WorldWideScience

Sample records for radial transport ceases

  1. Radial transport with perturbed magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hazeltine, R. D. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-05-15

    It is pointed out that the viscosity coefficient describing radial transport of toroidal angular momentum is proportional to the second power of the gyro-radius—like the corresponding coefficients for particle and heat transport—regardless of any geometrical symmetry. The observation is widely appreciated, but worth emphasizing because some literature gives the misleading impression that asymmetry can allow radial moment transport in first-order.

  2. Radial transport with perturbed magnetic field

    International Nuclear Information System (INIS)

    Hazeltine, R. D.

    2015-01-01

    It is pointed out that the viscosity coefficient describing radial transport of toroidal angular momentum is proportional to the second power of the gyro-radius—like the corresponding coefficients for particle and heat transport—regardless of any geometrical symmetry. The observation is widely appreciated, but worth emphasizing because some literature gives the misleading impression that asymmetry can allow radial moment transport in first-order

  3. Interactions between Radial Electric Field, Transport and Structure in Helical Plasmas

    International Nuclear Information System (INIS)

    Ida, Katsumi and others

    2006-01-01

    Control of the radial electric field is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. Particle and heat transport, that determines the radial structure of density and electron profiles, sensitive to the structure of radial electric field. On the other hand, the radial electric field itself is determined by the plasma parameters. In general, the sign of the radial electric field is determined by the plasma collisionality, while the magnitude of the radial electric field is determined by the temperature and/or density gradients. Therefore the structure of radial electric field and temperature and density are strongly coupled through the particle and heat transport and formation mechanism of radial electric field. Interactions between radial electric field, transport and structure in helical plasmas is discussed based on the experiments on Large Helical Device

  4. Computer simulation of radial transport in tandem mirror machines

    International Nuclear Information System (INIS)

    Gilmore, J.M.

    1979-01-01

    A code used for simulation of classical radial transport in the 2XIIB experiment has been modified to simulate radial transport in TMX. Results have been obtained using classical transport coefficients and also using very simple trial neoclassical resonant transport coefficients. Comparison of the results obtained with solely classical transport and with both classical and neo-classical transport indicate that neoclassical transport depresses the ion density by approximately 5%. The central cell ion temperature is increased by approximately by the neo-classical transport, as is the electron temperature

  5. On helicon wave induced radial plasma transport

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1993-04-01

    Estimates of helicon wave induced radial plasma transport are presented. The wave induced transport grows or decreases in dependence on the sign of the azimuthal wave number; these changes in transport may play an important role in helicon wave plasma sources. (author) 5 figs., 18 refs

  6. Weighted radial dimension: an improved fractal measurement for highway transportation networks distribution

    Science.gov (United States)

    Feng, Yongjiu; Liu, Miaolong; Tong, Xiaohua

    2007-06-01

    An improved fractal measurement, the weighted radial dimension, is put forward for highway transportation networks distribution. The radial dimension (DL), originated from subway investigation in Stuttgart, is a fractal measurement for transportation systems under ideal assumption considering all the network lines to be homogeneous curves, ignoring the difference on spatial structure, quality and level, especially the highway networks. Considering these defects of radial dimension, an improved fractal measurement called weighted radial dimension (D WL) is introduced and the transportation system in Guangdong province is studied in detail using this novel method. Weighted radial dimensions are measured and calculated, and the spatial structure, intensity and connectivity of transportation networks are discussed in Guangdong province and the four sub-areas: the Pearl River Delta area, the East Costal area, the West Costal area and the Northern Guangdong area. In Guangdong province, the fractal spatial pattern characteristics of transportation system vary remarkably: it is the highest in the Pearl River Delta area, moderate in Costal area and lowest in the Northern Guangdong area. With the Pearl River Delta area as the centre, the weighted radial dimensions decrease with the distance increasing, while the decline level is smaller in the costal area and greater in the Northern Guangdong province. By analysis of the conic of highway density, it is recognized that the density decrease with the distance increasing from the calculation centre (Guangzhou), demonstrating the same trend as weighted radial dimensions shown. Evidently, the improved fractal measurement, weighted radial dimension, is an indictor describing the characteristics of highway transportation system more effectively and accurately.

  7. Transport profiles induced by radially localized modes in tokamak

    International Nuclear Information System (INIS)

    Beklemishev, A.D.; Horton, W.

    1991-04-01

    We describe a new approach to the calculation of turbulent transport coefficients for radially localized modes. The theory takes into account the nonuniformity of the distribution of rational (resonant) magnetic surfaces in minor radius. This distribution function is proportional to the density of available states of excitation. The resulting density of state correction qualitatively changes the radial profile of the transport coefficients, as compared to the usual local diffusivity formulae. The correction factor calculated for the η i -mode transport allows a much better agreement of χ i with the experimental data than previously achieved. 8 refs., 3 figs

  8. Inward transport of a toroidally confined plasma subject to strong radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.

    1977-01-01

    The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.

  9. Radial Transport and Meridional Circulation in Accretion Disks

    Energy Technology Data Exchange (ETDEWEB)

    Philippov, Alexander A. [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States); Rafikov, Roman R., E-mail: sashaph@princeton.edu [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2017-03-10

    Radial transport of particles, elements and fluid driven by internal stresses in three-dimensional (3D) astrophysical accretion disks is an important phenomenon, potentially relevant for the outward dust transport in protoplanetary disks, origin of the refractory particles in comets, isotopic equilibration in the Earth–Moon system, etc. To gain better insight into these processes, we explore the dependence of meridional circulation in 3D disks with shear viscosity on their thermal stratification, and demonstrate a strong effect of the latter on the radial flow. Previous locally isothermal studies have normally found a pattern of the radial outflow near the midplane, switching to inflow higher up. Here we show, both analytically and numerically, that a flow that is inward at all altitudes is possible in disks with entropy and temperature steeply increasing with height. Such thermodynamic conditions may be typical in the optically thin, viscously heated accretion disks. Disks in which these conditions do not hold should feature radial outflow near the midplane, as long as their internal stress is provided by the shear viscosity. Our results can also be used for designing hydrodynamical disk simulations with a prescribed pattern of the meridional circulation.

  10. Condition of damping of anomalous radial transport, determined by ordered convective electron dynamics

    International Nuclear Information System (INIS)

    Maslov, V.I.; Barchuk, S.V.; Lapshin, V.I.; Volkov, E.D.; Melentsov, Yu.V.

    2006-01-01

    It is shown, that at development of instability due to a radial gradient of density in the crossed electric and magnetic fields in nuclear fusion installations ordering convective cells can be excited. It provides anomalous particle transport. The spatial structures of these convective cells have been constructed. The radial dimensions of these convective cells depend on their amplitudes and on a radial gradient of density. The convective-diffusion equation for radial dynamics of the electrons has been derived. At the certain value of the universal controlling parameter, the convective cell excitation and the anomalous radial transport are suppressed. (author)

  11. Moment approach to tandem mirror radial transport

    International Nuclear Information System (INIS)

    Siebert, K.D.; Callen, J.D.

    1986-02-01

    A moment approach is proposed for the study of tandem mirror radial transport in the resonant plateau regime. The salient features of the method are described with reference to axisymmetric tokamak transport theory. In particular, the importance of momentum conservation to the establishment of the azimuthal variations in the electrostatic potential is demonstrated. Also, an ad hoc drift kinetic equation is solved to determine parallel viscosity coefficients which are required to close the moment system

  12. An axially averaged-radial transport model of tokamak edge plasmas

    International Nuclear Information System (INIS)

    Prinja, A.K.; Conn, R.W.

    1984-01-01

    A two-zone axially averaged-radial transport model for edge plasmas is described that incorporates parallel electron and ion conduction, localized recycling, parallel electron pressure gradient effects and sheath losses. Results for high recycling show that the radial electron temperature profile is determined by parallel electron conduction over short radial distances (proportional 3 cm). At larger radius where Tsub(e) has fallen appreciably, convective transport becomes equally important. The downstream density and ion temperature profiles are very flat over the region where electron conduction dominates. This is seen to result from a sharply decaying velocity profile that follows the radial electron temperature. A one-dimensional analytical recycling model shows that at high neutral pumping rates, the plasma density at the plate, nsub(ia), scales linearly with the unperturbed background density, nsub(io). When ionization dominates nsub(ia)/nsub(io) proportional exp(nsub(io)) while in the intermediate regime nsub(ia)/nsub(io) proportional exp(proportional nsub(io)). Such behavior is qualitatively in accord with experimental observations. (orig.)

  13. Root cortical aerenchyma inhibits radial nutrient transport in maize (Zea mays).

    Science.gov (United States)

    Hu, Bo; Henry, Amelia; Brown, Kathleen M; Lynch, Jonathan P

    2014-01-01

    Formation of root cortical aerenchyma (RCA) can be induced by nutrient deficiency. In species adapted to aerobic soil conditions, this response is adaptive by reducing root maintenance requirements, thereby permitting greater soil exploration. One trade-off of RCA formation may be reduced radial transport of nutrients due to reduction in living cortical tissue. To test this hypothesis, radial nutrient transport in intact roots of maize (Zea mays) was investigated in two radiolabelling experiments employing genotypes with contrasting RCA. In the first experiment, time-course dynamics of phosphate loading into the xylem were measured from excised nodal roots that varied in RCA formation. In the second experiment, uptake of phosphate, calcium and sulphate was measured in seminal roots of intact young plants in which variation in RCA was induced by treatments altering ethylene action or genetic differences. In each of three paired genotype comparisons, the rate of phosphate exudation of high-RCA genotypes was significantly less than that of low-RCA genotypes. In the second experiment, radial nutrient transport of phosphate and calcium was negatively correlated with the extent of RCA for some genotypes. The results support the hypothesis that RCA can reduce radial transport of some nutrients in some genotypes, which could be an important trade-off of this trait.

  14. Radial transport of storm time ring current ions

    Science.gov (United States)

    Lui, A. T. Y.

    1993-01-01

    Radial transport of energetic ions for the development of the main phase of geomagnetic storms is investigated with data from the medium energy particle analyzer (MEPA) on the Charge Composition Explorer spacecraft, which monitored protons, helium ions, and the carbon-nitrogen-oxygen group, which is mostly dominated by oxygen ions. From a study of four geomagnetic storms, we show that the flux increase of these ions in the inner ring current region can be accounted for by an inward displacement of the ring current population by 0.5 to 3.5 R(E). There is a general trend that a larger inward displacement occurs at higher L shells than at lower ones. These results are in agreement with previous findings. The radially injected population consists of the prestorm population modified by substorm injections which occur on a much shorter time scale than that for a storm main phase. It is also found that the inward displacement is relatively independent of ion mass and energy, suggesting that the radial transport of these energetic ions is effected primarily by convective motion from a large electric field or by diffusion resulting from magnetic field fluctuations.

  15. On radio frequency wave induced radial transport and wave helicity

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1992-09-01

    Expressions for wave induced radial transport are derived allowing simple estimates. The transport is enhanced due to the presence of poloidal magnetostatic field and in the vicinity of the ion cyclotron resonance. The direction of the wave induced transport depends also on the wave polarization. (author) 19 refs

  16. The influence of collisional and anomalous radial diffusion on parallel ion transport in edge plasmas

    International Nuclear Information System (INIS)

    Helander, P.; Hazeltine, R.D.; Catto, P.J.

    1996-01-01

    The orderings in the kinetic equations commonly used to study the plasma core of a tokamak do not allow a balance between parallel ion streaming and radial diffusion, and are, therefore, inappropriate in the plasma edge. Different orderings are required in the edge region where radial transport across the steep gradients associated with the scrape-off layer is large enough to balance the rapid parallel flow caused by conditions close to collecting surfaces (such as the Bohm sheath condition). In the present work, we derive and solve novel kinetic equations, allowing for such a balance, and construct distinctive transport laws for impure, collisional, edge plasmas in which the perpendicular transport is (i) due to Coulomb collisions of ions with heavy impurities, or (ii) governed by anomalous diffusion driven by electrostatic turbulence. In both the collisional and anomalous radial transport cases, we find that one single diffusion coefficient determines the radial transport of particles, momentum and heat. The parallel transport laws and parallel thermal force in the scrape-off layer assume an unconventional form, in which the relative ion-impurity flow is driven by a combination of the conventional parallel gradients, and new (i) collisional or (ii) anomalous terms involving products of radial derivatives of the temperature and density with the radial shear of the parallel velocity. Thus, in the presence of anomalous radial diffusion, the parallel ion transport cannot be entirely classical, as usually assumed in numerical edge computations. The underlying physical reason is the appearance of a novel type of parallel thermal force resulting from the combined action of anomalous diffusion and radial temperature and velocity gradients. In highly sheared flows the new terms can modify impurity penetration into the core plasma

  17. Radial transport in the Elmo Bumpy Torus in collisionless electron regimes

    International Nuclear Information System (INIS)

    Jaeger, E.F.; Hedrick, C.L.; Spong, D.A.

    1979-01-01

    One important area of disagreement between radial transport theory and the ELMO Bumpy Torus (EBT) experiment has been the degree of collisionality of the toroidal plasma electrons. Experiment shows relatively warm electrons (kTsub(e) approximately 300-600eV) and collisionless scaling, i.e. energy confinement increasing with temperature. But results of early one-dimensional (1-D), neoclassical transport models with radially inward pointing electric fields are limited to relatively cool electrons (kTsub(e) approximately 100-200eV) and collisional scaling. In this paper these early results are extended to include lowest-order effects of ion diffusion in regions where poloidal drift frequencies are small. The effects of direct, or non-diffusive, losses in such regions are neglected along with the effects of finite radial electric fields on electron transport coefficients and of self-consistent poloidal electric fields on ion transport coefficients. Results show that solutions in the collisionless electron regime do exist. Furthermore, when the effects of finite electron ring beta on magnetic fields near the plasma edge are included, these solutions occur at power levels consistent with experiment. (author)

  18. Radial transport of poloidal momentum in ASDEX Upgrade in L-mode and H-mode

    DEFF Research Database (Denmark)

    Schrittwieser, R.; Mehlmann, F.; Naulin, Volker

    2012-01-01

    A reciprocating probe was used for localized measurements of the radial transport of poloidal momentum in the scrape-off layer (SOL) of ASDEX Upgrade (AUG). The probe measured poloidal and radial electric field components and density. We concentrate on three components of the momentum transport: ......: Reynolds stress, convective momentum flux and triple product of the fluctuating components of density, radial and poloidal electric field. For the evaluation we draw mainly on the probability density functions (PDFs)....

  19. Transport analysis of radial electric field in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2004-01-01

    A set of transport equations is analyzed which induces the radial transition of the electric field. A temperature profile which is related with the transport barrier is obtained by use of the theoretical model for the anomalous transport diffusivities. A dependence on the different initial condition is found even if the same values of the control parameters are used in calculations. A study of the temporal evolution of E r is done. We examine the test of the adopted theoretical model for the anomalous transport diffusivities compared with the experimental result in Large Helical Device (LHD). (authors)

  20. Transport in Silicon Nanowires: Role of Radial Dopant Profile

    DEFF Research Database (Denmark)

    Markussen, Troels; Rurali, Riccardo; Jauho, Antti-Pekka

    2008-01-01

    distributions of P dopant impurities. We find that the radial distribution of the dopants influences the conductance properties significantly: surface doped wires have longer mean-free paths and smaller sample-to-sample fluctuations in the cross-over from ballistic to diffusive transport. These findings can...

  1. Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.

    1979-01-01

    Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.

  2. Finite-orbit-width effect and the radial electric field in neoclassical transport phenomena

    International Nuclear Information System (INIS)

    Satake, S.; Okamoto, M.; Nakajima, N.; Sugama, H.; Yokoyama, M.; Beidler, C.D.

    2005-01-01

    Modeling and detailed simulation of neoclassical transport phenomena both in 2D and 3D toroidal configurations are shown. The emphasis is put on the effect of finiteness of the drift-orbit width, which brings a non-local nature to neoclassical transport phenomena. Evolution of the self-consistent radial electric field in the framework of neoclassical transport is also investigated. The combination of Monte-Carlo calculation for ion transport and numerical solver of ripple-averaged kinetic equation for electrons makes it possible to calculate neoclassical fluxes and the time evolution of the radial electric field in the whole plasma region, including the finite-orbit-width (FOW) effects and global evolution of geodesic acoustic mode (GAM). The simulation results show that the heat conductivity around the magnetic axis is smaller than that obtained from standard neoclassical theory and that the evolution of GAM oscillation on each flux surface is coupled with other surfaces if the FOW effect is significant. A global simulation of radial electric field evolution in a non-axisymmetric plasma is also shown. (author)

  3. Transport modelling including radial electric field and plasma rotation

    International Nuclear Information System (INIS)

    Fukuyama, A.; Fuji, Y.; Itoh, S.-I.

    1994-01-01

    Using a simple turbulent transport model with a constant diffusion coefficient and a fixed temperature profile, the density profile in a steady state and the transient behaviour during the co and counter neutral beam injection are studied. More consistent analysis has been initiated with a turbulent transport model based on the current diffusive high-n ballooning mode. The enhancement of the radial electric field due to ion orbit losses and the reduction of the transport due to the poloidal rotation shear are demonstrated. The preliminary calculation indicates a sensitive temperature dependence of the density profile. (author)

  4. Radial electric field and transport near the rational surface and the magnetic island in LHD

    International Nuclear Information System (INIS)

    Ida, K.; Inagaki, S.; Tamura, N.

    2002-10-01

    The structure of the radial electric field and heat transport at the magnetic island in the Large Helical Device is investigated by measuring the radial profile of poloidal flow with charge exchange spectroscopy. The convective poloidal flow inside the island is observed when the n/m=1/1 external perturbation field becomes large enough to increase the magnetic island width above a critical value (15-20% of minor radius) in LHD. This convective poloidal flow results in a non-flat space potential inside the magnetic island. The sign of the curvature of the space potential depends on the radial electric field at the boundary of the magnetic island. The heat transport inside the magnetic island is studied with a cold pulse propagation technique. The experimental results show the existence of the radial electric field shear at the boundary of the magnetic island and a reduction of heat transport inside the magnetic island. (author)

  5. Core radial electric field and transport in Wendelstein 7-X plasmas

    Science.gov (United States)

    Pablant, N. A.; Langenberg, A.; Alonso, A.; Beidler, C. D.; Bitter, M.; Bozhenkov, S.; Burhenn, R.; Beurskens, M.; Delgado-Aparicio, L.; Dinklage, A.; Fuchert, G.; Gates, D.; Geiger, J.; Hill, K. W.; Höfel, U.; Hirsch, M.; Knauer, J.; Krämer-Flecken, A.; Landreman, M.; Lazerson, S.; Maaßberg, H.; Marchuk, O.; Massidda, S.; Neilson, G. H.; Pasch, E.; Satake, S.; Svennson, J.; Traverso, P.; Turkin, Y.; Valson, P.; Velasco, J. L.; Weir, G.; Windisch, T.; Wolf, R. C.; Yokoyama, M.; Zhang, D.; W7-X Team

    2018-02-01

    The results from the investigation of neoclassical core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥˜ 5 km/s (ΔEr ˜ 12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred Er profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. These comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.

  6. The role of fluctuation-induced transport in a toroidal plasma with strong radial electric fields

    Science.gov (United States)

    Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J. Y.; Kim, Y. C.

    1981-01-01

    Previous work employing digitally implemented spectral analysis techniques is extended to demonstrate that radial fluctuation-induced transport is the dominant ion transport mechanism in an electric field dominated toroidal plasma. Such transport can be made to occur against a density gradient, and hence may have a very beneficial effect on confinement in toroidal plasmas of fusion interest. It is shown that Bohm or classical diffusion down a density gradient, the collisional Pedersen-current mechanism, and the collisionless electric field gradient mechanism described by Cole (1976) all played a minor role, if any, in the radial transport of this plasma.

  7. Neoclassical transport and radial electric fields in TJ-K

    International Nuclear Information System (INIS)

    Rahbarnia, K.; Greiner, F.; Ramisch, M.; Stroth, U.; Greiner, F.

    2003-01-01

    The neoclassical transport is investigated in the torsatron TJ-K, which is operated with a low-temperature plasma. In the low-collisionality regime neoclassical losses are not intrinsically ambipolar, leading to the formation of a radial electric field which acts on both neoclassical and turbulent transport. This electric field is measured with a combination of Langmuir and emissive probes. The data are compared with the ambipolar electric field calculated with an analytic model. The experimental fields are positive and larger than the calculated ones. Direct losses of the fast electrons might explain this discrepancy. (orig.)

  8. Axial SPN and radial MOC coupled whole core transport calculation

    International Nuclear Information System (INIS)

    Cho, Jin-Young; Kim, Kang-Seog; Lee, Chung-Chan; Zee, Sung-Quun; Joo, Han-Gyu

    2007-01-01

    The Simplified P N (SP N ) method is applied to the axial solution of the two-dimensional (2-D) method of characteristics (MOC) solution based whole core transport calculation. A sub-plane scheme and the nodal expansion method (NEM) are employed for the solution of the one-dimensional (1-D) SP N equations involving a radial transverse leakage. The SP N solver replaces the axial diffusion solver of the DeCART direct whole core transport code to provide more accurate, transport theory based axial solutions. In the sub-plane scheme, the radial equivalent homogenization parameters generated by the local MOC for a thick plane are assigned to the multiple finer planes in the subsequent global three-dimensional (3-D) coarse mesh finite difference (CMFD) calculation in which the NEM is employed for the axial solution. The sub-plane scheme induces a much less nodal error while having little impact on the axial leakage representation of the radial MOC calculation. The performance of the sub-plane scheme and SP N nodal transport solver is examined by solving a set of demonstrative problems and the C5G7MOX 3-D extension benchmark problems. It is shown in the demonstrative problems that the nodal error reaching upto 1,400 pcm in a rodded case is reduced to 10 pcm by introducing 10 sub-planes per MOC plane and the transport error is reduced from about 150 pcm to 10 pcm by using SP 3 . Also it is observed, in the C5G7MOX rodded configuration B problem, that the eigenvalues and pin power errors of 180 pcm and 2.2% of the 10 sub-planes diffusion case are reduced to 40 pcm and 1.4%, respectively, for SP 3 with only about a 15% increase in the computing time. It is shown that the SP 5 case gives very similar results to the SP 3 case. (author)

  9. Radial Flow in a Multiphase Transport Model at FAIR Energies

    Directory of Open Access Journals (Sweden)

    Soumya Sarkar

    2018-01-01

    Full Text Available Azimuthal distributions of radial velocities of charged hadrons produced in nucleus-nucleus (AB collisions are compared with the corresponding azimuthal distribution of charged hadron multiplicity in the framework of a multiphase transport (AMPT model at two different collision energies. The mean radial velocity seems to be a good probe for studying radial expansion. While the anisotropic parts of the distributions indicate a kind of collective nature in the radial expansion of the intermediate “fireball,” their isotropic parts characterize a thermal motion. The present investigation is carried out keeping the upcoming Compressed Baryonic Matter (CBM experiment to be held at the Facility for Antiproton and Ion Research (FAIR in mind. As far as high-energy heavy-ion interactions are concerned, CBM will supplement the Relativistic Heavy-Ion Collider (RHIC and Large Hadron Collider (LHC experiments. In this context our simulation results at high baryochemical potential would be interesting, when scrutinized from the perspective of an almost baryon-free environment achieved at RHIC and LHC.

