. The mean Radcliffe velocities have an internal standard error of +- 4.7 km/s and a systematic error exceeding 4 km/s is regarded as unlikely. Eight stars in the SMC core have a corrected velocity dispersion of only 6.9 km/s, similar to Feast's values for H II regions in the core. But the core H II regions have a velocity differential of -20 km/s relative to these stars. The velocity dispersion for stars in other parts of the Cloud is of the order 15 km/s as previously found. Two possibly variable-velocity stars are discussed, without reaching a satisfactory conclusion. (author)

  8. The radial velocity, velocity dispersion, and mass-to-light ratio of the Sculptor dwarf galaxy

    Science.gov (United States)

    Armandroff, T. E.; Da Costa, G. S.

    1986-01-01

    The radial velocity, velocity dispersion, and mass-to-light ratio for 16 K giants in the Sculptor dwarf galaxy are calculated. Spectra at the Ca II triplet are analyzed using cross-correlation techniques in order to obtain the mean velocity of + 107.4 + or - 2.0 km/s. The dimensional velocity dispersion estimated as 6.3 (+1.1, -1.3) km/s is combined with the calculated core radius and observed central surface brightness to produce a mass-to-light ratio of 6.0 in solar units. It is noted that the data indicate that the Sculptor contains a large amount of mass not found in globular clusters, and the mass is either in the form of remnant stars or low-mass dwarfs.

  9. THE MILKY WAY'S CIRCULAR-VELOCITY CURVE BETWEEN 4 AND 14 kpc FROM APOGEE DATA

    Energy Technology Data Exchange (ETDEWEB)

    Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Allende Prieto, Carlos; Meszaros, Szabolcs [Instituto de Astrofisica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Beers, Timothy C. [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Bizyaev, Dmitry; Ebelke, Garrett L.; Malanushenko, Elena; Malanushenko, Viktor [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Da Costa, Luiz N.; Girardi, Leo; Maia, Marcio A. G. [Laboratorio Interinstitucional de e-Astronomia-LIneA, Rua Gal. Jose Cristino 77, Rio de Janeiro, RJ 20921-400 (Brazil); Cunha, Katia [Observatorio Nacional, Rio de Janeiro, RJ 20921-400 (Brazil); Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS 20, Cambridge, MA 02138 (United States); Frinchaboy, Peter M. [Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States); Garcia Perez, Ana Elia; Hearty, Fred R.; Majewski, Steven R.; Nidever, David L. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Hogg, David W. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Holtzman, Jon, E-mail: bovy@ias.edu [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); and others

    2012-11-10

    We measure the Milky Way's rotation curve over the Galactocentric range 4 kpc {approx}< R {approx}< 14 kpc from the first year of data from the Apache Point Observatory Galactic Evolution Experiment. We model the line-of-sight velocities of 3365 stars in 14 fields with b = 0 Degree-Sign between 30 Degree-Sign {<=} l {<=} 210 Degree-Sign out to distances of 10 kpc using an axisymmetric kinematical model that includes a correction for the asymmetric drift of the warm tracer population ({sigma} {sub R} Almost-Equal-To 35 km s{sup -1}). We determine the local value of the circular velocity to be V{sub c} (R {sub 0}) = 218 {+-} 6 km s{sup -1} and find that the rotation curve is approximately flat with a local derivative between -3.0 km s{sup -1} kpc{sup -1} and 0.4 km s{sup -1} kpc{sup -1}. We also measure the Sun's position and velocity in the Galactocentric rest frame, finding the distance to the Galactic center to be 8 kpc < R {sub 0} < 9 kpc, radial velocity V {sub R, Sun} = -10 {+-} 1 km s{sup -1}, and rotational velocity V {sub {phi}, Sun} = 242{sup +10} {sub -3} km s{sup -1}, in good agreement with local measurements of the Sun's radial velocity and with the observed proper motion of Sgr A*. We investigate various systematic uncertainties and find that these are limited to offsets at the percent level, {approx}2 km s{sup -1} in V{sub c} . Marginalizing over all the systematics that we consider, we find that V{sub c} (R {sub 0}) < 235 km s{sup -1} at >99 % confidence. We find an offset between the Sun's rotational velocity and the local circular velocity of 26 {+-} 3 km s{sup -1}, which is larger than the locally measured solar motion of 12 km s{sup -1}. This larger offset reconciles our value for V{sub c} with recent claims that V{sub c} {approx}> 240 km s{sup -1}. Combining our results with other data, we find that the Milky Way's dark-halo mass within the virial radius is {approx}8 Multiplication-Sign 10{sup 11} M {sub Sun }.

  10. AD Leonis: Radial Velocity Signal of Stellar Rotation or Spin–Orbit Resonance?

    Science.gov (United States)

    Tuomi, Mikko; Jones, Hugh R. A.; Barnes, John R.; Anglada-Escudé, Guillem; Butler, R. Paul; Kiraga, Marcin; Vogt, Steven S.

    2018-05-01

    AD Leonis is a nearby magnetically active M dwarf. We find Doppler variability with a period of 2.23 days, as well as photometric signals: (1) a short-period signal, which is similar to the radial velocity signal, albeit with considerable variability; and (2) a long-term activity cycle of 4070 ± 120 days. We examine the short-term photometric signal in the available All-Sky Automated Survey and Microvariability and Oscillations of STars (MOST) photometry and find that the signal is not consistently present and varies considerably as a function of time. This signal undergoes a phase change of roughly 0.8 rad when considering the first and second halves of the MOST data set, which are separated in median time by 3.38 days. In contrast, the Doppler signal is stable in the combined High-Accuracy Radial velocity Planet Searcher and High Resolution Echelle Spectrometer radial velocities for over 4700 days and does not appear to vary in time in amplitude, phase, period, or as a function of extracted wavelength. We consider a variety of starspot scenarios and find it challenging to simultaneously explain the rapidly varying photometric signal and the stable radial velocity signal as being caused by starspots corotating on the stellar surface. This suggests that the origin of the Doppler periodicity might be the gravitational tug of a planet orbiting the star in spin–orbit resonance. For such a scenario and no spin–orbit misalignment, the measured v\\sin i indicates an inclination angle of 15.°5 ± 2.°5 and a planetary companion mass of 0.237 ± 0.047 M Jup.

  11. Removing Activity-Related Radial Velocity Noise to Improve Extrasolar Planet Searches

    Science.gov (United States)

    Saar, Steven; Lindstrom, David M. (Technical Monitor)

    2004-01-01

    We have made significant progress towards the proposal goals of understanding the causes and effects of magnetic activity-induced radial velocity (v_r) jitter and developing methods for correcting it. In the process, we have also made some significant discoveries in the fields of planet-induced stellar activity, planet detection methods, M dwarf convection, starspot properties, and magnetic dynamo cycles. We have obtained super high resolution (R approximately 200,000), high S / N (greater than 300) echelle study of joint line bisector and radial velocity variations using the McDonald 2-D coude. A long observing run in October 2002 in particular was quite successful (8 clear nights). We now have close to three years of data, which begins to sample a good fraction of the magnetic cycle timescales for some of our targets (e.g., kappa Ceti; P_cyc = 5.6 yrs). This will be very helpful in unraveling the complex relationships between plage and radial velocity (v-r) changes which we have uncovered. Preliminary analysis (Saar et al. 2003) of the data in hand, reveals correlations between median line bisector displacement and v_r. The correlation appears to be specific the the particular star being considered, probably since it is a function of both spectral type and rotation rate. Further analysis and interpretation will be in the context of evolving plage models and is in progress.

  12. [The radial velocity measurement accuracy of different spectral type low resolution stellar spectra at different signal-to-noise ratio].

    Science.gov (United States)

    Wang, Feng-Fei; Luo, A-Li; Zhao, Yong-Heng

    2014-02-01

    The radial velocity of the star is very important for the study of the dynamics structure and chemistry evolution of the Milky Way, is also an useful tool for looking for variable or special objects. In the present work, we focus on calculating the radial velocity of different spectral types of low-resolution stellar spectra by adopting a template matching method, so as to provide effective and reliable reference to the different aspects of scientific research We choose high signal-to-noise ratio (SNR) spectra of different spectral type stellar from the Sloan Digital Sky Survey (SDSS), and add different noise to simulate the stellar spectra with different SNR. Then we obtain theradial velocity measurement accuracy of different spectral type stellar spectra at different SNR by employing a template matching method. Meanwhile, the radial velocity measurement accuracy of white dwarf stars is analyzed as well. We concluded that the accuracy of radial velocity measurements of early-type stars is much higher than late-type ones. For example, the 1-sigma standard error of radial velocity measurements of A-type stars is 5-8 times as large as K-type and M-type stars. We discuss the reason and suggest that the very narrow lines of late-type stars ensure the accuracy of measurement of radial velocities, while the early-type stars with very wide Balmer lines, such as A-type stars, become sensitive to noise and obtain low accuracy of radial velocities. For the spectra of white dwarfs stars, the standard error of radial velocity measurement could be over 50 km x s(-1) because of their extremely wide Balmer lines. The above conclusion will provide a good reference for stellar scientific study.

  13. RADIAL VELOCITIES FROM VLT-KMOS SPECTRA OF GIANT STARS IN THE GLOBULAR CLUSTER NGC 6388

    International Nuclear Information System (INIS)

    Lapenna, E.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Origlia, L.; Valenti, E.; Cirasuolo, M.

    2015-01-01

    We present new radial velocity measurements for 82 stars, members of the Galactic globular cluster (GC) NGC 6388, obtained from ESO-VLT K-band Multi Object Spectrograph (KMOS) spectra acquired during the instrument Science Verification. The accuracy of the wavelength calibration is discussed and a number of tests of the KMOS response are presented. The cluster systemic velocity obtained (81.3 ± 1.5 km s –1 ) is in very good agreement with previous determinations. While a hint of ordered rotation is found between 9'' and 20'' from the cluster center, where the distribution of radial velocities is clearly bimodal, more data are needed before drawing any firm conclusions. The acquired sample of radial velocities has also been used to determine the cluster velocity dispersion (VD) profile between ∼9'' and 70'', supplementing previous measurements at r < 2'' and r > 60'' obtained with ESO-SINFONI and ESO-FLAMES spectroscopy, respectively. The new portion of the VD profile nicely matches the previous ones, better defining the knee of the distribution. The present work clearly shows the effectiveness of a deployable integral field unit in measuring the radial velocities of individual stars for determining the VD profile of Galactic GCs. It represents the pilot project for an ongoing large program with KMOS and FLAMES at the ESO-VLT, aimed at determining the next generation of VD and rotation profiles for a representative sample of GCs

  14. Accelerated radial Fourier-velocity encoding using compressed sensing

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, Fabian; Han, Dietbert [Wuerzburg Univ. (Germany). Inst. of Radiology; Wech, Tobias; Koestler, Herbert [Wuerzburg Univ. (Germany). Inst. of Radiology; Wuerzburg Univ. (Germany). Comprehensive Heart Failure Center (CHFC)

    2014-10-01

    Purpose:Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. Materials and Methods:We imaged the femoral artery of healthy volunteers with ECG - triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Results:Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6 - fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Conclusion: Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity

  15. Accelerated radial Fourier-velocity encoding using compressed sensing

    International Nuclear Information System (INIS)

    Hilbert, Fabian; Han, Dietbert

    2014-01-01

    Purpose:Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. Materials and Methods:We imaged the femoral artery of healthy volunteers with ECG - triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Results:Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6 - fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Conclusion: Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity

  16. Accelerated radial Fourier-velocity encoding using compressed sensing.

    Science.gov (United States)

    Hilbert, Fabian; Wech, Tobias; Hahn, Dietbert; Köstler, Herbert

    2014-09-01

    Phase Contrast Magnetic Resonance Imaging (MRI) is a tool for non-invasive determination of flow velocities inside blood vessels. Because Phase Contrast MRI only measures a single mean velocity per voxel, it is only applicable to vessels significantly larger than the voxel size. In contrast, Fourier Velocity Encoding measures the entire velocity distribution inside a voxel, but requires a much longer acquisition time. For accurate diagnosis of stenosis in vessels on the scale of spatial resolution, it is important to know the velocity distribution of a voxel. Our aim was to determine velocity distributions with accelerated Fourier Velocity Encoding in an acquisition time required for a conventional Phase Contrast image. We imaged the femoral artery of healthy volunteers with ECG-triggered, radial CINE acquisition. Data acquisition was accelerated by undersampling, while missing data were reconstructed by Compressed Sensing. Velocity spectra of the vessel were evaluated by high resolution Phase Contrast images and compared to spectra from fully sampled and undersampled Fourier Velocity Encoding. By means of undersampling, it was possible to reduce the scan time for Fourier Velocity Encoding to the duration required for a conventional Phase Contrast image. Acquisition time for a fully sampled data set with 12 different Velocity Encodings was 40 min. By applying a 12.6-fold retrospective undersampling, a data set was generated equal to 3:10 min acquisition time, which is similar to a conventional Phase Contrast measurement. Velocity spectra from fully sampled and undersampled Fourier Velocity Encoded images are in good agreement and show the same maximum velocities as compared to velocity maps from Phase Contrast measurements. Compressed Sensing proved to reliably reconstruct Fourier Velocity Encoded data. Our results indicate that Fourier Velocity Encoding allows an accurate determination of the velocity distribution in vessels in the order of the voxel size. Thus

  17. RADIAL VELOCITY MONITORING OF KEPLER HEARTBEAT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Shporer, Avi [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Fuller, Jim [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, Caltech, Pasadena, CA 91125 (United States); Isaacson, Howard [Department of Astronomy, University of California, Berkeley CA 94720 (United States); Hambleton, Kelly; Prša, Andrej [Department of Astrophysics and Planetary Science, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 (United States); Thompson, Susan E. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Kurtz, Donald W. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE (United Kingdom); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); O’Leary, Ryan M. [JILA, University of Colorado and NIST, 440 UCB, Boulder, 80309-0440 (United States)

    2016-09-20

    Heartbeat stars (HB stars) are a class of eccentric binary stars with close periastron passages. The characteristic photometric HB signal evident in their light curves is produced by a combination of tidal distortion, heating, and Doppler boosting near orbital periastron. Many HB stars continue to oscillate after periastron and along the entire orbit, indicative of the tidal excitation of oscillation modes within one or both stars. These systems are among the most eccentric binaries known, and they constitute astrophysical laboratories for the study of tidal effects. We have undertaken a radial velocity (RV) monitoring campaign of Kepler HB stars in order to measure their orbits. We present our first results here, including a sample of 22 Kepler HB systems, where for 19 of them we obtained the Keplerian orbit and for 3 other systems we did not detect a statistically significant RV variability. Results presented here are based on 218 spectra obtained with the Keck/HIRES spectrograph during the 2015 Kepler observing season, and they have allowed us to obtain the largest sample of HB stars with orbits measured using a single instrument, which roughly doubles the number of HB stars with an RV measured orbit. The 19 systems measured here have orbital periods from 7 to 90 days and eccentricities from 0.2 to 0.9. We show that HB stars draw the upper envelope of the eccentricity–period distribution. Therefore, HB stars likely represent a population of stars currently undergoing high eccentricity migration via tidal orbital circularization, and they will allow for new tests of high eccentricity migration theories.

  18. RADIAL VELOCITY MONITORING OF KEPLER HEARTBEAT STARS

    International Nuclear Information System (INIS)

    Shporer, Avi; Fuller, Jim; Isaacson, Howard; Hambleton, Kelly; Prša, Andrej; Thompson, Susan E.; Kurtz, Donald W.; Howard, Andrew W.; O’Leary, Ryan M.

    2016-01-01

    Heartbeat stars (HB stars) are a class of eccentric binary stars with close periastron passages. The characteristic photometric HB signal evident in their light curves is produced by a combination of tidal distortion, heating, and Doppler boosting near orbital periastron. Many HB stars continue to oscillate after periastron and along the entire orbit, indicative of the tidal excitation of oscillation modes within one or both stars. These systems are among the most eccentric binaries known, and they constitute astrophysical laboratories for the study of tidal effects. We have undertaken a radial velocity (RV) monitoring campaign of Kepler HB stars in order to measure their orbits. We present our first results here, including a sample of 22 Kepler HB systems, where for 19 of them we obtained the Keplerian orbit and for 3 other systems we did not detect a statistically significant RV variability. Results presented here are based on 218 spectra obtained with the Keck/HIRES spectrograph during the 2015 Kepler observing season, and they have allowed us to obtain the largest sample of HB stars with orbits measured using a single instrument, which roughly doubles the number of HB stars with an RV measured orbit. The 19 systems measured here have orbital periods from 7 to 90 days and eccentricities from 0.2 to 0.9. We show that HB stars draw the upper envelope of the eccentricity–period distribution. Therefore, HB stars likely represent a population of stars currently undergoing high eccentricity migration via tidal orbital circularization, and they will allow for new tests of high eccentricity migration theories.

  19. Stellar Parameters and Radial Velocities of Hot Stars in the Carina Nebula

    Science.gov (United States)

    Hanes, Richard J.; McSwain, M. Virginia; Povich, Matthew S.

    2018-05-01

    The Carina Nebula is an active star-forming region in the southern sky that is of particular interest due to the presence of a large number of massive stars in a wide array of evolutionary stages. Here, we present the results of the spectroscopic analysis of 82 B-type stars and 33 O-type stars that were observed in 2013 and 2014. For 82 B-type stars without line blending, we fit model spectra from the Tlusty BSTAR2006 grid to the observed profiles of Hγ and He λλ4026, 4388, and 4471 to measure the effective temperatures, surface gravities, and projected rotational velocities. We also measure the masses, ages, radii, bolometric luminosities, and distances of these stars. From the radial velocities measured in our sample, we find 31 single lined spectroscopic binary candidates. We find a high dispersion of radial velocities among our sample stars, and we argue that the Carina Nebula stellar population has not yet relaxed and become virialized.

  20. Theoretical and Experimental Study of Radial Velocity Generation for Extending Bandwidth of Magnetohydrodynamic Angular Rate Sensor at Low Frequency

    Directory of Open Access Journals (Sweden)

    Yue Ji

    2015-12-01

    Full Text Available The magnetohydrodynamics angular rate sensor (MHD ARS has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth.

  1. Disentangling Time-series Spectra with Gaussian Processes: Applications to Radial Velocity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Czekala, Ian [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305 (United States); Mandel, Kaisey S.; Andrews, Sean M.; Dittmann, Jason A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ghosh, Sujit K. [Department of Statistics, NC State University, 2311 Stinson Drive, Raleigh, NC 27695 (United States); Montet, Benjamin T. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Newton, Elisabeth R., E-mail: iczekala@stanford.edu [Massachusetts Institute of Technology, Cambridge, MA 02138 (United States)

    2017-05-01

    Measurements of radial velocity variations from the spectroscopic monitoring of stars and their companions are essential for a broad swath of astrophysics; these measurements provide access to the fundamental physical properties that dictate all phases of stellar evolution and facilitate the quantitative study of planetary systems. The conversion of those measurements into both constraints on the orbital architecture and individual component spectra can be a serious challenge, however, especially for extreme flux ratio systems and observations with relatively low sensitivity. Gaussian processes define sampling distributions of flexible, continuous functions that are well-motivated for modeling stellar spectra, enabling proficient searches for companion lines in time-series spectra. We introduce a new technique for spectral disentangling, where the posterior distributions of the orbital parameters and intrinsic, rest-frame stellar spectra are explored simultaneously without needing to invoke cross-correlation templates. To demonstrate its potential, this technique is deployed on red-optical time-series spectra of the mid-M-dwarf binary LP661-13. We report orbital parameters with improved precision compared to traditional radial velocity analysis and successfully reconstruct the primary and secondary spectra. We discuss potential applications for other stellar and exoplanet radial velocity techniques and extensions to time-variable spectra. The code used in this analysis is freely available as an open-source Python package.

  2. The SDSS-III APOGEE radial velocity survey of M dwarfs. I. Description of the survey and science goals

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, R.; Bender, C. F.; Mahadevan, S.; Terrien, R. C.; Schneider, D. P.; Fleming, S. W. [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States); Blake, C. H. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Carlberg, J. K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Zasowski, G.; Hearty, F. [University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Crepp, J. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Rajpurohit, A. S.; Reylé, C. [Institut UTINAM, CNRS UMR 6213, Observatoire des Sciences de l' Univers THETA Franche-Comt é-Bourgogne, Université de Franche Comté, Observatoire de Besançon, BP 1615, F-25010 Besançon Cedex (France); Nidever, D. L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Prieto, C. Allende; Hernández, J. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Bizyaev, D. [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Ebelke, G. [Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129 (United States); Frinchaboy, P. M. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States); Ge, J. [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States); and others

    2013-12-01

    We are carrying out a large ancillary program with the Sloan Digital Sky Survey, SDSS-III, using the fiber-fed multi-object near-infrared APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations will be used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey, as well as results from the first year of scientific observations based on spectra that will be publicly available in the SDSS-III DR10 data release. As part of this paper we present radial velocities and rotational velocities of over 200 M dwarfs, with a vsin i precision of ∼2 km s{sup –1} and a measurement floor at vsin i = 4 km s{sup –1}. This survey significantly increases the number of M dwarfs studied for rotational velocities and radial velocity variability (at ∼100-200 m s{sup –1}), and will inform and advance the target selection for planned radial velocity and photometric searches for low-mass exoplanets around M dwarfs, such as the Habitable Zone Planet Finder, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and adaptive optics imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution APOGEE spectra, covering the entire H band, provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and radial velocities for over 1400 stars spanning the spectral range M0-L0, providing the largest set of near-infrared M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic vsin i values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we

  3. The radial velocities of planetary nebulae in NGC 3379

    Science.gov (United States)

    Ciardullo, Robin; Jacoby, George H.; Dejonghe, Herwig B.

    1993-09-01

    We present the results of a radial velocity survey of planetary nebulae (PNs) in the normal elliptical galaxy NGC 3379 performed with the Kitt Peak 4 m telescope and the NESSIE multifiber spectrograph. In two half-nights, we measured 29 PNs with projected galactocentric distances between 0.4 and 3.8 effective radii with an observational uncertainty of about 7 km/s. These data extend three times farther into the halo than any previous absorption-line velocity study. The velocity dispersion and photometric profile of the galaxy agrees extremely well with that expected from a constant mass-to-light ratio, isotropic orbit Jaffe model with M/L(B) about 7; the best-fitting anisotropic models from a quadratic programming algorithm also give M/L(B) about 7. The data are consistent with models that contain no dark matter within 3.5 effective radii of the galaxy's nucleus.

  4. Radial velocities of very low mass stars and candidate brown dwarf members of the Hyades and Pleiades

    Science.gov (United States)

    Stauffer, John R.; Liebert, James; Giampapa, Mark; Macintosh, Bruce; Reid, Neill; Hamilton, Donald

    1994-01-01

    We have determined H alpha equivalent widths and radial velocities with 1 sigma accuracies of approximately 5 km s(exp -1) for approximately 20 candidate very low mass members of the Hyades and Pleiades clusters. The radial velocities for the Hyades sample suggest that nearly all of these stars are indeed highly probable members of the Hyades. The faintest stars in the Hyades sample have masses of order 0.1 solar mass. We also obtained radial velocities for four candidate very low mass members of the Pleiades and two objects that are candidate BD Pleiads. All of these stars have apparent V magnitudes fainter than the Hyades stars we observed, and the resultant radial velocity accuracy is worse. We believe that the three brighter stars are indeed likely very low mass stellar members of the Pleiades, whereas the status of the two brown dwarf candidates is uncertain. The Hyades stars we have observed and the three Pleiades very low mass stars are the lowest mass members of any open cluster whose membership has been confirmed by radial velocities and whose chromospheric activity has been measured. We see no change in chromospheric activity at the boundary where stars are expected to become fully convective (M approximately equals 0.3 solar mass) in either cluster. In the Pleiades, however, there may be a decrease in chromospheric activity for stars with (V-I)(sub K) greater than 3.5 (M less than or equal to 0.1 solar mass).

  5. Astrometry, radial velocity, and photometry: the HD 128311 system remixed with data from HST, HET, and APT

    International Nuclear Information System (INIS)

    McArthur, Barbara E.; Benedict, G. Fritz.; Cochran, William D.; Henry, Gregory W.; Hatzes, Artie; Harrison, Tom E.; Johns-Krull, Chris; Nelan, Ed

    2014-01-01

    We have used high-cadence radial velocity measurements from the Hobby-Eberly Telescope with published velocities from the Lick 3 m Shane Telescope, combined with astrometric data from the Hubble Space Telescope (HST) Fine Guidance Sensors to refine the orbital parameters of the HD 128311 system, and determine an inclination of 55.°95 ± 14.°55 and true mass of 3.789 −0.432 +0.924 M JUP for HD 128311 c. The combined radial velocity data also reveal a short period signal which could indicate a third planet in the system with an Msin i of 0.133 ± 0.005 M JUP or stellar phenomena. Photometry from the T12 0.8 m automatic photometric telescope at the Fairborn Observatory and HST are used to determine a photometric period close to, but not within the errors of the radial velocity signal. We performed a cross-correlation bisector analysis of the radial velocity data to look for correlations with the photometric period and found none. Dynamical integrations of the proposed system show long-term stability with the new orbital parameters of over 10 million years. Our new orbital elements do not support the claims of HD 128311 b and c being in mean motion resonance.

  6. AN AFFINE-INVARIANT SAMPLER FOR EXOPLANET FITTING AND DISCOVERY IN RADIAL VELOCITY DATA

    International Nuclear Information System (INIS)

    Hou Fengji; Hogg, David W.; Goodman, Jonathan; Weare, Jonathan; Schwab, Christian

    2012-01-01

    Markov chain Monte Carlo (MCMC) proves to be powerful for Bayesian inference and in particular for exoplanet radial velocity fitting because MCMC provides more statistical information and makes better use of data than common approaches like chi-square fitting. However, the nonlinear density functions encountered in these problems can make MCMC time-consuming. In this paper, we apply an ensemble sampler respecting affine invariance to orbital parameter extraction from radial velocity data. This new sampler has only one free parameter, and does not require much tuning for good performance, which is important for automatization. The autocorrelation time of this sampler is approximately the same for all parameters and far smaller than Metropolis-Hastings, which means it requires many fewer function calls to produce the same number of independent samples. The affine-invariant sampler speeds up MCMC by hundreds of times compared with Metropolis-Hastings in the same computing situation. This novel sampler would be ideal for projects involving large data sets such as statistical investigations of planet distribution. The biggest obstacle to ensemble samplers is the existence of multiple local optima; we present a clustering technique to deal with local optima by clustering based on the likelihood of the walkers in the ensemble. We demonstrate the effectiveness of the sampler on real radial velocity data.

  7. Near-infrared metallicities, radial velocities, and spectral types for 447 nearby M dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Newton, Elisabeth R.; Charbonneau, David; Irwin, Jonathan; Berta-Thompson, Zachory K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Rojas-Ayala, Barbara [Centro de Astrofsica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Covey, Kevin [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Lloyd, James P., E-mail: enewton@cfa.harvard.edu [Department of Astronomy, Cornell University, 226 Space Sciences Building, Ithaca, NY 14853 (United States)

    2014-01-01

    We present metallicities, radial velocities, and near-infrared (NIR) spectral types for 447 M dwarfs determined from moderate resolution (R ≈ 2000) NIR spectra obtained with the NASA Infrared Telescope Facility (IRTF)/SpeX. These M dwarfs are primarily targets of the MEarth Survey, a transiting planet survey searching for super Earths around mid-to-late M dwarfs within 33 pc. We present NIR spectral types for each star and new spectral templates for the IRTF in the Y, J, H, and K-bands, created using M dwarfs with near-solar metallicities. We developed two spectroscopic distance calibrations that use NIR spectral type or an index based on the curvature of the K-band continuum. Our distance calibration has a scatter of 14%. We searched 27 NIR spectral lines and 10 spectral indices for metallicity sensitive features, taking into account correlated noise in our estimates of the errors on these parameters. We calibrated our relation using 36 M dwarfs in common proper pairs with an F-, G-, or K-type star of known metallicity. We validated the physical association of these pairs using proper motions, radial velocities, and spectroscopic distance estimates. Our resulting metallicity calibration uses the sodium doublet at 2.2 μm as the sole indicator for metallicity. It has an accuracy of 0.12 dex inferred from the scatter between the metallicities of the primaries and the estimated metallicities of the secondaries. Our relation is valid for NIR spectral types from M1V to M5V and for –1.0 dex < [Fe/H] < +0.35 dex. We present a new color-color metallicity relation using J – H and J – K colors that directly relates two observables: the distance from the M dwarf main sequence and equivalent width of the sodium line at 2.2 μm. We used radial velocities of M dwarf binaries, observations at different epochs, and comparison between our measurements and precisely measured radial velocities to demonstrate a 4 km s{sup –1} accuracy.

  8. Twenty Years of Precise Radial Velocities at Keck and Lick Observatories

    Science.gov (United States)

    Wright, J. T.

    2015-10-01

    The precise radial velocity survey at Keck Observatory began over 20 years ago. Its survey of thousands of stars now has the time baseline to be sensitive to planets with decade-long orbits, including Jupiter analogs. I present several newly-finished orbital solutions for long-period giant planets. Although hot Jupiters are generally ``lonely'' (i.e. they are not part of multiplanet systems), those that are not appear to often have giant companions at 5 AU or beyond. I present two of the highest period-ratios among planets in a two-planet system, and some of the longest orbital periods ever measured for exoplanets. In many cases, combining Keck radial velocities from those from other long-term surveys at Lick Observatory, McDonald Observatory, HARPS, and, of course, OHP spectrographs, produces superior orbital fits, constraining both period and eccentricity better than could be possible with any single set alone. Stellar magnetic activity cycles can masquerade as long-period planets. In most cases this effect is very small, but a loud minority of stars, including, apparently, HD 154345, show very strong RV-activity correlations.

  9. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees.

    Science.gov (United States)

    Wullschleger, Stan D.; King, Anthony W.

    2000-04-01

    Canopy transpiration and forest water use are frequently estimated as the product of sap velocity and cross-sectional sapwood area. Few studies, however, have considered whether radial variation in sap velocity and the proportion of sapwood active in water transport are significant sources of uncertainty in the extrapolation process. Therefore, radial profiles of sap velocity were examined as a function of stem diameter and sapwood thickness for yellow-poplar (Liriodendron tulipifera L.) trees growing on two adjacent watersheds in eastern Tennessee. The compensation heat pulse velocity technique was used to quantify sap velocity at four equal-area depths in 20 trees that ranged in stem diameter from 15 to 69 cm, and in sapwood thickness from 2.1 to 14.8 cm. Sap velocity was highly dependent on the depth of probe insertion into the sapwood. Rates of sap velocity were greatest for probes located in the two outer sapwood annuli (P1 and P2) and lowest for probes in closest proximity to the heartwood (P3 and P4). Relative sap velocities averaged 0.98 at P1, 0.66 at P2, 0.41 at P3 and 0.35 at P4. Tree-specific sap velocities measured at each of the four probe positions, divided by the maximum sap velocity measured (usually at P1 or P2), indicated that the fraction of sapwood functional in water transport (f(S)) varied between 0.49 and 0.96. There was no relationship between f(S) and sapwood thickness, or between f(S) and stem diameter. The fraction of functional sapwood averaged 0.66 +/- 0.13 for trees on which radial profiles were determined. No significant depth-related differences were observed for sapwood density, which averaged 469 kg m(-3) across all four probe positions. There was, however, a significant decline in sapwood water content between the two outer probe positions (1.04 versus 0.89 kg kg(-1)). This difference was not sufficient to account for the observed radial variation in sap velocity. A Monte-Carlo analysis indicated that the standard error in

  10. Analysis of the radial distribution curves of partially ordered condensed carbon films

    International Nuclear Information System (INIS)

    Palatnik, L.S.; Derevyanchenko, A.S.; Nechitajlo, A.A.; Stetsenko, A.N.; Gorbenko, N.I.

    1977-01-01

    The Fourier analysis of the electron scattering curves has been carried out to determine the short-range order structure of carbon condensates. The intensity curves for carbon films condensed in a approximately 10 -6 Torr vacuum upon a substrate heated up to 600 deg C were obtained by diffraction techniques with filtration of the inelastic scattered electron background. The radial distribution curve errors were analyzed and quantified with the aid of a computer to determine the short-range order of the condensed carbon. It has been shown that carbon films consist of regions measuring approximately 20 A formed by parallelly packed graphite nets with azimuthal orientation different from that in ideal graphite crystals

  11. RadVel: The Radial Velocity Modeling Toolkit

    Science.gov (United States)

    Fulton, Benjamin J.; Petigura, Erik A.; Blunt, Sarah; Sinukoff, Evan

    2018-04-01

    RadVel is an open-source Python package for modeling Keplerian orbits in radial velocity (RV) timeseries. RadVel provides a convenient framework to fit RVs using maximum a posteriori optimization and to compute robust confidence intervals by sampling the posterior probability density via Markov Chain Monte Carlo (MCMC). RadVel allows users to float or fix parameters, impose priors, and perform Bayesian model comparison. We have implemented real-time MCMC convergence tests to ensure adequate sampling of the posterior. RadVel can output a number of publication-quality plots and tables. Users may interface with RadVel through a convenient command-line interface or directly from Python. The code is object-oriented and thus naturally extensible. We encourage contributions from the community. Documentation is available at http://radvel.readthedocs.io.

  12. The radial velocity variations in IC 418

    International Nuclear Information System (INIS)

    Mendez, R.H.; Verga, A.D.

    1981-01-01

    The observations presented are part of a search for spectral and radial velocity variations among central stars of planetary nebulae and include the following new data: 1) Weak, previously undetected C III emissions are visible at 4056, 4186, 4516, 5270 and 5826 A. The famous unidentified emissions at 4485 and 4503 A were also found. 2) The He I absorptions at 4471 and 5875 A are blue-shifted relative to the nebular emissions. The same happens with Hsub(delta) and Hsub(γ), although in this case the shift can be at least partly attributed to blends with the strong He II absorptions, which are estimated to contribute about one half of the equivalent width at Hsub(delta) and Hsub(γ). 3) O III 5592 and C IV 5801, 5811 are also found in absorption. (Auth.)

  13. Nonparametric estimation of age-specific reference percentile curves with radial smoothing.

    Science.gov (United States)

    Wan, Xiaohai; Qu, Yongming; Huang, Yao; Zhang, Xiao; Song, Hanping; Jiang, Honghua

    2012-01-01

    Reference percentile curves represent the covariate-dependent distribution of a quantitative measurement and are often used to summarize and monitor dynamic processes such as human growth. We propose a new nonparametric method based on a radial smoothing (RS) technique to estimate age-specific reference percentile curves assuming the underlying distribution is relatively close to normal. We compared the RS method with both the LMS and the generalized additive models for location, scale and shape (GAMLSS) methods using simulated data and found that our method has smaller estimation error than the two existing methods. We also applied the new method to analyze height growth data from children being followed in a clinical observational study of growth hormone treatment, and compared the growth curves between those with growth disorders and the general population. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Sensitivities of surface wave velocities to the medium parameters in a radially anisotropic spherical Earth and inversion strategies

    Directory of Open Access Journals (Sweden)

    Sankar N. Bhattacharya

    2015-11-01

    Full Text Available Sensitivity kernels or partial derivatives of phase velocity (c and group velocity (U with respect to medium parameters are useful to interpret a given set of observed surface wave velocity data. In addition to phase velocities, group velocities are also being observed to find the radial anisotropy of the crust and mantle. However, sensitivities of group velocity for a radially anisotropic Earth have rarely been studied. Here we show sensitivities of group velocity along with those of phase velocity to the medium parameters VSV, VSH , VPV, VPH , h and density in a radially anisotropic spherical Earth. The peak sensitivities for U are generally twice of those for c; thus U is more efficient than c to explore anisotropic nature of the medium. Love waves mainly depends on VSH while Rayleigh waves is nearly independent of VSH . The sensitivities show that there are trade-offs among these parameters during inversion and there is a need to reduce the number of parameters to be evaluated independently. It is suggested to use a nonlinear inversion jointly for Rayleigh and Love waves; in such a nonlinear inversion best solutions are obtained among the model parameters within prescribed limits for each parameter. We first choose VSH, VSV and VPH within their corresponding limits; VPV and h can be evaluated from empirical relations among the parameters. The density has small effect on surface wave velocities and it can be considered from other studies or from empirical relation of density to average P-wave velocity.

  15. K-KIDS: K Dwarfs and Their Companions. First Results from Radial Velocity Survey with CHIRON Spectrograph

    Science.gov (United States)

    Paredes, Leonardo; Henry, Todd; Nusdeo, Daniel; Winters, J.; Dincer, Tolga

    2018-01-01

    We present the K-KIDS project, an effort to survey a large sample of K dwarfs and their companions, the KIDS. We are observing a carefully vetted equatorial sample (DEC = -30 to +30) of more than 1000 K dwarfs within 50 pc to make a comprehensive assessment of stellar, substellar and planetary companions with separations of 0.1 to 10,000 AU.The initial sample of 1048 stars has been compiled using astrometric data from Hipparcos and photometric data from Tycho-2 and 2MASS. Four different imaging and spectroscopic surveys are underway. Here we present the strategy and initial results for our high-precision radial velocity survey for the closest companions using the CHIRON spectrograph on the CTIO/SMARTS 1.5m telescope. Individual measurements with CHIRON at R = 80,000 using ThAr wavelength calibration, indicate that for K dwarf radial velocity standards with V = 5.8, 7.0 and 8.0 yield precisions over 6 weeks of observing of 7.4 m/s, 9.8 m/s and 5.7 m/s. In the first two months, a core sample of 42 K dwarfs, including carefully selected calibration systems as well as previously unobserved stars, was observed every few nights to detect the radial velocity signals of close companions. In our calibration stellar systems, we have confirmed the suitability of CHIRON for our studies, by having found periodic radial velocity perturbations consistent with hot Jupiter and stellar companions previously detected. This set forms the foundation of our one-year survey of 100 K dwarfs with magnitudes as faint as V = 11.5, for which we should detect companions with masses as low as Jupiter.In light of the promising performance and efficiency of the CHIRON spectrograph for a long-term radial velocity survey, we have expanded our initial sample using Gaia Data Release 1 to 1824 K dwarfs within 50 pc. Ultimately, the combination of all four surveys will provide an unprecedented portrait of K dwarfs and their kids.This effort has been supported by the NSF through grant AST-1517413, and

  16. IN-SYNC VI. Identification and Radial Velocity Extraction for 100+ Double-Lined Spectroscopic Binaries in the APOGEE/IN-SYNC Fields

    Science.gov (United States)

    Fernandez, M. A.; Covey, Kevin R.; De Lee, Nathan; Chojnowski, S. Drew; Nidever, David; Ballantyne, Richard; Cottaar, Michiel; Da Rio, Nicola; Foster, Jonathan B.; Majewski, Steven R.; Meyer, Michael R.; Reyna, A. M.; Roberts, G. W.; Skinner, Jacob; Stassun, Keivan; Tan, Jonathan C.; Troup, Nicholas; Zasowski, Gail

    2017-08-01

    We present radial velocity measurements for 70 high confidence, and 34 potential binary systems in fields containing the Perseus Molecular Cloud, Pleiades, NGC 2264, and the Orion A star-forming region. Eighteen of these systems have been previously identified as binaries in the literature. Candidate double-lined spectroscopic binaries (SB2s) are identified by analyzing the cross-correlation functions (CCFs) computed during the reduction of each APOGEE spectrum. We identify sources whose CCFs are well fit as the sum of two Lorentzians as likely binaries, and provide an initial characterization of the system based on the radial velocities indicated by that dual fit. For systems observed over several epochs, we present mass ratios and systemic velocities; for two systems with observations on eight or more epochs, and which meet our criteria for robust orbital coverage, we derive initial orbital parameters. The distribution of mass ratios for multi-epoch sources in our sample peaks at q = 1, but with a significant tail toward lower q values. Tables reporting radial velocities, systemic velocities, and mass ratios are provided online. We discuss future improvements to the radial velocity extraction method we employ, as well as limitations imposed by the number of epochs currently available in the APOGEE database. The Appendix contains brief notes from the literature on each system in the sample, and more extensive notes for select sources of interest.

  17. Identifying Clusters with Mixture Models that Include Radial Velocity Observations

    Science.gov (United States)

    Czarnatowicz, Alexis; Ybarra, Jason E.

    2018-01-01

    The study of stellar clusters plays an integral role in the study of star formation. We present a cluster mixture model that considers radial velocity data in addition to spatial data. Maximum likelihood estimation through the Expectation-Maximization (EM) algorithm is used for parameter estimation. Our mixture model analysis can be used to distinguish adjacent or overlapping clusters, and estimate properties for each cluster.Work supported by awards from the Virginia Foundation for Independent Colleges (VFIC) Undergraduate Science Research Fellowship and The Research Experience @Bridgewater (TREB).

  18. Astrometry, Radial Velocity, and Photometry: The HD 128311 System Remixed with Data from HST, HET, and APT

    Science.gov (United States)

    McArthur, Barbara. E.; Benedict, G. Fritz; Henry, Gregory W.; Hatzes, Artie; Cochran, William D.; Harrison, Tom E.; Johns-Krull, Chris; Nelan, Ed

    2014-11-01

    We have used high-cadence radial velocity measurements from the Hobby-Eberly Telescope with published velocities from the Lick 3 m Shane Telescope, combined with astrometric data from the Hubble Space Telescope (HST) Fine Guidance Sensors to refine the orbital parameters of the HD 128311 system, and determine an inclination of 55.°95 ± 14.°55 and true mass of 3.789 +0.924 -0.432 M JUP for HD 128311 c. The combined radial velocity data also reveal a short period signal which could indicate a third planet in the system with an Msin i of 0.133 ± 0.005 M JUP or stellar phenomena. Photometry from the T12 0.8 m automatic photometric telescope at the Fairborn Observatory and HST are used to determine a photometric period close to, but not within the errors of the radial velocity signal. We performed a cross-correlation bisector analysis of the radial velocity data to look for correlations with the photometric period and found none. Dynamical integrations of the proposed system show long-term stability with the new orbital parameters of over 10 million years. Our new orbital elements do not support the claims of HD 128311 b and c being in mean motion resonance. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen, and observations with T12 0.8 m automatic photoelectric telescope (APT) at Fairborn Observatory.

  19. CHARACTERIZING THE GALACTIC WHITE DWARF BINARY POPULATION WITH SPARSELY SAMPLED RADIAL VELOCITY DATA

    International Nuclear Information System (INIS)

    Maoz, Dan; Badenes, Carles; Bickerton, Steven J.

    2012-01-01

    We present a method to characterize statistically the parameters of a detached binary sample—binary fraction, separation distribution, and mass-ratio distribution—using noisy radial velocity data with as few as two, randomly spaced, epochs per object. To do this, we analyze the distribution of ΔRV max , the maximum radial velocity difference between any two epochs for the same object. At low values, the core of this distribution is dominated by measurement errors, but for large enough samples there is a high-velocity tail that can effectively constrain the parameters of the binary population. We discuss our approach for the case of a population of detached white dwarf (WD) binaries with separations that are decaying via gravitational wave emission. We derive analytic expressions for the present-day distribution of separations, integrated over the star formation history of the Galaxy, for parameterized initial WD separation distributions at the end of the common-envelope phase. We use Monte Carlo techniques to produce grids of simulated ΔRV max distributions with specific binary population parameters, and the same sampling cadences and radial velocity errors as the observations, and we compare them to the real ΔRV max distribution to constrain the properties of the binary population. We illustrate the sensitivity of the method to both the model and observational parameters. In the particular case of binary WDs, every model population predicts a merger rate per star which can easily be compared to specific Type Ia supernova rates. In a companion paper, we apply the method to a sample of ∼4000 WDs from the Sloan Digital Sky Survey. The binary fractions and separation distribution parameters allowed by the data indicate a rate of WD-WD mergers per unit stellar mass in the Galactic disk, ∼1 × 10 –13 mergers yr –1 M –1 ☉ , remarkably similar to the rate per unit mass of Type Ia supernovae in Milky Way like galaxies.

  20. Luminosity-velocity diagrams for Virgo Cluster spirals. I - Inner rotation curves

    Science.gov (United States)

    Woods, David; Fahlman, Gregory G.; Madore, Barry F.

    1990-01-01

    Optical rotation curves are presented for the innermost portions of nine spiral galaxies in the Virgo Cluster. The emission-line (H-alpha and forbidden N II) velocity data are to be used in combination with new CCD photometry to construct luminosity-velocity diagrams, in a continuing investigation of an apparent initial linear branch and its potential as a distance indicator. Compared to recent H I data, the present optical rotation curves generally show systematically steeper inner gradients. This effect is ascribed to the poorer resolution of the H I data and/or to holes in the gas distribution.

  1. Searching for habitable exoplanets by using combined microlensing and radial velocity facilities

    International Nuclear Information System (INIS)

    Joergensen, Uffe Graae

    2008-01-01

    The habitable planetary regime, where life as we know it from the Earth in principle can exist, has long been among the technically most difficult to search for the existence of exoplanets. It spans the inner and outer orbital range, where liquid water in principle can exist on a planetary surface (the habitable zone), and the planetary mass range from the lowest mass where an atmosphere is bound over biological timescales to the upper mass limit where a nebula gas-collapse transforms a solid planet into a gas planet. With a prober equipment, microlensing is sensitive to this regime for most stellar types, including solar-type stars, while the radial velocity technique complements the detection regime by being sensitive to such planets around the lowest mass stars. By combining microlensing with radial velocity measurements, it is possible to cover the complete habitable region from the ground. I outline here the theory that in principle will make it possible to perform an efficient survey throughout the habitable regime of the most common types of stars in our galaxy over the next few years, and describe how it can be done in practise for a relatively low cost

  2. WIYN Open Cluster Study. XXXII. Stellar Radial Velocities in the Old Open Cluster NGC 188

    Science.gov (United States)

    Geller, Aaron M.; Mathieu, Robert D.; Harris, Hugh C.; McClure, Robert D.

    2008-06-01

    We present the results of our ongoing radial-velocity (RV) survey of the old (7 Gyr) open cluster NGC 188. Our WIYN 3.5 m data set spans a time baseline of 11 years, a magnitude range of 12 =3 measurements, finding 473 to be likely cluster members. We detect 124 velocity-variable cluster members, all of which are likely to be dynamically hard-binary stars. Using our single member stars, we find an average cluster radial velocity of -42.36 ± 0.04 km s-1. We use our precise RV and proper-motion membership data to greatly reduce field-star contamination in our cleaned color-magnitude diagram, from which we identify six stars of note that lie far from a standard single-star isochrone. We present a detailed study of the spatial distribution of cluster-member populations, and find the binaries to be centrally concentrated, providing evidence for the presence of mass segregation in NGC 188. We observe the BSs to populate a bimodal spatial distribution that is not centrally concentrated, suggesting that we may be observing two populations of BSs in NGC 188, including a centrally concentrated distribution as well as a halo population. Finally, we find NGC 188 to have a global RV dispersion of 0.64 ± 0.04 km s-1, which may be inflated by up to 0.23 km s-1 from unresolved binaries. When corrected for unresolved binaries, the NGC 188 RV dispersion has a nearly isothermal radial distribution. We use this mean-corrected velocity dispersion to derive a virial mass of 2300 ± 460 M sun .

  3. Radial Velocities of 41 Kepler Eclipsing Binaries

    Science.gov (United States)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  4. MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries

    Science.gov (United States)

    Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team

    2016-01-01

    Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.

  5. THE NIRSPEC ULTRACOOL DWARF RADIAL VELOCITY SURVEY

    International Nuclear Information System (INIS)

    Blake, Cullen H.; Charbonneau, David; White, Russel J.

    2010-01-01

    We report the results of an infrared Doppler survey designed to detect brown dwarf and giant planetary companions to a magnitude-limited sample of ultracool dwarfs. Using the NIRSPEC spectrograph on the Keck II telescope, we obtained approximately 600 radial velocity (RV) measurements over a period of six years of a sample of 59 late-M and L dwarfs spanning spectral types M8/L0 to L6. A subsample of 46 of our targets has been observed on three or more epochs. We rely on telluric CH 4 absorption features in Earth's atmosphere as a simultaneous wavelength reference and exploit the rich set of CO absorption features found in the K-band spectra of cool stars and brown dwarfs to measure RVs and projected rotational velocities. For a bright, slowly rotating M dwarf standard we demonstrate an RV precision of 50 m s -1 and for slowly rotating L dwarfs we achieve a typical RV precision of approximately 200 m s -1 . This precision is sufficient for the detection of close-in giant planetary companions to mid-L dwarfs as well as more equal mass spectroscopic binary systems with small separations (a +0.7 -0.6 Gyr, similar to that of nearby sun-like stars. We simulate the efficiency with which we detect spectroscopic binaries and find that the rate of tight (a +8.6 -1.6 %, consistent with recent estimates in the literature of a tight binary fraction of 3%-4%.

  6. Comparison of CME radial velocities from a flux rope model and an ice cream cone model

    Science.gov (United States)

    Kim, T.; Moon, Y.; Na, H.

    2011-12-01

    Coronal Mass Ejections (CMEs) on the Sun are the largest energy release process in the solar system and act as the primary driver of geomagnetic storms and other space weather phenomena on the Earth. So it is very important to infer their directions, velocities and three-dimensional structures. In this study, we choose two different models to infer radial velocities of halo CMEs since 2008 : (1) an ice cream cone model by Xue et al (2005) using SOHO/LASCO data, (2) a flux rope model by Thernisien et al. (2009) using the STEREO/SECCHI data. In addition, we use another flux rope model in which the separation angle of flux rope is zero, which is morphologically similar to the ice cream cone model. The comparison shows that the CME radial velocities from among each model have very good correlations (R>0.9). We will extending this comparison to other partial CMEs observed by STEREO and SOHO.

  7. Activity-induced radial velocity variation of M dwarf stars

    DEFF Research Database (Denmark)

    Andersen, Jan Marie; Korhonen, Heidi Helena

    2012-01-01

    that can drown out a planetary signature. Cool, low-mass M dwarf stars can be highly active, which can make detection of potentially habitable planets around these stars difficult. We investigate radial velocity variations caused by different activity (spot) patterns on M dwarf stars in order to determine...... the limits of detectability for small planets orbiting active M dwarfs. We report on our progress toward the aim of answering the following questions: What types of spot patterns are realistic for M dwarf stars? What effect will spots have on M dwarf RV measurements? Can jitter from M dwarf spots mimic...... planetary signals? What is the ideal observing wavelength to reduce M dwarf jitter?...

  8. High Velocity Spectroscopic Binary Orbits from Photoelectric Radial Velocities: BD+20 5152, a Possible Triple System

    Directory of Open Access Journals (Sweden)

    Sperauskas J.

    2010-12-01

    Full Text Available The spectroscopic orbit of a high proper motion star, BD+20 5152, is calculated from 34 CORAVEL-type radial velocity measurements. The star has a slightly eccentric orbit with a period of 5.70613 d, half-amplitude of 47.7 km/s and eccentricity of 0.049. The center-of-mass velocity of the system is -24.3 km/s. BD+20 5152 seems to be a triple system consisting of a G8 dwarf as a primary component and of two K6-M0 dwarfs as secondary and tertiary components. This model is based on the analysis of its UBVRI and JHK magnitudes. According to the SuperWASP photometry, spots on the surface of the primary are suspected. The excessive brightness in the Galex FUV and NUV magnitudes and a non-zero eccentricity suggest the age of this system to be less than 1 Gyr.

  9. The Effect of Velocity Correlation on the Spatial Evolution of Breakthrough Curves in Heterogeneous Media

    Science.gov (United States)

    Massoudieh, A.; Dentz, M.; Le Borgne, T.

    2017-12-01

    In heterogeneous media, the velocity distribution and the spatial correlation structure of velocity for solute particles determine the breakthrough curves and how they evolve as one moves away from the solute source. The ability to predict such evolution can help relating the spatio-statistical hydraulic properties of the media to the transport behavior and travel time distributions. While commonly used non-local transport models such as anomalous dispersion and classical continuous time random walk (CTRW) can reproduce breakthrough curve successfully by adjusting the model parameter values, they lack the ability to relate model parameters to the spatio-statistical properties of the media. This in turns limits the transferability of these models. In the research to be presented, we express concentration or flux of solutes as a distribution over their velocity. We then derive an integrodifferential equation that governs the evolution of the particle distribution over velocity at given times and locations for a particle ensemble, based on a presumed velocity correlation structure and an ergodic cross-sectional velocity distribution. This way, the spatial evolution of breakthrough curves away from the source is predicted based on cross-sectional velocity distribution and the connectivity, which is expressed by the velocity transition probability density. The transition probability is specified via a copula function that can help construct a joint distribution with a given correlation and given marginal velocities. Using this approach, we analyze the breakthrough curves depending on the velocity distribution and correlation properties. The model shows how the solute transport behavior evolves from ballistic transport at small spatial scales to Fickian dispersion at large length scales relative to the velocity correlation length.

  10. RADIAL VELOCITIES OF GALACTIC O-TYPE STARS. II. SINGLE-LINED SPECTROSCOPIC BINARIES

    International Nuclear Information System (INIS)

    Williams, S. J.; Gies, D. R.; Hillwig, T. C.; McSwain, M. V.; Huang, W.

    2013-01-01

    We report on new radial velocity measurements of massive stars that are either suspected binaries or lacking prior observations. This is part of a survey to identify and characterize spectroscopic binaries among O-type stars with the goal of comparing the binary fraction of field and runaway stars with those in clusters and associations. We present orbits for HDE 308813, HD 152147, HD 164536, BD–16°4826, and HDE 229232, Galactic O-type stars exhibiting single-lined spectroscopic variation. By fitting model spectra to our observed spectra, we obtain estimates for effective temperature, surface gravity, and rotational velocity. We compute orbital periods and velocity semiamplitudes for each system and note the lack of photometric variation for any system. These binaries probably appear single-lined because the companions are faint and because their orbital Doppler shifts are small compared to the width of the rotationally broadened lines of the primary.

  11. Radial-velocity measures and the existence of astrophysical binaries in late-type dwarf stars

    Science.gov (United States)

    Bopp, B. W.; Meredith, R.

    1986-01-01

    Radial velocities with errors of 1-2 km/s are presented based on CCD scans obtained with the Kitt Peak National Observatory coude feed telescope between 1982 and 1985 of 48 dK-M stars that lack Balmer emission. Comparison with Gliese's (1969) values shows only two stars to be spectroscopic binary candidates with small velocity amplitudes. No evidence for any short period (less than 10 days) binaries is found, supporting the conclusions of Young et al. (1986) that there are no astrophysical binaries among these chromosherically inactive dM stars.

  12. Radial velocity variations of photometrically quiet, chromospherically inactive Kepler stars: A link between RV jitter and photometric flicker

    Energy Technology Data Exchange (ETDEWEB)

    Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua [Physics and Astronomy Department, Vanderbilt University, 1807 Station B, Nashville, TN 37235 (United States); Wright, Jason T. [Center for Exoplanets and Habitable Worlds, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16803 (United States); Aigrain, Suzanne [Sub-department of Astrophysics, Department of Physics, University of Oxford, Oxford OX1 3RH (United Kingdom); Basri, Gibor [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Johnson, John A. [Department of Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Walkowicz, Lucianne M. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544 (United States)

    2014-02-01

    We compare stellar photometric variability, as measured from Kepler light curves by Basri et al., with measurements of radial velocity (RV) rms variations of all California Planet Search overlap stars. We newly derive rotation periods from the Kepler light curves for all of the stars in our study sample. The RV variations reported herein range from less than 4 to 135 m s{sup –1}, yet the stars all have amplitudes of photometric variability less than 3 mmag, reflecting the preference of the RV program for chromospherically 'quiet' stars. Despite the small size of our sample, we find with high statistical significance that the RV rms manifests strongly in the Fourier power spectrum of the light curve: stars that are noisier in RV have a greater number of frequency components in the light curve. We also find that spot models of the observed light curves systematically underpredict the observed RV variations by factors of ∼2-1000, likely because the low-level photometric variations in our sample are driven by processes not included in simple spot models. The stars best fit by these models tend to have simpler light curves, dominated by a single relatively high-amplitude component of variability. Finally, we demonstrate that the RV rms behavior of our sample can be explained in the context of the photometric variability evolutionary diagram introduced by Bastien et al. We use this diagram to derive the surface gravities of the stars in our sample, revealing many of them to have moved off the main sequence. More generally, we find that the stars with the largest RV rms are those that have evolved onto the 'flicker floor' sequence in that diagram, characterized by relatively low amplitude but highly complex photometric variations which grow as the stars evolve to become subgiants.

  13. Shallow crustal radial anisotropy beneath the Tehran basin of Iran from seismic ambient noise tomography

    Science.gov (United States)

    Shirzad, Taghi; Shomali, Z. Hossein

    2014-06-01

    We studied the shear wave velocity structure and radial anisotropy beneath the Tehran basin by analyzing the Rayleigh wave and Love wave empirical Green's functions obtained from cross-correlation of seismic ambient noise. Approximately 199 inter-station Rayleigh and Love wave empirical Green's functions with sufficient signal-to-noise ratios extracted from 30 stations with various sensor types were used for phase velocity dispersion analysis of periods ranging from 1 to 7 s using an image transformation analysis technique. Dispersion curves extracted from the phase velocity maps were inverted based on non-linear damped least squares inversion method to obtain a quasi-3D model of crustal shear wave velocities. The data used in this study provide an unprecedented opportunity to resolve the spatial distribution of radial anisotropy within the uppermost crust beneath the Tehran basin. The quasi-3D shear wave velocity model obtained in this analysis delineates several distinct low- and high-velocity zones that are generally separated by geological boundaries. High-shear-velocity zones are located primarily around the mountain ranges and extend to depths of 2.0 km, while the low-shear-velocity zone is located near regions with sedimentary layers. In the shallow subsurface, our results indicate strong radial anisotropy with negative magnitude (VSV > VSH) primarily associated with thick sedimentary deposits, reflecting vertical alignment of cracks. With increasing depth, the magnitude of the radial anisotropy shifts from predominantly negative (less than -10%) to predominantly positive (greater than 5%). Our results show a distinct change in radial anisotropy between the uppermost sedimentary layer and the bedrock.

  14. KECK NIRSPEC RADIAL VELOCITY OBSERVATIONS OF LATE-M DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Angelle; White, Russel [Department of Astronomy, Georgia State University, One Park Place, Atlanta, GA 30303 (United States); Bailey, John [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Blake, Cullen [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Blake, Geoffrey [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Cruz, Kelle [Department of Physics and Astronomy, Hunter College, 695 Park Avenue, New York, NY 10065 (United States); Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Kraus, Adam [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2012-11-15

    We present the results of an infrared spectroscopic survey of 23 late-M dwarfs with the NIRSPEC echelle spectrometer on the Keck II telescope. Using telluric lines for wavelength calibration, we are able to achieve measurement precisions of down to 45 m s{sup -1} for our late-M dwarfs over a one- to four-year long baseline. Our sample contains two stars with radial velocity (RV) variations of >1000 m s{sup -1}. While we require more measurements to determine whether these RV variations are due to unseen planetary or stellar companions or are the result of starspots known to plague the surface of M dwarfs, we can place upper limits of <40 M{sub J} sin i on the masses of any companions around those two M dwarfs with RV variations of <160 m s{sup -1} at orbital periods of 10-100 days. We have also measured the rotational velocities for all the stars in our late-M dwarf sample and offer our multi-order, high-resolution spectra over 2.0-2.4 {mu}m to the atmospheric modeling community to better understand the atmospheres of late-M dwarfs.

  15. KECK NIRSPEC RADIAL VELOCITY OBSERVATIONS OF LATE-M DWARFS

    International Nuclear Information System (INIS)

    Tanner, Angelle; White, Russel; Bailey, John; Blake, Cullen; Blake, Geoffrey; Cruz, Kelle; Burgasser, Adam J.; Kraus, Adam

    2012-01-01

    We present the results of an infrared spectroscopic survey of 23 late-M dwarfs with the NIRSPEC echelle spectrometer on the Keck II telescope. Using telluric lines for wavelength calibration, we are able to achieve measurement precisions of down to 45 m s –1 for our late-M dwarfs over a one- to four-year long baseline. Our sample contains two stars with radial velocity (RV) variations of >1000 m s –1 . While we require more measurements to determine whether these RV variations are due to unseen planetary or stellar companions or are the result of starspots known to plague the surface of M dwarfs, we can place upper limits of J sin i on the masses of any companions around those two M dwarfs with RV variations of –1 at orbital periods of 10-100 days. We have also measured the rotational velocities for all the stars in our late-M dwarf sample and offer our multi-order, high-resolution spectra over 2.0-2.4 μm to the atmospheric modeling community to better understand the atmospheres of late-M dwarfs.

  16. Origins of Solar Systems: Removing Activity-Related Radial Velocity Noise to Improve Extrasolar Planet Searches

    Science.gov (United States)

    Saar, Steven; Lindstrom, David (Technical Monitor)

    2003-01-01

    We have continued the super high resolution (R is approximately 200,000), high S/N (> 300) echelle study of joint line bisector and radial velocity variations using the McDonald 2-D coude. A long observing run in October 2002 was quite successful (8 clear nights). We now have close to three years of data, which begins to sample a good fraction of the magnetic cycle timescales for some of our targets (e.g., K Ceti; P(sub cyc)=5.6 yrs). This will be very helpful in unraveling the complex relationships between plage and v(sub r), changes which we have uncovered. A preliminary analysis of the limited data in hand, and find some tantalizing evidence for correlations between median line bisector displacement and radial velocity v(sub r). The correlation appears to be specific to the particular star being considered, probably since it is a function of both spectral type and rotation rate. Additional information regarding progress on the grant is included.

  17. Analysis of the cross flow in a radial inflow turbine scroll

    Science.gov (United States)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    Equations of motion were derived, and a computational procedure is presented, for determining the nonviscous flow characteristics in the cross-sectional planes of a curved channel due to continuous mass discharge or mass addition. An analysis was applied to the radial inflow turbine scroll to study the effects of scroll geometry and the through flow velocity profile on the flow behavior. The computed flow velocity component in the scroll cross-sectional plane, together with the through flow velocity profile which can be determined in a separate analysis, provide a complete description of the three dimensional flow in the scroll.

  18. Harmonic Force Spectroscopy Reveals a Force-Velocity Curve from a Single Human Beta Cardiac Myosin Motor

    DEFF Research Database (Denmark)

    Sung, Jongmin; Nag, Suman; Vestergaard, Christian L.

    2014-01-01

    human beta cardiac myosin S1. We also compare load-velocity curves for wild-type motors with load-velocity curves of mutant forms that cause hypertrophic or dilated-cardiomyopathy (HCM or DCM), in order to understand the effects of mutations on the contractile cycle at the single molecule level....

  19. WIYN OPEN CLUSTER STUDY. XXIV. STELLAR RADIAL-VELOCITY MEASUREMENTS IN NGC 6819

    International Nuclear Information System (INIS)

    Tabetha Hole, K.; Geller, Aaron M.; Mathieu, Robert D.; Meibom, Soeren; Platais, Imants; Latham, David W.

    2009-01-01

    We present the current results from our ongoing radial-velocity (RV) survey of the intermediate-age (2.4 Gyr) open cluster NGC 6819. Using both newly observed and other available photometry and astrometry, we define a primary target sample of 1454 stars that includes main-sequence, subgiant, giant, and blue straggler stars, spanning a magnitude range of 11 ≤V≤ 16.5 and an approximate mass range of 1.1-1.6 M sun . Our sample covers a 23 arcminute (13 pc) square field of view centered on the cluster. We have measured 6571 radial velocities for an unbiased sample of 1207 stars in the direction of the open cluster NGC 6819, with a single-measurement precision of 0.4 km s -1 for most narrow-lined stars. We use our RV data to calculate membership probabilities for stars with ≥3 measurements, providing the first comprehensive membership study of the cluster core that includes stars from the giant branch through the upper main sequence. We identify 480 cluster members. Additionally, we identify velocity-variable systems, all of which are likely hard binaries that dynamically power the cluster. Using our single cluster members, we find a cluster average RV of 2.34 ± 0.05 km s -1 . We use our kinematic cluster members to construct a cleaned color-magnitude diagram from which we identify rich giant, subgiant, and blue straggler populations and a well defined red clump. The cluster displays a morphology near the cluster turnoff clearly indicative of core convective overshoot. Finally, we discuss a few stars of note, one of which is a short-period red-clump binary that we suggest may be the product of a dynamical encounter.

  20. What velocities and eccentricities tell us about radial migration

    Directory of Open Access Journals (Sweden)

    Schönrich R.