  10. Radially sheared azimuthal flows and turbulent transport in a cylindrical helicon plasma device

    International Nuclear Information System (INIS)

    Tynan, G R; Burin, M J; Holland, C; Antar, G; Diamond, P H

    2004-01-01

    A radially sheared azimuthal flow is observed in a cylindrical helicon plasma device. The shear flow is roughly azimuthally symmetric and contains both time-stationary and slowly varying components. The turbulent radial particle flux is found to peak near the density gradient maximum and vanishes at the shear layer location. The shape of the radial plasma potential profile associated with the azimuthal E x B flow is predicted accurately by theory. The existence of the mean shear flow in a plasma with finite flow damping from ion-neutral collisions and no external momentum input implies the existence of radial angular momentum transport from the turbulent Reynolds-stress

  11. Effects of finite-β and radial electric fields on neoclassical transport in the Large Helical Device

    International Nuclear Information System (INIS)

    Kanno, R.; Nakajima, N.; Sugama, H.; Okamoto, M.; Ogawa, Y.

    1997-01-01

    Effects of finite-β and radial electric fields on the neoclassical transport in the Large Helical Device are investigated with the DKES (Drift Kinetic Equation Solver) code. In the finite-β configuration, even orbits of deeply trapped particles deviate significantly from magnetic flux surfaces. Thus, neoclassical ripple transport coefficients in the finite-β configuration are several times larger than those in the vacuum configuration under the same condition of temperatures and radial electric fields. When the plasma temperature is several keV, a bifurcation of the electric fields appears under the ambipolarity condition, and sufficient large radial electric fields can be generated. As a result, the ExB drift rectifies orbits of particles and improves significantly the transport coefficients in the finite-β configuration. (author)

  12. Effects of applied dc radial electric fields on particle transport in a bumpy torus plasma

    Science.gov (United States)

    Roth, J. R.

    1978-01-01

    The influence of applied dc radial electric fields on particle transport in a bumpy torus plasma is studied. The plasma, magnetic field, and ion heating mechanism are operated in steady state. Ion kinetic temperature is more than a factor of ten higher than electron temperature. The electric fields raise the ions to energies on the order of kilovolts and then point radially inward or outward. Plasma number density profiles are flat or triangular across the plasma diameter. It is suggested that the radial transport processes are nondiffusional and dominated by strong radial electric fields. These characteristics are caused by the absence of a second derivative in the density profile and the flat electron temperature profiles. If the electric field acting on the minor radius of the toroidal plasma points inward, plasma number density and confinement time are increased.

  13. Impurity profiles and radial transport in the EXTRAP-T2 reversed field pinch

    International Nuclear Information System (INIS)

    Sallander, J.

    1999-01-01

    Radially resolved spectroscopy has been used to measure the radial distribution of impurity ions (O III-O V and C III-CVI) in the EXTRAP-T2 reversed field pinch (RFP). The radial profile of the emission is reconstructed from line emission measured along five lines of sight. The ion density profile is the fitted quantity in the reconstruction of the brightness profile and is thus obtained directly in this process. These measurements are then used to adjust the parameters in transport calculations in order to obtain consistency with the observed ion density profiles. Comparison between model and measurements show that a radial dependence in the diffusion is needed to explain the measured ion densities. (author)

  14. Impurity profiles and radial transport in the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Sallander, J.

    1999-05-01

    Radially resolved spectroscopy has been used to measure the radial distribution of impurity ions (O III-O V and C III-CVI) in the EXTRAP-T2 reversed field pinch (RFP). The radial profile of the emission is reconstructed from line emission measured along five lines of sight. The ion density profile is the fitted quantity in the reconstruction of the brightness profile and is thus obtained directly in this process. These measurements are then used to adjust the parameters in transport calculations in order to obtain consistency with the observed ion density profiles. Comparison between model and measurements show that a radial dependence in the diffusion is needed to explain the measured ion densities.

  15. Kinetic transport properties of a bumpy torus with finite radial ambipolar field

    International Nuclear Information System (INIS)

    Spong, D.A.; Harris, E.G.; Hedrick, C.L.

    1978-04-01

    Bumpy torus neoclassical transport coefficients have been calculted including finite values of the radial ambipolar field. These are obtained by solving a bounce-averaged drift kinetic equation in a local approximation for perturbations in the distribution function (away from a stationary Maxwellian) caused by toroidicity and radial gradients in plasma density, temperature, and potential. Particle and energy fluxes along with the associated transport coefficients are then calculated by taking appropriate moments of the distribution function. Particle orbits are treated by breaking them up into a vertical drift component (due to toroidicity) and a theta precessional drift (as a result of Vector E x Vector B and drifts due to the bumpy toroidal field). The kinetic equation has been solved using both a functional expansion method and finite difference techniques [Alternating-Direction-Implicit (ADI)]. The resulting transport coefficients exhibit a strong dependence on the ambipolar electric field and plasma collisionality. In the large electric field limit, our results are in close agreement with the earlier work of Kovrizhnykh

  16. Environmental efficiency analysis of transportation system in China: A non-radial DEA approach

    International Nuclear Information System (INIS)

    Chang, Young-Tae; Zhang, Ning; Danao, Denise; Zhang, Nan

    2013-01-01

    Many countries are worried about reducing energy consumption and environmental pollution while increasing the productivity and efficiency of their industries. This study intends to contribute to the literature by proposing a non-radial DEA model with the slacks-based measure (SBM) to analyze the environmental efficiency of China's transportation sector. The results show that most of the provinces in China do not have an eco-efficient transportation industry. The environmental efficiency levels in most of the provinces are lower than 50% of the ideal or target level. Therefore, China's transportation industry is environmentally very inefficient. China can reduce a great deal of carbon emissions in each province ranging from at least 1.6 million TOEs in Qinghai and at most 33 million TOEs in Guangdong and Shanghai. - Highlights: • Propose a non-radial DEA model with the slacks-based measure. • Analyze the environmental efficiency of China's transportation sector. • China's transportation industry is environmentally very inefficient. • Millions of TOE carbon emissions can be reduced in most of the provinces

  17. Radial transport of high-energy oxygen ions into the deep inner magnetosphere observed by Van Allen Probes

    Science.gov (United States)

    Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L. J.; Mitchell, D. G.; Kletzing, C.

    2017-12-01

    It is known that proton is main contributor of the ring current and oxygen ions can make significant contribution during major magnetic storms. Ions are supplied to the ring current by radial transport from the plasma sheet. Convective transport of lower-energy protons and diffusive transport of higher-energy protons were reported to contribute to the storm-time and quiet-time ring current respectively [e.g., Gkioulidou et al., 2016]. However, supply mechanisms of the oxygen ions are not clear. To characterize the supply of oxygen ions to the ring current during magnetic storms, we studied the properties of energetic proton and oxygen ion phase space densities (PSDs) for specific magnetic moment (μ) during the April 23-25, 2013, geomagnetic storm observed by the Van Allen Probes mission. We here report on radial transport of high-energy (μ ≥ 0.5 keV/nT) oxygen ions into the deep inner magnetosphere during the late main phase of the magnetic storm. Since protons show little change during this period, this oxygen radial transport is inferred to cause the development of the late main phase. Enhancement of poloidal magnetic fluctuations is simultaneously observed. We estimated azimuthal mode number ≤5 by using cross wavelet analysis with ground-based observation of IMAGE ground magnetometers. The fluctuations can resonate with drift and bounce motions of the oxygen ions. The results suggest that combination of the drift and drift-bounce resonances is responsible for the radial transport of high-energy oxygen ions into the deep inner magnetosphere. We also report on the radial transport of the high-energy oxygen ions into the deep inner magnetosphere during other magnetic storms.

  18. Variations of helicon wave induced radial plasma transport in different experimental conditions

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1993-08-01

    Variations of the helicon wave induced radial plasma transport are presented in dependence on values of the plasma radius, magnetostatic field, plasma density, frequency of the helicon wave and on the ion charge. 22 refs., 14 figs

  19. Axial and radial water transport and internal water storage in tropical forest canopy trees.

    Science.gov (United States)

    Shelley A. James; Frederick C. Meinzer; Guillermo Goldstein; David Woodruff; Timothy Jones; Teresa Restom; Monica Mejia; Michael Clearwater; Paula. Campanello

    2003-01-01

    Heat and stable isotope tracers were used to study axial and radial water transport in relation to sapwood anatomical characteristics and internal water storage in four canopy tree species of a seasonally dry tropical forest in Panama. Anatomical characteristics of the wood and radial profiles of sap flow were measured at the base, upper trunk, and crown of a single...

  20. Electron cyclotron absorption in Tokamak plasmas in the presence of radial transport of particles

    International Nuclear Information System (INIS)

    Rosa, Paulo R. da S.; Ziebell, Luiz F.

    1998-01-01

    We use quasilinear theory to study effects of particle radial transport on the electron cyclotron absorption coefficient by a current carrying plasma, in a tokamak modelated as a plasma slab. Our numerical results indicate significant modification in the profile of the electron cyclotron absorption coefficient when transport is taken into account relative to the situation without transport. (author)

  1. Formation of electron-root radial electric field and its effect on thermal transport in LHD high Te plasma

    International Nuclear Information System (INIS)

    Matsuoka, Seikichi; Satake, Shinsuke; Takahashi, Hiromi; Yokoyama, Masayuki; Ido, Takeshi; Shimizu, Akihiro; Shimozuma, Takashi; Wakasa, Arimitsu; Murakami, Sadayoshi

    2013-01-01

    Neoclassical transport analyses have been performed for a high electron temperature LHD plasma with steep temperature gradient using a neoclassical transport simulation code, FORTEC-3D. It is shown that the large positive radial electric field is spontaneously formed at the core along with the increase in the electron temperature, while the neoclassical heat diffusivity remains almost unchanged. This indicates that the 1/ν-type increase expected in the neoclassical transport in helical plasmas can be avoided by the spontaneous formation of the radial electric field. At the same time, it is found that the experimentally estimated heat diffusivity is significantly reduced. This suggests that the formation process of the transport barrier in the high electron temperature plasma can be caused by the spontaneous formation of the radial electric field. (author)

  2. Nonlocality of plasma fluctuations and transport in magnetically confined plasmas nonlocal plasma transport and radial structural formation

    International Nuclear Information System (INIS)

    Toi, Kazuo

    2002-01-01

    Experimental evidence and underlying physical processes of nonlocal characters and structural formation in magnetically confined toroidal plasmas are reviewed. Radial profiles of the plasmas exhibit characteristic structures, depending on the various confinement regimes. Profile stiffness subjected to some global constraint and rapid plasma responses to applied plasma perturbation result from nonlocal transport. Once the plasma is free from the constraint, the plasma state can be changed to a new state exhibiting various types of prominent structural formation such as an internal transport barrier. (author)

  3. Poloidal rotation dynamics, radial electric field, and neoclassical theory in the jet internal-transport-barrier region.

    Science.gov (United States)

    Crombé, K; Andrew, Y; Brix, M; Giroud, C; Hacquin, S; Hawkes, N C; Murari, A; Nave, M F F; Ongena, J; Parail, V; Van Oost, G; Voitsekhovitch, I; Zastrow, K-D

    2005-10-07

    Results from the first measurements of a core plasma poloidal rotation velocity (upsilontheta) across internal transport barriers (ITB) on JET are presented. The spatial and temporal evolution of the ITB can be followed along with the upsilontheta radial profiles, providing a very clear link between the location of the steepest region of the ion temperature gradient and localized spin-up of upsilontheta. The upsilontheta measurements are an order of magnitude higher than the neoclassical predictions for thermal particles in the ITB region, contrary to the close agreement found between the determined and predicted particle and heat transport coefficients [K.-D. Zastrow, Plasma Phys. Controlled Fusion 46, B255 (2004)]. These results have significant implications for the understanding of transport barrier dynamics due to their large impact on the measured radial electric field profile.

  4. Effect of base-pair inhomogeneities on charge transport along the DNA molecule, mediated by twist and radial polarons

    International Nuclear Information System (INIS)

    Palmero, F; Archilla, J F R; Hennig, D; Romero, F R

    2004-01-01

    Some recent results for a three-dimensional, semi-classical, tight-binding model for DNA show that there are two types of polarons, namely radial and twist polarons, which can transport charge along the DNA molecule. However, the existence of two types of base pairs in real DNA makes it crucial to find out if charge transport also exists in DNA chains with different base pairs. In this paper, we address this problem in its simple case, a homogeneous chain except for a single different base pair, which we call a base-pair inhomogeneity, and its effect on charge transport. Radial polarons experience either reflection or trapping. However, twist polarons are good candidates for charge transport along real DNA. This transport is also very robust with respect to weak parametric and diagonal disorder

  5. Turbulent fluctuations and radial transport in the scrape-off layer of the ASDEX tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Endler, M [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); Giannone, L. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); McCormick, K [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); Niedermeyer, H [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); Rudyj, A [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); Theimer, G [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85740 Garching (Germany); Tsois, N [NCSR ` Demokritos` , Athens (Greece); ASDEX Team

    1995-04-01

    Electrostatic fluctuations have been measured in the scrape-off layer of ASDEX by Langmuir probes and by observation of H{sub {alpha}} light with high poloidal and temporal resolution. It was demonstrated that these fluctuations contribute a significant, if not dominant, fraction of the ``anomalous`` radial particle transport. A model for an instability mechanism specific to the SOL is presented including density, temperature and electric potential fluctuations. From this model mixing length estimates for the radial transport and resulting density and pressure gradients in the SOL are derived and compared to measurements in the mid-plane and in the divertor of ASDEX. In spite of several simplifications in the model a quantitative agreement up to factors of 1-3 and a qualitative agreement for variations of discharge parameters is achieved between the model predictions and the measurements. ((orig.)).

  6. Turbulent fluctuations and radial transport in the scrape-off layer of the ASDEX tokamak

    International Nuclear Information System (INIS)

    Endler, M.; Giannone, L.; McCormick, K.; Niedermeyer, H.; Rudyj, A.; Theimer, G.; Tsois, N.

    1995-01-01

    Electrostatic fluctuations have been measured in the scrape-off layer of ASDEX by Langmuir probes and by observation of H α light with high poloidal and temporal resolution. It was demonstrated that these fluctuations contribute a significant, if not dominant, fraction of the ''anomalous'' radial particle transport. A model for an instability mechanism specific to the SOL is presented including density, temperature and electric potential fluctuations. From this model mixing length estimates for the radial transport and resulting density and pressure gradients in the SOL are derived and compared to measurements in the mid-plane and in the divertor of ASDEX. In spite of several simplifications in the model a quantitative agreement up to factors of 1-3 and a qualitative agreement for variations of discharge parameters is achieved between the model predictions and the measurements. ((orig.))

  7. Effects of radial electrical field on neoclassical transport in tokamaks

    International Nuclear Information System (INIS)

    Wang Zhongtian; Le Clair, G.

    1996-07-01

    Neoclassical transport theory for tokamaks in presence of a radial electrical field with shear is developed using Hamiltonian formalism. Diffusion coefficients are derived in both plateau regime including a large electric field and banana regime including the squeezing factor which can greatly affect diffusion at the plasma edge. The scaling on squeezing factor is different from the one given by Shaing and Hazeltine. Rotation speeds are calculated in the scrape-off region. They are in good agreement with measurements on TdeV Tokamak. (2 figs.)

  8. Gene Expression Profiling in the Pituitary Gland of Laying Period and Ceased Period Huoyan Geese

    Directory of Open Access Journals (Sweden)

    Xinhong Luan

    2013-07-01

    Full Text Available Huoyan goose is a Chinese local breed famous for its higher laying performance, but the problems of variety degeneration have emerged recently, especially a decrease in the number of eggs laid. In order to better understand the molecular mechanism that underlies egg laying in Huoyan geese, gene profiles in the pituitary gland of Huoyan geese taken during the laying period and ceased period were investigated using the suppression subtractive hybridization (SSH method. Total RNA was extracted from pituitary glands of ceased period and laying period geese. The cDNA in the pituitary glands of ceased geese was subtracted from the cDNA in the pituitary glands of laying geese (forward subtraction; the reverse subtraction was also performed. After sequencing and annotation, a total of 30 and 24 up and down-regulated genes were obtained from the forward and reverse SSH libraries, respectively. These genes mostly related to biosynthetic process, cellular nitrogen compound metabolic process, transport, cell differentiation, cellular protein modification process, signal transduction, small molecule metabolic process. Furthermore, eleven genes were selected for further analyses by quantitative real-time PCR (qRT-PCR. The qRT-PCR results for the most part were consistent with the SSH results. Among these genes, Synaptotagmin-1 (SYT1 and Stathmin-2 (STMN2 were substantially over-expressed in laying period compared to ceased period. These results could serve as an important reference for elucidating the molecular mechanism of higher laying performance in Huoyan geese.

  9. Radial transport processes as a precursor to particle deposition in drinking water distribution systems.

    Science.gov (United States)

    van Thienen, P; Vreeburg, J H G; Blokker, E J M

    2011-02-01

    Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport. In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems. © 2010 Elsevier Ltd. All rights reserved.

  10. Potential measurement and radial transport in GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Ishii, K.; Katanuma, I.; Segawa, T.; Ohkawara, H.; Mase, A.; Miyoshi, S.

    1989-01-01

    GAMMA 10 is an effectively axisymmetric tandem mirror with thermal barriers. Potential information is important to investigate the plasma confinement. The barrier and central space potentials are determined by means of two gold neutral beam probes. Two-dimensional potential profiles have been measured in the barrier cell. In GAMMA 10, to assure magneto-hydrodynamic (MHD) stability, the nonaxisymmetric minimum-B mirror cells are contained between the central-solenoid and the plug/barrier cells at the ends of the machine. From the point of view of neoclassical resonant-plateau transport in circular equipotential contours, this effective axisymmetrization is successful. The measured potential profiles are slightly elongated during the onset of ω ce ECRH. In this paper we report the beam probe potential measurement, the neoclassical ion radial transport in the noncircular equipotential surface and the thermal barrier potential. (author) 6 refs., 5 figs

  11. Physical mechanism determining the radial electric field and its radial structure in a toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi; Miura, Yukitoshi; Itoh, Sanae

    1994-10-01

    Radial structures of plasma rotation and radial electric field are experimentally studied in tokamak, heliotron/torsatron and stellarator devices. The perpendicular and parallel viscosities are measured. The parallel viscosity, which is dominant in determining the toroidal velocity in heliotron/torsatron and stellarator devices, is found to be neoclassical. On the other hand, the perpendicular viscosity, which is dominant in dictating the toroidal rotation in tokamaks, is anomalous. Even without external momentum input, both a plasma rotation and a radial electric field exist in tokamaks and heliotrons/torsatrons. The observed profiles of the radial electric field do not agree with the theoretical prediction based on neoclassical transport. This is mainly due to the existence of anomalous perpendicular viscosity. The shear of the radial electric field improves particle and heat transport both in bulk and edge plasma regimes of tokamaks. (author) 95 refs

  12. Analysis of influence of the radial electric field on turbulent transport in tandem mirror plasma

    International Nuclear Information System (INIS)

    Khvesyuk, Vladimir I.; Chirkov, Alexei Yu.; Pshenichnikov, Anton A.

    2000-01-01

    The model of anomalous transport in cylindrical non-uniform steady state plasma in uniform magnetic field under the influence of many mode drift wave oscillations is suggested. The effect of anomalous transport suppression due to radial electric field is studied, and physical picture of H mode in plasma of GAMMA-10 tandem mirror device is considered. Presented theoretical and numerical results agree with the experimental data obtained on GAMMA-10. (author)

  13. Large plasma pressure perturbations and radial convective transport in a tokamak

    International Nuclear Information System (INIS)

    Krasheninnikov, Sergei; Yu, Guanghui; Ryutov, Dmitri

    2004-01-01

    Strongly localized plasma structures with large pressure inhomogeneities (such as plasma blobs in the scrape-off-layer (SOL)/shadow regions, pellet clouds, Edge localized Modes (ELMs)) observed in the tokamaks, stellarators and linear plasma devices. Experimental studies of these phenomena reveal striking similarities including more convective rather than diffusive radial plasma transport. We suggest that rather simple models can describe many essentials of blobs, ELMs, and pellet clouds dynamics. The main ingredient of these models is the effective plasma gravity caused by magnetic curvature, centrifugal or friction forces effects. As a result, the equations governing plasma transport in such localized structures appear to be rather similar to that used to describe nonlinear evolution of thermal convection in the Boussinesq approximation (directly related to the Rayleigh-Taylor (RT) instability). (author)

  14. Neoclassical transport, poloidal rotation and radial electric field at the L-H transition

    International Nuclear Information System (INIS)

    Minardi, E.; Gervasini, G.; Lazzaro, E.

    1993-01-01

    The transition to a high confinement regime in tokamaks operating with a magnetic divertor configuration is accompanied by the strong steepening of the edge temperature profile and the onset of a large positive poloidal mass rotation associated with a negative radial electric field. The latter phenomena are signatures of a neoclassical transport mechanism. We address the question of establishing whether neoclassical transport is indeed sufficient to establish high edge gradients and drive poloidal rotation under strong auxiliary heating. The heat transport equation is solved numerically in a narrow edge layer interfaced to the plasma body through heat flux continuity, but allowing for heat conductivity discontinuity. The results compared with recent experimental measurements support the assumption that a highly sheared neoclassical poloidal velocity profile can suppress the anomalous part of the heat transport, and that the neoclassical residual transport, characterizes the plasma behaviour at the edge during H modes. (author) 3 refs., 4 figs

  15. Efficiency of radial transport of ices in protoplanetary disks probed with infrared observations: the case of CO2

    Science.gov (United States)

    Bosman, Arthur D.; Tielens, Alexander G. G. M.; van Dishoeck, Ewine F.