    2012-02-01

    Full Text Available This note attempts to interpret some of the recent findings about a downtrend in the mean azimuthal velocity of low [α/Fe] thin disc stars with increasing metallicity. The presence of such a trend was predicted in the model of [19], albeit with a slightly steeper slope. We show that in a simple picture a Galactic disc without mixing in angular momenta would display an exceedingly steep trend, while in the case of complete mixing of all stars the trend has to vanish. The difference between model and observational data can hence be interpreted as the consequence of the radial abundance gradient in the model being too high resulting in an underestimate of the migration strength. We shortly discuss the value of eccentricity distributions in constraining structure and history of the Galactic disc.

  1. A Low-cost Environmental Control System for Precise Radial Velocity Spectrometers

    Science.gov (United States)

    Sliski, David H.; Blake, Cullen H.; Halverson, Samuel

    2017-12-01

    We present an environmental control system (ECS) designed to achieve milliKelvin (mK) level temperature stability for small-scale astronomical instruments. This ECS is inexpensive and is primarily built from commercially available components. The primary application for our ECS is the high-precision Doppler spectrometer MINERVA-Red, where the thermal variations of the optical components within the instrument represent a major source of systematic error. We demonstrate ±2 mK temperature stability within a 0.5 m3 thermal enclosure using resistive heaters in conjunction with a commercially available PID controller and off-the-shelf thermal sensors. The enclosure is maintained above ambient temperature, enabling rapid cooling through heat dissipation into the surrounding environment. We demonstrate peak-to-valley (PV) temperature stability of better than 5 mK within the MINERVA-Red vacuum chamber, which is located inside the thermal enclosure, despite large temperature swings in the ambient laboratory environment. During periods of stable laboratory conditions, the PV variations within the vacuum chamber are less than 3 mK. This temperature stability is comparable to the best stability demonstrated for Doppler spectrometers currently achieving m s-1 radial velocity precision. We discuss the challenges of using commercially available thermoelectrically cooled CCD cameras in a temperature-stabilized environment, and demonstrate that the effects of variable heat output from the CCD camera body can be mitigated using PID-controlled chilled water systems. The ECS presented here could potentially provide the stable operating environment required for future compact “astrophotonic” precise radial velocity (PRV) spectrometers to achieve high Doppler measurement precision with a modest budget.

  2. VizieR Online Data Catalog: Radial velocities in M67. I. 1278 candidate members (Geller+, 2015)

    Science.gov (United States)

    Geller, A. M.; Latham, D. W.; Mathieu, R. D.

    2015-10-01

    This is the first in a series of papers studying the dynamical state of the old open cluster M67 through precise radial velocities. This is also the paper LXVII of the WIYN Open Cluster Study. Our radial velocity survey of M67 began as part of the dissertation work of Mathieu (1983PhDT.........8M), taking advantage of the CfA Digital Speedometers (DS). Three nearly identical instruments were used, initially on the MMT (from HJD2445337 to HJD2450830) and 1.5m Tillinghast Reflector (from HJD2444184 to HJD2454958) at the Fred Lawrence Whipple Observatory on Mount Hopins, Arizona, and then later on the 1.5m Wyeth Reflector (from HJD2445722 to HJD2453433) at the Oak Ridge Observatory in the Town of Harvard, Massachusetts. Subsequently the M67 target samples were expanded several times. Radial velocities measurements from other programs were integrated into the database, and our observational facilities were extended to include Hydra Multi-Object Spectrograph (MOS) at the WIYN Observatory (from HJD2453386 to HJD2456709) and the new Tillinghast Reflector Echelle Spectrograph (TRES) on the Tillinghast Reflector (from HJD2455143 to HJD2456801). Details about the telescopes, observing procedures, and data reductions of spectra obtained with the CfA DS can be found in Latham (1985srv..conf...21L, 1992ASPC...32..110L). The corresponding information for spectra obtained with Hydra at the WIYN Observatory can be found in Geller et al. 2008 (cat. J/AJ/135/2264), Geller et al. 2010 (cat. J/AJ/139/1383) and Hole et al. (2009). TRES is a stabilized fiber-fed echelle spectrograph with a CCD detector and resolution of 44000. The initial CfA sample was defined in 1982. The last surviving CfA Digital Speedometer, on the 1.5m Tillinghast Reflector, was retired in the summer of 2009. Over the following five observing seasons, TRES was used to continue the radial velocity observations of targets (mostly binaries) from both the CfA and the WIYN samples. Importantly, Roger Griffin and James

  3. Velocity Curve Studies of Spectroscopic Binary Stars V380 Cygni ...

    Indian Academy of Sciences (India)

    via the method introduced by Karami & Mohebi (2007) and Karami &. Teimoorinia (2007). Our numerical results are ... One of the usual methods to analyze the velocity curve is the method of Lehmann-Filhés, .... (1987). Figure 5. Same as Fig. 1, but for V2388 Oph. The observational data belong to Rucinski et al. (2002a, b).

  4. Constitutive Curve and Velocity Profile in Entangled Polymers during Start-Up of Steady Shear Flow

    KAUST Repository

    Hayes, Keesha A.

    2010-05-11

    Time-dependent shear stress versus shear rate, constitutive curve, and velocity profile measurements are reported in entangled polymer solutions during start-up of steady shear flow. By combining confocal microscopy and particle image velocimetry (PIV), we determine the time-dependent velocity profile in polybutadiene and polystyrene solutions seeded with fluorescent 150 nm silica and 7.5 μm melamine particles. By comparing these profiles with time-dependent constitutive curves obtained from experiment and theory, we explore the connection between transient nonmonotonic regions in the constitutive curve for an entangled polymer and its susceptibility to unstable flow by shear banding [Adams et al. Phys. Rev. Lett. 2009, 102, 067801-4]. Surprisingly, we find that even polymer systems which exhibit transient, nonmonotonic shear stress-shear rate relationships in bulk rheology experiments manifest time-dependent velocity profiles that are decidedly linear and show no evidence of unstable flow. We also report that interfacial slip plays an important role in the steady shear flow behavior of entangled polymers at shear rates above the reciprocal terminal relaxation time but has little, if any, effect on the shape of the velocity profile. © 2010 American Chemical Society.

  5. ASTEROSEISMOLOGY OF THE NEARBY SN-II PROGENITOR: RIGEL. I. THE MOST HIGH-PRECISION PHOTOMETRY AND RADIAL VELOCITY MONITORING

    International Nuclear Information System (INIS)

    Moravveji, Ehsan; Guinan, Edward F.; Shultz, Matt; Williamson, Michael H.; Moya, Andres

    2012-01-01

    Rigel (β Ori, B8 Ia) is a nearby blue supergiant displaying α Cyg type variability, and is one of the nearest Type II supernova progenitors. As such it is an excellent test bed to study the internal structure of pre-core-collapse stars. In this study, for the first time, we present 28 days of high-precision MOST photometry and over six years of spectroscopic monitoring. We report 19 significant pulsation modes of signal-to-noise ratio, S/N ∼> 4.6 from radial velocities, with variability timescales ranging from 1.21 to 74.7 days, which are associated with high-order low-degree gravity modes. While the radial velocity variations show a degree of correlation with the flux changes, there is no clear interplay between the equivalent widths of different metallic and Hα lines.

  6. ASTEROSEISMOLOGY OF THE NEARBY SN-II PROGENITOR: RIGEL. I. THE MOST HIGH-PRECISION PHOTOMETRY AND RADIAL VELOCITY MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    Moravveji, Ehsan [Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Guinan, Edward F. [Department of Astronomy, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085 (United States); Shultz, Matt [Royal Military College of Canada, PO Box 17000, Station Forces, Kingston, ON K7K 4B4 (Canada); Williamson, Michael H. [Center of Excellence in Information Systems, Tennessee State University, Nashville, TN (United States); Moya, Andres, E-mail: moravveji@iasbs.ac.ir [Departamento de Astrofisica, Centro de Astrobiologia (INTA-CSIC), PO BOX 78, 28691 Villanueva de la Canada, Madrid (Spain)

    2012-03-10

    Rigel ({beta} Ori, B8 Ia) is a nearby blue supergiant displaying {alpha} Cyg type variability, and is one of the nearest Type II supernova progenitors. As such it is an excellent test bed to study the internal structure of pre-core-collapse stars. In this study, for the first time, we present 28 days of high-precision MOST photometry and over six years of spectroscopic monitoring. We report 19 significant pulsation modes of signal-to-noise ratio, S/N {approx}> 4.6 from radial velocities, with variability timescales ranging from 1.21 to 74.7 days, which are associated with high-order low-degree gravity modes. While the radial velocity variations show a degree of correlation with the flux changes, there is no clear interplay between the equivalent widths of different metallic and H{alpha} lines.

  7. Stellar Radial Velocities with IGRINS at McDonald Observatory

    Science.gov (United States)

    Mace, Gregory; Jaffe, Daniel; Park, Chan; Lee, Jae-Joon

    2016-06-01

    Exoplanet searches with dedicated instrumentation have made 1 m/s radial velocity (RV) precision routine.Yet, RVs for large samples of stars generally remain at the 1km/s level.TheImmersion Grating Infrared Spectrometer (IGRINS) is a revolutionary instrument that exploits broad spectral coverage at high-resolution in the near-infrared.IGRINS on the 2.7 meter Harlan J. Smith Telescope at McDonald Observatory is nearly as sensitive as CRIRES at the 8 meter Very Large Telescope. However, IGRINS at R=45,000 has more than 30 times the spectral grasp of CRIRES.The use of a silicon immersion grating facilitates a compact cryostat while providing simultaneous wavelength coverage from 1.45 - 2.45 microns. Wehave developed a pipeline to cross-correlate the more than 20,000 resolution elements in two IGRINS exposures and provide relative RVs with uncertainties of 50m/s (product for multi-epoch studies of low-mass, stellar and substellar multiplicity.

  8. SOAP. A tool for the fast computation of photometry and radial velocity induced by stellar spots

    Science.gov (United States)

    Boisse, I.; Bonfils, X.; Santos, N. C.

    2012-09-01

    We define and put at the disposal of the community SOAP, Spot Oscillation And Planet, a software tool that simulates the effect of stellar spots and plages on radial velocimetry and photometry. This paper describes the tool release and provides instructions for its use. We present detailed tests with previous computations and real data to assess the code's performance and to validate its suitability. We characterize the variations of the radial velocity, line bisector, and photometric amplitude as a function of the main variables: projected stellar rotational velocity, filling factor of the spot, resolution of the spectrograph, linear limb-darkening coefficient, latitude of the spot, and inclination of the star. Finally, we model the spot distributions on the active stars HD 166435, TW Hya and HD 189733, which reproduce the observations. We show that the software is remarkably fast, allowing several evolutions in its capabilities that could be performed to study the next challenges in the exoplanetary field connected with the stellar variability. The tool is available at http://www.astro.up.pt/soap

  9. An analysis of the variable radial velocity of alpha cygni

    International Nuclear Information System (INIS)

    Lucy, L.B.

    1976-01-01

    On the basis of 447 radial velocities obtained at the Lick Observatory by Paddock in the years 1927--1935, an attempt is made to discover the nature of the semiregular variability of α Cygni (A2 Ia). Harmonic analysis of the 144 velocities obtained in 1931 suggests that this variability is due to the simultaneous excitation of many discrete pulsation modes. The amplitudes and periods of these modes are then determined by least-squares fitting to all the data, and a final solution is obtained that comprises 16 terms with periods from 6.9 to 100.8 days. All terms are found to have highly significant amplitudes, and most terms also pass a test of the stability of their amplitudes and phases. Reasons are given for believing that most terms represent nonradial oscillations, and this leads to the suggestion that the resulting surface motions are to be identified with macroturbulence. An argument is also given for believing that the pulsational instability persists down to periods at which atmospheric oscillations become progressive, and this leads to the suggestion that such waves are observed as microturbulence and give rise to the observed mass loss. The importance of further monitoring of the variability of supergiants is stressed

  10. Determination of radial peculiar velocities of galaxy clusters by means of the submillimeter spectrophotometry

    International Nuclear Information System (INIS)

    Sholomitskij, G.B.

    1984-01-01

    The possibility is considered to obtain from the extraatmospheric submillimeter spectrophotometry of galaxy clusters the ratios vsub(r)/Tsub(e) for clusters intergalactic gas that permits, together with the X-ray measurements of electronic temperature Tsub(e) in the case of hot scattering gas to determine absolute radial peculiar velocities vsub(r) of galaxy clusters relative to the relic radiation. By simulating such peculiar velocities as an example for the system of bandpass filters in the wavelength range 300 μm - 2 mm the accuracy of vsub(r) estimates is proved to be about 300 km/s (not taking into account the errors in Tsub(e)) the sensitivity of deeply cooled submillimeter bolometers being 1x10 -15 W/Hzsup(1/2)

  11. A Spitzer search for transits of radial velocity detected super-Earths

    Energy Technology Data Exchange (ETDEWEB)

    Kammer, J. A.; Knutson, H. A.; Desert, J.-M. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Howard, A. W. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Laughlin, G. P.; Fortney, J. J. [Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Deming, D. [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States); Todorov, K. O. [Institute for Astronomy, ETH Zürich, CH-8093 Zürich (Switzerland); Agol, E. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Burrows, A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Showman, A. P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Lewis, N. K., E-mail: jkammer@caltech.edu [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2014-02-01

    Unlike hot Jupiters or other gas giants, super-Earths are expected to have a wide variety of compositions, ranging from terrestrial bodies like our own to more gaseous planets like Neptune. Observations of transiting systems, which allow us to directly measure planet masses and radii and constrain atmospheric properties, are key to understanding the compositional diversity of the planets in this mass range. Although Kepler has discovered hundreds of transiting super-Earth candidates over the past 4 yr, the majority of these planets orbit stars that are too far away and too faint to allow for detailed atmospheric characterization and reliable mass estimates. Ground-based transit surveys focus on much brighter stars, but most lack the sensitivity to detect planets in this size range. One way to get around the difficulty of finding these smaller planets in transit is to start by choosing targets that are already known to host super-Earth sized bodies detected using the radial velocity (RV) technique. Here we present results from a Spitzer program to observe six of the most favorable RV-detected super-Earth systems, including HD 1461, HD 7924, HD 156668, HIP 57274, and GJ 876. We find no evidence for transits in any of their 4.5 μm flux light curves, and place limits on the allowed transit depths and corresponding planet radii that rule out even the most dense and iron-rich compositions for these objects. We also observed HD 97658, but the observation window was based on a possible ground-based transit detection that was later ruled out; thus the window did not include the predicted time for the transit detection recently made by the Microvariability and Oscillations of Stars space telescope.

  12. The white dwarf binary pathways survey - II. Radial velocities of 1453 FGK stars with white dwarf companions from LAMOST DR 4

    Science.gov (United States)

    Rebassa-Mansergas, A.; Ren, J. J.; Irawati, P.; García-Berro, E.; Parsons, S. G.; Schreiber, M. R.; Gänsicke, B. T.; Rodríguez-Gil, P.; Liu, X.; Manser, C.; Nevado, S. P.; Jiménez-Ibarra, F.; Costero, R.; Echevarría, J.; Michel, R.; Zorotovic, M.; Hollands, M.; Han, Z.; Luo, A.; Villaver, E.; Kong, X.

    2017-12-01

    We present the second paper of a series of publications aiming at obtaining a better understanding regarding the nature of type Ia supernovae (SN Ia) progenitors by studying a large sample of detached F, G and K main-sequence stars in close orbits with white dwarf companions (i.e. WD+FGK binaries). We employ the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) data release 4 spectroscopic data base together with Galaxy Evolution Explorer (GALEX) ultraviolet fluxes to identify 1549 WD+FGK binary candidates (1057 of which are new), thus doubling the number of known sources. We measure the radial velocities of 1453 of these binaries from the available LAMOST spectra and/or from spectra obtained by us at a wide variety of different telescopes around the globe. The analysis of the radial velocity data allows us to identify 24 systems displaying more than 3σ radial velocity variation that we classify as close binaries. We also discuss the fraction of close binaries among WD+FGK systems, which we find to be ∼10 per cent, and demonstrate that high-resolution spectroscopy is required to efficiently identify double-degenerate SN Ia progenitor candidates.

  13. Phase shifts and nonellipsoidal light curves: Challenges from mass determinations in x-ray binary stars

    Science.gov (United States)

    Cantrell, Andrew Glenn

    We consider two types of anomalous observations which have arisen from efforts to measure dynamical masses of X-ray binary stars: (1) Radial velocity curves which seemingly show the primary and the secondary out of antiphase in most systems, and (2) The observation of double-waved light curves which deviate significantly from the ellipsoidal modulations expected for a Roche lobe filling star. We consider both problems with the joint goals of understanding the physical origins of the anomalous observations, and using this understanding to allow robust dynamical determinations of mass in X-ray binary systems. In our analysis of phase-shifted radial velocity curves, we discuss a comprehensive sample of X-ray binaries with published phase-shifted radial velocity curves. We show that the most commonly adopted explanation for phase shifts is contradicted by many observations, and consider instead a generalized form of a model proposed by Smak in 1970. We show that this model is well supported by a range of observations, including some systems which had previously been considered anomalous. We lay the groundwork for the derivation of mass ratios based on our explanation for phase shifts, and we discuss the work necessary to produce more detailed physical models of the phase shift. In our analysis of non-ellipsoidal light curves, we focus on the very well-studied system A0620-00. We present new VIH SMARTS photometry spanning 1999-2007, and supplement this with a comprehensive collection of archival data obtained since 1981. We show that A0620-00 undergoes optical state changes within X-ray quiescence and argue that not all quiescent data should be used for determinations of the inclination. We identify twelve light curves which may reliably be used for determining the inclination. We show that the accretion disk contributes significantly to all twelve curves and is the dominant source of nonellipsoidal variations. We derive the disk fraction for each of the twelve curves

  14. High-precision MoSi multilayer coatings for radial and 2D designs on curved optics

    Science.gov (United States)

    Kriese, Michael D.; Li, Yang; Platonov, Yuriy Y.

    2017-10-01

    The development of industrial infrastructure for EUV lithography requires a wide array of optics beyond the mask and the scanner optics, which include optics for critical instruments such as exposure testing and actinic inspection. This paper will detail recent results in the production of a variety of high-precision multilayer coatings achieved to support this development. It is critical that the optical designs factor in the capabilities of the achievable multilayer gradients and the associated achievable precision, including impact to surface distortion from the added figure error of the multilayer coating, which adds additional requirements of a specific shape to the period distribution. For example, two different coatings may achieve a ±0.2% variation in multilayer period, but have considerably different added figure error. Part I of the paper will focus on radially-symmetric spherical and aspherical optics. Typical azimuthal uniformity (variation at a fixed radius) achieved is less than ±0.005nm total variation, including measurement precision, on concave optics up to 200mm diameter. For highly curved convex optics (radius of curvature less than 50mm), precision is more challenging and the total variation increases to ±0.01nm total variation for optics 10-30mm in diameter. Total added figure error achieved has been as low as 0.05nm. Part II of the paper will focus on multilayer designs graded in two directions, rather than radially, in order to accommodate the increased complexity of elliptical, toroidal and hyperbolic surfaces. In most cases, the symmetry of the required multilayer gradient does not match the symmetry of the optical surface, and this interaction must be countered via the process design. Achieving such results requires additional flexibility in the design of the deposition equipment, and will be discussed with several examples in the paper, such as the use of variable velocity of an inline substrate carrier in conjunction with a shaped

  15. Characterization of Radial Curved Fin Heat Sink under Natural and Forced Convection

    Science.gov (United States)

    Khadke, Rishikesh; Bhole, Kiran

    2018-02-01

    Heat exchangers are important structures widely used in power plants, food industries, refrigeration, and air conditioners and now widely used in computing systems. Finned type of heat sink is widely used in computing systems. The main aim of the design of the heat sink is to maintain the optimum temperature level. To achieve this goal so many geometrical configurations are implemented. This paper presents a characterization of radially curved fin heat sink under natural and forced convection. Forced convection is studied for the optimization of temperature for better efficiency. The different alternatives in geometry are considered in characterization are heat intensity, the height of the fin and speed of the fan. By recognizing these alternatives the heat sink is characterized by the heat flux usually generated in high-end PCs. The temperature drop characteristics across height and radial direction are presented for the constant heat input and air flow in the heat sink. The effect of dimensionless elevation height (0 ≤ Z* ≤ 1) and Elenbaas Number (0.4 ≤ El ≤ 2.8) of the heat sink were investigated for study of the Nusselt number. Based on experimental characterization, process plan has been developed for the selection of the similar heat sinks for desired output (heat dissipation and temperature distribution).

  16. Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars

    Science.gov (United States)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Cacciari, C.; Clementini, C.

    2016-05-01

    We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a least squares deconvolution (LSD) of the line profiles in order to an- alyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (+- 2 kms^-1) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 kms^-1 even with a low number of high- resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.

  17. An ML-Based Radial Velocity Estimation Algorithm for Moving Targets in Spaceborne High-Resolution and Wide-Swath SAR Systems

    Directory of Open Access Journals (Sweden)

    Tingting Jin

    2017-04-01

    Full Text Available Multichannel synthetic aperture radar (SAR is a significant breakthrough to the inherent limitation between high-resolution and wide-swath (HRWS compared with conventional SAR. Moving target indication (MTI is an important application of spaceborne HRWS SAR systems. In contrast to previous studies of SAR MTI, the HRWS SAR mainly faces the problem of under-sampled data of each channel, causing single-channel imaging and processing to be infeasible. In this study, the estimation of velocity is equivalent to the estimation of the cone angle according to their relationship. The maximum likelihood (ML based algorithm is proposed to estimate the radial velocity in the existence of Doppler ambiguities. After that, the signal reconstruction and compensation for the phase offset caused by radial velocity are processed for a moving target. Finally, the traditional imaging algorithm is applied to obtain a focused moving target image. Experiments are conducted to evaluate the accuracy and effectiveness of the estimator under different signal-to-noise ratios (SNR. Furthermore, the performance is analyzed with respect to the motion ship that experiences interference due to different distributions of sea clutter. The results verify that the proposed algorithm is accurate and efficient with low computational complexity. This paper aims at providing a solution to the velocity estimation problem in the future HRWS SAR systems with multiple receive channels.

  18. McDonald Observatory Planetary Search - A high precision stellar radial velocity survey for other planetary systems

    Science.gov (United States)

    Cochran, William D.; Hatzes, Artie P.

    1993-01-01

    The McDonald Observatory Planetary Search program surveyed a sample of 33 nearby F, G, and K stars since September 1987 to search for substellar companion objects. Measurements of stellar radial velocity variations to a precision of better than 10 m/s were performed as routine observations to detect Jovian planets in orbit around solar type stars. Results confirm the detection of a companion object to HD114762.

  19. CHROMOSPHERICALLY ACTIVE STARS IN THE RADIAL VELOCITY EXPERIMENT (RAVE) SURVEY. I. THE CATALOG

    International Nuclear Information System (INIS)

    Žerjal, M.; Zwitter, T.; Matijevič, G.; Strassmeier, K. G.; Siviero, A.; Steinmetz, M.; Bienaymé, O.; Bland-Hawthorn, J.; Boeche, C.; Grebel, E. K.; Freeman, K. C.; Kordopatis, G.; Munari, U.; Navarro, J. F.; Parker, Q. A.; Reid, W.; Seabroke, G.; Wyse, R. F. G.

    2013-01-01

    RAVE, the unbiased magnitude limited survey of southern sky stars, contained 456,676 medium-resolution spectra at the time of our analysis. Spectra cover the Ca II infrared triplet (IRT) range, which is a known indicator of chromospheric activity. Our previous work classified all spectra using locally linear embedding. It identified 53,347 cases with a suggested emission component in calcium lines. Here, we use a spectral subtraction technique to measure the properties of this emission. Synthetic templates are replaced by the observed spectra of non-active stars to bypass the difficult computations of non-local thermal equilibrium profiles of the line cores and stellar parameter dependence. We derive both the equivalent width of the excess emission for each calcium line on a 5 Å wide interval and their sum EW IRT for ∼44,000 candidate active dwarf stars with signal-to-noise ratio >20, with no cuts on the basis of the source of their emission flux. From these, ∼14,000 show a detectable chromospheric flux with at least a 2σ confidence level. Our set of active stars vastly enlarges previously known samples. Atmospheric parameters and, in some cases, radial velocities of active stars derived from automatic pipelines suffer from systematic shifts due to their shallower calcium lines. We re-estimate the effective temperature, metallicity, and radial velocities for candidate active stars. The overall distribution of activity levels shows a bimodal shape, with the first peak coinciding with non-active stars and the second with the pre-main-sequence cases. The catalog will be made publicly available with the next RAVE public data releases

  20. An assimilation test of Doppler radar reflectivity and radial velocity from different height layers in improving the WRF rainfall forecasts

    Science.gov (United States)

    Tian, Jiyang; Liu, Jia; Yan, Denghua; Li, Chuanzhe; Chu, Zhigang; Yu, Fuliang

    2017-12-01

    Hydrological forecasts require high-resolution and accurate rainfall information, which is one of the most difficult variables to be captured by the mesoscale Numerical Weather Prediction (NWP) systems. Radar data assimilation is an effective method for improving rainfall forecasts by correcting the initial and lateral boundary conditions of the NWP system. The aim of this study is to explore an efficient way of utilizing the Doppler radar observations for data assimilation, which is implemented by exploring the effect of assimilating radar data from different height layers on the improvement of the NWP rainfall accuracy. The Weather Research and Forecasting (WRF) model is used for numerical rainfall forecast in the Zijingguan catchment located in the ;Jing-Jin-Ji; (Beijing-Tianjin-Hebei) Region of Northern China, and the three-dimensional variational data assimilation (3-DVar) technique is adopted to assimilate the radar data. Radar reflectivity and radial velocity are assimilated separately and jointly. Each type of radar data is divided into seven data sets according to the height layers: (1) 2000 m, and (7) all layers. The results show that radar reflectivity assimilation leads to better results than radial velocity assimilation. The accuracy of the forecasted rainfall deteriorates with the rise of the height of the assimilated radar reflectivity. The same results can be found when assimilating radar reflectivity and radial velocity at the same time. The conclusions of this study provide a reference for efficient assimilation of the radar data in improving the NWP rainfall products.

  1. Data reduction, radial velocities and stellar parameters from spectra in the very low signal-to-noise domain

    Science.gov (United States)

    Malavolta, Luca

    2013-10-01

    Large astronomical facilities usually provide data reduction pipeline designed to deliver ready-to-use scientific data, and too often as- tronomers are relying on this to avoid the most difficult part of an astronomer job Standard data reduction pipelines however are usu- ally designed and tested to have good performance on data with av- erage Signal to Noise Ratio (SNR) data, and the issues that are related with the reduction of data in the very low SNR domain are not taken int account properly. As a result, informations in data with low SNR are not optimally exploited. During the last decade our group has collected thousands of spec- tra using the GIRAFFE spectrograph at Very Large Telescope (Chile) of the European Southern Observatory (ESO) to determine the ge- ometrical distance and dynamical state of several Galactic Globular Clusters but ultimately the analysis has been hampered by system- atics in data reduction, calibration and radial velocity measurements. Moreover these data has never been exploited to get other informa- tions like temperature and metallicity of stars, because considered too noisy for these kind of analyses. In this thesis we focus our attention on data reduction and analysis of spectra with very low SNR. The dataset we analyze in this thesis comprises 7250 spectra for 2771 stars of the Globular Cluster M 4 (NGC 6121) in the wavelength region 5145-5360Å obtained with GIRAFFE. Stars from the upper Red Giant Branch down to the Main Sequence have been observed in very different conditions, including nights close to full moon, and reaching SNR - 10 for many spectra in the dataset. We will first review the basic steps of data reduction and spec- tral extraction, adapting techniques well tested in other field (like photometry) but still under-developed in spectroscopy. We improve the wavelength dispersion solution and the correction of radial veloc- ity shift between day-time calibrations and science observations by following a completely

  2. Inversion of Surface Wave Phase Velocities for Radial Anisotropy to an Depth of 1200 km

    Science.gov (United States)

    Xing, Z.; Beghein, C.; Yuan, K.

    2012-12-01

    This study aims to evaluate three dimensional radial anisotropy to an depth of 1200 km. Radial anisotropy describes the difference in velocity between horizontally polarized Rayleigh waves and vertically polarized Love waves. Its presence in the uppermost 200 km mantle has well been documented by different groups, and has been regarded as an indicator of mantle convection which aligns the intrinsically anisotropic minerals, largely olivine, to form large scale anisotropy. However, there is no global agreement on whether anisotropy exists in the region below 200 km. Recent models also associate a fast vertically polarized shear wave with vertical upwelling mantle flow. The data used in this study is the globally isotropic phase velocity models of fundamental and higher mode Love and Rayleigh waves (Visser, 2008). The inclusion of higher mode surface wave phase velocity provides sensitivities to structure at depth that extends to below the transition zone. While the data is the same as used by Visser (2008), a quite different parameterization is applied. All the six parameters - five elastic parameters A, C, F, L, N and density - are now regarded as independent, which rules out possible biased conclusions induced by scaling relation method used in several previous studies to reduce the number of parameters partly due to limited computing resources. The data need to be modified by crustal corrections (Crust2.0) as we want to look at the mantle structure only. We do this by eliminating the perturbation in surface wave phase velocity caused by the difference in crustal structure with respect to the referent model PREM. Sambridge's Neighborhood Algorithm is used to search the parameter space. The introduction of such a direct search technique pales the traditional inversion method, which requires regularization or some unnecessary priori restriction on the model space. On the contrary, the new method will search the full model space, providing probability density

  3. Softverski model estimatora radijalne brzine ciljeva / Software model of a radial velocity estimator

    Directory of Open Access Journals (Sweden)

    Dejan S. Ivković

    2010-04-01

    Full Text Available U radu je softverski modelovan novi blok u delu za obradu signala softverskog radarskog prijemnika, koji je nazvan estimator radijalne brzine. Detaljno je opisan način procene Doplerove frekvencije na osnovu MUSIC algoritma i ukratko prikazan način rada pri merenju. Svi parametri pri merenju klatera i detekcije simuliranih i realnih ciljeva dati su tabelarno, a rezultati grafički. Na osnovu analize prikazanih rezultata može se zaključiti da se pomoću projektovanog estimatora radijalne brzine može precizno proceniti Doplerov pomak u reflektovanom signalu od pokretnog cilja, a samim tim može se precizno odrediti njegova brzina. / In all analyses the MUSIC method has given better results than the FFT method. The MUSIC method proved to be better at estimation precision as well as at resolving two adjacent Doppler frequencies. On the basis of the obtained results, the designed estimator of radial velocity can be said to estimate Doppler frequency in the reflected signal from a moving target precisely, and, consequently, the target velocity. It is thus possible to improve the performances of the current radar as far as a precise estimation of velocity of detected moving targets is concerned.

  4. Radial velocities and metallicities from infrared Ca ii triplet spectroscopy of open clusters. II. Berkeley 23, King 1, NGC 559, NGC 6603, and NGC 7245

    Science.gov (United States)

    Carrera, R.; Casamiquela, L.; Ospina, N.; Balaguer-Núñez, L.; Jordi, C.; Monteagudo, L.

    2015-06-01

    Context. Open clusters are key to studying the formation and evolution of the Galactic disc. However, there is a deficiency of radial velocity and chemical abundance determinations for open clusters in the literature. Aims: We intend to increase the number of determinations of radial velocities and metallicities from spectroscopy for open clusters. Methods: We acquired medium-resolution spectra (R ~ 8000) in the infrared region Ca ii triplet lines (~8500 Å) for several stars in five open clusters with the long-slit IDS spectrograph on the 2.5 m Isaac Newton Telescope (Roque de los Muchachos Observatory, Spain). Radial velocities were obtained by cross-correlation fitting techniques. The relationships available in the literature between the strength of infrared Ca ii lines and metallicity were also used to derive the metallicity for each cluster. Results: We obtain ⟨Vr⟩ = 48.6 ± 3.4, -58.4 ± 6.8, 26.0 ± 4.3, and -65.3 ± 3.2 km s-1 for Berkeley 23, NGC 559, NGC 6603, and NGC 7245, respectively. We found [ Fe/H ] = -0.25 ± 0.14 and -0.15 ± 0.18 for NGC 559 and NGC 7245, respectively. Berkeley 23 has low metallicity, [ Fe/H ] = -0.42 ± 0.13, which is similar to other open clusters in the outskirts of the Galactic disc. In contrast, we derived high metallicity ([ Fe/H ] = +0.43 ± 0.15) for NGC 6603, which places this system among the most metal-rich known open clusters. To our knowledge, this is the first determination of radial velocities and metallicities from spectroscopy for these clusters, except NGC 6603, for which radial velocities had been previously determined. We have also analysed ten stars in the line of sight to King 1. Because of the large dispersion obtained in both radial velocity and metallicity, we cannot be sure that we have sampled true cluster members. Based on observations made with the 2.5 m Isaac Newton Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the

  5. The Mass of the Candidate Exoplanet Companion to HD 33636 from Hubble Space Telescope Astrometry and High-Precision Radial Velocities

    Science.gov (United States)

    Bean, Jacob L.; McArthur, Barbara E.; Benedict, G. Fritz; Harrison, Thomas E.; Bizyaev, Dmitry; Nelan, Edmund; Smith, Verne V.

    2007-08-01

    We have determined a dynamical mass for the companion to HD 33636 that indicates it is a low-mass star instead of an exoplanet. Our result is based on an analysis of Hubble Space Telescope (HST) astrometry and ground-based radial velocity data. We have obtained high-cadence radial velocity measurements spanning 1.3 yr of HD 33636 with the Hobby-Eberly Telescope at McDonald Observatory. We combined these data with previously published velocities to create a data set that spans 9 yr. We used this data set to search for, and place mass limits on, the existence of additional companions in the HD 33636 system. Our high-precision astrometric observations of the system with the HST Fine Guidance Sensor 1r span 1.2 yr. We simultaneously modeled the radial velocity and astrometry data to determine the parallax, proper motion, and perturbation orbit parameters of HD 33636. Our derived parallax, πabs=35.6+/-0.2 mas, agrees within the uncertainties with the Hipparcos value. We find a perturbation period P=2117.3+/-0.8 days, semimajor axis aA=14.2+/-0.2 mas, and system inclination i=4.1deg+/-0.1deg. Assuming the mass of the primary star to be MA=1.02+/-0.03 Msolar, we obtain a companion mass MB=142+/-11 MJup=0.14+/-0.01 Msolar. The much larger true mass of the companion relative to its minimum mass estimated from the spectroscopic orbit parameters (Msini=9.3 MJup) is due to the nearly face-on orbit orientation. This result demonstrates the value of follow-up astrometric observations to determine the true masses of exoplanet candidates detected with the radial velocity method. Based on data obtained with the NASA/ESA Hubble Space Telescope (HST) and the Hobby-Eberly Telescope (HET). The HST observations were obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. The HET is a joint project of the University of Texas at Austin, Pennsylvania State University, Stanford

  6. The Surface Density Profile of the Galactic Disk from the Terminal Velocity Curve

    Science.gov (United States)

    McGaugh, Stacy S.

    2016-01-01

    The mass distribution of the Galactic disk is constructed from the terminal velocity curve and the mass discrepancy-acceleration relation. Mass models numerically quantifying the detailed surface density profiles are tabulated. For R0 = 8 kpc, the models have stellar mass 5 spiral galaxy that obeys scaling relations like the Tully-Fisher relation, the size-mass relation, and the disk maximality-surface brightness relation. The stellar disk is maximal, and the spiral arms are massive. The bumps and wiggles in the terminal velocity curve correspond to known spiral features (e.g., the Centaurus arm is a ˜50% overdensity). The rotation curve switches between positive and negative over scales of hundreds of parsecs. The rms amplitude { }1/2≈ 14 {km} {{{s}}}-1 {{kpc}}-1, implying that commonly neglected terms in the Jeans equations may be nonnegligible. The spherically averaged local dark matter density is ρ0,DM ≈ 0.009 {M}⊙ {{pc}}-3 (0.34 {GeV} {{cm}}-3). Adiabatic compression of the dark matter halo may help reconcile the Milky Way with the c-V200 relation expected in ΛCDM while also helping to mitigate the too-big-to-fail problem, but it remains difficult to reconcile the inner bulge/bar-dominated region with a cuspy halo. We note that NGC 3521 is a near twin to the Milky Way, having a similar luminosity, scale length, and rotation curve.

  7. To the calculation technique and interpretation of atom radial distribution curves in ternary alloy systems

    International Nuclear Information System (INIS)

    Dutchak, Ya.I.; Frenchko, V.S.; Voznyak, O.M.

    1975-01-01

    Certain models of the structure of three-component melts are considered: the ''quasi-eutectic'' one, the model of statistical distribution of atoms and the ''polystructural'' model. The analytical expressions are given for the area under the first maximum of the curve describing the radial distribution of atoms for certain versions of the ''polystructural'' model. On the example of In-Ga-Ga and Bi-Cd-Sn eutectic melts the possibility of estimating the nature of atomic ordering in three-component melts through checking the models under consideration has been demonstrated

  8. Detection of Stellar Pulsations in the Planet Host Star γ Cephei A by High Precision Radial Velocity Measurements

    International Nuclear Information System (INIS)

    Endl, Michael; Castanheira, Barbara G.; Cochran, William D.; Bean, Jacob L.; Wittenmyer, Robert A.; Hatzes, Artie P.

    2009-01-01

    We present a first analysis of our asteroseismology campaign on the planet host star γ Cep A. We used seven consecutive nights at the Harlan J. Smith 2.7 m telescope at McDonald Observatory to obtain 1200 highly precise radial velocity measurements. We find the star to be a multi-periodic pulsator with a frequency spacing of 15 μHz.

  9. Continuous Sound Velocity Measurements along the Shock Hugoniot Curve of Quartz

    Science.gov (United States)

    Li, Mu; Zhang, Shuai; Zhang, Hongping; Zhang, Gongmu; Wang, Feng; Zhao, Jianheng; Sun, Chengwei; Jeanloz, Raymond

    2018-05-01

    We report continuous measurements of the sound velocity along the principal Hugoniot curve of α quartz between 0.25 and 1.45 TPa, as determined from lateral release waves intersecting the shock front as a function of time in decaying-shock experiments. The measured sound velocities are lower than predicted by prior models, based on the properties of stishovite at densities below ˜7 g /cm3 , but agree with density functional theory molecular dynamics calculations and an empirical wide-regime equation of state presented here. The Grüneisen parameter calculated from the sound velocity decreases from γ ˜1 .3 at 0.25 TPa to 0.66 at 1.45 TPa. In combination with evidence for increased (configurational) specific heat and decreased bulk modulus, the values of γ suggest a high thermal expansion coefficient at ˜0. 25 - 0 .65 TPa , where SiO2 is thought to be a bonded liquid. From our measurements, dissociation of the molecular bonds persists to ˜0. 65 - 1 .0 TPa , consistent with estimates by other methods. At higher densities, the sound velocity is close to predictions from previous models, and the Grüneisen parameter approaches the ideal gas value.

  10. Correlated Radial Velocity and X-Ray Variations in HD 154791/4U 1700+24

    Science.gov (United States)

    Galloway, Duncan K.; Sokoloski, J. L.; Kenyon, Scott J.

    2002-12-01

    We present evidence for approximately 400 day variations in the radial velocity of HD 154791 (V934 Her), the suggested optical counterpart of 4U 1700+24. The variations are correlated with the previously reported ~400 day variations in the X-ray flux of 4U 1700+24, which supports the association of these two objects, as well as the identification of this system as the second known X-ray binary in which a neutron star accretes from the wind of a red giant. The HD 154791 radial velocity variations can be fitted with an eccentric orbit with period 404+/-3 days, amplitude K=0.75+/-0.12kms-1, and eccentricity e=0.26+/-0.15. There are also indications of variations on longer timescales >~2000 days. We have reexamined all available All-Sky Monitor (ASM) data following an unusually large X-ray outburst in 1997-1998 and confirm that the 1 day averaged 2-10 keV X-ray flux from 4U 1700+24 is modulated with a period of 400+/-20 days. The mean profile of the persistent X-ray variations was approximately sinusoidal, with an amplitude of 0.108+/-0.012 ASM counts s-1 (corresponding to 31% rms). The epoch of X-ray maximum was approximately 40 days after the time of periastron, according to the eccentric orbital fit. If the 400 day oscillations from HD 154791/4U 1700+24 are due to orbital motion, then the system parameters are probably close to those of the only other neutron star symbiotic-like binary, GX 1+4. We discuss the similarities and differences between these two systems.

  11. A-type central stars of planetary nebulae. 1. A radial-velocity study of the central stars of NGC2346 and NGC3132

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, R H; Niemela, V S [Instituto de Astronomia y Fisica del Espacio, Succuoa, Buenos Aires (Argentina); Lee, P

    1978-08-01

    Radial-velocity measurements of the A-type central stars of NGC2346 and NGC3132 are presented. The first one is almost certainly a spectroscopic binary; no definite statement can be made about the second.

  12. Friends of hot Jupiters. I. A radial velocity search for massive, long-period companions to close-in gas giant planets

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, Heather A.; Ngo, Henry; Johnson, John Asher [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Fulton, Benjamin J.; Howard, Andrew W. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI (United States); Montet, Benjamin T.; Kao, Melodie; Hinkley, Sasha; Morton, Timothy D.; Muirhead, Philip S. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Crepp, Justin R. [Department of Physics, University of Notre Dame, Notre Dame, IN (United States); Bakos, Gaspar Á. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States); Batygin, Konstantin, E-mail: hknutson@caltech.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    2014-04-20

    In this paper we search for distant massive companions to known transiting gas giant planets that may have influenced the dynamical evolution of these systems. We present new radial velocity observations for a sample of 51 planets obtained using the Keck HIRES instrument, and find statistically significant accelerations in fifteen systems. Six of these systems have no previously reported accelerations in the published literature: HAT-P-10, HAT-P-22, HAT-P-29, HAT-P-32, WASP-10, and XO-2. We combine our radial velocity fits with Keck NIRC2 adaptive optics (AO) imaging data to place constraints on the allowed masses and orbital periods of the companions responsible for the detected accelerations. The estimated masses of the companions range between 1-500 M {sub Jup}, with orbital semi-major axes typically between 1-75 AU. A significant majority of the companions detected by our survey are constrained to have minimum masses comparable to or larger than those of the transiting planets in these systems, making them candidates for influencing the orbital evolution of the inner gas giant. We estimate a total occurrence rate of 51% ± 10% for companions with masses between 1-13 M {sub Jup} and orbital semi-major axes between 1-20 AU in our sample. We find no statistically significant difference between the frequency of companions to transiting planets with misaligned or eccentric orbits and those with well-aligned, circular orbits. We combine our expanded sample of radial velocity measurements with constraints from transit and secondary eclipse observations to provide improved measurements of the physical and orbital characteristics of all of the planets included in our survey.

  13. A peculiar distribution of radial velocities of faint radio-galaxies with 13.0<=msub(corr)<=15.5

    International Nuclear Information System (INIS)

    Karoji, H.; Nottale, L.; Vigier, J.-P.

    1976-01-01

    A sample of 41 radio-galaxies with 13.0<=msub(corr)<=15.5 has been analyzed to test the angular redshift anisotropy discovered on Sc I galaxies by Rubin, Rubin and Ford (1973). The sample does not present their anisotropy but contains an even more curious distribution of radial velocities which suggests that the Rubin-Ford effect results from an anomalous redshift of light when it travels through clusters of galaxies. (Auth.)

  14. The TROY project: Searching for co-orbital bodies to known planets. I. Project goals and first results from archival radial velocity

    Science.gov (United States)

    Lillo-Box, J.; Barrado, D.; Figueira, P.; Leleu, A.; Santos, N. C.; Correia, A. C. M.; Robutel, P.; Faria, J. P.

    2018-01-01

    Context. The detection of Earth-like planets, exocomets or Kuiper belts show that the different components found in the solar system should also be present in other planetary systems. Trojans are one of these components and can be considered fossils of the first stages in the life of planetary systems. Their detection in extrasolar systems would open a new scientific window to investigate formation and migration processes. Aims: In this context, the main goal of the TROY project is to detect exotrojans for the first time and to measure their occurrence rate (η-Trojan). In this first paper, we describe the goals and methodology of the project. Additionally, we used archival radial velocity data of 46 planetary systems to place upper limits on the mass of possible trojans and investigate the presence of co-orbital planets down to several tens of Earth masses. Methods: We used archival radial velocity data of 46 close-in (P 1σ evidence for a mass imbalance between L4 and L5. Two of these systems provide >2σ detection, but no significant detection is found among our sample. We also report upper limits to the masses at L4/L5 in all studied systems and discuss the results in the context of previous findings. Radial velocity data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A96

  15. RADIAL VELOCITY PLANETS DE-ALIASED: A NEW, SHORT PERIOD FOR SUPER-EARTH 55 Cnc e

    International Nuclear Information System (INIS)

    Dawson, Rebekah I.; Fabrycky, Daniel C.

    2010-01-01

    Radial velocity measurements of stellar reflex motion have revealed many extrasolar planets, but gaps in the observations produce aliases, spurious frequencies that are frequently confused with the planets' orbital frequencies. In the case of Gl 581 d, the distinction between an alias and the true frequency was the distinction between a frozen, dead planet and a planet possibly hospitable to life. To improve the characterization of planetary systems, we describe how aliases originate and present a new approach for distinguishing between orbital frequencies and their aliases. Our approach harnesses features in the spectral window function to compare the amplitude and phase of predicted aliases with peaks present in the data. We apply it to confirm prior alias distinctions for the planets GJ 876 d and HD 75898 b. We find that the true periods of Gl 581 d and HD 73526 b/c remain ambiguous. We revise the periods of HD 156668 b and 55 Cnc e, which were afflicted by daily aliases. For HD 156668 b, the correct period is 1.2699 days and the minimum mass is (3.1 ± 0.4) M + . For 55 Cnc e, the correct period is 0.7365 days-the shortest of any known planet-and the minimum mass is (8.3 ± 0.3) M + . This revision produces a significantly improved five-planet Keplerian fit for 55 Cnc, and a self-consistent dynamical fit describes the data just as well. As radial velocity techniques push to ever-smaller planets, often found in systems of multiple planets, distinguishing true periods from aliases will become increasingly important.

  16. Observations of the radial velocity of the Sun as measured with the novel SONG spectrograph

    DEFF Research Database (Denmark)

    Pallé, P. L.; Grundahl, F.; Hage, A. Triviño

    2013-01-01

    Deployment of the prototype node of the SONG project took place in April 2012 at Observatorio del Teide (Canary Islands). Its key instrument (echelle spectrograph) was installed and operational a few weeks later while its 1 m feeding telescope suffered a considerable delay to meet the required...... specifications. Using a fibre-feed, solar light could be fed to the spectrograph and we carried out a 1-week observing campaign in June 2012 to evaluate its performance for measuring precision radial velocities. In this work we present the first results of this campaign by comparing the sensitivity of the SONG...

  17. Where are the Binaries? Results of a Long-term Search for Radial Velocity Binaries in Proto-planetary Nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Hrivnak, Bruce J.; Lu, Wenxian [Department of Physics and Astronomy, Valparaiso University, Valparaiso, IN 46383 (United States); Steene, Griet Van de [Royal Observatory of Belgium, Astronomy and Astrophysics, Ringlaan 3, Brussels (Belgium); Winckel, Hans Van [Instituut voor Sterrenkunde, K.U. Leuven University, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Sperauskas, Julius [Vilnius University Observatory, Ciurlionio 29 Vilnius 2009 (Lithuania); Bohlender, David, E-mail: bruce.hrivnak@valpo.edu, E-mail: wen.lu@valpo.edu, E-mail: g.vandesteene@oma.be, E-mail: Hans.VanWinckel@ster.kuleuven.be, E-mail: julius.sperauskas@ff.vu.lt, E-mail: David.Bohlender@nrc-cnrc.gc.ca [National Research Council of Canada, Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada)

    2017-09-10

    We present the results of an expanded, long-term radial velocity search (25 years) for evidence of binarity in a sample of seven bright proto-planetary nebulae (PPNe). The goal is to investigate the widely held view that the bipolar or point-symmetric shapes of planetary nebulae (PNe) and PPNe are due to binary interactions. Observations from three observatories were combined from 2007 to 2015 to search for variations on the order of a few years and then combined with earlier observations from 1991 to 1995 to search for variations on the order of decades. All seven show velocity variations due to periodic pulsation in the range of 35–135 days. However, in only one PPN, IRAS 22272+5435, did we find even marginal evidence for multi-year variations that might be due to a binary companion. This object shows marginally significant evidence of a two-year period of low semi-amplitude, which could be due to a low-mass companion, and it also displays some evidence of a much longer period of >30 years. The absence of evidence in the other six objects for long-period radial velocity variations due to a binary companion sets significant constraints on the properties of any undetected binary companions: they must be of low mass, ≤0.2 M {sub ⊙}, or long period, >30 years. Thus the present observations do not provide direct support for the binary hypothesis to explain the shapes of PNe and PPNe and severely constrains the properties of any such undetected companions.

  18. Automatic Curve Fitting Based on Radial Basis Functions and a Hierarchical Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    G. Trejo-Caballero

    2015-01-01

    Full Text Available Curve fitting is a very challenging problem that arises in a wide variety of scientific and engineering applications. Given a set of data points, possibly noisy, the goal is to build a compact representation of the curve that corresponds to the best estimate of the unknown underlying relationship between two variables. Despite the large number of methods available to tackle this problem, it remains challenging and elusive. In this paper, a new method to tackle such problem using strictly a linear combination of radial basis functions (RBFs is proposed. To be more specific, we divide the parameter search space into linear and nonlinear parameter subspaces. We use a hierarchical genetic algorithm (HGA to minimize a model selection criterion, which allows us to automatically and simultaneously determine the nonlinear parameters and then, by the least-squares method through Singular Value Decomposition method, to compute the linear parameters. The method is fully automatic and does not require subjective parameters, for example, smooth factor or centre locations, to perform the solution. In order to validate the efficacy of our approach, we perform an experimental study with several tests on benchmarks smooth functions. A comparative analysis with two successful methods based on RBF networks has been included.

  19. Multicore fibre photonic lanterns for precision radial velocity Science

    Science.gov (United States)

    Gris-Sánchez, Itandehui; Haynes, Dionne M.; Ehrlich, Katjana; Haynes, Roger; Birks, Tim A.

    2018-04-01

    Incomplete fibre scrambling and fibre modal noise can degrade high-precision spectroscopic applications (typically high spectral resolution and high signal to noise). For example, it can be the dominating error source for exoplanet finding spectrographs, limiting the maximum measurement precision possible with such facilities. This limitation is exacerbated in the next generation of infra-red based systems, as the number of modes supported by the fibre scales inversely with the wavelength squared and more modes typically equates to better scrambling. Substantial effort has been made by major research groups in this area to improve the fibre link performance by employing non-circular fibres, double scramblers, fibre shakers, and fibre stretchers. We present an original design of a multicore fibre (MCF) terminated with multimode photonic lantern ports. It is designed to act as a relay fibre with the coupling efficiency of a multimode fibre (MMF), modal stability similar to a single-mode fibre and low loss in a wide range of wavelengths (380 nm to 860 nm). It provides phase and amplitude scrambling to achieve a stable near field and far-field output illumination pattern despite input coupling variations, and low modal noise for increased stability for high signal-to-noise applications such as precision radial velocity (PRV) science. Preliminary results are presented for a 511-core MCF and compared with current state of the art octagonal fibre.

  20. The effect of gradational velocities and anisotropy on fault-zone trapped waves

    Science.gov (United States)

    Gulley, A. K.; Eccles, J. D.; Kaipio, J. P.; Malin, P. E.

    2017-08-01

    Synthetic fault-zone trapped wave (FZTW) dispersion curves and amplitude responses for FL (Love) and FR (Rayleigh) type phases are analysed in transversely isotropic 1-D elastic models. We explore the effects of velocity gradients, anisotropy, source location and mechanism. These experiments suggest: (i) A smooth exponentially decaying velocity model produces a significantly different dispersion curve to that of a three-layer model, with the main difference being that Airy phases are not produced. (ii) The FZTW dispersion and amplitude information of a waveguide with transverse-isotropy depends mostly on the Shear wave velocities in the direction parallel with the fault, particularly if the fault zone to country-rock velocity contrast is small. In this low velocity contrast situation, fully isotropic approximations to a transversely isotropic velocity model can be made. (iii) Fault-aligned fractures and/or bedding in the fault zone that cause transverse-isotropy enhance the amplitude and wave-train length of the FR type FZTW. (iv) Moving the source and/or receiver away from the fault zone removes the higher frequencies first, similar to attenuation. (v) In most physically realistic cases, the radial component of the FR type FZTW is significantly smaller in amplitude than the transverse.

  1. Extracting kinetic freeze-out temperature and radial flow velocity from an improved Tsallis distribution

    Energy Technology Data Exchange (ETDEWEB)

    Lao, Hai-Ling; Liu, Fu-Hu [Shanxi University, Institute of Theoretical Physics, Shanxi (China); Lacey, Roy A. [Stony Brook University, Departments of Chemistry and Physics, Stony Brook, NY (United States)

    2017-03-15

    We analyze the transverse-momentum (p{sub T}) spectra of identified particles (π{sup ±}, K{sup ±}, p, and anti p) produced in gold-gold (Au-Au) and lead-lead (Pb-Pb) collisions over a √(s{sub NN}) (center-of-mass energy per nucleon pair) range from 14.5 GeV (one of the Relativistic Heavy Ion Collider (RHIC) energies) to 2.76 TeV (one of the Large Hadron Collider (LHC) energies). For the spectra with a narrow p{sub T} range, an improved Tsallis distribution which is in fact the Tsallis distribution with radial flow is used. For the spectra with a wide p{sub T} range, a superposition of the improved Tsallis distribution and an inverse power law is used. Both the extracted kinetic freeze-out temperature (T{sub 0}) and radial flow velocity (β{sub T}) increase with the increase of √(s{sub NN}), which indicates a higher excitation and larger expansion of the interesting system at the LHC. Both the values of T{sub 0} and β{sub T} in central collisions are slightly larger than those in peripheral collisions, and they are independent of isospin and slightly dependent on mass. (orig.)

  2. Reconstruction of Typhoon Structure Using 3-Dimensional Doppler Radar Radial Velocity Data with the Multigrid Analysis: A Case Study in an Idealized Simulation Context

    Directory of Open Access Journals (Sweden)

    Hongli Fu

    2016-01-01

    Full Text Available Extracting multiple-scale observational information is critical for accurately reconstructing the structure of mesoscale circulation systems such as typhoon. The Space and Time Mesoscale Analysis System (STMAS with multigrid data assimilation developed in Earth System Research Laboratory (ESRL in National Oceanic and Atmospheric Administration (NOAA has addressed this issue. Previous studies have shown the capability of STMAS to retrieve multiscale information in 2-dimensional Doppler radar radial velocity observations. This study explores the application of 3-dimensional (3D Doppler radar radial velocities with STMAS for reconstructing a 3D typhoon structure. As for the first step, here, we use an idealized simulation framework. A two-scale simulated “typhoon” field is constructed and referred to as “truth,” from which randomly distributed conventional wind data and 3D Doppler radar radial wind data are generated. These data are used to reconstruct the synthetic 3D “typhoon” structure by the STMAS and the traditional 3D variational (3D-Var analysis. The degree by which the “truth” 3D typhoon structure is recovered is an assessment of the impact of the data type or analysis scheme being evaluated. We also examine the effects of weak constraint and strong constraint on STMAS analyses. Results show that while the STMAS is superior to the traditional 3D-Var for reconstructing the 3D typhoon structure, the strong constraint STMAS can produce better analyses on both horizontal and vertical velocities.

  3. Stellar Angular Momentum Distributions and Preferential Radial Migration

    Science.gov (United States)

    Wyse, Rosemary; Daniel, Kathryne J.

    2018-04-01

    I will present some results from our recent investigations into the efficiency of radial migration in stellar disks of differing angular momentum distributions, within a given adopted 2D spiral disk potential. We apply to our models an analytic criterion that determines whether or not individual stars are in orbits that could lead to radial migration around the corotation resonance. We couch our results in terms of the local stellar velocity dispersion and find that the fraction of stars that could migrate radially decreases as the velocity dispersion increases. I will discuss implications and comparisons with the results of other approaches.

  4. Shear-Velocity Structure and Azimuthal and Radial Anisotropy Beneath the Kaapvaal Craton From Bayesian Inversion of Surface-Wave Data: Inferences for the Architecture and Early Evolution of Cratons

    Science.gov (United States)

    Lebedev, S.; Ravenna, M.; Adam, J.

    2017-12-01

    Seismic anisotropy provides essential information on the deformation of the lithosphere. Knowledge of anisotropy also allows us to isolate the isotropic-average seismic velocities, relatable to the lithospheric temperature and composition. We use Rayleigh and Love-wave phase velocities and their azimuthal anisotropy measured in broad period ranges across the footprint of the Southern Africa Seismic Experiment (SASE), from the Kaapvaal Craton to the Limpopo Belt. We invert the data using our recently developed, fully non-linear Markov Chain Monte Carlo method and determine, for the first time, both the isotropic-average S velocity and its radial and azimuthal anisotropy as a function of depth from the upper crust down to the asthenosphere. The probabilistic inversion provides a way to quantify non-uniqueness, using direct parameter-space sampling, and assess model uncertainties. The high-velocity anomaly indicative of the cold cratonic lithosphere bottoms at 200-250 km beneath the central and western Kaapvaal Craton, underlain by a low-velocity zone. Beneath northern Kaapvaal and Limpopo, by contrast, high velocities extend down to 300-350 km. Although this does not require a lithosphere that has maintained this thickness over a geologically long time, the data does require the mantle to be anomalously cold down to 300-350 km. Interestingly, topography correlates with the thickness of this high-velocity layer, with lower elevations where the lid is thicker. Radial shear-wave anisotropy is in the 2-5 percent range (Vsh > Vsv) from the lower crust down to 200 km, below which depth it decreases gradually. Radial variations in the amplitude of radial anisotropy show no clear relationship with those in the amplitude of azimuthal anisotropy or isotropic-average Vs anomalies. Azimuthal anisotropy changes the fast-propagation direction near the base of the lithosphere (200-300 km depth), from the laterally varying fast azimuths in the lower lithosphere to a spatially

  5. Red Optical Planet Survey: A radial velocity search for low mass M dwarf planets

    Directory of Open Access Journals (Sweden)

    Minniti D.

    2013-04-01

    Full Text Available We present radial velocity results from our Red Optical Planet Survey (ROPS, aimed at detecting low-mass planets orbiting mid-late M dwarfs. The ∼10 ms−1 precision achieved over 2 consecutive nights with the MIKE spectrograph at Magellan Clay is also found on week long timescales with UVES at VLT. Since we find that UVES is expected to attain photon limited precision of order 2 ms−1 using our novel deconvolution technique, we are limited only by the (≤10 ms−1 stability of atmospheric lines. Rocky planet frequencies of η⊕ = 0.3−0.7 lead us to expect high planet yields, enabling determination of η⊕ for the uncharted mid-late M dwarfs with modest surveys.

  6. A Comprehensive Radial Velocity Error Budget for Next Generation Doppler Spectrometers

    Science.gov (United States)

    Halverson, Samuel; Ryan, Terrien; Mahadevan, Suvrath; Roy, Arpita; Bender, Chad; Stefansson, Guomundur Kari; Monson, Andrew; Levi, Eric; Hearty, Fred; Blake, Cullen; hide

    2016-01-01

    We describe a detailed radial velocity error budget for the NASA-NSF Extreme Precision Doppler Spectrometer instrument concept NEID (NN-explore Exoplanet Investigations with Doppler spectroscopy). Such an instrument performance budget is a necessity for both identifying the variety of noise sources currently limiting Doppler measurements, and estimating the achievable performance of next generation exoplanet hunting Doppler spectrometers. For these instruments, no single source of instrumental error is expected to set the overall measurement floor. Rather, the overall instrumental measurement precision is set by the contribution of many individual error sources. We use a combination of numerical simulations, educated estimates based on published materials, extrapolations of physical models, results from laboratory measurements of spectroscopic subsystems, and informed upper limits for a variety of error sources to identify likely sources of systematic error and construct our global instrument performance error budget. While natively focused on the performance of the NEID instrument, this modular performance budget is immediately adaptable to a number of current and future instruments. Such an approach is an important step in charting a path towards improving Doppler measurement precisions to the levels necessary for discovering Earth-like planets.

  7. Southern high-velocity stars

    International Nuclear Information System (INIS)

    Augensen, H.J.; Buscombe, W.

    1978-01-01

    Using the model of the Galaxy presented by Eggen, Lynden-Bell and Sandage (1962), plane galactic orbits have been calculated for 800 southern high-velocity stars which possess parallax, proper motion, and radial velocity data. The stars with trigonometric parallaxes were selected from Buscombe and Morris (1958), supplemented by more recent spectroscopic data. Photometric parallaxes from infrared color indices were used for bright red giants studied by Eggen (1970), and for red dwarfs for which Rodgers and Eggen (1974) determined radial velocities. A color-color diagram based on published values of (U-B) and (B-V) for most of these stars is shown. (Auth.)

  8. A GLOBAL MODEL OF THE LIGHT CURVES AND EXPANSION VELOCITIES OF TYPE II-PLATEAU SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Pejcha, Ondřej [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08540 (United States); Prieto, Jose L., E-mail: pejcha@astro.princeton.edu [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441 Santiago (Chile)

    2015-02-01

    We present a new self-consistent and versatile method that derives photospheric radius and temperature variations of Type II-Plateau supernovae based on their expansion velocities and photometric measurements. We apply the method to a sample of 26 well-observed, nearby supernovae with published light curves and velocities. We simultaneously fit ∼230 velocity and ∼6800 mag measurements distributed over 21 photometric passbands spanning wavelengths from 0.19 to 2.2 μm. The light-curve differences among the Type II-Plateau supernovae are well modeled by assuming different rates of photospheric radius expansion, which we explain as different density profiles of the ejecta, and we argue that steeper density profiles result in flatter plateaus, if everything else remains unchanged. The steep luminosity decline of Type II-Linear supernovae is due to fast evolution of the photospheric temperature, which we verify with a successful fit of SN 1980K. Eliminating the need for theoretical supernova atmosphere models, we obtain self-consistent relative distances, reddenings, and nickel masses fully accounting for all internal model uncertainties and covariances. We use our global fit to estimate the time evolution of any missing band tailored specifically for each supernova, and we construct spectral energy distributions and bolometric light curves. We produce bolometric corrections for all filter combinations in our sample. We compare our model to the theoretical dilution factors and find good agreement for the B and V filters. Our results differ from the theory when the I, J, H, or K bands are included. We investigate the reddening law toward our supernovae and find reasonable agreement with standard R{sub V}∼3.1 reddening law in UBVRI bands. Results for other bands are inconclusive. We make our fitting code publicly available.

  9. EnKF OSSE Experiments Assessing the Impact of HIRAD Wind Speed and HIWRAP Radial Velocity Data on Analysis of Hurricane Karl (2010)

    Science.gov (United States)

    Albers, Cerese; Sippel, Jason A.; Braun, Scott A.; Miller, Timothy

    2012-01-01

    Previous studies (e.g., Zhang et al. 2009, Weng et al. 2011) have shown that radial velocity data from airborne and ground-based radars can be assimilated into ensemble Kalman filter (EnKF) systems to produce accurate analyses of tropical cyclone vortices, which can reduce forecast intensity error. Recently, wind speed data from SFMR technology has also been assimilated into the same types of systems and has been shown to improve the forecast intensity of mature tropical cyclones. Two instruments that measure these properties were present during the NASA Genesis and Rapid Intensification Processes (GRIP) field experiment in 2010 which sampled Hurricane Karl, and will next be co-located on the same aircraft for the subsequent NASA HS3 experiment. The High Altitude Wind and Rain Profiling Radar (HIWRAP) is a conically scanning Doppler radar mounted upon NASAs Global Hawk unmanned aerial vehicle, and the usefulness of its radial velocity data for assimilation has not been previously examined. Since the radar scans from above with a fairly large fixed elevation angle, it observes a large component of the vertical wind, which could degrade EnKF analyses compared to analyses with data taken from lesser elevation angles. The NASA Hurricane Imaging Radiometer (HIRAD) is a passive microwave radiometer similar to SFMR, and measures emissivity and retrieves hurricane surface wind speeds and rain rates over a much wider swath. Thus, this study examines the impact of assimilating simulated HIWRAP radial velocity data into an EnKF system, simulated HIRAD wind speed, and HIWRAP+HIRAD with the Weather Research and Forecasting (WRF) model and compares the results to no data assimilation and also to the Truth from which the data was simulated for both instruments.

  10. “MODAL NOISE” IN SINGLE-MODE FIBERS: A CAUTIONARY NOTE FOR HIGH PRECISION RADIAL VELOCITY INSTRUMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Samuel; Roy, Arpita; Mahadevan, Suvrath [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Schwab, Christian, E-mail: shalverson@psu.edu [Macquarie University, Sydney, NSW 2109 (Australia)

    2015-12-01

    Exploring the use of single-mode fibers (SMFs) in high precision Doppler spectrometers has become increasingly attractive since the advent of diffraction-limited adaptive optics systems on large-aperture telescopes. Spectrometers fed with these fibers can be made significantly smaller than typical “seeing-limited” instruments, greatly reducing cost and overall complexity. Importantly, classical mode interference and speckle issues associated with multi-mode fibers, also known as “modal noise,” are mitigated when using SMFs, which also provide perfect radial and azimuthal image scrambling. However, SMFs do support multiple polarization modes, an issue that is generally ignored for larger-core fibers given the large number of propagation modes. Since diffraction gratings used in most high resolution astronomical instruments have dispersive properties that are sensitive to incident polarization changes, any birefringence variations in the fiber can cause variations in the efficiency profile, degrading illumination stability. Here we present a cautionary note outlining how the polarization properties of SMFs can affect the radial velocity (RV) measurement precision of high resolution spectrographs. This work is immediately relevant to the rapidly expanding field of diffraction-limited, extreme precision RV spectrographs that are currently being designed and built by a number of groups.

  11. Influence of Velocity Curves Unevenness on the Centrifugal Pump Head

    Directory of Open Access Journals (Sweden)

    V. A. Cheryomushkin

    2017-01-01

    Full Text Available A formula of the theoretical head, which gives the value of the impeller in terms of its geometrical parameters, is used to calculate the pump head at the stage of theoretical design. One of the main assumptions in this case is a strip theory, which does not take into consideration the unevenness of curves of the meridional and circumferential velocity components at the impeller outlet of a centrifugal pump. The article studies this influence. Describes a mathematical model for theoretical and numerical calculations. Shows the figures of the flow part under study and of the computational grid. For complete formalization of the problem the meshing models and boundary conditions are shown. As the boundary conditions, full pump-inlet head into the flow part and velocity at the outlet were used. Then, there are the graphs to compare the results of theoretical and numerical calculation and the error is shown. For comparison, a value of the theoretical head was multiplied by the efficiency, which was defined by computer simulation. A designing process of the flow part was iterative, so the comparison was carried out for all iterations. It should be noted that correction for the finite number of blades is also assumption. To determine a degree of the errors impact because of this correction, an average value of the circumferential component of the fluid velocity at the impeller outlet was calculated by two above methods followed by their comparison. It was shown that this impact is negligible, i.e. correction provides a sufficiently accurate value. In conclusion, the paper explains the possible reasons for inaccuracies in theoretical determination of the head, as well as the option to eliminate this inaccuracy, thereby reducing the time required for defining the basic parameters of the flow part. To illustrate the nature of fluid flow, for the last iteration are given the fields of the pressure distribution and the velocity vector in the equatorial

  12. Radial Domany-Kinzel models with mutation and selection

    Science.gov (United States)

    Lavrentovich, Maxim O.; Korolev, Kirill S.; Nelson, David R.

    2013-01-01

    We study the effect of spatial structure, genetic drift, mutation, and selective pressure on the evolutionary dynamics in a simplified model of asexual organisms colonizing a new territory. Under an appropriate coarse-graining, the evolutionary dynamics is related to the directed percolation processes that arise in voter models, the Domany-Kinzel (DK) model, contact process, and so on. We explore the differences between linear (flat front) expansions and the much less familiar radial (curved front) range expansions. For the radial expansion, we develop a generalized, off-lattice DK model that minimizes otherwise persistent lattice artifacts. With both simulations and analytical techniques, we study the survival probability of advantageous mutants, the spatial correlations between domains of neutral strains, and the dynamics of populations with deleterious mutations. “Inflation” at the frontier leads to striking differences between radial and linear expansions. For a colony with initial radius R0 expanding at velocity v, significant genetic demixing, caused by local genetic drift, occurs only up to a finite time t*=R0/v, after which portions of the colony become causally disconnected due to the inflating perimeter of the expanding front. As a result, the effect of a selective advantage is amplified relative to genetic drift, increasing the survival probability of advantageous mutants. Inflation also modifies the underlying directed percolation transition, introducing novel scaling functions and modifications similar to a finite-size effect. Finally, we consider radial range expansions with deflating perimeters, as might arise from colonization initiated along the shores of an island.

  13. BANYAN. III. Radial velocity, rotation, and X-ray emission of low-mass star candidates in nearby young kinematic groups

    Energy Technology Data Exchange (ETDEWEB)

    Malo, Lison; Artigau, Étienne; Doyon, René; Lafrenière, David; Albert, Loïc; Gagné, Jonathan, E-mail: malo@astro.umontreal.ca, E-mail: doyon@astro.umontreal.ca [Département de physique and Observatoire du Mont-Mégantic, Université de Montréal, Montréal, QC H3C 3J7 (Canada)

    2014-06-10

    Based on high-resolution spectra obtained with PHOENIX at Gemini-South, CRIRES at VLT-UT1, and ESPaDOnS at the Canada-France-Hawaii Telescope, we present new measurements of the radial and projected rotational velocities of 219 low-mass stars. The target likely membership was initially established using the Bayesian analysis tool recently presented in Malo et al., taking into account only the position, proper motion, and photometry of the stars to assess their membership probability. In the present study, we include radial velocity as an additional input to our analysis, and in doing so we confirm the high membership probability for 130 candidates: 27 in β Pictoris, 22 in Tucana-Horologium, 25 in Columba, 7 in Carina, 18 in Argus and 18 in AB Doradus, and 13 with an ambiguous membership. Our analysis also confirms the membership of 57 stars proposed in the literature. A subsample of 16 candidates was observed at 3 or more epochs, allowing us to discover 6 new spectroscopic binaries. The fraction of binaries in our sample is 25%, consistent with values in the literature. Of the stars in our sample, 20% show projected rotational velocities (vsin i) higher than 30 km s{sup –1} and therefore are considered as fast rotators. A parallax and other youth indicators are still needed to fully confirm the 130 highly probable candidates identified here as new bona fide members. Finally, based on the X-ray emission of bona fide and highly probable group members, we show that for low-mass stars in the 12-120 Myr age range, the X-ray luminosity is an excellent indicator of youth and better than the more traditionally used R {sub X} parameter, the ratio of X-ray to bolometric luminosity.

  14. Bayesian inversion of surface-wave data for radial and azimuthal shear-wave anisotropy, with applications to central Mongolia and west-central Italy

    Science.gov (United States)

    Ravenna, Matteo; Lebedev, Sergei

    2018-04-01

    Seismic anisotropy provides important information on the deformation history of the Earth's interior. Rayleigh and Love surface-waves are sensitive to and can be used to determine both radial and azimuthal shear-wave anisotropies at depth, but parameter trade-offs give rise to substantial model non-uniqueness. Here, we explore the trade-offs between isotropic and anisotropic structure parameters and present a suite of methods for the inversion of surface-wave, phase-velocity curves for radial and azimuthal anisotropies. One Markov chain Monte Carlo (McMC) implementation inverts Rayleigh and Love dispersion curves for a radially anisotropic shear velocity profile of the crust and upper mantle. Another McMC implementation inverts Rayleigh phase velocities and their azimuthal anisotropy for profiles of vertically polarized shear velocity and its depth-dependent azimuthal anisotropy. The azimuthal anisotropy inversion is fully non-linear, with the forward problem solved numerically at different azimuths for every model realization, which ensures that any linearization biases are avoided. The computations are performed in parallel, in order to reduce the computing time. The often challenging issue of data noise estimation is addressed by means of a Hierarchical Bayesian approach, with the variance of the noise treated as an unknown during the radial anisotropy inversion. In addition to the McMC inversions, we also present faster, non-linear gradient-search inversions for the same anisotropic structure. The results of the two approaches are mutually consistent; the advantage of the McMC inversions is that they provide a measure of uncertainty of the models. Applying the method to broad-band data from the Baikal-central Mongolia region, we determine radial anisotropy from the crust down to the transition-zone depths. Robust negative anisotropy (Vsh < Vsv) in the asthenosphere, at 100-300 km depths, presents strong new evidence for a vertical component of asthenospheric

  15. Physical mechanism determining the radial electric field and its radial structure in a toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi; Miura, Yukitoshi; Itoh, Sanae

    1994-10-01

    Radial structures of plasma rotation and radial electric field are experimentally studied in tokamak, heliotron/torsatron and stellarator devices. The perpendicular and parallel viscosities are measured. The parallel viscosity, which is dominant in determining the toroidal velocity in heliotron/torsatron and stellarator devices, is found to be neoclassical. On the other hand, the perpendicular viscosity, which is dominant in dictating the toroidal rotation in tokamaks, is anomalous. Even without external momentum input, both a plasma rotation and a radial electric field exist in tokamaks and heliotrons/torsatrons. The observed profiles of the radial electric field do not agree with the theoretical prediction based on neoclassical transport. This is mainly due to the existence of anomalous perpendicular viscosity. The shear of the radial electric field improves particle and heat transport both in bulk and edge plasma regimes of tokamaks. (author) 95 refs

  16. MULTI-COMPONENT ANALYSIS OF POSITION-VELOCITY CUBES OF THE HH 34 JET

    International Nuclear Information System (INIS)

    Rodríguez-González, A.; Esquivel, A.; Raga, A. C.; Cantó, J.; Curiel, S.; Riera, A.; Beck, T. L.

    2012-01-01

    We present an analysis of Hα spectra of the HH 34 jet with two-dimensional spectral resolution. We carry out multi-Gaussian fits to the spatially resolved line profiles and derive maps of the intensity, radial velocity, and velocity width of each of the components. We find that close to the outflow source we have three components: a high (negative) radial velocity component with a well-collimated, jet-like morphology; an intermediate velocity component with a broader morphology; and a positive radial velocity component with a non-collimated morphology and large linewidth. We suggest that this positive velocity component is associated with jet emission scattered in stationary dust present in the circumstellar environment. Farther away from the outflow source, we find only two components (a high, negative radial velocity component, which has a narrower spatial distribution than an intermediate velocity component). The fitting procedure was carried out with the new AGA-V1 code, which is available online and is described in detail in this paper.

  17. Radial Velocities of Subgiant Stars and New Astrophysical Insights into RV Jitter

    Science.gov (United States)

    Luhn, Jacob; Bastien, Fabienne; Wright, Jason T.

    2018-01-01

    For nearly 20 years, the California Planet Search (CPS) has simultaneously monitored precise radial velocities and chromospheric activity levels of stars from Keck observatory to search for exoplanets. This sample provides a useful set of stars to better determine the dependence of RV jitter on flicker (which traces surface gravity) first shown in Bastien et al. (2014). We expand upon this initial work by examining a much larger sample of stars covering a much wider range of stellar parameters (effective temperature, surface gravity, and activity, among others). For more than 600 stars, there are enough RV measurements to distinguish this astrophysical jitter from accelerations due to orbital companions. To properly isolate RV jitter from these effects, we must first remove the RV signal due to these companions, including several previously unannounced giant planets around subgiant stars. We highlight some new results from our analysis of the CPS data. A more thorough understanding of the various sources of RV jitter and the underlying stellar phenomena that drive these intrinsic RV variations will enable more precise jitter estimates for RV follow-up targets such as those from K2 or the upcoming TESS mission.

  18. Forecasting the detectability of known radial velocity planets with the upcoming CHEOPS mission

    Science.gov (United States)

    Yi, Joo Sung; Chen, Jingjing; Kipping, David

    2018-04-01

    The CHaracterizing ExOPlanets Satellite (CHEOPS) mission is planned for launch next year with a major objective being to search for transits of known radial velocity (RV) planets, particularly those orbiting bright stars. Since the RV method is only sensitive to planetary mass, the radii, transit depths and transit signal-to-noise values of each RV planet are, a priori, unknown. Using an empirically calibrated probabilistic mass-radius relation, forecaster, we address this by predicting a catalogue of homogeneous credible intervals for these three keys terms for 468 planets discovered via RVs. Of these, we find that the vast majority should be detectable with CHEOPS, including terrestrial bodies, if they have the correct geometric alignment. In particular, we predict that 22 mini-Neptunes and 82 Neptune-sized planets would be suitable for detection and that more than 80 per cent of these will have apparent magnitude of V work. Our work aims to assist the CHEOPS team in scheduling efforts and highlights the great value of quantifiable, statistically robust estimates for upcoming exoplanetary missions.

  19. Anomalous cross-field velocities in a CIV laboratory experiment

    International Nuclear Information System (INIS)

    Axnaes, I.

    1988-10-01

    The axial and radial ion velocities and the electron radial velocity are determined in coaxial plasma gun operated under critical velocity conditions. The particle celocities are determined from probe measurement together with He I 3889 AA absolute intensity measurements and the consideration of the total momentum balance of the current sheet. The ions are found move axially and the electrons radially much faster than predicted by the E/B drift in the macroscopic fields. These results agree with what can be expected from the instability processes, which has earlier been proposed to operate in these experiments. It is therefore a direct experimental demonstration that instability processes have to be invoked not only for the electron heating, but also to explain the macroscopic velocities and currents. (author)

  20. The photometric and radial velocity variations of the central star of the planetary nebula 1C 418

    International Nuclear Information System (INIS)

    Mendez, R.H.; Verga, A.D.; Kriner, A.

    1983-01-01

    This paper brings spectrographic (1979-82) and photometric (January 1983) observations of the central star of the planetary nebula IC 418. We include an improved description of the stellar spectrum. We have found a variable photospheric velocity field, which would imply a fluctuating mass outflow, probably mixed with orbital motion in a close binary system with a period of about 0.2 days. We have also found light variations, on a time scale of one or two hours, with an amplitude of 0.1 mag, which do not appear to be periodic. Our observations are not yet sufficient to rule out definetely the existence of non-radial pulsations; further observations are suggested. (author)

  1. Distortion of absorption-line velocity curves due to x-ray heating in x-ray binaries

    International Nuclear Information System (INIS)

    Milgrom, M.

    1976-01-01

    The effects of X-ray heating on the measured absorption line velocities, in X-ray binaries with low X-rays to optical luminosities ratio are considered. These effects may be appreciable even for such binaries where the effect of X-ray heating on the light-curve is negligible. The effects are studied qualitatively and suggest possible ways to partially eliminate the systematic errors introduced by them. The individual systems Cyg x-1 and SMC x-1 are treated and the results of numerical calculations are presented for them. For Cyg x-1 it is found that the effect is detectable during the X-ray 'high' state in all regions of the spectrum. During the 'low' state it may be important in the red region of the spectrum. The results for the case in which soft X-ray fluxes (E < or approximately .4 keV, suggested by theoretical models) are present are also given. For SMC x-1 a strong effect for Hα, Hβ, Hγ had been found. This effect may be responsible for the observed variable velocity curve. We also find for SMC x-1 that the average X-ray intensity falling on the primary must be considerably smaller than what is derived from the detected flux, or else the effect is too large. (author)

  2. Measuring surface current velocities in the Agulhas region with ASAR

    CSIR Research Space (South Africa)

    Rouault, MJ

    2010-01-01

    Full Text Available is known to perform well. Although radial velocities derived from ASAR are on occasion able to represent the measured flow with incredible accuracy, the overall performance of the ASAR radial velocity product is negatively impacted by a few very large...

  3. Effect of ion orbit loss on the structure in the H-mode tokamak edge pedestal profiles of rotation velocity, radial electric field, density, and temperature

    International Nuclear Information System (INIS)

    Stacey, Weston M.

    2013-01-01

    An investigation of the effect of ion orbit loss of thermal ions and the compensating return ion current directly on the radial ion flux flowing in the plasma, and thereby indirectly on the toroidal and poloidal rotation velocity profiles, the radial electric field, density, and temperature profiles, and the interpretation of diffusive and non-diffusive transport coefficients in the plasma edge, is described. Illustrative calculations for a high-confinement H-mode DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] plasma are presented and compared with experimental results. Taking into account, ion orbit loss of thermal ions and the compensating return ion current is found to have a significant effect on the structure of the radial profiles of these quantities in the edge plasma, indicating the necessity of taking ion orbit loss effects into account in interpreting or predicting these quantities

  4. Constraints on radial migration in spiral galaxies - II. Angular momentum distribution and preferential migration

    Science.gov (United States)

    Daniel, Kathryne J.; Wyse, Rosemary F. G.

    2018-05-01

    The orbital angular momentum of individual stars in galactic discs can be permanently changed through torques from transient spiral patterns. Interactions at the corotation resonance dominate these changes and have the further property of conserving orbital circularity. We derived in an earlier paper an analytic criterion that an unperturbed stellar orbit must satisfy in order for such an interaction to occur, i.e. for it to be in a trapped orbit around corotation. We here use this criterion in an investigation of how the efficiency of induced radial migration for a population of disc stars varies with the angular momentum distribution of that population. We frame our results in terms of the velocity dispersion of the population, this being an easier observable than is the angular momentum distribution. Specifically, we investigate how the fraction of stars in trapped orbits at corotation varies with the velocity dispersion of the population, for a system with an assumed flat rotation curve. Our analytic results agree with the finding from simulations that radial migration is less effective in populations with `hotter' kinematics. We further quantify the dependence of this trapped fraction on the strength of the spiral pattern, finding a higher trapped fraction for higher amplitude perturbations.

  5. Box Tomography: first application to the imaging of upper-mantle shear velocity and radial anisotropy structure beneath the North American continent

    Science.gov (United States)

    Clouzet, P.; Masson, Y.; Romanowicz, B.

    2018-06-01

    The EarthScope Transpotable Array (TA) deployment provides dense array coverage throughout the continental United States and with it, the opportunity for high-resolution 3-D seismic velocity imaging of the stable part of the North American (NA) upper mantle. Building upon our previous long-period waveform tomographic modeling, we present a higher resolution 3-D isotropic and radially anisotropic shear wave velocity model of the NA lithosphere and asthenosphere. The model is constructed using a combination of teleseismic and regional waveforms down to 40 s period and wavefield computations are performed using the spectral element method both for regional and teleseismic data. Our study is the first tomographic application of `Box Tomography', which allows us to include teleseismic events in our inversion, while computing the teleseismic wavefield only once, thus significantly reducing the numerical computational cost of several iterations of the regional inversion. We confirm the presence of high-velocity roots beneath the Archean part of the continent, reaching 200-250 km in some areas, however the thickness of these roots is not everywhere correlated to the crustal age of the corresponding cratonic province. In particular, the lithosphere is thick (˜250 km) in the western part of the Superior craton, while it is much thinner (˜150 km) in its eastern part. This may be related to a thermomechanical erosion of the cratonic root due to the passage of the NA plate over the Great Meteor hotspot during the opening of the Atlantic ocean 200-110 Ma. Below the lithosphere, an upper-mantle low-velocity zone (LVZ) is present everywhere under the NA continent, even under the thickest parts of the craton, although it is less developed there. The depth of the minimum in shear velocity has strong lateral variations, whereas the bottom of the LVZ is everywhere relatively flat around 270-300 km depth, with minor undulations of maximum 30 km that show upwarping under the thickest

  6. Radial k-t SPIRiT: autocalibrated parallel imaging for generalized phase-contrast MRI.

    Science.gov (United States)

    Santelli, Claudio; Schaeffter, Tobias; Kozerke, Sebastian

    2014-11-01

    To extend SPIRiT to additionally exploit temporal correlations for highly accelerated generalized phase-contrast MRI and to compare the performance of the proposed radial k-t SPIRiT method relative to frame-by-frame SPIRiT and radial k-t GRAPPA reconstruction for velocity and turbulence mapping in the aortic arch. Free-breathing navigator-gated two-dimensional radial cine imaging with three-directional multi-point velocity encoding was implemented and fully sampled data were obtained in the aortic arch of healthy volunteers. Velocities were encoded with three different first gradient moments per axis to permit quantification of mean velocity and turbulent kinetic energy. Velocity and turbulent kinetic energy maps from up to 14-fold undersampled data were compared for k-t SPIRiT, frame-by-frame SPIRiT, and k-t GRAPPA relative to the fully sampled reference. Using k-t SPIRiT, improvements in magnitude and velocity reconstruction accuracy were found. Temporally resolved magnitude profiles revealed a reduction in spatial blurring with k-t SPIRiT compared with frame-by-frame SPIRiT and k-t GRAPPA for all velocity encodings, leading to improved estimates of turbulent kinetic energy. k-t SPIRiT offers improved reconstruction accuracy at high radial undersampling factors and hence facilitates the use of generalized phase-contrast MRI for routine use. Copyright © 2013 Wiley Periodicals, Inc.

  7. The SDSS-III DR12 MARVELS radial velocity data release: the first data release from the multiple object Doppler exoplanet survey

    Science.gov (United States)

    Ge, Jian; Thomas, Neil B.; Li, Rui; Senan Seieroe Grieves, Nolan; Ma, Bo; de Lee, Nathan M.; Lee, Brian C.; Liu, Jian; Bolton, Adam S.; Thakar, Aniruddha R.; Weaver, Benjamin; SDSS-Iii Marvels Team

    2015-01-01

    We present the first data release from the SDSS-III Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) through the SDSS-III DR12. The data include 181,198 radial velocity (RV) measurements for a total of 5520 different FGK stars with V~7.6-12, of which more than 80% are dwarfs and subdwarfs while remainders are GK giants, among a total of 92 fields nearly randomly spread out over the entire northern sky taken with a 60-object MARVELS dispersed fixed-delay interferometer instrument over four years (2008-2012). There were 55 fields with a total of 3300 FGK stars which had 14 or more observations over about 2-year survey window. The median number of observations for these plates is 27 RV measurements. This represents the largest homogeneous sample of precision RV measurements of relatively bright stars. In this first released data, a total of 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries with additional 96 targets having RV variability indicative of a giant planet companion are reported. The released data were produced by the MARVELS finalized 1D pipeline. We will also report preliminary statistical results from the MARVELS 2D data pipeline which has produced a median RV precision of ~30 m/s for stable stars.

  8. On the Feasibility of Intense Radial Velocity Surveys for Earth-twin Discoveries

    Science.gov (United States)

    Hall, Richard D.; Thompson, Samantha J.; Handley, Will; Queloz, Didier

    2018-06-01

    This work assesses the potential capability of the next generation of high-precision Radial Velocity (RV) instruments for Earth-twin exoplanet detection. From the perspective of the importance of data sampling, the Terra Hunting Experiment aims to do this through an intense series of nightly RV observations over a long baseline on a carefully selected target list, via the brand-new instrument HARPS3. This paper describes an end-to-end simulation of generating and processing such data to help us better understand the impact of uncharacterised stellar noise in the recovery of Earth-mass planets with orbital periods of the order of many months. We consider full Keplerian systems, realistic simulated stellar noise, instrument white noise, and location-specific weather patterns for our observation schedules. We use Bayesian statistics to assess various planetary models fitted to the synthetic data, and compare the successful planet recovery of the Terra Hunting Experiment schedule with a typical reference survey. We find that the Terra Hunting Experiment can detect Earth-twins in the habitable zones of solar-type stars, in single and multi-planet systems, and in the presence of stellar signals. Also that it out-performs a typical reference survey on accuracy of recovered parameters, and that it performs comparably to an uninterrupted space-based schedule.

  9. Rayleigh-Taylor instability of cylindrical jets with radial motion

    International Nuclear Information System (INIS)

    Chen, X.M.; Schrock, V.E.; Peterson, P.F.

    1997-01-01

    Rayleigh-Taylor instability of an interface between fluids with different densities subjected to acceleration normal to itself has interested researchers for almost a century. The classic analyses of a flat interface by Rayleigh and Taylor have shown that this type of instability depends on the direction of acceleration and the density differences of the two fluids. Plesset later analyzed the stability of a spherically symmetric flows (and a spherical interface) and concluded that the instability also depends on the velocity of the interface as well as the direction and magnitude of radial acceleration. The instability induced by radial motion in cylindrical systems seems to have been neglected by previous researchers. This paper analyzes the Rayleigh-Taylor type of instability for a cylindrical surface with radial motions. The results of the analysis show that, like the spherical case, the radial velocity also plays an important role. As an application, the example of a liquid jet surface in an Inertial Confinement Fusion (ICF) reactor design is analyzed. (orig.)

  10. New perspectives in hydrodynamic radial polishing techniques for optical surfaces

    Science.gov (United States)

    Ruiz, Elfego; Sohn, Erika; Luna, Esteban; Salas, Luis; Cordero, Alberto; González, Jorge; Núñez, Manuel; Salinas, Javier; Cruz-González, Irene; Valdés, Jorge; Cabrera, Victor; Martínez, Benjamín

    2004-09-01

    In order to overcome classic polishing techniques, a novel hydrodynamic radial polishing tool (HyDRa) is presented; it is useful for the corrective lapping and fine polishing of diverse materials by means of a low-cost abrasive flux and a hydrostatic suspension system that avoids contact of the tool with the working surface. This tool enables the work on flat or curved surfaces of currently up to two and a half meters in diameter. It has the advantage of avoiding fallen edges during the polishing process as well as reducing tool wear out and deformation. The functioning principle is based on the generation of a high-velocity, high-pressure, abrasive emulsion flux with radial geometry. The polishing process is repeatable by means of the control of the tool operational parameters, achieving high degrees of precision and accuracy on optical and semiconductor surfaces, with removal rates of up to 9 mm3/hour and promising excellent surface polishing qualities. An additional advantage of this new tool is the possibility to perform interferometric measurements during the polishing process without the need of dismounting the working surface. A series of advantages of this method, numerical simulations and experimental results are described.

  11. Liquid velocity in upward and downward air-water flows

    International Nuclear Information System (INIS)

    Sun Xiaodong; Paranjape, Sidharth; Kim, Seungjin; Ozar, Basar; Ishii, Mamoru

    2004-01-01

    Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral laser Doppler anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void-weighted area-averaged drift velocity were obtained based on the definitions

  12. CONFIRMATION OF HOT JUPITER KEPLER-41b VIA PHASE CURVE ANALYSIS

    International Nuclear Information System (INIS)

    Quintana, Elisa V.; Rowe, Jason F.; Caldwell, Douglas A.; Christiansen, Jessie L.; Jenkins, Jon M.; Morris, Robert L.; Smith, Jeffrey C.; Thompson, Susan E.; Barclay, Thomas; Howell, Steve B.; Borucki, William J.; Sanderfer, Dwight T.; Still, Martin; Ciardi, David R.; Demory, Brice-Olivier; Klaus, Todd C.; Fulton, Benjamin J.; Shporer, Avi

    2013-01-01

    We present high precision photometry of Kepler-41, a giant planet in a 1.86 day orbit around a G6V star that was recently confirmed through radial velocity measurements. We have developed a new method to confirm giant planets solely from the photometric light curve, and we apply this method herein to Kepler-41 to establish the validity of this technique. We generate a full phase photometric model by including the primary and secondary transits, ellipsoidal variations, Doppler beaming, and reflected/emitted light from the planet. Third light contamination scenarios that can mimic a planetary transit signal are simulated by injecting a full range of dilution values into the model, and we re-fit each diluted light curve model to the light curve. The resulting constraints on the maximum occultation depth and stellar density combined with stellar evolution models rules out stellar blends and provides a measurement of the planet's mass, size, and temperature. We expect about two dozen Kepler giant planets can be confirmed via this method.

  13. Atmospheric kinematics of high velocity long period variables

    International Nuclear Information System (INIS)

    Willson, L.A.

    1982-01-01

    Radial velocities of atomic absorption lines of three long period variables, RT Cyg, Z Oph and S Car, have been analysed in order to understand velocity gradients and discontinuities in their atmospheres. Phase coverage is from five days before maximum to 73 days after maximum for RT Cyg, from 17 days before to 44 days after maximum for Z Oph, and at 9 days before maximum for S Car. On a few spectrograms double lines were seen. All spectrograms were analysed by a four-parameter regression programme to yield the dependence of the radial velocity on the excitation potential, first ionization potential, wavelength and line strength, as indicators of the depth of line formation. The data were analysed to yield the velocity discontinuity across shock waves and velocity gradients between shock waves. Near maximum light the radial velocities cannot be understood by the presence of one shock only but rather require two shocks. The lower shock becomes apparent at the longer wavelengths. Consistent parameters are obtained if these stars are fundamental mode pulsators with total masses in the range of 0.5 to 1.0 solar mass and effective radii in the range of 0.85 to 1.5 x 10 13 cm. (author)

  14. Estimación de la velocidad de propagación aórtica basada en el análisis de la onda de pulso radial Velocity estimation of aortic propagation based on radial pulse wave analysis

    Directory of Open Access Journals (Sweden)

    Fernando Clara

    2011-06-01

    Full Text Available Se exploró la posibilidad de utilizar la morfología del registro de onda de pulso radial obtenida mediante un transductor de movimiento para evaluar la velocidad de propagación aórtica. Se efectuó el registro de onda de pulso en arteria radial mediante un transductor apoyado sobre la zona de palpación del pulso, sobre un conjunto de 167 voluntarios varones sanos normotensos de edades comprendidas entre la 2ª y la 7ª década. Se identificó en los registros la onda reflejada y se definió un coeficiente de velocidad como el cociente entre la talla del individuo y el tiempo transcurrido entre el máximo de la onda sistólica y el instante de llegada de dicha onda. Se halló que en los normotensos el coeficiente mencionado aumentó en forma lineal con la edad, en una proporción similar al aumento de velocidad de propagación aórtica medido con otros métodos. Se repitió el procedimiento en otro conjunto de 125 varones hipertensos sin otros factores de riesgo, de edades entre la 3ª y la 7ª década, hallándose valores similares a los normotensos solamente en la 3ª década, a partir de la cual se registró un incremento significativo de dicho índice. Tales hallazgos sustentan la factibilidad de utilizar tal tipo de registros para evaluar indirectamente la velocidad de propagación junto con el índice de aumentación, un parámetro habitualmente utilizado en el análisis de onda de pulso.We analyzed the possibility of using the radial pulse wave morphology, obtained by a movement transducer, to evaluate the aortic pulse wave velocity. The radial pulse wave signals were obtained by using a transducer, located on the pulse palpation area, in 167 healthy normotensive male volunteers, ages 20 to 70. The reflected wave was identified in every case. Also, a speed coefficient was defined as the ratio between the individual's height and the time between the maximum systolic wave and the arrival time of the reflected wave. We found that the

  15. Capture orbits around asteroids by hitting zero-velocity curves

    Science.gov (United States)

    Wang, Wei; Yang, Hongwei; Zhang, Wei; Ma, Guangfu

    2017-12-01

    The problem of capturing a spacecraft from a heliocentric orbit into a high parking orbit around binary asteroids is investigated in the current study. To reduce the braking Δ V, a new capture strategy takes advantage of the three-body gravity of the binary asteroid to lower the inertial energy before applying the Δ V. The framework of the circular restricted three-body problem (CR3BP) is employed for the binary asteroid system. The proposed capture strategy is based on the mechanism by which inertial energy can be decreased sharply near zero-velocity curves (ZVCs). The strategy has two steps, namely, hitting the target ZVC and raising the periapsis by a small Δ V at the apoapsis. By hitting the target ZVC, the positive inertial energy decreases and becomes negative. Using a small Δ V, the spacecraft inserts into a bounded orbit around the asteroid. In addition, a rotating mass dipole model is employed for elongated asteroids, which leads to dynamics similar to that of the CR3BP. With this approach, the proposed capture strategy can be applied to elongated asteroids. Numerical simulations validate that the proposed capture strategy is applicable for the binary asteroid 90 Antiope and the elongated asteroid 216 Kleopatra.

  16. THEORY OF DISPERSED FIXED-DELAY INTERFEROMETRY FOR RADIAL VELOCITY EXOPLANET SEARCHES

    International Nuclear Information System (INIS)

    Van Eyken, Julian C.; Ge Jian; Mahadevan, Suvrath

    2010-01-01

    The dispersed fixed-delay interferometer (DFDI) represents a new instrument concept for high-precision radial velocity (RV) surveys for extrasolar planets. A combination of a Michelson interferometer and a medium-resolution spectrograph, it has the potential for performing multi-object surveys, where most previous RV techniques have been limited to observing only one target at a time. Because of the large sample of extrasolar planets needed to better understand planetary formation, evolution, and prevalence, this new technique represents a logical next step in instrumentation for RV extrasolar planet searches, and has been proven with the single-object Exoplanet Tracker (ET) at Kitt Peak National Observatory, and the multi-object W. M. Keck/MARVELS Exoplanet Tracker at Apache Point Observatory. The development of the ET instruments has necessitated fleshing out a detailed understanding of the physical principles of the DFDI technique. Here we summarize the fundamental theoretical material needed to understand the technique and provide an overview of the physics underlying the instrument's working. We also derive some useful analytical formulae that can be used to estimate the level of various sources of error generic to the technique, such as photon shot noise when using a fiducial reference spectrum, contamination by secondary spectra (e.g., crowded sources, spectroscopic binaries, or moonlight contamination), residual interferometer comb, and reference cross-talk error. Following this, we show that the use of a traditional gas absorption fiducial reference with a DFDI can incur significant systematic errors that must be taken into account at the precision levels required to detect extrasolar planets.

  17. Pulsating Different Curves of Zero Velocity around Triangular Equilibrium Points in Elliptical Restricted Three-Body Problem

    Directory of Open Access Journals (Sweden)

    A. Narayan

    2013-01-01

    Full Text Available The oblateness and the photogravitational effects of both the primaries on the location and the stability of the triangular equilibrium points in the elliptical restricted three-body problem have been discussed. The stability of the triangular points under the photogravitational and oblateness effects of both the primaries around the binary systems Achird, Lyeten, Alpha Cen-AB, Kruger 60, and Xi-Bootis, has been studied using simulation techniques by drawing different curves of zero velocity.

  18. Radial smoothing and closed orbit

    International Nuclear Information System (INIS)

    Burnod, L.; Cornacchia, M.; Wilson, E.

    1983-11-01

    A complete simulation leading to a description of one of the error curves must involve four phases: (1) random drawing of the six set-up points within a normal population having a standard deviation of 1.3 mm; (b) random drawing of the six vertices of the curve in the sextant mode within a normal population having a standard deviation of 1.2 mm. These vertices are to be set with respect to the axis of the error lunes, while this axis has as its origins the positions defined by the preceding drawing; (c) mathematical definition of six parabolic curves and their junctions. These latter may be curves with very slight curvatures, or segments of a straight line passing through the set-up point and having lengths no longer than one LSS. Thus one gets a mean curve for the absolute errors; (d) plotting of the actually observed radial positions with respect to the mean curve (results of smoothing)

  19. RADIAL DISTRIBUTION OF STARS, GAS, AND DUST IN SINGS GALAXIES. III. MODELING THE EVOLUTION OF THE STELLAR COMPONENT IN GALAXY DISKS

    International Nuclear Information System (INIS)

    Munoz-Mateos, J. C.; Boissier, S.; Gil de Paz, A.; Zamorano, J.; Gallego, J.; Kennicutt, R. C. Jr; Moustakas, J.; Prantzos, N.

    2011-01-01

    We analyze the evolution of 42 spiral galaxies in the Spitzer Infrared Nearby Galaxies Survey. We make use of ultraviolet (UV), optical, and near-infrared radial profiles, corrected for internal extinction using the total-infrared to UV ratio, to probe the emission of stellar populations of different ages as a function of galactocentric distance. We fit these radial profiles with models that describe the chemical and spectro-photometric evolution of spiral disks within a self-consistent framework. These backward evolutionary models successfully reproduce the multi-wavelength profiles of our galaxies, except for the UV profiles of some early-type disks for which the models seem to retain too much gas. From the model fitting we infer the maximum circular velocity of the rotation curve V C and the dimensionless spin parameter λ. The values of V C are in good agreement with the velocities measured in H I rotation curves. Even though our sample is not volume limited, the resulting distribution of λ is close to the lognormal function obtained in cosmological N-body simulations, peaking at λ ∼ 0.03 regardless of the total halo mass. We do not find any evident trend between λ and Hubble type, besides an increase in the scatter for the latest types. According to the model, galaxies evolve along a roughly constant mass-size relation, increasing their scale lengths as they become more massive. The radial scale length of most disks in our sample seems to have increased at a rate of 0.05-0.06 kpc Gyr -1 , although the same cannot be said of a volume-limited sample. In relative terms, the scale length has grown by 20%-25% since z = 1 and, unlike the former figure, we argue that this relative growth rate can be indeed representative of a complete galaxy sample.

  20. Radial Distribution of Stars, Gas, and Dust in SINGS Galaxies. III. Modeling the Evolution of the Stellar Component in Galaxy Disks

    Science.gov (United States)

    Muñoz-Mateos, J. C.; Boissier, S.; Gil de Paz, A.; Zamorano, J.; Kennicutt, R. C., Jr.; Moustakas, J.; Prantzos, N.; Gallego, J.

    2011-04-01

    We analyze the evolution of 42 spiral galaxies in the Spitzer Infrared Nearby Galaxies Survey. We make use of ultraviolet (UV), optical, and near-infrared radial profiles, corrected for internal extinction using the total-infrared to UV ratio, to probe the emission of stellar populations of different ages as a function of galactocentric distance. We fit these radial profiles with models that describe the chemical and spectro-photometric evolution of spiral disks within a self-consistent framework. These backward evolutionary models successfully reproduce the multi-wavelength profiles of our galaxies, except for the UV profiles of some early-type disks for which the models seem to retain too much gas. From the model fitting we infer the maximum circular velocity of the rotation curve V C and the dimensionless spin parameter λ. The values of V C are in good agreement with the velocities measured in H I rotation curves. Even though our sample is not volume limited, the resulting distribution of λ is close to the lognormal function obtained in cosmological N-body simulations, peaking at λ ~ 0.03 regardless of the total halo mass. We do not find any evident trend between λ and Hubble type, besides an increase in the scatter for the latest types. According to the model, galaxies evolve along a roughly constant mass-size relation, increasing their scale lengths as they become more massive. The radial scale length of most disks in our sample seems to have increased at a rate of 0.05-0.06 kpc Gyr-1, although the same cannot be said of a volume-limited sample. In relative terms, the scale length has grown by 20%-25% since z = 1 and, unlike the former figure, we argue that this relative growth rate can be indeed representative of a complete galaxy sample.

  1. General circular velocity relation of a test particle in a 3D gravitational potential: application to the rotation curves analysis and total mass determination of UGC 8490 and UGC 9753

    Science.gov (United States)

    Repetto, P.; Martínez-García, E. E.; Rosado, M.; Gabbasov, R.

    2018-06-01

    In this paper, we derive a novel circular velocity relation for a test particle in a 3D gravitational potential applicable to every system of curvilinear coordinates, suitable to be reduced to orthogonal form. As an illustration of the potentiality of the determined circular velocity expression, we perform the rotation curves analysis of UGC 8490 and UGC 9753 and we estimate the total and dark matter mass of these two galaxies under the assumption that their respective dark matter haloes have spherical, prolate, and oblate spheroidal mass distributions. We employ stellar population synthesis models and the total H I density map to obtain the stellar and H I+He+metals rotation curves of both galaxies. The subtraction of the stellar plus gas rotation curves from the observed rotation curves of UGC 8490 and UGC 9753 generates the dark matter circular velocity curves of both galaxies. We fit the dark matter rotation curves of UGC 8490 and UGC 9753 through the newly established circular velocity formula specialized to the spherical, prolate, and oblate spheroidal mass distributions, considering the Navarro, Frenk, and White, Burkert, Di Cintio, Einasto, and Stadel dark matter haloes. Our principal findings are the following: globally, cored dark matter profiles Burkert and Einasto prevail over cuspy Navarro, Frenk, and White, and Di Cintio. Also, spherical/oblate dark matter models fit better the dark matter rotation curves of both galaxies than prolate dark matter haloes.

  2. Rayleigh-Taylor instability of cylindrical jets with radial motion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang M. [GE Nuclear, Wilmington, NC (United States); Schrock, V.E.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States)

    1995-09-01

    Rayleigh-Taylor instability of an interface between fluids with different densities subjected to accelleration normal to itself has interested researchers for almost a century. The classic analyses of a flat interface by Rayleigh and Taylor have shown that this type of instability depends on the direction of acceleration and the density differences of the two fluids. Plesset later analyzed the stability of a spherically symmetric flows (and a spherical interface) and concluded that the instability also depends on the velocity of the interface as well as the direction and magnitude of radial acceleration. The instability induced by radial motion in cylindrical systems seems to have been neglected by previous researchers. This paper analyzes the Rayleigh-Taylor type of the spherical case, the radial velocity also plays an important role. As an application, the example of a liquid jet surface in an Inertial Confinement Fusion (ICF) reactor design is analyzed.

  3. Acoustic and streaming velocity components in a resonant waveguide at high acoustic levels.

    Science.gov (United States)

    Daru, Virginie; Reyt, Ida; Bailliet, Hélène; Weisman, Catherine; Baltean-Carlès, Diana

    2017-01-01

    Rayleigh streaming is a steady flow generated by the interaction between an acoustic wave and a solid wall, generally assumed to be second order in a Mach number expansion. Acoustic streaming is well known in the case of a stationary plane wave at low amplitude: it has a half-wavelength spatial periodicity and the maximum axial streaming velocity is a quadratic function of the acoustic velocity amplitude at antinode. For higher acoustic levels, additional streaming cells have been observed. Results of laser Doppler velocimetry measurements are here compared to direct numerical simulations. The evolution of axial and radial velocity components for both acoustic and streaming velocities is studied from low to high acoustic amplitudes. Two streaming flow regimes are pointed out, the axial streaming dependency on acoustics going from quadratic to linear. The evolution of streaming flow is different for outer cells and for inner cells. Also, the hypothesis of radial streaming velocity being of second order in a Mach number expansion, is not valid at high amplitudes. The change of regime occurs when the radial streaming velocity amplitude becomes larger than the radial acoustic velocity amplitude, high levels being therefore characterized by nonlinear interaction of the different velocity components.

  4. THE BROWN DWARF KINEMATICS PROJECT (BDKP). IV. RADIAL VELOCITIES OF 85 LATE-M AND L DWARFS WITH MagE

    Energy Technology Data Exchange (ETDEWEB)

    Burgasser, Adam J. [Center for Astrophysics and Space Science, University of California San Diego, La Jolla, CA 92093 (United States); Logsdon, Sarah E. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Gagné, Jonathan [Institute for Research on Exoplanets (iREx), Université de Montréal, Département de Physique, C.P. 6128 Succ. Centre-ville, Montréal, QC H3C 3J7 (Canada); Bochanski, John J. [Rider University, 2083 Lawrenceville Road, Lawrenceville, NJ 08648 (United States); Faherty, Jaqueline K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 (United States); West, Andrew A. [Department of Astronomy, Boston University, 725 Commonwealth Avenue Boston, MA 02215 (United States); Mamajek, Eric E. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Schmidt, Sarah J. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Cruz, Kelle L., E-mail: aburgasser@ucsd.edu [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10034 (United States)

    2015-09-15

    Radial velocity measurements are presented for 85 late M- and L-type very low-mass stars and brown dwarfs obtained with the Magellan Echellette spectrograph. Targets primarily have distances within 20 pc of the Sun, with more distant sources selected for their unusual spectral energy distributions. We achieved precisions of 2–3 km s{sup −1}, and combined these with astrometric and spectrophotometric data to calculate UVW velocities. Most are members of the thin disk of the Galaxy, and velocity dispersions indicate a mean age of 5.2 ± 0.2 Gyr for sources within 20 pc. We find signficantly different kinematic ages between late-M dwarfs (4.0 ± 0.2 Gyr) and L dwarfs (6.5 ± 0.4 Gyr) in our sample that are contrary to predictions from prior simulations. This difference appears to be driven by a dispersed population of unusually blue L dwarfs which may be more prevalent in our local volume-limited sample than in deeper magnitude-limited surveys. The L dwarfs exhibit an asymmetric U velocity distribution with a net inward flow, similar to gradients recently detected in local stellar samples. Simulations incorporating brown dwarf evolution and Galactic orbital dynamics are unable to reproduce the velocity asymmetry, suggesting non-axisymmetric perturbations or two distinct L dwarf populations. We also find the L dwarfs to have a kinematic age-activity correlation similar to more massive stars. We identify several sources with low surface gravities, and two new substellar candidate members of nearby young moving groups: the astrometric binary DENIS J08230313–4912012AB, a low-probability member of the β Pictoris Moving Group; and 2MASS J15104786–2818174, a moderate-probability member of the 30–50 Myr Argus Association.

  5. Predicted space motions for hypervelocity and runaway stars: proper motions and radial velocities for the Gaia Era

    Energy Technology Data Exchange (ETDEWEB)

    Kenyon, Scott J.; Brown, Warren R.; Geller, Margaret J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: bromley@physics.utah.edu [Department of Physics, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States)

    2014-10-01

    We predict the distinctive three-dimensional space motions of hypervelocity stars (HVSs) and runaway stars moving in a realistic Galactic potential. For nearby stars with distances less than 10 kpc, unbound stars are rare; proper motions alone rarely isolate bound HVSs and runaways from indigenous halo stars. At large distances of 20-100 kpc, unbound HVSs are much more common than runaways; radial velocities easily distinguish both from indigenous halo stars. Comparisons of the predictions with existing observations are encouraging. Although the models fail to match observations of solar-type HVS candidates from SEGUE, they agree well with data for B-type HVS and runaways from other surveys. Complete samples of g ≲ 20 stars with Gaia should provide clear tests of formation models for HVSs and runaways and will enable accurate probes of the shape of the Galactic potential.

  6. Measurement of the radial electric field in the ASDEX tokamak

    International Nuclear Information System (INIS)

    Field, A.R.; Fussmann, G.; Hofmann, J.V.

    1990-12-01

    The radial electric field (E Τ ) at the plasma periphery is determined by measuring the drift velocities of low-Z impurities ions (BIV, CIII and HeII). The measurements are performed with a scannable mirror system which allows the determination of the poloidal, perpendicular (to B vector) and toroidal components of the drift velocities from the differential Doppler shift of visible line emission observed along opposing viewing directions. The principle of the measurement is investigated in detail. In particular, it is shown that for radially localised emission shells there exits a line of sight oriented perpendicular to B vector along which E Τ may be inferred directly from the observed Doppler shift of the line emission. Along such a line of sight the net contribution to the shift from the diamagnetic drift and the radial gradient of the excitation probability is negligible. During the Ohmic- and L-phases the perpendicular drift velocity of the BIV ions measured approximately 2 cm inside the separatrix is small (≤ 2 kms -1 ) and in the ion diamagnetic drift direction. However, at the L → H-Mode transition it changes sign and begins to increase on the time-scale of the edge pressure gradients reaching the highest values at the end of the H * -phase. From these high perpendicular drift velocities it is infered that, in the H-mode, there exists a strong negative radial electric field (vertical strokeE τ vertical stroke ≤ kVm -1 ) just inside the separatrix. The dependence of the drift velocity of the BIV ions and E Τ on the NBI-heating power and the magnitude and direction of the plasma current and the magnetic field is investigated. (orig.)

  7. VizieR Online Data Catalog: 10 nearby solar-type dwarfs RV curves (Gorynya+, 2014)

    Science.gov (United States)

    Gorynya, N. A.; Tokovinin, A.

    2017-05-01

    The observations were conducted in 2012 and 2013 at the 1-m telescope of the Crimean Astrophysical Observatory sited in Simeiz, Crimea. Radial velocities were measured by the CORAVEL-type echelle spectrometer, the Radial Velocity Meter. (2 data files).

  8. Parameters determining maximum wind velocity in a tropical cyclone

    International Nuclear Information System (INIS)

    Choudhury, A.M.

    1984-09-01

    The spiral structure of a tropical cyclone was earlier explained by a tangential velocity distribution which varies inversely as the distance from the cyclone centre outside the circle of maximum wind speed. The case has been extended in the present paper by adding a radial velocity. It has been found that a suitable combination of radial and tangential velocities can account for the spiral structure of a cyclone. This enables parametrization of the cyclone. Finally a formula has been derived relating maximum velocity in a tropical cyclone with angular momentum, radius of maximum wind speed and the spiral angle. The shapes of the spirals have been computed for various spiral angles. (author)

  9. Temperature dynamics and velocity scaling laws for interchange driven, warm ion plasma filaments

    DEFF Research Database (Denmark)

    Olsen, Jeppe Miki Busk; Madsen, Jens; Nielsen, Anders Henry

    2016-01-01

    The influence of electron and ion temperature dynamics on the radial convection of isolated structures in magnetically confined plasmas is investigated by means of numerical simulations. It is demonstrated that the maximum radial velocity of these plasma blobs roughly follows the inertial velocity...

  10. Synthesizing exoplanet demographics from radial velocity and microlensing surveys. I. Methodology

    International Nuclear Information System (INIS)

    Clanton, Christian; Gaudi, B. Scott

    2014-01-01

    Motivated by the order of magnitude difference in the frequency of giant planets orbiting M dwarfs inferred by microlensing and radial velocity (RV) surveys, we present a method for comparing the statistical constraints on exoplanet demographics inferred from these methods. We first derive the mapping from the observable parameters of a microlensing-detected planet to those of an analogous planet orbiting an RV-monitored star. Using this mapping, we predict the distribution of RV observables for the planet population inferred from microlensing surveys, taking care to adopt reasonable priors for, and properly marginalize over, the unknown physical parameters of microlensing-detected systems. Finally, we use simple estimates of the detection limits for a fiducial RV survey to predict the number and properties of analogs of the microlensing planet population such an RV survey should detect. We find that RV and microlensing surveys have some overlap, specifically for super-Jupiter mass planets (m p ≳ 1 M Jup ) with periods between ∼3-10 yr. However, the steeply falling planetary mass function inferred from microlensing implies that, in this region of overlap, RV surveys should infer a much smaller frequency than the overall giant planet frequency (m p ≳ 0.1 M Jup ) inferred by microlensing. Our analysis demonstrates that it is possible to statistically compare and synthesize data sets from multiple exoplanet detection techniques in order to infer exoplanet demographics over wider regions of parameter space than are accessible to individual methods. In a companion paper, we apply our methodology to several representative microlensing and RV surveys to derive the frequency of planets around M dwarfs with orbits of ≲ 30 yr.

  11. ISM chemical abundances in two intermediate-velocity clouds in the line of sight to SN 1987A

    Science.gov (United States)

    Morgan, Siobahn; Bohm-Vitense, Erika

    1988-01-01

    The earliest IUE high-resolution spectra of SN 1987A have been studied and reveal the presence of several clouds in the line of sight to the LMC. In particular, there are two clouds with radial velocities of about 130 km/s and about 180 km/s. These clouds' velocities are between those of Galactic clouds at 0-80 km/s and those of LMC gas at about 270 km/s. Chemical-abundance determinations may help to determine the origin and location of these clouds. Curve-of-growth analysis and 21-cm observations show that they may be underabundant in heavy elements by about a factor of 2 as compared to solar abundances. No depletion indicative of grain formation can be seen.

  12. Radial Flow in a Multiphase Transport Model at FAIR Energies

    Directory of Open Access Journals (Sweden)

    Soumya Sarkar

    2018-01-01

    Full Text Available Azimuthal distributions of radial velocities of charged hadrons produced in nucleus-nucleus (AB collisions are compared with the corresponding azimuthal distribution of charged hadron multiplicity in the framework of a multiphase transport (AMPT model at two different collision energies. The mean radial velocity seems to be a good probe for studying radial expansion. While the anisotropic parts of the distributions indicate a kind of collective nature in the radial expansion of the intermediate “fireball,” their isotropic parts characterize a thermal motion. The present investigation is carried out keeping the upcoming Compressed Baryonic Matter (CBM experiment to be held at the Facility for Antiproton and Ion Research (FAIR in mind. As far as high-energy heavy-ion interactions are concerned, CBM will supplement the Relativistic Heavy-Ion Collider (RHIC and Large Hadron Collider (LHC experiments. In this context our simulation results at high baryochemical potential would be interesting, when scrutinized from the perspective of an almost baryon-free environment achieved at RHIC and LHC.

  13. Rotational and radial velocities of 1.3-2.2 M {sub ☉} red giants in open clusters

    Energy Technology Data Exchange (ETDEWEB)

    Carlberg, Joleen K., E-mail: jcarlberg@dtm.ciw.edu [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States)

    2014-06-01

    This study presents the rotational distribution of red giant (RG) stars in 11 old to intermediate age open clusters. The masses of these stars are all above the Kraft break, so they lose negligible amounts of their birth angular momentum (AM) during the main-sequence (MS) evolution. However, they do span a mass range with quite different AM distributions imparted during formation, with the stars less massive than ∼1.6M {sub ☉} arriving on the MS with lower rotation rates than the more massive stars. The majority of RGs in this study are slow rotators across the entire red giant branch regardless of mass, supporting the picture that intermediate-mass stars rapidly spin down when they evolve off the MS and develop convection zones capable of driving a magnetic dynamo. Nevertheless, a small fraction of RGs in open clusters show some level of enhanced rotation, and faster rotators are as common in these clusters as in the field RG population. Most of these enhanced rotators appear to be red clump stars, which is also true of the underlying stellar sample, while others are clearly RGs that are above or below the clump. In addition to rotational velocities, the radial velocities (RVs) and membership probabilities of individual stars are also presented. Cluster heliocentric RVs for NGC 6005 and Pismis 18 are reported for the first time.

  14. Electron drift velocity in SF{sub 6} in strong electric fields determined from rf breakdown curves

    Energy Technology Data Exchange (ETDEWEB)

    Lisovskiy, V; Yegorenkov, V [Department of Physics and Technology, Kharkov National University, Svobody sq.4, Kharkov 61077 (Ukraine); Booth, J-P [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau 91128 (France); Landry, K [Unaxis Displays Division France SAS, 5, Rue Leon Blum, Palaiseau 91120 (France); Douai, D [Physical Sciences Division, Institute for Magnetic Fusion Research, CEA Centre de Cadarache, F-13108 Saint Paul lez Durance Cedex (France); Cassagne, V, E-mail: lisovskiy@yahoo.co [Developpement Photovoltaique Couches Minces, Total, 2, place Jean Millier, La Defense 6, 92400 Courbevoie (France)

    2010-09-29

    This paper presents measurements of the electron drift velocity V{sub dr} in SF{sub 6} gas for high reduced electric fields (E/N = 330-5655 Td (1 Td = 10{sup -17} V cm{sup 2})). The drift velocities were obtained using the method of Lisovskiy and Yegorenkov (1998 J. Phys. D: Appl. Phys. 31 3349) based on the determination of the pressure and voltage of the turning points of rf capacitive discharge breakdown curves for a range of electrode spacings. The V{sub dr} values thus obtained were in good agreement with those calculated from the cross-sections of Phelps and Van Brunt (1988 J. Appl. Phys. 64 4269) using the BOLSIG code. The validity of the Lisovskiy-Yegorenkov method is discussed and we show that it is applicable over the entire E/N range where rf discharge ignition at breakdown occurs for rf frequencies of 13.56 MHz or above.

  15. On radial flow between parallel disks

    International Nuclear Information System (INIS)

    Wee, A Y L; Gorin, A

    2015-01-01

    Approximate analytical solutions are presented for converging flow in between two parallel non rotating disks. The static pressure distribution and radial component of the velocity are developed by averaging the inertial term across the gap in between parallel disks. The predicted results from the first approximation are favourable to experimental results as well as results presented by other authors. The second approximation shows that as the fluid approaches the center, the velocity at the mid channel slows down which is due to the struggle between the inertial term and the flowrate. (paper)

  16. Experimental study on liquid velocity in upward and downward two-phase flows

    International Nuclear Information System (INIS)

    Sun, X.; Paranjape, S.; Kim, S.; Ozar, B.; Ishii, M.

    2003-01-01

    Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral Laser Doppler Anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void weighted area-averaged drift velocity were obtained based on the definitions

  17. The effect of radial migration on galactic disks

    International Nuclear Information System (INIS)

    Vera-Ciro, Carlos; D'Onghia, Elena; Navarro, Julio; Abadi, Mario

    2014-01-01

    We study the radial migration of stars driven by recurring multi-arm spiral features in an exponential disk embedded in a dark matter halo. The spiral perturbations redistribute angular momentum within the disk and lead to substantial radial displacements of individual stars, in a manner that largely preserves the circularity of their orbits and that results, after 5 Gyr (∼40 full rotations at the disk scale length), in little radial heating and no appreciable changes to the vertical or radial structure of the disk. Our results clarify a number of issues related to the spatial distribution and kinematics of migrators. In particular, we find that migrators are a heavily biased subset of stars with preferentially low vertical velocity dispersions. This 'provenance bias' for migrators is not surprising in hindsight, for stars with small vertical excursions spend more time near the disk plane, and thus respond more readily to non-axisymmetric perturbations. We also find that the vertical velocity dispersion of outward migrators always decreases, whereas the opposite holds for inward migrators. To first order, newly arrived migrators simply replace stars that have migrated off to other radii, thus inheriting the vertical bias of the latter. Extreme migrators might therefore be recognized, if present, by the unexpectedly small amplitude of their vertical excursions. Our results show that migration, understood as changes in angular momentum that preserve circularity, can strongly affect the thin disk, but cast doubts on models that envision the Galactic thick disk as a relic of radial migration.

  18. THE MASS OF HD 38529c FROM HUBBLE SPACE TELESCOPE ASTROMETRY AND HIGH-PRECISION RADIAL VELOCITIES

    International Nuclear Information System (INIS)

    Benedict, G. Fritz; McArthur, Barbara E.; Bean, Jacob L.; Barnes, Rory; Harrison, Thomas E.; Hatzes, Artie; Martioli, Eder; Nelan, Edmund P.

    2010-01-01

    Hubble Space Telescope Fine Guidance Sensor astrometric observations of the G4 IV star HD 38529 are combined with the results of the analysis of extensive ground-based radial velocity (RV) data to determine the mass of the outermost of two previously known companions. Our new RVs obtained with the Hobby-Eberly Telescope and velocities from the Carnegie-California group now span over 11 yr. With these data we obtain improved RV orbital elements for both the inner companion, HD 38529b, and the outer companion, HD 38529c. We identify a rotational period of HD 38529 (P rot = 31.65 ± 0fd17) with Fine Guidance Sensor photometry. The inferred star spot fraction is consistent with the remaining scatter in velocities being caused by spot-related stellar activity. We then model the combined astrometric and RV measurements to obtain the parallax, proper motion, perturbation period, perturbation inclination, and perturbation size due to HD 38529c. For HD 38529c we find P = 2136.1 ± 0.3 d, perturbation semimajor axis α = 1.05 ± 0.06 mas, and inclination i = 48. 0 3 ± 3. 0 7. Assuming a primary mass M * = 1.48 M sun , we obtain a companion mass M c = 17.6 +1.5 -1.2 M Jup , 3σ above a 13 M Jup deuterium burning, brown dwarf lower limit. Dynamical simulations incorporating this accurate mass for HD 38529c indicate that a near-Saturn mass planet could exist between the two known companions. We find weak evidence of an additional low amplitude signal that can be modeled as a planetary-mass (∼0.17 M Jup ) companion at P ∼194 days. Including this component in our modeling lowers the error of the mass determined for HD 38529c. Additional observations (RVs and/or Gaia astrometry) are required to validate an interpretation of HD 38529d as a planetary-mass companion. If confirmed, the resulting HD 38529 planetary system may be an example of a 'Packed Planetary System'.

  19. MIGHT WE EVENTUALLY UNDERSTAND THE ORIGIN OF THE DARK MATTER VELOCITY ANISOTROPY?

    International Nuclear Information System (INIS)

    Hansen, Steen H.

    2009-01-01

    The density profile of simulated dark matter structures is fairly well-established, and several explanations for its characteristics have been put forward. In contrast, the radial variation of the velocity anisotropy has still not been explained. We suggest a very simple origin, based on the shapes of the velocity distribution functions, which are shown to differ between the radial and tangential directions. This allows us to derive a radial variation of the anisotropy profile which is in good agreement with both simulations and observations. One of the consequences of this suggestion is that the velocity anisotropy is entirely determined once the density profile is known. We demonstrate how this explains the origin of the γ-β relation, which is the connection between the slope of the density profile and the velocity anisotropy. These findings provide us with a powerful tool, which allows us to close the Jeans equations.

  20. A physical process of the radial acceleration of disc galaxies

    Science.gov (United States)

    Wilhelm, Klaus; Dwivedi, Bhola N.

    2018-03-01

    An impact model of gravity designed to emulate Newton's law of gravitation is applied to the radial acceleration of disc galaxies. Based on this model (Wilhelm et al. 2013), the rotation velocity curves can be understood without the need to postulate any dark matter contribution. The increased acceleration in the plane of the disc is a consequence of multiple interactions of gravitons (called `quadrupoles' in the original paper) and the subsequent propagation in this plane and not in three-dimensional space. The concept provides a physical process that relates the fit parameter of the acceleration scale defined by McGaugh et al. (2016) to the mean free path length of gravitons in the discs of galaxies. It may also explain the gravitational interaction at low acceleration levels in MOdification of the Newtonian Dynamics (MOND, Milgrom 1983, 1994, 2015, 2016). Three examples are discussed in some detail: the spiral galaxies NGC 7814, NGC 6503 and M 33.

  1. Asymptotic scalings of developing curved pipe flow

    Science.gov (United States)

    Ault, Jesse; Chen, Kevin; Stone, Howard

    2015-11-01

    Asymptotic velocity and pressure scalings are identified for the developing curved pipe flow problem in the limit of small pipe curvature and high Reynolds numbers. The continuity and Navier-Stokes equations in toroidal coordinates are linearized about Dean's analytical curved pipe flow solution (Dean 1927). Applying appropriate scaling arguments to the perturbation pressure and velocity components and taking the limits of small curvature and large Reynolds number yields a set of governing equations and boundary conditions for the perturbations, independent of any Reynolds number and pipe curvature dependence. Direct numerical simulations are used to confirm these scaling arguments. Fully developed straight pipe flow is simulated entering a curved pipe section for a range of Reynolds numbers and pipe-to-curvature radius ratios. The maximum values of the axial and secondary velocity perturbation components along with the maximum value of the pressure perturbation are plotted along the curved pipe section. The results collapse when the scaling arguments are applied. The numerically solved decay of the velocity perturbation is also used to determine the entrance/development lengths for the curved pipe flows, which are shown to scale linearly with the Reynolds number.

  2. A RADIAL VELOCITY TEST FOR SUPERMASSIVE BLACK HOLE BINARIES AS AN EXPLANATION FOR BROAD, DOUBLE-PEAKED EMISSION LINES IN ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jia; Halpern, Jules P. [Astronomy Department, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Eracleous, Michael [Department of Astronomy and Institute for Gravitation and The Cosmos, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States)

    2016-01-20

    One of the proposed explanations for the broad, double-peaked Balmer emission lines observed in the spectra of some active galactic nuclei (AGNs) is that they are associated with sub-parsec supermassive black hole (SMBH) binaries. Here, we test the binary broad-line region hypothesis through several decades of monitoring of the velocity structure of double-peaked Hα emission lines in 13 low-redshift, mostly radio-loud AGNs. This is a much larger set of objects compared to an earlier test by Eracleous et al. and we use much longer time series for the three objects studied in that paper. Although systematic changes in radial velocity can be traced in many of their lines, they are demonstrably not like those of a spectroscopic binary in a circular orbit. Any spectroscopic binary period must therefore be much longer than the span of the monitoring (assuming a circular orbit), which in turn would require black hole masses that exceed by 1–2 orders of magnitude the values obtained for these objects using techniques such as reverberation mapping and stellar velocity dispersion. Moreover, the response of the double-peaked Balmer line profiles to fluctuations of the ionizing continuum and the shape of the Lyα profiles are incompatible with an SMBH binary. The binary broad-line region hypothesis is therefore disfavored. Other processes evidently shape these line profiles and cause the long-term velocity variations of the double peaks.

  3. Spiral Galaxy Central Bulge Tangential Speed of Revolution Curves

    Science.gov (United States)

    Taff, Laurence

    2013-03-01

    The objective was to, for the first time in a century, scientifically analyze the ``rotation curves'' (sic) of the central bulges of scores of spiral galaxies. I commenced with a methodological, rational, geometrical, arithmetic, and statistical examination--none of them carried through before--of the radial velocity data. The requirement for such a thorough treatment is the paucity of data typically available for the central bulge: fewer than 10 observations and frequently only five. The most must be made of these. A consequence of this logical handling is the discovery of a unique model for the central bulge volume mass density resting on the positive slope, linear, rise of its tangential speed of revolution curve and hence--for the first time--a reliable mass estimate. The deduction comes from a known physics-based, mathematically valid, derivation (not assertion). It rests on the full (not partial) equations of motion plus Poisson's equation. Following that is a prediction for the gravitational potential energy and thence the gravitational force. From this comes a forecast for the tangential speed of revolution curve. It was analyzed in a fashion identical to that of the data thereby closing the circle and demonstrating internal self-consistency. This is a hallmark of a scientific method-informed approach to an experimental problem. Multiple plots of the relevant quantities and measures of goodness of fit will be shown. Astronomy related

  4. Measurement of Poloidal Velocity on the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ronald E. Bell and Russell Feder

    2010-06-04

    A diagnostic suite has been developed to measure impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both active emission in the plane of the neutral heating beams and background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent chargeexchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. Local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. Radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  5. Measurement of Poloidal Velocity on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Bell, Ronald E.; Feder, Russell

    2010-01-01

    A diagnostic suite has been developed to measure impurity poloidal flow using charge exchange recombination spectroscopy on the National Spherical Torus Experiment. Toroidal and poloidal viewing systems measure all quantities required to determine the radial electric field. Two sets of up/down symmetric poloidal views are used to measure both active emission in the plane of the neutral heating beams and background emission in a radial plane away from the neutral beams. Differential velocity measurements isolate the line-integrated poloidal velocity from apparent flows due to the energy-dependent chargeexchange cross section. Six f/1.8 spectrometers measure 276 spectra to obtain 75 active and 63 background channels every 10 ms. Local measurements from a similar midplane toroidal viewing system are mapped into two dimensions to allow the inversion of poloidal line-integrated measurements to obtain local poloidal velocity profiles. Radial resolution after inversion is 0.6-1.8 cm from the plasma edge to the center.