    2018-04-01

    Context. Radial transport of icy solid material from the cold outer disk to the warm inner disk is thought to be important for planet formation. However, the efficiency at which this happens is currently unconstrained. Efficient radial transport of icy dust grains could significantly alter the composition of the gas in the inner disk, enhancing the gas-phase abundances of the major ice constituents such as H2O and CO2. Aim. Our aim is to model the gaseous CO2 abundance in the inner disk and use this to probe the efficiency of icy dust transport in a viscous disk. From the model predictions, infrared CO2 spectra are simulated and features that could be tracers of icy CO2, and thus dust, radial transport efficiency are investigated. Methods: We have developed a 1D viscous disk model that includes gas accretion and gas diffusion as well as a description for grain growth and grain transport. Sublimation and freeze-out of CO2 and H2O has been included as well as a parametrisation of the CO2 chemistry. The thermo-chemical code DALI was used to model the mid-infrared spectrum of CO2, as can be observed with JWST-MIRI. Results: CO2 ice sublimating at the iceline increases the gaseous CO2 abundance to levels equal to the CO2 ice abundance of 10-5, which is three orders of magnitude more than the gaseous CO2 abundances of 10-8 observed by Spitzer. Grain growth and radial drift increase the rate at which CO2 is transported over the iceline and thus the gaseous CO2 abundance, further exacerbating the problem. In the case without radial drift, a CO2 destruction rate of at least 10-11 s-1 or a destruction timescale of at most 1000 yr is needed to reconcile model prediction with observations. This rate is at least two orders of magnitude higher than the fastest destruction rate included in chemical databases. A range of potential physical mechanisms to explain the low observed CO2 abundances are discussed. Conclusions: We conclude that transport processes in disks can have

  16. Theoretical transport analysis of density limit with radial electric field in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2010-11-01

    The confinement property in helical toroidal plasmas is clarified. The analysis is performed by use of the one-dimensional transport equations with the effect of the radiative loss and the radial profile of the electric field. The analytical results in the edge region show the steep gradient in the electron temperature, which indicates the transport barrier formation. Because of the rapid increase of the radiative loss at the low electron temperature, the anomalous heat diffusivity is reduced near the edge. Next, the efficiency of the heating power input in the presence of the radiative loss is studied. The scaling of the critical density in helical devices is also derived. (author)

  17. CeasIng Cpap At standarD criteriA (CICADA): predicting a successful outcome.

    Science.gov (United States)

    Yin, Yue; Broom, Margaret; Wright, Audrey; Hovey, Donna; Abdel-Latif, Mohamed E; Shadbolt, Bruce; Todd, David A

    2016-01-01

    This is a retrospective analysis of a multicentre randomised controlled trial (RCT) where we concluded that CeasIng Cpap At standerD criteriA (CICADA) in premature babies (PBs) CPAP. To identify factors that may influence the number of attempts to cease CPAP, we reviewed the records of 50 PBs from the RCT who used the CICADA method. PBs were grouped according to number of attempts to cease CPAP (fast group ≤2 attempts and slow group >2 attempts to cease CPAP). There were 26 (fast group) and 24 (slow group) PBs included in the analysis. Results showed significant differences in mean GA (27.8 ± 0.3 vs 26.9 ± 0.3 [weeks ± SE], p = 0.03) and birth weight ([Bwt]; 1080 ± 48.8 vs 899 ± 45.8 [grams ± SE], p = 0.01) between groups. Significantly fewer PBs in the fast group had a patent ductus arteriosus (PDA) compared to the slow group (5/26 (19.2%) vs 13/24 (54.2 %), p = 0.02). Bwt was a significant negative predictor of CPAP duration (r = -0.497, p = 0.03) and CPAP ceasing attempts (r = -0.290, p = 0.04). PBs with a higher GA and Bwt without a PDA ceased CPAP earlier using the CICADA method. Bwt was better than GA for predicting CPAP duration and attempts to cease CPAP. Our previous studies showed that CeasIng Cpap At standarD criteriA (CICADA) significantly reduces CPAP time, oxygen requirements and caffeine use. Some PBs however using the CICADA method required >2 attempts to cease CPAP ('slow CICADA' group). PBs in the 'fast CICADA' group (CPAP) (a) have longer gestational age and higher birth weight, (b) shorter mechanical ventilation and (c) lower incidence of patent ductus arteriosus. Attempts to cease CPAP decreased by 0.5 times per 1 week increase in GA and 0.3 times per 100-g increase in birth weight for PBs <30 weeks gestation.

  18. Overview on the radial electric field, plasma rotation and transport in the stellarator W7-AS

    International Nuclear Information System (INIS)

    Baldzuhn, J.; Kick, M.; Maassberg, H.; Ohlendorf, W.

    1998-01-01

    In the advanced stellarator W7-AS the radial electric field E r is measured by active charge exchange recombination spectroscopy CXRS. In parallel, it is calculated by using the neoclassical DKES code. A comparison of calculated and measured solutions reveals in how far the neoclassical model is valid for the description of the radial particle transport and the formation of E r . In general good consistency is found, even for the outer radii where the neoclassical fluxes become much smaller than the experimental ones. In this paper the interplay between the particular E r roots and transport is considered. For strongly positive E r a reduction of χ e is observed in the vicinity of the magnetic axis. The typically negative ion-root in the gradient region strongly influences the local ∇ T i , thus determining the maximum attainable T i (0). (author)

  19. Measurements and modeling of transport and impurity radial profiles in the EXTRAP T2R reversed field pinch

    Science.gov (United States)

    Kuldkepp, M.; Brunsell, P. R.; Cecconello, M.; Dux, R.; Menmuir, S.; Rachlew, E.

    2006-09-01

    Radial impurity profiles of oxygen in the rebuilt reversed field pinch EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] have been measured with a multichannel spectrometer. Absolute ion densities for oxygen peak between 1-4×1010cm-3 for a central electron density of 1×1013cm-3. Transport simulations with the one-dimensional transport code STRAHL with a diffusion coefficient of 20m2 s-1 yield density profiles similar to those measured. Direct measurement of the ion profile evolution during pulsed poloidal current drive suggests that the diffusion coefficient is reduced by a factor ˜2 in the core but remains unaffected toward the edge. Core transport is not significantly affected by the radial magnetic field growth seen at the edge in discharges without feedback control. This indicates that the mode core amplitude remains the same while the mode eigenfunction increases at the edge.

  20. Measurements and modeling of transport and impurity radial profiles in the EXTRAP T2R reversed field pinch

    International Nuclear Information System (INIS)

    Kuldkepp, M.; Brunsell, P. R.; Cecconello, M.; Dux, R.; Menmuir, S.; Rachlew, E.

    2006-01-01

    Radial impurity profiles of oxygen in the rebuilt reversed field pinch EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] have been measured with a multichannel spectrometer. Absolute ion densities for oxygen peak between 1-4x10 10 cm -3 for a central electron density of 1x10 13 cm -3 . Transport simulations with the one-dimensional transport code STRAHL with a diffusion coefficient of 20 m 2 s -1 yield density profiles similar to those measured. Direct measurement of the ion profile evolution during pulsed poloidal current drive suggests that the diffusion coefficient is reduced by a factor ∼2 in the core but remains unaffected toward the edge. Core transport is not significantly affected by the radial magnetic field growth seen at the edge in discharges without feedback control. This indicates that the mode core amplitude remains the same while the mode eigenfunction increases at the edge

  1. Numerical model for radial transport in the ELMO Bumpy Torus

    International Nuclear Information System (INIS)

    Jaeger, E.F.; Hedrick, C.L.

    1977-11-01

    Neutral and charged particle densities and temperatures are calculated as functions of radius for the toroidal plasma in the ELMO Bumpy Torus (EBT) experiment. Energy dependent ionization and charge-exchange rates, ambipolar diffusion, and self-consistent radial electric field profiles are included. Variation in magnetic field due to finite plasma pressure, effects of energetic electron rings, and transport due to drift waves and magnetic field errors are neglected. Diffusion is assumed to be neoclassical with enhanced losses at low collisionalities. The model reproduces many of the observed features of EBT operation in the quiescent toroidal (T) mode. The self-consistently calculated electric field is everywhere positive (not as in experiments) unless enhanced electron collisionality is included. Solutions for advanced EBT's are obtained and confinement parameters predicted

  2. Radial energy transport by magnetospheric ULF waves: Effects of magnetic curvature and plasma pressure

    Science.gov (United States)

    Kouznetsov, Igor; Lotko, William

    1995-01-01

    The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the

  3. Compact Environmental Anomaly Sensor (CEASE) Flight Integration Support Contract

    National Research Council Canada - National Science Library

    Redus, Robert

    2001-01-01

    .... Under the current contract, Amptek Inc, supported the successful spacecraft specific design work, final calibration, and the delivery, integration, and launch of two CEASE instruments - S/N 001 onto...

  4. Calculation of Self-consistent Radial Electric Field in Presence of Convective Electron Transport in a Stellarator

    International Nuclear Information System (INIS)

    Kernbichler, W.; Heyn, M.F.; Kasilov, S.V.

    2003-01-01

    Convective transport of supra-thermal electrons can play a significant role in the energy balance of stellarators in case of high power electron cyclotron heating. Here, together with neoclassical thermal particle fluxes also the supra-thermal electron flux should be taken into account in the flux ambipolarity condition, which defines the self-consistent radial electric field. Since neoclassical particle fluxes are non-linear functions of the radial electric field, one needs an iterative procedure to solve the ambipolarity condition, where the supra-thermal electron flux has to be calculated for each iteration. A conventional Monte-Carlo method used earlier for evaluation of supra-thermal electron fluxes is rather slow for performing the iterations in reasonable computer time. In the present report, the Stochastic Mapping Technique (SMT), which is more effective than the conventional Monte Carlo method, is used instead. Here, the problem with a local monoenergetic supra-thermal particle source is considered and the effect of supra-thermal electron fluxes on both, the self-consistent radial electric field and the formation of different roots of the ambipolarity condition are studied

  5. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    International Nuclear Information System (INIS)

    Gilmore, Mark Allen

    2017-01-01

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB's)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB's] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  6. Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Mark Allen [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-02-05

    Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that the levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.

  7. Final Technical Report: Numerical and Experimental Investigation of Turbulent Transport Control via Shaping of Radial Plasma Flow Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Eugenio

    2014-05-02

    The strong coupling between the different physical variables involved in the plasma transport phenomenon and the high complexity of its dynamics call for a model-based, multivariable approach to profile control where those predictive models could be exploited. The overall objective of this project has been to extend the existing body of work by investigating numerically and experimentally active control of unstable fluctuations, including fully developed turbulence and the associated cross-field particle transport, via manipulation of flow profiles in a magnetized laboratory plasma device. Fluctuations and particle transport can be monitored by an array of electrostatic probes, and Ex B flow profiles can be controlled via a set of biased concentric ring electrodes that terminate the plasma column. The goals of the proposed research have been threefold: i- to develop a predictive code to simulate plasma transport in the linear HELCAT (HELicon-CAThode) plasma device at the University of New Mexico (UNM), where the experimental component of the proposed research has been carried out; ii- to establish the feasibility of using advanced model-based control algorithms to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles, iii- to investigate the fundamental nonlinear dynamics of turbulence and transport physics. Lehigh University (LU), including Prof. Eugenio Schuster and one full-time graduate student, has been primarily responsible for control-oriented modeling and model-based control design. Undergraduate students have also participated in this project through the National Science Foundation Research Experience for Undergraduate (REU) program. The main goal of the LU Plasma Control Group has been to study the feasibility of controlling turbulence-driven transport by shaping the radial poloidal flow profile (i.e., by controlling flow shear) via biased concentric ring electrodes.

  8. Radial transport effects on ECCD in the TCV and DIII-D tokamaks and on Ohmic discharges in the MST RFP

    International Nuclear Information System (INIS)

    Harvey, R.W.; Sauter, O.; Nikkola, P.; Prater, R.; O'Connell, R.; Forest, C.B.

    2003-01-01

    The comprehensive CQL3D Fokker-Planck/Quasilinear simulation code has been benchmarked against experiment over a wide range of electron cyclotron conditions in the DIII-D tokamak (C.C. Petty et al., 14. Topical Conf. on RF Power in Plasmas, 2002). The same code, in disagreement with experiment, gives 560 kA of ECCD for a well documented, completely ECCD-driven, 100 kA TCV shot [O. Sauter et al, PRL, 2000]. Recent work (R.W. Harvey et al, Phys. Rev. Lett., 2002) has resolved the differences as due to radial transport at a level closely consistent with ITER scaling. Transport does not substantially affect DIII-D ECCD, but at similar ECH power has an overwhelming effect on the much smaller TCV. The transport is consistent with electrostatic-type diffusion (D ρρ constant in velocity space) and not with a magnetic-type diffusion (D ρρ ∝ |v || |). Fokker-Planck simulation of Ohmic reversed field pinch (RFP) discharges in the MST device reveals transport velocity dependence stronger than |v || |) will give agreement with current and soft X-ray spectra in standard discharges, but in the higher confinement, current profile controlled PPCD discharges, transport is again electrostatic-like. This is consistent with the object of PPCD, which is to replace magnetic turbulence driven current with auxiliary CD to improve transport. The tokamak and high-confinement RFP results mutually reinforce the constant-in-velocity-space 'electrostatic-type turbulence' conclusion. The steady-state energy and toroidal current are governed by the same radial transport equation. (authors)

  9. RADIAL TRANSPORT EFFECTS ON ECCD IN THE TCV AND DIII-D TOKAMAKS AND ON OHMIC DISCHARGES IN THE MST RFP

    International Nuclear Information System (INIS)

    HARVEY, R.W.; SAUTER, O.; PRATER, R.; NIKKOLA, P.; O'CONNELL, R.; FOREST, C.B.

    2002-01-01

    The comprehensive CQL3D Fokker-Planck/Quasilinear simulation code has been benchmarked against experiment over a wide range of electron cyclotron conditions in the DIII-D tokamak (C.C. Petty et al., 14th Topical Conf. on RF Power in Plasmas, 2002). The same code, in disagreement with experiment, gives 560 kA of ECCD for a well documented, completely ECCD-driven, 100 kA TCV shot [O. Sauter et al, PRL, 2000]. Recent work (R.W. Harvey et al, Phys. Rev. Lett., 2002) has resolved the differences as due to radial transport at a level closely consistent with ITER scaling. Transport does not substantially affect DIII-D ECCD, but at similar ECH power has an overwhelming effect on the much smaller TCV. The transport is consistent with electrostatic-type diffusion (D ρρ constant in velocity-space) and not with a magnetic-type diffusion (D ρρ ∝ |v(parallel)|). Fokker-Planck simulation of Ohmic reversed field pinch (RFP) discharges in the MST device reveals transport velocity dependence stronger than |v(parallel)| will give agreement with current and soft X-ray spectra in standard discharges, but in the higher confinement, current profile controlled PPCD discharges, transport is again electrostatic-like. This is consistent with the object of PPCD, which is to replace magnetic turbulence driven current with auxiliary CD to improve transport. The tokamak and high-confinement RFP results mutually reinforce the constant-in-velocity-space ''electrostatic-type turbulence'' conclusion. The steady-state energy and toroidal current are governed by the same radial transport equation

  10. Radial electric fields for improved tokamak performance

    International Nuclear Information System (INIS)

    Downum, W.B.

    1981-01-01

    The influence of externally-imposed radial electric fields on the fusion energy output, energy multiplication, and alpha-particle ash build-up in a TFTR-sized, fusing tokamak plasma is explored. In an idealized tokamak plasma, an externally-imposed radial electric field leads to plasma rotation, but no charge current flows across the magnetic fields. However, a realistically-low neutral density profile generates a non-zero cross-field conductivity and the species dependence of this conductivity allows the electric field to selectively alter radial particle transport

  11. Turbulence in tokamak plasmas. Effect of a radial electric field shear; Turbulence dans les plasmas de tokamaks. Effet d`un cisaillement de champ electrique radial

    Energy Technology Data Exchange (ETDEWEB)

    Payan, J

    1994-05-01

    After a review of turbulence and transport phenomena in tokamak plasmas and the radial electric field shear effect in various tokamaks, experimental measurements obtained at Tore Supra by the means of the ALTAIR plasma diagnostic technique, are presented. Electronic drift waves destabilization mechanisms, which are the main features that could describe the experimentally observed microturbulence, are then examined. The effect of a radial electric field shear on electronic drift waves is then introduced, and results with ohmic heating are studied together with relations between turbulence and transport. The possible existence of ionic waves is rejected, and a spectral frequency modelization is presented, based on the existence of an electric field sheared radial profile. The position of the inversion point of this field is calculated for different values of the mean density and the plasma current, and the modelization is applied to the TEXT tokamak. The radial electric field at Tore Supra is then estimated. The effect of the ergodic divertor on turbulence and abnormal transport is then described and the density fluctuation radial profile in presence of the ergodic divertor is modelled. 80 figs., 120 refs.

  12. Estimating Outer Zone Radial Diffusion Coefficients from Drift Scale Fluctuations in Van Allen Particle Data

    Science.gov (United States)

    O'Brien, T. P., III; Claudepierre, S. G.

    2017-12-01

    During geomagnetic storms, the Earth's outer radiation belt experiences enhanced radial transport. This transport occurs via phase-dependent radial displacements of particles, either by impulsive events or drift resonant waves. Because transport is phase dependent, it produces drift phase bunching, which can be observed with in situ particle detectors. We provide bounds on the radial diffusion coefficients derived from this drift phase structure as seen by NASA's Van Allen Probes. We compare these bounds to published radial diffusion coefficient models, particularly those derived independently from electromagnetic field observations.

  13. Classification of the Group Invariant Solutions for Contaminant Transport in Saturated Soils under Radial Uniform Water Flows

    Directory of Open Access Journals (Sweden)

    M. M. Potsane

    2014-01-01

    Full Text Available The transport of chemicals through soils to the groundwater or precipitation at the soils surfaces leads to degradation of these resources. Serious consequences may be suffered in the long run. In this paper, we consider macroscopic deterministic models describing contaminant transport in saturated soils under uniform radial water flow backgrounds. The arising convection-dispersion equation given in terms of the stream functions is analyzed using classical Lie point symmetries. A number of exotic Lie point symmetries are admitted. Group invariant solutions are classified according to the elements of the one-dimensional optimal systems. We analyzed the group invariant solutions which satisfy the physical boundary conditions.

  14. Effect of the radial electric field on turbulence

    International Nuclear Information System (INIS)

    Carreras, B.A.; Lynch, V.E.

    1990-01-01

    For many years, the neoclassical transport theory for three- dimensional magnetic configurations, such as magnetic mirrors, ELMO Bumpy Tori (EBTs), and stellarators, has recognized the critical role of the radial electric field in the confinement. It was in these confinement devices that the first experimental measurements of the radial electric field were made and correlated with confinement losses. In tokamaks, the axisymmetry implies that the neoclassical fluxes are ambipolar and, as a consequence, independent of the radial electric field. However, axisymmetry is not strict in a tokamak with turbulent fluctuations, and near the limiter ambipolarity clearly breaks down. Therefore, the question of the effect of the radial electric field on tokamak confinement has been raised in recent years. In particular, the radial electric field has been proposed to explain the transition from L-mode to H-mode confinement. There is some initial experimental evidence supporting this type of explanation, although there is not yet a self-consistent theory explaining the generation of the electric field and its effect on the transport. Here, a brief review of recent results is presented. 27 refs., 4 figs

  15. Evidence for a poloidally localized enhancement of radial transport in the scrape-off layer of the Tore Supra tokamak

    International Nuclear Information System (INIS)

    Gunn, J.P.; Boucher, C.; Dionne, M.; Duran, I.; Fuchs, V.; Loarer, T.; Nanobashvili, I.; Panek, R.; Pascal, J.-Y.; Saint-Laurent, F.; Stoeckel, J.; Rompuy, T. van; Zagorski, R.; Adamek, J.; Bucalossi, J.; Dejarnac, R.; Devynck, P.; Hertout, P.; Hron, M.; Lebrun, G.; Moreau, P.; Rimini, F.; Sarkissian, A.; Oost, G. van

    2007-01-01

    Near-sonic parallel flows are systematically observed in the far scrape-off layer (SOL) of the limiter tokamak Tore Supra, as in many L-mode X-point divertor tokamak plasmas. The poloidal variation of the parallel flow has been measured by moving the contact point of a small circular plasma onto limiters at different poloidal angles. The resulting variations of flow are consistent with the existence of a poloidally localized enhancement of radial transport concentrated in a 30 deg. sector near the outboard midplane. If the plasma contact point is placed on the inboard limiters, then the SOL expands to fill all the space between the plasma and the outboard limiters, with density decay lengths between 10 and 20 cm. On the other hand, if the contact point lies on the outboard limiters, the localized plasma outflux is scraped off and the SOL is very thin with decay lengths around 2-3 cm. The outboard radial transport would have to be about two orders of magnitude stronger than inboard to explain these results

  16. 21 CFR 810.17 - Termination of a cease distribution and notification or mandatory recall order.

    Science.gov (United States)

    2010-04-01

    ... that they have been instructed to cease use of the device and to take other appropriate action; or (2..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES MEDICAL DEVICE RECALL AUTHORITY Mandatory Medical Device Recall Procedures § 810.17 Termination of a cease distribution and notification or...

  17. Study of impurity transport in HL-2A ECRH L-mode plasmas with radially different ECRH power depositions

    Science.gov (United States)

    Cui, Z. Y.; Zhang, K.; Morita, S.; Ji, X. Q.; Ding, X. T.; Xu, Y.; Sun, P.; Gao, J. M.; Dong, C. F.; Zheng, D. L.; Li, Y. G.; Jiang, M.; Li, D.; Zhong, W. L.; Liu, Yi; Dong, Y. B.; Song, S. D.; Yu, L. M.; Shi, Z. B.; Fu, B. Z.; Lu, P.; Huang, M.; Yuan, B. S.; Yang, Q. W.; Duan, X. R.

    2018-05-01

    In HL-2A, an inverse sawtooth oscillation is observed with a long-lasting m/n  =  1/1 mode during ECRH phase with power deposition inside sawtooth inversion radius (inner-deposited ECRH), while a normal sawtooth instead appears when the ECRH power is deposited outside sawtooth inversion radius (outer-deposited ECRH). Aluminum is then injected as a trace impurity with laser blow-off (LBO) method into the inner- and outer-deposited ECRH phases of HL-2A discharges to investigate the effect of ECRH on impurity transport. Temporal behavior of soft x-ray (SXR) array signals is analyzed with a 1D impurity transport code, and radial structures of impurity transport coefficients are obtained. The result shows that the radial transport of Al ions is strongly enhanced during the inner-deposited ECRH phase. In particular, an outward convection velocity is developed with positive values of 0  ⩽  V(ρ)  ⩽  3.8 m s-1 in ρ  ⩽  0.5, while the convection velocity is inward in ρ  ⩾  0.6. In the outer-deposited ECRH discharge, on the other hand, the convection velocity takes a big negative value in ρ  ⩽  0.4 and close to zero at ρ ~ 0.6. In ohmic discharges, an inward V(ρ) always appears in the whole plasma radii and gradually increases toward the plasma edge (-3.2 m s-1 at ρ  =  1). The simulation result also indicates that centrally-peaked Al ion density profiles presented in the outer-deposited ECRH discharge can be flattened by the inner-deposited ECRH. Modification of impurity transport is discussed in the presence of long-lasting m/n  =  1/1 MHD mode.

  18. Turbulence in tokamak plasmas. Effect of a radial electric field shear

    International Nuclear Information System (INIS)

    Payan, J.