  6. Computational Fluid Dynamics Simulations of Gas-Phase Radial Dispersion in Fixed Beds with Wall Effects

    Directory of Open Access Journals (Sweden)

    Anthony G. Dixon

    2017-10-01

    Full Text Available The effective medium approach to radial fixed bed dispersion models, in which radial dispersion of mass is superimposed on axial plug flow, is based on a constant effective dispersion coefficient, DT. For packed beds of a small tube-to-particle diameter ratio (N, the experimentally-observed decrease in this parameter near the tube wall is accounted for by a lumped resistance located at the tube wall, the wall mass transfer coefficient km. This work presents validated computational fluid dynamics (CFD simulations to obtain detailed radial velocity and concentration profiles for eight different computer-generated packed tubes of spheres in the range 5.04 ≤ N ≤ 9.3 and over a range of flow rates 87 ≤ Re ≤ 870 where Re is based on superficial velocity and the particle diameter dp. Initial runs with pure air gave axial velocity profiles vz(r averaged over the length of the packing. Then, simulations with the tube wall coated with methane yielded radial concentration profiles. A model with only DT could not describe the radial concentration profiles. The two-parameter model with DT and km agreed better with the bed-center concentration profiles, but not with the sharp decreases in concentration close to the tube wall. A three-parameter model based on classical two-layer mixing length theory, with a wall-function for the decrease in transverse radial convective transport in the near-wall region, showed greatly improved ability to reproduce the near-wall concentration profiles.

  7. Radial electric field in JET advanced tokamak scenarios with toroidal field ripple

    Energy Technology Data Exchange (ETDEWEB)

    Crombe, K [Postdoctoral Fellow of the Research Foundation - Flanders (FWO), Department of Applied Physics, Ghent University, Rozier 44, B-9000 Gent (Belgium); Andrew, Y; De Vries, P C; Giroud, C; Hawkes, N C; Meigs, A; Zastrow, K-D [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Biewer, T M [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169, TN (United States); Blanco, E [Laboratorio Nacional de Fusion, Asociacion EURATOM-CIEMAT, Madrid (Spain); Tala, T [VTT Technical Research Centre of Finland, Association EURATOM-Tekes, PO Box 1000, FIN-02044 VTT (Finland); Von Hellermann, M [FOM Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands)], E-mail: Kristel.Crombe@jet.uk

    2009-05-15

    A dedicated campaign has been run on JET to study the effect of toroidal field (TF) ripple on plasma performance. Radial electric field measurements from experiments on a series of plasmas with internal transport barriers (ITBs) and different levels of ripple amplitude are presented. They have been calculated from charge exchange measurements of impurity ion temperature, density and rotation velocity profiles, using the force balance equation. The ion temperature and the toroidal and poloidal rotation velocities are compared in plasmas with both reversed and optimized magnetic shear profiles. Poloidal rotation velocity (v{sub {theta}}) in the ITB region is measured to be of the order of a few tens of km s{sup -1}, significantly larger than the neoclassical predictions. Increasing levels of the TF ripple are found to decrease the ion temperature gradient in the ITB region, a measure for the quality of the ITB, and the maximum value of v{sub {theta}} is reduced. The poloidal rotation term dominates in the calculations of the total radial electric field (E{sub r}), with the largest gradient in E{sub r} measured in the radial region coinciding with the ITB.

  8. SOAP: A Tool for the Fast Computation of Photometry and Radial Velocity Induced by Stellar Spots

    Science.gov (United States)

    Boisse, I.; Bonfils, X.; Santos, N. C.; Figueira, P.

    2013-04-01

    Dark spots and bright plages are present on the surface of dwarf stars from spectral types F to M, even in their low-active phase (like the Sun). Their appearance and disappearance on the stellar photosphere, combined with the stellar rotation, may lead to errors and uncertainties in the characterization of planets both in radial velocity (RV) and photometry. Spot Oscillation and Planet (SOAP) is a tool offered to the community that enables to simulate spots and plages on rotating stars and computes their impact on RV and photometric measurements. This tool will help to understand the challenges related to the knowledge of stellar activity for the next decade: detect telluric planets in the habitable zone of their stars (from G to M dwarfs), understand the activity in the low-mass end of M dwarf (on which future projects, like SPIRou or CARMENES, will focus), limitation to the characterization of the exoplanetary atmosphere (from the ground or with Spitzer, JWST), search for planets around young stars. These can be simulated with SOAP in order to search for indices and corrections to the effect of activity.

  9. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1).

    Science.gov (United States)

    Li, Chih-Hao; Benedick, Andrew J; Fendel, Peter; Glenday, Alexander G; Kärtner, Franz X; Phillips, David F; Sasselov, Dimitar; Szentgyorgyi, Andrew; Walsworth, Ronald L

    2008-04-03

    Searches for extrasolar planets using the periodic Doppler shift of stellar spectral lines have recently achieved a precision of 60 cm s(-1) (ref. 1), which is sufficient to find a 5-Earth-mass planet in a Mercury-like orbit around a Sun-like star. To find a 1-Earth-mass planet in an Earth-like orbit, a precision of approximately 5 cm s(-1) is necessary. The combination of a laser frequency comb with a Fabry-Pérot filtering cavity has been suggested as a promising approach to achieve such Doppler shift resolution via improved spectrograph wavelength calibration, with recent encouraging results. Here we report the fabrication of such a filtered laser comb with up to 40-GHz (approximately 1-A) line spacing, generated from a 1-GHz repetition-rate source, without compromising long-term stability, reproducibility or spectral resolution. This wide-line-spacing comb, or 'astro-comb', is well matched to the resolving power of high-resolution astrophysical spectrographs. The astro-comb should allow a precision as high as 1 cm s(-1) in astronomical radial velocity measurements.

  10. Utilization of multimode Love wave dispersion curve inversion for geotechnical site investigation

    International Nuclear Information System (INIS)

    Hamimu, La; Nawawi, Mohd; Safani, Jamhir

    2011-01-01

    Inversion codes based on a modified genetic algorithm (GA) have been developed to invert multimode Love wave dispersion curves. The multimode Love wave dispersion curves were synthesized from the profile representing shear-wave velocity reversal using a full SH (shear horizontal) waveform. In this study, we used a frequency–slowness transform to extract the dispersion curve from the full SH waveform. Dispersion curves overlain in dispersion images were picked manually. These curves were then inverted using the modified GA. To assess the accuracy of the inversion results, differences between the true and inverted shear-wave velocity profile were quantified in terms of shear-wave velocity and thickness errors, E S and E H . Our numerical modeling showed that the inversion of multimode dispersion curves can significantly provide the better assessment of a shear-wave velocity structure, especially with a velocity reversal profile at typical geotechnical site investigations. This approach has been applied on field data acquired at a site in Niigata prefecture, Japan. In these field data, our inversion results show good agreement between the calculated and experimental dispersion curves and accurately detect low velocity layer targets

  11. The Kepler-19 System: A Thick-envelope Super-Earth with Two Neptune-mass Companions Characterized Using Radial Velocities and Transit Timing Variations

    Energy Technology Data Exchange (ETDEWEB)

    Malavolta, Luca; Borsato, Luca; Granata, Valentina; Piotto, Giampaolo; Nascimbeni, Valerio [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita’di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova (Italy); Lopez, Eric [SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH93HJ (United Kingdom); Vanderburg, Andrew; Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (United States); Figueira, Pedro [Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto (Portugal); Mortier, Annelies; Cameron, Andrew Collier [Centre for Exoplanet Science, SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Affer, Laura [INAF—Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90124 Palermo (Italy); Bonomo, Aldo S. [INAF—Osservatorio Astrofisico di Torino, via Osservatorio 20, I-10025 Pino Torinese (Italy); Bouchy, Francois [Observatoire Astronomique de l’Université de Genève, 51 ch. des Maillettes, 1290 Versoix (Switzerland); Buchhave, Lars A. [Centre for Star and Planet Formation, Natural History Museum of Denmark and Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K (Denmark); Cosentino, Rosario, E-mail: luca.malavolta@unipd.it [INAF—Fundación Galileo Galilei, Rambla José Ana Fernandez Pérez 7, E-38712 Breña Baja (Spain); and others

    2017-05-01

    We report a detailed characterization of the Kepler-19 system. This star was previously known to host a transiting planet with a period of 9.29 days, a radius of 2.2 R {sub ⊕}, and an upper limit on the mass of 20 M {sub ⊕}. The presence of a second, non-transiting planet was inferred from the transit time variations (TTVs) of Kepler-19b over eight quarters of Kepler photometry, although neither the mass nor period could be determined. By combining new TTVs measurements from all the Kepler quarters and 91 high-precision radial velocities obtained with the HARPS-N spectrograph, using dynamical simulations we obtained a mass of 8.4 ± 1.6 M {sub ⊕} for Kepler-19b. From the same data, assuming system coplanarity, we determined an orbital period of 28.7 days and a mass of 13.1 ± 2.7 M {sub ⊕} for Kepler-19c and discovered a Neptune-like planet with a mass of 20.3 ± 3.4 M {sub ⊕} on a 63-day orbit. By comparing dynamical simulations with non-interacting Keplerian orbits, we concluded that neglecting interactions between planets may lead to systematic errors that can hamper the precision in the orbital parameters when the data set spans several years. With a density of 4.32 ± 0.87 g cm{sup −3} (0.78 ± 0.16 ρ {sub ⊕}) Kepler-19b belongs to the group of planets with a rocky core and a significant fraction of volatiles, in opposition to low-density planets characterized only by transit time variations and an increasing number of rocky planets with Earth-like density. Kepler-19 joins the small number of systems that reconcile transit timing variation and radial velocity measurements.

  12. The three-dimensional distributions of tangential velocity and total- temperature in vortex tubes

    DEFF Research Database (Denmark)

    Linderstrøm-Lang, C.U.

    1971-01-01

    The axial and radial gradients of the tangential velocity distribution are calculated from prescribed secondary flow functions on the basis of a zero-order approximation to the momentum equations developed by Lewellen. It is shown that secondary flow functions may be devised which meet pertinent...... physical requirements and which at the same time lead to realistic tangential velocity gradients. The total-temperature distribution in both the axial and radial directions is calculated from such secondary flow functions and corresponding tangential velocity results on the basis of an approximate...

  13. A HIGH-VELOCITY BULGE RR LYRAE VARIABLE ON A HALO-LIKE ORBIT

    International Nuclear Information System (INIS)

    Kunder, Andrea; Storm, J.; Rich, R. M.; Hawkins, K.; Poleski, R.; Johnson, C. I.; Shen, J.; Li, Z.-Y.; Cordero, M. J.; Nataf, D. M.; Bono, G.; Walker, A. R.; Koch, A.; De Propris, R.; Udalski, A.; Szymanski, M. K.; Soszynski, I.; Pietrzynski, G.; Ulaczyk, K.; Wyrzykowski, Ł.

    2015-01-01

    We report on the RR Lyrae variable star, MACHO 176.18833.411, located toward the Galactic bulge and observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay, which has the unusual radial velocity of −372 ± 8 km s −1 and true space velocity of −482 ± 22 km s −1 relative to the Galactic rest frame. Located less than 1 kpc from the Galactic center and toward a field at (l, b) = (3, −2.5), this pulsating star has properties suggesting it belongs to the bulge RR Lyrae star population, yet a velocity indicating it is abnormal, at least with respect to bulge giants and red clump stars. We show that this star is most likely a halo interloper and therefore suggest that halo contamination is not insignificant when studying metal-poor stars found within the bulge area, even for stars within 1 kpc of the Galactic center. We discuss the possibility that MACHO 176.18833.411 is on the extreme edge of the bulge RR Lyrae radial velocity distribution, and also consider a more exotic scenario in which it is a runaway star moving through the Galaxy

  14. Properties of the redback millisecond pulsar binary 3FGL J0212.1+5320

    Science.gov (United States)

    Shahbaz, T.; Linares, M.; Breton, R. P.

    2017-12-01

    Linares et al. obtained quasi-simultaneous g΄-, r΄- and i΄-band light curves and an absorption-line radial velocity curve of the secondary star in the redback system 3FGL J0212.1+5320. The light curves showed two maxima and minima primarily due to the secondary star's ellipsoidal modulation, but with unequal maxima and minima. We fit these light curves and radial velocities with our X-ray binary model including either a dark solar-type star spot or a hotspot due to off-centre heating from an intrabinary shock to account for the unequal maxima. Both models give a radial velocity semi-amplitude and rotational broadening that agree with the observations. The observed secondary star's effective temperature is best matched with the value obtained using the hotspot model, which gives a neutron star and secondary star mass of M1 = 1.85 ^{+0.32}_{-0.26} M⊙ and M2 = 0.50 ^{+0.22}_{-0.19} M⊙, respectively.

  15. Evaluation of the friction coefficient, the radial stress, and the damage work during needle insertions into agarose gels.

    Science.gov (United States)

    Urrea, Fabián A; Casanova, Fernando; Orozco, Gustavo A; García, José J

    2016-03-01

    Agarose hydrogels have been extensively used as a phantom material to mimic the mechanical behavior of soft biological tissues, e.g. in studies aimed to analyze needle insertions into the organs producing tissue damage. To better predict the radial stress and damage during needle insertions, this study was aimed to determine the friction coefficient between the material of commercial catheters and hydrogels. The friction coefficient, the tissue damage and the radial stress were evaluated at 0.2, 1.8, and 10mm/s velocities for 28, 30, and 32 gauge needles of outer diameters equal to 0.36, 0.31, and 0.23mm, respectively. Force measurements during needle insertions and retractions on agarose gel samples were used to analyze damage and radial stress. The static friction coefficient (0.295±0.056) was significantly higher than the dynamic (0.255±0.086). The static and dynamic friction coefficients were significantly smaller for the 0.2mm/s velocity compared to those for the other two velocities, and there was no significant difference between the friction coefficients for 1.8 and 10mm/s. Radial stress averages were 131.2±54.1, 248.3±64.2, and 804.9±164.3Pa for the insertion velocity of 0.2, 1.8, and 10mm/s, respectively. The radial stress presented a tendency to increase at higher insertion velocities and needle size, which is consistent with other studies. However, the damage work did not show to be a good predictor of tissue damage, which appears to be due to simplifications in the analytical model. Differently to other approaches, the method proposed here based on radial stress may be extended in future studies to quantity tissue damage in vivo along the entire needle track. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Planetary nebula velocities in the disc and bulge of M31

    NARCIS (Netherlands)

    Halliday, C.; Carter, D.; Bridges, T. J.; Jackson, Z. C.; Wilkinson, M. I.; Quinn, D. P.; Evans, N. W.; Douglas, N. G.; Merrett, H. R.; Merrifield, M. R.; Romanowsky, A. J.; Kuijken, K.; Irwin, M. J.

    2006-01-01

    We present radial velocities for a sample of 723 planetary nebulae in the disc and bulge of M31, measured using the WYFFOS fibre spectrograph on the William Herschel Telescope. Velocities are determined using the [OIII] lambda 5007 emission line. Rotation and velocity dispersion are measured to a

  17. AN EFFICIENT, COMPACT, AND VERSATILE FIBER DOUBLE SCRAMBLER FOR HIGH PRECISION RADIAL VELOCITY INSTRUMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Samuel; Roy, Arpita; Mahadevan, Suvrath; Ramsey, Lawrence; Levi, Eric; Schwab, Christian; Hearty, Fred [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); MacDonald, Nick, E-mail: shalverson@psu.edu, E-mail: aur17@psu.edu [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States)

    2015-06-10

    We present the design and test results of a compact optical fiber double-scrambler for high-resolution Doppler radial velocity instruments. This device consists of a single optic: a high-index n ∼ 2 ball lens that exchanges the near and far fields between two fibers. When used in conjunction with octagonal fibers, this device yields very high scrambling gains (SGs) and greatly desensitizes the fiber output from any input illumination variations, thereby stabilizing the instrument profile of the spectrograph and improving the Doppler measurement precision. The system is also highly insensitive to input pupil variations, isolating the spectrograph from telescope illumination variations and seeing changes. By selecting the appropriate glass and lens diameter the highest efficiency is achieved when the fibers are practically in contact with the lens surface, greatly simplifying the alignment process when compared to classical double-scrambler systems. This prototype double-scrambler has demonstrated significant performance gains over previous systems, achieving SGs in excess of 10,000 with a throughput of ∼87% using uncoated Polymicro octagonal fibers. Adding a circular fiber to the fiber train further increases the SG to >20,000, limited by laboratory measurement error. While this fiber system is designed for the Habitable-zone Planet Finder spectrograph, it is more generally applicable to other instruments in the visible and near-infrared. Given the simplicity and low cost, this fiber scrambler could also easily be multiplexed for large multi-object instruments.

  18. Three-dimensional flow field measurements in a radial inflow turbine scroll using LDV

    Science.gov (United States)

    Malak, M. F.; Hamed, A.; Tabakoff, W.

    1986-01-01

    The results of an experimental study of the three-dimensional flow field in a radial inflow turbine scroll are presented. A two-color LDV system was used in the measurement of three orthogonal velocity components at 758 points located throughout the scroll and the unvaned portion of the nozzle. The cold flow experimental results are presented for through-flow velocity contours and the cross velocity vectors.

  19. Seismic Linear Noise Attenuation with Use of Radial Transform

    Science.gov (United States)

    Szymańska-Małysa, Żaneta

    2018-03-01

    One of the goals of seismic data processing is to attenuate the recorded noise in order to enable correct interpretation of the image. Radial transform has been used as a very effective tool in the attenuation of various types of linear noise, both numerical and real (such as ground roll, direct waves, head waves, guided waves etc). The result of transformation from offset - time (X - T) domain into apparent velocity - time (R - T) domain is frequency separation between reflections and linear events. In this article synthetic and real seismic shot gathers were examined. One example was targeted at far offset area of dataset where reflections and noise had similar apparent velocities and frequency bands. Another example was a result of elastic modelling where linear artefacts were produced. Bandpass filtering and scaling operation executed in radial domain attenuated all discussed types of linear noise very effectively. After noise reduction all further processing steps reveal better results, especially velocity analysis, migration and stacking. In all presented cases signal-to-noise ratio was significantly increased and reflections covered previously by noise were revealed. Power spectra of filtered seismic records preserved real dynamics of reflections.

  20. Radial transfer effects for poloidal rotation

    Science.gov (United States)

    Hallatschek, Klaus

    2010-11-01

    Radial transfer of energy or momentum is the principal agent responsible for radial structures of Geodesic Acoustic Modes (GAMs) or stationary Zonal Flows (ZF) generated by the turbulence. For the GAM, following a physical approach, it is possible to find useful expressions for the individual components of the Poynting flux or radial group velocity allowing predictions where a mathematical full analysis is unfeasible. Striking differences between up-down symmetric flux surfaces and asymmetric ones have been found. For divertor geometries, e.g., the direction of the propagation depends on the sign of the ion grad-B drift with respect to the X-point, reminiscent of a sensitive determinant of the H-mode threshold. In nonlocal turbulence computations it becomes obvious that the linear energy transfer terms can be completely overwhelmed by the action of the turbulence. In contrast, stationary ZFs are governed by the turbulent radial transfer of momentum. For sufficiently large systems, the Reynolds stress becomes a deterministic functional of the flows, which can be empirically determined from the stress response in computational turbulence studies. The functional allows predictions even on flow/turbulence states not readily obtainable from small amplitude noise, such as certain transport bifurcations or meta-stable states.

  1. Photometric and spectroscopic investigation of carbon stars. 1

    International Nuclear Information System (INIS)

    Vetesnik, M.

    1984-01-01

    The photoelectric light curves for carbon star UX Dra were derived in three colours and are discussed. Their shape shows a regular alternation of one deep and one shallow minima, which suggest the light curve of an eclipsing binary. The period variations of the star are analyzed on the basis of old photographic observations. The radial velocity curve of the star based on the measurements of the Swan molecular bands C 2 (1,0) and C 2 (0,1) exhibits a minimum preceding the primary light minima by about 0.15 P. The period P is 336 days, i.e. twice the mean period observed so far for the light variations of the star. The total absorption in the Swan molecular bands in dependence on the light phase of the star is investigated. The period of variability in molecular absorption equals the period of the radial velocity curve. Three possible mechanisms are considered to explain the light, radial velocity and molecular absorption chanqes of the star: radial pulsations, rotation of a heterogeneous single star, and occultations of two revolving components in a binary system. (author)

  2. On ``minimally curved spacetimes'' in general relativity

    OpenAIRE

    Dadhich, Naresh

    1997-01-01

    We consider a spacetime corresponding to uniform relativistic potential analogus to Newtonian potential as an example of ``minimally curved spacetime''. We also consider a radially symmetric analogue of the Rindler spacetime of uniform proper acceleration relative to infinity.

  3. A HIGH-VELOCITY BULGE RR LYRAE VARIABLE ON A HALO-LIKE ORBIT

    Energy Technology Data Exchange (ETDEWEB)

    Kunder, Andrea; Storm, J. [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Rich, R. M. [Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, CA 90095-1562 (United States); Hawkins, K. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Poleski, R. [Department of Astronomy, Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210 (United States); Johnson, C. I. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Shen, J.; Li, Z.-Y. [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Cordero, M. J. [Astronomisches Rechen-Institut: Zentrum für Astronomie, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Nataf, D. M. [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Bono, G. [Dipartimento di Fisica, Universita di Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma (Italy); Walker, A. R. [Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena (Chile); Koch, A. [Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, D-69117 Heidelberg (Germany); De Propris, R. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Turku (Finland); Udalski, A.; Szymanski, M. K.; Soszynski, I.; Pietrzynski, G.; Ulaczyk, K.; Wyrzykowski, Ł. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); and others

    2015-07-20

    We report on the RR Lyrae variable star, MACHO 176.18833.411, located toward the Galactic bulge and observed within the data from the ongoing Bulge RR Lyrae Radial Velocity Assay, which has the unusual radial velocity of −372 ± 8 km s{sup −1} and true space velocity of −482 ± 22 km s{sup −1} relative to the Galactic rest frame. Located less than 1 kpc from the Galactic center and toward a field at (l, b) = (3, −2.5), this pulsating star has properties suggesting it belongs to the bulge RR Lyrae star population, yet a velocity indicating it is abnormal, at least with respect to bulge giants and red clump stars. We show that this star is most likely a halo interloper and therefore suggest that halo contamination is not insignificant when studying metal-poor stars found within the bulge area, even for stars within 1 kpc of the Galactic center. We discuss the possibility that MACHO 176.18833.411 is on the extreme edge of the bulge RR Lyrae radial velocity distribution, and also consider a more exotic scenario in which it is a runaway star moving through the Galaxy.

  4. A SITELLE view of M31's central region - I. Calibrations and radial velocity catalogue of nearly 800 emission-line point-like sources

    Science.gov (United States)

    Martin, Thomas B.; Drissen, Laurent; Melchior, Anne-Laure

    2018-01-01

    We present a detailed description of the wavelength, astrometric and photometric calibration plan for SITELLE, the imaging Fourier transform spectrometer attached to the Canada-France-Hawaii telescope, based on observations of a red (647-685 nm) data cube of the central region (11 arcmin × 11 arcmin) of M 31. The first application, presented in this paper is a radial-velocity catalogue (with uncertainties of ∼2-6 km s-1) of nearly 800 emission-line point-like sources, including ∼450 new discoveries. Most of the sources are likely planetary nebulae, although we also detect five novae (having erupted in the first eight months of 2016) and one new supernova remnant candidate.

  5. Experimental research on time-resolved evolution of cathode plasma expansion velocity in a long pulsed magnetically insulated coaxial diode

    Science.gov (United States)

    Zhu, Danni; Zhang, Jun; Zhong, Huihuang; Ge, Xingjun; Gao, Jingming

    2018-02-01

    Unlike planar diodes, separate research of the axial and radial plasma expansion velocities is difficult for magnetically insulated coaxial diodes. Time-resolved electrical diagnostic which is based on the voltage-ampere characteristics has been employed to study the temporal evolution of the axial and radial cathode plasma expansion velocities in a long pulsed magnetically insulated coaxial diode. Different from a planar diode with a "U" shaped profile of temporal velocity evolution, the temporal evolution trend of the axial expansion velocity is proved to be a "V" shaped profile. Apart from the suppression on the radial expansion velocity, the strong magnetic field is also conducive to slowing down the axial expansion velocity. Compared with the ordinary graphite cathode, the carbon velvet and graphite composite cathode showed superior characteristics as judged by the low plasma expansion velocity and long-term electrical stability as a promising result for applications where long-pulsed and reliable operation at high power is required.

  6. The Double Contact Nature of TT Herculis

    OpenAIRE

    Terrell, Dirk; Nelson, Robert H.

    2014-01-01

    We present new radial velocities and photometry of the short-period Algol TT Herculis. Previous attempts to model the light curves of the system have met with limited success, primarily because of the lack of a reliable mass ratio. Our spectroscopic observations are the first to result in radial velocities for the secondary star, and thus provide a spectroscopic mass ratio. Simultaneous analysis of the radial velocities and new photometry shows that the system is a double contact binary, with...

  7. Ultrasonic velocity profiling rheometry based on a widened circular Couette flow

    International Nuclear Information System (INIS)

    Shiratori, Takahisa; Tasaka, Yuji; Oishi, Yoshihiko; Murai, Yuichi

    2015-01-01

    We propose a new rheometry for characterizing the rheological properties of fluids. The technique produces flow curves, which represent the relationship between the fluid shear rate and shear stress. Flow curves are obtained by measuring the circumferential velocity distribution of tested fluids in a circular Couette system, using an ultrasonic velocity profiling technique. By adopting a widened gap of concentric cylinders, a designed range of the shear rate is obtained so that velocity profile measurement along a single line directly acquires flow curves. To reduce the effect of ultrasonic noise on resultant flow curves, several fitting functions and variable transforms are examined to best approximate the velocity profile without introducing a priori rheological models. Silicone oil, polyacrylamide solution, and yogurt were used to evaluate the applicability of this technique. These substances are purposely targeted as examples of Newtonian fluids, shear thinning fluids, and opaque fluids with unknown rheological properties, respectively. We find that fourth-order Chebyshev polynomials provide the most accurate representation of flow curves in the context of model-free rheometry enabled by ultrasonic velocity profiling. (paper)

  8. Final Technical Report for DOE Award DE-FG02-07ER64403 [Modeling of Microbially Induced Calcite Precipitation for the Immobilization of Strontium-90 Using a Variable Velocity Streamtube Ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Ginn, Timothy R. [University of California, Davis; Weathers, Tess [University of California, Davis

    2013-08-26

    Biogeochemical modeling using PHREEQC2 and a streamtube ensemble approach is utilized to understand a well-to-well subsurface treatment system at the Vadose Zone Research Park (VZRP) near Idaho Falls, Idaho. Treatment involves in situ microbially-mediated ureolysis to induce calcite precipitation for the immobilization of strontium-90. PHREEQC2 is utilized to model the kinetically-controlled ureolysis and consequent calcite precipitation. Reaction kinetics, equilibrium phases, and cation exchange are used within PHREEQC2 to track pH and levels of calcium, ammonium, urea, and calcite precipitation over time, within a series of one-dimensional advective-dispersive transport paths creating a streamtube ensemble representation of the well-to-well transport. An understanding of the impact of physical heterogeneities within this radial flowfield is critical for remediation design; we address this via the streamtube approach: instead of depicting spatial extents of solutes in the subsurface we focus on their arrival distribution at the control well(s). Traditionally, each streamtube maintains uniform velocity; however in radial flow in homogeneous media, the velocity within any given streamtube is spatially-variable in a common way, being highest at the input and output wells and approaching a minimum at the midpoint between the wells. This idealized velocity variability is of significance in the case of ureolytically driven calcite precipitation. Streamtube velocity patterns for any particular configuration of injection and withdrawal wells are available as explicit calculations from potential theory, and also from particle tracking programs. To approximate the actual spatial distribution of velocity along streamtubes, we assume idealized radial non-uniform velocity associated with homogeneous media. This is implemented in PHREEQC2 via a non-uniform spatial discretization within each streamtube that honors both the streamtube’s travel time and the idealized

  9. An axially averaged-radial transport model of tokamak edge plasmas

    International Nuclear Information System (INIS)

    Prinja, A.K.; Conn, R.W.

    1984-01-01

    A two-zone axially averaged-radial transport model for edge plasmas is described that incorporates parallel electron and ion conduction, localized recycling, parallel electron pressure gradient effects and sheath losses. Results for high recycling show that the radial electron temperature profile is determined by parallel electron conduction over short radial distances (proportional 3 cm). At larger radius where Tsub(e) has fallen appreciably, convective transport becomes equally important. The downstream density and ion temperature profiles are very flat over the region where electron conduction dominates. This is seen to result from a sharply decaying velocity profile that follows the radial electron temperature. A one-dimensional analytical recycling model shows that at high neutral pumping rates, the plasma density at the plate, nsub(ia), scales linearly with the unperturbed background density, nsub(io). When ionization dominates nsub(ia)/nsub(io) proportional exp(nsub(io)) while in the intermediate regime nsub(ia)/nsub(io) proportional exp(proportional nsub(io)). Such behavior is qualitatively in accord with experimental observations. (orig.)

  10. Optical and Near-infrared Radial Velocity Content of M Dwarfs: Testing Models with Barnard’s Star

    Science.gov (United States)

    Artigau, Étienne; Malo, Lison; Doyon, René; Figueira, Pedro; Delfosse, Xavier; Astudillo-Defru, Nicola

    2018-05-01

    High-precision radial velocity (RV) measurements have been central in the study of exoplanets during the last two decades, from the early discovery of hot Jupiters, to the recent mass measurements of Earth-sized planets uncovered by transit surveys. While optical RV is now a mature field, there is currently a strong effort to push the technique into the near-infrared domain (chiefly Y, J, H, and K bandpasses) to probe planetary systems around late-type stars. The combined lower mass and luminosity of M dwarfs leads to an increased reflex RV signal for planets in the habitable zone compared to Sun-like stars. The estimates on the detectability of planets rely on various instrumental characteristics but also on a prior knowledge of the stellar spectrum. While the overall properties of M dwarf spectra have been extensively tested against observations, the same is not true for their detailed line profiles, which leads to significant uncertainties when converting a given signal-to-noise ratio to a corresponding RV precision as attainable on a given spectrograph. By combining archival CRIRES and HARPS data with ESPaDOnS data of Barnard’s star, we show that state-of-the-art atmosphere models over-predict the Y- and J-band RV content by more than a factor of ∼2, while under-predicting the H- and K-band content by half.

  11. Radial Velocity Fiber-Fed Spectrographs Towards the Discovery of Compact Planets and Pulsations on M Stars

    Science.gov (United States)

    Berdiñas, Zaira M.

    2016-11-01

    This thesis is developed in the framework of the paradigm that seeks for the discovery of an Earth analog. Nowadays, low mass stars, and in particular M dwarf stars, are key targets towards achieving this goal. In this thesis, I focus on the study of the short-time domain of M dwarf stars with the aim of searching for short period planets, but also for the first detection of stellar pulsations on this spectral type. Both science goals are the primary objectives of the “Cool Tiny Beats” (CTB) survey, which has produced most of the data used in this thesis. CTB data consist in high resolution and high-cadence spectroscopic Doppler measurements taken either with HARPS or HARPS-N spectrographs. First of all, a thorough understanding of the spectrographs response in the short time domain was performed to characterize the sources of noise in our range of study. Our first approach to the goals of this thesis consisted in the design of an observational experiment to delve into the HARPS-N sub-night performance. Results unveiled variability of the spectra continuum correlated with instabilities of the spectrograph illumination associated to the airmass. Such distortions, which are wavelength and time dependent, are also present in at least one of the data-products given by the HARPS-N reduction software: the width of the mean-line profiles (i.e. the so-called FWHM index), an index commonly used as a proxy of the stellar activity. As a consequence, we searched for an alternative approach to measure the width index. In particular, we calculated the mean-line profile of the spectrum with a least-squares-deconvolution technique and we obtained the profile indices as the moments of the profile distribution. As part of this study, we also corroborated that the radial velocities calculated with our template matching algorithm TERRA are not affected by the illumination stability. This work unveiled a possible failure of the HARPS-N atmospheric dispersion corrector (or ADC) and

  12. Development of vortex model with realistic axial velocity distribution

    International Nuclear Information System (INIS)

    Ito, Kei; Ezure, Toshiki; Ohshima, Hiroyuki

    2014-01-01

    A vortex is considered as one of significant phenomena which may cause gas entrainment (GE) and/or vortex cavitation in sodium-cooled fast reactors. In our past studies, the vortex is assumed to be approximated by the well-known Burgers vortex model. However, the Burgers vortex model has a simple but unreal assumption that the axial velocity component is horizontally constant, while in real the free surface vortex has the axial velocity distribution which shows large gradient in radial direction near the vortex center. In this study, a new vortex model with realistic axial velocity distribution is proposed. This model is derived from the steady axisymmetric Navier-Stokes equation as well as the Burgers vortex model, but the realistic axial velocity distribution in radial direction is considered, which is defined to be zero at the vortex center and to approach asymptotically to zero at infinity. As the verification, the new vortex model is applied to the evaluation of a simple vortex experiment, and shows good agreements with the experimental data in terms of the circumferential velocity distribution and the free surface shape. In addition, it is confirmed that the Burgers vortex model fails to calculate accurate velocity distribution with the assumption of uniform axial velocity. However, the calculation accuracy of the Burgers vortex model can be enhanced close to that of the new vortex model in consideration of the effective axial velocity which is calculated as the average value only in the vicinity of the vortex center. (author)

  13. Neoclassical rotation velocities in multispecies plasmas

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Hirshman, S.P.; Shaing, K.C.

    1996-01-01

    We examine the relationships between the poloidal, toroidal and parallel rotation velocities for typical plasma conditions in existing tokamak experiments. The radial force balance, neoclassical solution to the poloidal flow from the parallel force balance, and anomalous toroidal rotation axe included. A full multispecies formulation of the neoclassical transport theory is implemented in the NCLASS code (which includes arbitrary axisymmetric geometries and plasma collisionalities) to determine the poloidal rotation velocities. Comparisons are made with analytic relationships derived from a single impurity formulation of the problem. The roles of the radial electric field and species density and pressure gradients are evaluated. The determination of the radial electric field using the NCLASS solution for poloidal rotation and a local measurement of the toroidal rotation in conjunction with measured plasma profiles is discussed; it has been used in analysis of TFTR enhanced reverse shear plasmas. The ordering of banana orbit size small relative to local minor radius and gradients (as incorporated into initial versions of NCLASS) are examined for typical negative shear plasmas. We show the degree to which these constraints axe violated and demonstrate that finite orbit corrections axe required for better determination of the bootstrap current, particle fluxes and ion heat fluxes, i.e., the conditions r much-lt Δ b much-lt r n , r T , r E are significantly violated. Progress in relaxing these constraints is discussed

  14. The Double Contact Nature of TT Herculis

    Science.gov (United States)

    Terrell, Dirk; Nelson, Robert H.

    2014-03-01

    We present new radial velocities and photometry of the short-period Algol TT Herculis. Previous attempts to model the light curves of the system have met with limited success, primarily because of the lack of a reliable mass ratio. Our spectroscopic observations are the first to result in radial velocities for the secondary star, and thus provide a spectroscopic mass ratio. Simultaneous analysis of the radial velocities and new photometry shows that the system is a double contact binary, with a rapidly rotating primary that fills its limiting lobe.

  15. Southern Milky Way carbon stars - New candidates, JHK photometry, and radial velocities

    International Nuclear Information System (INIS)

    Blanco, V.M.; Cook, K.H.; Schechter, P.L.; Aaronson, M.

    1989-01-01

    Data are presented for low-latitude southern Milky Way carbon stars. Coordinates and cross identifications are given for carbon stars (67 of which are confirmed new discoveries) in seven fields deemed to be unusually transparent. JHK photometry is presented for 520 stars. Velocities are presented for 393 stars. Improved coordinates are presented for selected stars in Westerlund's catalog. Averaged photometry and velocities are presented for a sample of 336 stars. 26 refs

  16. Spectral analysis of stellar light curves by means of neural networks

    Science.gov (United States)

    Tagliaferri, R.; Ciaramella, A.; Milano, L.; Barone, F.; Longo, G.

    1999-06-01

    Periodicity analysis of unevenly collected data is a relevant issue in several scientific fields. In astrophysics, for example, we have to find the fundamental period of light or radial velocity curves which are unevenly sampled observations of stars. Classical spectral analysis methods are unsatisfactory to solve the problem. In this paper we present a neural network based estimator system which performs well the frequency extraction in unevenly sampled signals. It uses an unsupervised Hebbian nonlinear neural algorithm to extract, from the interpolated signal, the principal components which, in turn, are used by the MUSIC frequency estimator algorithm to extract the frequencies. The neural network is tolerant to noise and works well also with few points in the sequence. We benchmark the system on synthetic and real signals with the Periodogram and with the Cramer-Rao lower bound. This work was been partially supported by IIASS, by MURST 40\\% and by the Italian Space Agency.

  17. Measurement of distribution coefficients using a radial injection dual-tracer test

    International Nuclear Information System (INIS)

    Pickens, J.F.; Jackson, R.E.; Inch, K.J.; Merritt, W.F.

    1981-01-01

    The dispersive and adsorptive properties of a sandy aquifer were evaluated by using a radial injection dual-tracer test with 131 I as the nonreactive tracer and 85 Sr as the reactive tracer. The tracer migration was monitored by using multilevel point-sampling devices located at various radial distances and depths. Nonequilibrium physical and chemical adsorption effects for 85 Sr were treated as a spreading or dispersion mechanism in the breakthrough curve analysis. The resulting effective dispersivity values for 85 Sr were typically a factor of 2 to 5 larger than those obtained for 131 I. The distribution coefficient (K/sub d//sup Sr/) values obtained from analysis of the breakthrough curves at three depths and two radial distances ranged from 2.6 to 4.5 ml/g. These compare favorably with values obtained by separation of fluids from solids in sediment cores, by batch experiments on core sediments and by analysis of a 25-year-old radioactive waste plume in another part of the same aquifer. Correlations of adsorbed 85 Sr radioactivity with grain size fractions demonstrated preferential adsorption to the coarsest fraction and to the finest fraction. The relative amounts of electrostatically and specifically adsorbed 85 Sr on the aquifer sediments were determined with desorption experiments on core sediments using selective chemical extractants. The withdrawal phase breakthrough curves for the well, obtained immediately following the injection phase, showed essentially full tracer recoveries for both 131 I and 85 Sr. Relatively slow desorption of 85 Sr provided further indication of the nonequilibrium nature of the adsorption-desorption phenomena

  18. A RADIAL VELOCITY STUDY OF COMPOSITE-SPECTRA HOT SUBDWARF STARS WITH THE HOBBY-EBERLY TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Brad N.; Wade, Richard A.; Liss, Sandra E. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Ostensen, Roy H.; Van Winckel, Hans [Instituut voor Sterrenkunde, K.U. Leuven, B-3001 Leuven (Belgium)

    2012-10-10

    Many hot subdwarf stars show composite spectral energy distributions indicative of cool main-sequence (MS) companions. Binary population synthesis (BPS) models demonstrate such systems can be formed via Roche lobe overflow or common envelope evolution but disagree on whether the resulting orbital periods will be long (years) or short (days). Few studies have been carried out to assess the orbital parameters of these spectroscopic composite binaries; current observations suggest the periods are long. To help address this problem, we selected 15 moderately bright (V {approx} 13) hot subdwarfs with F-K dwarf companions and monitored their radial velocities from 2005 January to 2008 July using the bench-mounted Medium Resolution Spectrograph on the Hobby-Eberly Telescope (HET). Here we describe the details of our observing, reduction, and analysis techniques, and present preliminary results for all targets. By combining the HET data with recent observations from the Mercator Telescope, we are able to calculate precise orbital solutions for three systems using more than six years of observations. We also present an up-to-date period histogram for all known hot subdwarf binaries, which suggests those with F-K MS companions tend to have orbital periods on the order of several years. Such long periods challenge the predictions of conventional BPS models, although a larger sample is needed for a thorough assessment of the models' predictive success. Lastly, one of our targets has an eccentric orbit, implying some composite-spectrum systems might have formerly been hierarchical triple systems, in which the inner binary merged to create the hot subdwarf.

  19. Theoretical implications of the galactic radial acceleration relation of McGaugh, Lelli, and Schombert

    Science.gov (United States)

    Nesbet, Robert K.

    2018-05-01

    Velocities in stable circular orbits about galaxies, a measure of centripetal gravitation, exceed the expected Kepler/Newton velocity as orbital radius increases. Standard Λ cold dark matter (ΛCDM) attributes this anomaly to galactic dark matter. McGaugh et al. have recently shown for 153 disc galaxies that observed radial acceleration is an apparently universal function of classical acceleration computed for observed galactic baryonic mass density. This is consistent with the empirical modified Newtonian dynamics (MOND) model, not requiring dark matter. It is shown here that suitably constrained ΛCDM and conformal gravity (CG) also produce such a universal correlation function. ΛCDM requires a very specific dark matter distribution, while the implied CG non-classical acceleration must be independent of galactic mass. All three constrained radial acceleration functions agree with the empirical baryonic v4 Tully-Fisher relation. Accurate rotation data in the nominally flat velocity range could distinguish between MOND, ΛCDM, and CG.

  20. ROTATIONAL VELOCITIES FOR M DWARFS

    International Nuclear Information System (INIS)

    Jenkins, J. S.; Ramsey, L. W.; Jones, H. R. A.; Pavlenko, Y.; Barnes, J. R.; Pinfield, D. J.; Gallardo, J.

    2009-01-01

    We present spectroscopic rotation velocities (v sin i) for 56 M dwarf stars using high-resolution Hobby-Eberly Telescope High Resolution Spectrograph red spectroscopy. In addition, we have also determined photometric effective temperatures, masses, and metallicities ([Fe/H]) for some stars observed here and in the literature where we could acquire accurate parallax measurements and relevant photometry. We have increased the number of known v sin i values for mid M stars by around 80% and can confirm a weakly increasing rotation velocity with decreasing effective temperature. Our sample of v sin is peak at low velocities (∼3 km s -1 ). We find a change in the rotational velocity distribution between early M and late M stars, which is likely due to the changing field topology between partially and fully convective stars. There is also a possible further change in the rotational distribution toward the late M dwarfs where dust begins to play a role in the stellar atmospheres. We also link v sin i to age and show how it can be used to provide mid-M star age limits. When all literature velocities for M dwarfs are added to our sample, there are 198 with v sin i ≤ 10 km s -1 and 124 in the mid-to-late M star regime (M3.0-M9.5) where measuring precision optical radial velocities is difficult. In addition, we also search the spectra for any significant Hα emission or absorption. Forty three percent were found to exhibit such emission and could represent young, active objects with high levels of radial-velocity noise. We acquired two epochs of spectra for the star GJ1253 spread by almost one month and the Hα profile changed from showing no clear signs of emission, to exhibiting a clear emission peak. Four stars in our sample appear to be low-mass binaries (GJ1080, GJ3129, Gl802, and LHS3080), with both GJ3129 and Gl802 exhibiting double Hα emission features. The tables presented here will aid any future M star planet search target selection to extract stars with low v

  1. Radial gas turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Krausche, S.; Ohlsson, Johan

    1998-04-01

    The objective of this work was to develop a program dealing with design point calculations of radial turbine machinery, including both compressor and turbine, with as few input data as possible. Some simple stress calculations and turbine metal blade temperatures were also included. This program was then implanted in a German thermodynamics program, Gasturb, a program calculating design and off-design performance of gas turbines. The calculations proceed with a lot of assumptions, necessary to finish the task, concerning pressure losses, velocity distribution, blockage, etc., and have been correlated with empirical data from VAT. Most of these values could have been input data, but to prevent the user of the program from drowning in input values, they are set as default values in the program code. The output data consist of geometry, Mach numbers, predicted component efficiency etc., and a number of graphical plots of geometry and velocity triangles. For the cases examined, the error in predicted efficiency level was within {+-} 1-2% points, and quite satisfactory errors in geometrical and thermodynamic conditions were obtained Examination paper. 18 refs, 36 figs

  2. Revisiting Earth's radial seismic structure using a Bayesian neural network approach

    NARCIS (Netherlands)

    de Wit, R.W.L.

    2015-01-01

    The gross features of seismic observations can be explained by relatively simple spherically symmetric (1-D) models of wave velocities, density and attenuation, which describe the Earth's average(radial) structure. 1-D earth models are often used as a reference for studies on Earth's thermo-chemical

  3. The influence of collisional and anomalous radial diffusion on parallel ion transport in edge plasmas

    International Nuclear Information System (INIS)

    Helander, P.; Hazeltine, R.D.; Catto, P.J.

    1996-01-01

    The orderings in the kinetic equations commonly used to study the plasma core of a tokamak do not allow a balance between parallel ion streaming and radial diffusion, and are, therefore, inappropriate in the plasma edge. Different orderings are required in the edge region where radial transport across the steep gradients associated with the scrape-off layer is large enough to balance the rapid parallel flow caused by conditions close to collecting surfaces (such as the Bohm sheath condition). In the present work, we derive and solve novel kinetic equations, allowing for such a balance, and construct distinctive transport laws for impure, collisional, edge plasmas in which the perpendicular transport is (i) due to Coulomb collisions of ions with heavy impurities, or (ii) governed by anomalous diffusion driven by electrostatic turbulence. In both the collisional and anomalous radial transport cases, we find that one single diffusion coefficient determines the radial transport of particles, momentum and heat. The parallel transport laws and parallel thermal force in the scrape-off layer assume an unconventional form, in which the relative ion-impurity flow is driven by a combination of the conventional parallel gradients, and new (i) collisional or (ii) anomalous terms involving products of radial derivatives of the temperature and density with the radial shear of the parallel velocity. Thus, in the presence of anomalous radial diffusion, the parallel ion transport cannot be entirely classical, as usually assumed in numerical edge computations. The underlying physical reason is the appearance of a novel type of parallel thermal force resulting from the combined action of anomalous diffusion and radial temperature and velocity gradients. In highly sheared flows the new terms can modify impurity penetration into the core plasma

  4. Contrast enhanced MR findings of lesions associated with radial scar: correlation with histopathology

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jee Woo; Cha, Eun Suk; Choi, Hyun Joo; Seo, Young Jin [College of Medicine, The Catholic University of Korea, Suwon (Korea, Republic of)

    2007-01-15

    To evaluate the contrast-enhanced MR findings of lesions associated with a radial scar and to compare the MR findings with the histopathology results. From Mar. 2001 to Sep. 2005, 8 patients with a surgically proven radial scar who had undergone MRI, mammography, and ultrasonography were enrolled in this study. The morphological findings and dynamic enhancement pattern of the time-intensity curve were retrospectively reviewed using noncontrast and contrast-enhanced MRI. Mammography and ultrasonography were also analyzed according to the BI-RADS category and correlated with the histopathological diagnosis. The age of the patients ranged from 42 to 53 years (mean, 47 years). Five patients presented with a left breast lesion and the others presented with a right breast lesion. The histopathological diagnosis associated with the radial scar were fibrocystic changes (n = 1) adenosis (n = 2), atypical ductal hyperplasia (n = 2), lobular carcinoma in situ (n = 1), ductal carcinoma in situ (n = 1), and invasive ductal carcinoma (n = 1). In all patients, architectural distortion without microcalcification was observed with mammography. Irregular shaped hypoechoic lesions with an indistinct, spiculated, or angular margin was observed in all patients with ultrasonography. Posterior shadowing was observed in 4 cases. MR enhancement revealed two cases with foci enhancement (adenosis and fibrocystic change), five cases with non-mass-like focal enhancement (fibrocystic change, atypical ductal hyperplasia, lobular carcinoma in situ, ductal carcinoma in situ, invasive ductal carcinoma), and one irregular homogeneous mass enhancement (atypical ducal hyperplasia). The time-signal intensity curves are as follows: persistent type (n = 2), adenosis, and fibrocystic changes, respectively; plateu type (n = 4) one adenosis, two atypical ductal hyperplasia, and one ductal carcinoma in situ; and washout type (n = 2), lobular carcinoma in situ, and invasive ductal carcinoma, respectively

  5. Contrast enhanced MR findings of lesions associated with radial scar: correlation with histopathology

    International Nuclear Information System (INIS)

    Chung, Jee Woo; Cha, Eun Suk; Choi, Hyun Joo; Seo, Young Jin

    2007-01-01

    To evaluate the contrast-enhanced MR findings of lesions associated with a radial scar and to compare the MR findings with the histopathology results. From Mar. 2001 to Sep. 2005, 8 patients with a surgically proven radial scar who had undergone MRI, mammography, and ultrasonography were enrolled in this study. The morphological findings and dynamic enhancement pattern of the time-intensity curve were retrospectively reviewed using noncontrast and contrast-enhanced MRI. Mammography and ultrasonography were also analyzed according to the BI-RADS category and correlated with the histopathological diagnosis. The age of the patients ranged from 42 to 53 years (mean, 47 years). Five patients presented with a left breast lesion and the others presented with a right breast lesion. The histopathological diagnosis associated with the radial scar were fibrocystic changes (n = 1) adenosis (n = 2), atypical ductal hyperplasia (n = 2), lobular carcinoma in situ (n = 1), ductal carcinoma in situ (n = 1), and invasive ductal carcinoma (n = 1). In all patients, architectural distortion without microcalcification was observed with mammography. Irregular shaped hypoechoic lesions with an indistinct, spiculated, or angular margin was observed in all patients with ultrasonography. Posterior shadowing was observed in 4 cases. MR enhancement revealed two cases with foci enhancement (adenosis and fibrocystic change), five cases with non-mass-like focal enhancement (fibrocystic change, atypical ductal hyperplasia, lobular carcinoma in situ, ductal carcinoma in situ, invasive ductal carcinoma), and one irregular homogeneous mass enhancement (atypical ducal hyperplasia). The time-signal intensity curves are as follows: persistent type (n = 2), adenosis, and fibrocystic changes, respectively; plateu type (n = 4) one adenosis, two atypical ductal hyperplasia, and one ductal carcinoma in situ; and washout type (n = 2), lobular carcinoma in situ, and invasive ductal carcinoma, respectively

  6. VizieR Online Data Catalog: Radial velocities of 35 cataclysmic variables (Thorstensen+, 2016)

    Science.gov (United States)

    Thorstensen, J. R.; Alper, E. H.; Weil, K. E.

    2017-02-01

    We present spectroscopic follow-up observations of 35 newly discovered cataclysmic variables (CVs), 32 of which were found by the Catalina Real Time Transient Surveys (CRTS; Drake et al. 2009, Cat. J/ApJ/696/870; Drake et al. 2014, Cat. J/MNRAS/441/1186; Breedt et al. 2014, Cat. J/MNRAS/443/3174), ASAS-SN (Shappee et al. 2014ApJ...788...48S), and/or MASTER (Lipunov et al. 2010AdAst2010E..30L). All our observations are from Michigan-Dartmouth-MIT (MDM) Observatory on Kitt Peak, Arizona. For nearly all the spectra, we used the "modspec" spectrograph (a description of the modspec can be found at http://mdm.kpno.noao.edu/Manuals/ModSpec/modspec_man.html) with a 600line/mm grating. We mostly used a SITe 20482 CCD detector, which yielded 2Å/pixel from 4210 to 7500Å, with declining throughput toward the ends of the spectral range. When this detector was unavailable, we used a very similar 10242 SITe detector ("Templeton"), which covered 4660 to 6730Å. The modspec was mounted mostly on the 2.4m Hiltner telescope, but for some of the brighter objects, we used the 1.3m McGraw-Hill telescope. For a few of the 1.3m spectra, we used the Mark III grism spectrograph, which covered 4580 to 6850Å at 2.3Å/pixel. On both telescopes and with both spectrographs, we used an Andor Ikon camera to view the reflective slit jaws through a microscope and guided the telescope with a separate off-axis guider. With this arrangement we could place any object that was bright enough for a usable spectrum in the slit and track it accurately even if the portion of the light spilling onto the slit jaws was invisible. Our emission-line radial velocities are almost entirely of Hα, since it almost always gives the best signal-to-noise ratio with our instrument. (3 data files).

  7. Optimisasi Waktu Tempuh Pada Multi-AGV Menggunakan Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Anugrah Kusumo Pamosoaji

    2016-07-01

    Full Text Available An algorithm for velocity planning on a continuous-curvature path of a pair of automated guided vehicles (AGVs that minimizing its travelling time is presented. A class of 3-degree Bezier curves is used as basic form of the path. In addition, constraints of maximum allowable linear and radial accelerations are considered. The velocity plan algorithm is generated based on the characteristics of the path’s control points and maximum allowable radial velocity on some the path’s points. A set of properties of the allowable radial velocity is discussed. The verification of the new algorithm is revealed in the simulation results.

  8. Optimization of ACC system spacing policy on curved highway

    Science.gov (United States)

    Ma, Jun; Qian, Kun; Gong, Zaiyan

    2017-05-01

    The paper optimizes the original spacing policy when adopting VTH (Variable Time Headway), proposes to introduce the road curve curvature K to the spacing policy to cope with following the wrong vehicle or failing to follow the vehicle owing to the radar limitation of curve in ACC system. By utilizing MATLAB/Simulink, automobile longitudinal dynamics model is established. At last, the paper sets up such three common cases as the vehicle ahead runs at a uniform velocity, an accelerated velocity and hits the brake suddenly, simulates these cases on the curve with different curvature, analyzes the curve spacing policy in the perspective of safety and vehicle following efficiency and draws the conclusion whether the optimization scheme is effective or not.

  9. Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow

    International Nuclear Information System (INIS)

    Herrmann-Priesnitz, Benjamín; Torres, Diego A.; Calderón-Muñoz, Williams R.; Salas, Eduardo A.; Vargas-Uscategui, Alejandro; Duarte-Mermoud, Manuel A.

    2016-01-01

    A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of the boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U_o. Results show that boundary layers merge for Re > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U_o. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.

  10. Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann-Priesnitz, Benjamín, E-mail: bherrman@ing.uchile.cl; Torres, Diego A. [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Calderón-Muñoz, Williams R. [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); Energy Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Salas, Eduardo A. [CSIRO-Chile International Centre of Excellence, Apoquindo 2827, Floor 12, Santiago (Chile); Vargas-Uscategui, Alejandro [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); CSIRO-Chile International Centre of Excellence, Apoquindo 2827, Floor 12, Santiago (Chile); Duarte-Mermoud, Manuel A. [Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Department of Electrical Engineering, Universidad de Chile, Av. Tupper 2007, Santiago (Chile)

    2016-03-15

    A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of the boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U{sub o}. Results show that boundary layers merge for Re < < 10 and Ro > > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U{sub o}. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.

  11. Three-dimensional inviscid analysis of radial-turbine flow and a limited comparison with experimental data

    Science.gov (United States)

    Choo, Y. K.; Civinskas, K. C.

    1985-01-01

    The three-dimensional inviscid DENTON code is used to analyze flow through a radial-inflow turbine rotor. Experimental data from the rotor are compared with analytical results obtained by using the code. The experimental data available for comparison are the radial distributions of circumferentially averaged values of absolute flow angle and total pressure downstream of the rotor exit. The computed rotor-exit flow angles are generally underturned relative to the experimental values, which reflect the boundary-layer separation at the trailing edge and the development of wakes downstream of the rotor. The experimental rotor is designed for a higher-than-optimum work factor of 1.126 resulting in a nonoptimum positive incidence and causing a region of rapid flow adjustment and large velocity gradients. For this experimental rotor, the computed radial distribution of rotor-exit to turbine-inlet total pressure ratios are underpredicted due to the errors in the finite-difference approximations in the regions of rapid flow adjustment, and due to using the relatively coarser grids in the middle of the blade region where the flow passage is highly three-dimensional. Additional results obtained from the three-dimensional inviscid computation are also presented, but without comparison due to the lack of experimental data. These include quasi-secondary velocity vectors on cross-channel surfaces, velocity components on the meridional and blade-to-blade surfaces, and blade surface loading diagrams. Computed results show the evolution of a passage vortex and large streamline deviations from the computational streamwise grid lines. Experience gained from applying the code to a radial turbine geometry is also discussed.

  12. Three-dimensional inviscid analysis of radial turbine flow and a limited comparison with experimental data

    Science.gov (United States)

    Choo, Y. K.; Civinskas, K. C.

    1985-01-01

    The three-dimensional inviscid DENTON code is used to analyze flow through a radial-inflow turbine rotor. Experimental data from the rotor are compared with analytical results obtained by using the code. The experimental data available for comparison are the radial distributions of circumferentially averaged values of absolute flow angle and total pressure downstream of the rotor exit. The computed rotor-exit flow angles are generally underturned relative to the experimental values, which reflect the boundary-layer separation at the trailing edge and the development of wakes downstream of the rotor. The experimental rotor is designed for a higher-than-optimum work factor of 1.126 resulting in a nonoptimum positive incidence and causing a region of rapid flow adjustment and large velocity gradients. For this experimental rotor, the computed radial distribution of rotor-exit to turbine-inlet total pressure ratios are underpredicted due to the errors in the finite-difference approximations in the regions of rapid flow adjustment, and due to using the relatively coarser grids in the middle of the blade region where the flow passage is highly three-dimensional. Additional results obtained from the three-dimensional inviscid computation are also presented, but without comparison due to the lack of experimental data. These include quasi-secondary velocity vectors on cross-channel surfaces, velocity components on the meridional and blade-to-blade surfaces, and blade surface loading diagrams. Computed results show the evolution of a passage vortex and large streamline deviations from the computational streamwise grid lines. Experience gained from applying the code to a radial turbine geometry is also discussed.

  13. A theory of self-organized zonal flow with fine radial structure in tokamak

    Science.gov (United States)

    Zhang, Y. Z.; Liu, Z. Y.; Xie, T.; Mahajan, S. M.; Liu, J.

    2017-12-01

    The (low frequency) zonal flow-ion temperature gradient (ITG) wave system, constructed on Braginskii's fluid model in tokamak, is shown to be a reaction-diffusion-advection system; it is derived by making use of a multiple spatiotemporal scale technique and two-dimensional (2D) ballooning theory. For real regular group velocities of ITG waves, two distinct temporal processes, sharing a very similar meso-scale radial structure, are identified in the nonlinear self-organized stage. The stationary and quasi-stationary structures reflect a particular feature of the poloidal group velocity. The equation set posed to be an initial value problem is numerically solved for JET low mode parameters; the results are presented in several figures and two movies that show the spatiotemporal evolutions as well as the spectrum analysis—frequency-wave number spectrum, auto power spectrum, and Lissajous diagram. This approach reveals that the zonal flow in tokamak is a local traveling wave. For the quasi-stationary process, the cycle of ITG wave energy is composed of two consecutive phases in distinct spatiotemporal structures: a pair of Cavitons growing and breathing slowly without long range propagation, followed by a sudden decay into many Instantons that carry negative wave energy rapidly into infinity. A spotlight onto the motion of Instantons for a given radial position reproduces a Blob-Hole temporal structure; the occurrence as well as the rapid decay of Caviton into Instantons is triggered by zero-crossing of radial group velocity. A sample of the radial profile of zonal flow contributed from 31 nonlinearly coupled rational surfaces near plasma edge is found to be very similar to that observed in the JET Ohmic phase [J. C. Hillesheim et al., Phys. Rev. Lett. 116, 165002 (2016)]. The theory predicts an interior asymmetric dipole structure associated with the zonal flow that is driven by the gradients of ITG turbulence intensity.

  14. Imaging the Earth's anisotropic structure with Bayesian Inversion of fundamental and higher mode surface-wave dispersion data

    Science.gov (United States)

    Ravenna, Matteo; Lebedev, Sergei; Celli, Nicolas

    2017-04-01

    We develop a Markov Chain Monte Carlo inversion of fundamental and higher mode phase-velocity curves for radially and azimuthally anisotropic structure of the crust and upper mantle. In the inversions of Rayleigh- and Love-wave dispersion curves for radially anisotropic structure, we obtain probabilistic 1D radially anisotropic shear-velocity profiles of the isotropic average Vs and anisotropy (or Vsv and Vsh) as functions of depth. In the inversions for azimuthal anisotropy, Rayleigh-wave dispersion curves at different azimuths are inverted for the vertically polarized shear-velocity structure (Vsv) and the 2-phi component of azimuthal anisotropy. The strength and originality of the method is in its fully non-linear approach. Each model realization is computed using exact forward calculations. The uncertainty of the models is a part of the output. In the inversions for azimuthal anisotropy, in particular, the computation of the forward problem is performed separately at different azimuths, with no linear approximations on the relation of the Earth's elastic parameters to surface wave phase velocities. The computations are performed in parallel in order reduce the computing time. We compare inversions of the fundamental mode phase-velocity curves alone with inversions that also include overtones. The addition of higher modes enhances the resolving power of the anisotropic structure of the deep upper mantle. We apply the inversion method to phase-velocity curves in a few regions, including the Hangai dome region in Mongolia. Our models provide constraints on the Moho depth, the Lithosphere-Asthenosphere Boundary, and the alignment of the anisotropic fabric and the direction of current and past flow, from the crust down to the deep asthenosphere.

  15. Spectroscopy and photometry of IP Peg in the near-infrared

    International Nuclear Information System (INIS)

    Martin, J.S.; Jones, D.H.P.; Smith, R.C.

    1987-01-01

    Time-resolved spectroscopy in the range lambdalambda7600-8300 A of the dwarf nova IP Peg has been used to derive a radial velocity curve for the secondary star, with semi-amplitude K=288.3+-4 km s -1 . The curve is slightly distorted, giving an orbit with an apparent eccentricity of 0.075+-0.024. The radial velocity curve gives a mass function for the primary of 0.394+-0.016 M(sun). From this constraints are derived on the possible masses of the components and on the inclination of the system. Photometry in a wavelength band around 9300 Angstroms shows the existence of a large ellipsoidal variation in the light from the secondary star. (author)

  16. Oxygen distribution in packed-bed membrane reactors for partial oxidations: effect of the radial porosity profiles on the product selectivity

    NARCIS (Netherlands)

    Kurten, U.; van Sint Annaland, M.; Kuipers, J.A.M.

    2004-01-01

    A two-dimensional, pseudohomogeneous reactor model was presented to describe the radial and axial concentration profiles in a packed-bed membrane reactor and the local velocity field while accounting for the influences due to the distributive membrane flow and the radial porosity profile. The effect

  17. Development of Optimum Manufacturing Technologies of Radial Plates for the ITER Toroidal Field Coils

    International Nuclear Information System (INIS)

    Nakajima, H.; Hamada, K.; Okuno, K.; Abe, K.; Kakui, H.; Yamaoka, H.; Maruyama, N.

    2006-01-01

    A stainless steel structure called a radial plate is used in the toroidal field (TF) coils of the International Thermonuclear Experimental Reactor (ITER) in order to support large electromagnetic force generated in the conductors. It is a 13.7 m x 8.7 m D-shaped plate having 11 grooves on each side in which conductors are wound. Although severe dimensional accuracy, for example flatness within 2 mm, and tight schedule that all radial plates for 9 TF coils (63 plates) have to be manufactured in about 4 years are required in manufacture of the radial plates, there are no industries in the world who have manufactured a large complicated structure like the radial plate with high accuracy. Japan Atomic Energy Agency (JAEA) has been studying rational manufacturing method and developing the optimum manufacturing technologies of the radial plates in order to satisfy the above requirements in collaboration with the Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). Several trial manufactures of radial plates have been performed to clarify the following key points: · Effect of nitrogen content in material on machinability · Effect of cutting direction of a piece on deformation caused by machining · Effect of machining shape (curve or straight) on machining condition · Effect of laser welding technique on penetration and welding deformation Three different 316LN materials having nitrogen content of 0.12 %, 0.17%, and 0.20% were used to investigate nitrogen content effect on machinability. Machinability of lower nitrogen content material was slightly better than that of higher nitrogen content material. Three sectoral pieces were cut by plasma cutting technique from a hot rolled plate without any difficulties and one of them was machined to a curved segment of the radial plate having the same size as actual one. However, unacceptable large deformation over 5 mm flatness was found during machining which would be caused by curved shape of grooves and/or cutting direction

  18. Flow over riblet curved surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, J B R; Freire, A P Silva, E-mail: atila@mecanica.ufrj.br [Mechanical Engineering Program, Federal University of Rio de Janeiro (COPPE/UFRJ), C.P. 68503, 21.941-972, Rio de Janeiro, RJ (Brazil)

    2011-12-22

    The present work studies the mechanics of turbulent drag reduction over curved surfaces by riblets. The effects of surface modification on flow separation over steep and smooth curved surfaces are investigated. Four types of two-dimensional surfaces are studied based on the morphometric parameters that describe the body of a blue whale. Local measurements of mean velocity and turbulence profiles are obtained through laser Doppler anemometry (LDA) and particle image velocimetry (PIV).