    1994-05-01

    After a review of turbulence and transport phenomena in tokamak plasmas and the radial electric field shear effect in various tokamaks, experimental measurements obtained at Tore Supra by the means of the ALTAIR plasma diagnostic technique, are presented. Electronic drift waves destabilization mechanisms, which are the main features that could describe the experimentally observed microturbulence, are then examined. The effect of a radial electric field shear on electronic drift waves is then introduced, and results with ohmic heating are studied together with relations between turbulence and transport. The possible existence of ionic waves is rejected, and a spectral frequency modelization is presented, based on the existence of an electric field sheared radial profile. The position of the inversion point of this field is calculated for different values of the mean density and the plasma current, and the modelization is applied to the TEXT tokamak. The radial electric field at Tore Supra is then estimated. The effect of the ergodic divertor on turbulence and abnormal transport is then described and the density fluctuation radial profile in presence of the ergodic divertor is modelled. 80 figs., 120 refs

  19. Norwegian farmers ceasing certified organic production: characteristics and reasons.

    Science.gov (United States)

    Flaten, Ola; Lien, Gudbrand; Koesling, Matthias; Løes, Anne-Kristin

    2010-12-01

    This article examines the characteristics of and reasons for Norwegian farmers' ceasing or planning to cease certified organic production. We gathered cross-sectional survey data in late 2007 from organic farmers deregistering between January 2004 and September 2007 (n=220), and similar data from a random sample of farmers with certified organic management in 2006 (n=407). Of the respondents deregistering by November 2007, 17% had quit farming altogether, 61% now farmed conventionally, and 21% were still farming by organic principles, but without certification. Nearly one in four organic farmers in 2007 indicated that they planned to cease certification within the next 5-10 years. From the two survey samples, we categorised farmers who expect to be deregistered in 5-10 years into three groups: conventional practices (n=139), continuing to farm using organic principles (uncertified organic deregistrants, n=105), and stopped farming (n=33). Of the numerous differences among these groups, two were most striking: the superior sales of uncertified organic deregistrants through consumer-direct marketing and the lowest shares of organic land among conventional deregistrants. We summarised a large number of reasons for deregistering into five factors through factor analysis: economics, regulations, knowledge-exchange, production, and market access. Items relating to economics and regulations were the primary reasons offered for opting out. The regression analysis showed that the various factors were associated with several explanatory variables. Regulations, for example, figured more highly among livestock farmers than crop farmers. The economic factor strongly reflected just a few years of organic management. Policy recommendations for reducing the number of dropouts are to focus on economics, environmental attitudes, and the regulatory issues surrounding certified organic production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Transport barrier in Helical system

    International Nuclear Information System (INIS)

    Ida, Katsumi

    1998-01-01

    Experiments on the transport barrier in Helical plasmas are reviewed. There are two mechanisms of transport improvement, that results in the formation of the transport barrier. One is the improvement of neoclassical transport by reducing the ripple loss with radial electric field, which exist only in helical plasma. The other is the improvement of anomalous transport due to the suppression of fluctuations associated with a radial electric field shear both in tokamak and helical plasma. The formation of the transport barrier can be triggered by the radial electric field shear associated with the transition of the radial electric field (L/H transition or ion-electron root transition) or the peaked density or the optimization of magnetic field shear. The mechanisms of transport barrier formation are also discussed. (author). 60 refs

  1. Access of energetic particles to storm time ring current through enhanced radial diffusion

    International Nuclear Information System (INIS)

    Lyons, L.R.; Schulz, M.

    1989-01-01

    Magnetic storms are distinguishable from other periods of geomagnetic activity by the injection of trapped electrons and ions to the 2 approx-lt L approx-lt 4 region. It has been proposed previously that this injection results from an inward displacement of the preexisting trapped-particle population by enhanced storm time electric fields. However, high-energy (approx-gt 40 keV) ring-current particles have drift periods that are typically shorter than the time of the main-phase development, and so the direct radial transport of these particles is restricted. The authors propose here that the transport of approx-gt 40 keV particles into the storm time ring current can result from enhanced stochastic radial transport driven by fluctuating electric fields during a storm's main phase. They estimate the effects of such electric fields by applying radial-diffusion theory, assuming a preexisting trapped-particle population as the initial conditions, and they demonstrate the feasibility of explaining observed flux increases of approx-gt 40-keV particles at L approx-lt 4 by enhanced radial diffusion. It is necessary that new particles be injected near the outer boundary of the trapping region so as to maintain the fluxes there as an outer boundary condition, and they estimate that the approx-gt 40-keV portion of the storm time ring current at L ∼ 3 consists of about 50% preexisting and about 50% new particles. They thus find that formation of the storm time ring current may be explainable via a combination of direct radial transport at energies approx-lt 40 keV and diffusive radial transport at higher energies

  2. Bifurcated transition of radial transport in the HIEI tandem mirror

    International Nuclear Information System (INIS)

    Sakai, O.; Yasaka, Y.

    1995-01-01

    Transition to a high radial confinement mode in a mirror plasma is triggered by limiter biasing. Sheared plasma rotation is induced in the high confinement phase which is characterized by reduction of edge turbulence and a confinement enhancement factor of 2-4. Edge plasma parameters related to radial confinement show a hysteresis phenomenon as a function of bias voltage or bias current, leading to the fact that transition from low to high confinement mode occurs between the bifurcated states. A transition model based on azimuthal momentum balance is employed to clarify physics of the observed bifurcation. copyright 1995 American Institute of Physics

  3. Transport barriers in plasmas

    International Nuclear Information System (INIS)

    Caldas, I L; Szezech, J D Jr; Kroetz, T; Marcus, F A; Roberto, M; Viana, R L; Lopes, S R

    2012-01-01

    We discuss the creation of transport barriers in magnetically confined plasmas with non monotonic equilibrium radial profiles. These barriers reduce the transport in the shearless region (i.e., where the twist condition does not hold). For the chaotic motion of particles in an equilibrium electric field with a nonmonotonic radial profile, perturbed by electrostatic waves, we show that a nontwist transport barrier can be created in the plasma by modifying the electric field radial profile. We also show non twist barriers in chaotic magnetic field line transport in the plasma near to the tokamak wall with resonant modes due to electric currents in external coils.

  4. Design for limit stresses of orange fruits (Citrus sinensis under axial and radial compression as related to transportation and storage design

    Directory of Open Access Journals (Sweden)

    Christopher Chukwutoo Ihueze

    2017-01-01

    Full Text Available This article employed the Hertz contact stress theory and the finite element method to evaluate the maximum contact pressure and the limit stresses of orange fruit under transportation and storage. The elastic properties of orange fruits subjected to axial and axial contact were measured such that elastic limit force, elastic modulus, Poisson’s ratio and bioyield stress were obtained as 18 N, 0.691 MPa, 0.367, 0.009 MPa for axial compression and for radial loading were 15.69 N, 0.645 MPa, 0.123, 0.010 MPa. The Hertz maximum contact pressure was estimated for axial and radial contacts as 0.036 MPa. The estimated limiting yield stress estimated as von Mises stresses for the induced surface stresses of the orange topologies varied from 0.005 MPa–0.03 MPa. Based on the distortion energy theory (DET the yield strength of orange fruit is recommended as 0.03 MPa while based on the maximum shear stress theory (MSST is 0.01 MPa for the design of orange transportation and storage system.

  5. Radial electrical field effects in TJ-II. (Preliminary study)

    International Nuclear Information System (INIS)

    Guasp, J.

    1996-01-01

    The influence of the radial electric field upon the neoclassical transport coefficients of TJ-II helical axis Stellarator has been calculated as well on the microwave heating stage (ECRH) as on the neutral injection one (NBI). The influence of the solutions for the self-consistent ambipolar field on confinement times and temperatures has been studied by means of a zero-dimensional energy balance. The simultaneous presence of two roots, the electronic and the ionic one, is observed for the ECRH phase, while for NBI only the ionic root appears, although with a strong field intensity that could produce a favourable effect on confinement. The interest and need of the extension of these calculations to include radial profile effects by using spatial dependent transport codes in stressed

  6. The Role of Psychological Needs in Ceasing Music and Music Learning Activities

    Science.gov (United States)

    Evans, Paul; McPherson, Gary E.; Davidson, Jane W.

    2013-01-01

    This article addresses individuals' decisions to continue or cease playing a musical instrument from a basic psychological needs perspective. Participants began learning music 10 years prior to the study and were the subject of previous longitudinal research. They completed a survey investigating the three psychological needs of competence,…

  7. Radial transfer effects for poloidal rotation

    Science.gov (United States)

    Hallatschek, Klaus

    2010-11-01

    Radial transfer of energy or momentum is the principal agent responsible for radial structures of Geodesic Acoustic Modes (GAMs) or stationary Zonal Flows (ZF) generated by the turbulence. For the GAM, following a physical approach, it is possible to find useful expressions for the individual components of the Poynting flux or radial group velocity allowing predictions where a mathematical full analysis is unfeasible. Striking differences between up-down symmetric flux surfaces and asymmetric ones have been found. For divertor geometries, e.g., the direction of the propagation depends on the sign of the ion grad-B drift with respect to the X-point, reminiscent of a sensitive determinant of the H-mode threshold. In nonlocal turbulence computations it becomes obvious that the linear energy transfer terms can be completely overwhelmed by the action of the turbulence. In contrast, stationary ZFs are governed by the turbulent radial transfer of momentum. For sufficiently large systems, the Reynolds stress becomes a deterministic functional of the flows, which can be empirically determined from the stress response in computational turbulence studies. The functional allows predictions even on flow/turbulence states not readily obtainable from small amplitude noise, such as certain transport bifurcations or meta-stable states.

  8. Radial flow heat exchanger

    Science.gov (United States)

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  9. Analysis of radial electric field bifurcation in LHD based on neoclassical transport theory

    International Nuclear Information System (INIS)

    Yokoyama, Masayuki; Ida, Katsumi; Shimozuma, Takashi

    2003-01-01

    Radial electric field (E r ) properties in LHD have been investigated based on the neoclassical transport theory and have also applied to LHD experimental results. The effects of the helicity of the magnetic configuration on the condition required to realize the electron root are examined. The larger helicity makes the threshold temperature lower for the same electron density. A higher threshold temperature is anticipated to be required in the plasma core region based on this fact and also due to the larger density there. This high electron temperature (T e ) has been successfully obtained with a center-focused ECH. There is a threshold for the ECH power to achieve a steep gradient of T e , and it seems to be qualitatively consistent with the transition of E r , at least in the sense that the abrupt increase of T e occurs after entering the anticipated electron root regime. These experimental results, consistent with those of analysis of the neoclassical ambipolar E r , indicate that the transition phenomena of E r in LHD are predominantly governed by neoclassical features. (author)

  10. Radial electron beam laser excitation: the REBLE report

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Prestwich, K.R.

    1978-10-01

    The results of an investigation of techniques to generate high-power radially converging electron beams and the application of these beams to gas lasers is discussed. The design and performance of the REBLE accelerator that was developed for this program is presented. Reliable operation of the radial diode has been obtained at levels up to 1 MV, 200 kA, and 20 ns. It has been demonstrated that the anode current density can be made uniform to better than 15% over 1000 cm 2 areas with 100 to 250 A/cm 2 intensities. The measured total and spatially resolved energy deposition of this radial electron beam in various gases is compared with Monte Carlo calculations. In most cases, these codes give an accurate description of the beam transport and energy deposition. With the electron beam pumping xenon gas, the amplitude of xenon excimer radiation (1720 A 0 ) was radially uniform to within the experimental uncertainty. The efficiency of converting deposited electron beam energy to xenon excimer radiation was 20%

  11. The role of the radial electric field in confinement and transport in H-mode and VH-mode discharges in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Gohil, P.; Burrell, K.H.; Groebner, R.J.; Osborne, T.H.; Doyle, E.J.; Rettig, C.L.

    1993-08-01

    Measurements of the radial electric field, E r , with high spatial and high time resolution in H-mode and VH-mode discharges in the DIII-D tokamak have revealed the significant influence of the shear in E r on confinement and transport in these discharges. These measurements are made using the DIII-D Charge Exchange Recombination (CER) System. At the L-H transition in DIII-D plasmas, a negative well-like E r profile develops just within the magnetic separatrix. A region of shear in E r results, which extends 1 to 2 cm into the plasma from the separatrix. At the transition, this region of sheared E r exhibits the greatest increase in impurity ion poloidal rotation velocity and the greatest reduction in plasma fluctuations. A transport barrier is formed in this same region of E x B velocity shear as is signified by large increases in the observed gradients of the ion temperature, the carbon density, the electron temperature and electron density. The development of the region of sheared E r , the increase in impurity ion poloidal rotation, the reduction in plasma turbulence, and the transport barrier all occur simultaneously at the L-H transition. Measurements of the radial electric field, plasma turbulence, thermal transport, and energy confinement have been performed for a wide range of plasma conditions and configurations. The results support the supposition that the progression of improving confinement at the L-H transition, into the H-mode and then into the VH-mode can be explained by the hypothesis of the suppression of plasma turbulence by the increasing penetration of the region of sheared E x B velocity into the plasma interior

  12. The role of radial particle pinches in ELM suppression by resonant magnetic perturbations

    International Nuclear Information System (INIS)

    Stacey, W.M.; Evans, T.E.

    2011-01-01

    The force balance in the plasma edge in a matched pair of DIII-D (Luxon 2002 Nucl. Fusion 42 6149) tokamak discharges with and without resonant magnetic perturbations (RMPs) is evaluated in order to investigate the effects on particle transport of RMP applied for the purpose of suppressing edge-localized modes (ELMs). Experimental data are used to evaluate the radial and toroidal force balances, which may be written as a pinch-diffusion relation for the radial ion flux to facilitate investigation of transport effects. The radial electric field in the H-mode plasma had a sharp negative dip in the steep gradient region of the edge pedestal, associated with which was a large inward pinch velocity. The main effect of RMP was to make the edge electric field less negative or more positive, reducing this strong negative dip in the radial electric field (even reversing it from negative to positive over some regions), thereby reducing the strong inward particle pinch in the edge of an H-mode discharge, thus causing a reduction in edge density below the ELM threshold.

  13. Effects of Radial Electric Fields on ICRF Waves

    International Nuclear Information System (INIS)

    Phillips, C.K.; Hosea, J.C.; Ono, M.; Wilson, J.R.

    2001-01-01

    Equilibrium considerations infer that large localized radial electric fields are associated with internal transport barrier structures in tokamaks and other toroidal magnetic confinement configurations. In this paper, the effects of an equilibrium electric field on fast magnetosonic wave propagation are considered in the context of a cold plasma model

  14. Modelling of radial electric field profile for different divertor configurations

    International Nuclear Information System (INIS)

    Rozhansky, V; Kaveeva, E; Voskoboynikov, S; Counsell, G; Kirk, A; Meyer, H; Coster, D; Conway, G; Schirmer, J; Schneider, R

    2006-01-01

    The impact of divertor configuration on the structure of the radial electric field has been simulated by the B2SOLPS5.0 transport fluid code. It is shown that the change in the parallel flows in the scrape-off layer, which are transported through the separatrix due to turbulent viscosity and diffusivity, should result in variation of the radial electric field and toroidal rotation in the separatrix vicinity. The modelling predictions are compared with the measurements of the radial electric field for the low field side equatorial mid-plane of ASDEX Upgrade in lower, upper and double-null (DN) divertor configurations. The parallel (toroidal) flows in the scrape-off layer and mechanisms for their formation are analysed for different geometries. It is demonstrated that a spike in the electric field exists at the high field side equatorial mid-plane in the connected DN divertor configuration. Its origin is connected with different potential drops between the separatrix vicinity and divertor plates in the two disconnected scrape-off layers, while the separatrix should be at almost the same potential. The spike might be important for additional turbulent suppression

  15. Transitionless Enhanced Confinement and the Role of Radial Electric Field Shear

    International Nuclear Information System (INIS)

    Coppi, B.; Ernst, D.R.; Bell, M.G.; Bell, R.E.; Budny, R.V.

    1999-01-01

    Evidence for the role of radial electric field shear in enhanced confinement regimes attained without sharp bifurcations or transitions is presented. Temperature scans at constant density, created in the reheat phase following deuterium pellet injection into supershot plasmas in the Tokamak Fusion Test Reactor [J.D. Strachan, et al., Phys. Rev. Lett. 58 (1987) 1004] are simulated using a first-principles transport model. The slow reheat of the ion temperature profile, during which the temperature nearly doubles, is not explained by relatively comprehensive models of transport due to Ion Temperature Gradient Driven Turbulence (ITGDT), which depends primarily on the (unchanging) electron density gradient. An extended model, including the suppression of toroidal ITGDT by self-consistent radial electric field shear, does reproduce the reheat phase

  16. Magnetic-flutter-induced pedestal plasma transport

    International Nuclear Information System (INIS)

    Callen, J.D.; Hegna, C.C.; Cole, A.J.

    2013-01-01

    Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δB ρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δB ρ s induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δB ρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δB ρ /B 0 ) 2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an

  17. Magnetic-flutter-induced pedestal plasma transport

    Science.gov (United States)

    Callen, J. D.; Hegna, C. C.; Cole, A. J.

    2013-11-01

    Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δBρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δBρs induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δBρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δBρ/B0)2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an electron

  18. Radial nerve dysfunction

    Science.gov (United States)

    Neuropathy - radial nerve; Radial nerve palsy; Mononeuropathy ... Damage to one nerve group, such as the radial nerve, is called mononeuropathy . Mononeuropathy means there is damage to a single nerve. Both ...

  19. Noble internal transport barriers and radial subdiffusion of toroidal magnetic lines

    Energy Technology Data Exchange (ETDEWEB)

    Misguich, J.H.; Reuss, J.D. [Association Euratom-CEA sur la Fusion, CEA/DSM/DRFC, 13 - Saint Paul lez Durance (France); Constantinescu, D.; Steinbrecher, G. [Association Euratom-N.A.S.T.I., Dept. of Physics, University of Craiova (Romania); Vlad, M.; Spineanu, F. [Association Euratom-N.A.S.T.I., National Institute of Laser, Plasma and Radiation Physics, Bucharest (Romania); Weyssow, B.; Balescu, R. [Association Euratom-Etat Belge sur la Fusion, Universite Libre de Bruxelles (Belgium)

    2002-02-01

    Internal transport barriers (ITB's) observed in tokamaks are described by a purely magnetic approach. Magnetic line motion in toroidal geometry with broken magnetic surfaces is studied from a previously derived Hamiltonian map in situation of incomplete chaos. This appears to reproduce in a realistic way the main features of a tokamak, for a given safety factor profile and in terms of a single parameter L representing the amplitude of the magnetic perturbation. New results are given concerning the Shafranov shift as function of L. For small values of L, closed magnetic surfaces exist (KAM tori) and island chains begin to appear on rational surfaces for higher values of L, with chaotic zones around hyperbolic points, as expected. Single trajectories of magnetic line motion indicate the persistence of a central protected plasma core, surrounded by a chaotic shell enclosed in a double-sided transport barrier. Magnetic lines which succeed to escape across this barrier begin to wander in a wide chaotic sea extending up to a very robust barrier (as long as L{<=}1). For values of L{>=}1, above the escape threshold, most magnetic lines succeed to escape out of the external barrier which has become a permeable Cantorus. Statistical analysis of a large number of trajectories, representing the evolution of a bunch of magnetic lines, indicate that the flux variable {psi} asymptotically grows in a diffuse manner as (L{sup 2}t) with a L{sup 2} scaling as expected, but that the average radial position r{sub m}(t) asymptotically grows as (L{sup 2}t){sup 1/4} while the mean square displacement around this average radius asymptotically grows in a sub-diffusive manner as (L{sup 2}t){sup 1/2}. This result shows the slower dispersion in the present incomplete chaotic regime, which is different from the usual quasilinear diffusion in completely chaotic situations. For physical times t{sub {phi}} of the order of the escape time defined by x{sub m}(t{sub {phi}}) {approx}1, the motion

  20. Noble internal transport barriers and radial subdiffusion of toroidal magnetic lines

    International Nuclear Information System (INIS)

    Misguich, J.H.; Reuss, J.D.; Constantinescu, D.; Steinbrecher, G.; Vlad, M.; Spineanu, F.; Weyssow, B.; Balescu, R.

    2002-02-01

    Internal transport barriers (ITB's) observed in tokamaks are described by a purely magnetic approach. Magnetic line motion in toroidal geometry with broken magnetic surfaces is studied from a previously derived Hamiltonian map in situation of incomplete chaos. This appears to reproduce in a realistic way the main features of a tokamak, for a given safety factor profile and in terms of a single parameter L representing the amplitude of the magnetic perturbation. New results are given concerning the Shafranov shift as function of L. For small values of L, closed magnetic surfaces exist (KAM tori) and island chains begin to appear on rational surfaces for higher values of L, with chaotic zones around hyperbolic points, as expected. Single trajectories of magnetic line motion indicate the persistence of a central protected plasma core, surrounded by a chaotic shell enclosed in a double-sided transport barrier. Magnetic lines which succeed to escape across this barrier begin to wander in a wide chaotic sea extending up to a very robust barrier (as long as L≤1). For values of L≥1, above the escape threshold, most magnetic lines succeed to escape out of the external barrier which has become a permeable Cantorus. Statistical analysis of a large number of trajectories, representing the evolution of a bunch of magnetic lines, indicate that the flux variable ψ asymptotically grows in a diffuse manner as (L 2 t) with a L 2 scaling as expected, but that the average radial position r m (t) asymptotically grows as (L 2 t) 1/4 while the mean square displacement around this average radius asymptotically grows in a sub-diffusive manner as (L 2 t) 1/2 . This result shows the slower dispersion in the present incomplete chaotic regime, which is different from the usual quasilinear diffusion in completely chaotic situations. For physical times t φ of the order of the escape time defined by x m (t φ ) ∼1, the motion appears to be super-diffusive, however, but less dangerous than

  1. Development of a Radial Deconsolidation Method

    Energy Technology Data Exchange (ETDEWEB)

    Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Fred C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    A series of experiments have been initiated to determine the retention or mobility of fission products* in AGR fuel compacts [Petti, et al. 2010]. This information is needed to refine fission product transport models. The AGR-3/4 irradiation test involved half-inch-long compacts that each contained twenty designed-to-fail (DTF) particles, with 20-μm thick carbon-coated kernels whose coatings were deliberately fabricated such that they would crack under irradiation, providing a known source of post-irradiation isotopes. The DTF particles in these compacts were axially distributed along the compact centerline so that the diffusion of fission products released from the DTF kernels would be radially symmetric [Hunn, et al. 2012; Hunn et al. 2011; Kercher, et al. 2011; Hunn, et al. 2007]. Compacts containing DTF particles were irradiated at Idaho National Laboratory (INL) at the Advanced Test Reactor (ATR) [Collin, 2015]. Analysis of the diffusion of these various post-irradiation isotopes through the compact requires a method to radially deconsolidate the compacts so that nested-annular volumes may be analyzed for post-irradiation isotope inventory in the compact matrix, TRISO outer pyrolytic carbon (OPyC), and DTF kernels. An effective radial deconsolidation method and apparatus appropriate to this application has been developed and parametrically characterized.

  2. Time dependent plasma viscosity and relation between neoclassical transport and turbulent transport

    International Nuclear Information System (INIS)

    Shaing, K.C.

    2005-01-01

    Time dependent plasma viscosities for asymmetric toroidal plasmas in various collisionality regimes are calculated. It is known that in the symmetric limit the time dependent plasma viscosities accurately describe plasma flow damping rate. Thus, time dependent plasma viscosities are important in modeling the radial electric field of the zonal flow. From the momentum balance equation, it is shown that, at the steady state, the balance of the viscosity force and the momentum source determines the radial electric field of the zonal flow. Thus, for a fixed source, the smaller the viscous force is, the larger the value of the radial electric field is, which in turn suppresses the turbulence fluctuations more and improves turbulence transport. However, the smaller the viscous force also implies the smaller the neoclassical transport fluxes based on the neoclassical flux-force relationship. We thus show that when neoclassical transport fluxes are improved so are the turbulent fluxes in toroidal plasmas. (author)

  3. 78 FR 59163 - Rules of Practice for Issuance of Temporary Cease-and-Desist Orders

    Science.gov (United States)

    2013-09-26

    ... require. Section 1081.502 Judicial review, duration This section describes the process under which a TCDO respondent may seek judicial review of a TCDO, the sole process available for seeking review of a TCDO. This... section 1053, provide a straightforward and efficient process for the issuance of a temporary cease-and...