  19. Sodium Velocity Maps on Mercury

    Science.gov (United States)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  20. A software to measure phase-velocity dispersion from ambient-noise correlations and its application to the SNSN data

    Science.gov (United States)

    Sadeghisorkhani, Hamzeh; Gudmundsson, Ólafur

    2017-04-01

    Graphical software for phase-velocity dispersion measurements of surface waves in noise-correlation traces, called GSpecDisp, is presented. It is an interactive environment for the measurements and presentation of the results. It measures phase-velocity dispersion curves in the frequency domain based on matching of the real part of the cross-correlation spectrum with the appropriate Bessel function. The inputs are time-domain cross-correlations in SAC format. It can measure two types of phase-velocity dispersion curves; 1- average phase-velocity of a region, and 2- single-pair phase velocity. The average phase-velocity dispersion curve of a region can be used as a reference curve to automatically select the dispersion curves from each single-pair cross-correlation in that region. It also allows the users to manually refine the selections. Therefore, no prior knowledge is needed for an unknown region. GSpecDisp can measure the phase velocity of Rayleigh and Love waves from all possible components of the noise correlation tensor, including diagonal and off-diagonal components of the tensor. First, we explain how GSpecDisp is applied to measure phase-velocity dispersion curves. Then, we demonstrate measurement results on synthetic and real data from the Swedish National Seismic Network (SNSN). We compare the results with two other methods of phase-velocity dispersion measurements. Finally, we compare phase-velocity dispersion curves of Rayleigh waves obtained from different components of the correlation tensor.

  1. Influence of loading and unloading velocity of confining pressure on strength and permeability characteristics of crystalline sandstone

    Science.gov (United States)

    Zhang, Dong-ming; Yang, Yu-shun; Chu, Ya-pei; Zhang, Xiang; Xue, Yan-guang

    2018-06-01

    The triaxial compression test of crystalline sandstone under different loading and unloading velocity of confining pressure is carried out by using the self-made "THM coupled with servo-controlled seepage apparatus for containing-gas coal", analyzed the strength, deformation and permeability characteristics of the sample, the results show that: with the increase of confining pressures loading-unloading velocity, Mohr's stress circle center of the specimen shift to the right, and the ultimate intensity, peak strain and residual stress of the specimens increase gradually. With the decrease of unloading velocity of confining pressure, the axial strain, the radial strain and the volumetric strain of the sample decrease first and then increases, but the radial strain decreases more greatly. The loading and unloading of confining pressure has greater influence on axial strain of specimens. The deformation modulus decreases rapidly with the increase of axial strain and the Poisson's ratio decreases gradually at the initial stage of loading. When the confining pressure is loaded, the deformation modulus decrease gradually, and the Poisson's ratio increases gradually. When the confining pressure is unloaded, the deformation modulus increase gradually, and the Poisson's ratio decreases gradually. When the specimen reaches the ultimate intensity, the deformation modulus decreases rapidly, while the Poisson's ratio increases rapidly. The fitting curve of the confining pressure and the deformation modulus and the Poisson's ratio in accordance with the distribution of quadratic polynomial function in the loading-unloading confining pressure. There is a corresponding relationship between the evolution of rock permeability and damage deformation during the process of loading and unloading. In the late stage of yielding, the permeability increases slowly, and the permeability increases sharply after the rock sample is destroyed. Fitting the permeability and confining pressure

  2. Viscosity estimation utilizing flow velocity field measurements in a rotating magnetized plasma

    International Nuclear Information System (INIS)

    Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2008-01-01

    The importance of viscosity in determining plasma flow structures has been widely recognized. In laboratory plasmas, however, viscosity measurements have been seldom performed so far. In this paper we present and discuss an estimation method of effective plasma kinematic viscosity utilizing flow velocity field measurements. Imposing steady and axisymmetric conditions, we derive the expression for radial flow velocity from the azimuthal component of the ion fluid equation. The expression contains kinematic viscosity, vorticity of azimuthal rotation and its derivative, collision frequency, azimuthal flow velocity and ion cyclotron frequency. Therefore all quantities except the viscosity are given provided that the flow field can be measured. We applied this method to a rotating magnetized argon plasma produced by the Hyper-I device. The flow velocity field measurements were carried out using a directional Langmuir probe installed in a tilting motor drive unit. The inward ion flow in radial direction, which is not driven in collisionless inviscid plasmas, was clearly observed. As a result, we found the anomalous viscosity, the value of which is two orders of magnitude larger than the classical one. (author)

  3. Three dimensional reflection velocity analysis based on velocity model scan; Model scan ni yoru sanjigen hanshaha sokudo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, M; Tsuru, T [Japan National Oil Corp., Tokyo (Japan); Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan)

    1996-05-01

    Introduced herein is a reflection wave velocity analysis method using model scanning as a method for velocity estimation across a section, the estimation being useful in the construction of a velocity structure model in seismic exploration. In this method, a stripping type analysis is carried out, wherein optimum structure parameters are determined for reflection waves one after the other beginning with those from shallower parts. During this process, the velocity structures previously determined for the shallower parts are fixed and only the lowest of the layers undergoing analysis at the time is subjected to model scanning. To consider the bending of ray paths at each velocity boundaries involving shallower parts, the ray path tracing method is utilized for the calculation of the reflection travel time curve for the reflection surface being analyzed. Out of the reflection wave travel time curves calculated using various velocity structure models, one that suits best the actual reflection travel time is detected. The degree of matching between the calculated result and actual result is measured by use of data semblance in a time window provided centering about the calculated reflective wave travel time. The structure parameter is estimated on the basis of conditions for the maximum semblance. 1 ref., 4 figs.

  4. APSIDAL MOTION AND A LIGHT CURVE SOLUTION FOR 13 LMC ECCENTRIC ECLIPSING BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Zasche, P.; Wolf, M.; Vraštil, J.; Pilarcik, L. [Astronomical Institute, Charles University in Prague, Faculty of Mathematics and Physics, CZ-180 00 Praha 8, V Holešovičkách 2 (Czech Republic)

    2015-12-15

    New CCD observations for 13 eccentric eclipsing binaries from the Large Magellanic Cloud were carried out using the Danish 1.54 m telescope located at the La Silla Observatory in Chile. These systems were observed for their times of minimum and 56 new minima were obtained. These are needed for accurate determination of the apsidal motion. Besides that, in total 436 times of minimum were derived from the photometric databases OGLE and MACHO. The O – C diagrams of minimum timings for these B-type binaries were analyzed and the parameters of the apsidal motion were computed. The light curves of these systems were fitted using the program PHOEBE, giving the light curve parameters. We derived for the first time relatively short periods of the apsidal motion ranging from 21 to 107 years. The system OGLE-LMC-ECL-07902 was also analyzed using the spectra and radial velocities, resulting in masses of 6.8 and 4.4 M{sub ⊙} for the eclipsing components. For one system (OGLE-LMC-ECL-20112), the third-body hypothesis was also used to describe the residuals after subtraction of the apsidal motion, resulting in a period of about 22 years. For several systems an additional third light was also detected, which makes these systems suspect for triplicity.

  5. Development of optimum manufacturing technologies of radial plates for the ITER toroidal field coils

    International Nuclear Information System (INIS)

    Nakajima, H.; Hamada, K.; Okuno, K.; Abe, K.; Shimizu, T.; Kakui, H.; Yamaoka, H.; Maruyama, N.; Takayanagi, T.

    2007-01-01

    Japan Atomic Energy Agency is studying rational manufacturing method and developing the optimum manufacturing technologies of the radial plates used in the toroidal field coils for the International Thermonuclear Experimental Reactor (ITER) in collaboration with the Japanese industries. Three sector form pieces were cut by plasma cutting machine from a hot rolled plate without any difficulties and one of them was machined to a 1.32-m long curved segment of the radial plate having the same size as the actual one. However, unacceptable large deformation about 5 mm flatness, which was not observed in 1-m long straight radial plate, was found after intermediate machining. Since it would be caused by groove direction against the hot rolled direction and/or curved shape of grooves, two trial manufactures of 0.4-m long straight radial plates have been performed to clarify the cause of the large deformation. Detailed investigation showed that the large deformation could be avoided if the groove direction would have been parallel to a rolling direction of the plate. Welding trials by using fiber laser technique was also performed and penetration of 15 mm could be obtained in a welding speed of 0.1 m/min at 5 kW laser power. An optimum manufacturing method has been proposed based on the development of manufacturing technologies

  6. Light curves for ''bump Cepheids'' computed with a dynamically zoned pulsation code

    International Nuclear Information System (INIS)

    Adams, T.F.; Castor, J.E.; Davis, C.G.

    1978-01-01

    The dynamically zoned pulsation code developed by Castor, Davis, and Davison has been used to recalculate the Goddard model and to calculate three other Cepheid models with the same period (9.8 days). This family of models shows how the bumps and other features of the light and velocity curves change as the mass is varied at constant period. This study, with a code that is capable of producing reliable light curves, shows again that the light and velocity curves for 9.8-day Cepheid models with standard homogeneous compositions do not show bumps like those that are observed unless the mass is significantly lower than the ''evolutionary mass.'' The light and velocity curves for the Goddard model presented here are similar to those computed independently by Fischel, Sparks, and Karp. They should be useful as standards for future investigators

  7. A comparative study for the estimation of geodetic point velocity by ...

    Indian Academy of Sciences (India)

    Geodetic point velocity; artificial neural networks; back propagation; radial basis function; Kriging. J. Earth Syst. Sci. ...... The employment of BPANN is an alternative tool to KRIG for .... Computational Intelligence and Multimedia Applications.

  8. Comparison Algorithm Kernels on Support Vector Machine (SVM To Compare The Trend Curves with Curves Online Forex Trading

    Directory of Open Access Journals (Sweden)

    irfan abbas

    2017-01-01

    similar to the curve trend of online forex trading is Anova kernel and kernel radial, a little closer Combination Gaussian kernel, kernel Epachnenikof and to kernel polynomial form a parabolic curve open.   key words: Trading Forex, Support Vector Machine, Kernel Anova, Dot Kernel, Kernel Multiquaric, Kernel Neural, Prediction, radial Kernel, Kernel Gaussian Combination, Epachnenikof kernel, polynomial kernel, EURUSD H1

  9. Formula for radial profiles of temperature in steam-liquid sodium reactive jets

    International Nuclear Information System (INIS)

    Hobbes, P.; Mora-Perez, J.L.; Carreau, J.L.; Gbahoue, L.; Roger, F.

    1987-01-01

    One of the important problems of the study of distribution of temperatures in the reactive steam-liquid sodium jet rests in the mathematical formulation of their radial effects. During the experiment, two forms have been brought to light: from a certain distance of the injector, the radial distribution of temperature can be represented, in a classical way, by an error function curve; close to the injector, the radial profile allows for a minimum located on the axis of the jet. An energy balance permits, by dividing the jet in three parts: a central nucleus composed of practically pure gas, a gas ring plus drops and a liquid peripheral area plus bubbles, to obtain a mathematical formulation of the profiles, close to the injection which accounts quite well for the experimental points and their form

  10. Flow of viscous fluid along an exponentially stretching curved surface

    Directory of Open Access Journals (Sweden)

    N.F. Okechi

    Full Text Available In this paper, we present the boundary layer analysis of flow induced by rapidly stretching curved surface with exponential velocity. The governing boundary value problem is reduced into self-similar form using a new similarity transformation. The resulting equations are solved numerically using shooting and Runge-Kutta methods. The numerical results depicts that the fluid velocity as well as the skin friction coefficient increases with the surface curvature, similar trend is also observed for the pressure. The dimensionless wall shear stress defined for this problem is greater than that of a linearly stretching curved surface, but becomes comparably less for a surface stretching with a power-law velocity. In addition, the result for the plane surface is a special case of this study when the radius of curvature of the surface is sufficiently large. The numerical investigations presented in terms of the graphs are interpreted with the help of underlying physics of the fluid flow and the consequences arising from the curved geometry. Keywords: Boundary layer flow, Curved surface, Exponential stretching, Curvature

  11. Radial profiles of velocity and pressure for condensation-induced hurricanes

    International Nuclear Information System (INIS)

    Makarieva, A.M.; Gorshkov, V.G.

    2011-01-01

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  12. Radial profiles of velocity and pressure for condensation-induced hurricanes

    Science.gov (United States)

    Makarieva, A. M.; Gorshkov, V. G.

    2011-02-01

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  13. Radial profiles of velocity and pressure for condensation-induced hurricanes

    Energy Technology Data Exchange (ETDEWEB)

    Makarieva, A.M., E-mail: ammakarieva@gmail.co [Theoretical Physics Division, Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg (Russian Federation); Gorshkov, V.G. [Theoretical Physics Division, Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg (Russian Federation)

    2011-02-14

    The Bernoulli integral in the form of an algebraic equation is obtained for the hurricane air flow as the sum of the kinetic energy of wind and the condensational potential energy. With an account for the eye rotation energy and the decrease of angular momentum towards the hurricane center it is shown that the theoretical profiles of pressure and velocity agree well with observations for intense hurricanes. The previous order of magnitude estimates obtained in pole approximation are confirmed.

  14. HD 101065, the Most Peculiar Star: First Results from Precise Radial ...

    Indian Academy of Sciences (India)

    Abstract. In this paper we discuss the prospects for asteroseismology with spatial resolution and motivate studies of the most chemically peculiar. roAp star HD 101065. We present the first results from a high-precision radial velocity (RV) study of HD 101065 based on data spanning four nights that were acquired using the ...

  15. New Light Curves and Analysis of the Overcontact Binaries PP Lac and DK Sge

    Science.gov (United States)

    Sanders, S. J.; Hargis, J. R.; Bradstreet, D. H.

    2004-12-01

    As a by-product of the ongoing work with the Catalog and AtLas of Eclipsing Binaries database (CALEB; Bradstreet et al. 2004), several hundred eclipsing binary systems have been identified that have either unpublished or poor quality light curves. We present new V & Rc light curves for the overcontact systems PP Lac and DK Sge, both chosen because their deep eclipses (peak-to-peak amplitudes of nearly 0.7 mag) help constrain the light curve modelling. Data were obtained using the 41-cm telescope at the Eastern University Observatory equipped with an SBIG ST-10XME CCD. PP Lac (P= 0.40116 d) is a W-type contact binary with only one previously published light curve (Dumont & Maraziti 1990), but the data are sparse and almost non-existent at primary eclipse. Modelling of these data gave varying results; the published mass ratios differ by nearly 0.3. Our data confirms the noted differing eclipse depths but we find the primary eclipse to be total. We present a new light curve solution using Binary Maker 3 (Bradstreet & Steelman 2002) and Wilson-Devinney, finding the mass ratio to be well-constrained by the duration of total eclipse. A period study will be presented using previously existing and newly derived times of minimum light. DK Sge (P=0.62182 d) appears to be an A-type contact binary with no published light curve. The eclipses are partial, with the primary eclipse being deeper by about 0.08 mag. The maxima show evidence of a slight asymmetry, although the light curve appears to be repeatable over the 1 month of observations. We present the first light curve solution using Binary Maker 3 and Wilson-Devinney, but have limited mass ratio constraints due to the absence of radial velocity data. A period study will be presented using previously existing and newly derived times of minimum light.

  16. Surface growth kinematics via local curve evolution

    KAUST Repository

    Moulton, Derek E.

    2012-11-18

    A mathematical framework is developed to model the kinematics of surface growth for objects that can be generated by evolving a curve in space, such as seashells and horns. Growth is dictated by a growth velocity vector field defined at every point on a generating curve. A local orthonormal basis is attached to each point of the generating curve and the velocity field is given in terms of the local coordinate directions, leading to a fully local and elegant mathematical structure. Several examples of increasing complexity are provided, and we demonstrate how biologically relevant structures such as logarithmic shells and horns emerge as analytical solutions of the kinematics equations with a small number of parameters that can be linked to the underlying growth process. Direct access to cell tracks and local orientation enables for connections to be made to the underlying growth process. © 2012 Springer-Verlag Berlin Heidelberg.

  17. Blending of Radial HF Radar Surface Current and Model Using ETKF Scheme For The Sunda Strait

    Science.gov (United States)

    Mujiasih, Subekti; Riyadi, Mochammad; Wandono, Dr; Wayan Suardana, I.; Nyoman Gede Wiryajaya, I.; Nyoman Suarsa, I.; Hartanto, Dwi; Barth, Alexander; Beckers, Jean-Marie

    2017-04-01

    Preliminary study of data blending of surface current for Sunda Strait-Indonesia has been done using the analysis scheme of the Ensemble Transform Kalman Filter (ETKF). The method is utilized to combine radial velocity from HF Radar and u and v component of velocity from Global Copernicus - Marine environment monitoring service (CMEMS) model. The initial ensemble is based on the time variability of the CMEMS model result. Data tested are from 2 CODAR Seasonde radar sites in Sunda Strait and 2 dates such as 09 September 2013 and 08 February 2016 at 12.00 UTC. The radial HF Radar data has a hourly temporal resolution, 20-60 km of spatial range, 3 km of range resolution, 5 degree of angular resolution and spatial resolution and 11.5-14 MHz of frequency range. The u and v component of the model velocity represents a daily mean with 1/12 degree spatial resolution. The radial data from one HF radar site is analyzed and the result compared to the equivalent radial velocity from CMEMS for the second HF radar site. Error checking is calculated by root mean squared error (RMSE). Calculation of ensemble analysis and ensemble mean is using Sangoma software package. The tested R which represents observation error covariance matrix, is a diagonal matrix with diagonal elements equal 0.05, 0.5 or 1.0 m2/s2. The initial ensemble members comes from a model simulation spanning a month (September 2013 or February 2016), one year (2013) or 4 years (2013-2016). The spatial distribution of the radial current are analyzed and the RMSE values obtained from independent HF radar station are optimized. It was verified that the analysis reproduces well the structure included in the analyzed HF radar data. More importantly, the analysis was also improved relative to the second independent HF radar site. RMSE of the improved analysis is better than first HF Radar site Analysis. The best result of the blending exercise was obtained for observation error variance equal to 0.05 m2/s2. This study is

  18. Phonon transport across nano-scale curved thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mansoor, Saad B.; Yilbas, Bekir S., E-mail: bsyilbas@kfupm.edu.sa

    2016-12-15

    Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.

  19. Phonon transport across nano-scale curved thin films

    International Nuclear Information System (INIS)

    Mansoor, Saad B.; Yilbas, Bekir S.

    2016-01-01

    Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.

  20. The in situ permeable flow sensor: A device for measuring groundwater flow velocity

    International Nuclear Information System (INIS)

    Ballard, S.; Barker, G.T.; Nichols, R.L.

    1994-03-01

    A new technology called the In Situ Permeable Flow Sensor has been developed at Sandia National Laboratories. These sensors use a thermal perturbation technique to directly measure the direction and magnitude of the full three dimensional groundwater flow velocity vector in unconsolidated, saturated, porous media. The velocity measured is an average value characteristic of an approximately 1 cubic meter volume of the subsurface. During a test at the Savannah River Site in South Carolina, two flow sensors were deployed in a confined aquifer in close proximity to a well which was screened over the entire vertical extent of the aquifer and the well was pumped at four different pumping rates. In this situation horizontal flow which is radially directed toward the pumping well is expected. The flow sensors measured horizontal flow which was directed toward the pumping well, within the uncertainty in the measurements. The observed magnitude of the horizontal component of the flow velocity increased linearly with pumping rate, as predicted by theoretical considerations. The measured horizontal component of the flow velocity differed from the predicted flow velocity, which was calculated with the assumptions that the hydraulic properties of the aquifer were radially homogeneous and isotropic, by less than a factor of two. Drawdown data obtained from other wells near the pumping well during the pump test indicate that the hydraulic properties of the aquifer are probably not radially homogeneous but the effect of the inhomogeneity on the flow velocity field around the pumping well was not modeled because the degree and distribution of the inhomogeneity are unknown. Grain size analysis of core samples from wells in the area were used to estimate the vertical distribution of hydraulic conductivity

  1. High-Resolution DCE-MRI of the Pituitary Gland Using Radial k-Space Acquisition with Compressed Sensing Reconstruction.

    Science.gov (United States)

    Rossi Espagnet, M C; Bangiyev, L; Haber, M; Block, K T; Babb, J; Ruggiero, V; Boada, F; Gonen, O; Fatterpekar, G M

    2015-08-01

    The pituitary gland is located outside of the blood-brain barrier. Dynamic T1 weighted contrast enhanced sequence is considered to be the gold standard to evaluate this region. However, it does not allow assessment of intrinsic permeability properties of the gland. Our aim was to demonstrate the utility of radial volumetric interpolated brain examination with the golden-angle radial sparse parallel technique to evaluate permeability characteristics of the individual components (anterior and posterior gland and the median eminence) of the pituitary gland and areas of differential enhancement and to optimize the study acquisition time. A retrospective study was performed in 52 patients (group 1, 25 patients with normal pituitary glands; and group 2, 27 patients with a known diagnosis of microadenoma). Radial volumetric interpolated brain examination sequences with golden-angle radial sparse parallel technique were evaluated with an ROI-based method to obtain signal-time curves and permeability measures of individual normal structures within the pituitary gland and areas of differential enhancement. Statistical analyses were performed to assess differences in the permeability parameters of these individual regions and optimize the study acquisition time. Signal-time curves from the posterior pituitary gland and median eminence demonstrated a faster wash-in and time of maximum enhancement with a lower peak of enhancement compared with the anterior pituitary gland (P pituitary gland evaluation. In the absence of a clinical history, differences in the signal-time curves allow easy distinction between a simple cyst and a microadenoma. This retrospective study confirms the ability of the golden-angle radial sparse parallel technique to evaluate the permeability characteristics of the pituitary gland and establishes 120 seconds as the ideal acquisition time for dynamic pituitary gland imaging. © 2015 by American Journal of Neuroradiology.

  2. Temporal and radial variation of the solar wind temperature-speed relationship

    Science.gov (United States)

    Elliott, H. A.; Henney, C. J.; McComas, D. J.; Smith, C. W.; Vasquez, B. J.

    2012-09-01

    The solar wind temperature (T) and speed (V) are generally well correlated at ˜1 AU, except in Interplanetary Coronal Mass Ejections where this correlation breaks down. We perform a comprehensive analysis of both the temporal and radial variation in the temperature-speed (T-V) relationship of the non-transient wind, and our analysis provides insight into both the causes of the T-V relationship and the sources of the temperature variability. Often at 1 AU the speed-temperature relationship is well represented by a single linear fit over a speed range spanning both the slow and fast wind. However, at times the fast wind from coronal holes can have a different T-V relationship than the slow wind. A good example of this was in 2003 when there was a very large and long-lived outward magnetic polarity coronal hole at low latitudes that emitted wind with speeds as fast as a polar coronal hole. The long-lived nature of the hole made it possible to clearly distinguish that some holes can have a different T-V relationship. In an earlier ACE study, we found that both the compressions and rarefactions T-V curves are linear, but the compression curve is shifted to higher temperatures. By separating compressions and rarefactions prior to determining the radial profiles of the solar wind parameters, the importance of dynamic interactions on the radial evolution of the solar wind parameters is revealed. Although the T-V relationship at 1 AU is often well described by a single linear curve, we find that the T-V relationship continually evolves with distance. Beyond ˜2.5 AU the differences between the compressions and rarefactions are quite significant and affect the shape of the overall T-V distribution to the point that a simple linear fit no longer describes the distribution well. Since additional heating of the ambient solar wind outside of interaction regions can be associated with Alfvénic fluctuations and the turbulent energy cascade, we also estimate the heating rate

  3. High-resolution H -band Spectroscopy of Be Stars with SDSS-III/APOGEE. II. Line Profile and Radial Velocity Variability

    Energy Technology Data Exchange (ETDEWEB)

    Chojnowski, S. Drew; Holtzman, Jon A. [Apache Point Observatory and New Mexico State University, P.O. Box 59, Sunspot, NM, 88349-0059 (United States); Wisniewski, John P. [Department of Physics and Astronomy, The University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States); Whelan, David G. [Department of Physics, Austin College, 900 N. Grand Avenue, Sherman, TX 75090 (United States); Labadie-Bartz, Jonathan; Pepper, Joshua [Department of Physics, Lehigh University, Bethlehem, PA 18015 (United States); Fernandes, Marcelo Borges [Observatório Nacional, Rua General José Cristino 77, 20921-400, São Cristovão, Rio de Janeiro (Brazil); Lin, Chien-Cheng [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road Shanghai 200030 (China); Majewski, Steven R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Stringfellow, Guy S. [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Sciences, University of Colorado, 389 UCB, Boulder, Colorado 80309-0389 (United States); Mennickent, Ronald E.; Tang, Baitian [Departamento de Astronomía, Universidad de Concepción, Concepción (Chile); Roman-Lopes, Alexandre [Departamento de Física, Facultad de Ciencias, Universidad de La Serena, Cisternas 1200, La Serena (Chile); Hearty, Fred R. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Zasowski, Gail [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States)

    2017-04-01

    We report on the H -band spectral variability of classical Be stars observed over the course of the Apache Point Galactic Evolution Experiment (APOGEE), one of four subsurveys comprising SDSS-III. As described in the first paper of this series, the APOGEE B-type emission-line (ABE) star sample was culled from the large number of blue stars observed as telluric standards during APOGEE observations. In this paper, we explore the multi-epoch ABE sample, consisting of 1100 spectra for 213 stars. These “snapshots” of the circumstellar disk activity have revealed a wealth of temporal variability including, but not limited to, gradual disappearance of the line emission and vice versa over both short and long timescales. Other forms of variability include variation in emission strength, emission peak intensity ratios, and emission peak separations. We also analyze radial velocities (RVs) of the emission lines for a subsample of 162 stars with sufficiently strong features, and we discuss on a case-by-case basis whether the RV variability exhibited by some stars is caused by binary motion versus dynamical processes in the circumstellar disks. Ten systems are identified as convincing candidates for binary Be stars with as of yet undetected companions.

  4. High-resolution H -band Spectroscopy of Be Stars with SDSS-III/APOGEE. II. Line Profile and Radial Velocity Variability

    International Nuclear Information System (INIS)

    Chojnowski, S. Drew; Holtzman, Jon A.; Wisniewski, John P.; Whelan, David G.; Labadie-Bartz, Jonathan; Pepper, Joshua; Fernandes, Marcelo Borges; Lin, Chien-Cheng; Majewski, Steven R.; Stringfellow, Guy S.; Mennickent, Ronald E.; Tang, Baitian; Roman-Lopes, Alexandre; Hearty, Fred R.; Zasowski, Gail

    2017-01-01

    We report on the H -band spectral variability of classical Be stars observed over the course of the Apache Point Galactic Evolution Experiment (APOGEE), one of four subsurveys comprising SDSS-III. As described in the first paper of this series, the APOGEE B-type emission-line (ABE) star sample was culled from the large number of blue stars observed as telluric standards during APOGEE observations. In this paper, we explore the multi-epoch ABE sample, consisting of 1100 spectra for 213 stars. These “snapshots” of the circumstellar disk activity have revealed a wealth of temporal variability including, but not limited to, gradual disappearance of the line emission and vice versa over both short and long timescales. Other forms of variability include variation in emission strength, emission peak intensity ratios, and emission peak separations. We also analyze radial velocities (RVs) of the emission lines for a subsample of 162 stars with sufficiently strong features, and we discuss on a case-by-case basis whether the RV variability exhibited by some stars is caused by binary motion versus dynamical processes in the circumstellar disks. Ten systems are identified as convincing candidates for binary Be stars with as of yet undetected companions.

  5. External force/velocity control for an autonomous rehabilitation robot

    Science.gov (United States)

    Saekow, Peerayuth; Neranon, Paramin; Smithmaitrie, Pruittikorn

    2018-01-01

    Stroke is a primary cause of death and the leading cause of permanent disability in adults. There are many stroke survivors, who live with a variety of levels of disability and always need rehabilitation activities on daily basis. Several studies have reported that usage of rehabilitation robotic devices shows the better improvement outcomes in upper-limb stroke patients than the conventional therapy-nurses or therapists actively help patients with exercise-based rehabilitation. This research focuses on the development of an autonomous robotic trainer designed to guide a stroke patient through an upper-limb rehabilitation task. The robotic device was designed and developed to automate the reaching exercise as mentioned. The designed robotic system is made up of a four-wheel omni-directional mobile robot, an ATI Gamma multi-axis force/torque sensor used to measure contact force and a microcontroller real-time operating system. Proportional plus Integral control was adapted to control the overall performance and stability of the autonomous assistive robot. External force control was successfully implemented to establish the behavioral control strategy for the robot force and velocity control scheme. In summary, the experimental results indicated satisfactorily stable performance of the robot force and velocity control can be considered acceptable. The gain tuning for proportional integral (PI) velocity control algorithms was suitably estimated using the Ziegler-Nichols method in which the optimized proportional and integral gains are 0.45 and 0.11, respectively. Additionally, the PI external force control gains were experimentally tuned using the trial and error method based on a set of experiments which allow a human participant moves the robot along the constrained circular path whilst attempting to minimize the radial force. The performance was analyzed based on the root mean square error (E_RMS) of the radial forces, in which the lower the variation in radial

  6. Calculation method and influencing factors of the fragmental radial velocities of PELE after penetrating thin target%PELE贯穿薄靶后外壳破片径向速度计算方法与影响因素分析

    Institute of Scientific and Technical Information of China (English)

    樊自建; 冉宪文; 汤文辉; 于国栋; 陈为科; 任才清

    2017-01-01

    基于横向效应增强型弹丸(PELE)侵彻金属薄靶板过程分析,将弹体前端在撞击作用下的变形过程分解为轴向一维压缩和径向自由膨胀两个变形阶段;依据冲击波理论,给出了弹体前端的冲击波压缩势能,由功能转化原理,给出了PELE前端外壳在靶后形成破片的最大径向飞散速度计算公式.计算结果在多种工况下均与文献的实验结果较为一致.计算结果表明:PELE靶后外壳破片的最大径向飞散速度与外壳和内芯材料的体积模量和泊松比有关,且随二者的增大而增大;PELE外壳破片的最大径向飞散速度是壳体和内芯在冲击波压缩作用下共同径向膨胀的结果,且外壳膨胀能在弹体整体膨胀能中所占比例较大,计算中应当同时考虑弹体外壳和内芯材料的横向膨胀效应对弹体破片径向飞散速度的影响.%Based on an analysis of the PELE (penetrator with enhanced lateral efficiency) penetrating thin metal targets,the deformation process of the front-end projectile was divided into two distinct phases.one-dimensional decomposition in the axial direction and the free conversion in the radial direction,for experimental study.Based on the shock wave theory,we obtained the shock wave compression energy of the front end of the projectile and,on the basis of the conservation of energy and the assumption of two-stage deformation,presented a method for determining the scattered radial velocity of the PELE jacket fragments behind the target.The calculated results in a variety of conditions are fairly consistent with the experimental results.The theoretical analysis showed that the maximum radial velocity of the PELE jacket fragments depends on the radial expansion of both the jacket and the filling part under the shock compression,the former playing a major role in the overall expansion of the projectile whereas the maximum radial velocity of the PELE jacket fragments increasing with the bulk modulus

  7. IN-SYNC. III. THE DYNAMICAL STATE OF IC 348—A SUPER-VIRIAL VELOCITY DISPERSION AND A PUZZLING SIGN OF CONVERGENCE

    International Nuclear Information System (INIS)

    Cottaar, Michiel; Meyer, Michael R.; Covey, Kevin R.; Foster, Jonathan B.; Tan, Jonathan C.; Rio, Nicola da; Nidever, David L.; Chojnowski, S. Drew; Majewski, Steve; Skrutskie, Michael F.; Wilson, John C.; Zasowski, Gail; Flaherty, Kevin M.; Frinchaboy, Peter M.

    2015-01-01

    Most field stars will have encountered the highest stellar density and hence the largest number of interactions in their birth environment. Yet the stellar dynamics during this crucial phase are poorly understood. Here we analyze the radial velocities measured for 152 out of 380 observed stars in the 2–6 Myr old star cluster IC 348 as part of the SDSS-III APOGEE. The radial velocity distribution of these stars is fitted with one or two Gaussians, convolved with the measurement uncertainties including binary orbital motions. Including a second Gaussian improves the fit; the high-velocity outliers that are best fit by this second component may either (1) be contaminants from the nearby Perseus OB2 association, (2) be a halo of ejected or dispersing stars from IC 348, or (3) reflect that IC 348 has not relaxed to a Gaussian velocity distribution. We measure a velocity dispersion for IC 348 of 0.72 ± 0.07 km s −1 (or 0.64 ± 0.08 km s −1 if two Gaussians are fitted), which implies a supervirial state, unless the gas contributes more to the gravitational potential than expected. No evidence is found for a dependence of this velocity dispersion on distance from the cluster center or stellar mass. We also find that stars with lower extinction (in the front of the cloud) tend to be redshifted compared with stars with somewhat higher extinction (toward the back of the cloud). This data suggest that the stars in IC 348 are converging along the line of sight. We show that this correlation between radial velocity and extinction is unlikely to be spuriously caused by the small cluster rotation of 0.024 ± 0.013 km s −1 arcmin −1 or by correlations between the radial velocities of neighboring stars. This signature, if confirmed, will be the first detection of line of sight convergence in a star cluster. Possible scenarios for reconciling this convergence with IC 348's observed supervirial state include: (a) the cluster is fluctuating around a new virial

  8. Measurement of the dark matter velocity anisotropy profile in galaxy clusters

    International Nuclear Information System (INIS)

    Host, Ole

    2009-01-01

    Dark matter halos contribute the major part of the mass of galaxy clusters and the formation of these cosmological structures have been investigated in numerical simulations. Observations have been found to be in good agreement with the numerical predictions regarding the spatial distribution of dark matter, i.e. the mass profile. However, the dynamics of dark matter in halos has so far proved a greater challenge to probe observationally. We have used observations of 16 relaxed galaxy clusters to show that the dark matter velocity dispersion is larger along the radial direction than along the tangential, and that the magnitude of this velocity anisotropy β varies with radius. This measurement implies that the collective behaviour of dark matter particles is fundamentally different from that of baryonic particles and constrains the self-interaction per unit mass. The radial variation of the anisotropy velocity agrees with the predictions so that, on cluster scales, there is now excellent agreement between numerical predictions and observations regarding the phase space of dark matter.

  9. Weighted radial dimension: an improved fractal measurement for highway transportation networks distribution

    Science.gov (United States)

    Feng, Yongjiu; Liu, Miaolong; Tong, Xiaohua

    2007-06-01

    An improved fractal measurement, the weighted radial dimension, is put forward for highway transportation networks distribution. The radial dimension (DL), originated from subway investigation in Stuttgart, is a fractal measurement for transportation systems under ideal assumption considering all the network lines to be homogeneous curves, ignoring the difference on spatial structure, quality and level, especially the highway networks. Considering these defects of radial dimension, an improved fractal measurement called weighted radial dimension (D WL) is introduced and the transportation system in Guangdong province is studied in detail using this novel method. Weighted radial dimensions are measured and calculated, and the spatial structure, intensity and connectivity of transportation networks are discussed in Guangdong province and the four sub-areas: the Pearl River Delta area, the East Costal area, the West Costal area and the Northern Guangdong area. In Guangdong province, the fractal spatial pattern characteristics of transportation system vary remarkably: it is the highest in the Pearl River Delta area, moderate in Costal area and lowest in the Northern Guangdong area. With the Pearl River Delta area as the centre, the weighted radial dimensions decrease with the distance increasing, while the decline level is smaller in the costal area and greater in the Northern Guangdong province. By analysis of the conic of highway density, it is recognized that the density decrease with the distance increasing from the calculation centre (Guangzhou), demonstrating the same trend as weighted radial dimensions shown. Evidently, the improved fractal measurement, weighted radial dimension, is an indictor describing the characteristics of highway transportation system more effectively and accurately.

  10. Determination and analysis of neutron flux distribution on radial Piercing beam port for utilization of Kartini research reactor

    International Nuclear Information System (INIS)

    Widarto

    2002-01-01

    Determination and analysis of neutron flux measurements on radial piercing beam port have been done as completion experimental data document and progressing on utilization of the Kartini research reactor purposes. The analysis and determination of the neutron flux have been carried out by using Au foils detector neutron activation analysis method which put on the radius of cross section (19 cm) and a long of radial piercing beam port (310 cm) Based on the calculation, distribution of the thermal neutron flux is around (8.3 ± 0.9) x 10 5 ncm -2 s -1 to (6.8 ± 0.5) x 10 7 ncm -2 s -1 and fast neutron is (5.0 ± 0.2) x 10 5 ncm -2 s -1 to (1.43 ± 0.6) x 10 7 ncm -2 s -1 . Analyzing by means of curve fitting method could be concluded that the neutron flux distribution on radial piercing beam port has profiled as a polynomial curve. (author)

  11. The impact of red noise in radial velocity planet searches: only three planets orbiting GJ 581?

    Science.gov (United States)

    Baluev, Roman V.

    2013-03-01

    We perform a detailed analysis of the latest HARPS and Keck radial velocity data for the planet-hosting red dwarf GJ 581, which attracted a lot of attention in recent time. We show that these data contain important correlated noise component (`red noise') with the correlation time-scale of the order of 10 d. This red noise imposes a lot of misleading effects while we work in the traditional white-noise model. To eliminate these misleading effects, we propose a maximum-likelihood algorithm equipped by an extended model of the noise structure. We treat the red noise as a Gaussian random process with an exponentially decaying correlation function. Using this method we prove that (i) planets b and c do exist in this system, since they can be independently detected in the HARPS and Keck data, and regardless of the assumed noise models; (ii) planet e can also be confirmed independently by both the data sets, although to reveal it in the Keck data it is mandatory to take the red noise into account; (iii) the recently announced putative planets f and g are likely just illusions of the red noise; (iv) the reality of the planet candidate GJ 581 d is questionable, because it cannot be detected from the Keck data, and its statistical significance in the HARPS data (as well as in the combined data set) drops to a marginal level of ˜2σ, when the red noise is taken into account. Therefore, the current data for GJ 581 really support the existence of no more than four (or maybe even only three) orbiting exoplanets. The planet candidate GJ 581 d requests serious observational verification.

  12. Evaluation of the effects of the radial constant-head boundary in slug tests

    Science.gov (United States)

    Dai, Yunfeng; Zhou, Zhifang; Zhao, Yanrong; Cui, Ziteng

    2015-03-01

    A semianalytical model of slug tests, conducted in a completely penetrating well within a radial constant-head boundary, was derived. The model, based on the Cooper et al. (1967) model, estimates the hydraulic conductivity and storage coefficient through the matching of type curves. Type curves of the semianalytical solution were plotted, and the effect of the distance of the radial constant-head boundary is discussed. For different storage coefficients, the critical distances of the effect of the constant-head boundary were determined. The effect of the storage coefficient on the response of the water head in slug tests with a radial constant-head boundary of a certain distance is also shown. To verify the model, laboratory slug-test experiments were carried out using a cylindrical test platform, in which an artificial confined coarse-sand aquifer was built. Pumping tests were also executed using the test platform. The Cooper et al. (1967) model and new semianalytical model were used to analyze measurements; the hydraulic conductivity and storage coefficient determined using the two methods were compared to demonstrate the importance of the radial constant-head boundary. A model considering the inertial effect was also used to analyze the slug-test measurements, and although the water head response did not oscillate greatly, the inertial effect affected the slug-test calculation result. The laboratory experiments indicate that the proposed semianalytical model is reasonable and reliable. Cooper HH, Bredehoeft JD, Papadopulos IS (1967) Response of a finite-diameter well to an instantaneous charge of water, Water Resour Res 3(1):263-269.

  13. The Origin of Radially Aligned Magnetic Fields in Young Supernova Remnants

    Science.gov (United States)

    Inoue, Tsuyoshi; Shimoda, Jiro; Ohira, Yutaka; Yamazaki, Ryo

    2013-08-01

    It has been suggested by radio observations of polarized synchrotron emissions that downstream magnetic fields in some young supernova remnants (SNRs) are oriented radially. We study the magnetic field distribution of turbulent SNRs driven by the Richtmyer-Meshkov instability (RMI)—in other words, the effect of rippled shock—by using three-dimensional magnetohydrodynamics simulations. We find that the induced turbulence has radially biased anisotropic velocity dispersion that leads to a selective amplification of the radial component of the magnetic field. The RMI is induced by the interaction between the shock and upstream density fluctuations. Future high-resolution polarization observations can distinguish the following candidates responsible for the upstream density fluctuations: (1) inhomogeneity caused by the cascade of large-scale turbulence in the interstellar medium, the so-called big power-law in the sky; (2) structures generated by the Drury instability in the cosmic-ray modified shock; and (3) fluctuations induced by the nonlinear feedback of the cosmic-ray streaming instability.

  14. THE ORIGIN OF RADIALLY ALIGNED MAGNETIC FIELDS IN YOUNG SUPERNOVA REMNANTS

    International Nuclear Information System (INIS)

    Inoue, Tsuyoshi; Shimoda, Jiro; Ohira, Yutaka; Yamazaki, Ryo

    2013-01-01

    It has been suggested by radio observations of polarized synchrotron emissions that downstream magnetic fields in some young supernova remnants (SNRs) are oriented radially. We study the magnetic field distribution of turbulent SNRs driven by the Richtmyer-Meshkov instability (RMI)—in other words, the effect of rippled shock—by using three-dimensional magnetohydrodynamics simulations. We find that the induced turbulence has radially biased anisotropic velocity dispersion that leads to a selective amplification of the radial component of the magnetic field. The RMI is induced by the interaction between the shock and upstream density fluctuations. Future high-resolution polarization observations can distinguish the following candidates responsible for the upstream density fluctuations: (1) inhomogeneity caused by the cascade of large-scale turbulence in the interstellar medium, the so-called big power-law in the sky; (2) structures generated by the Drury instability in the cosmic-ray modified shock; and (3) fluctuations induced by the nonlinear feedback of the cosmic-ray streaming instability

  15. Curved-Duct

    Directory of Open Access Journals (Sweden)

    Je Hyun Baekt

    2000-01-01

    Full Text Available A numerical study is conducted on the fully-developed laminar flow of an incompressible viscous fluid in a square duct rotating about a perpendicular axis to the axial direction of the duct. At the straight duct, the rotation produces vortices due to the Coriolis force. Generally two vortex cells are formed and the axial velocity distribution is distorted by the effect of this Coriolis force. When a convective force is weak, two counter-rotating vortices are shown with a quasi-parabolic axial velocity profile for weak rotation rates. As the rotation rate increases, the axial velocity on the vertical centreline of the duct begins to flatten and the location of vorticity center is moved near to wall by the effect of the Coriolis force. When the convective inertia force is strong, a double-vortex secondary flow appears in the transverse planes of the duct for weak rotation rates but as the speed of rotation increases the secondary flow is shown to split into an asymmetric configuration of four counter-rotating vortices. If the rotation rates are increased further, the secondary flow restabilizes to a slightly asymmetric double-vortex configuration. Also, a numerical study is conducted on the laminar flow of an incompressible viscous fluid in a 90°-bend square duct that rotates about axis parallel to the axial direction of the inlet. At a 90°-bend square duct, the feature of flow by the effect of a Coriolis force and a centrifugal force, namely a secondary flow by the centrifugal force in the curved region and the Coriolis force in the downstream region, is shown since the centrifugal force in curved region and the Coriolis force in downstream region are dominant respectively.

  16. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty.

    Science.gov (United States)

    Tanner, J M; Whitehouse, R H

    1976-01-01

    New charts for height, weight, height velocity, and weight velocity are presented for clinical (as opposed to population survey) use. They are based on longitudinal-type growth curves, using the same data as in the British 1965 growth standards. In the velocity standards centiles are given for children who are early- and late-maturing as well as for those who mature at the average age (thus extending the use of the previous charts). Limits of normality for the age of occurrence of the adolescent growth spurt are given and also for the successive stages of penis, testes, and pubic hair development in boys, and for stages of breast and pubic hair development in girls. PMID:952550

  17. Surface wave velocity tracking by bisection method

    International Nuclear Information System (INIS)

    Maeda, T.

    2005-01-01

    Calculation of surface wave velocity is a classic problem dating back to the well-known Haskell's transfer matrix method, which contributes to solutions of elastic wave propagation, global subsurface structure evaluation by simulating observed earthquake group velocities, and on-site evaluation of subsurface structure by simulating phase velocity dispersion curves and/or H/V spectra obtained by micro-tremor observation. Recently inversion analysis on micro-tremor observation requires efficient method of generating many model candidates and also stable, accurate, and fast computation of dispersion curves and Raleigh wave trajectory. The original Haskell's transfer matrix method has been improved in terms of its divergence tendency mainly by the generalized transmission and reflection matrix method with formulation available for surface wave velocity; however, root finding algorithm has not been fully discussed except for the one by setting threshold to the absolute value of complex characteristic functions. Since surface wave number (reciprocal to the surface wave velocity multiplied by frequency) is a root of complex valued characteristic function, it is intractable to use general root finding algorithm. We will examine characteristic function in phase plane to construct two dimensional bisection algorithm with consideration on a layer to be evaluated and algorithm for tracking roots down along frequency axis. (author)

  18. Walker-type velocity oscillations of magnetic domain walls

    International Nuclear Information System (INIS)

    Vella-Coleiro, G.P.

    1976-01-01

    We report stroboscopic observations of the radial motion of a magnetic bubble domain wall in an epitaxial LuGdAl iron garnet film. At high drive fields, initial velocities up to 9500 cm/sec were measured, and the domain wall was observed to move backwards during the field pulse, in agreement with calculations based on the Walker model

  19. Relativistic electron-beam transport in curved channels

    International Nuclear Information System (INIS)

    Vittitoe, C.N.; Morel, J.E.; Wright, T.P.

    1982-01-01

    Collisionless single particle trajectories are modeled for a single plasma channel having one section curved in a circular arc. The magnetic field is developed by superposition of straight and curved channel segments. The plasma density gives charge and beam-current neutralization. High transport efficiencies are found for turning a relativistic electron beam 90 0 under reasonable conditions of plasma current, beam energy, arc radius, channel radius, and injection distributions in velocity and in position at the channel entrance. Channel exit distributions in velocity and position are found consistent with those for a straight plasma channel of equivalent length. Such transport problems are important in any charged particle-beam application constrained by large diode-to-target distance or by requirements of maximum power deposition in a confined area

  20. Spectrum of EY Orionis at the secondary eclipse

    International Nuclear Information System (INIS)

    Ismailov, N.Z.

    1987-01-01

    The results of spectral observations of the binary system EY orions at the secondary eclipse are presented. Some peculiar properties in the linear spectrum of the star have been discovered. The spectrum of the second component is not observed. The rotational velocity of the visible component is equal to 150 ± 30 km/s. During the phases 0.52-0.58, during approximately 1 d the radial velocities deviate from the radial velocity curve. According to the character of its spectrum the system EY Orions is similar to typical Orion variables

  1. The rotation curve of a point particle in stringy gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Sung Moon; Park, Jeong-Hyuck; Suh, Minwoo, E-mail: sinsmk2003@sogang.ac.kr, E-mail: park@sogang.ac.kr, E-mail: minsuh@usc.edu [Department of Physics, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107 (Korea, Republic of)

    2017-06-01

    Double Field Theory suggests to view the whole massless sector of closed strings as the gravitational unity. The fundamental symmetries therein, including the O( D , D ) covariance, can determine unambiguously how the Standard Model as well as a relativistic point particle should couple to the closed string massless sector. The theory also refines the notion of singularity. We consider the most general, spherically symmetric, asymptotically flat, static vacuum solution to D =4 Double Field Theory, which contains three free parameters and consequently generalizes the Schwarzschild geometry. Analyzing the circular geodesic of a point particle in string frame, we obtain the orbital velocity as a function of R /( M {sub ∞} G ) which is the dimensionless radial variable normalized by mass. The rotation curve generically features a maximum and thus non-Keplerian over a finite range, while becoming asymptotically Keplerian at infinity, R /( M {sub ∞} G )→ ∞. The adoption of the string frame rather than Einstein frame is the consequence of the fundamental symmetry principle. Our result opens up a new scheme to solve the dark matter/energy problems by modifying General Relativity at 'short' range of R /( M {sub ∞} G ).

  2. Toward precise potential energy curves for diatomic molecules, derived from experimental line positions

    International Nuclear Information System (INIS)

    Helm, H.

    1984-01-01

    An inverted, first-order perturbation approach is used to derive potential energy curves for diatomic molecules from experimental line positions of molecular bands. The concept adopted here is based on the inverted perturbation analysis (IPA) proposed by Kozman and Hinze, but uses radial eigenfunctions of the trial potential energy curves as basis sets for the perturbation correction. Using molecular linepositions rather than molecular energy levels we circumvent the necessity of defining molecular constants for the molecule prior to the derivation of the potential energy curves. (Author)

  3. Influence of the radial-inflow turbine efficiency prediction on the design and analysis of the Organic Rankine Cycle (ORC) system

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei; Ren, Xiaodong

    2016-01-01

    Highlights: • The efficiency prediction is based on the velocity triangle and loss models. • The efficiency selection has a big influence on the working fluid selection. • The efficiency selection has a big influence on system parameter determination. - Abstract: The radial-inflow turbine is a common choice for the power output in the Organic Rankine Cycle (ORC) system. Its efficiency is related to the working fluid property and the system operating condition. Generally, the radial-inflow turbine efficiency is assumed to be a constant value in the conventional ORC system analysis. Few studies focus on the influence of the radial-inflow turbine efficiency selection on the system design and analysis. Actually, the ORC system design and the radial-inflow turbine design are coupled with each other. Different thermal parameters of the ORC system would lead to different radial-inflow turbine design and then different turbine efficiency, and vice versa. Therefore, considering the radial-inflow turbine efficiency prediction in the ORC system design can enhance its reliability and accuracy. In this paper, a one-dimensional analysis model for the radial-inflow turbine in the ORC system is presented. The radial-inflow turbine efficiency prediction in this model is based on the velocity triangle and loss models, rather than a constant efficiency assumption. The influence of the working fluid property and the system operating condition on the turbine performance is evaluated. The thermodynamic analysis of the ORC system with a model predicted turbine efficiency and a constant turbine efficiency is conducted and the results are compared with each other. It indicates that the turbine efficiency selection has a significant influence on the working fluid selection and the system parameter determination.

  4. Group velocity tomography and regionalization in Italy and bordering areas

    International Nuclear Information System (INIS)

    Pontevivo, A.; Panza, G.F.

    2001-10-01

    More than one hundred group velocity dispersion curves of the fundamental mode of Rayleigh waves have been processed to obtain tomographic maps, in the period range from 10 s to 35 s, for the Italian peninsula and bordering areas. We compute average dispersion relations over a 1 deg. x 1 deg. grid, and, since the lateral resolving power of our data set is about 200 km, we group the cells of the grid accordingly to their dispersion curves. In this way and without a priori geological constraints, we define seven different regions, each characterised by a distinctive mean group velocity dispersion curve. The resulting regionalization can be easily correlated with the main tectonic features of the study area and mimics a recently proposed structural sketch. Average models of the shear wave velocity in the crust and in the upper mantle for a few selected regions are presented. The very low S-wave velocity values found in the uppermost upper mantle of the Southern Tyrrhenian basin are consistent with a large percentage of partial melting, well in agreement with the presence of the Vavilov-Magnaghi and Marsili huge volcanic bodies. (author)

  5. Investigations of radial electric field and global circulation layer in limiter tokamaks

    International Nuclear Information System (INIS)

    Zagorski, R.; Gerhauser, H.; Lehnen, M.; Loarer, T.

    2002-01-01

    An updated version of the 2D multifluid code TECXY is used to study the radial electric field structure and the appearance of a global circulation layer (GCL) inside the separatrix of the limiter tokamaks TEXTOR-94 and Tore-Supra-CIEL. The dependence of the driving forces on device geometry, limiter position, magnetic field orientation, impurity content and other parameters is investigated. The centrifugal force in the vicinity of the limiter head always determines the direction of the poloidal velocity in the GCL. There is good agreement with experimentally measured profiles of the poloidal velocity at the TEXTOR low field side. (orig.)

  6. Recent TAURUS results on Hα velocities in M83

    International Nuclear Information System (INIS)

    Allen, R.J.; Atherton, P.D.; Oosterloo, T.A.

    1983-01-01

    Preliminary Hα observations with the TAURUS imaging spectrometer confirm a pattern of systematic radial motions in a section of spiral arm in M83. The velocity gradients are not consistent with those predicted for the neutral gas. Non-circular motions have also been discovered in the central regions of the galaxy. (Auth.)

  7. Fourier analysis of cerebrospinal fluid flow velocities: MR imaging study. The Scandinavian Flow Group

    DEFF Research Database (Denmark)

    Thomsen, C; Ståhlberg, F; Stubgaard, M

    1990-01-01

    images. The phase information in the resultant image was converted to flow velocity with a calibration curve with the slope 26.5 radian.m-1.sec. The velocity versus time function was Fourier transformed and a continuous curve was fitted to the measured data with use of the first three harmonics...

  8. Radial nerve dysfunction

    Science.gov (United States)

    Neuropathy - radial nerve; Radial nerve palsy; Mononeuropathy ... Damage to one nerve group, such as the radial nerve, is called mononeuropathy . Mononeuropathy means there is damage to a single nerve. Both ...

  9. CONSTRAINING THE NFW POTENTIAL WITH OBSERVATIONS AND MODELING OF LOW SURFACE BRIGHTNESS GALAXY VELOCITY FIELDS

    International Nuclear Information System (INIS)

    Kuzio de Naray, Rachel; McGaugh, Stacy S.; Mihos, J. Christopher

    2009-01-01

    We model the Navarro-Frenk-White (NFW) potential to determine if, and under what conditions, the NFW halo appears consistent with the observed velocity fields of low surface brightness (LSB) galaxies. We present mock DensePak Integral Field Unit (IFU) velocity fields and rotation curves of axisymmetric and nonaxisymmetric potentials that are well matched to the spatial resolution and velocity range of our sample galaxies. We find that the DensePak IFU can accurately reconstruct the velocity field produced by an axisymmetric NFW potential and that a tilted-ring fitting program can successfully recover the corresponding NFW rotation curve. We also find that nonaxisymmetric potentials with fixed axis ratios change only the normalization of the mock velocity fields and rotation curves and not their shape. The shape of the modeled NFW rotation curves does not reproduce the data: these potentials are unable to simultaneously bring the mock data at both small and large radii into agreement with observations. Indeed, to match the slow rise of LSB galaxy rotation curves, a specific viewing angle of the nonaxisymmetric potential is required. For each of the simulated LSB galaxies, the observer's line of sight must be along the minor axis of the potential, an arrangement that is inconsistent with a random distribution of halo orientations on the sky.

  10. Radial anisotropy of Northeast Asia inferred from Bayesian inversions of ambient noise data

    Science.gov (United States)

    Lee, S. J.; Kim, S.; Rhie, J.

    2017-12-01

    The eastern margin of the Eurasia plate exhibits complex tectonic settings due to interactions with the subducting Pacific and Philippine Sea plates and the colliding India plate. Distributed extensional basins and intraplate volcanoes, and their heterogeneous features in the region are not easily explained with a simple mechanism. Observations of radial anisotropy in the entire lithosphere and the part of the asthenosphere provide the most effective evidence for the deformation of the lithosphere and the associated variation of the lithosphere-asthenosphere boundary (LAB). To infer anisotropic structures of crustal and upper-mantle in this region, radial anisotropy is measured using ambient noise data. In a continuation of previous Rayleigh wave tomography study in Northeast Asia, we conduct Love wave tomography to determine radial anisotropy using the Bayesian inversion techniques. Continuous seismic noise recordings of 237 broad-band seismic stations are used and more than 55,000 group and phase velocities of fundamental mode are measured for periods of 5-60 s. Total 8 different types of dispersion maps of Love wave from this study (period 10-60 s), Rayleigh wave from previous tomographic study (Kim et al., 2016; period 8-70 s) and longer period data (period 70-200 s) from a global model (Ekstrom, 2011) are jointly inverted using a hierarchical and transdimensional Bayesian technique. For each grid-node, boundary depths, velocities and anisotropy parameters of layers are sampled simultaneously on the assumption of the layered half-space model. The constructed 3-D radial anisotropy model provides much more details about the crust and upper mantle anisotropic structures, and about the complex undulation of the LAB.

  11. Vortex Ring Dynamics in Radially Confined Domains

    Science.gov (United States)

    Stewart, Kelley; Niebel, Casandra; Jung, Sunghwan; Vlachos, Pavlos

    2010-11-01

    Vortex ring dynamics have been studied extensively in semi-infinite quiescent volumes. However, very little is known about vortex-ring formation in wall-bounded domains where vortex wall interaction will affect both the vortex ring pinch-off and propagation velocity. This study addresses this limitation and studies vortex formation in radially confined domains to analyze the affect of vortex-ring wall interaction on the formation and propagation of the vortex ring. Vortex rings were produced using a pneumatically driven piston cylinder arrangement and were ejected into a long cylindrical tube which defined the confined downstream domain. A range of confinement domains were studied with varying confinement diameters Velocity field measurements were performed using planar Time Resolved Digital Particle Image Velocimetry (TRDPIV) and were processed using an in-house developed cross-correlation PIV algorithm. The experimental analysis was used to facilitate the development of a theoretical model to predict the variations in vortex ring circulation over time within confined domains.

  12. The role of radial particle pinches in ELM suppression by resonant magnetic perturbations

    International Nuclear Information System (INIS)

    Stacey, W.M.; Evans, T.E.

    2011-01-01

    The force balance in the plasma edge in a matched pair of DIII-D (Luxon 2002 Nucl. Fusion 42 6149) tokamak discharges with and without resonant magnetic perturbations (RMPs) is evaluated in order to investigate the effects on particle transport of RMP applied for the purpose of suppressing edge-localized modes (ELMs). Experimental data are used to evaluate the radial and toroidal force balances, which may be written as a pinch-diffusion relation for the radial ion flux to facilitate investigation of transport effects. The radial electric field in the H-mode plasma had a sharp negative dip in the steep gradient region of the edge pedestal, associated with which was a large inward pinch velocity. The main effect of RMP was to make the edge electric field less negative or more positive, reducing this strong negative dip in the radial electric field (even reversing it from negative to positive over some regions), thereby reducing the strong inward particle pinch in the edge of an H-mode discharge, thus causing a reduction in edge density below the ELM threshold.

  13. Pre-ejection period by radial artery tonometry supplements echo doppler findings during biventricular pacemaker optimization

    Directory of Open Access Journals (Sweden)

    Qamruddin Salima

    2011-07-01

    Full Text Available Abstract Background Biventricular (Biv pacemaker echo optimization has been shown to improve cardiac output however is not routinely used due to its complexity. We investigated the role of a simple method involving computerized pre-ejection time (PEP assessment by radial artery tonometry in guiding Biv pacemaker optimization. Methods Blinded echo and radial artery tonometry were performed simultaneously in 37 patients, age 69.1 ± 12.8 years, left ventricular (LV ejection fraction (EF 33 ± 10%, during Biv pacemaker optimization. Effect of optimization on echo derived velocity time integral (VTI, ejection time (ET, myocardial performance index (MPI, radial artery tonometry derived PEP and echo-radial artery tonometry derived PEP/VTI and PEP/ET indices was evaluated. Results Significant improvement post optimization was achieved in LV ET (286.9 ± 37.3 to 299 ± 34.6 ms, p Conclusion An acute shortening of PEP by radial artery tonometry occurs post Biv pacemaker optimization and correlates with improvement in hemodynamics by echo Doppler and may provide a cost-efficient approach to assist with Biv pacemaker echo optimization.

  14. Deconstructing Disk Velocity Distribution Functions in the Disk-Mass Survey

    NARCIS (Netherlands)

    Westfall, K. B.; Bershady, M. A.; Verheijen, M. A. W.; Andersen, D. R.; Swaters, R. A.

    2008-01-01

    We analyze integral-field ionized gas and stellar line-of-sight kinematics in the context of determining the stellar velocity ellipsoid for spiral galaxies observed by the Disk-Mass Survey. Our new methodology enables us to measure, for the first time, a radial gradient in the ellipsoid ratio

  15. Hα line in the spectrum of HDE 245770

    International Nuclear Information System (INIS)

    Voikhanskaya, N.F.

    1980-01-01

    Constant and variable components are discriminated in the profile of the Hα emission line in the spectrum of the star HDE 245770. The variable component is formed near the degenerate component of the binary system. The constant part of the line has a steady radial velocity of +10 km/sec, while the variable part exhibits a radial-velocity curve having the same period, 104 sec, as the pulsations of the corresponding variable x-ray source A0535+26

  16. Λ CDM is Consistent with SPARC Radial Acceleration Relation

    Energy Technology Data Exchange (ETDEWEB)

    Keller, B. W.; Wadsley, J. W., E-mail: kellerbw@mcmaster.ca [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2017-01-20

    Recent analysis of the Spitzer Photometry and Accurate Rotation Curve (SPARC) galaxy sample found a surprisingly tight relation between the radial acceleration inferred from the rotation curves and the acceleration due to the baryonic components of the disk. It has been suggested that this relation may be evidence for new physics, beyond Λ CDM . In this Letter, we show that 32 galaxies from the MUGS2 match the SPARC acceleration relation. These cosmological simulations of star-forming, rotationally supported disks were simulated with a WMAP3 Λ CDM cosmology, and match the SPARC acceleration relation with less scatter than the observational data. These results show that this acceleration relation is a consequence of dissipative collapse of baryons, rather than being evidence for exotic dark-sector physics or new dynamical laws.

  17. Radial head button holing: a cause of irreducible anterior radial head dislocation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Su-Mi; Chai, Jee Won; You, Ja Yeon; Park, Jina [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Bae, Kee Jeong [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Orthopedic Surgery, Seoul (Korea, Republic of)

    2016-10-15

    ''Buttonholing'' of the radial head through the anterior joint capsule is a known cause of irreducible anterior radial head dislocation associated with Monteggia injuries in pediatric patients. To the best of our knowledge, no report has described an injury consisting of buttonholing of the radial head through the annular ligament and a simultaneous radial head fracture in an adolescent. In the present case, the radiographic findings were a radial head fracture with anterior dislocation and lack of the anterior fat pad sign. Magnetic resonance imaging (MRI) clearly demonstrated anterior dislocation of the fractured radial head through the torn annular ligament. The anterior joint capsule and proximal portion of the annular ligament were interposed between the radial head and capitellum, preventing closed reduction of the radial head. Familiarity with this condition and imaging findings will aid clinicians to make a proper diagnosis and fast decision to perform an open reduction. (orig.)

  18. An Empirical Fitting Method to Type Ia Supernova Light Curves. III. A Three-parameter Relationship: Peak Magnitude, Rise Time, and Photospheric Velocity

    Science.gov (United States)

    Zheng, WeiKang; Kelly, Patrick L.; Filippenko, Alexei V.

    2018-05-01

    We examine the relationship between three parameters of Type Ia supernovae (SNe Ia): peak magnitude, rise time, and photospheric velocity at the time of peak brightness. The peak magnitude is corrected for extinction using an estimate determined from MLCS2k2 fitting. The rise time is measured from the well-observed B-band light curve with the first detection at least 1 mag fainter than the peak magnitude, and the photospheric velocity is measured from the strong absorption feature of Si II λ6355 at the time of peak brightness. We model the relationship among these three parameters using an expanding fireball with two assumptions: (a) the optical emission is approximately that of a blackbody, and (b) the photospheric temperatures of all SNe Ia are the same at the time of peak brightness. We compare the precision of the distance residuals inferred using this physically motivated model against those from the empirical Phillips relation and the MLCS2k2 method for 47 low-redshift SNe Ia (0.005 Ia in our sample with higher velocities are inferred to be intrinsically fainter. Eliminating the high-velocity SNe and applying a more stringent extinction cut to obtain a “low-v golden sample” of 22 SNe, we obtain significantly reduced scatter of 0.108 ± 0.018 mag in the new relation, better than those of the Phillips relation and the MLCS2k2 method. For 250 km s‑1 of residual peculiar motions, we find 68% and 95% upper limits on the intrinsic scatter of 0.07 and 0.10 mag, respectively.

  19. Stress wave velocity patterns in the longitudinal-radial plane of trees for defect diagnosis

    Science.gov (United States)

    Guanghui Li; Xiang Weng; Xiaocheng Du; Xiping Wang; Hailin Feng

    2016-01-01

    Acoustic tomography for urban tree inspection typically uses stress wave data to reconstruct tomographic images for the trunk cross section using interpolation algorithm. This traditional technique does not take into account the stress wave velocity patterns along tree height. In this study, we proposed an analytical model for the wave velocity in the longitudinal–...

  20. Spectroscopy of bright Algol-type semi-detached close binary system HU Tauri (HR 1471)

    Science.gov (United States)

    Parthasarathy, M.

    2018-01-01

    Radial velocities of the primary component (B8V) of HU Tauri derived from the photographic spectra obtained during January 1974 to December 1974 and spectroscopic orbital elements from the analysis of the radial velocity curve of the B8V primary are given. The H line of the late type secondary component is clearly detected on the photographic spectra taken around the quadratures and radial velocities of the secondary component are derived. The radial velocity semi amplitudes of the primary (K) and secondary (K) are found to be 60 km/sec and 234 km/sec respectively. The mass ratio M/M = K/K is found to be 0.2564. The detection of the H line of the secondary is confirmed from the high resolution spectra that I obtained during 1981 and 1983 at quadratures using the 2.1-m McDonald observatory Otto Struve reflector telescope and high resolution coude Reticon spectrograph.

  1. On the solar curve of growth of titanium

    International Nuclear Information System (INIS)

    Foy, R.

    1975-01-01

    Our purpose in the present work is to investigate whether or not the splitting of the solar curve of growth found in the case of iron applies to other elements. We show that, contrary to the solar curve of growth for iron, that for titanium is not split in its damping part; this result emphasizes that reference curves of growth have to be used very carefully in detailed analysis of stellar atmospheres. We confirm that the microturbulent velocity is very low in the solar photosphere, namely within the limits: 0.5 [de

  2. Stability of radial and non-radial pulsation modes of massive ZAMS models

    International Nuclear Information System (INIS)

    Odell, A.P.; Pausenwein, A.; Weiss, W.W.; Hajek, A.

    1987-01-01

    The authors have computed non-adiabatic eigenvalues for radial and non-radial pulsation modes of star models between 80 and 120 M solar with composition of chi=0.70 and Z=0.02. The radial fundamental mode is unstable in models with mass greater than 95 M solar , but the first overtone mode is always stable. The non-radial modes are all stable for all models, but the iota=2 f-mode is the closest to being driven. The non-radial modes are progressively more stable with higher iota and with higher n (for both rho- and g-modes). Thus, their results indicate that radial pulsation limits the upper mass of a star

  3. Advection endash diffusion around a curved obstacle

    International Nuclear Information System (INIS)

    Ahluwalia, D.S.; Keller, J.B.; Knessl, C.

    1998-01-01

    Advection and diffusion of a substance around a curved obstacle is analyzed when the advection velocity is large compared to the diffusion velocity, i.e., when the Peclet number is large. Asymptotic expressions for the concentration are obtained by the use of boundary layer theory, matched asymptotic expansions, etc. The results supplement and extend previous ones for straight obstacles. They apply to electrophoresis, the flow of ground water, chromatography, sedimentation, etc. copyright 1998 American Institute of Physics

  4. Critical ionisation velocity and the dynamics of a coaxial plasma gun

    International Nuclear Information System (INIS)

    Raadu, M.A.

    1978-01-01

    The dynamics of an ionising wave in a coaxial plasma gun with an azimuthal bias magnetic field is analysed in a theoretical model. Only the radial dependence is treated and instead of including a treatment of the energy balance two separate physical assumptions are made. In the first case it is assumed that the total internal electric field is given by the critical ionisation velocity condition and in the second that the ionisation rate is constant. For consistency wall sheaths are assumed to match the internal plasma potential to that of the walls. On the basis of momentum and particle balance the radial dependence of the electron density, current density, electric field and drift velocity are found. An electron source is required at the cathode and the relative contribution from ionisation within the plasma is deduced. The assumption that there are no ion sources at the electrodes leads to a restriction on the possible values of the axial electric field. (author)

  5. Radial velocities of very low mass stars and candidate brown dwarf members of the Hyades and Pleiades, 2

    Science.gov (United States)

    Stauffer, John R.; Liebert, James; Giampapa, Mark

    1995-01-01

    We have determined H alpha equivalent widths and radial velocities with 1 sigma accuracies of approximately 5 km/s for approximately 20 candidate very low mass members of the Pleiades cluster and for a few proposed very low mass members of the Hyades. Most of the Pleiades targets were selected from the recent Hambly, Hawkins, and Jameson proper motion survey, where they were identified as probable Pleiades brown dwarfs with an age spread from 3 to 70 Myr. Our spectroscopic data and a reinterpretation of the photometric data confirm that these objects are indeed likely Pleiades members; however, we believe that they more likely have masses slightly above the hydrogen burning mass limit and that there is no firm evidence for an age spread amongst these stars. All of the very low mass Pleiades and Hyades members show H alpha in emission. However, the ratio of H alpha flux to biometric flux in the Pleiades shows a maximum near M(sub Bol) approximately equal to 9.5 (M approximately equal to 0.3 solar mass) and a sharp decrease to lower masses. This break occurs at the approximate mass where low mass stars are expected to become fully convective, and it is tempting to assume that the decrease in H alpha flux is caused by some change in the behavior of stellar dynamos at this mass. We do not see a similar break in activity at this mass in the Hyades. We discuss possible evolutionary explanations for this difference in the H alpha activity between the two clusters.

  6. Fluid dynamics of air in a packed bed: velocity profiles and the continuum model assumption

    Directory of Open Access Journals (Sweden)

    NEGRINI A. L.

    1999-01-01

    Full Text Available Air flow through packed beds was analyzed experimentally under conditions ranging from those that reinforce the effect of the wall on the void fraction to those that minimize it. The packing was spherical particles, with a tube-to-particle diameter ratio (D/dp between 3 and 60. Air flow rates were maintained between 1.3 and 4.44 m3/min, and gas velocity was measured with a Pitot tube positioned above the bed exit. Measurements were made at various radial and angular coordinate values, allowing the distribution of air flow across the bed to be described in detail. Comparison of the experimentally observed radial profiles with those derived from published equations revealed that at high D/dp ratios the measured and calculated velocity profiles behaved similarly. At low ratios, oscillations in the velocity profiles agreed with those in the voidage profiles, signifying that treating the porous medium as a continuum medium is questionable in these cases.

  7. Evolution of rotating stars. III. Predicted surface rotation velocities for stars which conserve total angular momentum

    International Nuclear Information System (INIS)

    Endal, A.S.; Sofia, S.

    1979-01-01

    Predicted surface rotation velocities are presented for Population I stars at 10, 7, 5, 3, and 1.5M/sub sun/. The surface velocities have been computed for three different cases of angular momentum redistribution: no radial redistribution (rotation on decoupled shells), complete redistribution (rigid-body rotation), and partial redistribution as predicted by detailed consideration of circulation currents in rotation stars. The velocities for these cases are compared to each other and to observed stellar rotation rates (upsilon sin i).Near the main sequence, rotational effects can substantially reduce the moment of inertia of a star, so nonrotating models consistently underestimate the expected velocities for evolving stars. The magnitude of these effects is sufficient to explain the large numbers of Be stars and, perhaps, to explain the bimodal distribution of velocities observed for the O stars.On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Our calculations indicate that improved observations (by the Fourier-transform technique) of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection

  8. Spatially and Temporally Resolved Measurements of Velocity in a H2-air Combustion-Heated Supersonic Jet

    Science.gov (United States)

    Bivolaru, Daniel; Cutler, Andrew D.; Danehy, Paul M.; Gaffney, Richard L.; Baurle, Robert a.

    2009-01-01

    This paper presents simultaneous measurements at multiple points of two orthogonal components of flow velocity using a single-shot interferometric Rayleigh scattering (IRS) technique. The measurements are performed on a large-scale Mach 1.6 (Mach 5.5 enthalpy) H2-air combustion jet during the 2007 test campaign in the Direct Connect Supersonic Combustion Test facility at NASA Langley Research Center. The measurements are performed simultaneously with CARS (Coherent Anti-stokes Raman Spectroscopy) using a combined CARS-IRS instrument with a common path 9-nanosecond pulsed, injection-seeded, 532-nm Nd:YAG laser probe pulse. The paper summarizes the measurements of velocities along the core of the vitiated air flow as well as two radial profiles. The average velocity measurement near the centerline at the closest point from the nozzle exit compares favorably with the CFD calculations using the VULCAN code. Further downstream, the measured axial velocity shows overall higher values than predicted with a trend of convergence at further distances. Larger discrepancies are shown in the radial profiles.

  9. A Bayesian approach to infer the radial distribution of temperature and anisotropy in the transition zone from seismic data

    Science.gov (United States)

    Drilleau, M.; Beucler, E.; Mocquet, A.; Verhoeven, O.; Moebs, G.; Burgos, G.; Montagner, J.

    2013-12-01

    Mineralogical transformations and matter transfers within the Earth's mantle make the 350-1000 km depth range (considered here as the mantle transition zone) highly heterogeneous and anisotropic. Most of the 3-D global tomographic models are anchored on small perturbations from 1-D models such as PREM, and are secondly interpreted in terms of temperature and composition distributions. However, the degree of heterogeneity in the transition zone can be strong enough so that the concept of a 1-D reference seismic model may be addressed. To avoid the use of any seismic reference model, we developed a Markov chain Monte Carlo algorithm to directly interpret surface wave dispersion curves in terms of temperature and radial anisotropy distributions, considering a given composition of the mantle. These interpretations are based on laboratory measurements of elastic moduli and Birch-Murnaghan equation of state. An originality of the algorithm is its ability to explore both smoothly varying models and first-order discontinuities, using C1-Bézier curves, which interpolate the randomly chosen values for depth, temperature and radial anisotropy. This parameterization is able to generate a self-adapting parameter space exploration while reducing the computing time. Using a Bayesian exploration, the probability distributions on temperature and anisotropy are governed by uncertainties on the data set. The method was successfully applied to both synthetic data and real dispersion curves. Surface wave measurements along the Vanuatu- California path suggest a strong anisotropy above 400 km depth which decreases below, and a monotonous temperature distribution between 350 and 1000 km depth. On the contrary, a negative shear wave anisotropy of about 2 % is found at the top of the transition zone below Eurasia. Considering compositions ranging from piclogite to pyrolite, the overall temperature profile and temperature gradient are higher for the continental path than for the oceanic

  10. Wave equation dispersion inversion using a difference approximation to the dispersion-curve misfit gradient

    KAUST Repository

    Zhang, Zhendong

    2016-07-26

    We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh wave dispersion curve using a difference approximation to the gradient of the misfit function. We call this wave equation inversion of skeletonized surface waves because the skeletonized dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the multi-dimensional elastic wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Our method can invert for lateral velocity variations and also can mitigate the local minimum problem in full waveform inversion with a reasonable computation cost for simple models. Results with synthetic and field data illustrate the benefits and limitations of this method. © 2016 Elsevier B.V.

  11. Axial velocity profiles and secondary flows of developing laminar flows in a straight connected exit region of a 180 .deg. square curved duct

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Hyun Chull; Lee, Heang Nam; Park, Gil Moon [Chosun Univ., Gwangju (Korea, Republic of)

    2005-10-01

    In the present study, characteristics of steady state laminar flows of a straight duct connected to a 180 .deg. curved duct were examined in the entrance region through experimental and numerical analyses. For the analysis, the governing equations of laminar flows in the Cartesian coordinate system were applied. Flow characteristics such as velocity profiles and secondary flows were investigated numerically and experimentally in a square cross-sectional straight duct by the PIV system and a CFD code (STARCD). For the PIV measurement, smoke particles produced from mosquito coils. The experimental data were obtained at 9 points dividing the test sections by 400 mm. Experimental and numerical results can be summarized as follows. 1) Reynolds number, Re was increased, dimensionless velocity profiles at the outer wall were increased due to the effect of the centrifugal force and secondary flows. 2) The intensity of a secondary flow became stronger at the inner wall rather than the outer wall regardless of Reynolds number. Especially, fluid dynamic phenomenon called conner impact were observed at dimensionless axial position, x/D{sub h}=50.

  12. Effect of soccer shoe upper on ball behaviour in curve kicks

    Science.gov (United States)

    Ishii, Hideyuki; Sakurai, Yoshihisa; Maruyama, Takeo

    2014-08-01

    New soccer shoes have been developed by considering various concepts related to kicking, such as curving a soccer ball. However, the effects of shoes on ball behaviour remain unclear. In this study, by using a finite element simulation, we investigated the factors that affect ball behaviour immediately after impact in a curve kick. Five experienced male university soccer players performed one curve kick. We developed a finite element model of the foot and ball and evaluated the validity of the model by comparing the finite element results for the ball behaviour immediately after impact with the experimental results. The launch angle, ball velocity, and ball rotation in the finite element analysis were all in general agreement with the experimental results. Using the validated finite element model, we simulated the ball behaviour. The simulation results indicated that the larger the foot velocity immediately before impact, the larger the ball velocity and ball rotation. Furthermore, the Young's modulus of the shoe upper and the coefficient of friction between the shoe upper and the ball had little effect on the launch angle, ball velocity, and ball rotation. The results of this study suggest that the shoe upper does not significantly influence ball behaviour.

  13. Circumferential-wave phase velocities for empty, fluid-immersed spherical metal shells

    DEFF Research Database (Denmark)

    Überall, Herbert; Claude Ahyi, A.; Raju, P. K.

    2001-01-01

    Our earlier studies regarding acoustic scattering resonances and the dispersive phase velocities of the surface waves that generate them, have demonstrated the effectiveness of obtaining phase velocity dispersion curves from the known acoustic resonance frequencies, and their accuracy. This possi...

  14. Magellan/PFS Radial Velocities of GJ 9827, a Late K dwarf at 30 pc with Three Transiting Super-Earths

    Science.gov (United States)

    Teske, Johanna K.; Wang, Sharon; Wolfgang, Angie; Dai, Fei; Shectman, Stephen A.; Butler, R. Paul; Crane, Jeffrey D.; Thompson, Ian B.

    2018-04-01

    The Kepler mission showed us that planets with sizes between that of Earth and Neptune appear to be the most common type in our Galaxy. These “super-Earths” continue to be of great interest for exoplanet formation, evolution, and composition studies. However, the number of super-Earths with well-constrained mass and radius measurements remains small (40 planets with σ mass Earth planets were detected by the K2 mission around the nearby star GJ 9827/HIP 115752, at only 30 pc away. The radii of the planets span the “radius gap” detected by Fulton et al. (2017), and all orbit within ∼6.5 days, easing follow-up observations. Here, we report radial velocity (RV) observations of GJ 9827, taken between 2010 and 2016 with the Planet Finder Spectrograph on the Magellan II Telescope. We employ two different RV analysis packages, SYSTEMIC and RADVEL, to derive masses and thus densities of the GJ 9827 planets. We also test a Gaussian Process regression analysis but find the correlated stellar noise is not well constrained by the PFS data and that the GP tends to over-fit the RV semi-amplitudes resulting in a lower K value. Our RV observations are not able to place strong mass constraints on the two outer planets (c and d) but do indicate that planet b, at 1.64 R ⊕ and ∼8 M ⊕, is one of the most massive (and dense) super-Earth planets detected to date.

  15. Geodesics on a hot plate: an example of a two-dimensional curved space

    International Nuclear Information System (INIS)

    Erkal, Cahit

    2006-01-01

    The equation of the geodesics on a hot plate with a radially symmetric temperature profile is derived using the Lagrangian approach. Numerical solutions are presented with an eye towards (a) teaching two-dimensional curved space and the metric used to determine the geodesics (b) revealing some characteristics of two-dimensional curved spacetime and (c) providing insight into understanding the curved space which emerges in teaching relativity. In order to provide a deeper insight, we also present the analytical solutions and show that they represent circles whose characteristics depend on curvature of the space, conductivity and the coefficient of thermal expansion

  16. Geodesics on a hot plate: an example of a two-dimensional curved space

    Energy Technology Data Exchange (ETDEWEB)

    Erkal, Cahit [Department of Geology, Geography, and Physics, University of Tennessee, Martin, TN 38238 (United States)

    2006-07-01

    The equation of the geodesics on a hot plate with a radially symmetric temperature profile is derived using the Lagrangian approach. Numerical solutions are presented with an eye towards (a) teaching two-dimensional curved space and the metric used to determine the geodesics (b) revealing some characteristics of two-dimensional curved spacetime and (c) providing insight into understanding the curved space which emerges in teaching relativity. In order to provide a deeper insight, we also present the analytical solutions and show that they represent circles whose characteristics depend on curvature of the space, conductivity and the coefficient of thermal expansion.

  17. Radial evolution of the solar wind from IMP 8 to Voyager 2

    Science.gov (United States)

    Richardson, John D.; Paularena, Karolen I.; Lazarus, Alan J.; Belcher, John W.

    1995-01-01

    Voyager 2 and Interplanetary Monitoring Platform (IMP) 8 data from 1977 through 1994 are presented and compared. Radial velocity and temperature structures remain intact over the distance from 1 to 43 AU, but density structures do not. Temperature and velocity changes are correlated and nearly in phase at 1 AU, but in the outer heliosphere temperature changes lead velocity changes by tens of days. Solar cycle variations are detected by both spacecraft, with minima in flux density and dynamic pressure near solar maxima. Differences between Voyager 2 and IMP 8 observations near the solar minimum in 1986-1987 are attributed to latitudinal gradients in solar wind properties. Solar rotation variations are often present even at 40 AU. The Voyager 2 temperature profile is best fit with a R(exp -0.49 +/- 0.01) decrease, much less steep than an adiabatic profile.

  18. Subsurface offset behaviour in velocity analysis with extended reflectivity images

    NARCIS (Netherlands)

    Mulder, W.A.

    2013-01-01

    Migration velocity analysis with the constant-density acoustic wave equation can be accomplished by the focusing of extended migration images, obtained by introducing a subsurface shift in the imaging condition. A reflector in a wrong velocity model will show up as a curve in the extended image. In

  19. Velocity dispersion profiles of clusters of galaxies

    International Nuclear Information System (INIS)

    Struble, M.F.

    1979-01-01

    Velocity dispersion as a function of radius, called sigma/sub ls/ profiles, is presented for 13 clusters of galaxies having > or =30 radial velocities from both published and unpublished lists. A list of probable new members and possible outlying members for these clusters is also given. chi 2 and Kolmogoroff--Smirnoff one-sample tests for the goodness of fit of power laws to portions of the profiles indicate two significant structures in some profiles: (1) a local minimum corresponding to the local minimum noted in surface density or surface brightness profiles, and (2) a decrease in sigma/sub ls/ toward the cores. Both of these features are discussed in terms of a comparison with Wielen's N-body simulations. The sigma/sub ls/ profiles are placed in a new classification scheme which lends itself to interpreting clusters in a dynamical age sequence. The velocity field of galaxies at large distances from cluster centers is also discussed

  20. A New Approach to Spindle Radial Error Evaluation Using a Machine Vision System

    Directory of Open Access Journals (Sweden)

    Kavitha C.

    2017-03-01

    Full Text Available The spindle rotational accuracy is one of the important issues in a machine tool which affects the surface topography and dimensional accuracy of a workpiece. This paper presents a machine-vision-based approach to radial error measurement of a lathe spindle using a CMOS camera and a PC-based image processing system. In the present work, a precisely machined cylindrical master is mounted on the spindle as a datum surface and variations of its position are captured using the camera for evaluating runout of the spindle. The Circular Hough Transform (CHT is used to detect variations of the centre position of the master cylinder during spindle rotation at subpixel level from a sequence of images. Radial error values of the spindle are evaluated using the Fourier series analysis of the centre position of the master cylinder calculated with the least squares curve fitting technique. The experiments have been carried out on a lathe at different operating speeds and the spindle radial error estimation results are presented. The proposed method provides a simpler approach to on-machine estimation of the spindle radial error in machine tools.

  1. Axial and Radial Gas Holdup in Bubble Column Reactor

    International Nuclear Information System (INIS)

    Wagh, Sameer M.; Ansari, Mohashin E Alan; Kene, Pragati T.

    2014-01-01

    Bubble column reactors are considered the reactor of choice for numerous applications including oxidation, hydrogenation, waste water treatment, and Fischer-Tropsch (FT) synthesis. They are widely used in a variety of industrial applications for carrying out gas-liquid and gas-liquid-solid reactions. In this paper, the computational fluid dynamics (CFD) model is used for predicting the gas holdup and its distribution along radial and axial direction are presented. Gas holdup increases linearly with increase in gas velocity. Gas bubbles tends to concentrate more towards the center of the column and follows a wavy path

  2. A study on the velocity characteristics of the spray formed by two impinging jets

    International Nuclear Information System (INIS)

    Choo, Yeon Jun; Seo, Kwi Hyun; Kang, Bo Seon

    2001-01-01

    In this study, the velocity characteristics of liquid elements formed by two impinging jets is analysed using double pulse image capturing technique. For the droplets formed by low speed impinging jets, the droplet velocities are higher with smaller azimuthal and impingement angle. The maximum droplet velocities are about 25% lower than jet velocity. With an increase of azimuthal angle, the shedding angles increases but remains lower than azimuthal angle. The velocities of ligaments formed by high speed impinging jets gradually decreases with an increase of azimuthal angle. The maximum ligament velocities are about 40% lower than jet velocity. Higher impingement angles produce lower ligament velocities. The shedding angles of ligament almost increases with the same value of azimuthal angle, which implies that the moving direction of ligaments is radial from the origin as the impingement point

  3. A Map of the Local Velocity Substructure in the Milky Way Disk

    Energy Technology Data Exchange (ETDEWEB)

    Pearl, Alan N.; Newberg, Heidi Jo; Smith, R. Fiona [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Carlin, Jeffrey L. [LSST, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2017-10-01

    We confirm, quantify, and provide a table of the coherent velocity substructure of the Milky Way disk within 2 kpc of the Sun toward the Galactic anticenter, with a 0.2 kpc resolution. We use the radial velocities of ∼340,000 F-type stars obtained with the Guoshoujing Telescope (also known as the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, LAMOST), and proper motions derived from the PPMXL catalog. The PPMXL proper motions have been corrected to remove systematic errors by subtracting the average proper motions of galaxies and QSOs that have been confirmed in the LAMOST spectroscopic survey, and that are within 2.°5 of the star’s position. We provide the resulting table of systematic offsets derived from the PPMXL proper motion measurements of extragalactic objects identified in the LAMOST spectroscopic survey. Using the corrected phase-space stellar sample, we find statistically significant deviations in the bulk disk velocity of 20 km s{sup −1} or more in the three-dimensional velocities of Galactic disk stars. The bulk velocity varies significantly over length scales of half a kiloparsec or less. The rotation velocity of the disk increases by 20 km s{sup −1} from the Sun’s position to 1.5 kpc outside the solar circle. Disk stars in the second quadrant, within 1 kpc of the Sun, are moving radially toward the Galactic center and vertically toward a point a few tenths of a kiloparsec above the Galactic plane; looking down on the disk, the stars appear to move in a circular streaming motion with a radius of the order of 1 kpc.

  4. Core radial electric field and transport in Wendelstein 7-X plasmas

    Science.gov (United States)

    Pablant, N. A.; Langenberg, A.; Alonso, A.; Beidler, C. D.; Bitter, M.; Bozhenkov, S.; Burhenn, R.; Beurskens, M.; Delgado-Aparicio, L.; Dinklage, A.; Fuchert, G.; Gates, D.; Geiger, J.; Hill, K. W.; Höfel, U.; Hirsch, M.; Knauer, J.; Krämer-Flecken, A.; Landreman, M.; Lazerson, S.; Maaßberg, H.; Marchuk, O.; Massidda, S.; Neilson, G. H.; Pasch, E.; Satake, S.; Svennson, J.; Traverso, P.; Turkin, Y.; Valson, P.; Velasco, J. L.; Weir, G.; Windisch, T.; Wolf, R. C.; Yokoyama, M.; Zhang, D.; W7-X Team

    2018-02-01

    The results from the investigation of neoclassical core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥˜ 5 km/s (ΔEr ˜ 12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred Er profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. These comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.

  5. Subsurface offset behaviour in velocity analysis with extended reflectivity images

    NARCIS (Netherlands)

    Mulder, W.A.

    2012-01-01

    Migration velocity analysis with the wave equation can be accomplished by focusing of extended migration images, obtained by introducing a subsurface offset or shift. A reflector in the wrong velocity model will show up as a curve in the extended image. In the correct model, it should collapse to a

  6. Nonlinear radial propagation of drift wave turbulence

    International Nuclear Information System (INIS)

    Prakash, M.

    1985-01-01

    We study the linear and the nonlinear radial propagation of drift wave energy in an inhomogeneous plasma. The drift mode excited in such a plasma is dispersive in nature. The drift wave energy spreads out symmetrically along the direction of inhomogeneity with a finite group velocity. To study the effect of the nonlinear coupling on the propagation of energy in a collision free plasma, we solve the Hasegawa-Mima equation as a mixed initial boundary-value problem. The solutions of the linearized equation are used to check the reliability of our numerical calculations. Additional checks are also performed on the invariants of the system. Our results reveal that a pulse gets distorted as it propagates through the medium. The peak of the pulse propagates with a finite velocity that depends on the amplitude of the initial pulse. The polarity of propagation depends on the initial parameters of the pulse. We have also studied drift wave propagation in a resistive plasma. The Hasegawa-Wakatani equations are used to investigate this problem

  7. Study of the dissolution velocity of dispersed solid particles. Development of a calculation method for analyzing the kinetic curves. Extension to the study of composed kinetics

    International Nuclear Information System (INIS)

    Jorda, Michel.

    1976-01-01

    The dissolution of a solid in an aqueous phase is studied, the solid consisting of dispersed particles. A continuous colorimetric analysis method is developed to study the dissolution process and a two-parameter optimization method is established to investigate the kinetic curves obtained. This method is based on the differential equation dx/dt=K(1-x)sup(n). (n being the decrease in the dissolution velocity when the dissolved part increases and K a velocity parameter). The dissolution of SO 4 Cu and MnO 4 K in water and UO 3 in SO 4 H 2 is discussed. It is shown that the dissolution velocity of UO 3 is proportional to the concentration of the H + ions in the solution as far as this one is not higher than 0.25N. The study of the temperature dependence of the UO 3 dissolution reaction shows that a transition phase takes place from 25 to 65 0 C between a phase in which the dissolution is controlled by the diffusion of the H + ions and the chemical reaction at the interface and a phase in which the kinetics is only controlled by the diffusion [fr

  8. Radial bunch compression: Path-length compensation in an rf photoinjector with a curved cathode

    Directory of Open Access Journals (Sweden)

    M. J. de Loos

    2006-08-01

    Full Text Available Electron bunch lengthening due to space-charge forces in state-of-the-art rf photoinjectors limits the minimum bunch length attainable to several hundreds of femtoseconds. Although this can be alleviated by increasing the transverse dimension of the electron bunch, a larger initial radius causes path-length differences in both the rf cavity and in downstream focusing elements. In this paper we show that a curved cathode virtually eliminates these undesired effects. Detailed numerical simulations confirm that significantly shorter bunches are produced by an rf photogun with a curved cathode compared to a flat cathode device. The proposed novel method will be used to provide 100 fs duration electron bunches for injection into a laser-driven plasma wakefield accelerator.

  9. A survey of high-velocity H I in the Cetus region

    International Nuclear Information System (INIS)

    Cohen, R.J.

    1982-01-01

    The region 02sup(h) 16sup(m) 0 0 surrounding the Cohen and Davies complex of high-velocity clouds has been surveyed in the 21-cm line of H I using the Jodrell Bank MK II radio telescope (beamwidth 31 x 34 arcmin). The high-velocity cloud complex was sampled every 2sup(m) in right ascension and every 0 0 .5 in declination. The observations cover a velocity range of 2100 km s -1 with a resolution of 7.3 km s -1 and an rms noise level of 0.025 K. No HVCs were found outside the velocity range -400 to +100 km s -1 . The data are presented on microfiche as a set of contour maps showing 21-cm line temperature as a function of declination and radial velocity at constant values of right ascension. Discussion is centred on the very-high-velocity clouds at velocities of -360 to -190 km s -1 . It is concluded that they are probably debris from the tidal interaction between our Galaxy and the Magellanic Clouds. (author)

  10. Magnetic fields, velocity fields and brightness in the central region of the Solar disk

    Energy Technology Data Exchange (ETDEWEB)

    Tsap, T T

    1978-01-01

    The longitudinal magnetic fields, velocity fields and brightness at the center of the Solar disk are studied. Observations of the magnetic field, line-of-sight velocities and brightness have been made with the doublemagnetograph of the Crimean astrophysical observatory. It is found that the average magnetic field strength recorded in the iron line lambda 5233 A is 18 Gs for the elements of N-polarity and 23 Gs for the elements of S-polarity. The magnetic elements with the field strength more than 200 Gs are observed in some of the cases. There is a close correlation between the magnetic field distribution in the lambda 5250 A FeI and D/sub 1/ Na I lines and between the magnetic field in the lambda 5250 A and brightness in the K/sub 3/CaII line. The dimensions of the magnetic elements in the lambda and D/sub 1/NaI lines are equal. The comparison of the magnetic field with the radial velocity recorded in the lambda 5250 and 5233 A lines has shown that radial velocities are close to zero in the regions of maximum longitudinal magnetic field. The chromospheric network-like pattern is observed in the brightness distribution of ten different spectral lines.

  11. Analysis of non-thermal velocities in the solar corona

    Directory of Open Access Journals (Sweden)

    L. Contesse

    2004-09-01

    Full Text Available We describe new ground-based spectroscopic observations made using a 40-cm aperture coronagraph over a whole range of radial distances (up to heights of 12' above the limb and along four different heliocentric directions N, E, S and W. The analysis is limited to the study of the brightest forbidden emission line of Fe XIV at 530.3nm, in order to reach the best possible signal-to-noise ratio. To make the results statistically more significant, the extracted parameters are averaged over the whole length of the slit, and measurements are repeated fives times at each position; the corresponding dispersions in the results obtained along the slit are given. Central line profile intensities and full line widths (FWHM are plotted and compared to measurements published by other authors closer to the limb. We found widths and turbulent (non-thermal velocities of significantly higher values above the polar regions, especially when a coronal hole is present along the line of sight. We do not see a definitely decreasing behaviour of widths and turbulent velocities in equatorial directions for larger radial distances, as reported in the literature, although lower values are measured compared to the values in polar regions. The variation in the high corona is rather flat and a correlation diagram indicates that it is different for different regions and different radial distances. This seems to be the first analysis of the profiles of this coronal line, up to large heights above the limb for both equatorial and polar regions.

  12. Control rod velocity limiter

    International Nuclear Information System (INIS)

    Cearley, J.E.; Carruth, J.C.; Dixon, R.C.; Spencer, S.S.; Zuloaga, J.A. Jr.

    1986-01-01

    This patent describes a velocity control arrangement for a reciprocable, vertically oriented control rod for use in a nuclear reactor in a fluid medium, the control rod including a drive hub secured to and extending from one end therefrom. The control device comprises: a toroidally shaped control member spaced from and coaxially positioned around the hub and secured thereto by a plurality of spaced radial webs thereby providing an annular passage for fluid intermediate the hub and the toroidal member spaced therefrom in coaxial position. The side of the control member toward the control rod has a smooth generally conical surface. The side of the control member away from the control rod is formed with a concave surface constituting a single annular groove. The device also comprises inner and outer annular vanes radially spaced from one another and spaced from the side of the control member away from the control rod and positioned coaxially around and spaced from the hub and secured thereto by spaced radial webs thereby providing an annular passage for fluid intermediate the hub and the vanes. The vanes are angled toward the control member, the outer edge of the inner vane being closer to the control member and the inner edge of the outer vane being closer to the control member. When the control rod moves in the fluid in the direction toward the drive hub the vanes direct a flow of fluid turbulence which provides greater resistance to movement of the control rod in the direction toward the drive hub than in the other direction

  13. VELOCITY VARIATIONS IN THE PHOENIX–HERMUS STAR STREAM

    Energy Technology Data Exchange (ETDEWEB)

    Carlberg, R. G. [Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Grillmair, C. J., E-mail: carlberg@astro.utoronto.ca, E-mail: carl@ipac.caltech.edu [Spitzer Science Center, 1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2016-10-20

    Measurements of velocity and density perturbations along stellar streams in the Milky Way provide a time-integrated measure of dark matter substructure at larger galactic radius than the complementary instantaneous inner-halo strong lensing detection of dark matter sub-halos in distant galaxies. An interesting case to consider is the proposed Phoenix–Hermus star stream, which is long, thin, and on a nearly circular orbit, making it a particular good target to study for velocity variations along its length. In the presence of dark matter sub-halos, the stream velocities are significantly perturbed in a manner that is readily understood with the impulse approximation. A set of simulations shows that only sub-halos above a few 10{sup 7} M {sub ⊙} lead to reasonably long-lived observationally detectable velocity variations of amplitude of order 1 km s{sup −1}, with an average of about one visible hit per (two-armed) stream over a 3 Gyr interval. An implication is that globular clusters themselves will not have a visible impact on the stream. Radial velocities have the benefit of being completely insensitive to distance errors. Distance errors scatter individual star velocities perpendicular and tangential to the mean orbit, but their mean values remain unbiased. Calculations like these help build the quantitative case to acquire large, fairly deep, precision velocity samples of stream stars.

  14. Three dimensional LDV flow measurements and theoretical investigation in a radial inflow turbine scroll

    Science.gov (United States)

    Malak, Malak Fouad; Hamed, Awatef; Tabakoff, Widen

    1990-01-01

    A two-color LDV system was used in the measurement of three orthogonal velocity components at 758 points located throughout the scroll and the unvaned portion of the nozzle of a radial inflow turbine scroll. The cold flow experimental results are presented for the velocity field at the scroll tongue. In addition, a total pressure loss of 3.5 percent for the scroll is revealed from the velocity measurements combined with the static pressure readings. Moreover, the measurement of the three normal stresses of the turbulence has showed that the flow is anisotropic. Furthermore, the mean velocity components are compared with a numerical solution of the potential flow field using the finite element technique. The theoretical prediction of the exit flow angle variation agrees well with the experimental results. This variation leads to a higher scroll pattern factor which can be avoided by controlling the scroll cross sectional area distribution.

  15. Radial diffusion of toroidally trapped particles induced by lower hybrid and fast waves

    International Nuclear Information System (INIS)

    Krlin, L.

    1992-10-01

    The interaction of RF field with toroidally trapped particles (bananas) can cause their intrinsic stochastically diffusion both in the configuration and velocity space. In RF heating and/or current drive regimes, RF field can interact with plasma particles and with thermonuclear alpha particles. The aim of this contribution is to give some analytical estimates of induced radial diffusion of alphas and of ions. (author)

  16. Copernicus observations of Iota Herculis velocity variations

    Science.gov (United States)

    Rogerson, J. B., Jr.

    1984-01-01

    Observations of Iota Her at 109.61-109.67 nm obtained with the U1 channel of the Copernicus spectrophotometer at resolution 5 pm during 3.6 days in May, 1979, are reported. Radial-velocity variations are detected and analyzed as the sum of two sinusoids with frequencies 0.660 and 0.618 cycles/day and amplitudes 9.18 and 8.11 km/s, respectively. Weak evidence supporting the 13.9-h periodicity seen in line-profile variations by Smith (1978) is found.

  17. Acesso radial em intervenções coronarianas percutâneas: panorama atual brasileiro Acceso radial en intervenciones coronarias percutáneas: panorama actual brasileño Radial approach in percutaneous coronary interventions: current status in Brazil

    Directory of Open Access Journals (Sweden)

    Pedro Beraldo de Andrade

    2011-04-01

    fue comparado al femoral (2,5% versus 3,6%, p BACKGROUND: Although the radial approach offers an unquestionable result in terms of reduction of vascular complications and occurrence of severe bleeding in comparison to the femoral approach, so far it has only been used in few centers which elected it as the preferential access. OBJECTIVE: To evaluate the current status of percutaneous coronary interventions in Brazil, as regards the use of the radial approach. METHODS: Analysis of data spontaneously recorded in Central Nacional de Intervenções Cardiovasculares - CENIC (National Center for Cardiovascular Interventions from 2005 to 2008, in a total of 83,376 procedures. RESULTS: The radial approach was used in 12.6% of the procedures performed, and the femoral approach, in 84.3%. The remaining 3.1% corresponded to brachial artery dissection or puncture. With a success rate of 97.5%, the choice of the radial approach was associated with a significant reduction of vascular complications in comparison to the femoral approach (2.5% versus 3.6 %, p < 0.0001. CONCLUSION: The radial approach remains uncommonly used in Brazil, and this is possibly explained by the lack of training programs, uncertainties regarding the learning curve, and the lack of large-scale studies corroborating the benefits demonstrated to date.

  18. A Flow Visualization Study of Laminar/Turbulent Transition in a Curved Channel

    Science.gov (United States)

    1987-03-01

    convected down- stream, to deform as shown in Figure 16. One possible arrangement of velocity vectors in the radial plane which could cause such a...Re 2231 KODAK RECORDING FEILD ASA 1,000 (f2.8, B) 10 ....... .... . . . . . . .. Figure C.33 IV-4 2100-2330 15 FEB 1987 8.0 % FLOW (rotameter) MEAN

  19. The CARMENES search for exoplanets around M dwarfs . First visual-channel radial-velocity measurements and orbital parameter updates of seven M-dwarf planetary systems

    Science.gov (United States)

    Trifonov, T.; Kürster, M.; Zechmeister, M.; Tal-Or, L.; Caballero, J. A.; Quirrenbach, A.; Amado, P. J.; Ribas, I.; Reiners, A.; Reffert, S.; Dreizler, S.; Hatzes, A. P.; Kaminski, A.; Launhardt, R.; Henning, Th.; Montes, D.; Béjar, V. J. S.; Mundt, R.; Pavlov, A.; Schmitt, J. H. M. M.; Seifert, W.; Morales, J. C.; Nowak, G.; Jeffers, S. V.; Rodríguez-López, C.; del Burgo, C.; Anglada-Escudé, G.; López-Santiago, J.; Mathar, R. J.; Ammler-von Eiff, M.; Guenther, E. W.; Barrado, D.; González Hernández, J. I.; Mancini, L.; Stürmer, J.; Abril, M.; Aceituno, J.; Alonso-Floriano, F. J.; Antona, R.; Anwand-Heerwart, H.; Arroyo-Torres, B.; Azzaro, M.; Baroch, D.; Bauer, F. F.; Becerril, S.; Benítez, D.; Berdiñas, Z. M.; Bergond, G.; Blümcke, M.; Brinkmöller, M.; Cano, J.; Cárdenas Vázquez, M. C.; Casal, E.; Cifuentes, C.; Claret, A.; Colomé, J.; Cortés-Contreras, M.; Czesla, S.; Díez-Alonso, E.; Feiz, C.; Fernández, M.; Ferro, I. M.; Fuhrmeister, B.; Galadí-Enríquez, D.; Garcia-Piquer, A.; García Vargas, M. L.; Gesa, L.; Gómez Galera, V.; González-Peinado, R.; Grözinger, U.; Grohnert, S.; Guàrdia, J.; Guijarro, A.; de Guindos, E.; Gutiérrez-Soto, J.; Hagen, H.-J.; Hauschildt, P. H.; Hedrosa, R. P.; Helmling, J.; Hermelo, I.; Hernández Arabí, R.; Hernández Castaño, L.; Hernández Hernando, F.; Herrero, E.; Huber, A.; Huke, P.; Johnson, E.; de Juan, E.; Kim, M.; Klein, R.; Klüter, J.; Klutsch, A.; Lafarga, M.; Lampón, M.; Lara, L. M.; Laun, W.; Lemke, U.; Lenzen, R.; López del Fresno, M.; López-González, M. J.; López-Puertas, M.; López Salas, J. F.; Luque, R.; Magán Madinabeitia, H.; Mall, U.; Mandel, H.; Marfil, E.; Marín Molina, J. A.; Maroto Fernández, D.; Martín, E. L.; Martín-Ruiz, S.; Marvin, C. J.; Mirabet, E.; Moya, A.; Moreno-Raya, M. E.; Nagel, E.; Naranjo, V.; Nortmann, L.; Ofir, A.; Oreiro, R.; Pallé, E.; Panduro, J.; Pascual, J.; Passegger, V. M.; Pedraz, S.; Pérez-Calpena, A.; Pérez Medialdea, D.; Perger, M.; Perryman, M. A. C.; Pluto, M.; Rabaza, O.; Ramón, A.; Rebolo, R.; Redondo, P.; Reinhardt, S.; Rhode, P.; Rix, H.-W.; Rodler, F.; Rodríguez, E.; Rodríguez Trinidad, A.; Rohloff, R.-R.; Rosich, A.; Sadegi, S.; Sánchez-Blanco, E.; Sánchez Carrasco, M. A.; Sánchez-López, A.; Sanz-Forcada, J.; Sarkis, P.; Sarmiento, L. F.; Schäfer, S.; Schiller, J.; Schöfer, P.; Schweitzer, A.; Solano, E.; Stahl, O.; Strachan, J. B. P.; Suárez, J. C.; Tabernero, H. M.; Tala, M.; Tulloch, S. M.; Veredas, G.; Vico Linares, J. I.; Vilardell, F.; Wagner, K.; Winkler, J.; Wolthoff, V.; Xu, W.; Yan, F.; Zapatero Osorio, M. R.

    2018-02-01

    Context. The main goal of the CARMENES survey is to find Earth-mass planets around nearby M-dwarf stars. Seven M dwarfs included in the CARMENES sample had been observed before with HIRES and HARPS and either were reported to have one short period planetary companion (GJ 15 A, GJ 176, GJ 436, GJ 536 and GJ 1148) or are multiple planetary systems (GJ 581 and GJ 876). Aims: We aim to report new precise optical radial velocity measurements for these planet hosts and test the overall capabilities of CARMENES. Methods: We combined our CARMENES precise Doppler measurements with those available from HIRES and HARPS and derived new orbital parameters for the systems. Bona-fide single planet systems were fitted with a Keplerian model. The multiple planet systems were analyzed using a self-consistent dynamical model and their best fit orbits were tested for long-term stability. Results: We confirm or provide supportive arguments for planets around all the investigated stars except for GJ 15 A, for which we find that the post-discovery HIRES data and our CARMENES data do not show a signal at 11.4 days. Although we cannot confirm the super-Earth planet GJ 15 Ab, we show evidence for a possible long-period (Pc = 7030-630+970 d) Saturn-mass (mcsini = 51.8M⊕) planet around GJ 15 A. In addition, based on our CARMENES and HIRES data we discover a second planet around GJ 1148, for which we estimate a period Pc = 532.6 days, eccentricity ec = 0.342 and minimum mass mcsini = 68.1M⊕. Conclusions: The CARMENES optical radial velocities have similar precision and overall scatter when compared to the Doppler measurements conducted with HARPS and HIRES. We conclude that CARMENES is an instrument that is up to the challenge of discovering rocky planets around low-mass stars. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 072.C-0488, 072.C-0513, 074.C-0012, 074.C-0364, 075.D-0614, 076.C-0878, 077.C

  20. Comparison of histologic margin status in low-grade cutaneous and subcutaneous canine mast cell tumours examined by radial and tangential sections.

    Science.gov (United States)

    Dores, C B; Milovancev, M; Russell, D S

    2018-03-01

    Radial sections are widely used to estimate adequacy of excision in canine cutaneous mast cell tumours (MCTs); however, this sectioning technique estimates only a small fraction of total margin circumference. This study aimed to compare histologic margin status in grade II/low grade MCTs sectioned using both radial and tangential sectioning techniques. A total of 43 circumferential margins were evaluated from 21 different tumours. Margins were first sectioned radially, followed by tangential sections. Tissues were examined by routine histopathology. Tangential margin status differed in 10 of 43 (23.3%) margins compared with their initial status on radial section. Of 39 margins, 9 (23.1%) categorized as histologic tumour-free margin (HTFM) >0 mm were positive on tangential sectioning. Tangential sections detected a significantly higher proportion of positive margins relative to radial sections (exact 2-tailed P-value = .0215). The HTFM was significantly longer in negative tangential margins than positive tangential margins (mean 10.1 vs 3.2 mm; P = .0008). A receiver operating characteristic curve comparing HTFM and tangentially negative margins found an area under the curve of 0.83 (95% confidence interval: 0.71-0.96). Although correct classification peaked at the sixth cut-point of HTFM ≥1 mm, radial sections still incorrectly classified 50% of margins as lacking tumour cells. Radial sections had 100% specificity for predicting negative tangential margins at a cut-point of 10.9 mm. These data indicate that for low grade MCTs, HTFMs >0 mm should not be considered completely excised, particularly when HTFM is <10.9 mm. This will inform future studies that use HTFM and overall excisional status as dependent variables in multivariable prognostic models. © 2017 John Wiley & Sons Ltd.

  1. A First Layered Crustal Velocity Model for the Western Solomon Islands: Inversion of Measured Group Velocity of Surface Waves using Ambient Noise Cross-Correlation

    Science.gov (United States)

    Ku, C. S.; Kuo, Y. T.; Chao, W. A.; You, S. H.; Huang, B. S.; Chen, Y. G.; Taylor, F. W.; Yih-Min, W.

    2017-12-01

    Two earthquakes, MW 8.1 in 2007 and MW 7.1 in 2010, hit the Western Province of Solomon Islands and caused extensive damage, but motivated us to set up the first seismic network in this area. During the first phase, eight broadband seismic stations (BBS) were installed around the rupture zone of 2007 earthquake. With one-year seismic records, we cross-correlated the vertical component of ambient noise recorded in our BBS and calculated Rayleigh-wave group velocity dispersion curves on inter-station paths. The genetic algorithm to invert one-dimensional crustal velocity model is applied by fitting the averaged dispersion curves. The one-dimensional crustal velocity model is constituted by two layers and one half-space, representing the upper crust, lower crust, and uppermost mantle respectively. The resulted thickness values of the upper and lower crust are 6.4 and 14.2 km, respectively. Shear-wave velocities (VS) of the upper crust, lower crust, and uppermost mantle are 2.53, 3.57 and 4.23 km/s with the VP/VS ratios of 1.737, 1.742 and 1.759, respectively. This first layered crustal velocity model can be used as a preliminary reference to further study seismic sources such as earthquake activity and tectonic tremor.

  2. Surface Wave Velocity-Stress Relationship in Uniaxially Loaded Concrete

    DEFF Research Database (Denmark)

    Shokouhi, Parisa; Zoëga, Andreas; Wiggenhauser, Herbert

    2012-01-01

    The sonic surface wave (or Rayleigh wave) velocity measured on prismatic concrete specimens under uniaxial compression was found to be highly stress-dependent. At low stress levels, the acoustoelastic effect and the closure of existing microcracks results in a gradual increase in surface wave...... velocities. At higher stress levels, concrete suffers irrecoverable damage: the existing microcracks widen and coalesce and new microcracks form. This progressive damage process leads first to the flattening and eventually the drop in the velocity-stress curves. Measurements on specimens undergoing several...... loading cycles revealed that the velocities show a stress-memory effect in good agreement with the Kaiser effect. Comparing the velocities measured during loading and unloading, the effects of stress and damage on the measured velocities could be differentiated. Moreover, the stress dependency of surface...

  3. Shaking Table Tests of Curved Bridge considering Bearing Friction Sliding Isolation

    Directory of Open Access Journals (Sweden)

    Lei Yan

    2016-01-01

    Full Text Available Specific to severe damage to curved bridges in earthquakes caused by the excessive force of the fixed bearings and piers, a new seismic design method on curved bridges considering bearing friction sliding isolation is proposed in this paper. Seismic model bridge and isolation model bridge with similarity ratio of 1/20 were made and the shaking table comparison test was conducted. The experimental results show that the isolation model curved bridge suffered less seismic damage than the seismic model curved bridge. The fundamental frequencies of the seismic model bridge and isolation model bridge decreased and the damping ratio increased with the increase of seismic intensity. Compared with seismic curved bridge, the maximum reduction rates of peak acceleration along the radial and tangential directions on the top of pier of the isolation model curved bridge were 47.3% and 55.5%, respectively, and the maximum reduction rate of the peak strain on the bottom of pier of the isolation model curved bridge was 43.4%. For the isolation model curved bridge, the maximum reduction rate of peak acceleration on the top of pier was 24.6% compared with that on the bottom of pier. The study results can provide experimental basis for the seismic design of curved bridges.

  4. Radial propagation of microturbulence in tokamaks

    International Nuclear Information System (INIS)

    Garbet, X.; Laurent, L.; Roubin, J.P.; Samain, A.

    1992-01-01

    Energy confinement time in tokamaks exhibits a clear dependence on global plasma parameters. This is not the case for transport coefficients; their dependence on local plasma parameters cannot be precisely established. The aim of the present paper is to give a possible explanation of this behaviour; turbulence propagates radially because of departure from cylindrical geometry. This implies that the turbulence level at a given point and hence transport coefficients are not only functions of local plasma parameters. A quantitative estimate of the propagation velocity is derived from a Lagrangian formalism. Two cases are considered: the effect of toroidicity and the effect of non linear mode-mode coupling. The consequences of this model are discussed. This process does not depend on the type of instability. For the sake of simplicity only electrostatic perturbations are considered

  5. Periodic Variations in the Vertical Velocities of Galactic Masers

    Directory of Open Access Journals (Sweden)

    Bobylev V. V.

    2016-03-01

    Full Text Available We compiled published data on Galactic masers with VLBI-measured trigonometric parallaxes and determined the residual tangential, ∆Vcirc, and radial, ∆VR, velocities for 120 masers. We used these data to redetermine the parameters of the Galactic spiral density wave using the method of spectral analysis. The most interesting result of this study is the detection of wavelike oscillations of vertical spatial velocities (W versus distance R from the Galactic rotation axis. Spectral analysis allowed us to determine the perturbation wavelength and the amplitude of this wave, which we found to be equal to λW = 3.4 ± 0.7 kpc and fW = 4.9 ± 1.2 km s−1, respectively.

  6. Study on Rayleigh Wave Inversion for Estimating Shear-wave Velocity Profile

    Directory of Open Access Journals (Sweden)

    T.A. Sanny

    2003-05-01

    Full Text Available Rayleigh wave or ground roll is a noise in seismic body waves. However, how to use this noise for soil characterization is very interesting since Rayleigh wave phase velocity is a function of compression-wave velocity, shear-wave velocity, density and layer thickness. In layered-medium Rayleigh wave velocity also depends on wavelength or frequency, and this phenomenon is called dispersion. Inversion procedure to get shear-wave velocity profile needs a priori information about the solution of the problem to limit the unknown parameters. The Lagrange multiplier method was used to solve the constrained optimization problems or well known as a smoothing parameter in inversion problems. The advantage of our inversion procedure is that it can guarantee the convergence of solution even though the field data is incomplete, insufficient, and inconsistent. The addition of smoothing parameter can reduce the time to converge. Beside numerical stability, the statistical stability is also involved in inversion procedure. In field experiment we extracted ground roll data from seismic refraction record. The dispersion curves had been constructed by applying f-k analysis and f-k dip filtering. The dispersion curves show the dependence of Rayleigh wave phase velocities in layered media to frequency. The synthetic models also demonstrate the stability and the speed of inversion procedure.

  7. A nine-electrode probe for simultaneous measurement of all terms in the ideal radial Ohm's law

    International Nuclear Information System (INIS)

    Si, Jiahe; Wang, Zhehui

    2006-01-01

    A Nine-Electrode Probe (NEP) has been developed for simultaneous measurement of all terms in the ideal Ohm's law E+UxB=0 in the radial (r) direction in cylindrical geometry, where E is the electric field, U is the plasma flow velocity, and B is the magnetic field. The probe consists of two pairs of directional Langmuir probes ('Mach' probes) to measure the axial (z) and azimuthal (θ) plasma flows, two pairs of floating Langmuir probes at different radial positions to measure the radial electric field, and two B-dot coils to measure the axial and azimuthal magnetic field. The measurement is performed in the Flowing Magnetized Plasma (FMP) experiment. Two flow patterns are identified in the FMP experiment by the NEP. The peak-to-peak values of radial electric field fluctuation is 1.5-4 times of the mean values. Comparisons of UxBvertical bar r and E r show that E r + UxBvertical bar r is not zero within some periods of discharge. This deviation suggests non-ideal effects in Ohm's law can not be neglected

  8. The Bonus Detector: A Radial Time Projection Chamber for tracking Spectator Protons

    International Nuclear Information System (INIS)

    Howard Fenker

    2004-01-01

    A GEM-based Radial Time Projection Chamber is being developed as a spectator-proton tracker for an experiment at Jefferson Lab. The purpose of the experiment is the study of the structure of nearly free neutrons. Interactions on such neutrons can be identified by the presence of a backward-moving proton in the final state of a beam-deuterium collision. The detector must be of very low mass in order to provide sensitivity to the slowest possible protons. The ionization electron trail left by the protons will drift radially outward to an amplification structure composed of curved GEMs, and the resulting charge will be collected on pads on the outer layer of the detector. Unique design challenges are imposed by the cylindrical geometry and the low mass requirement. The status of the project and results of prototype tests are presented

  9. Bayesian analysis of radial velocity data of GJ667C with correlated noise: evidence for only two planets

    Science.gov (United States)

    Feroz, F.; Hobson, M. P.

    2014-02-01

    GJ667C is the least massive component of a triple star system which lies at a distance of about 6.8 pc (22.1 light-year) from the Earth. GJ667C has received much attention recently due to the claims that it hosts up to seven planets including three super-Earths inside the habitable zone. We present a Bayesian technique for the analysis of radial velocity (RV) data sets in the presence of correlated noise component (`red noise'), with unknown parameters. We also introduce hyper-parameters in our model in order to deal statistically with under- or overestimated error bars on measured RVs as well as inconsistencies between different data sets. By applying this method to the RV data set of GJ667C, we show that this data set contains a significant correlated (red) noise component with correlation time-scale for HARPS data of the order of 9 d. Our analysis shows that the data only provide strong evidence for the presence of two planets: GJ667Cb and c with periods 7.19 and 28.13 d, respectively, with some hints towards the presence of a third signal with period 91 d. The planetary nature of this third signal is not clear and additional RV observations are required for its confirmation. Previous claims of the detection of additional planets in this system are due the erroneous assumption of white noise. Using the standard white noise assumption, our method leads to the detection of up to five signals in this system. We also find that with the red noise model, the measurement uncertainties from HARPS for this system are underestimated at the level of ˜50 per cent.

  10. A catalogue of masses, structural parameters and velocity dispersion profiles of 112 Milky Way globular clusters

    Science.gov (United States)

    Baumgardt, H.; Hilker, M.

    2018-05-01

    We have determined masses, stellar mass functions and structural parameters of 112 Milky Way globular clusters by fitting a large set of N-body simulations to their velocity dispersion and surface density profiles. The velocity dispersion profiles were calculated based on a combination of more than 15,000 high-precision radial velocities which we derived from archival ESO/VLT and Keck spectra together with ˜20, 000 published radial velocities from the literature. Our fits also include the stellar mass functions of the globular clusters, which are available for 47 clusters in our sample, allowing us to self-consistently take the effects of mass segregation and ongoing cluster dissolution into account. We confirm the strong correlation between the global mass functions of globular clusters and their relaxation times recently found by Sollima & Baumgardt (2017). We also find a correlation of the escape velocity from the centre of a globular cluster and the fraction of first generation stars (FG) in the cluster recently derived for 57 globular clusters by Milone et al. (2017), but no correlation between the FG star fraction and the global mass function of a globular cluster. This could indicate that the ability of a globular cluster to keep the wind ejecta from the polluting star(s) is the crucial parameter determining the presence and fraction of second generation stars and not its later dynamical mass loss.

  11. Dispersion curve estimation via a spatial covariance method with ultrasonic wavefield imaging.

    Science.gov (United States)

    Chong, See Yenn; Todd, Michael D

    2018-05-01

    Numerous Lamb wave dispersion curve estimation methods have been developed to support damage detection and localization strategies in non-destructive evaluation/structural health monitoring (NDE/SHM) applications. In this paper, the covariance matrix is used to extract features from an ultrasonic wavefield imaging (UWI) scan in order to estimate the phase and group velocities of S0 and A0 modes. A laser ultrasonic interrogation method based on a Q-switched laser scanning system was used to interrogate full-field ultrasonic signals in a 2-mm aluminum plate at five different frequencies. These full-field ultrasonic signals were processed in three-dimensional space-time domain. Then, the time-dependent covariance matrices of the UWI were obtained based on the vector variables in Cartesian and polar coordinate spaces for all time samples. A spatial covariance map was constructed to show spatial correlations within the full wavefield. It was observed that the variances may be used as a feature for S0 and A0 mode properties. The phase velocity and the group velocity were found using a variance map and an enveloped variance map, respectively, at five different frequencies. This facilitated the estimation of Lamb wave dispersion curves. The estimated dispersion curves of the S0 and A0 modes showed good agreement with the theoretical dispersion curves. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. An analytical solution for Dean flow in curved ducts with rectangular cross section

    Science.gov (United States)

    Norouzi, M.; Biglari, N.

    2013-05-01

    In this paper, a full analytical solution for incompressible flow inside the curved ducts with rectangular cross-section is presented for the first time. The perturbation method is applied to solve the governing equations and curvature ratio is considered as the perturbation parameter. The previous perturbation solutions are usually restricted to the flow in curved circular or annular pipes related to the overly complex form of solutions or singularity situation for flow in curved ducts with non-circular shapes of cross section. This issue specifies the importance of analytical studies in the field of Dean flow inside the non-circular ducts. In this study, the main flow velocity, stream function of lateral velocities (secondary flows), and flow resistance ratio in rectangular curved ducts are obtained analytically. The effect of duct curvature and aspect ratio on flow field is investigated as well. Moreover, it is important to mention that the current analytical solution is able to simulate the Taylor-Görtler and Dean vortices (vortices in stable and unstable situations) in curved channels.

  13. Effects of the radial electrical field on the drifts, trapping and particle orbits in TJ-II

    International Nuclear Information System (INIS)

    Guasp, J.; Liniers, M.

    1997-01-01

    In this study a detailed analysis of the effect of radial electric fields on drifts, trapping and trajectories for ions of low and intermediate energy (0.1-1 keV) in the helical axis stellarator TJ-II has been performed. In TJ-II the drift velocities have the same rotation direction than the Hard Core (HC, the same than the plasma) with predominance of the vertical downwards component. The intensity is higher near the HC and in the outwards direction. These trends create strong asymmetries in losses even in the absence of electric field. When an electric field is present the poloidal components of the drift velocity predominates modifying deeply the orbit behaviour. Positive electric fields produce internal radial trapping barriers and have a tendency to eliminate the external ones. The opposite happens for negative fields. These facts alterate deeply the tapping and confinement properties of the particles. All these analysis will be used as a basis for the understanding of the modifications on the loss distribution, trapping regions and loss cones for TJ-II that will be addressed in forthcoming studies. (Author)

  14. The Gaussian radial basis function method for plasma kinetic theory

    Energy Technology Data Exchange (ETDEWEB)

    Hirvijoki, E., E-mail: eero.hirvijoki@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Candy, J.; Belli, E. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Embréus, O. [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-10-30

    Description of a magnetized plasma involves the Vlasov equation supplemented with the non-linear Fokker–Planck collision operator. For non-Maxwellian distributions, the collision operator, however, is difficult to compute. In this Letter, we introduce Gaussian Radial Basis Functions (RBFs) to discretize the velocity space of the entire kinetic system, and give the corresponding analytical expressions for the Vlasov and collision operator. Outlining the general theory, we also highlight the connection to plasma fluid theories, and give 2D and 3D numerical solutions of the non-linear Fokker–Planck equation. Applications are anticipated in both astrophysical and laboratory plasmas. - Highlights: • A radically new method to address the velocity space discretization of the non-linear kinetic equation of plasmas. • Elegant and physically intuitive, flexible and mesh-free. • Demonstration of numerical solution of both 2-D and 3-D non-linear Fokker–Planck relaxation problem.

  15. An approach to averaging digitized plantagram curves.

    Science.gov (United States)

    Hawes, M R; Heinemeyer, R; Sovak, D; Tory, B

    1994-07-01

    The averaging of outline shapes of the human foot for the purposes of determining information concerning foot shape and dimension within the context of comfort of fit of sport shoes is approached as a mathematical problem. An outline of the human footprint is obtained by standard procedures and the curvature is traced with a Hewlett Packard Digitizer. The paper describes the determination of an alignment axis, the identification of two ray centres and the division of the total curve into two overlapping arcs. Each arc is divided by equiangular rays which intersect chords between digitized points describing the arc. The radial distance of each ray is averaged within groups of foot lengths which vary by +/- 2.25 mm (approximately equal to 1/2 shoe size). The method has been used to determine average plantar curves in a study of 1197 North American males (Hawes and Sovak 1993).

  16. SOAP 2.0: A Tool to Estimate the Photometric and Radial Velocity Variations Induced by Stellar Spots and Plages

    Science.gov (United States)

    Dumusque, X.; Boisse, I.; Santos, N. C.

    2014-12-01

    This paper presents SOAP 2.0, a new version of the Spot Oscillation And Planet (SOAP) code that estimates in a simple way the photometric and radial velocity (RV) variations induced by active regions. The inhibition of the convective blueshift (CB) inside active regions is considered, as well as the limb brightening effect of plages, a quadratic limb darkening law, and a realistic spot and plage contrast ratio. SOAP 2.0 shows that the activity-induced variation of plages is dominated by the inhibition of the CB effect. For spots, this effect becomes significant only for slow rotators. In addition, in the case of a major active region dominating the activity-induced signal, the ratio between the FWHM and the RV peak-to-peak amplitudes of the cross correlation function can be used to infer the type of active region responsible for the signal for stars with v sin i SOAP 2.0 manages to reproduce the activity variation as well as previous simulations when a spot is dominating the activity-induced variation. In addition, SOAP 2.0 also reproduces the activity variation induced by a plage on the slowly rotating star α Cen B, which is not possible using previous simulations. Following these results, SOAP 2.0 can be used to estimate the signal induced by spots and plages, but also to correct for it when a major active region is dominating the RV variation. . The work in this paper is based on observations made with the MOST satellite, the HARPS instrument on the ESO 3.6 m telescope at La Silla Observatory (Chile), and the SOPHIE instrument at the Observatoire de Haute Provence (France).

  17. SOAP 2.0: a tool to estimate the photometric and radial velocity variations induced by stellar spots and plages

    International Nuclear Information System (INIS)

    Dumusque, X.; Boisse, I.; Santos, N. C.

    2014-01-01

    This paper presents SOAP 2.0, a new version of the Spot Oscillation And Planet (SOAP) code that estimates in a simple way the photometric and radial velocity (RV) variations induced by active regions. The inhibition of the convective blueshift (CB) inside active regions is considered, as well as the limb brightening effect of plages, a quadratic limb darkening law, and a realistic spot and plage contrast ratio. SOAP 2.0 shows that the activity-induced variation of plages is dominated by the inhibition of the CB effect. For spots, this effect becomes significant only for slow rotators. In addition, in the case of a major active region dominating the activity-induced signal, the ratio between the FWHM and the RV peak-to-peak amplitudes of the cross correlation function can be used to infer the type of active region responsible for the signal for stars with v sin i ≤8 km s –1 . A ratio smaller than three implies a spot, while a larger ratio implies a plage. Using the observation of HD 189733, we show that SOAP 2.0 manages to reproduce the activity variation as well as previous simulations when a spot is dominating the activity-induced variation. In addition, SOAP 2.0 also reproduces the activity variation induced by a plage on the slowly rotating star α Cen B, which is not possible using previous simulations. Following these results, SOAP 2.0 can be used to estimate the signal induced by spots and plages, but also to correct for it when a major active region is dominating the RV variation.