  4. Radial head button holing: a cause of irreducible anterior radial head dislocation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Su-Mi; Chai, Jee Won; You, Ja Yeon; Park, Jina [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Bae, Kee Jeong [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Orthopedic Surgery, Seoul (Korea, Republic of)

    2016-10-15

    ''Buttonholing'' of the radial head through the anterior joint capsule is a known cause of irreducible anterior radial head dislocation associated with Monteggia injuries in pediatric patients. To the best of our knowledge, no report has described an injury consisting of buttonholing of the radial head through the annular ligament and a simultaneous radial head fracture in an adolescent. In the present case, the radiographic findings were a radial head fracture with anterior dislocation and lack of the anterior fat pad sign. Magnetic resonance imaging (MRI) clearly demonstrated anterior dislocation of the fractured radial head through the torn annular ligament. The anterior joint capsule and proximal portion of the annular ligament were interposed between the radial head and capitellum, preventing closed reduction of the radial head. Familiarity with this condition and imaging findings will aid clinicians to make a proper diagnosis and fast decision to perform an open reduction. (orig.)

  5. Rapid assessment of pulmonary gas transport with hyperpolarized 129Xe MRI using a 3D radial double golden-means acquisition with variable flip angles.

    Science.gov (United States)

    Ruppert, Kai; Amzajerdian, Faraz; Hamedani, Hooman; Xin, Yi; Loza, Luis; Achekzai, Tahmina; Duncan, Ian F; Profka, Harrilla; Siddiqui, Sarmad; Pourfathi, Mehrdad; Cereda, Maurizio F; Kadlecek, Stephen; Rizi, Rahim R

    2018-04-22

    To demonstrate the feasibility of using a 3D radial double golden-means acquisition with variable flip angles to monitor pulmonary gas transport in a single breath hold with hyperpolarized xenon-129 MRI. Hyperpolarized xenon-129 MRI scans with interleaved gas-phase and dissolved-phase excitations were performed using a 3D radial double golden-means acquisition in mechanically ventilated rabbits. The flip angle was either held fixed at 15 ° or 5 °, or it was varied linearly in ascending or descending order between 5 ° and 15 ° over a sampling interval of 1000 spokes. Dissolved-phase and gas-phase images were reconstructed at high resolution (32 × 32 × 32 matrix size) using all 1000 spokes, or at low resolution (22 × 22 × 22 matrix size) using 400 spokes at a time in a sliding-window fashion. Based on these sliding-window images, relative change maps were obtained using the highest mean flip angle as the reference, and aggregated pixel-based changes were tracked. Although the signal intensities in the dissolve-phase maps were mostly constant in the fixed flip-angle acquisitions, they varied significantly as a function of average flip angle in the variable flip-angle acquisitions. The latter trend reflects the underlying changes in observed dissolve-phase magnetization distribution due to pulmonary gas uptake and transport. 3D radial double golden-means acquisitions with variable flip angles provide a robust means for rapidly assessing lung function during a single breath hold, thereby constituting a particularly valuable tool for imaging uncooperative or pediatric patient populations. © 2018 International Society for Magnetic Resonance in Medicine.

  6. Monte Carlo based radial shield design of typical PWR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gul, Anas; Khan, Rustam; Qureshi, M. Ayub; Azeem, Muhammad Waqar; Raza, S.A. [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Stummer, Thomas [Technische Univ. Wien (Austria). Atominst.

    2016-11-15

    Neutron and gamma flux and dose equivalent rate distribution are analysed in radial and shields of a typical PWR type reactor based on the Monte Carlo radiation transport computer code MCNP5. The ENDF/B-VI continuous energy cross-section library has been employed for the criticality and shielding analysis. The computed results are in good agreement with the reference results (maximum difference is less than 56 %). It implies that MCNP5 a good tool for accurate prediction of neutron and gamma flux and dose rates in radial shield around the core of PWR type reactors.

  7. Neoclassical transport of energetic beam ions in the Large Helical Device

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Yamada, Hiroshi; Kaneko, Osamu

    2000-01-01

    The neoclassical (collisional) transport of energetic ions is investigated by the global neoclassical transport simulation in the Large Helical Device (LHD). The steady state distributions of energetic ions are evaluated assuming an energetic particle source by NBI heating (tangentally injected). Significant radial transport of energetic ions can be seen due to the radial motion of trapped particles in the velocity region below near critical velocity. Our simulation results show relatively good agreements with the experimental results of fast particle measurements in the LHD. This suggests an important role of neoclassical transport in the radial transport process of energetic ions in heliotrons. (author)

  8. Control of the radial electric field shear by modification of the magnetic field configuration in LHD

    International Nuclear Information System (INIS)

    Ida, K.; Yoshinuma, M.; Yokoyama, M.

    2005-01-01

    Control of the radial electric field, E r , is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. In general, the radial electric field can be controlled by changing the collisionality, and positive or negative electric fields have been obtained by decreasing or increasing the electron density, respectively. Although the sign of the radial electric field can be controlled by changing the collisionality, modification of the magnetic field is required to achieve further control of the radial electric field, especially to produce a strong radial electric field shear. In the Large Helical Device (LHD) the radial electric field profiles are shown to be controlled by the modification of the magnetic field by (1) changing the radial profile of the effective helical ripples, ε h (2) creating a magnetic island with an external perturbation field coil and (3) changing the local island divertor coil current

  9. Control of the radial electric field shear by modification of the magnetic field configuration in LHD

    International Nuclear Information System (INIS)

    Ida, K.; Yoshinuma, M.; Yokoyama, M.

    2005-01-01

    Control of the radial electric field, E γ , is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. In general, the radial electric field can be controlled by changing the collisionality, and positive or negative electric field have been obtained by decreasing or increasing the electron density, respectively. Although the sign of the radial electric field can be controlled by changing the collisionality, modification of the magnetic field is required to achieve further control of the radial electric field, especially producing a strong radial electric field shear. In the Large Helical Device (LHD) the radial electric field profiles are shown to be controlled by the modification of the magnetic field by 1) changing the radial profile of the helical ripples, ε h , 2) creating a magnetic island with an external perturbation field coil and 3) changing the local island divertor coil current. (author)

  10. Stability of radial and non-radial pulsation modes of massive ZAMS models

    International Nuclear Information System (INIS)

    Odell, A.P.; Pausenwein, A.; Weiss, W.W.; Hajek, A.

    1987-01-01

    The authors have computed non-adiabatic eigenvalues for radial and non-radial pulsation modes of star models between 80 and 120 M solar with composition of chi=0.70 and Z=0.02. The radial fundamental mode is unstable in models with mass greater than 95 M solar , but the first overtone mode is always stable. The non-radial modes are all stable for all models, but the iota=2 f-mode is the closest to being driven. The non-radial modes are progressively more stable with higher iota and with higher n (for both rho- and g-modes). Thus, their results indicate that radial pulsation limits the upper mass of a star

  11. Paleoclassical electron heat transport

    International Nuclear Information System (INIS)

    Callen, J.D.

    2005-01-01

    Radial electron heat transport in low collisionality, magnetically-confined toroidal plasmas is shown to result from paleoclassical Coulomb collision processes (parallel electron heat conduction and magnetic field diffusion). In such plasmas the electron temperature equilibrates along magnetic field lines a long length L, which is the minimum of the electron collision length and a maximum effective half length of helical field lines. Thus, the diffusing field lines induce a radial electron heat diffusivity M ≅ L/(πR 0q ) ∼ 10 >> 1 times the magnetic field diffusivity η/μ 0 ≅ ν e (c/ω p ) 2 . The paleoclassical electron heat flux model provides interpretations for many features of 'anomalous' electron heat transport: magnitude and radial profile of electron heat diffusivity (in tokamaks, STs, and RFPs), Alcator scaling in high density plasmas, transport barriers around low order rational surfaces and near a separatrix, and a natural heat pinch (or minimum temperature gradient) heat flux form. (author)

  12. Phase diagram of structure of radial electric field in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2002-01-01

    A set of transport equations in toroidal helical plasmas is analyzed, including the bifurcation of the radial electric field. Multiple solutions of E r for the ambipolar condition induces domains of different electric polarities. A structure of the domain interface is analyzed and a phase diagram is obtained in the space of the external control parameters. The region of the reduction of the anomalous transport is identified. (author)

  13. Study of neoclassical transport in LHD plasmas by applying the DCOM/NNW neoclassical transport database

    International Nuclear Information System (INIS)

    Wakasa, Arimitsu; Oikawa, Shun-ichi; Murakami, Sadayoshi

    2008-01-01

    In helical systems, neoclassical transport is one of the important issues in addition to anomalous transport, because of a strong temperature dependency of heat conductivity and an important role in the radial electric field determination. Therefore, the development of a reliable tool for the neoclassical transport analysis is necessary for the transport analysis in Large Helical Device (LHD). We have developed a neoclassical transport database for LHD plasmas, DCOM/NNW, where mono-energetic diffusion coefficients are evaluated by the Monte Carlo method, and the diffusion coefficient database is constructed by a neural network technique. The input parameters of the database are the collision frequency, radial electric field, minor radius, and configuration parameters (R axis , beta value, etc). In this paper, database construction including the plasma beta is investigated. A relatively large Shafranov shift occurs in the finite beta LHD plasma, and the magnetic field configuration becomes complex leading to rapid increase in the number of the Fourier modes in Boozer coordinates. DCOM/NNW can evaluate neoclassical transport accurately even in such a configuration with a large number of Fourier modes. The developed DCOM/NNW database is applied to a finite-beta LHD plasma, and the plasma parameter dependences of neoclassical transport coefficients and the ambipolar radial electric field are investigated. (author)

  14. Turbulence simulations of blob formation and radial propagation in toroidally magnetized plasmas

    DEFF Research Database (Denmark)

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.

    2006-01-01

    the presence of long- range correlations in the particle density fluctuations. Finally, conditional statistics of the particle flux demonstrates the intermittency of the turbulent plasma transport and the quasi-periodic apparency of blob structures due to bursting in the global turbulence level....... of particles and heat, which is coupled to a scrape-off layer with linear damping terms for all dependent variables corresponding to transport along open magnetic field lines. The formation of blob structures is related to profile variations caused by bursting in the global turbulence level, which is due...... to a dynamical regulation by self- sustained differential rotation of the plasma layer. Radial propagation of the blob structures follows from a vertical charge polarization due to magnetic guiding centre drifts in the toroidally magnetized plasma. Statistical analysis of the particle density, radial electric...

  15. Investigation of radial propagation of electrostatic fluctuations in the IR-T1 tokamak plasma edge

    Energy Technology Data Exchange (ETDEWEB)

    Shariatzadeh, R; Ghoranneviss, M; Salem, M K [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University (IAU), PO Box 14665-678, Tehran (Iran, Islamic Republic of); Emami, M, E-mail: rezashariatzadeh@gmail.com [Laser and Optics Research School, NSTRI, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2011-01-15

    The radial propagation of electrostatic fluctuation is considered extremely important for understanding cross-field anomalous transport. In this paper, two arrays of Langmuir probes are used to analyze electrostatic fluctuations in the edge of IR-T1 tokamak plasma in both the radial and the poloidal directions. The propagation characteristics of the floating potential fluctuations are analyzed by the two-point correlation technique. The wavenumber spectrum shows that there is a net radially outward propagation of turbulent fluctuations in the edge and scrape-off layer (SOL) regions. Hence, edge turbulence presumably originates from core fluctuations.

  16. Investigation of radial propagation of electrostatic fluctuations in the IR-T1 tokamak plasma edge

    International Nuclear Information System (INIS)

    Shariatzadeh, R; Ghoranneviss, M; Salem, M K; Emami, M

    2011-01-01

    The radial propagation of electrostatic fluctuation is considered extremely important for understanding cross-field anomalous transport. In this paper, two arrays of Langmuir probes are used to analyze electrostatic fluctuations in the edge of IR-T1 tokamak plasma in both the radial and the poloidal directions. The propagation characteristics of the floating potential fluctuations are analyzed by the two-point correlation technique. The wavenumber spectrum shows that there is a net radially outward propagation of turbulent fluctuations in the edge and scrape-off layer (SOL) regions. Hence, edge turbulence presumably originates from core fluctuations.

  17. Radial, sideward and elliptic flow at AGS energies

    Indian Academy of Sciences (India)

    the sideward flow, the elliptic flow and the radial transverse mass distribution of protons data at. AGS energies. In order to ... data on both sideward and elliptic flow, NL3 model is better at 2 A¡GeV, while NL23 model is at 4–8. A¡GeV. ... port approach RBUU which is based on a coupled set of covariant transport equations for.

  18. Nurses' competence in advising and supporting clients to cease smoking: a survey among Finnish nurses.

    Science.gov (United States)

    Pelkonen, M; Kankkunen, P

    2001-07-01

    The article describes the results of a survey of Finnish nurses (n = 882). The purpose of the study was to describe how nurses' education, working experience and their own smoking habits relate to their self-reported competence in advising and supporting clients to cease smoking. Nurses evaluated their skills fairly highly, but did not believe that advice alone was helpful to clients who wished to cease smoking. Nurses had minimal knowledge of smoking substitutes. Lower general education, a fairly short time from graduation and a history of smoking were positively related to nurses' competence to guide clients. Nurses who smoked daily were found to have better skills in giving advice and support than their non-smoking colleagues. The results have implications for the design of smoking cessation programmes. More education and guidance is required for nurses, so that they can develop their understanding and a positive view as to the effectiveness of smoking cessation programmes.

  19. Hybrid simulations of radial transport driven by the Rayleigh-Taylor instability

    Science.gov (United States)

    Delamere, P. A.; Stauffer, B. H.; Ma, X.

    2017-12-01

    Plasma transport in the rapidly rotating giant magnetospheres is thought to involve a centrifugally-driven flux tube interchange instability, similar to the Rayleigh-Taylor (RT) instability. In three dimensions, the convective flow patterns associated with the RT instability can produce strong guide field reconnection, allowing plasma mass to move radially outward while conserving magnetic flux (Ma et al., 2016). We present a set of hybrid (kinetic ion / fluid electron) plasma simulations of the RT instability using high plasma beta conditions appropriate for Jupiter's inner and middle magnetosphere. A density gradient, combined with a centrifugal force, provide appropriate RT onset conditions. Pressure balance is achieved by initializing two ion populations: one with fixed temperature, but varying density, and the other with fixed density, but a temperature gradient that offsets the density gradient from the first population and the centrifugal force (effective gravity). We first analyze two-dimensional results for the plane perpendicular to the magnetic field by comparing growth rates as a function of wave vector following Huba et al. (1998). Prescribed perpendicular wave modes are seeded with an initial velocity perturbation. We then extend the model to three dimensions, introducing a stabilizing parallel wave vector. Boundary conditions in the parallel direction prohibit motion of the magnetic field line footprints to model the eigenmodes of the magnetodisc's resonant cavity. We again compare growth rates based on perpendicular wave number, but also on the parallel extent of the resonant cavity, which fixes the size of the largest parallel wavelength. Finally, we search for evidence of strong guide field magnetic reconnection within the domain by identifying areas with large parallel electric fields or changes in magnetic field topology.

  20. On the relation between neoclassical transport and turbulent transport

    International Nuclear Information System (INIS)

    Shaing, K.C.

    2005-01-01

    It is demonstrated through the flux-force relationship in the neoclassical theory that when neoclassical transport fluxes are improved, the damping rate of the radial electric field of the zonal flow is reduced. This, in turn, leads to improved turbulent transport fluxes. Thus, two seemingly unrelated transport fluxes are intimately connected through the momentum equation, and the neoclassical flux-force relation. This also implies a method to improve turbulent transport by improving neoclassical fluxes

  1. Radial propagation of microturbulence in tokamaks

    International Nuclear Information System (INIS)

    Garbet, X.; Laurent, L.; Roubin, J.P.; Samain, A.

    1992-01-01

    Energy confinement time in tokamaks exhibits a clear dependence on global plasma parameters. This is not the case for transport coefficients; their dependence on local plasma parameters cannot be precisely established. The aim of the present paper is to give a possible explanation of this behaviour; turbulence propagates radially because of departure from cylindrical geometry. This implies that the turbulence level at a given point and hence transport coefficients are not only functions of local plasma parameters. A quantitative estimate of the propagation velocity is derived from a Lagrangian formalism. Two cases are considered: the effect of toroidicity and the effect of non linear mode-mode coupling. The consequences of this model are discussed. This process does not depend on the type of instability. For the sake of simplicity only electrostatic perturbations are considered

  2. Higher dosage nicotine patches increase one-year smoking cessation rates : results from the European CEASE trial

    NARCIS (Netherlands)

    Tonnesen, P; Paoletti, P; Gustavsson, G; Russell, MA; Saracci, R; Gulsvik, A; Rijcken, B

    The Collaborative European Anti-Smoking Evaluation (CEASE) was a European multicentre, randomized, double-blind placebo controlled smoking cessation study, The objectives were to determine whether higher dosage and longer duration of nicotine patch therapy would increase the success rate. Thirty-six

  3. CeasIng Cpap At standarD criteriA (CICADA): Implementation improves neonatal outcomes.

    Science.gov (United States)

    Heath Jeffery, Rachael C; Broom, Margaret; Shadbolt, Bruce; Todd, David A

    2016-03-01

    A previous randomised controlled trial (RCT) in babies born CPAP) with a view to remain off rather than slow weaning) significantly reduced CPAP time. Post-RCT we introduced the CICADA method and evaluated whether the improved outcomes of the CICADA method during the RCT were replicated in clinical practice. The aim of the study is to compare cardio-respiratory outcomes in PBs CPAP days and corrected GA to cease CPAP post implementation (20.5 ± 2.1, 21.1 ± 2.1, 16.5 ± 1.8 (days ± SE); P = 0.006 and 33.3 ± 0.4, 33.5 ± 0.4, 32.6 ± 0.4 (weeks ± SE); P = 0.01). Compared with the pre RCT epoch, there were significant reductions in patent ductus arteriosus (36/78 (46%), 33/87 (37%), 18/103 (17%); P CPAP time, corrected GA to cease CPAP, patent ductus arteriosus and chronic lung disease significantly reduced following the introduction of the CICADA method. Early cessation of CPAP expedites the transition from neonatal intensive care to special care. © 2016 The Author. Journal of Paediatrics and Child Health © 2016 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  4. Modified radial v/s biatrial maze for atrial fibrillation in rheumatic valvular heart surgery

    Directory of Open Access Journals (Sweden)

    Sajid A. Sayed

    2014-09-01

    Discussion: In patients with AF undergoing rheumatic valvular surgery, radiofrequency radial approach is as effective as modified Cox's maze III for conversion to NSR with better atrial transport function.

  5. Internal transport barrier in tokamak and helical plasmas

    Science.gov (United States)

    Ida, K.; Fujita, T.

    2018-03-01

    The differences and similarities between the internal transport barriers (ITBs) of tokamak and helical plasmas are reviewed. By comparing the characteristics of the ITBs in tokamak and helical plasmas, the mechanisms of the physics for the formation and dynamics of the ITB are clarified. The ITB is defined as the appearance of discontinuity of temperature, flow velocity, or density gradient in the radius. From the radial profiles of temperature, flow velocity, and density the ITB is characterized by the three parameters of normalized temperature gradient, R/{L}T, the location, {ρ }{ITB}, and the width, W/a, and can be expressed by ‘weak’ ITB (small R/{L}T) or ‘strong’ (large R/{L}T), ‘small’ ITB (small {ρ }{ITB}) or ‘large’ ITB (large {ρ }{ITB}), and ‘narrow’ (small W/a) or ‘wide’ (large W/a). Three key physics elements for the ITB formation, radial electric field shear, magnetic shear, and rational surface (and/or magnetic island) are described. The characteristics of electron and ion heat transport and electron and impurity transport are reviewed. There are significant differences in ion heat transport and electron heat transport. The dynamics of ITB formation and termination is also discussed. The emergence of the location of the ITB is sometimes far inside the ITB foot in the steady-state phase and the ITB region shows radial propagation during the formation of the ITB. The non-diffusive terms in momentum transport and impurity transport become more dominant in the plasma with the ITB. The reversal of the sign of non-diffusive terms in momentum transport and impurity transport associated with the formation of the ITB reported in helical plasma is described. Non-local transport plays an important role in determining the radial profile of temperature and density. The spontaneous change in temperature curvature (second radial derivative of temperature) in the ITB region is described. In addition, the key parameters of the control of the

  6. Radial effects in heating and thermal stability of a sub-ignited tokamak

    International Nuclear Information System (INIS)

    Fuchs, V.; Shoucri, M.M.; Thibaudeau, G.; Harten, L.; Bers, A.

    1982-02-01

    The existence of thermally stable sub-ignited equilibria of a tokamak reactor, sustained in operation by a feedback-controlled supplementary heating source, is demonstrated. The establishment of stability depends on a number of radially non-uniform, nonlinear processes whose effect is analyzed. One-dimensional (radial) stability analyses of model transport equations, together with numerical results from a 1-D transport code, are used in studying the heating of DT-plasmas in the thermonuclear regime. Plasma core supplementary heating is found to be a thermally more stable process than bulk heating. In the presence of impurity line radiation, however, core-heated temperature profiles may collapse, contracting inward from the limiter, the result of an instability caused by the increasing nature of the radiative cooling rate, with decreasing temperature. Conditions are established for the realization of a sub-ignited high-Q, toroidal reactor plasma with appreciable output power

  7. The Effects of Radial and Poloidal ExB Drifts in the Tokamak SOL

    International Nuclear Information System (INIS)

    Ou Jing; Zhu Sizheng

    2006-01-01

    The effects of radial and poloidal ExB drifts in the scrape-off layer (SOL) of a limiter tokamak are studied with a one-dimensional fluid code. The transport equations are solved in the poloidal direction with the radial influxes as the source terms. The simulation results show that in the high recycling regime, the effect of the radial ExB drift on plasma density tends to be stronger than that of the poloidal ExB drift. In the sheath-limited regime, the effects of the radial ExB drift and poloidal ExB drift on plasma density are almost equally important. Considering the influence on the electron temperature, the poloidal ExB drift tends to be more important than the radial ExB drift in both the high recycling regime and sheath-limited regime. For the normal B φ , the poloidal ExB drift tends to raise the pressure at the low field side while the radial ExB drift favours the high field side. The simulation results also show that the ExB drift influences the asymmetries on the parameter distributions at the high field side and low field side, and the distributions are much more symmetric with the field reversal

  8. Sausage instabilities stabilized by radial motion in Z-discharged plasma channel for beam propagation in LIB-fusion

    International Nuclear Information System (INIS)

    Murakami, Hiroyuki; Kawata, Shigeo; Niu, Keishiro.

    1983-01-01

    The stability of current-carrying plasma channels, which have been proposed for transporting intense ion beams from the diodes to the target in LIB-fusion devices, is discussed. The growth rate of the most dangerous surface mode, that is, the axisymmetric sausage instabilities, are examined for plasma channels with or without radial fluid motion. The growth rate of the channel with radial fluid motion is shown to be far smaller than that of the channel with no fluid motion. It is concluded that a stable plasma channel can be formed by radial fluid motion. (author)

  9. Kinetic and transport theory near the tokamak edge

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Catto, P.J.