  18. SOAP 2.0: a tool to estimate the photometric and radial velocity variations induced by stellar spots and plages

    Energy Technology Data Exchange (ETDEWEB)

    Dumusque, X. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Boisse, I. [Laboratoire d' Astrophysique de Marseille (UMR 6110), Technopole de Château-Gombert, 38 rue Frédéric Joliot-Curie, F-13388 Marseille Cedex 13 (France); Santos, N. C., E-mail: xdumusque@cfa.harvard.edu [Centro de Astrofìsica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2014-12-01

    This paper presents SOAP 2.0, a new version of the Spot Oscillation And Planet (SOAP) code that estimates in a simple way the photometric and radial velocity (RV) variations induced by active regions. The inhibition of the convective blueshift (CB) inside active regions is considered, as well as the limb brightening effect of plages, a quadratic limb darkening law, and a realistic spot and plage contrast ratio. SOAP 2.0 shows that the activity-induced variation of plages is dominated by the inhibition of the CB effect. For spots, this effect becomes significant only for slow rotators. In addition, in the case of a major active region dominating the activity-induced signal, the ratio between the FWHM and the RV peak-to-peak amplitudes of the cross correlation function can be used to infer the type of active region responsible for the signal for stars with v sin i ≤8 km s{sup –1}. A ratio smaller than three implies a spot, while a larger ratio implies a plage. Using the observation of HD 189733, we show that SOAP 2.0 manages to reproduce the activity variation as well as previous simulations when a spot is dominating the activity-induced variation. In addition, SOAP 2.0 also reproduces the activity variation induced by a plage on the slowly rotating star α Cen B, which is not possible using previous simulations. Following these results, SOAP 2.0 can be used to estimate the signal induced by spots and plages, but also to correct for it when a major active region is dominating the RV variation.

  19. Radial heterogeneity of some analytical columns used in high-performance liquid chromatography.

    Science.gov (United States)

    Abia, Jude A; Mriziq, Khaled S; Guiochon, Georges A

    2009-04-10

    An on-column electrochemical microdetector was used to determine accurately the radial distribution of the mobile phase velocity and of the column efficiency at the exit of three common analytical columns, namely a 100 mm x 4.6mm C18 bonded silica-based monolithic column, a 150 mm x 4.6mm column packed with 2.7 microm porous shell particles of C18 bonded silica (HALO), and a 150 mm x 4.6mm column packed with 3 microm fully porous C18 bonded silica particles (LUNA). The results obtained demonstrate that all three columns are not radially homogeneous. In all three cases, the efficiency was found to be lower in the wall region of the column than in its core region (the central core with a radius of 1/3 the column inner radius). The decrease in local efficiency from the core to the wall regions was lower in the case of the monolith (ca. 25%) than in that of the two particle-packed columns (ca. 35-50%). The mobile phase velocity was found to be ca. 1.5% higher in the wall than in the core region of the monolithic column while, in contrast, it was ca. 2.5-4.0% lower in the wall region for the two particle-packed columns.

  20. Predictions of Planet Detections with Near-infrared Radial Velocities in the Upcoming SPIRou Legacy Survey-planet Search

    Science.gov (United States)

    Cloutier, Ryan; Artigau, Étienne; Delfosse, Xavier; Malo, Lison; Moutou, Claire; Doyon, René; Donati, Jean-Francois; Cumming, Andrew; Dumusque, Xavier; Hébrard, Élodie; Menou, Kristen

    2018-02-01

    The SPIRou near-infrared spectropolarimeter is destined to begin science operations at the Canada–France–Hawaii Telescope in mid-2018. One of the instrument’s primary science goals is to discover the closest exoplanets to the solar system by conducting a three- to five-year long radial velocity survey of nearby M dwarfs at an expected precision of ∼1 m s‑1, the SPIRou Legacy Survey-Planet Search (SLS-PS). In this study, we conduct a detailed Monte Carlo simulation of the SLS-PS using our current understanding of the occurrence rate of M dwarf planetary systems and physical models of stellar activity. From simultaneous modeling of planetary signals and activity, we predict the population of planets to be detected in the SLS-PS. With our fiducial survey strategy and expected instrument performance over a nominal survey length of ∼3 years, we expect SPIRou to detect {85.3}-12.4+29.3 planets including {20.0}-7.2+16.8 habitable-zone planets and {8.1}-3.2+7.6 Earth-like planets from a sample of 100 M1–M8.5 dwarfs out to 11 pc. By studying mid-to-late M dwarfs previously inaccessible to existing optical velocimeters, SPIRou will put meaningful constraints on the occurrence rate of planets around those stars including the value of {η }\\oplus at an expected level of precision of ≲ 45 % . We also predict that a subset of {46.7}-6.0+16.0 planets may be accessible with dedicated high-contrast imagers on the next generation of extremely large telescopes including {4.9}-2.0+4.7 potentially imagable Earth-like planets. Lastly, we compare the results of our fiducial survey strategy to other foreseeable survey versions to quantify which strategy is optimized to reach the SLS-PS science goals. The results of our simulations are made available to the community on GitHub (https://github.com/r-cloutier/SLSPS_Simulations).

  1. Radial polar histogram: obstacle avoidance and path planning for robotic cognition and motion control

    Science.gov (United States)

    Wang, Po-Jen; Keyawa, Nicholas R.; Euler, Craig

    2012-01-01

    In order to achieve highly accurate motion control and path planning for a mobile robot, an obstacle avoidance algorithm that provided a desired instantaneous turning radius and velocity was generated. This type of obstacle avoidance algorithm, which has been implemented in California State University Northridge's Intelligent Ground Vehicle (IGV), is known as Radial Polar Histogram (RPH). The RPH algorithm utilizes raw data in the form of a polar histogram that is read from a Laser Range Finder (LRF) and a camera. A desired open block is determined from the raw data utilizing a navigational heading and an elliptical approximation. The left and right most radii are determined from the calculated edges of the open block and provide the range of possible radial paths the IGV can travel through. In addition, the calculated obstacle edge positions allow the IGV to recognize complex obstacle arrangements and to slow down accordingly. A radial path optimization function calculates the best radial path between the left and right most radii and is sent to motion control for speed determination. Overall, the RPH algorithm allows the IGV to autonomously travel at average speeds of 3mph while avoiding all obstacles, with a processing time of approximately 10ms.

  2. Mass estimates from optical-light curves for binary X-ray sources

    International Nuclear Information System (INIS)

    Avni, Y.

    1978-01-01

    The small amplitude variations with orbital phase of the optical light from X-ray binaries are caused by the changing geometrical aspect of the primary as seen by a fixed observer. The shape and the amplitude of the light curve depends on the stellar masses and on the orbital elements. The light curve can, therefore, be used to determine, or set limits on, the parameters of the binary system. A self-consistent procedure for the calculation of the light curve can be formulated if the primary is formulated if the primary is uniformly rotating at an angular velocity equal to the angular velocity of its orbital revolution in a circular orbit, and if the primary is in a hydrostatic and radiative equilibrium in the co-rotating frame. When the primary is further approximated to be centrally condensed, the above set of assumptions is called the standard picture. The standard picture is described, its validity discussed and its application to various systems reviewed. (C.F.)

  3. Measurement of fast-changing low velocities by photonic Doppler velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Song Hongwei; Wu Xianqian; Huang Chenguang; Wei Yangpeng; Wang Xi [Key Laboratory for Hydrodynamics and Ocean Engineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-07-15

    Despite the increasing popularity of photonic Doppler velocimetry (PDV) in shock wave experiments, its capability of capturing low particle velocities while changing rapidly is still questionable. The paper discusses the performance of short time Fourier transform (STFT) and continuous wavelet transform (CWT) in processing fringe signals of fast-changing low velocities measured by PDV. Two typical experiments are carried out to evaluate the performance. In the laser shock peening test, the CWT gives a better interpretation to the free surface velocity history, where the elastic precursor, main plastic wave, and elastic release wave can be clearly identified. The velocities of stress waves, Hugoniot elastic limit, and the amplitude of shock pressure induced by laser can be obtained from the measurement. In the Kolsky-bar based tests, both methods show validity of processing the longitudinal velocity signal of incident bar, whereas CWT improperly interprets the radial velocity of the shocked sample at the beginning period, indicating the sensitiveness of the CWT to the background noise. STFT is relatively robust in extracting waveforms of low signal-to-noise ratio. Data processing method greatly affects the temporal resolution and velocity resolution of a given fringe signal, usually CWT demonstrates a better local temporal resolution and velocity resolution, due to its adaptability to the local frequency, also due to the finer time-frequency product according to the uncertainty principle.

  4. Characterization of a Twin-Entry Radial Turbine under Pulsatile Flow Condition

    Directory of Open Access Journals (Sweden)

    Mahfoudh Cerdoun

    2016-01-01

    Full Text Available In automotive applications radial gas turbines are commonly fitted with a twin-entry volute connected to a divided exhaust manifold, ensuring a better scavenge process owing to less interference between engines’ cylinders. This paper is concerned with the study of the unsteady performances related to the pulsating flows of a twin-entry radial turbine in engine-like conditions and the hysteresis-like behaviour during the pulses period. The results show that the aerodynamic performances deviate noticeably from the steady state and depend mainly on the time shifting between the actual output power and the isentropic power, which is distantly related to the apparent length. The maximum of efficiency and output shaft power are accompanied by low entropy generation through the shroud entry side, and their instantaneous behaviours tend to follow mainly the inlet total pressure curve. As revealed a billow is created by the interaction between the main flow and the infiltrated flow, affecting the flow incidence at rotor entry and producing high losses.

  5. Plasma flow in a curved magnetic field

    International Nuclear Information System (INIS)

    Lindberg, L.

    1977-09-01

    A beam of collisionless plasma is injected along a longitudinal magnetic field into a region of curved magnetic field. Two unpredicted phenomena are observed: The beam becomes deflected in the direction opposite to that in which the field is curved, and it contracts to a flat slab in the plane of curvature of the magnetic field. The phenomenon is of a general character and can be expected to occur in a very wide range of densities. The lower density limit is set by the condition for self-polarization, nm sub(i)/epsilon 0 B 2 >> 1 or, which is equivalent, c 2 /v 2 sub(A) >> 1, where c is the velocity of light, and v sup(A) the Alfven velocity. The upper limit is presumably set by the requirement ωsub(e)tau(e) >> 1. The phenomenon is likely to be of importance e.g. for injection of plasma into magnetic bottles and in space and solar physics. The paper illustrates the comlexity of plasma flow phenomena and the importance of close contact between experimental and theoretical work. (author)

  6. Multiperiodicity in the light curve of Alpha Orionis

    International Nuclear Information System (INIS)

    Karovska, M.

    1987-01-01

    Alpha Ori, a supergiant star classified as M2 Iab, is characterized by pronounced variability encompassing most of its observed parameters. Variability on two different time scales has been observed in the light and velocity curves: a long period variation of about 6 years and superposed on this, irregular fluctuations having a time scale of several hundred days. This paper reports the results of Fourier analysis of more than 60- years of AAVSO (American Association of Variable Stars Observers) data which suggest a multiperiodicity in the light curve of α Ori

  7. Low frequency oscillatory flow in a rotating curved pipe

    Institute of Scientific and Technical Information of China (English)

    陈华军; 章本照; 苏霄燕

    2003-01-01

    The low frequency oscillatory flow in a rotating curved pipe was studied by using the method of bi-parameter perturbation. Perturbation solutions up to the second order were obtained and the effects of rotationon the low frequency oscillatory flow were examined in detail, The results indicated that there exists evident difference between the low frequency oscillatory flow in a rotating curved pipe and in a curved pipe without ro-tation. During a period, four secondary vortexes may exist on the circular cross-section and the distribution of axial velocity and wall shear stress are related to the ratio of the Coriolis foree to centrifugal foree and the axial pressure gradient.

  8. Low frequency oscillatory flow in a rotating curved pipe

    Institute of Scientific and Technical Information of China (English)

    陈华军; 章本照; 苏霄燕

    2003-01-01

    The low frequency oscillatory flow in a rotating curved pipe was studied by using the method of bi-parameter perturbation. Perturbation solutions up to the second order were obtained and the effects of rotation on the low frequency oscillatory flow were examined in detail. The results indicated that there exists evident difference between the low frequency oscillatory flow in a rotating curved pipe and in a curved pipe without rotation. During a period, four secondary vortexes may exist on the circular cross-section and the distribution of axial velocity and wall shear stress are related to the ratio of the Coriolis force to centrifugal force and the axial pressure gradient.

  9. The effect of magnetic field configuration on particle pinch velocity in compact helical system (CHS)

    International Nuclear Information System (INIS)

    Iguchi, H.; Ida, K.; Yamada, H.

    1994-01-01

    Radial particle transport has been experimentally studied in the low-aspect-ratio heliotron/torsatron device CHS. A non-diffusive outward particle flow (inverse pinch) is observed in the magnetic configuration with the magnetic axis shifted outward, while an inward pinch, like in tokamaks, is observed with the magnetic axis shifted inward. This change in the direction of anomalous particle flow is not due to the reversal of temperature gradient nor the radial electric field. The observation suggests that the particle pinch velocity is sensitive to the magnetic field structure. (author)

  10. The innate origin of radial and vertical gradients in a simulated galaxy disc

    Science.gov (United States)

    Navarro, Julio F.; Yozin, Cameron; Loewen, Nic; Benítez-Llambay, Alejandro; Fattahi, Azadeh; Frenk, Carlos S.; Oman, Kyle A.; Schaye, Joop; Theuns, Tom

    2018-05-01

    We examine the origin of radial and vertical gradients in the age/metallicity of the stellar component of a galaxy disc formed in the APOSTLE cosmological hydrodynamical simulations. Some of these gradients resemble those in the Milky Way, where they have sometimes been interpreted as due to internal evolution, such as scattering off giant molecular clouds, radial migration driven by spiral patterns, or orbital resonances with a bar. Secular processes play a minor role in the simulated galaxy, which lacks strong spiral or bar patterns, and where such gradients arise as a result of the gradual enrichment of a gaseous disc that is born thick but thins as it turns into stars and settles into centrifugal equilibrium. The settling is controlled by the feedback of young stars; which links the star formation, enrichment, and equilibration time-scales, inducing radial and vertical gradients in the gaseous disc and its descendent stars. The kinematics of coeval stars evolve little after birth and provide a faithful snapshot of the gaseous disc structure at the time of their formation. In this interpretation, the age-velocity dispersion relation would reflect the gradual thinning of the disc rather than the importance of secular orbit scattering; the outward flaring of stars would result from the gas disc flare rather than from radial migration; and vertical gradients would arise because the gas disc gradually thinned as it enriched. Such radial and vertical trends might just reflect the evolving properties of the parent gaseous disc, and are not necessarily the result of secular evolutionary processes.

  11. Low-to-high confinement transition mediated by turbulence radial wave number spectral shift in a fusion plasma

    DEFF Research Database (Denmark)

    Xu, G. S.; Wan, B. N.; Wang, H. Q.

    2016-01-01

    A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett.110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wa...

  12. Effects of the radial electric field in a quasisymmetric stellarator

    International Nuclear Information System (INIS)

    Landreman, Matt; Catto, Peter J

    2011-01-01

    Recent calculations have shown that a radial electric field can significantly alter the neoclassical ion heat flux, ion flow, bootstrap current and residual zonal flow in a tokamak, even when the E x B drift is much smaller than the ion thermal speed. Here we show the novel analytical methods used in these calculations can be adapted to a quasisymmetric stellarator. The methods are based on using the conserved helical momentum ψ * instead of the poloidal or toroidal flux as a radial coordinate in the kinetic equation. The banana-regime calculations also employ a model collision operator that keeps only the velocity-space derivatives normal to the trapped-passing boundary, even as this boundary is shifted and deformed by the E x B drift. We prove the isomorphism between quasisymmetric stellarators and tokamaks extends to the finite-E x B generalizations of both banana-regime and plateau-regime neoclassical theory and the residual zonal flow. The plateau-regime results may be relevant to the HSX stellarator, and both the plateau- and banana-regime results can be used to validate stellarator transport codes.

  13. Hα line in the spectrum of the HDE 245770 star

    International Nuclear Information System (INIS)

    Vojkhanskaya, N.F.

    1980-01-01

    The emission line Hα in the spectrum of HDE 245770 is devided into constant and variable components. The latter is shown to be a line arising in the vicinity of the degenerated components of the system. The radial velocity of the constant part of the line does not vary and equals to +10 km/s. For the variable line component a curve of radial velocities that varies with a period of 104 s is obtained. The period is the same as that of pulsations of the X-ray flux from the variable source A 0535+26

  14. SPOTTED STAR LIGHT CURVES WITH ENHANCED PRECISION

    International Nuclear Information System (INIS)

    Wilson, R. E.

    2012-01-01

    The nearly continuous timewise coverage of recent photometric surveys is free of the large gaps that compromise attempts to follow starspot growth and decay as well as motions, thereby giving incentive to improve computational precision for modeled spots. Due to the wide variety of star systems in the surveys, such improvement should apply to light/velocity curve models that accurately include all the main phenomena of close binaries and rotating single stars. The vector fractional area (VFA) algorithm that is introduced here represents surface elements by small sets of position vectors so as to allow accurate computation of circle-triangle overlap by spherical geometry. When computed by VFA, spots introduce essentially no noticeable scatter in light curves at the level of one part in 10,000. VFA has been put into the Wilson-Devinney light/velocity curve program and all logic and mathematics are given so as to facilitate entry into other such programs. Advantages of precise spot computation include improved statistics of spot motions and aging, reduced computation time (intrinsic precision relaxes needs for grid fineness), noise-free illustration of spot effects in figures, and help in guarding against false positives in exoplanet searches, where spots could approximately mimic transiting planets in unusual circumstances. A simple spot growth and decay template quantifies time profiles, and specifics of its utilization in differential corrections solutions are given. Computational strategies are discussed, the overall process is tested in simulations via solutions of synthetic light curve data, and essential simulation results are described. An efficient time smearing facility by Gaussian quadrature can deal with Kepler mission data that are in 30 minute time bins.

  15. Modelling Velocity Spectra in the Lower Part of the Planetary Boundary Layer

    DEFF Research Database (Denmark)

    Olesen, H.R.; Larsen, Søren Ejling; Højstrup, Jørgen

    1984-01-01

    of the planetary boundary layer. Knowledge of the variation with stability of the (reduced) frequency f, for the spectral maximum is utilized in this modelling. Stable spectra may be normalized so that they adhere to one curve only, irrespective of stability, and unstable w-spectra may also be normalized to fit...... one curve. The problem of using filtered velocity variances when modelling spectra is discussed. A simplified procedure to provide a first estimate of the filter effect is given. In stable, horizontal velocity spectra, there is often a ‘gap’ at low frequencies. Using dimensional considerations...... and the spectral model previously derived, an expression for the gap frequency is found....

  16. Gyrokinetic full f analysis of electric field dynamics and poloidal velocity in the FT2-tokamak configuration

    International Nuclear Information System (INIS)

    Leerink, S.; Heikkinen, J. A.; Janhunen, S. J.; Kiviniemi, T. P.; Nora, M.; Ogando, F.

    2008-01-01

    The ELMFIRE gyrokinetic simulation code has been used to perform full f simulations of the FT-2 tokamak. The dynamics of the radial electric field and the creation of poloidal velocity in the presence of turbulence are presented.

  17. Upper mantle structure of shear-waves velocities and stratification of anisotropy in the Afar Hotspot region

    Science.gov (United States)

    Sicilia, D.; Montagner, J.-P.; Cara, M.; Stutzmann, E.; Debayle, E.; Lépine, J.-C.; Lévêque, J.-J.; Beucler, E.; Sebai, A.; Roult, G.; Ayele, A.; Sholan, J. M.

    2008-12-01

    The Afar area is one of the biggest continental hotspots active since about 30 Ma. It may be the surface expression of a mantle "plume" related to the African Superswell. Central Africa is also characterized by extensive intraplate volcanism. Around the same time (30 Ma), volcanic activity re-started in several regions of the African plate and hotspots such as Darfur, Tibesti, Hoggar and Mount Cameroon, characterized by a significant though modest volcanic production. The interactions of mantle upwelling with asthenosphere, lithosphere and crust remain unclear and seismic anisotropy might help in investigating these complex interactions. We used data from the global seismological permanent FDSN networks (GEOSCOPE, IRIS, MedNet, GEO- FON, etc.), from the temporary PASSCAL experiments in Tanzania and Saudi Arabia and a French deployment of 5 portable broadband stations surrounding the Afar Hotspot. A classical two-step tomographic inversion from surface waves performed in the Horn of Africa with selected Rayleigh wave and Love wave seismograms leads to a 3D-model of both S V velocities and azimuthal anisotropy, as well as radial SH/ SV anisotropy, with a lateral resolution of 500 km. The region is characterized by low shear-wave velocities beneath the Afar Hotspot, the Red Sea, the Gulf of Aden and East of the Tanzania Craton to 400 km depth. High velocities are present in the Eastern Arabia and the Tanzania Craton. The results of this study enable us to rule out a possible feeding of the Central Africa hotspots from the "Afar plume" above 150-200 km. The azimuthal anisotropy displays a complex pattern near the Afar Hotspot. Radial anisotropy, although poorly resolved laterally, exhibits S H slower than S V waves down to about 150 km depth, and a reverse pattern below. Both azimuthal and radial anisotropies show a stratification of anisotropy at depth, corresponding to different physical processes. These results suggest that the Afar hotspot has a different and

  18. NOISY DISPERSION CURVE PICKING (NDCP): a Matlab friendly suite package for fully control dispersion curve picking

    Science.gov (United States)

    Granados, I.; Calo, M.; Ramos, V.

    2017-12-01

    We developed a Matlab suite package (NDCP, Noisy Dispersion Curve Picking) that allows a full control over parameters to identify correctly group velocity dispersion curves in two types of datasets: correlograms between two stations or surface wave records from earthquakes. Using the frequency-time analysis (FTAN), the procedure to obtain the dispersion curves from records with a high noise level becomes difficult, and sometimes, the picked curve result in a misinterpreted character. For correlogram functions, obtained with cross-correlation of noise records or earthquake's coda, a non-homogeneous noise sources distribution yield to a non-symmetric Green's function (GF); to retrieve the complete information contained in there, NDCP allows to pick the dispersion curve in the time domain both in the causal and non-causal part of the GF. Then the picked dispersion curve is displayed on the FTAN diagram to in order to check if it matches with the maximum of the signal energy avoiding confusion with overtones or spike of noise. To illustrate how NDCP performs, we show exemple using: i) local correlograms functions obtained from sensors deployed into a volcanic caldera (Los Humeros, in Puebla, Mexico), ii) regional correlograms functions between two stations of the National Seismological Service (SSN, Servicio Sismológico Nacional in Spanish), and iii) surface wave seismic record for an earthquake located in the Pacific Ocean coast of Mexico and recorded by the SSN. This work is supported by the GEMEX project (Geothermal Europe-Mexico consortium).

  19. Functional measurements based on feature tracking of cine magnetic resonance images identify left ventricular segments with myocardial scar

    Directory of Open Access Journals (Sweden)

    Nylander Eva

    2009-11-01

    Full Text Available Abstract Background The aim of the study was to perform a feature tracking analysis on cine magnetic resonance (MR images to elucidate if functional measurements of the motion of the left ventricular wall may detect scar defined with gadolinium enhanced MR. Myocardial contraction can be measured in terms of the velocity, displacement and local deformation (strain of a particular myocardial segment. Contraction of the myocardial wall will be reduced in the presence of scar and as a consequence of reduced myocardial blood flow. Methods Thirty patients (3 women and 27 men were selected based on the presence or absence of extensive scar in the anteroseptal area of the left ventricle. The patients were investigated in stable clinical condition, 4-8 weeks post ST-elevation myocardial infarction treated with percutaneous coronary intervention. Seventeen had a scar area >75% in at least one anteroseptal segment (scar and thirteen had scar area Results In the scar patients, segments with scar showed lower functional measurements than remote segments. Radial measurements of velocity, displacement and strain performed better in terms of receiver-operator-characteristic curves (ROC than the corresponding longitudinal measurements. The best area-under-curve was for radial strain, 0.89, where a cut-off value of 38.8% had 80% sensitivity and 86% specificity for the detection of a segment with scar area >50%. As a percentage of the mean, intraobserver variability was 16-14-26% for radial measurements of displacement-velocity-strain and corresponding interobserver variability was 13-12-18%. Conclusion Feature tracking analysis of cine-MR displays velocity, displacement and strain in the radial and longitudinal direction and may be used for the detection of transmural scar. The accuracy and repeatability of the radial functional measurements is satisfactory and global measures agree.

  20. A Method of Initial Velocity Measurement for Rocket Projectile

    Directory of Open Access Journals (Sweden)

    Zhang Jiancheng

    2017-01-01

    Full Text Available In this paper, a novel method is proposed to measure the initial velocity of the rocket based on STFT (the short-time Fourier transform and the WT (wavelet transform. The radar echo signal processing procedure involves the following steps: sampling process, overlapping windows, wavelet decomposition and reconstruction, computing FFT (Fast Fourier Transform and spectrum analysis, power spectrum peak detection. Then, according to the peak of the detection power spectrum, the corresponding Doppler frequency is obtained. Finally, on the basis of the relationship between Doppler frequency and instantaneous velocity, the V-T curve is drawn in MATLAB to obtain the initial velocity of the rocket muzzle.

  1. Turbulent transport reduction by E x B velocity shear during edge plasma biasing in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Van Oost, G. [Dept. of Applied Physics, Ghent Univ., Ghent (Belgium); Adamek, J.; Antoni, V.; Balan, P.; Boedo, J.A.; Devynck, P.; Duran, I.; Eliseev, L.; Gunn, J.P.; Hron, M.; Ionita, C.; Jachmich, S.; Kirnev, G.S.; Martines, E.; Melnikov, A.; Peleman, P.; Schrittwieser, R.; Silva, C.; Stoeckel, J.; Tendler, M.; Varandas, C.; Van Schoor, M.; Vershkov, V.; Weynants, R.R.

    2004-07-01

    Experiments in the tokamaks TEXTOR, CASTOR, T-10 and ISTTOK have provided new and complementary evidence on the physics of the universal mechanism of E x B velocity shear stabilization of turbulence, concomitant transport barrier formation and radial conductivity by using various edge biasing techniques. (orig.)

  2. How burial diagenesis of chalk sediments controls sonic velocity and porosity

    DEFF Research Database (Denmark)

    Fabricius, Ida Lykke

    2003-01-01

    Based on P-wave velocity and density data, a new elastic model for chalk sediments is established. The model allows the construction of a series of isoframe (IF) curves, each representing a constant part of the mineral phase contributing to the solid frame. The IF curves can be related to the pro......Based on P-wave velocity and density data, a new elastic model for chalk sediments is established. The model allows the construction of a series of isoframe (IF) curves, each representing a constant part of the mineral phase contributing to the solid frame. The IF curves can be related.......1 or higher. Upon burial, the sediments lose porosity by mechanical compaction, and concurrently, the calcite particles recrystallize into progressively more equant shapes. High compaction rates may keep the particles in relative motion, whereas low compaction rates allow the formation of contact cement...... this process testifies to the absence of chemical compaction by calcite-calcite pressure dissolution, as well as to the porosity-preserving effect of contact cementation. At sufficient burial stress, the presence of stylolites indicates that pressure dissolution takes place between calcite., and silicates...

  3. Adaptive H∞ nonlinear velocity tracking using RBFNN for linear DC brushless motor

    Science.gov (United States)

    Tsai, Ching-Chih; Chan, Cheng-Kain; Li, Yi Yu

    2012-01-01

    This article presents an adaptive H ∞ nonlinear velocity control for a linear DC brushless motor. A simplified model of this motor with friction is briefly recalled. The friction dynamics is described by the Lu Gre model and the online tuning radial basis function neural network (RBFNN) is used to parameterise the nonlinear friction function and un-modelled errors. An adaptive nonlinear H ∞ control method is then proposed to achieve velocity tracking, by assuming that the upper bounds of the ripple force, the changeable load and the nonlinear friction can be learned by the RBFNN. The closed-loop system is proven to be uniformly bounded using the Lyapunov stability theory. The feasibility and the efficacy of the proposed control are exemplified by conducting two velocity tracking experiments.

  4. New Insights on Planet Formation in WASP-47 from a Simultaneous Analysis of Radial Velocities and Transit Timing Variations

    Science.gov (United States)

    Weiss, Lauren M.; Deck, Katherine M.; Sinukoff, Evan; Petigura, Erik A.; Agol, Eric; Lee, Eve J.; Becker, Juliette C.; Howard, Andrew W.; Isaacson, Howard; Crossfield, Ian J. M.; Fulton, Benjamin J.; Hirsch, Lea; Benneke, Björn

    2017-06-01

    Measuring precise planet masses, densities, and orbital dynamics in individual planetary systems is an important pathway toward understanding planet formation. The WASP-47 system has an unusual architecture that motivates a complex formation theory. The system includes a hot Jupiter (“b”) neighbored by interior (“e”) and exterior (“d”) sub-Neptunes, and a long-period eccentric giant planet (“c”). We simultaneously modeled transit times from the Kepler K2 mission and 118 radial velocities to determine the precise masses, densities, and Keplerian orbital elements of the WASP-47 planets. Combining RVs and TTVs provides a better estimate of the mass of planet d (13.6+/- 2.0 {M}\\oplus ) than that obtained with only RVs (12.75+/- 2.70 {M}\\oplus ) or TTVs (16.1+/- 3.8 {M}\\oplus ). Planets e and d have high densities for their size, consistent with a history of photoevaporation and/or formation in a volatile-poor environment. Through our RV and TTV analysis, we find that the planetary orbits have eccentricities similar to the solar system planets. The WASP-47 system has three similarities to our own solar system: (1) the planetary orbits are nearly circular and coplanar, (2) the planets are not trapped in mean motion resonances, and (3) the planets have diverse compositions. None of the current single-process exoplanet formation theories adequately reproduce these three characteristics of the WASP-47 system (or our solar system). We propose that WASP-47, like the solar system, formed in two stages: first, the giant planets formed in a gas-rich disk and migrated to their present locations, and second, the high-density sub-Neptunes formed in situ in a gas-poor environment.

  5. Pulsar velocity observations: Correlations, interpretations, and discussion

    International Nuclear Information System (INIS)

    Helfand, D.J.; Tademaru, E.

    1977-01-01

    From an examination of the current sample of 12 pulsars with measured proper motions and the z-distribution of the much larger group of over 80 sources with measured period derivatives, we develop a self-consistent picture of pulsar evolution. The apparent tendency of pulsars to move parallel to the galactic plane is explained as the result of various selection effects. A method for calculating the unmeasurable radial velocity of a pulsar is presented; it is shown that the total space velocities thus obtained are consistent with the assumption of an extreme Population I origin for pulsars which subsequently move away from the plane with a large range of velocities. The time scale for pulsar magnetic field decay is derived from dynamical considerations. A strong correlation of the original pulsar field strength with the magnitude of pulsar velocity is discussed. This results in the division of pulsars into two classes: Class A sources characterized by low space velocities, a small scale height, and low values of P 0 P 0 ; and Class B sources with a large range of velocities (up to 1000 km s -1 ), a much greater scale height, and larger values of initial field strength. It is postulated that Class A sources originate in tight binaries where their impulse acceleration at birth is insufficient to remove them from the system, while the Class B sources arise from single stars or loosely bound binaries and are accelerated to high velocities by their asymmetric radiation force. The evolutionary picture which is developed is shown to be consistent with a number of constraints imposed by supernova rates, the relative frequency of massive binaries and Class A sources, theoretical field-decay times, and the overall pulsar galactic distribution

  6. Antiproton compression and radial measurements

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jorgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile, and its relation to that of the electron plasma. We also measure the outer radial profile by ejecting antiprotons to the trap wall using an octupole magnet.

  7. Nonlinear pulsations of luminous He stars

    International Nuclear Information System (INIS)

    Proffitt, C.R.; Cox, A.N.

    1986-01-01

    Radial pulsations in models of R Cor Bor stars and BD + 1 0 4381 have been studied with a nonlinear hydrodynamic pulsation code. Comparisons are made with previous calculations and with observed light and velocity curves. 13 refs., 2 tabs

  8. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure

    Directory of Open Access Journals (Sweden)

    Liying Jiang

    2011-12-01

    Full Text Available In this work, the problem of a curved functionally graded piezoelectric (FGP actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment.

  9. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure.

    Science.gov (United States)

    Yan, Zhi; Zaman, Mostafa; Jiang, Liying

    2011-12-12

    In this work, the problem of a curved functionally graded piezoelectric (FGP) actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g 31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment.

  10. Ab initio velocity-field curves in monoclinic β-Ga2O3

    Science.gov (United States)

    Ghosh, Krishnendu; Singisetti, Uttam

    2017-07-01

    We investigate the high-field transport in monoclinic β-Ga2O3 using a combination of ab initio calculations and full band Monte Carlo (FBMC) simulation. Scattering rate calculation and the final state selection in the FBMC simulation use complete wave-vector (both electron and phonon) and crystal direction dependent electron phonon interaction (EPI) elements. We propose and implement a semi-coarse version of the Wannier-Fourier interpolation method [Giustino et al., Phys. Rev. B 76, 165108 (2007)] for short-range non-polar optical phonon (EPI) elements in order to ease the computational requirement in FBMC simulation. During the interpolation of the EPI, the inverse Fourier sum over the real-space electronic grids is done on a coarse mesh while the unitary rotations are done on a fine mesh. This paper reports the high field transport in monoclinic β-Ga2O3 with deep insight into the contribution of electron-phonon interactions and velocity-field characteristics for electric fields ranging up to 450 kV/cm in different crystal directions. A peak velocity of 2 × 107 cm/s is estimated at an electric field of 200 kV/cm.

  11. A HIGH-PRECISION NEAR-INFRARED SURVEY FOR RADIAL VELOCITY VARIABLE LOW-MASS STARS USING CSHELL AND A METHANE GAS CELL

    International Nuclear Information System (INIS)

    Gagné, Jonathan; Plavchan, Peter; Gao, Peter; Anglada-Escude, Guillem; Furlan, Elise; Brinkworth, Carolyn; Ciardi, David R.; Davison, Cassy; Henry, Todd J.; White, Russel; Tanner, Angelle; Riedel, Adric R.; Latham, David; Johnson, John A.; Bottom, Michael; Mills, Sean; Beichman, Chas; Wallace, Kent; Mennesson, Bertrand; Von Braun, Kaspar

    2016-01-01

    We present the results of a precise near-infrared (NIR) radial velocity (RV) survey of 32 low-mass stars with spectral types K2–M4 using CSHELL at the NASA InfraRed Telescope Facility in the K band with an isotopologue methane gas cell to achieve wavelength calibration and a novel, iterative RV extraction method. We surveyed 14 members of young (≈25–150 Myr) moving groups, the young field star ε Eridani, and 18 nearby (<25 pc) low-mass stars and achieved typical single-measurement precisions of 8–15 m s −1 with a long-term stability of 15–50 m s −1 over longer baselines. We obtain the best NIR RV constraints to date on 27 targets in our sample, 19 of which were never followed by high-precision RV surveys. Our results indicate that very active stars can display long-term RV variations as low as ∼25–50 m s −1 at ≈2.3125 μ m, thus constraining the effect of jitter at these wavelengths. We provide the first multiwavelength confirmation of GJ 876 bc and independently retrieve orbital parameters consistent with previous studies. We recovered RV variabilities for HD 160934 AB and GJ 725 AB that are consistent with their known binary orbits, and nine other targets are candidate RV variables with a statistical significance of 3 σ –5 σ . Our method, combined with the new iSHELL spectrograph, will yield long-term RV precisions of ≲5 m s −1 in the NIR, which will allow the detection of super-Earths near the habitable zone of mid-M dwarfs.

  12. Growth Curves for Girls with Turner Syndrome

    Directory of Open Access Journals (Sweden)

    Fabio Bertapelli

    2014-01-01

    Full Text Available The objective of this study was to review the growth curves for Turner syndrome, evaluate the methodological and statistical quality, and suggest potential growth curves for clinical practice guidelines. The search was carried out in the databases Medline and Embase. Of 1006 references identified, 15 were included. Studies constructed curves for weight, height, weight/height, body mass index, head circumference, height velocity, leg length, and sitting height. The sample ranged between 47 and 1,565 (total = 6,273 girls aged 0 to 24 y, born between 1950 and 2006. The number of measures ranged from 580 to 9,011 (total = 28,915. Most studies showed strengths such as sample size, exclusion of the use of growth hormone and androgen, and analysis of confounding variables. However, the growth curves were restricted to height, lack of information about selection bias, limited distributional properties, and smoothing aspects. In conclusion, we observe the need to construct an international growth reference for girls with Turner syndrome, in order to provide support for clinical practice guidelines.

  13. Designing the Alluvial Riverbeds in Curved Paths

    Science.gov (United States)

    Macura, Viliam; Škrinár, Andrej; Štefunková, Zuzana; Muchová, Zlatica; Majorošová, Martina

    2017-10-01

    The paper presents the method of determining the shape of the riverbed in curves of the watercourse, which is based on the method of Ikeda (1975) developed for a slightly curved path in sandy riverbed. Regulated rivers have essentially slightly and smoothly curved paths; therefore, this methodology provides the appropriate basis for river restoration. Based on the research in the experimental reach of the Holeška Brook and several alluvial mountain streams the methodology was adjusted. The method also takes into account other important characteristics of bottom material - the shape and orientation of the particles, settling velocity and drag coefficients. Thus, the method is mainly meant for the natural sand-gravel material, which is heterogeneous and the particle shape of the bottom material is very different from spherical. The calculation of the river channel in the curved path provides the basis for the design of optimal habitat, but also for the design of foundations of armouring of the bankside of the channel. The input data is adapted to the conditions of design practice.

  14. Shear-wave velocities beneath the Harrat Rahat volcanic field, Saudi Arabia, using ambient seismic noise analysis

    Science.gov (United States)

    Civilini, F.; Mooney, W.; Savage, M. K.; Townend, J.; Zahran, H. M.

    2017-12-01

    We present seismic shear-velocities for Harrat Rahat, a Cenozoic bimodal alkaline volcanic field in west-central Saudi Arabia, using seismic tomography from natural ambient noise. This project is part of an overall effort by the Saudi Geological Survey and the United States Geological Survey to describe the subsurface structure and assess hazards within the Saudi Arabian shield. Volcanism at Harrat Rahat began approximately 10 Ma, with at least three pulses around 10, 5, and 2 Ma, and at least several pulses in the Quaternary from 1.9 Ma to the present. This area is instrumented by 14 broadband Nanometrics Trillium T120 instruments across an array aperture of approximately 130 kilometers. We used a year of recorded natural ambient noise to determine group and phase velocity surface wave dispersion maps with a 0.1 decimal degree resolution for radial-radial, transverse-transverse, and vertical-vertical components of the empirical Green's function. A grid-search method was used to carry out 1D shear-velocity inversions at each latitude-longitude point and the results were interpolated to produce pseudo-3D shear velocity models. The dispersion maps resolved a zone of slow surface wave velocity south-east of the city of Medina spatially correlated with the 1256 CE eruption. A crustal layer interface at approximately 20 km depth was determined by the inversions for all components, matching the results of prior seismic-refraction studies. Cross-sections of the 3D shear velocity models were compared to gravity measurements obtained in the south-east edge of the field. We found that measurements of low gravity qualitatively correlate with low values of shear-velocity below 20 km along the cross-section profile. We apply these methods to obtain preliminary tomography results on the entire Arabian Shield.

  15. Stability of skyrmions on curved surfaces in the presence of a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Santos, V.L., E-mail: vagson.carvalho@usach.cl [Instituto Federal de Educação, Ciência e Tecnologia Baiano - Campus Senhor do Bonfim, Km 04 Estrada da Igara, 48970-000 Senhor do Bonfim, Bahia (Brazil); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Elias, R.G.; Altbir, D. [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Fonseca, J.M. [Universidade Federal de Viçosa, Departamento de Física, Avenida Peter Henry Rolfs s/n, 36570-000 Viçosa, MG (Brazil)

    2015-10-01

    We study the stability and energetics associated to skyrmions appearing as excitations on curved surfaces. Using a continuum model we show that the presence of cylindrically radial and azimuthal fields destabilize the skyrmions that appear in the absence of an external field. Weak fields generate fractional skyrmions while strong magnetic fields yield stable 2π-skyrmions, which have their widths diminished by the magnetic field strength. Under azimuthal fields vortex appears as stable state on the curved surface. - Highlights: • Stability of skyrmions on curved surfaces in the presence of a magnetic field. • Weak fields can destabilize skyrmions. • Strong magnetic fields yield the appearing of 2π-skyrmions. • The width of skyrmions is determined by the curvature and magnetic field strength. • Under azimuthal fields vortex appears as stable states.

  16. Stability of radial swirl flows

    International Nuclear Information System (INIS)

    Dou, H S; Khoo, B C

    2012-01-01

    The energy gradient theory is used to examine the stability of radial swirl flows. It is found that the flow of free vortex is always stable, while the introduction of a radial flow will induce the flow to be unstable. It is also shown that the pure radial flow is stable. Thus, there is a flow angle between the pure circumferential flow and the pure radial flow at which the flow is most unstable. It is demonstrated that the magnitude of this flow angle is related to the Re number based on the radial flow rate, and it is near the pure circumferential flow. The result obtained in this study is useful for the design of vaneless diffusers of centrifugal compressors and pumps as well as other industrial devices.

  17. Type IIP supernova light curves affected by the acceleration of red supergiant winds

    Science.gov (United States)

    Moriya, Takashi J.; Förster, Francisco; Yoon, Sung-Chul; Gräfener, Götz; Blinnikov, Sergei I.

    2018-05-01

    We introduce the first synthetic light-curve model set of Type IIP supernovae exploded within circumstellar media in which the acceleration of the red supergiant winds is taken into account. Because wind acceleration makes the wind velocities near the progenitors low, the density of the immediate vicinity of the red supergiant supernova progenitors can be higher than that extrapolated by using a constant terminal wind velocity. Therefore, even if the mass-loss rate of the progenitor is relatively low, it can have a dense circumstellar medium at the immediate stellar vicinity and the early light curves of Type IIP supernovae are significantly affected by it. We adopt a simple β velocity law to formulate the wind acceleration. We provide bolometric and multicolour light curves of Type IIP supernovae exploding within such accelerated winds from the combinations of three progenitors, 12-16 M⊙; five β, 1-5; seven mass-loss rates, 10-5-10-2 M⊙ yr-1; and four explosion energies, (0.5-2) × 1051 erg. All the light-curve models are available at https://goo.gl/o5phYb. When the circumstellar density is sufficiently high, our models do not show a classical shock breakout as a consequence of the interaction with the dense and optically thick circumstellar media. Instead, they show a delayed `wind breakout', substantially affecting early light curves of Type IIP supernovae. We find that the mass-loss rates of the progenitors need to be 10-3-10-2 M⊙ yr-1 to explain typical rise times of 5-10 d in Type IIP supernovae assuming a dense circumstellar radius of 1015 cm.

  18. Stochastic calculus analysis of optical time-of-flight range imaging and estimation of radial motion.

    Science.gov (United States)

    Streeter, Lee

    2017-07-01

    Time-of-flight range imaging is analyzed using stochastic calculus. Through a series of interpretations and simplifications, the stochastic model leads to two methods for estimating linear radial velocity: maximum likelihood estimation on the transition probability distribution between measurements, and a new method based on analyzing the measured correlation waveform and its first derivative. The methods are tested in a simulated motion experiment from (-40)-(+40)  m/s, with data from a camera imaging an object on a translation stage. In tests maximum likelihood is slow and unreliable, but when it works it estimates the linear velocity with standard deviation of 1 m/s or better. In comparison the new method is fast and reliable but works in a reduced velocity range of (-20)-(+20)  m/s with standard deviation ranging from 3.5 m/s to 10 m/s.

  19. The radii and masses of dwarf Cepheids

    International Nuclear Information System (INIS)

    Fernley, J.A.; Jameson, R.F.; Sherrington, M.R.; Skillen, I.

    1987-01-01

    The authors present VJK photometry for the dwarf Cepheids CY Aqr, YZ Boo and VZ Cnc, and a radial velocity curve for CY Aqr. Using these data, plus radial velocity curves taken from the literature, Wesselink-type radii, and hence absolute magnitudes and masses, are derived for the three stars. Using these results, plus previously published work, a mean 'pulsation' mass for dwarf Cepheids of 1.2 +-0.3M solar mass is determined. If dwarf Cepheids are early post-main-sequence stars this is less than their 'evolutionary' mass by the ratio Msub(puls)/Msub(evol)approx.0.75. Previously published data on period changes show an order of magnitude larger than predicted by early post-main-sequence evolutionary tracks. The possibility that these stars are at a more advanced evolutionary state is briefly discussed. The properties of fundamental and possible/probable overtone pulsators are compared. Finally attention is drawn to the small cycle-to-cycle variations in dwarf Cepheid light curves noted by many observers and the possible link between these variations and delta Scuti behaviour. (author)

  20. The "Cool Algol" BD+05 706 : Photometric observations of a new eclipsing double-lined spectroscopic binary

    Science.gov (United States)

    Marschall, L. A.; Torres, G.; Neuhauser, R.

    1998-05-01

    BVRI Observations of the star BD+05 706, carried out between January, 1997, and April 1998 using the 0.4m reflector and Photometrics CCD camera at the Gettysburg College Observatory, show that the star is an eclipsing binary system with a light curve characteristic of a class of semi-detached binaries known as the "cool Algols". These results are in good agreement with the previous report of BD+05 706 as a cool Algol by Torres, Neuhauser, and Wichmann,(Astron. J., 115, May 1998) who based their classification on the strong X-ray emission detected by Rosat and on a series of spectroscopic observations of the radial velocities of both components of the system obtained at the Oak Ridge Observatory, the Fred L. Whipple Observatory, and the Multiple Mirror Telescope. Only 10 other examples of cool Algols are known, and the current photometric light curve, together with the radial velocity curves obtained previously, allows us to derive a complete solution for the physical parameters of each component, providing important constraints on models for these interesting systems.

  1. SINGLE-LINED SPECTROSCOPIC BINARY STAR CANDIDATES IN THE RAVE SURVEY

    International Nuclear Information System (INIS)

    Matijevic, G.; Zwitter, T.; Bienayme, O.; Siebert, A.; Watson, F. G.; Bland-Hawthorn, J.; Parker, Q. A.; Freeman, K. C.; Gilmore, G.; Grebel, E. K.; Helmi, A.; Munari, U.; Siviero, A.; Navarro, J. F.; Reid, W.; Seabroke, G. M.; Steinmetz, M.; Williams, M.; Wyse, R. F. G.

    2011-01-01

    Repeated spectroscopic observations of stars in the RAdial Velocity Experiment (RAVE) database are used to identify and examine single-lined binary (SB1) candidates. The RAVE latest internal database (VDR3) includes radial velocities, atmospheric parameters, and other parameters for approximately a quarter of a million different stars with slightly less than 300,000 observations. In the sample of ∼20,000 stars observed more than once, 1333 stars with variable radial velocities were identified. Most of them are believed to be SB1 candidates. The fraction of SB1 candidates among stars with several observations is between 10% and 15% which is the lower limit for binarity among RAVE stars. Due to the distribution of time spans between the re-observation that is biased toward relatively short timescales (days to weeks), the periods of the identified SB1 candidates are most likely in the same range. Because of the RAVE's narrow magnitude range most of the dwarf candidates belong to the thin Galactic disk while the giants are part of the thick disk with distances extending to up to a few kpc. The comparison of the list of SB1 candidates to the VSX catalog of variable stars yielded several pulsating variables among the giant population with radial velocity variations of up to few tens of km s -1 . There are 26 matches between the catalog of spectroscopic binary orbits (S B 9 ) and the whole RAVE sample for which the given periastron time and the time of RAVE observation were close enough to yield a reliable comparison. RAVE measurements of radial velocities of known spectroscopic binaries are consistent with their published radial velocity curves.

  2. Observable Zitterbewegung in curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Kobakhidze, Archil, E-mail: archilk@physics.usyd.edu.au [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Sydney, NSW 2006 (Australia); Manning, Adrian, E-mail: a.manning@physics.usyd.edu.au [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Sydney, NSW 2006 (Australia); Tureanu, Anca, E-mail: anca.tureanu@helsinki.fi [Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki (Finland)

    2016-06-10

    Zitterbewegung, as it was originally described by Schrödinger, is an unphysical, non-observable effect. We verify whether the effect can be observed in non-inertial reference frames/curved spacetimes, where the ambiguity in defining particle states results in a mixing of positive and negative frequency modes. We explicitly demonstrate that such a mixing is in fact necessary to obtain the correct classical value for a particle's velocity in a uniformly accelerated reference frame, whereas in cosmological spacetime a particle does indeed exhibit Zitterbewegung.

  3. Observable Zitterbewegung in curved spacetimes

    Science.gov (United States)

    Kobakhidze, Archil; Manning, Adrian; Tureanu, Anca

    2016-06-01

    Zitterbewegung, as it was originally described by Schrödinger, is an unphysical, non-observable effect. We verify whether the effect can be observed in non-inertial reference frames/curved spacetimes, where the ambiguity in defining particle states results in a mixing of positive and negative frequency modes. We explicitly demonstrate that such a mixing is in fact necessary to obtain the correct classical value for a particle's velocity in a uniformly accelerated reference frame, whereas in cosmological spacetime a particle does indeed exhibit Zitterbewegung.

  4. Spectroscopy of the red star in IP Peg

    International Nuclear Information System (INIS)

    Martin, J.S.; Jones, D.H.P.; Friend, M.T.; Smith, R.C.

    1989-01-01

    CCD spectroscopy of the cataclysmic variable IP Pegasi during decline from outburst shows narrow chromospheric emission lines from the irradiated face of the red star. The He I (7065 A) emission line is used to produce a partial radial velocity curve, with K He =293.2±3.3 km s -1 . A reanalysis of previous Na I doublet (8190 A) absorption line data produces a considerably larger semi-amplitude, K abs , than previously published. However, this is larger than the true semi-amplitude, K 2 , because irradiation from the disc ionizes the NaI on the inner face of the red star and decreases the strength of the NaI doublet on that face. A computer simulation of the secondary radial velocity curve, including this ionization effect, is used to estimate the true semi-amplitude of the secondary motion. This gives K 2 =298±8 km s -1 . (author)

  5. [Comparison of chemical quality characteristics between radial striations and non-radial striations in tuberous root of Rehmannia glutinosa].

    Science.gov (United States)

    Xie, Cai-Xia; Zhang, Miao; Li, Ya-Jing; Geng, Xiao-Tong; Wang, Feng-Qing; Zhang, Zhong-Yi

    2017-11-01

    An HPLC method was established to determine the contents of catalpol, acteoside, rehmaionoside A, rehmaionoside D, leonuride in three part of Rehmanni glutinosa in Beijing No.1 variety R. glutinosa during the growth period, This method, in combination with its HPLC fingerprint was used to evaluate its overall quality characteristics.The results showed that:① the content of main components of R. glutinosa varied in different growth stages ;② there was a great difference of the content of main components between theradial striations and the non-radial striations; ③ the two sections almost have the same content distribution of catalpol, acteoside and rehmaionoside D; ④the content of rehmaionoside A in non-radial striations was higher than that in radial striations,while the content of leonuride in radial striations was higher than that in non-radial striations.; ⑤the HPLC fingerprint of radial striations, non-radial striations and whole root tuber were basically identical, except for the big difference in the content of chemical components. The result of clustering displayed that the radial striations, non-radial striations, and whole root were divided into two groups. In conclusion, there was a significant difference in the quality characteristics of radial striations and non-radial striations of R. glutinosa. This research provides a reference for quality evaluation and geoherbalism of R. glutinosa. Copyright© by the Chinese Pharmaceutical Association.

  6. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    Science.gov (United States)

    Shrestha, Suman K.

    Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was

  7. Curved butterfly bileaflet prosthetic cardiac valve

    Science.gov (United States)

    McQueen, David M.; Peskin, Charles S.

    1991-06-25

    An annular valve body having a central passageway for the flow of blood therethrough with two curved leaflets each of which is pivotally supported on an accentric positioned axis in the central passageway for moving between a closed position and an open position. The leaflets are curved in a plane normal to the eccentric axis and positioned with the convex side of the leaflets facing each other when the leaflets are in the open position. Various parameters such as the curvature of the leaflets, the location of the eccentric axis, and the maximum opening angle of the leaflets are optimized according to the following performance criteria: maximize the minimum peak velocity through the valve, maximize the net stroke volume, and minimize the mean forward pressure difference, thereby reducing thrombosis and improving the hemodynamic performance.

  8. Photometric and spectroscopic analysis of the eclipsing binary DS Andromedae - a member of NGC 752

    International Nuclear Information System (INIS)

    Schiller, S.J.; Milone, E.F.

    1988-01-01

    Complete BVRI light curves and radial-velocity curves of both components of the 1.01 d period eclipsing binary DS And are presented. The Wilson-Devinney synthetic light curve program is used to determine the absolute parameters of this system, and it is confirmed that the primary component is nearly filling its Roche lobe. The distance modulus and systemic velocity conclusively establish cluster membership. The age of NGC 752, determined by fitting the theoretical isochrones of VandenBerg (1985) to the C-M diagram of Cannon (1970), is assigned to DS And. This enables a showing that, although the primary component is nearly filling its Roche lobe, it has thus far evolved as a single isolated star. 54 references

  9. Kepler observations of the beaming binary KPD 1946+4340

    DEFF Research Database (Denmark)

    Bloemen, S.; R. Marsh, T.; H. \\Ostensen, R.

    2011-01-01

    at the 0.1% level. This originates from the sdB's orbital velocity, which we measure to be 164.0\\pm1.9 km/s from supporting spectroscopy. We present light curve models that account for all these effects, as well as gravitational lensing. We derive system parameters and uncertainties from the light curve...... temperature of Teff = 34 730\\pm250K and a surface gravity of log g = 5.43\\pm0.04, the sdB is in a shell He burning stage. The detection of Doppler beaming in Kepler light curves potentially allows one to measure radial velocities without the need of spectroscopic data. For the first time, a photometrically...

  10. Simultaneous spectral and photometric observations of the beat Cepheid U TrA

    International Nuclear Information System (INIS)

    Niva, G.D.; Schmidt, E.G.

    1981-01-01

    It was suggested that U TrA was a Cepheid with a modulated light curve. Further photometric and radial-velocity observations have confirmed this behaviour. Unfortunately, the radial velocities are too few in number and too scattered to allow a detailed analysis. This paper presents further photometric and spectroscopic observations of U TrA. The original intent was to obtain enough simultaneous observations to perform a Wesselink analysis similar to the one made for another beat Cepheid, TU Cas. Unfortunately, this has not been possible. However, the data obtained are of high quality and are clearly useful in studies of the modal content and period stability of the star. (author)

  11. Evolution of the radial electric field in a JET H-mode plasma

    International Nuclear Information System (INIS)

    Andrew, Y.; Hawkes, N.C.; Biewer, T.; Crombe, K.; Keeling, D.; De la Luna, E.; Giroud, C.; Korotkov, A.; Meigs, A.; Murari, A.; Nunes, I.; Sartori, R.; Tala, T.; Andrew, Y.; Hawkes, N.C.; Keeling, D.; Giroud, C.; Korotkov, A.; Meigs, A.; Biewer, T.; Crombe, K.; De la Luna, E.; Murari, A.; Nunes, I.; Sartori, R.; Tala, T.

    2008-01-01

    Results from recent measurements of carbon impurity ion toroidal and poloidal rotation velocities, ion temperature, ion density and the resulting radial electric field (E r ) profiles are presented from an evolving Joint European Torus (JET) tokamak plasma over a range of energy and particle confinement regimes. Significant levels of edge plasma poloidal rotation velocity have been measured for the first time on JET, with maximum values of ±9 km/s. Such values of poloidal rotation provide an important contribution to the total edge plasma E r profiles. Large values of shear in the measured E r profiles are observed to arise as a consequence of the presence of the edge transport barrier (ETB) and do not appear to be necessary for their formation or destruction. These results have an important impact on potential mechanisms for transport barrier triggering and sustainment in present-day and future high-performance fusion plasmas. (authors)

  12. Generalized drying curves in conductive/convective paper drying

    Directory of Open Access Journals (Sweden)

    O.C. Motta Lima

    2000-12-01

    Full Text Available This work presents a study related to conductive/convective drying of paper (cellulose sheets over heated surfaces, under natural and forced air conditions. The experimental apparatus consists in a metallic box heated by a thermostatic bath containing an upper surface on which the paper samples (about 1 mm thick are placed. The system is submitted to ambient air under two different conditions: natural convection and forced convection provide by an adjustable blower. The influence of initial paper moisture content, drying (heated surface temperature and air velocity on drying curves behavior is observed under different drying conditions. Hence, these influence is studied through the proposal of generalized drying curves. Those curves are analyzed individually for each air condition exposed above and for both together. A set of equations to fit them is proposed and discussed.

  13. A STAR IN THE M31 GIANT STREAM: THE HIGHEST NEGATIVE STELLAR VELOCITY KNOWN

    International Nuclear Information System (INIS)

    Caldwell, Nelson; Kenyon, Scott J.; Morrison, Heather; Harding, Paul; Schiavon, Ricardo; Rose, James A.

    2010-01-01

    We report on a single star, B030D, observed as part of a large survey of objects in M31, which has the unusual radial velocity of -780 km s -1 . Based on details of its spectrum, we find that the star is an F supergiant, with a circumstellar shell. The evolutionary status of the star could be one of a post-main-sequence close binary, a symbiotic nova, or less likely, a post-asymptotic giant branch star, which additional observations could help sort out. Membership of the star in the Andromeda Giant Stream can explain its highly negative velocity.

  14. Effect of Phase Transformations on Seismic Velocities

    Science.gov (United States)

    Weidner, D. J.; Li, L.; Whitaker, M.; Triplett, R.

    2017-12-01

    The radial velocity structure of the Earth consists of smooth variations of velocities with depth punctuated by abrupt changes of velocity, which are typically due to multivariant phase transformations, where high - low pressure phases can coexist. In this mixed phase region, both the effective shear and bulk moduli will be significantly reduced by the dynamic interaction of the propagating wave and the phase transition if the period of the wave is long enough relative to the kinetic time so that some of the transition can take place. In this presentation, we will give examples from both laboratory studies of phases transitions of Earth minerals and the calculated velocity profile based on our models. We focus on understanding the time limiting factor of the phase transformation in order to extrapolate laboratory results to Earth observations. Both the olivine to ringwoodite transition and KLB-1 partial melting are explored. We find that when the transformation requires diffusion, the kinetics are often slowed down considerably and as a result the diffusivity of atoms become the limiting factor of characteristic time. Specifically Fe-Mg exchange rate in the olivine-ringwoodite phase transition becomes the limiting factor that seismic waves are likely to sample. On the other hand, partial melting is an extremely fast phase transformation at seismic wave periods. We present evidence that ultrasonic waves, with a period of a few tens of nanoseconds, are slowed by the reduction of the effective elastic moduli in this case.

  15. Minimal inductance for axisymmetric transmission lines with radially dependent anode-cathode gap

    Directory of Open Access Journals (Sweden)

    Eduardo M. Waisman

    2009-09-01

    Full Text Available We extend the variational calculus technique for inductance minimization of constant gap axisymmetric transmission lines (TL, introduced by Hurricane [J. Appl. Phys. 95, 4503 (2004JAPIAU0021-897910.1063/1.1687986], to the case in which the anode-cathode gap is a linear function of the midgap radius. The full analytic optimal midgap solution curve z(r yielding minimum inductance is obtained in terms of a single parameter ρ_{0}, determined numerically by imposing that z(r goes through prescribed end points. The radius of curvature ρ(r of the optimal curve is obtained everywhere the function is defined, even outside of the end point range, and it is shown that a convenient choice is ρ_{0}=ρ(0. The value of the transmission line inductance is calculated by 1D numerical quadrature. A simple numerical technique is introduced for TL with nonlinear radial gap dependence.

  16. Prerequisites for Accurate Monitoring of River Discharge Based on Fixed-Location Velocity Measurements

    Science.gov (United States)

    Kästner, K.; Hoitink, A. J. F.; Torfs, P. J. J. F.; Vermeulen, B.; Ningsih, N. S.; Pramulya, M.

    2018-02-01

    River discharge has to be monitored reliably for effective water management. As river discharge cannot be measured directly, it is usually inferred from the water level. This practice is unreliable at places where the relation between water level and flow velocity is ambiguous. In such a case, the continuous measurement of the flow velocity can improve the discharge prediction. The emergence of horizontal acoustic Doppler current profilers (HADCPs) has made it possible to continuously measure the flow velocity. However, the profiling range of HADCPs is limited, so that a single instrument can only partially cover a wide cross section. The total discharge still has to be determined with a model. While the limitations of rating curves are well understood, there is not yet a comprehensive theory to assess the accuracy of discharge predicted from velocity measurements. Such a theory is necessary to discriminate which factors influence the measurements, and to improve instrument deployment as well as discharge prediction. This paper presents a generic method to assess the uncertainty of discharge predicted from range-limited velocity profiles. The theory shows that a major source of error is the variation of the ratio between the local and cross-section-averaged velocity. This variation is large near the banks, where HADCPs are usually deployed and can limit the advantage gained from the velocity measurement. We apply our theory at two gauging stations situated in the Kapuas River, Indonesia. We find that at one of the two stations the index velocity does not outperform a simple rating curve.

  17. Radar speed gun true velocity measurements of sports-balls in flight: application to tennis

    International Nuclear Information System (INIS)

    Robinson, Garry; Robinson, Ian

    2016-01-01

    Spectators of ball-games often seem to be fascinated by the speed of delivery of the ball. They appear to be less interested in or even oblivious to the mechanism and accuracy of the measurement or where in the flight path of the ball the measurement is actually made. Radar speed guns using the Doppler effect are often employed for such speed measurements. It is well known that such guns virtually always measure the line-of-sight or radial velocity of the ball and as such will return a reading less than or equal to the true speed of the ball. In this paper, using only basic physics principles we investigate such measurements, in particular those associated with the service stroke in tennis. For the service trajectories employed here, a single radar gun located in line with the centre-line of the court in fact under-estimates the speed of a wide serve by about 3.4% at the point of delivery, and by about 14.3% on impact with the court. However, we demonstrate that both the magnitude and direction of the true velocity of the ball throughout its entire flight path may be obtained, at least in principle, by the use of four suitably placed radar speed guns. These four guns must be able to measure the ‘range’ to the ball, enabling its position in flight to be determined, and three of them must be able to measure the radial velocity of the ball. Restrictions on the locations of the speed guns are discussed. Such restrictions are quite liberal, although there are certain configurations of the radar gun positions which cannot be used. Importantly, with the one proviso that no speed gun can be directly in the path of the ball (not only for the obvious reasons), we find that if the speed of the ball can be determined for one point in the trajectory, it can also be determined for all points. The accuracy of the range and radial velocity measurements required to give meaningful results for the true velocity are also briefly discussed. It is found that the accuracy required

  18. A Multi-year Search for Transits of Proxima Centauri. I. Light Curves Corresponding to Published Ephemerides

    Science.gov (United States)

    Blank, David L.; Feliz, Dax; Collins, Karen A.; White, Graeme L.; Stassun, Keivan G.; Curtis, Ivan A.; Hart, Rhodes; Kielkopf, John F.; Nelson, Peter; Relles, Howard; Stockdale, Christopher; Jayawardene, Bandupriya; Pennypacker, Carlton R.; Shankland, Paul; Reichart, Daniel E.; Haislip, Joshua B.; Kouprianov, Vladimir V.

    2018-06-01

    Proxima Centauri has become the subject of intense study since the radial-velocity (RV) discovery by Anglada-Escudé et al. of a planet orbiting this nearby M dwarf every ∼11.2 days. If Proxima Centauri b transits its host star, independent confirmation of its existence is possible, and its mass and radius can be measured in units of the stellar host mass and radius. To date, there have been three independent claims of possible transit-like event detections in light curve observations obtained by the MOST satellite (in 2014–15), the Bright Star Survey Telescope telescope in Antarctica (in 2016), and the Las Campanas Observatory (in 2016). The claimed possible detections are tentative, due in part to the variability intrinsic to the host star, and in the case of the ground-based observations, also due to the limited duration of the light curve observations. Here, we present preliminary results from an extensive photometric monitoring campaign of Proxima Centauri, using telescopes around the globe and spanning from 2006 to 2017, comprising a total of 329 observations. Considering our data that coincide directly and/or phased with the previously published tentative transit detections, we are unable to independently verify those claims. We do, however, verify the previously reported ubiquitous and complex variability of the host star. We discuss possible interpretations of the data in light of the previous claims, and we discuss future analyses of these data that could more definitively verify or refute the presence of transits associated with the RV-discovered planet.

  19. Characterizing low-mass binaries from observation of long-timescale caustic-crossing gravitational microlensing events

    DEFF Research Database (Denmark)

    Shin, I.-G; Han, C.; Choi, J.-Y

    2012-01-01

    solution by follow-up radial-velocity observation. For both events, the caustic-crossing parts of the light curves, which are critical for determining the physical lens parameters, were resolved by high-cadence survey observations and thus it is expected that the number of microlensing binaries...