    1995-12-01

    Conventional transport orderings employed in the core of a tokamak plasma allow large divergence-free flows in flux surfaces, but only weak radial flows. However, alternate orderings are required in the edge region where radial diffusion must balance the rapid loss due to free-streaming to divertor plates or limiters. Kinetic equations commonly used to study the plasma core do not allow such a balance and are, therefore, inapplicable in the plasma edge. Similarly, core transport formulae cannot be extended to the edge region without major, qualitative alteration. Here the authors address the necessary changes. By deriving and solving a novel kinetic equation, they construct distinctive collisional transport laws for the plasma edge. They find that their edge ordering naturally retains the radial diffusion and parallel flow of particles, momentum and heat to lowest order in the conservation equations. To higher order they find a surprising form for parallel transport in the scrape-off layer, in which the parallel flow of particles and heat are driven by a combination of the conventional gradients, viscosity, and new terms involving radial derivatives. The new terms are not relatively small, and could affect understanding of limiter and divertor operation

  10. Radial electric field in JET advanced tokamak scenarios with toroidal field ripple

    NARCIS (Netherlands)

    Crombe, K.; Andrew, Y.; Biewer, T. M.; Blanco, E.; de Vries, P. C.; Giroud, C.; Hawkes, N. C.; Meigs, A.; Tala, T.; von Hellermann, M.; Zastrow, K. D.

    2009-01-01

    A dedicated campaign has been run on JET to study the effect of toroidal field (TF) ripple on plasma performance. Radial electric field measurements from experiments on a series of plasmas with internal transport barriers (ITBs) and different levels of ripple amplitude are presented. They have been

  11. Interrupting violence: how the CeaseFire Program prevents imminent gun violence through conflict mediation.

    Science.gov (United States)

    Whitehill, Jennifer M; Webster, Daniel W; Frattaroli, Shannon; Parker, Elizabeth M

    2014-02-01

    Cities are increasingly adopting CeaseFire, an evidence-based public health program that uses specialized outreach workers, called violence interrupters (VIs), to mediate potentially violent conflicts before they lead to a shooting. Prior research has linked conflict mediation with program-related reductions in homicides, but the specific conflict mediation practices used by effective programs to prevent imminent gun violence have not been identified. We conducted case studies of CeaseFire programs in two inner cities using qualitative data from focus groups with 24 VIs and interviews with eight program managers. Study sites were purposively sampled to represent programs with more than 1 year of implementation and evidence of program effectiveness. Staff with more than 6 months of job experience were recruited for participation. Successful mediation efforts were built on trust and respect between VIs and the community, especially high-risk individuals. In conflict mediation, immediate priorities included separating the potential shooter from the intended victim and from peers who may encourage violence, followed by persuading the parties to resolve the conflict peacefully. Tactics for brokering peace included arranging the return of stolen property and emphasizing negative consequences of violence such as jail, death, or increased police attention. Utilizing these approaches, VIs are capable of preventing gun violence and interrupting cycles of retaliation.

  12. When Introverts Ceased to Be More Religious: A Study among 12- to 16-Year-Old Pupils

    Science.gov (United States)

    Williams, Emyr; Robbins, Mandy; Francis, Leslie J.

    2005-01-01

    A sample of 279 12- to 16-year-old pupils completed the Francis Scale of Attitude toward Christianity and the short-form Junior Eysenck Personality Questionnaire Revised. Contrary to the findings of research using earlier junior versions of the Eysenck scales, the data demonstrate that introverts have ceased to be more religious. (Contains 1…

  13. Radial transport of high-energy runaway electrons in ORMAK

    International Nuclear Information System (INIS)

    Zweben, S.J.; Swain, D.W.; Fleischmann, H.H.

    1978-01-01

    The transport of high-energy runaway electrons near the outside of a low-density ORMAK discharge is investigated by measuring the flux of runaways to the outer limiter during and after an inward shift of the plasma column. The experimental results are interpreted through a runaway confinement model which includes both the classical outward displacement of the runaway orbit with increasing energy and an additional runaway spatial diffusion coefficient which simulates an unspecified source of anomalous transport. Diffusion coefficients in the range D approximately equal to 10 2 -10 4 cms -1 are found under various discharge conditions indicating a significant non-collisional runaway transport near the outside of the discharge, particularly in the presence of MHD instability. (author)

  14. Self-consistent model for the radial current generation during fishbone activity

    International Nuclear Information System (INIS)

    Lutsenko, V.V.; Marchenko, V.S.

    2002-01-01

    Line broadened quasilinear burst model, originally developed for the bump-on-tail instability [H. L. Berk et al., Nucl. Fusion 35, 1661 (1995)], is extended to the problem of sheared flow generation by the fishbone burst. It is supposed that the radial current of the resonant fast ions can be sufficient to create the transport barrier

  15. A perturbation effect in the reflector of a reactor. The case of a radial channel; Effet d'une perturbation dans le reflecteur d'une pile. Cas d'un canal radial

    Energy Technology Data Exchange (ETDEWEB)

    Lerouge, B; Raievski, V [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The absorption and the transport effect in a channel within the reflector of a reactor has been already studied with the first group theory, this study will discuss its resolution with the second group theory which describes the neutron distribution within a reactor by the value of two functions representing respectively the flux of fast neutrons and thermal neutrons, S{sub f} and S{sub s}. The study of the reactivity variation caused by a disturbance in the critical conditions and its application to the effect of a radial channel located within the reflector of a reactor leads to the evaluation of the reactivity drop caused by the presence of radial channels in the fully charged EL3 reactor. Numerical results are given for the contribution of the fast neutron and thermal neutron flux to the reactivity drop as well as the expression of the reactivity drop caused by the neutrons transport effect. (M.P.)

  16. Radial optimization of a BWR fuel cell using genetic algorithms; Optimizacion radial de una celda de combustible BWR usando algoritmos geneticos

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C.; Carmona H, R.; Oropeza C, I.P. [UNAM, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: cmcm@fi-b.unam.mx

    2006-07-01

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U{sup 235} and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix

  17. Development of novel strategies to combat multidrug resistance mediated by efflux transporters and intracellular bacteria

    OpenAIRE

    Kuriakose, Jerrin

    2014-01-01

    Multidrug resistance (MDR) is the condition where cancer cells or microorganisms cease to respond to multiple drugs. MDR conferred by efflux transporters, that deprive the bioavailability of drugs at their site of action, are a threat to cancer and malarial chemotherapy. Specifically, the mammalian ABC transporter Pglycoprotein (P-gp) has undermined many drugs in treatment of cancer and other disease states. Mutations in the parasitic transporter Plasmodium falciparum chloroquine resistance t...

  18. SEAWAT-based simulation of axisymmetric heat transport.

    Science.gov (United States)

    Vandenbohede, Alexander; Louwyck, Andy; Vlamynck, Nele

    2014-01-01

    Simulation of heat transport has its applications in geothermal exploitation of aquifers and the analysis of temperature dependent chemical reactions. Under homogeneous conditions and in the absence of a regional hydraulic gradient, groundwater flow and heat transport from or to a well exhibit radial symmetry, and governing equations are reduced by one dimension (1D) which increases computational efficiency importantly. Solute transport codes can simulate heat transport and input parameters may be modified such that the Cartesian geometry can handle radial flow. In this article, SEAWAT is evaluated as simulator for heat transport under radial flow conditions. The 1971, 1D analytical solution of Gelhar and Collins is used to compare axisymmetric transport with retardation (i.e., as a result of thermal equilibrium between fluid and solid) and a large diffusion (conduction). It is shown that an axisymmetric simulation compares well with a fully three dimensional (3D) simulation of an aquifer thermal energy storage systems. The influence of grid discretization, solver parameters, and advection solution is illustrated. Because of the high diffusion to simulate conduction, convergence criterion for heat transport must be set much smaller (10(-10) ) than for solute transport (10(-6) ). Grid discretization should be considered carefully, in particular the subdivision of the screen interval. On the other hand, different methods to calculate the pumping or injection rate distribution over different nodes of a multilayer well lead to small differences only. © 2013, National Ground Water Association.

  19. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant.The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment.The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.

  20. A model for radial cesium transport in a fuel pellet

    International Nuclear Information System (INIS)

    Imoto, Shosuke

    1989-01-01

    In order to explain the radial redistribution of cesium in an irradiated pellet, a two-step release model is proposed. The first step involves the migration of cesium by atomic diffusion to some channels, such as grain boundaries and cracks, and the second step assumes a thermomigration down along the temperature gradient. Distribution profiles of cesium are obtained by numerical calculation with the present model assuming a constant and spatially uniform birth rate of cesium in the pellet. The result agrees well with the profile observed by micro-gamma scanning for the LWR fuel in the outer region of the pellet but diverges from it at the inner region. Discussion is made on the steady-state model hitherto generally utilized. (orig.)

  1. Cellular modelling of secondary radial growth in conifer trees: application to Pinus radiata (D. Don).

    Science.gov (United States)

    Forest, Loïc; Demongeot, Jacques; Demongeota, Jacques

    2006-05-01

    The radial growth of conifer trees proceeds from the dynamics of a merismatic tissue called vascular cambium or cambium. Cambium is a thin layer of active proliferating cells. The purpose of this paper was to model the main characteristics of cambial activity and its consecutive radial growth. Cell growth is under the control of the auxin hormone indole-3-acetic. The model is composed of a discrete part, which accounts for cellular proliferation, and a continuous part involving the transport of auxin. Cambium is modeled in a two-dimensional cross-section by a cellular automaton that describes the set of all its constitutive cells. Proliferation is defined as growth and division of cambial cells under neighbouring constraints, which can eliminate some cells from the cambium. The cell-growth rate is determined from auxin concentration, calculated with the continuous model. We studied the integration of each elementary cambial cell activity into the global coherent movement of macroscopic morphogenesis. Cases of normal and abnormal growth of Pinus radiata (D. Don) are modelled. Abnormal growth includes deformed trees where gravity influences auxin transport, producing heterogeneous radial growth. Cross-sectional microscopic views are also provided to validate the model's hypothesis and results.

  2. Benchmark test of drift-kinetic and gyrokinetic codes through neoclassical transport simulations

    International Nuclear Information System (INIS)

    Satake, S.; Sugama, H.; Watanabe, T.-H.; Idomura, Yasuhiro

    2009-09-01

    Two simulation codes that solve the drift-kinetic or gyrokinetic equation in toroidal plasmas are benchmarked by comparing the simulation results of neoclassical transport. The two codes are the drift-kinetic δf Monte Carlo code (FORTEC-3D) and the gyrokinetic full- f Vlasov code (GT5D), both of which solve radially-global, five-dimensional kinetic equation with including the linear Fokker-Planck collision operator. In a tokamak configuration, neoclassical radial heat flux and the force balance relation, which relates the parallel mean flow with radial electric field and temperature gradient, are compared between these two codes, and their results are also compared with the local neoclassical transport theory. It is found that the simulation results of the two codes coincide very well in a wide rage of plasma collisionality parameter ν * = 0.01 - 10 and also agree with the theoretical estimations. The time evolution of radial electric field and particle flux, and the radial profile of the geodesic acoustic mode frequency also coincide very well. These facts guarantee the capability of GT5D to simulate plasma turbulence transport with including proper neoclassical effects of collisional diffusion and equilibrium radial electric field. (author)

  3. Antiproton compression and radial measurements

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jorgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile, and its relation to that of the electron plasma. We also measure the outer radial profile by ejecting antiprotons to the trap wall using an octupole magnet.

  4. Convective transport in tokamaks

    International Nuclear Information System (INIS)

    D'Ippolito, D.A.; Myra, J.R.; Russell, D.A.; Krasheninnikov, S.I.; Pigarov, A.Yu.; Yu, G.Q.; Xu, X.Q.; Nevins, W.M.

    2005-01-01

    Scrape-off-layer (SOL) convection in fusion experiments appears to be a universal phenomenon that can 'short-circuit' the divertor in some cases. The theory of 'blob' transport provides a simple and robust physical paradigm for studying convective transport. This paper summarizes recent advances in the theory of blob transport and its comparison with 2D and 3D computer simulations. We also discuss the common physical basis relating radial transport of blobs, pellets, and ELMs and a new blob regime that may lead to a connection between blob transport and the density limit. (author)

  5. Stability of radial swirl flows

    International Nuclear Information System (INIS)

    Dou, H S; Khoo, B C

    2012-01-01

    The energy gradient theory is used to examine the stability of radial swirl flows. It is found that the flow of free vortex is always stable, while the introduction of a radial flow will induce the flow to be unstable. It is also shown that the pure radial flow is stable. Thus, there is a flow angle between the pure circumferential flow and the pure radial flow at which the flow is most unstable. It is demonstrated that the magnitude of this flow angle is related to the Re number based on the radial flow rate, and it is near the pure circumferential flow. The result obtained in this study is useful for the design of vaneless diffusers of centrifugal compressors and pumps as well as other industrial devices.

  6. [Comparison of chemical quality characteristics between radial striations and non-radial striations in tuberous root of Rehmannia glutinosa].

    Science.gov (United States)

    Xie, Cai-Xia; Zhang, Miao; Li, Ya-Jing; Geng, Xiao-Tong; Wang, Feng-Qing; Zhang, Zhong-Yi

    2017-11-01

    An HPLC method was established to determine the contents of catalpol, acteoside, rehmaionoside A, rehmaionoside D, leonuride in three part of Rehmanni glutinosa in Beijing No.1 variety R. glutinosa during the growth period, This method, in combination with its HPLC fingerprint was used to evaluate its overall quality characteristics.The results showed that:① the content of main components of R. glutinosa varied in different growth stages ;② there was a great difference of the content of main components between theradial striations and the non-radial striations; ③ the two sections almost have the same content distribution of catalpol, acteoside and rehmaionoside D; ④the content of rehmaionoside A in non-radial striations was higher than that in radial striations,while the content of leonuride in radial striations was higher than that in non-radial striations.; ⑤the HPLC fingerprint of radial striations, non-radial striations and whole root tuber were basically identical, except for the big difference in the content of chemical components. The result of clustering displayed that the radial striations, non-radial striations, and whole root were divided into two groups. In conclusion, there was a significant difference in the quality characteristics of radial striations and non-radial striations of R. glutinosa. This research provides a reference for quality evaluation and geoherbalism of R. glutinosa. Copyright© by the Chinese Pharmaceutical Association.

  7. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    Science.gov (United States)

    Shrestha, Suman K.

    Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was

  8. RMP-Flutter-Induced Pedestal Plasma Transport

    Energy Technology Data Exchange (ETDEWEB)

    Callen, J. D.; Hegna, C., E-mail: callen@engr.wisc.edu [University of Wisconsin, Madison (United States); Cole, A. J. [Columbia University, New York (United States)

    2012-09-15

    Full text: Plasma toroidal rotation can prevent or limit reconnection of externally applied resonant magnetic perturbation (RMP) fields {delta}B on rational magnetic flux surfaces. Hence, it causes the induced radial perturbations to vanish or be small there, and thereby inhibits magnetic island formation and stochasticity in the edge of high (H-mode) confinement tokamak plasmas. However, the radial component of the spatial magnetic flutter induced by RMP fields off rational surfaces causes a radial electron thermal diffusivity of (1/2)({delta}B{sub p}/B){sup 2} times a magnetic-shear-influenced effective parallel electron thermal diffusivity. The resultant RMP-flutter-induced electron thermal diffusivity can be comparable to experimentally inferred values at the top of H-mode pedestals. This process also causes a factor of about 3 smaller RMP-induced electron density diffusivity there. Because this electron density transport is non-ambipolar, it produces a toroidal torque on the plasma, which is usually in the co-current direction. Kinetic-based cylindrical screw-pinch and toroidal models of these RMP-flutter-induced plasma transport effects have been developed. The RMP-induced increases in these diffusive plasma transport processes are typically spatially inhomogeneous in that they are strongly peaked near the rational surfaces in low collisionality pedestals, which may lead to resonant sensitivities to the local safety factor q. The effects can be large enough to reduce the radially averaged gradients of the electron temperature and density at the top of H-mode edge pedestals, and modify the plasma toroidal rotation and radial electric field there. At high collisionality the various effects are less strongly peaked at rational surfaces and thus less likely to exhibit RMP-induced resonant behavior. These RMP-flutter-induced plasma transport processes provide a new paradigm for developing an understanding of how RMPs modify the pedestal structure to stabilize

  9. Manipulation of radial-variant polarization for creating tunable bifocusing spots.

    Science.gov (United States)

    Gu, Bing; Pan, Yang; Wu, Jia-Lu; Cui, Yiping

    2014-02-01

    We propose and generate a new radial-variant vector field (RV-VF) with a distribution of states of polarization described by the square of the radius and exploit its focusing property. Theoretically, we present the analytical expressions for the three-dimensional electric field of the vector field focused by a thin lens under the nonparaxial and paraxial approximations based on the vectorial Rayleigh-Sommerfeld formulas. Numerical simulations indicate that this focused field exhibits bifocusing spots along the optical axis. The underlying mechanism for generating the bifocusing property is analyzed in detail. We give the analytical formula for the interval between two foci. Experimentally, we generate the RV-VFs with alterable topological charge and demonstrate that the interval between two foci is controllable by tuning the radial topological charge. This particular focal field has specific applications for biparticle trapping, manipulating, alignment, transportation, and accelerating along the optical axis.

  10. Impurity transport in internal transport barrier discharges on JET

    International Nuclear Information System (INIS)

    Dux, R.; Giroud, C.; Zastrow, K.-D.

    2004-01-01

    Impurity behaviour in JET internal transport barrier (ITB) discharges with reversed shear has been investigated. Metallic impurities accumulate in cases with too strong peaking of the main ion density profile. The accumulation is due to inwardly directed drift velocities inside the ITB radius. The strength of the impurity peaking increases with the impurity charge and is low for the low-Z elements C and Ne. Transport calculations show that the observed behaviour is consistent with dominant neoclassical impurity transport inside the ITB. In some cases, MHD events in the core flatten the radial profile of the metallic impurity. (author)

  11. A new trapped-ion instability with large frequency and radial wavenumber

    International Nuclear Information System (INIS)

    Tagger, M.

    1979-01-01

    The need for theoretical previsions concerning anomalous transport in large Tokamaks, as well as the recent results of PLT, ask the question of the process responsible for non-linear saturation of trapped-ion instabilities. This in turn necessitates the knowledge of the linear behaviour of these waves at large frequencies and large radial wavenumbers. We study the linear dispersion relation of these modes, in the radially local approximation, but including a term due to a new physical effect, combining finite banana-width and bounce resonances. Limiting ourselves presently to the first harmonic expansion of the bounce motion of trapped ions, we show that the effect of finite banana-width on the usual trapped-ion mode is complex and quite different from what is generally expected. In addition we show, analytically and numerically, the appearance of a nex branch of this instability. Essentially due to this new effect, it involves large frequencies (ω approximately ωsub(b) and is destabilized by large radial wavelengths (ksub(x) Λ approximately 1, where Λ is the typical banana-width). We discuss the nature of this new mode and its potential relevance of the experiments

  12. Careers in ecstasy use: do ecstasy users cease of their own accord? Implications for intervention development

    Directory of Open Access Journals (Sweden)

    Schaalma Herman P

    2008-10-01

    Full Text Available Abstract Background Ecstasy (MDMA, 3, 4-methylenodioxymethamphetamine use is widespread in the Netherlands, with a lifetime prevalence of 4.3%, and two-thirds of dance party visitors being ecstasy users. However, research into Dutch ecstasy use patterns is lacking. In addition, recent studies suggest that ecstasy users cease their use automatically, which implies that interventions would do better to better focus on the promotion of harm reduction strategies than on inducing cessation. The current study addresses this process of ecstasy cessation. Methods 32 participants from the Dutch dance scene were interviewed, and the results were systematically analysed using NVivo. Results Most ecstasy users had started to use out of curiosity. During use, users applied a host of harm reduction strategies, albeit inconsistently and sometimes incorrectly. Most users appeared to cease ecstasy use automatically because of loss of interest or changing life circumstances (e.g. a new job or relationship. Conclusion It appears that cessation of ecstasy use is largely determined by environmental variables and not by health concerns. This supports the idea that health promotion resources are better spent in trying to promote consistent and correct application of harm reduction practices than in trying to induce cessation.

  13. Conjunction of radial basis function interpolator and artificial intelligence models for time-space modeling of contaminant transport in porous media

    Science.gov (United States)

    Nourani, Vahid; Mousavi, Shahram; Dabrowska, Dominika; Sadikoglu, Fahreddin

    2017-05-01

    As an innovation, both black box and physical-based models were incorporated into simulating groundwater flow and contaminant transport. Time series of groundwater level (GL) and chloride concentration (CC) observed at different piezometers of study plain were firstly de-noised by the wavelet-based de-noising approach. The effect of de-noised data on the performance of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) was evaluated. Wavelet transform coherence was employed for spatial clustering of piezometers. Then for each cluster, ANN and ANFIS models were trained to predict GL and CC values. Finally, considering the predicted water heads of piezometers as interior conditions, the radial basis function as a meshless method which solves partial differential equations of GFCT, was used to estimate GL and CC values at any point within the plain where there is not any piezometer. Results indicated that efficiency of ANFIS based spatiotemporal model was more than ANN based model up to 13%.

  14. Radioactive material transporting container

    International Nuclear Information System (INIS)

    Watabe, Yukio.

    1990-01-01

    As a supporting member of a sealing container for containing spent fuels, etc., a straight pipe or a cylinder has been used. However, upon dropping test, the supporting member is buckled toward the central axis of a transporting container and a shock absorber is crushed in the axial direction to prevent its pushing force to the outer side, which may possibly hinder normal shock moderating function. Then, at least more than one-half of the supporting member is protruded radially to the outer side of the sealing container beyond the fixed portion with the sealed container, so that the member has a portion extended in the radial outside of the transporting container with an angle greater than the angle formed between a line connecting the outer circumference at the bottom of an outer cylinder with the gravitational center of the transporting container and the central axis of the transporting container. As a result, buckling of the supporting member toward the central axis of the transporting container upon dropping test can be prevented and the deformation of the shock absorber is neither not prevented to exhibit normal shock absorbing effect. This can improve the reliability and reduce the amount of shock absorbers. (N.H.)

  15. Advanced transport modeling of toroidal plasmas with transport barriers

    International Nuclear Information System (INIS)

    Fukuyama, A.; Murakami, S.; Honda, M.; Izumi, Y.; Yagi, M.; Nakajima, N.; Nakamura, Y.; Ozeki, T.

    2005-01-01

    Transport modeling of toroidal plasmas is one of the most important issue to predict time evolution of burning plasmas and to develop control schemes in reactor plasmas. In order to describe the plasma rotation and rapid transition self-consistently, we have developed an advanced scheme of transport modeling based on dynamical transport equation and applied it to the analysis of transport barrier formation. First we propose a new transport model and examine its behavior by the use of conventional diffusive transport equation. This model includes the electrostatic toroidal ITG mode and the electromagnetic ballooning mode and successfully describes the formation of internal transport barriers. Then the dynamical transport equation is introduced to describe the plasma rotation and the radial electric field self-consistently. The formation of edge transport barriers is systematically studied and compared with experimental observations. The possibility of kinetic transport modeling in velocity space is also examined. Finally the modular structure of integrated modeling code for tokamaks and helical systems is discussed. (author)

  16. Heavy ion transport in the core of ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Odstrcil, Tomas [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Physik-Department E28, Technische Universitaet Muenchen, 85747 Garching (Germany); Puetterich, Thomas; Angioni, Clemente; Bilato, Roberto; Gude, Anja; Vezinet, Didier [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Mazon, Didier [CEA, IRFM F-13108 Saint Paul-lez-Durance (France); Collaboration: ASDEX Upgrade Team

    2016-07-01

    High impurity concentration in the core of the future fusion reactors can lead to the serious degradation of the achievable fusion gain. Therefore, a better understanding of the underlying impurity transport processes is necessary for higher performance, more efficient power exhaust and avoidance of impurity accumulation. Radial impurity transport is mainly driven by neoclassical and turbulent particle fluxes. Both these components show substantial variation depending on the poloidal angle. Consequently, an asymmetry in the poloidal distribution of impurities leads to significant changes in the radial impurity flow and the total content of the plasma core. The aim of this contribution is to experimentally verify a model describing the poloidal asymmetry of heavy impurities using measurements from ASDEX Upgrade. The observed asymmetries are caused mainly by the centrifugal force and poloidal electric force created by the fast particles produced by intensive ion-cyclotron heating. Finally, a change in the radial transport of the tungsten ions will be presented in the case of large inboard and outboard impurity accumulation.

  17. Radial retinotomy in the macula.

    Science.gov (United States)

    Bovino, J A; Marcus, D F

    1984-01-01

    Radial retinotomy is an operative procedure usually performed in the peripheral or equatorial retina. To facilitate retinal attachment, the authors used intraocular scissors to perform radial retinotomy in the macula of two patients during vitrectomy surgery. In the first patient, a retinal detachment complicated by periretinal proliferation and macula hole formation was successfully reoperated with the aid of three radial cuts in the retina at the edges of the macular hole. In the second patient, an intraoperative retinal tear in the macula during diabetic vitrectomy was also successfully repaired with the aid of radial retinotomy. In both patients, retinotomy in the macula was required because epiretinal membranes, which could not be easily delaminated, were hindering retinal reattachment.

  18. Radial head dislocation during proximal radial shaft osteotomy.

    Science.gov (United States)

    Hazel, Antony; Bindra, Randy R

    2014-03-01

    The following case report describes a 48-year-old female patient with a longstanding both-bone forearm malunion, who underwent osteotomies of both the radius and ulna to improve symptoms of pain and lack of rotation at the wrist. The osteotomies were templated preoperatively. During surgery, after performing the planned radial shaft osteotomy, the authors recognized that the radial head was subluxated. The osteotomy was then revised from an opening wedge to a closing wedge with improvement of alignment and rotation. The case report discusses the details of the operation, as well as ways in which to avoid similar shortcomings in the future. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  19. Current density fluctuations and ambipolarity of transport

    International Nuclear Information System (INIS)

    Shen, W.; Dexter, R.N.; Prager, S.C.

    1991-10-01

    The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f r >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range

  20. Radial cracks and fracture mechanism of radially oriented ring 2:17 type SmCo magnets

    International Nuclear Information System (INIS)

    Tian Jianjun; Pan Dean; Zhou Hao; Yin Fuzheng; Tao Siwu; Zhang Shengen; Qu Xuanhui

    2009-01-01

    Radially oriented ring 2:17 type SmCo magnets have different microstructure in the radial direction (easy magnetization) and axial direction (hard magnetization). The structure of the cross-section in radial direction is close-packed atomic plane, which shows cellular microstructure. The microstructure of the cross-section in axial direction consists of a mixture of rhombic microstructure and parallel lamella phases. So the magnets have obvious anisotropy of thermal expansion in different directions. The difference of the thermal expansion coefficients reaches the maximum value at 830-860 deg. C, which leads to radial cracks during quenching. The magnets have high brittlement because there are fewer slip systems in crystal structure. The fracture is brittle cleavage fracture.

  1. Nonlocal neoclassical transport in tokamak and spherical torus experiments

    International Nuclear Information System (INIS)

    Wang, W. X.; Rewoldt, G.; Tang, W. M.; Hinton, F. L.; Manickam, J.; Zakharov, L. E.; White, R. B.; Kaye, S.

    2006-01-01

    Large ion orbits can produce nonlocal neoclassical effects on ion heat transport, the ambipolar radial electric field, and the bootstrap current in realistic toroidal plasmas. Using a global δf particle simulation, it is found that the conventional local, linear gradient-flux relation is broken for the ion thermal transport near the magnetic axis. With regard to the transport level, it is found that details of the ion temperature profile determine whether the transport is higher or lower when compared with the predictions of standard neoclassical theory. Particularly, this nonlocal feature is suggested to exist in the National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, Y.-K. M. Peng et al., Nucl. Fusion 40, 557 (2000)], being consistent with NSTX experimental evidence. It is also shown that a large ion temperature gradient can increase the bootstrap current. When the plasma rotation is taken into account, the toroidal rotation gradient can drive an additional parallel flow for the ions and then additional bootstrap current, either positive or negative, depending on the gradient direction. Compared with the carbon radial force balance estimate for the neoclassical poloidal flow, our nonlocal simulation predicts a significantly deeper radial electric field well at the location of an internal transport barrier of an NSTX discharge

  2. COMPLETE SUPPRESSION OF THE M/N = 2/1 NEOCLASSICAL TEARING MODE USING RADIALLY LOCALIZED ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D AND THE REQUIREMENTS FOR ITER

    International Nuclear Information System (INIS)

    LAHAYE, RJ; LUCE, TC; PETTY, CC; HUMPHREYS, DA; HYATT, AW; PERKINS, FW; PRATER, R; STRAIT, EJ; WADE, MR

    2003-01-01

    A271 COMPLETE SUPPRESSION OF THE M/N = 2/1 NEOCLASSICAL TEARING MODE USING RADIALLY LOCALIZED ELECTRON CYCLOTRON CURRENT DRIVE ON DIII-D AND THE REQUIREMENTS FOR ITER. DIII-D experiments demonstrate the first real-time feedback control of the relative location of a narrow beam of microwaves to completely suppress and eliminate a growing tearing mode at the q = 2 surface. long wavelength tearing modes such as the m/n = 2/1 instability are particularly deleterious to tokamak operation. Confinement is seriously degraded by the island, plasma rotation can cease (mode-lock) and disruption can occur. The neoclassical tearing mode (NTM) becomes unstable due to the presence of a helically-perturbed bootstrap current and can be stabilized by replacing the missing bootstrap current in the island O-point by precisely located co-electron cyclotron current drive (ECCD). The optimum position is found when the DIII-D plasma control system (PCS) is put into a search and suppress mode that makes small radial shifts (in about 1 cm steps) in the ECCD location based on minimizing the Mirnov amplitude. Requirements for ITER are addressed

  3. Radial optimization of a BWR fuel cell using genetic algorithms

    International Nuclear Information System (INIS)

    Martin del Campo M, C.; Carmona H, R.; Oropeza C, I.P.

    2006-01-01

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U 235 and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix the placement of

  4. Radial electric field studies in the plasma edge of ASDEX upgrade

    International Nuclear Information System (INIS)

    Viezzer, Eleonora

    2012-01-01

    In magnetically confined fusion plasmas, edge transport barriers (ETBs) are formed during the transition from a highly turbulent state (low confinement regime, L-mode) to a high energy confinement regime (H-mode) with reduced turbulence and transport. The performance of an H-mode fusion plasma is highly dependent on the strength of the ETB which extends typically over the outermost 5% of the confined plasma. The formation of the ETB is strongly connected to the existence of a sheared plasma flow perpendicular to the magnetic field caused by a local radial electric field E r . The gradients in E r and the accompanying E x B velocity shear play a fundamental role in edge turbulence suppression, transport barrier formation and the transition to H-mode. Thus, the interplay between macroscopic flows and transport at the plasma edge is of crucial importance to understanding plasma confinement and stability. The work presented in this thesis is based on charge exchange recombination spectroscopy (CXRS) measurements performed at the plasma edge of the ASDEX Upgrade (AUG) tokamak. During this thesis new high-resolution CXRS diagnostics were installed at the outboard and inboard miplane of AUG, which provide measurements of the temperature, density and flows of the observed species. From these measurements the radial electric field can be directly determined via the radial force balance equation. The new CXRS measurements, combined with the other edge diagnostics available at AUG, allow for an unprecedented, high-accuracy localization (2-3 mm) of the E r profile. The radial electric field has been derived from charge exchange spectra measured on different impurity species including He 2+ , B 5+ , C 6+ and Ne 10+ . The resulting E r profiles are found to be identical within the uncertainties regardless of the impurity species used, thus demonstrating the validity of the diagnostic technique. Inside the ETB the E r profile forms a deep, negative (i.e. directed towards the

  5. Radial electric field studies in the plasma edge of ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Viezzer, Eleonora

    2012-12-18

    In magnetically confined fusion plasmas, edge transport barriers (ETBs) are formed during the transition from a highly turbulent state (low confinement regime, L-mode) to a high energy confinement regime (H-mode) with reduced turbulence and transport. The performance of an H-mode fusion plasma is highly dependent on the strength of the ETB which extends typically over the outermost 5% of the confined plasma. The formation of the ETB is strongly connected to the existence of a sheared plasma flow perpendicular to the magnetic field caused by a local radial electric field E{sub r}. The gradients in E{sub r} and the accompanying E x B velocity shear play a fundamental role in edge turbulence suppression, transport barrier formation and the transition to H-mode. Thus, the interplay between macroscopic flows and transport at the plasma edge is of crucial importance to understanding plasma confinement and stability. The work presented in this thesis is based on charge exchange recombination spectroscopy (CXRS) measurements performed at the plasma edge of the ASDEX Upgrade (AUG) tokamak. During this thesis new high-resolution CXRS diagnostics were installed at the outboard and inboard miplane of AUG, which provide measurements of the temperature, density and flows of the observed species. From these measurements the radial electric field can be directly determined via the radial force balance equation. The new CXRS measurements, combined with the other edge diagnostics available at AUG, allow for an unprecedented, high-accuracy localization (2-3 mm) of the E{sub r} profile. The radial electric field has been derived from charge exchange spectra measured on different impurity species including He{sup 2+}, B{sup 5+}, C{sup 6+} and Ne{sup 10+}. The resulting E{sub r} profiles are found to be identical within the uncertainties regardless of the impurity species used, thus demonstrating the validity of the diagnostic technique. Inside the ETB the E{sub r} profile forms a deep

  6. Evolution of the Turbulence Radial Wavenumber Spectrum near the L-H Transition in NSTX Ohmic Discharges

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, S.; Peebles, W.A., E-mail: skubota@ucla.edu [UCLA, Los Angeles (United States); Bush, C. E.; Maingi, R. [Oak Ridge National Laboratory, Oak Ridge (United States); Zweben, S. J.; Bell, R.; Crocker, N.; Diallo, A.; Kaye, S.; LeBlanc, B. P.; Park, J. K.; Ren, Y. [Princeton Plasma Physics Laboratory, Princeton University, Princeton (United States); Maqueda, R. J. [Nova Photonics, Princeton (United States); Raman, R. [University of Washington, Seattle (United States)

    2012-09-15

    Full text: The measurement of radially extended meso-scale structures such as zonal flows and streamers, as well as the underlying microinstabilities driving them, is critical for understanding turbulence-driven transport in plasma devices. In particular, the shape and evolution of the radial wavenumber spectrum indicate details of the nonlinear spectral energy transfer, the spreading of turbulence, as well as the formation of transport barriers. In the National Spherical Torus Experiment (NSTX), the FMCW backscattering diagnostic is used to probe the turbulence radial wavenumber spectrum (k{sub r} = 0 - 22 cm-1 ) across the outboard minor radius near the L- to H-mode transition in Ohmic discharges. During the L-mode phase, a broad spectral component (k{sub r} {approx} 2 - 10 cm{sup -1} ) extends over a significant portion of the edge-core from R = 120 to 155 cm ({rho} = 0.4 - 0.95). At the L-H transition, turbulence is quenched across the measurable k{sub r} range at the ETB location, where the radial correlation length drops from {approx} 1.5 - 0.5 cm. The k{sub r} spectrum away from the ETB location is modified on a time scale of tens of microseconds, indicating that nonlocal turbulence dynamics are playing a strong role. Close to the L-H transition, oscillations in the density gradient and edge turbulence quenching become highly correlated. These oscillations are also present in Ohmic discharges without an L-H transition, but are far less frequent. Similar behavior is also seen near the L-H transition in NB-heated discharges. (author)

  7. Numerical Simulation of Neoclassical Currents, Parallel Viscosity, and Radial Current Balance in Tokamak Plasmas

    International Nuclear Information System (INIS)

    Kiviniemi, T.

    2001-01-01

    One of the principal problems en route to a fusion reactor is that of insufficient plasma confinement, which has lead to both theoretical and experimental research into transport processes in the parameter range relevant for fusion energy production. The neoclassical theory of tokamak transport is well-established unlike the theory of turbulence driven anomalous transport in which extensive progress has been made during last few years. So far, anomalous transport has been dominant in experiments, but transport may be reduced to the neoclassical level in advanced tokamak scenarios. This thesis reports a numerical study of neoclassical fluxes, parallel viscosity, and neoclassical radial current balance in tokamaks. Neoclassical parallel viscosity and particle fluxes are simulated over a wide range of collisionalities, using the fully kinetic five-dimensional neoclassical orbit-following Monte Carlo code ASCOT. The qualitative behavior of parallel viscosity derived in earlier analytic models is shown to be incorrect for high poloidal Mach numbers. This is because the poloidal dependence of density was neglected. However, in high Mach number regime, it is the convection and compression terms, rather than the parallel viscosity term, that are shown to dominate the momentum balance. For fluxes, a reasonable agreement between numerical and analytical results is found in the collisional parameter regime. Neoclassical particle fluxes are additionally studied in the banana regime using the three-dimensional Fokker-Planck code DEPORA, which solves the drift-kinetic equation with finite differencing. Limitations of the small inverse aspect ratio approximation adopted in the analytic theory are addressed. Assuming that the anomalous transport is ambipolar, the radial electric field and its shear at the tokamak plasma edge can be solved from the neoclassical radial current balance. This is performed both for JET and ASDEX Upgrade tokamaks using the ASCOT code. It is shown that

  8. Computational Fluid Dynamics Simulations of Gas-Phase Radial Dispersion in Fixed Beds with Wall Effects

    Directory of Open Access Journals (Sweden)

    Anthony G. Dixon

    2017-10-01

    Full Text Available The effective medium approach to radial fixed bed dispersion models, in which radial dispersion of mass is superimposed on axial plug flow, is based on a constant effective dispersion coefficient, DT. For packed beds of a small tube-to-particle diameter ratio (N, the experimentally-observed decrease in this parameter near the tube wall is accounted for by a lumped resistance located at the tube wall, the wall mass transfer coefficient km. This work presents validated computational fluid dynamics (CFD simulations to obtain detailed radial velocity and concentration profiles for eight different computer-generated packed tubes of spheres in the range 5.04 ≤ N ≤ 9.3 and over a range of flow rates 87 ≤ Re ≤ 870 where Re is based on superficial velocity and the particle diameter dp. Initial runs with pure air gave axial velocity profiles vz(r averaged over the length of the packing. Then, simulations with the tube wall coated with methane yielded radial concentration profiles. A model with only DT could not describe the radial concentration profiles. The two-parameter model with DT and km agreed better with the bed-center concentration profiles, but not with the sharp decreases in concentration close to the tube wall. A three-parameter model based on classical two-layer mixing length theory, with a wall-function for the decrease in transverse radial convective transport in the near-wall region, showed greatly improved ability to reproduce the near-wall concentration profiles.

  9. Electron heat transport analysis of low-collisionality plasmas in the neoclassical-transport-optimized configuration of LHD

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Yamada, Hiroshi; Wakasa, Arimitsu

    2002-01-01

    Electron heat transport in low-collisionality LHD plasma is investigated in order to study the neoclassical transport optimization effect on thermal plasma transport with an optimization level typical of so-called ''advanced stellarators''. In the central region, a higher electron temperature is obtained in the optimized configuration, and transport analysis suggests the considerable effect of neoclassical transport on the electron heat transport assuming the ion-root level of radial electric field. The obtained experimental results support future reactor design in which the neoclassical and/or anomalous transports are reduced by magnetic field optimization in a non-axisymmetric configuration. (author)

  10. Analysis of pedestal plasma transport

    International Nuclear Information System (INIS)

    Callen, J.D.; Groebner, R.J.; Osborne, T.H.; Canik, J.M.; Owen, L.W.; Pankin, A.Y.; Rafiq, T.; Rognlien, T.D.; Stacey, W.M.

    2010-01-01

    An H-mode edge pedestal plasma transport benchmarking exercise was undertaken for a single DIII-D pedestal. Transport modelling codes used include 1.5D interpretive (ONETWO, GTEDGE), 1.5D predictive (ASTRA) and 2D ones (SOLPS, UEDGE). The particular DIII-D discharge considered is 98889, which has a typical low density pedestal. Profiles for the edge plasma are obtained from Thomson and charge-exchange recombination data averaged over the last 20% of the average 33.53 ms repetition time between type I edge localized modes. The modelled density of recycled neutrals is largest in the divertor X-point region and causes the edge plasma source rate to vary by a factor ∼10 2 on the separatrix. Modelled poloidal variations in the densities and temperatures on flux surfaces are small on all flux surfaces up to within about 2.6 mm (ρ N > 0.99) of the mid-plane separatrix. For the assumed Fick's-diffusion-type laws, the radial heat and density fluxes vary poloidally by factors of 2-3 in the pedestal region; they are largest on the outboard mid-plane where flux surfaces are compressed and local radial gradients are largest. Convective heat flows are found to be small fractions of the electron (∼ 2 s -1 . Electron heat transport is found to be best characterized by electron-temperature-gradient-induced transport at the pedestal top and paleoclassical transport throughout the pedestal. The effective ion heat diffusivity in the pedestal has a different profile from the neoclassical prediction and may be smaller than it. The very small effective density diffusivity may be the result of an inward pinch flow nearly balancing a diffusive outward radial density flux. The inward ion pinch velocity and density diffusion coefficient are determined by a new interpretive analysis technique that uses information from the force balance (momentum conservation) equations; the paleoclassical transport model provides a plausible explanation of these new results. Finally, the measurements

  11. Modelling of radial electric fields and currents during divertor plate biasing on TdeV

    International Nuclear Information System (INIS)

    Lachambre, J.L.; Quirion, B.; Boucher, C.

    1994-01-01

    A simple model based on non-ambipolar radial transport and planar sheath physics is used to describe the generation of radial electric fields and currents in the scrape-off layer of the Tokamak de Varennes (TdeV) during divertor plate biasing. In general, the calculated predictions compare favourably with TdeV results over a variety of plasma conditions and divertor magnetic configurations. Validated by the experiment, the model is used to study the scaling laws of perpendicular ion mobility and to test existing related theories. Finally, the model is proposed as a useful tool for the design and upgrade of biased divertors through optimization of the plate and throat geometry. (author). 35 refs, 16 figs, 1 tab

  12. Possible effects of drift wave turbulence on magnetic structure and plasma transport in tokamaks

    International Nuclear Information System (INIS)

    Callen, J.D.

    1977-07-01

    A new mechanism is proposed by which low level, drift wave type fluctuations, such as those observed in the ATC and TFR experiments, can cause anomalous radial electron heat transport in tokamaks. The model is based on the fact that since transport processes parallel to the magnetic field are many orders of magnitude more rapid than perpendicular ones, very small helically resonant magnetic perturbations that cause field lines to move radially allow the parallel transport process to contribute to radial electron heat transport. It is hypothesized that the small magnetic perturbations accompanying drift waves at any nonzero plasma β are large enough to produce significant effects in present tokamak experiments. The helical magnetic component of drift waves produces magnetic island structures whose spatial widths can easily exceed the ion gyroradius. In a drift wave oscillation period, electrons circumnavigate a magnetic island, whereas the slower moving ions see only a tilt of the magnetic field lines. Thus, electrons try to diffuse radially more rapidly than ions; however, a radialpotential builds up on a very short time scale to confine the electrons electrostatically and thereby keep the particle diffusion ambipolar. Nonetheless, this parallel electron diffusion process does cause net radial electron heat conduction through an ensemble of closely packed island structures. The heat conduction coefficient is estimated. Other effects that these magnetic flutters may have on plasma transport and runaway electron processes are also discussed

  13. 3D edge energy transport in stellarator configurations

    International Nuclear Information System (INIS)

    McTaggart, N.; Zagorski, R.; Bonnin, X.; Runov, A.; Schneider, R.; Kaiser, T.; Rognlien, T.; Umansky, M.

    2005-01-01

    The finite difference discretization method is used to solve the electron energy transport equation in complex 3D edge geometries using an unstructured grid. This grid is generated by field-line tracing to separate the radial and parallel fluxes and minimize the numerical diffusion connected with the strong anisotropy of the system. The influence of ergodicity on the edge plasma transport in the W7-X stellarator is investigated in this paper. Results show that the combined effect of ergodicity and the radial plasma diffusion leads to the efficient smoothing of the temperature profiles in the finite-β case

  14. Non-radial radiative transfer in clese binaries. Application to the bolometric reflection effect in W UMa stars

    International Nuclear Information System (INIS)

    Pustylnik, I.

    1977-01-01

    In near-contact binary systems a significant portion of the total amount of the radiative energy is blocked between the facing hemispheres of two component stars. This circumstance combined with the lack of spherical symmetry of the radiation field may give rise to non-radial radiative transport. It is shown for a case of a spherical stellar atmosphere illuminated by a parallel beam of radiation that anisotropic scattering may be responsible for the non-radial component of the radiative flux. The effect of non-radial radiative transfer in close binaries would increase the total energy output observed at elongations at the expense of the radiative energy seen during conjunctions and would lead to colour changes qualitatively resembling those observed in many W UMa stars. Presumably it will be difficult to distinguish periodical light changes due to non-radial radiative transfer from those caused by distortions of the components or gravitational darkening. An order-of-magnitude estimate is made with the result that the bolometric amplitude of the non-radially scattered light probably does not exceed one per cent of the total luminosity of a binary system. (author)

  15. Radial electric field evolution in the vicinity of a rotating magnetic island in the TUMAN-3M tokamak

    International Nuclear Information System (INIS)

    Askinazi, L G; Golant, V E; Kornev, V A; Lebedev, S V; Tukachinsky, A S; Vildjunas, M I; Zhubr, N A

    2006-01-01

    Radial electric field is known to be an important factor affecting transport and confinement in toroidal fusion plasmas. Langmuire probe measurements of peripheral radial electric field evolution in the presence of a rotating MHD island were performed on the TUMAN-3M tokamak in order to clear up the possible connection between the radial electric field and the island rotation, both in L and H-modes. The measurements showed that E r became positive, if the island was large enough, in spite of the constant direction of the island's rotation. Comparing similar ohmic H-mode discharges with or without a rotating MHD island, it was found that in the presence of the large island E r was always more positive. Possible explanations of this observation are discussed

  16. Perceived radial translation during centrifugation

    NARCIS (Netherlands)

    Bos, J.E.; Correia Grácio, B.J.