  20. Low-to-High Confinement Transition Mediated by Turbulence Radial Wave Number Spectral Shift in a Fusion Plasma.

    Science.gov (United States)

    Xu, G S; Wan, B N; Wang, H Q; Guo, H Y; Naulin, V; Rasmussen, J Juul; Nielsen, A H; Wu, X Q; Yan, N; Chen, L; Shao, L M; Chen, R; Wang, L; Zhang, W

    2016-03-04

    A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett. 110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wave number spectrum of turbulence, as evidenced here, for the first time, by the direct observation of a turbulence radial wave number spectral shift and turbulence structure tilting prior to the L-H transition at tokamak edge by direct probing. This new mechanism does not require a pretransition overshoot in the turbulent Reynolds stress, shunting turbulence energy to zonal flows for turbulence suppression as demonstrated in the experiment.

  1. [Responses of Picea likiangensis radial growth to climate change in the Small Zhongdian area of Yunnan Province, Southwest China].

    Science.gov (United States)

    Zhao, Zhi-Jiang; Tan, Liu-Yi; Kang, Dong-Wei; Liu, Qi-Jing; Li, Jun-Qing

    2012-03-01

    Picea likiangensis (Franch. ) Pritz. primary forest is one of the dominant forest types in the Small Zhongdian area in Shangri-La County of Yunnan Province. In this paper, the responses of P. likiangensis tree-ring width to climate change were analyzed by dendrochronological methods, and the dendrochronology was built by using relatively conservative detrending negative exponential curves or linear regression. Correlation analysis and response function analysis were applied to explore the relationships between the residual chronology series (RES) and climatic factors at different time scales, and pointer year analysis was used to explain the reasons of producing narrow and wide rings. In the study area, the radial growth of P. likiangensis and the increasing air temperature from 1990 to 2008 had definite 'abruption'. The temperature and precipitation in previous year growth season were the main factors limiting the present year radial growth, and especially, the temperature in previous July played a negative feedback role in the radial growth, while the sufficient precipitation in previous July promoted the radial growth. The differences in the temperature variation and precipitation variation in previous year were the main reasons for the formation of narrow and wide rings. P. likiangensis radial growth was not sensitive to the variation of PDSI.

  2. A HIGH-PRECISION NEAR-INFRARED SURVEY FOR RADIAL VELOCITY VARIABLE LOW-MASS STARS USING CSHELL AND A METHANE GAS CELL

    Energy Technology Data Exchange (ETDEWEB)

    Gagné, Jonathan [Carnegie Institution of Washington DTM, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Plavchan, Peter [Department of Physics, Missouri State University, 901 S National Ave, Springfield, MO 65897 (United States); Gao, Peter [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Anglada-Escude, Guillem [School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Rd, E1 4NS, London (United Kingdom); Furlan, Elise; Brinkworth, Carolyn; Ciardi, David R. [NASA Exoplanet Science Institute, California Institute of Technology, 770 S. Wilson Ave., Pasadena, CA 91125 (United States); Davison, Cassy; Henry, Todd J.; White, Russel [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Tanner, Angelle [Mississippi State University, Department of Physics and Astronomy, Hilbun Hall, Starkville, MS 39762 (United States); Riedel, Adric R. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Latham, David; Johnson, John A. [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Bottom, Michael [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Mills, Sean [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave, Chicago, IL 60637 (United States); Beichman, Chas [NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Wallace, Kent; Mennesson, Bertrand [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91125 (United States); Von Braun, Kaspar, E-mail: jgagne@carnegiescience.edu [Lowell Observatory, West Mars Hill Road, Flagstaff, AZ 86001 (United States); and others

    2016-05-01

    We present the results of a precise near-infrared (NIR) radial velocity (RV) survey of 32 low-mass stars with spectral types K2–M4 using CSHELL at the NASA InfraRed Telescope Facility in the K band with an isotopologue methane gas cell to achieve wavelength calibration and a novel, iterative RV extraction method. We surveyed 14 members of young (≈25–150 Myr) moving groups, the young field star ε Eridani, and 18 nearby (<25 pc) low-mass stars and achieved typical single-measurement precisions of 8–15 m s{sup −1}with a long-term stability of 15–50 m s{sup −1} over longer baselines. We obtain the best NIR RV constraints to date on 27 targets in our sample, 19 of which were never followed by high-precision RV surveys. Our results indicate that very active stars can display long-term RV variations as low as ∼25–50 m s{sup −1} at ≈2.3125 μ m, thus constraining the effect of jitter at these wavelengths. We provide the first multiwavelength confirmation of GJ 876 bc and independently retrieve orbital parameters consistent with previous studies. We recovered RV variabilities for HD 160934 AB and GJ 725 AB that are consistent with their known binary orbits, and nine other targets are candidate RV variables with a statistical significance of 3 σ –5 σ . Our method, combined with the new iSHELL spectrograph, will yield long-term RV precisions of ≲5 m s{sup −1} in the NIR, which will allow the detection of super-Earths near the habitable zone of mid-M dwarfs.

  3. Microscopic Model of Automobile Lane-changing Virtual Desire Trajectory by Spline Curves

    Directory of Open Access Journals (Sweden)

    Yulong Pei

    2010-05-01

    Full Text Available With the development of microscopic traffic simulation models, they have increasingly become an important tool for transport system analysis and management, which assist the traffic engineer to investigate and evaluate the performance of transport network systems. Lane-changing model is a vital component in any traffic simulation model, which could improve road capacity and reduce vehicles delay so as to reduce the likelihood of congestion occurrence. Therefore, this paper addresses the virtual desire trajectory, a vital part to investigate the behaviour divided into four phases. Based on the boundary conditions, β-spline curves and the corresponding reverse algorithm are introduced firstly. Thus, the relation between the velocity and length of lane-changing is constructed, restricted by the curvature, steering velocity and driving behaviour. Then the virtual desire trajectory curves are presented by Matlab and the error analysis results prove that this proposed description model has higher precision in automobile lane-changing process reconstruction, compared with the surveyed result. KEY WORDS: traffic simulation, lane-changing model, virtual desire trajectory, β-spline curves, driving behaviour

  4. Poloidal rotation dynamics, radial electric field, and neoclassical theory in the jet internal-transport-barrier region.

    Science.gov (United States)

    Crombé, K; Andrew, Y; Brix, M; Giroud, C; Hacquin, S; Hawkes, N C; Murari, A; Nave, M F F; Ongena, J; Parail, V; Van Oost, G; Voitsekhovitch, I; Zastrow, K-D

    2005-10-07

    Results from the first measurements of a core plasma poloidal rotation velocity (upsilontheta) across internal transport barriers (ITB) on JET are presented. The spatial and temporal evolution of the ITB can be followed along with the upsilontheta radial profiles, providing a very clear link between the location of the steepest region of the ion temperature gradient and localized spin-up of upsilontheta. The upsilontheta measurements are an order of magnitude higher than the neoclassical predictions for thermal particles in the ITB region, contrary to the close agreement found between the determined and predicted particle and heat transport coefficients [K.-D. Zastrow, Plasma Phys. Controlled Fusion 46, B255 (2004)]. These results have significant implications for the understanding of transport barrier dynamics due to their large impact on the measured radial electric field profile.

  5. Blood flow in curved pipe with radiative heat transfer

    International Nuclear Information System (INIS)

    Ogulu, A.; Bestman, A.R.

    1992-03-01

    Blood flow in a curved pipe such as the aorta is modelled in this study. The aorta is modelled as a curved pipe of slowly varying cross-section. Asymptotic series expansions about a small parameter δ, which is a measure of the curvature ratio is employed to obtain the velocity and temperature distributions. The study simulates the effect of radio-frequency heating, for instance during physiotherapy, on the flow of blood in the cardiovascular system assuming an external constant pressure gradient; and our results agree very well with results obtained by Pedley. (author). 9 refs, 2 figs

  6. Kinematics of Local, High-Velocity K dwarfs in the SUPERBLINK Proper Motion Catalog

    Science.gov (United States)

    Kim, Bokyoung; Lepine, Sebastien

    2018-01-01

    We present a study of the kinematics of 345,480 K stars within 2 kpc of the Sun, based on data from the SUPERBLINK catalog of stars with high proper motions (> 40 mas/yr), combined with data from the 2MASS survey and from the first GAIA release, which together yields proper motions accurate to ~2 mas/yr. All K dwarfs were selected based on their G-K colors, and photometric distances were estimated from a re-calibrated color-magnitude relationship for K dwarfs. We plot transverse velocities VT in various directions on the sky, to examine the local distribution of K dwarfs in velocity space. We have also obtained radial velocity information for a subsample of 10,128 stars, from RAVE and SDSS DR12, which we use to construct spatial velocity (U, V, W) plots. About a third (123,350) of the stars are high-velocity K dwarfs, with motions consistent with the local Galactic halo population. Our kinematic analysis suggests that their velocity-space distribution is very uniform, and we find no evidence of substructure that might arise, e.g., from local streams or moving groups.

  7. Effect of Low Co-flow Air Velocity on Hydrogen-air Non-premixed Turbulent Flame Model

    Directory of Open Access Journals (Sweden)

    Noor Mohsin Jasim

    2017-08-01

    Full Text Available The aim of this paper is to provide information concerning the effect of low co-flow velocity on the turbulent diffusion flame for a simple type of combustor, a numerical simulated cases of turbulent diffusion hydrogen-air flame are performed. The combustion model used in this investigation is based on chemical equilibrium and kinetics to simplify the complexity of the chemical mechanism. Effects of increased co-flowing air velocity on temperature, velocity components (axial and radial, and reactants have been investigated numerically and examined. Numerical results for temperature are compared with the experimental data. The comparison offers a good agreement. All numerical simulations have been performed using the Computational Fluid Dynamics (CFD commercial code FLUENT. A comparison among the various co-flow air velocities, and their effects on flame behavior and temperature fields are presented.

  8. Radial retinotomy in the macula.

    Science.gov (United States)

    Bovino, J A; Marcus, D F

    1984-01-01

    Radial retinotomy is an operative procedure usually performed in the peripheral or equatorial retina. To facilitate retinal attachment, the authors used intraocular scissors to perform radial retinotomy in the macula of two patients during vitrectomy surgery. In the first patient, a retinal detachment complicated by periretinal proliferation and macula hole formation was successfully reoperated with the aid of three radial cuts in the retina at the edges of the macular hole. In the second patient, an intraoperative retinal tear in the macula during diabetic vitrectomy was also successfully repaired with the aid of radial retinotomy. In both patients, retinotomy in the macula was required because epiretinal membranes, which could not be easily delaminated, were hindering retinal reattachment.

  9. Radial head dislocation during proximal radial shaft osteotomy.

    Science.gov (United States)

    Hazel, Antony; Bindra, Randy R

    2014-03-01

    The following case report describes a 48-year-old female patient with a longstanding both-bone forearm malunion, who underwent osteotomies of both the radius and ulna to improve symptoms of pain and lack of rotation at the wrist. The osteotomies were templated preoperatively. During surgery, after performing the planned radial shaft osteotomy, the authors recognized that the radial head was subluxated. The osteotomy was then revised from an opening wedge to a closing wedge with improvement of alignment and rotation. The case report discusses the details of the operation, as well as ways in which to avoid similar shortcomings in the future. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  10. Upper mantle compositional variations and discontinuity topography imaged beneath Australia from Bayesian inversion of surface-wave phase velocities and thermochemical modeling

    DEFF Research Database (Denmark)

    Khan, A.; Zunino, Andrea; Deschamps, F.

    2013-01-01

    Here we discuss the nature of velocity heterogeneities seen in seismic tomography images of Earth's mantle whose origins and relation to thermochemical variations are yet to be understood. We illustrate this by inverting fundamental-mode and higher-order surface-wave phase velocities for radial....../Fe and Mg/Si values relative to surrounding mantle. Correlated herewith are thermal variations that closely follow surface tectonics. We also observe a strong contribution to lateral variations in structure and topography across the “410 km” seismic discontinuity from thermochemically induced phase......-wave tomography models with other regional models is encouraging. Radial anisotropy is strongest at 150/200 km depth beneath oceanic/continental areas, respectively, and appears weak and homogeneous below. Finally, geoid anomalies are computed for a subset of sampled model and compared to observations....

  11. Characterization of Type Ia Supernova Light Curves Using Principal Component Analysis of Sparse Functional Data

    Science.gov (United States)

    He, Shiyuan; Wang, Lifan; Huang, Jianhua Z.

    2018-04-01

    With growing data from ongoing and future supernova surveys, it is possible to empirically quantify the shapes of SNIa light curves in more detail, and to quantitatively relate the shape parameters with the intrinsic properties of SNIa. Building such relationships is critical in controlling systematic errors associated with supernova cosmology. Based on a collection of well-observed SNIa samples accumulated in the past years, we construct an empirical SNIa light curve model using a statistical method called the functional principal component analysis (FPCA) for sparse and irregularly sampled functional data. Using this method, the entire light curve of an SNIa is represented by a linear combination of principal component functions, and the SNIa is represented by a few numbers called “principal component scores.” These scores are used to establish relations between light curve shapes and physical quantities such as intrinsic color, interstellar dust reddening, spectral line strength, and spectral classes. These relations allow for descriptions of some critical physical quantities based purely on light curve shape parameters. Our study shows that some important spectral feature information is being encoded in the broad band light curves; for instance, we find that the light curve shapes are correlated with the velocity and velocity gradient of the Si II λ6355 line. This is important for supernova surveys (e.g., LSST and WFIRST). Moreover, the FPCA light curve model is used to construct the entire light curve shape, which in turn is used in a functional linear form to adjust intrinsic luminosity when fitting distance models.

  12. Velocity field measurements in an evaporating sessile droplet by means of micro-PIV technique

    Directory of Open Access Journals (Sweden)

    Yagodnitsyna Anna

    2016-01-01

    Full Text Available Velocity fields are measured in evaporating sessile droplets on two substrates with different contact angles and contact angle hysteresis using micro resolution particle image velocimetry technique. Different flow patterns are observed in different stages of droplet evaporation: a flow with vortices and a radial flow. Flow structure is found to be similar for droplets on different substrates.

  13. Radial cracks and fracture mechanism of radially oriented ring 2:17 type SmCo magnets

    International Nuclear Information System (INIS)

    Tian Jianjun; Pan Dean; Zhou Hao; Yin Fuzheng; Tao Siwu; Zhang Shengen; Qu Xuanhui

    2009-01-01

    Radially oriented ring 2:17 type SmCo magnets have different microstructure in the radial direction (easy magnetization) and axial direction (hard magnetization). The structure of the cross-section in radial direction is close-packed atomic plane, which shows cellular microstructure. The microstructure of the cross-section in axial direction consists of a mixture of rhombic microstructure and parallel lamella phases. So the magnets have obvious anisotropy of thermal expansion in different directions. The difference of the thermal expansion coefficients reaches the maximum value at 830-860 deg. C, which leads to radial cracks during quenching. The magnets have high brittlement because there are fewer slip systems in crystal structure. The fracture is brittle cleavage fracture.

  14. Rotation curves of galaxies by fourth order gravity

    International Nuclear Information System (INIS)

    Stabile, A.; Scelza, G.

    2011-01-01

    We investigate the radial behavior of galactic rotation curves by a Fourth Order Gravity adding also the dark matter component. The Fourth Order Gravity is a theory of gravity described by Lagrangian generalizing the one of Hilbert-Einstein containing a generic function of the Ricci scalar, the Ricci and Riemann tensor. A systematic analysis of rotation curves, in the Newtonian Limit of theory, induced by all galactic substructures of ordinary matter is shown. This analysis is presented for Fourth Order Gravity with and without dark matter. The outcomes are compared with respect to the classical outcomes of General Relativity. The gravitational potential of pointlike mass is the usual potential corrected by two Yukawa terms. The rotation curve is higher or also lower than curve of General Relativity if in the Lagrangian the Ricci scalar square is dominant or not with respect to the contribution of the Ricci tensor square. The theoretical spatial behaviors of rotation curve are compared with the experimental data for the Milky Way and the galaxy NGC 3198. Although the Fourth Order Gravity gives more rotational contributions, in the limit of large distances the Keplerian behavior is ever present, and it is missing only if we add the dark matter component. However by modifying the theory of gravity, consequently, also the spatial description of dark matter could undergo a modification and the free parameters of model can assume different values. After an analytical discussion of theoretical behaviors and the comparing with experimental evidence we can claim that any Fourth Order Gravity is not successful to explain the galactic rotation curves. In the last part of paper we analyze the gravitational potential induced by Lagrangian containing only powers of Ricci scalar. In this case we find an inconsistency in the boundary conditions in the passage from matter to the vacuum.

  15. Analysis of the deconvolution of the thermoluminescent curve of the zirconium oxide doped with graphite

    International Nuclear Information System (INIS)

    Salas C, P.; Estrada G, R.; Gonzalez M, P.R.; Mendoza A, D.

    2003-01-01

    In this work, we present a mathematical analysis of the behavior of the thermoluminescent curve (Tl) induced by gamma radiation in samples made of zirconium oxide doped with different amounts of graphite. In accordance with the results gamma radiation induces a Tl curve with two maximum of emission localized in the temperatures at 139 and 250 C, the area under the curve is increasing as a function of the time of exposition to the radiation. The analysis of curve deconvolution, in accordance with the theory which indicates that this behavior must be obey a Boltzmann distribution, we found that each one of them has a different growth velocity as the time of exposition increase. In the same way, we observed that after the irradiation was suspended each one of the maximum decrease with different velocity. The behaviour observed in the samples is very interesting because the zirconium oxide has attracted the interest of many research groups, this material has demonstrated to have many applications in thermoluminescent dosimetry and it can be used in the quantification of radiation. (Author)

  16. Curved Walking Rehabilitation with a Rotating Treadmill in Patients with Parkinson’s Disease: A Proof of Concept

    Science.gov (United States)

    Godi, Marco; Giardini, Marica; Nardone, Antonio; Turcato, Anna Maria; Caligari, Marco; Pisano, Fabrizio; Schieppati, Marco

    2017-01-01

    Training subjects to step-in-place eyes open on a rotating platform while maintaining a fixed body orientation in space [podokinetic stimulation (PKS)] produces a posteffect consisting in inadvertent turning around while stepping-in-place eyes closed [podokinetic after-rotation (PKAR)]. Since the rationale for rehabilitation of curved walking in Parkinson’s disease is not fully known, we tested the hypothesis that repeated PKS favors the production of curved walking in these patients, who are uneasy with turning, even when straight walking is little affected. Fifteen patients participated in 10 training sessions distributed in 3 weeks. Both counterclockwise and clockwise PKS were randomly administered in each session. PKS velocity and duration were gradually increased over sessions. The velocity and duration of the following PKAR were assessed. All patients showed PKAR, which increased progressively in peak velocity and duration. In addition, before and at the end of the treatment, all patients walked overground along linear and circular trajectories. Post-training, the velocity of walking bouts increased, more so for the circular than the linear trajectory. Cadence was not affected. This study has shown that parkinsonian patients learn to produce turning while stepping when faced with appropriate training and that this capacity translates into improved overground curved walking. PMID:28293213

  17. Considerations on Velocities and Accelerations in Higher Pairs Mechanisms

    Directory of Open Access Journals (Sweden)

    Florina-Carmen Ciornei

    2015-12-01

    Full Text Available The paper proposes a method for finding the velocities and accelerations in the pairs from a mechanism with higher pairs in the case when the curvature radii of the curves achieving the higher pair are finite. There are obtained the characteristic equations of the motion in the higher pair for the case that one of the curves has zero curvature radius, condition characteristic to the knife edge follower. The relations are required to justify the difference between the particular cases of knife edge follower and flat face follower. The methodology is exemplified through an actual example.

  18. Design of Radial Turbo-Expanders for Small Organic Rankine Cycle System

    Science.gov (United States)

    Arifin, M.; Pasek, A. D.

    2015-09-01

    This paper discusses the design of radial turbo-expanders for ORC systems. Firstly, the rotor blades were design and the geometry and the perfromance were calculated using several working fluid such as R134a, R143a, R245fa, n-Pentane, and R123. Then, a numerical study was carried out in the fluid flow area with R134a and R123 as the working fluid. Analyses were performed using Computational Fluid Dynamics (CFD) ANSYS CFX on two real gas models, with the k-epsilon and SST (shear stress transport) turbulence models. The results analysis shows the distribution of Mach number, pressure, velocity and temperature along the rotor blade of the radial turbo-expanders and estimation of performance at various operating conditions. CFD analysis show that if the flow area divided into 250,000 grid mesh, and using real gas model SST at steady state condition, 0.4 kg/s of mass flow rate, 15,000 rpm rotor speed, 5 bar inlet pressure, and 373K inlet temperature, the turbo expander produces 6.7 kW, and 5.5 kW of power when using R134a and R123 respectively.

  19. Comparison of Poloidal Velocity Meassurements to Neoclassical Theory on the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Bell, R.E.; Andre, R.; Kaye, S.M.; Kolesnikov, R.A.; LeBlance, B.P.; Rewolldt, G.; Wang, W.X.; Sabbagh, S.A.

    2010-01-01

    Knowledge of poloidal velocity is necessary for the determination of the radial electric field, Er, which along with its gradient is linked to turbulence suppression and transport barrier formation. Recent measurements of poloidal flow on conventional tokamaks have been reported to be an order of magnitude larger than expected from neoclassical theory. In contrast, recent poloidal velocity measurements on the NSTX spherical torus (S. M. Kaye et al., Phys. Plasmas 8, 1977 (2001)) are near or below neoclassical estimates. A novel charge exchange recombination spectroscopy diagnostic is used, which features active and passive sets of up/down symmetric views to produce line-integrated poloidal velocity measurements that do not need atomic physics corrections. Local profiles are obtained with an inversion. Poloidal velocity measurements are compared with neoclassical values computed with the codes NCLASS (W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997)) and GTC-Neo (W. X. Wang, et al., Phys. Plasmas 13, 082501 (2006)), which has been updated to handle impurities.

  20. Sodium Atoms in the Lunar Exotail: Observed Velocity and Spatial Distributions

    Science.gov (United States)

    Line, Michael R.; Mierkiewicz, E. J.; Oliversen, R. J.; Wilson, J. K.; Haffner, L. M.; Roesler, F. L.

    2011-01-01

    The lunar sodium tail extends long distances due to radiation pressure on sodium atoms in the lunar exosphere. Our earlier observations determined the average radial velocity of sodium atoms moving down the lunar tail beyond Earth along the Sun-Moon-Earth line (i.e., the anti-lunar point) to be 12.4 km/s. Here we use the Wisconsin H-alpha Mapper to obtain the first kinematically resolved maps of the intensity and velocity distribution of this emission over a 15 x times 15 deg region on the sky near the anti-lunar point. We present both spatially and spectrally resolved observations obtained over four nights around new moon in October 2007. The spatial distribution of the sodium atoms is elongated along the ecliptic with the location of the peak intensity drifting 3 degrees east along the ecliptic per night. Preliminary modeling results suggest that the spatial and velocity distributions in the sodium exotail are sensitive to the near surface lunar sodium velocity distribution and that observations of this sort along with detailed modeling offer new opportunities to describe the time history of lunar surface sputtering over several days.

  1. Radial energy transport by magnetospheric ULF waves: Effects of magnetic curvature and plasma pressure

    Science.gov (United States)

    Kouznetsov, Igor; Lotko, William

    1995-01-01

    The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the

  2. Optimization of curved drift tubes for ultraviolet-ion mobility spectrometry

    Science.gov (United States)

    Ni, Kai; Ou, Guangli; Zhang, Xiaoguo; Yu, Zhou; Yu, Quan; Qian, Xiang; Wang, Xiaohao

    2015-08-01

    Ion mobility spectrometry (IMS) is a key trace detection technique for toxic pollutants and explosives in the atmosphere. Ultraviolet radiation photoionization source is widely used as an ionization source for IMS due to its advantages of high selectivity and non-radioactivity. However, UV-IMS bring problems that UV rays will be launched into the drift tube which will cause secondary ionization and lead to the photoelectric effect of the Faraday disk. So air is often used as working gas to reduce the effective distance of UV rays, but it will limit the application areas of UV-IMS. In this paper, we propose a new structure of curved drift tube, which can avoid abnormally incident UV rays. Furthermore, using curved drift tube may increase the length of drift tube and then improve the resolution of UV-IMS according to previous research. We studied the homogeneity of electric field in the curved drift tube, which determined the performance of UV-IMS. Numerical simulation of electric field in curved drift tube was conducted by SIMION in our study. In addition, modeling method and homogeneity standard for electric field were also presented. The influences of key parameters include radius of gyration, gap between electrode as well as inner diameter of curved drift tube, on the homogeneity of electric field were researched and some useful laws were summarized. Finally, an optimized curved drift tube is designed to achieve homogenous drift electric field. There is more than 98.75% of the region inside the curved drift tube where the fluctuation of the electric field strength along the radial direction is less than 0.2% of that along the axial direction.

  3. Metal Abundances, Radial Velocities, and Other Physical Characteristics for the RR Lyrae Stars in The Kepler Field

    Science.gov (United States)

    Nemec, James M.; Cohen, Judith G.; Ripepi, Vincenzo; Derekas, Aliz; Moskalik, Pawel; Sesar, Branimir; Chadid, Merieme; Bruntt, Hans

    2013-08-01

    Spectroscopic iron-to-hydrogen ratios, radial velocities, atmospheric parameters, and new photometric analyses are presented for 41 RR Lyrae stars (and one probable high-amplitude δ Sct star) located in the field-of-view of the Kepler space telescope. Thirty-seven of the RR Lyrae stars are fundamental-mode pulsators (i.e., RRab stars) of which sixteen exhibit the Blazhko effect. Four of the stars are multiperiodic RRc pulsators oscillating primarily in the first-overtone mode. Spectroscopic [Fe/H] values for the 34 stars for which we were able to derive estimates range from -2.54 ± 0.13 (NR Lyr) to -0.05 ± 0.13 dex (V784 Cyg), and for the 19 Kepler-field non-Blazhko stars studied by Nemec et al. the abundances agree will with their photometric [Fe/H] values. Four non-Blazhko RR Lyrae stars that they identified as metal-rich (KIC 6100702, V2470 Cyg, V782 Cyg and V784 Cyg) are confirmed as such, and four additional stars (V839 Cyg, KIC 5520878, KIC 8832417, KIC 3868420) are also shown here to be metal-rich. Five of the non-Blazhko RRab stars are found to be more metal-rich than [Fe/H] ~-0.9 dex while all of the 16 Blazhko stars are more metal-poor than this value. New P-\\phi _31^s-[Fe/H] relationships are derived based on ~970 days of quasi-continuous high-precision Q0-Q11 long- and short-cadence Kepler photometry. With the exception of some Blazhko stars, the spectroscopic and photometric [Fe/H] values are in good agreement. Several stars with unique photometric characteristics are identified, including a Blazhko variable with the smallest known amplitude and frequency modulations (V838 Cyg). Based in part on observations made at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Keck Observatory was made possible by the generous financial support of the W.M. Keck Foundation. Also, based in part on

  4. Perceived radial translation during centrifugation

    NARCIS (Netherlands)

    Bos, J.E.; Correia Grácio, B.J.

    2015-01-01

    BACKGROUND: Linear acceleration generally gives rise to translation perception. Centripetal acceleration during centrifugation, however, has never been reported giving rise to a radial, inward translation perception. OBJECTIVE: To study whether centrifugation can induce a radial translation

  5. An Approach to Predict Debris Flow Average Velocity

    Directory of Open Access Journals (Sweden)

    Chen Cao

    2017-03-01

    Full Text Available Debris flow is one of the major threats for the sustainability of environmental and social development. The velocity directly determines the impact on the vulnerability. This study focuses on an approach using radial basis function (RBF neural network and gravitational search algorithm (GSA for predicting debris flow velocity. A total of 50 debris flow events were investigated in the Jiangjia gully. These data were used for building the GSA-based RBF approach (GSA-RBF. Eighty percent (40 groups of the measured data were selected randomly as the training database. The other 20% (10 groups of data were used as testing data. Finally, the approach was applied to predict six debris flow gullies velocities in the Wudongde Dam site area, where environmental conditions were similar to the Jiangjia gully. The modified Dongchuan empirical equation and the pulled particle analysis of debris flow (PPA approach were used for comparison and validation. The results showed that: (i the GSA-RBF predicted debris flow velocity values are very close to the measured values, which performs better than those using RBF neural network alone; (ii the GSA-RBF results and the MDEE results are similar in the Jiangjia gully debris flow velocities prediction, and GSA-RBF performs better; (iii in the study area, the GSA-RBF results are validated reliable; and (iv we could consider more variables in predicting the debris flow velocity by using GSA-RBF on the basis of measured data in other areas, which is more applicable. Because the GSA-RBF approach was more accurate, both the numerical simulation and the empirical equation can be taken into consideration for constructing debris flow mitigation works. They could be complementary and verified for each other.

  6. Phase and group velocity tracing analysis of projected wave packet motion along oblique radar beams – qualitative analysis of QP echoes

    Directory of Open Access Journals (Sweden)

    F. S. Kuo

    2007-02-01

    Full Text Available The wave packets of atmospheric gravity waves were numerically generated, with a given characteristic wave period, horizontal wave length and projection mean wind along the horizontal wave vector. Their projection phase and group velocities along the oblique radar beam (vpr and vgr, with different zenith angle θ and azimuth angle φ, were analyzed by the method of phase- and group-velocity tracing. The results were consistent with the theoretical calculations derived by the dispersion relation, reconfirming the accuracy of the method of analysis. The RTI plot of the numerical wave packets were similar to the striation patterns of the QP echoes from the FAI irregularity region. We propose that the striation range rate of the QP echo is equal to the radial phase velocity vpr, and the slope of the energy line across the neighboring striations is equal to the radial group velocity vgr of the wave packet; the horizontal distance between two neighboring striations is equal to the characteristic wave period τ. Then, one can inversely calculate all the properties of the gravity wave responsible for the appearance of the QP echoes. We found that the possibility of some QP echoes being generated by the gravity waves originated from lower altitudes cannot be ruled out.

  7. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Absolute parameters of the system were obtained from combining the photometric solution with spectroscopic data obtained from radial velocity curve analysis. The results indicate the poor thermal contact of the components and transit primary minimum. Finally the O–C diagram was analyzed. It was found ...

  8. On protecting the planet against cosmic attack: Ultrafast real-time estimate of the asteroid's radial velocity

    Science.gov (United States)

    Zakharchenko, V. D.; Kovalenko, I. G.

    2014-05-01

    A new method for the line-of-sight velocity estimation of a high-speed near-Earth object (asteroid, meteorite) is suggested. The method is based on the use of fractional, one-half order derivative of a Doppler signal. The algorithm suggested is much simpler and more economical than the classical one, and it appears preferable for use in orbital weapon systems of threat response. Application of fractional differentiation to quick evaluation of mean frequency location of the reflected Doppler signal is justified. The method allows an assessment of the mean frequency in the time domain without spectral analysis. An algorithm structure for the real-time estimation is presented. The velocity resolution estimates are made for typical asteroids in the X-band. It is shown that the wait time can be shortened by orders of magnitude compared with similar value in the case of a standard spectral processing.

  9. Self-consistent radial sheath

    International Nuclear Information System (INIS)

    Hazeltine, R.D.

    1988-12-01

    The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig

  10. Simultaneous realization of slow and fast acoustic waves using a fractal structure of Koch curve.

    Science.gov (United States)

    Ding, Jin; Fan, Li; Zhang, Shu-Yi; Zhang, Hui; Yu, Wei-Wei

    2018-01-24

    An acoustic metamaterial based on a fractal structure, the Koch curve, is designed to simultaneously realize slow and fast acoustic waves. Owing to the multiple transmitting paths in the structure resembling the Koch curve, the acoustic waves travelling along different paths interfere with each other. Therefore, slow waves are created on the basis of the resonance of a Koch-curve-shaped loop, and meanwhile, fast waves even with negative group velocities are obtained due to the destructive interference of two acoustic waves with opposite phases. Thus, the transmission of acoustic wave can be freely manipulated with the Koch-curve shaped structure.

  11. Non-linear radial spinwave modes in thin magnetic disks

    International Nuclear Information System (INIS)

    Helsen, M.; De Clercq, J.; Vansteenkiste, A.; Van Waeyenberge, B.; Gangwar, A.; Back, C. H.; Weigand, M.

    2015-01-01

    We present an experimental investigation of radial spin-wave modes in magnetic nano-disks with a vortex ground state. The spin-wave amplitude was measured using a frequency-resolved magneto-optical spectrum analyzer, allowing for high-resolution resonance curves to be recorded. It was found that with increasing excitation amplitude up to about 10 mT, the lowest-order mode behaves strongly non-linearly as the mode frequency redshifts and the resonance peak strongly deforms. This behavior was quantitatively reproduced by micromagnetic simulations. Micromagnetic simulations showed that at higher excitation amplitudes, the spinwaves are transformed into a soliton by self-focusing, and collapse onto the vortex core, dispersing the energy in short-wavelength spinwaves. Additionally, this process can lead to switching of the vortex polarization through the injection of a Bloch point

  12. A method to enhance the curve negotiation performance of HTS Maglev

    Science.gov (United States)

    Che, T.; Gou, Y. F.; Deng, Z. G.; Zheng, J.; Zheng, B. T.; Chen, P.

    2015-09-01

    High temperature superconducting (HTS) Maglev has attracted more and more attention due to its special self-stable characteristic, and much work has been done to achieve its actual application, but the research about the curve negotiation is not systematic and comprehensive. In this paper, we focused on the change of the lateral displacements of the Maglev vehicle when going through curves under different velocities, and studied the change of the electromagnetic forces through experimental methods. Experimental results show that setting an appropriate initial eccentric distance (ED), which is the distance between the center of the bulk unit and the center of the permanent magnet guideway (PMG), when cooling the bulks is favorable for the Maglev system’s curve negotiation. This work will provide some available suggestions for improving the curve negotiation performance of the HTS Maglev system.

  13. K2-111 b - a short period super-Earth transiting a metal poor, evolved old star

    Science.gov (United States)

    Fridlund, Malcolm; Gaidos, Eric; Barragán, Oscar; Persson, Carina M.; Gandolfi, Davide; Cabrera, Juan; Hirano, Teruyuki; Kuzuhara, Masayuki; Csizmadia, Sz.; Nowak, Grzegorz; Endl, Michael; Grziwa, Sascha; Korth, Judith; Pfaff, Jeremias; Bitsch, Bertram; Johansen, Anders; Mustill, Alexander J.; Davies, Melvyn B.; Deeg, Hans J.; Palle, Enric; Cochran, William D.; Eigmüller, Philipp; Erikson, Anders; Guenther, Eike; Hatzes, Artie P.; Kiilerich, Amanda; Kudo, Tomoyuki; MacQueen, Phillip; Narita, Norio; Nespral, David; Pätzold, Martin; Prieto-Arranz, Jorge; Rauer, Heike; Van Eylen, Vincent

    2017-07-01

    Context. From a light curve acquired through the K2 space mission, the star K2-111(EPIC 210894022) has been identified as possibly orbited by a transiting planet. Aims: Our aim is to confirm the planetary nature of the object and derive its fundamental parameters. Methods: We analyse the light curve variations during the planetary transit using packages developed specifically for exoplanetary transits. Reconnaissance spectroscopy and radial velocity observations have been obtained using three separate telescope and spectrograph combinations. The spectroscopic synthesis package SME has been used to derive the stellar photospheric parameters that were used as input to various stellar evolutionary tracks in order to derive the parameters of the system. The planetary transit was also validated to occur on the assumed host star through adaptive imaging and statistical analysis. Results: The star is found to be located in the background of the Hyades cluster at a distance at least 4 times further away from Earth than the cluster itself. The spectrum and the space velocities of K2-111 strongly suggest it to be a member of the thick disk population. The co-added high-resolution spectra show that that it is a metal poor ([Fe/H] = - 0.53 ± 0.05 dex) and α-rich somewhat evolved solar-like star of spectral type G3. We find Teff = 5730 ± 50 K, log g⋆ = 4.15 ± 0.1 cgs, and derive a radius of R⋆ = 1.3 ± 0.1 R⊙ and a mass of M⋆ = 0.88 ± 0.02 M⊙. The currently available radial velocity data confirms a super-Earth class planet with a mass of 8.6 ± 3.9 M⊕ and a radius of 1.9 ± 0.2 R⊕. A second more massive object with a period longer than about 120 days is indicated by a long-term radial velocity drift. Conclusions: The radial velocity detection together with the imaging confirms with a high level of significance that the transit signature is caused by a planet orbiting the star K2-111. This planet is also confirmed in the radial velocity data. A second more

  14. THE PHOTOECCENTRIC EFFECT AND PROTO-HOT JUPITERS. I. MEASURING PHOTOMETRIC ECCENTRICITIES OF INDIVIDUAL TRANSITING PLANETS

    International Nuclear Information System (INIS)

    Dawson, Rebekah I.; Johnson, John Asher

    2012-01-01

    Exoplanet orbital eccentricities offer valuable clues about the history of planetary systems. Eccentric, Jupiter-sized planets are particularly interesting: they may link the 'cold' Jupiters beyond the ice line to close-in hot Jupiters, which are unlikely to have formed in situ. To date, eccentricities of individual transiting planets primarily come from radial-velocity measurements. Kepler has discovered hundreds of transiting Jupiters spanning a range of periods, but the faintness of the host stars precludes radial-velocity follow-up of most. Here, we demonstrate a Bayesian method of measuring an individual planet's eccentricity solely from its transit light curve using prior knowledge of its host star's density. We show that eccentric Jupiters are readily identified by their short ingress/egress/total transit durations—part of the 'photoeccentric' light curve signature of a planet's eccentricity—even with long-cadence Kepler photometry and loosely constrained stellar parameters. A Markov Chain Monte Carlo exploration of parameter posteriors naturally marginalizes over the periapse angle and automatically accounts for the transit probability. To demonstrate, we use three published transit light curves of HD 17156 b to measure an eccentricity of e = 0.71 +0.16 –0.09 , in good agreement with the discovery value e = 0.67 ± 0.08 based on 33 radial-velocity measurements. We present two additional tests using Kepler data. In each case, the technique proves to be a viable method of measuring exoplanet eccentricities and their confidence intervals. Finally, we argue that this method is the most efficient, effective means of identifying the extremely eccentric, proto-hot Jupiters predicted by Socrates et al.

  15. Ballistic protection performance of curved armor systems with or without debondings/delaminations

    International Nuclear Information System (INIS)

    Tan, Ping

    2014-01-01

    Highlights: • Influence of pre-existing defect in an armor system on its ballistic performance. • Development of finite element models for the ballistic performance of armor systems. • Prediction of the ballistic limit and back face deformation of curved armor systems. - Abstract: In order to discern how pre-existing defects such as single or multiple debondings/delaminations in a curved armor system may affect its ballistic protection performance, two-dimensional axial finite element models were generated using the commercial software ANSYS/Autodyn. The armor systems considered in this investigation are composed of boron carbide front component and Kevlar/epoxy backing component. They are assumed to be perfectly bonded at the interface without defects. The parametric study shows that for the cases considered, the maximum back face deformation of a curved armor system with or without defects is more sensitive to its curvature, material properties of the ceramic front component, and pre-existing defect size and location than the ballistic limit velocity. Additionally, both the ballistic limit velocity and maximum back face deformation are significantly affected by the backing component thickness, front/backing component thickness ratio and the number of delaminations

  16. Radial basis function interpolation of unstructured, three-dimensional, volumetric particle tracking velocimetry data

    International Nuclear Information System (INIS)

    Casa, L D C; Krueger, P S

    2013-01-01

    Unstructured three-dimensional fluid velocity data were interpolated using Gaussian radial basis function (RBF) interpolation. Data were generated to imitate the spatial resolution and experimental uncertainty of a typical implementation of defocusing digital particle image velocimetry. The velocity field associated with a steadily rotating infinite plate was simulated to provide a bounded, fully three-dimensional analytical solution of the Navier–Stokes equations, allowing for robust analysis of the interpolation accuracy. The spatial resolution of the data (i.e. particle density) and the number of RBFs were varied in order to assess the requirements for accurate interpolation. Interpolation constraints, including boundary conditions and continuity, were included in the error metric used for the least-squares minimization that determines the interpolation parameters to explore methods for improving RBF interpolation results. Even spacing and logarithmic spacing of RBF locations were also investigated. Interpolation accuracy was assessed using the velocity field, divergence of the velocity field, and viscous torque on the rotating boundary. The results suggest that for the present implementation, RBF spacing of 0.28 times the boundary layer thickness is sufficient for accurate interpolation, though theoretical error analysis suggests that improved RBF positioning may yield more accurate results. All RBF interpolation results were compared to standard Gaussian weighting and Taylor expansion interpolation methods. Results showed that RBF interpolation improves interpolation results compared to the Taylor expansion method by 60% to 90% based on the average squared velocity error and provides comparable velocity results to Gaussian weighted interpolation in terms of velocity error. RMS accuracy of the flow field divergence was one to two orders of magnitude better for the RBF interpolation compared to the other two methods. RBF interpolation that was applied to

  17. Simulation of High-Speed Droplet Impact Against Dry Substrates with Partial Velocity Slip

    Science.gov (United States)

    Kondo, Tomoki; Ando, Keita

    2017-11-01

    High-speed droplet impact can be used to clean substrates such as silicon wafers. Radially spreading shear flow after the impact may allow for mechanically removing contaminant particles at substrate surfaces. Since it is a big challenge to experimentally explore such complicated flow that exhibits contact line motion and water hammer, its flow feature is not well understood. Here, we aim to numerically evaluate shear flow caused by the impact of a spherical water droplet (of submillimeter sizes) at high speed (up to 50 m/s) against a dry rigid wall. We model the flow based on compressible Navier-Stokes equations with Stokes' hypothesis and solve them by a high-order-accurate finite volume method equipped with shock and interface capturing. To treat the motion of a contact line between the three phases (the droplet, the rigid wall, and the ambient air) in a robust manner, we permit velocity slip at the wall with Navier's model, for wall slip is known to come into play under steep velocity gradients that can arise from high-speed droplet impact. In our presentation, we will examine radially spreading flow after the droplet impact and the resulting wall shear stress generation from the simulation. This work was supported by JSPS KAKENHI Grant Number JP17J02211.

  18. Feasibility tests of a high resolution sampling radial drift chamber

    International Nuclear Information System (INIS)

    Huth, J.

    1985-01-01

    The design concept and results of feasibility tests for a vertex detector intended for use in the TPC-PEP4/9 experiment are presented. The detector is based on a slow radial drift in dimethyl ether. High resolution localization of the avalanches at the sense wire is accomplished with nearby pickup wires and the utilization of waveform sampling electronics. The avalanche angular coordinate measurements, combined with knowledge of the electric field distribution and drift velocity permit reconstruction of the trajectory using essentially all track information. Measurements with a test chamber constructed to study characteristics of avalanche localization indicate that the recoverable track information in one centimeter of dimethyl ether at 1.5 atm is equivalent to 30 measurements of 40 μm accuracy. (orig.)

  19. Measuring surface flow velocity with smartphones: potential for citizen observatories

    Science.gov (United States)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  20. Sabot Front Borerider Stiffness vs. Dispersion: Finding the Knee in the Curve

    Directory of Open Access Journals (Sweden)

    Alan F. Hathaway

    2001-01-01

    Full Text Available In the design of armor piercing, fin-stabilized, discarding sabot projectiles, the radial stiffness of the sabot front borerider has a significant impact on the projectile's dispersion and is, therefore, an important design consideration. Whether designing a new projectile or trying to improve an existing design, projectile designers can achieve front borerider stiffness without understanding its affect on dispersion characteristics. There is a knee in the stiffness vs. dispersion curve at which a change in the sabot front borerider stiffness will have a significant impact on dispersion or no impact at all depending on whether the stiffness is increased or decreased. The subject of this paper is an analytical approach to quantitatively determine the knee in the curve. Results from using this approach on the M865 APFSDS projectile are also presented.

  1. Antisideslip and Antirollover Safety Speed Controller Design for Vehicle on Curved Road

    Directory of Open Access Journals (Sweden)

    Guo Lie

    2014-01-01

    Full Text Available When the drivers cannot be aware of the existing of forthcoming curved roads and fail to regulate their safety speeds accordingly, sideslip or rollover may occur with high probability. The antisideslip and antirollover control of vehicle on curved road in automatic highway systems is studied. The safety speed warning system is set before entering the curved road firstly. The speed adhesion control is adopted to shorten the braking distance while decelerating and to guarantee the safety speed. The velocity controller when decelerating on the straight path and the posture controller when driving on curved road are designed, respectively, utilizing integral backstepping technology. Simulation results demonstrate that this control system is characterized by quick and precise tracking and global stability. Consequently, it is able to avoid the dangerous operating conditions, such as sideslip and rollover, and guarantee the safety and directional stability when driving on curved road.

  2. Radial pseudoaneurysm following diagnostic coronary angiography

    Directory of Open Access Journals (Sweden)

    Shankar Laudari

    2015-06-01

    Full Text Available The radial artery access has gained popularity as a method of diagnostic coronary catheterization compared to femoral artery puncture in terms of vascular complications and early ambulation. However, very rare complication like radial artery pseudoaneurysm may occur following cardiac catheterization which may give rise to serious consequences. Here, we report a patient with radial pseudoaneurysm following diagnostic coronary angiography. Adequate and correct methodology of compression of radial artery following puncture for maintaining hemostasis is the key to prevention.DOI: http://dx.doi.org/10.3126/jcmsn.v10i3.12776 Journal of College of Medical Sciences-Nepal, 2014, Vol-10, No-3, 48-50

  3. Relationships between each part of the spinal curves and upright posture using Multiple stepwise linear regression analysis.

    Science.gov (United States)

    Boulet, Sebastien; Boudot, Elsa; Houel, Nicolas

    2016-05-03

    Back pain is a common reason for consultation in primary healthcare clinical practice, and has effects on daily activities and posture. Relationships between the whole spine and upright posture, however, remain unknown. The aim of this study was to identify the relationship between each spinal curve and centre of pressure position as well as velocity for healthy subjects. Twenty-one male subjects performed quiet stance in natural position. Each upright posture was then recorded using an optoelectronics system (Vicon Nexus) synchronized with two force plates. At each moment, polynomial interpolations of markers attached on the spine segment were used to compute cervical lordosis, thoracic kyphosis and lumbar lordosis angle curves. Mean of centre of pressure position and velocity was then computed. Multiple stepwise linear regression analysis showed that the position and velocity of centre of pressure associated with each part of the spinal curves were defined as best predictors of the lumbar lordosis angle (R(2)=0.45; p=1.65*10-10) and the thoracic kyphosis angle (R(2)=0.54; p=4.89*10-13) of healthy subjects in quiet stance. This study showed the relationships between each of cervical, thoracic, lumbar curvatures, and centre of pressure's fluctuation during free quiet standing using non-invasive full spinal curve exploration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Endoscopic versus open radial artery harvest and mammario-radial versus aorto-radial grafting in patients undergoing coronary artery bypass surgery

    DEFF Research Database (Denmark)

    Carranza, Christian L; Ballegaard, Martin; Werner, Mads U

    2014-01-01

    the postoperative complications will be registered, and we will evaluate muscular function, scar appearance, vascular supply to the hand, and the graft patency including the patency of the central radial artery anastomosis. A patency evaluation by multi-slice computer tomography will be done at one year...... to aorto-radial revascularisation techniques but this objective is exploratory. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT01848886.Danish Ethics committee number: H-3-2012-116.Danish Data Protection Agency: 2007-58-0015/jr.n:30-0838....

  5. BoNus: Development and use of a radial TPC using cylindrical GEMs

    International Nuclear Information System (INIS)

    Fenker, H.; Baillie, N.; Bradshaw, P.; Bueltmann, S.; Burkert, V.; Christy, M.; Dodge, G.; Dutta, D.; Ent, R.; Evans, J.; Fersch, R.; Giovanetti, K.; Griffioen, K.; Ispiryan, M.; Jayalath, C.; Kalantarians, N.; Keppel, C.; Kuhn, S.; Niculescu, G.; Niculescu, I.

    2008-01-01

    A specialized system of target and detector was developed at Jefferson Lab to provide new access to information about neutron structure from electron-neutron interactions. It allows identification and measurement of spectator protons produced in e - d→e - p s X scattering events. The detector is a radial time-projection chamber optimized for the acceptance of low-momentum protons. Gas gain is provided by three cascaded curved Gas Electron Multipliers (GEMs), the first application of GEMs in any configuration other than flat. This article provides details about the development and construction of the detector, its performance, and the analysis of the data from the successful running of its first physics experiment

  6. Multimodal determination of Rayleigh dispersion and attenuation curves using the circle fit method

    Science.gov (United States)

    Verachtert, R.; Lombaert, G.; Degrande, G.

    2018-03-01

    This paper introduces the circle fit method for the determination of multi-modal Rayleigh dispersion and attenuation curves as part of a Multichannel Analysis of Surface Waves (MASW) experiment. The wave field is transformed to the frequency-wavenumber (fk) domain using a discretized Hankel transform. In a Nyquist plot of the fk-spectrum, displaying the imaginary part against the real part, the Rayleigh wave modes correspond to circles. The experimental Rayleigh dispersion and attenuation curves are derived from the angular sweep of the central angle of these circles. The method can also be applied to the analytical fk-spectrum of the Green's function of a layered half-space in order to compute dispersion and attenuation curves, as an alternative to solving an eigenvalue problem. A MASW experiment is subsequently simulated for a site with a regular velocity profile and a site with a soft layer trapped between two stiffer layers. The performance of the circle fit method to determine the dispersion and attenuation curves is compared with the peak picking method and the half-power bandwidth method. The circle fit method is found to be the most accurate and robust method for the determination of the dispersion curves. When determining attenuation curves, the circle fit method and half-power bandwidth method are accurate if the mode exhibits a sharp peak in the fk-spectrum. Furthermore, simulated and theoretical attenuation curves determined with the circle fit method agree very well. A similar correspondence is not obtained when using the half-power bandwidth method. Finally, the circle fit method is applied to measurement data obtained for a MASW experiment at a site in Heverlee, Belgium. In order to validate the soil profile obtained from the inversion procedure, force-velocity transfer functions were computed and found in good correspondence with the experimental transfer functions, especially in the frequency range between 5 and 80 Hz.

  7. Spray droplet velocity characterization for convergent nozzles with three different diameters

    Energy Technology Data Exchange (ETDEWEB)

    R. Payri; B. Tormos; F.J. Salvador; L. Araneo [Universidad Politecnica de Valencia, Valencia (Spain). CMT-Motores Termicos

    2008-11-15

    The core of the present work consists of the phase-Doppler anemometry non-intrusive measurements performed at various points of diesel direct injection sprays in order to obtain the local speed of fuel droplets. The main objective was to perform extensive sets of measurements on convergent nozzles with various orifices diameters, observe and justify the differences and compare the experimental data with a theoretical approach derived by the authors in a previous work which takes into account the spray momentum flux. Experimental axial velocity profiles in different sections of the spray showed a radial distribution that was fitted with a high level of agreement to a Gaussian profile and so proving that this type of profile is a reasonable approach for the type of sprays within the scope of the present work. The experimental results showed that the velocity in the spray's axis inversely depends on axial position and that for a given axial position; higher axial velocity has been measured for the nozzles with higher spray momentum. 16 refs., 5 figs., 5 tabs.

  8. Numerical simulation of liquid-metal-flows in radial-toroidal-radial bends

    International Nuclear Information System (INIS)

    Molokov, S.; Buehler, L.

    1993-09-01

    Magnetohydrodynamic flows in a U-bend and right-angle bend are considered with reference to the radial-toroidal-radial concept of a self-cooled liquid-metal blanket. The ducts composing bends have rectangular cross-section. The applied magnetic field is aligned with the toroidal duct and perpendicular to the radial ones. At high Hartmann number the flow region is divided into cores and boundary layers of different types. The magnetohydrodynamic equations are reduced to a system of partial differential equations governing wall electric potentials and the core pressure. The system is solved numerically by two different methods. The first method is iterative with iteration between wall potential and the core pressure. The second method is a general one for the solution of the core flow equations in curvilinear coordinates generated by channel geometry and magnetic field orientation. Results obtained are in good agreement. They show, that the 3D-pressure drop of MHD flows in a U-bend is not a critical issue for blanket applications. (orig./HP) [de

  9. Effect of shear strength on Hugoniot-compression curve and the equation of state of tungsten (W)

    Energy Technology Data Exchange (ETDEWEB)

    Mashimo, Tsutomu, E-mail: mashimo@gpo.kumamoto-u.ac.jp; Liu, Xun [Institute of Pulsed Power Science, Kumamoto University, Kumamoto 860-8555 (Japan); Kodama, Masao [Sojo University, Kumamoto 860-0082 (Japan); Zaretsky, Eugene [Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Katayama, Masahide [Itochu Techno-Solutions Corporation, Tokyo 100-6080 (Japan); Nagayama, Kunihiko [Kyushu University, Fukuoka 812-8581 (Japan)

    2016-01-21

    The Hugoniot data for highly dense polycrystalline tungsten were obtained for pressures above 200 GPa, and the equation of state (EOS) was determined taking into account shear strength effects. For this study, we have made some improvements in measurement system and analyses of the shock wave data. Symmetric-impact Hugoniot measurements were performed using the high-time resolution streak camera system equipped on a one-stage powder gun and two-stage light gas gun, where the effects of tilting and bowing of flyer plate on the Hugoniot data were carefully considered. The shock velocity–particle velocity (U{sub S}–U{sub P}) Hugoniot relation in the plastic regime was determined to be U{sub S} = 4.137 + 1.242U{sub P} km/s (U{sub P} < 2 km/s). Ultrasonic and Velocity Interferometer System for Any Reflector measurements were also performed in this study. The zero-intercept value of the U{sub S}–U{sub P} Hugoniot relation was found to be slightly larger than the ultrasonic bulk sound velocity (4.023 km/s). The hypothetical hydrostatic isothermal U{sub s}–U{sub p} Hugoniot curve, which corresponds to the hydrostatic isothermal compression curve derived from the Hugoniot data using the strength data, converged to the bulk sound velocity, clearly showing shear strength dependence in the Hugoniot data. The EOS for tungsten is derived from the hydrostatic isothermal compression curve using the strength data.

  10. Effect of shear strength on Hugoniot-compression curve and the equation of state of tungsten (W)

    International Nuclear Information System (INIS)

    Mashimo, Tsutomu; Liu, Xun; Kodama, Masao; Zaretsky, Eugene; Katayama, Masahide; Nagayama, Kunihiko

    2016-01-01

    The Hugoniot data for highly dense polycrystalline tungsten were obtained for pressures above 200 GPa, and the equation of state (EOS) was determined taking into account shear strength effects. For this study, we have made some improvements in measurement system and analyses of the shock wave data. Symmetric-impact Hugoniot measurements were performed using the high-time resolution streak camera system equipped on a one-stage powder gun and two-stage light gas gun, where the effects of tilting and bowing of flyer plate on the Hugoniot data were carefully considered. The shock velocity–particle velocity (U S –U P ) Hugoniot relation in the plastic regime was determined to be U S  = 4.137 + 1.242U P km/s (U P  < 2 km/s). Ultrasonic and Velocity Interferometer System for Any Reflector measurements were also performed in this study. The zero-intercept value of the U S –U P Hugoniot relation was found to be slightly larger than the ultrasonic bulk sound velocity (4.023 km/s). The hypothetical hydrostatic isothermal U s –U p Hugoniot curve, which corresponds to the hydrostatic isothermal compression curve derived from the Hugoniot data using the strength data, converged to the bulk sound velocity, clearly showing shear strength dependence in the Hugoniot data. The EOS for tungsten is derived from the hydrostatic isothermal compression curve using the strength data

  11. The spatial distribution and velocity field of the molecular hydrogen line emission from the centre of the Galaxy

    International Nuclear Information System (INIS)

    Gatley, I.; Krisciunas, K.; Jones, T.J.; Hyland, A.R.; Geballe, T.R.; Rijksuniversiteit Groningen

    1986-01-01

    In an earlier paper the existence of a ring of molecular hydrogen-line emission surrounding the nucleus of the Galaxy was demonstrated. Here are presented the first detailed maps of the surface brightness and the velocity field, made in the upsilon=1-0 S(1) line of molecular hydrogen with a spatial resolution of 18 arcsec and a velocity resolution of 130 km s -1 . It is found that the molecular ring is tilted approximately 20 0 out of the plane of the Galaxy, has a broken and clumpy appearance, rotates at 100 km s -1 in the sense of galactic rotation, and exhibits radial motion at a velocity of 50 km s -1 . (author)

  12. The influence of finite Larmor radius effects on the radial interchange motions of plasma filaments

    DEFF Research Database (Denmark)

    Madsen, Jens; Garcia, Odd E.; Larsen, Jeppe Stærk

    2011-01-01

    The influence of finite Larmor radius (FLR) effects on the perpendicular convection of isolated particle density filaments driven by interchange motions in magnetized plasmas is investigated using a two-moment gyrofluid model. By means of numerical simulations on a two-dimensional, bi-periodic do......The influence of finite Larmor radius (FLR) effects on the perpendicular convection of isolated particle density filaments driven by interchange motions in magnetized plasmas is investigated using a two-moment gyrofluid model. By means of numerical simulations on a two-dimensional, bi......-periodic domain perpendicular to the magnetic field, it is demonstrated that the radial velocities of the blob-like filaments are roughly described by the inertial scaling, which prescribes a velocity proportional to the square root of the summed electron and ion pressures times the square root of the blob width...

  13. Flow characteristics of curved ducts

    Directory of Open Access Journals (Sweden)

    Rudolf P.

    2007-10-01

    Full Text Available Curved channels are very often present in real hydraulic systems, e.g. curved diffusers of hydraulic turbines, S-shaped bulb turbines, fittings, etc. Curvature brings change of velocity profile, generation of vortices and production of hydraulic losses. Flow simulation using CFD techniques were performed to understand these phenomena. Cases ranging from single elbow to coupled elbows in shapes of U, S and spatial right angle position with circular cross-section were modeled for Re = 60000. Spatial development of the flow was studied and consequently it was deduced that minor losses are connected with the transformation of pressure energy into kinetic energy and vice versa. This transformation is a dissipative process and is reflected in the amount of the energy irreversibly lost. Least loss coefficient is connected with flow in U-shape elbows, biggest one with flow in Sshape elbows. Finally, the extent of the flow domain influenced by presence of curvature was examined. This isimportant for proper placement of mano- and flowmeters during experimental tests. Simulations were verified with experimental results presented in literature.

  14. Dedicated radial ventriculography pigtail catheter

    Energy Technology Data Exchange (ETDEWEB)

    Vidovich, Mladen I., E-mail: miv@uic.edu

    2013-05-15

    A new dedicated cardiac ventriculography catheter was specifically designed for radial and upper arm arterial access approach. Two catheter configurations have been developed to facilitate retrograde crossing of the aortic valve and to conform to various subclavian, ascending aortic and left ventricular anatomies. The “short” dedicated radial ventriculography catheter is suited for horizontal ascending aortas, obese body habitus, short stature and small ventricular cavities. The “long” dedicated radial ventriculography catheter is suited for vertical ascending aortas, thin body habitus, tall stature and larger ventricular cavities. This new design allows for improved performance, faster and simpler insertion in the left ventricle which can reduce procedure time, radiation exposure and propensity for radial artery spasm due to excessive catheter manipulation. Two different catheter configurations allow for optimal catheter selection in a broad range of patient anatomies. The catheter is exceptionally stable during contrast power injection and provides equivalent cavity opacification to traditional femoral ventriculography catheter designs.

  15. The evolution of space curves by curvature and torsion

    International Nuclear Information System (INIS)

    Richardson, G; King, J R

    2002-01-01

    We apply Lie group based similarity methods to the study of a new, and widely relevant, class of objects, namely motions of a space curve. In particular, we consider the motion of a curve evolving with a curvature κ and torsion τ dependent velocity law. We systematically derive the Lie point symmetries of all such laws of motion and use these to catalogue all their possible similarity reductions. This calculation reveals special classes of law with high degrees of symmetry (and a correspondingly large number of similarity reductions). Of particular note is one class which is invariant under general linear transformations in space. This has potential applications in pattern and signal recognition

  16. Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves.

    Science.gov (United States)

    Torrent, Daniel; Sánchez-Dehesa, José

    2009-08-07

    We demonstrate that metamaterials with anisotropic properties can be used to develop a new class of periodic structures that has been named radial wave crystals. They can be sonic or photonic, and wave propagation along the radial directions is obtained through Bloch states like in usual sonic or photonic crystals. The band structure of the proposed structures can be tailored in a large amount to get exciting novel wave phenomena. For example, it is shown that acoustical cavities based on radial sonic crystals can be employed as passive devices for beam forming or dynamically orientated antennas for sound localization.

  17. Modified method of perturbed stationary states. II. Semiclassical and low-velocity quantal approximations

    International Nuclear Information System (INIS)

    Green, T.A.

    1978-10-01

    For one-electron heteropolar systems, the wave-theoretic Lagrangian of Paper I 2 is simplified in two distinct approximations. The first is semiclassical; the second is quantal, for velocities below those for which the semiclassical treatment is reliable. For each approximation, unitarity and detailed balancing are discussed. Then, the variational method as described by Demkov is used to determine the coupled equations for the radial functions and the Euler-Lagrange equations for the translational factors which are part of the theory. Specific semiclassical formulae for the translational factors are given in a many-state approximation. Low-velocity quantal formulae are obtained in a one-state approximation. The one-state results of both approximations agree with an earlier determination by Riley. 14 references

  18. Measurement of sound velocity profiles in fluids for process monitoring

    International Nuclear Information System (INIS)

    Wolf, M; Kühnicke, E; Lenz, M; Bock, M

    2012-01-01

    In ultrasonic measurements, the time of flight to the object interface is often the only information that is analysed. Conventionally it is only possible to determine distances or sound velocities if the other value is known. The current paper deals with a novel method to measure the sound propagation path length and the sound velocity in media with moving scattering particles simultaneously. Since the focal position also depends on sound velocity, it can be used as a second parameter. Via calibration curves it is possible to determine the focal position and sound velocity from the measured time of flight to the focus, which is correlated to the maximum of averaged echo signal amplitude. To move focal position along the acoustic axis, an annular array is used. This allows measuring sound velocity locally resolved without any previous knowledge of the acoustic media and without a reference reflector. In previous publications the functional efficiency of this method was shown for media with constant velocities. In this work the accuracy of these measurements is improved. Furthermore first measurements and simulations are introduced for non-homogeneous media. Therefore an experimental set-up was created to generate a linear temperature gradient, which also causes a gradient of sound velocity.

  19. Aneurisma idiopático de artéria radial: relato de caso Idiopathic radial artery aneurysm: case report

    Directory of Open Access Journals (Sweden)

    Luiz Ernani Meira Jr.

    2011-12-01

    Full Text Available Os aneurismas da artéria radial são extremamente raros. Em sua maioria, consistem de pseudoaneurismas pós-traumáticos. Os aneurismas da artéria radial verdadeiros podem ser idiopáticos, congênitos, pós-estenóticos ou associados a patologias, tais como vasculites e doenças do tecido conjuntivo. Foi relatado um caso de aneurisma idiopático de artéria radial em uma criança de três anos, que, após completa investigação diagnóstica complementar, foi submetida à ressecção cirúrgica.Radial artery aneurysms are extremely rare. Post-traumatic pseudoaneurysms are the vast majority. True radial artery aneurysms can be idiopathic, congenital, poststenotic, or associated with some pathologies, such as vasculitis and conjunctive tissue diseases. We report a case of an idiopathic aneurysm of the radial artery in a three-year-old child who was submitted to surgical resection after a complete diagnostic approach.

  20. Plasma rotation and radial electric field with a density ramp in an ohmically heated tokamak

    International Nuclear Information System (INIS)

    Duval, B.P.; Joye, B.; Marchal, B.

    1991-10-01

    Measurements of toroidal and poloidal rotation of the TCA plasma with Alfven Wave Heating and different levels of gas feed are reported. The temporal evolution of the rotation was inferred from intrinsic spectral lines of CV, CIII and, using injected helium gas, from HeII. The light collection optics and line intensity permitted the evolution of the plasma rotation to be measured with a time resolution of 2ms. The rotation velocities were used to deduce the radial electric field. With Alfven heating there was no observable change of this electric field that could have been responsible for the density rise which is characteristic of the RF experiments on TCA. The behaviour of the plasma rotation with different plasma density ramp rates was investigated. The toroidal rotation was observed to decrease with increasing plasma density. The poloidal rotation was observed to follow the value of the plasma density. With hard gas puffing, changes in the deduced radial electric field were found to coincide with changes in the peaking of the plasma density profile. Finally, with frozen pellet injection, the expected increase in the radial electric field due to the increased plasma density was not observed, which may explain the poorer confinement of the injected particles. Even in an ohmically heated tokamak, the measurement of the plasma rotation and the radial electric field are shown to be strongly related to the confinement. A thorough statistical analysis of the systematic errors is presented and a new and significant source of uncertainty in the experimental technique is identified. (author) 18 figs., 18 refs