    2015-01-01

    BACKGROUND: Linear acceleration generally gives rise to translation perception. Centripetal acceleration during centrifugation, however, has never been reported giving rise to a radial, inward translation perception. OBJECTIVE: To study whether centrifugation can induce a radial translation

  17. Radial electric field in JET advanced tokamak scenarios with toroidal field ripple

    Energy Technology Data Exchange (ETDEWEB)

    Crombe, K [Postdoctoral Fellow of the Research Foundation - Flanders (FWO), Department of Applied Physics, Ghent University, Rozier 44, B-9000 Gent (Belgium); Andrew, Y; De Vries, P C; Giroud, C; Hawkes, N C; Meigs, A; Zastrow, K-D [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Biewer, T M [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6169, TN (United States); Blanco, E [Laboratorio Nacional de Fusion, Asociacion EURATOM-CIEMAT, Madrid (Spain); Tala, T [VTT Technical Research Centre of Finland, Association EURATOM-Tekes, PO Box 1000, FIN-02044 VTT (Finland); Von Hellermann, M [FOM Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands)], E-mail: Kristel.Crombe@jet.uk

    2009-05-15

    A dedicated campaign has been run on JET to study the effect of toroidal field (TF) ripple on plasma performance. Radial electric field measurements from experiments on a series of plasmas with internal transport barriers (ITBs) and different levels of ripple amplitude are presented. They have been calculated from charge exchange measurements of impurity ion temperature, density and rotation velocity profiles, using the force balance equation. The ion temperature and the toroidal and poloidal rotation velocities are compared in plasmas with both reversed and optimized magnetic shear profiles. Poloidal rotation velocity (v{sub {theta}}) in the ITB region is measured to be of the order of a few tens of km s{sup -1}, significantly larger than the neoclassical predictions. Increasing levels of the TF ripple are found to decrease the ion temperature gradient in the ITB region, a measure for the quality of the ITB, and the maximum value of v{sub {theta}} is reduced. The poloidal rotation term dominates in the calculations of the total radial electric field (E{sub r}), with the largest gradient in E{sub r} measured in the radial region coinciding with the ITB.

  18. A solution of the dispersion-convection equation of radial tracer transportation by the finite element variational method

    International Nuclear Information System (INIS)

    Hubert, J.

    1979-01-01

    The variational finite element method (of the Rayleigh-Ritz type) has been applied to solve the standard diffusion-convection equation of radial flow in a dispersive medium. It was shown that the imposing of the boundary condition ΔC/Δx = 0 (=null concentration gradient) introduced great errors in computation results. To remedy it this condition was imposed at the free end of the artifical domain. Its other end joined to the downstream boundary of the investigated domain. The results of calculations compared with the known analytical solutions of the parallel flow show their good accuracy. The method was used to discuss the applicability of the approximate analytical solutions of the radial flow. (author)

  19. Self-consistent radial sheath

    International Nuclear Information System (INIS)

    Hazeltine, R.D.

    1988-12-01

    The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig

  20. The impact of the biasing radial electric field on the SOL in a divertor tokamak

    International Nuclear Information System (INIS)

    Rozhansky, V.; Tendler, M.

    1993-01-01

    Strong radial electric field can be induced within the SOL in a divertor tokamak by applying a voltage to divertor plates with respect to the first wall. This biasing scheme results in the strong radial electric field which is much larger than the natural electric field, usually of the order T e /e. Experiments employing this biasing scheme were carried out on the tokamak TdeV. Many interesting effects such as - modifications of the density profile and radial transport of impurities as a function of the polarity and the magnitude of the biasing voltage, the generation of the flux surface average toroidal rotation proportional to the applied voltage, redistribution of the plasma outflow onto divertor plates and so on - were demonstrated to result from the biasing. Furthermore, in contrast to studies carried out employing a different biasing scheme which primarily results in a poloidal electric field, the strong radial electric field impacts more significantly within SOL than the poloidal electric field. Here, we aim to show that the main effects observed experimentally follow from the analysis, provided continuity and momentum balances are employed invoking anomalous viscosity and inertia. (author) 4 refs

  1. The Cease Smoking Today (CS2day) Initiative: A Guide to Pursue the 2010 IOM Report Vision for CPD

    Science.gov (United States)

    Cervero, Ronald M.; Moore, Donald E., Jr.

    2011-01-01

    This article reviews the articles in this supplement that describe a smoking cessation project, Cease Smoking Today (CS2day) that demonstrated successful outcomes: physician adoption of a smoking cessation guideline and an increase in smoking quit rates. The authors examine how the activities of the CS2day project compared to the principles and…

  2. Influence of the Constitutive Flow Law in FEM Simulation of the Radial Forging Process

    Directory of Open Access Journals (Sweden)

    Olivier Pantalé

    2013-01-01

    Full Text Available Radial forging is a widely used forming process for manufacturing hollow products in transport industry. As the deformation of the workpiece, during the process, is a consequence of a large number of high-speed strokes, the Johnson-Cook constitutive law (taking into account the strain rate seems to be well adapted for representing the material behavior even if the process is performed under cold conditions. But numerous contributions concerning radial forging analysis, in the literature, are based on a simple elastic-plastic formulation. As far as we know, this assumption has yet not been validated for the radial forging process. Because of the importance of the flow law in the effectiveness of the model, our purpose in this paper is to analyze the influence of the use of an elastic-viscoplastic formulation instead of an elastic-plastic one for modeling the cold radial forging process. In this paper we have selected two different laws for the simulations: the Johnson-Cook and the Ludwik ones, and we have compared the results in terms of forging force, product's thickness, strains, stresses, and CPU time. For the presented study we use an AISI 4140 steel, and we denote a fairly good agreement between the results obtained using both laws.

  3. Turbulent transport of toroidal angular momentum in low flow gyrokinetics

    International Nuclear Information System (INIS)

    Parra, Felix I; Catto, Peter J

    2010-01-01

    We derive a self-consistent equation for the turbulent transport of toroidal angular momentum in tokamaks in the low flow ordering that only requires solving gyrokinetic Fokker-Planck and quasineutrality equations correct to second order in an expansion on the gyroradius over scale length. We also show that according to our orderings the long wavelength toroidal rotation and the long wavelength radial electric field satisfy the neoclassical relation that gives the toroidal rotation as a function of the radial electric field and the radial gradients of pressure and temperature. Thus, the radial electric field can be solved for once the toroidal rotation is calculated from the transport of toroidal angular momentum. Unfortunately, even though this methodology only requires a gyrokinetic model correct to second order in gyroradius over scale length, current gyrokinetic simulations are only valid to first order. To overcome this difficulty, we exploit the smallish ratio B p /B, where B is the total magnetic field and B p is its poloidal component. When B p /B is small, the usual first order gyrokinetic equation provides solutions that are accurate enough to employ for our expression for the transport of toroidal angular momentum. We show that current δf and full f simulations only need small corrections to achieve this accuracy. Full f simulations, however, are still unable to determine the long wavelength, radial electric field from the quasineutrality equation.

  4. Internal electron transport barrier due to neoclassical ambipolarity in the Helically Symmetric Experiment

    International Nuclear Information System (INIS)

    Lore, J.; Briesemeister, A.; Anderson, D. T.; Anderson, F. S. B.; Likin, K. M.; Talmadge, J. N.; Zhai, K.; Guttenfelder, W.; Deng, C. B.; Spong, D. A.

    2010-01-01

    Electron cyclotron heated plasmas in the Helically Symmetric Experiment (HSX) feature strongly peaked electron temperature profiles; central temperatures are 2.5 keV with 100 kW injected power. These measurements, coupled with neoclassical predictions of large 'electron root' radial electric fields with strong radial shear, are evidence of a neoclassically driven thermal transport barrier. Neoclassical transport quantities are calculated using the PENTA code [D. A. Spong, Phys. Plasmas 12, 056114 (2005)], in which momentum is conserved and parallel flow is included. Unlike a conventional stellarator, which exhibits strong flow damping in all directions on a flux surface, quasisymmetric stellarators are free to rotate in the direction of symmetry, and the effect of momentum conservation in neoclassical calculations may therefore be significant. Momentum conservation is shown to modify the neoclassical ion flux and ambipolar ion root radial electric fields in the quasisymmetric configuration. The effect is much smaller in a HSX configuration where the symmetry is spoiled. In addition to neoclassical transport, a model of trapped electron mode turbulence is used to calculate the turbulent-driven electron thermal diffusivity. Turbulent transport quenching due to the neoclassically predicted radial electric field profile is needed in predictive transport simulations to reproduce the peaking of the measured electron temperature profile [Guttenfelder et al., Phys. Rev. Lett. 101, 215002 (2008)].

  5. Radial pseudoaneurysm following diagnostic coronary angiography

    Directory of Open Access Journals (Sweden)

    Shankar Laudari

    2015-06-01

    Full Text Available The radial artery access has gained popularity as a method of diagnostic coronary catheterization compared to femoral artery puncture in terms of vascular complications and early ambulation. However, very rare complication like radial artery pseudoaneurysm may occur following cardiac catheterization which may give rise to serious consequences. Here, we report a patient with radial pseudoaneurysm following diagnostic coronary angiography. Adequate and correct methodology of compression of radial artery following puncture for maintaining hemostasis is the key to prevention.DOI: http://dx.doi.org/10.3126/jcmsn.v10i3.12776 Journal of College of Medical Sciences-Nepal, 2014, Vol-10, No-3, 48-50

  6. Fusion-product ash buildup in tokamak with radial electric field

    International Nuclear Information System (INIS)

    Downum, W.B.; Choi, C.K.; Miley, G.H.

    1979-01-01

    The buildup of thermalized fusion products (ash) in a tokamak can seriously limit burn times. Prior studies have concentrated on deposition profile effects on alpha particle transport in tokamaks but have not considered the effect on ash of radial electric fields (either created internally, e.g. due to high-energy alpha leakage, or generated externally). The present study focuses on this issue since it appears that electric fields might offer one approach to control of the ash. Approximate field and source profiles are used, based on prior calculations

  7. Twist–radial normal mode analysis in double-stranded DNA chains

    International Nuclear Information System (INIS)

    Torrellas, Germán; Maciá, Enrique

    2012-01-01

    We study the normal modes of a duplex DNA chain at low temperatures. We consider the coupling between the hydrogen-bond radial oscillations and the twisting motion of each base pair within the Peyrard–Bishop–Dauxois model. The coupling is mediated by the stacking interaction between adjacent base pairs along the helix. We explicitly consider different mass values for different nucleotides, extending previous works. We disclose several resonance conditions of interest, determined by the fine-tuning of certain model parameters. The role of these dynamical effects on the DNA chain charge transport properties is discussed.

  8. Market Assessment and Commercialization Strategy for the Radial Sandia Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Shandross, Richard [Navigant Consulting, Inc., Burlington, MA (United States); Weintraub, Daniel [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States)

    2014-02-01

    This market assessment and commercialization report characterizes and assesses the market potential of the rotating heat exchanger technology developed at Sandia National Laboratories (SNL), known as the Radial Sandia Cooler. The RSC is a novel, motor-driven, rotating, finned heat exchanger technology. The RSC was evaluated for the residential, commercial, industrial, and transportation markets. Recommendations for commercialization were made based on assessments of the prototype RSC and the Sandia Cooler technology in general, as well as an in-depth analysis of the six most promising products for initial RSC commercialization.

  9. Endoscopic versus open radial artery harvest and mammario-radial versus aorto-radial grafting in patients undergoing coronary artery bypass surgery

    DEFF Research Database (Denmark)

    Carranza, Christian L; Ballegaard, Martin; Werner, Mads U

    2014-01-01

    the postoperative complications will be registered, and we will evaluate muscular function, scar appearance, vascular supply to the hand, and the graft patency including the patency of the central radial artery anastomosis. A patency evaluation by multi-slice computer tomography will be done at one year...... to aorto-radial revascularisation techniques but this objective is exploratory. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT01848886.Danish Ethics committee number: H-3-2012-116.Danish Data Protection Agency: 2007-58-0015/jr.n:30-0838....

  10. Drift Wave Test Particle Transport in Reversed Shear Profile

    International Nuclear Information System (INIS)

    Horton, W.; Park, H.B.; Kwon, J.M.; Stronzzi, D.; Morrison, P.J.; Choi, D.I.

    1998-01-01

    Drift wave maps, area preserving maps that describe the motion of charged particles in drift waves, are derived. The maps allow the integration of particle orbits on the long time scale needed to describe transport. Calculations using the drift wave maps show that dramatic improvement in the particle confinement, in the presence of a given level and spectrum of E x B turbulence, can occur for q(r)-profiles with reversed shear. A similar reduction in the transport, i.e. one that is independent of the turbulence, is observed in the presence of an equilibrium radial electric field with shear. The transport reduction, caused by the combined effects of radial electric field shear and both monotonic and reversed shear magnetic q-profiles, is also investigated

  11. Efficiency of LH current drive in tokamaks featuring an internal transport barrier

    International Nuclear Information System (INIS)

    Oliveira, C I de; Ziebell, L F; Rosa, P R da S

    2005-01-01

    In this paper, we study the effects of the occurrence of radial transport of particles in a tokamak on the efficiency of the current drive by lower hybrid (LH) waves, in the presence of an internal transport barrier. The results are obtained by numerical solution of the Fokker-Planck equation which rules the evolution of the electron distribution function. We assume that the radial transport of particles can be due to magnetic or electrostatic fluctuations. In both cases the efficiency of the current drive is shown to increase with the increase of the fluctuations that originate the transport. The dependence of the current drive efficiency on the depth and position of the barrier is also investigated

  12. Numerical simulation of liquid-metal-flows in radial-toroidal-radial bends

    International Nuclear Information System (INIS)

    Molokov, S.; Buehler, L.

    1993-09-01

    Magnetohydrodynamic flows in a U-bend and right-angle bend are considered with reference to the radial-toroidal-radial concept of a self-cooled liquid-metal blanket. The ducts composing bends have rectangular cross-section. The applied magnetic field is aligned with the toroidal duct and perpendicular to the radial ones. At high Hartmann number the flow region is divided into cores and boundary layers of different types. The magnetohydrodynamic equations are reduced to a system of partial differential equations governing wall electric potentials and the core pressure. The system is solved numerically by two different methods. The first method is iterative with iteration between wall potential and the core pressure. The second method is a general one for the solution of the core flow equations in curvilinear coordinates generated by channel geometry and magnetic field orientation. Results obtained are in good agreement. They show, that the 3D-pressure drop of MHD flows in a U-bend is not a critical issue for blanket applications. (orig./HP) [de

  13. Dynamical interplay between fluctuations, electric fields and transport in fusion plasmas

    International Nuclear Information System (INIS)

    Hidalgo, C.; Pedrosa, M.A.; Goncalves, B.

    2003-01-01

    A view of recent experimental results and progress in the characterization of the statistical properties of electrostatic turbulence in magnetically confined devices is given. An empirical similarity in the scaling properties of the probability distribution function (PDF) of turbulent transport has been observed in the plasma edge region in fusion plasmas. The investigation of the dynamical interplay between fluctuation in gradients, turbulent transport and radial electric fields has shows that these parameters are strongly coupled both in tokamak and stellarator plasmas. The bursty behaviour of turbulent transport is linked with a departure from the most probable radial gradient. The dynamical relation between fluctuations in gradients and transport is strongly affected by the presence of sheared poloidal flows which organized themselves near marginal stability. These results emphasize the importance of the statistical description of transport processes in fusion plasmas as an alternative approach to the traditional way to characterize transport based on the computation of effective transport coefficients. (author)

  14. Dedicated radial ventriculography pigtail catheter

    Energy Technology Data Exchange (ETDEWEB)

    Vidovich, Mladen I., E-mail: miv@uic.edu

    2013-05-15

    A new dedicated cardiac ventriculography catheter was specifically designed for radial and upper arm arterial access approach. Two catheter configurations have been developed to facilitate retrograde crossing of the aortic valve and to conform to various subclavian, ascending aortic and left ventricular anatomies. The “short” dedicated radial ventriculography catheter is suited for horizontal ascending aortas, obese body habitus, short stature and small ventricular cavities. The “long” dedicated radial ventriculography catheter is suited for vertical ascending aortas, thin body habitus, tall stature and larger ventricular cavities. This new design allows for improved performance, faster and simpler insertion in the left ventricle which can reduce procedure time, radiation exposure and propensity for radial artery spasm due to excessive catheter manipulation. Two different catheter configurations allow for optimal catheter selection in a broad range of patient anatomies. The catheter is exceptionally stable during contrast power injection and provides equivalent cavity opacification to traditional femoral ventriculography catheter designs.

  15. 5-D simulation study of suprathermal electron transport in non-axisymmetric plasmas

    International Nuclear Information System (INIS)

    Murakami, S.; Idei, H.; Kubo, S.; Nakajima, N.; Okamoto, M.; Gasparino, U.; Maassberg, H.; Rome, M.; Marushchenko, N.

    2000-01-01

    ECRH driven transport of suprathermal electrons is studied in non-axisymmetric plasmas using a new Monte Carlo simulation technique in 5-D phase space. Two different phases of the ECRH driven transport of suprathermal electrons can be seen. The first is a rapid convective phase due to the direct radial motion of trapped electrons and the second is a slower phase due to the collisional transport. The important role of the radial transport of suprathermal electrons in the broadening of the ECRH deposition profile in W7-AS is clarified. The ECRH driven flux is also evaluated and considered in relation to the 'electron root' feature recently observed in W7-AS. It is found that, at low collisionalities, the ECRH driven flux due to the suprathermal electrons can play a dominant role in the condition of ambipolarity, and thus the observed electron root feature in W7-AS is thought to be driven by the radial (convective) flux of ECRH generated suprathermal electrons. A possible scenario for this type of electron root is considered for the LHD plasma. (author)

  16. 5D simulation study of suprathermal electron transport in non-axisymmetric plasmas

    International Nuclear Information System (INIS)

    Murakami, S.; Idei, H.; Kubo, S.; Nakajima, N.; Okamoto, M.; Gasparino, U.; Maassberg, H.; Rome, M.; Marushchenko, N.

    1999-01-01

    ECRH-driven transport of suprathermal electrons is studied in non-axisymmetric plasmas using a new Monte Carlo simulation technique in 5D phase space. Two different phases of the ECRH-driven transport of suprathermal electrons can be seen; one is a rapid convective phase due to the direct radial motion of trapped electrons and the other is a slower phase due to the collisional transport. The important role of the radial transport of suprathermal electrons in the broadening of the ECRH deposition profile is clarified in W7-AS. The ECRH driven flux is also evaluated and put in relation with the 'electron root' feature recently observed in W7-AS. It is found that, at low collisionalities, the ECRH driven flux due to the suprathermal electrons can play a dominant role in the condition of ambipolarity and, thus, the observed 'electron root' feature in W7-AS is thought to be driven by the radial (convective) flux of ECRH generated suprathermal electrons. The possible scenario of this 'ECRH-driven electron root' is considered in the LHD plasma. (author)

  17. 5D simulation study of suprathermal electron transport in non-axisymmetric plasmas

    International Nuclear Information System (INIS)

    Murakami, S.; Idei, H.; Kubo, S.; Nakajima, N.; Okamoto, M.; Gasparino, U.; Maassberg, H.; Rome, M.; Marushchenko, N.

    2001-01-01

    ECRH-driven transport of is studied in using a new Monte Carlo simulation technique in 5D phase space. Two different phases of the ECRH-driven transport of suprathermal electrons can be seen; one is a rapid convective phase due to the direct radial motion of trapped electrons and the other is a slower phase due to the collisional transport. The important role of the radial transport of suprathermal electrons in the broadening of the ECRH deposition profile is clarified in W7-AS. The ECRH driven flux is also evaluated and put in relation with the ''electron root'' feature recently observed in W7-AS. It is found that, at low collisionalities, the ECRH driven flux due to the suprathermal electrons can play a dominant role in the condition of ambipolarity and, thus, the observed ''electron root'' feature in W7-AS is thought to be driven by the radial (convective) flux of ECRH generated suprathermal electrons. The possible scenario of this ''ECRH-driven electron root'' is considered in the LHD plasma. (author)

  18. Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves.

    Science.gov (United States)

    Torrent, Daniel; Sánchez-Dehesa, José

    2009-08-07

    We demonstrate that metamaterials with anisotropic properties can be used to develop a new class of periodic structures that has been named radial wave crystals. They can be sonic or photonic, and wave propagation along the radial directions is obtained through Bloch states like in usual sonic or photonic crystals. The band structure of the proposed structures can be tailored in a large amount to get exciting novel wave phenomena. For example, it is shown that acoustical cavities based on radial sonic crystals can be employed as passive devices for beam forming or dynamically orientated antennas for sound localization.

  19. Effects of the radial electric field in a quasisymmetric stellarator

    International Nuclear Information System (INIS)

    Landreman, Matt; Catto, Peter J

    2011-01-01

    Recent calculations have shown that a radial electric field can significantly alter the neoclassical ion heat flux, ion flow, bootstrap current and residual zonal flow in a tokamak, even when the E x B drift is much smaller than the ion thermal speed. Here we show the novel analytical methods used in these calculations can be adapted to a quasisymmetric stellarator. The methods are based on using the conserved helical momentum ψ * instead of the poloidal or toroidal flux as a radial coordinate in the kinetic equation. The banana-regime calculations also employ a model collision operator that keeps only the velocity-space derivatives normal to the trapped-passing boundary, even as this boundary is shifted and deformed by the E x B drift. We prove the isomorphism between quasisymmetric stellarators and tokamaks extends to the finite-E x B generalizations of both banana-regime and plateau-regime neoclassical theory and the residual zonal flow. The plateau-regime results may be relevant to the HSX stellarator, and both the plateau- and banana-regime results can be used to validate stellarator transport codes.

  20. HIGHLY RESOLVED MEASUREMENTS OF PERIODIC RADIAL ELECTRIC FIELD AND ASSOCIATED RELAXATIONS IN EDGE BIASING EXPERIMENTS

    Czech Academy of Sciences Publication Activity Database

    Peleman, P.; Xu, Y.; Spolaore, M.; Brotánková, Jana; Devynck, P.; Stöckel, Jan; Van Oost, G.; Boucher, C.

    363-365, č. 17 (2007), s. 638-642 ISSN 0022-3115. [ Plasma Surface Interactions in Controlled Fusion Devices/17th./. Hefei, 22.05.2007-26.05.2007] Institutional research plan: CEZ:AV0Z20430508 Keywords : Relaxations * Edge transport * Plasma flow * Radial electric fields Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.643, year: 2007

  1. [Impact of driving cessation on daily transportation utility in elderly people with cognitive decline: a survey of patients in the memory clinic of an urban university hospital].

    Science.gov (United States)

    Kawano, Naoko; Makino, Taeko; Suzuki, Yusuke; Umegaki, Hiroyuki

    2009-09-01

    In the present study our goal was to explore the impact of driving cessation on daily transportation utility in older people with cognitive decline. A total of 101 older persons participated in our survey of responding of a questionnaire about driving and other methods for traveling, administered at the memory clinic of the geriatric outpatient unit of Nagoya University Hospital. Of this total, 48 (47.5%) still had driving licenses, 16 (15.8%) had licenses that had expired, and 37 (36.6%) had no driving experience. The majority of license holders (77.1%) were active drivers, and we found that license holders tend to utilize public transport loss than older people without driving experience. Furthermore, among those who had ceased driving, there was a contrast in daily transportation utility between those with dementia and those without dementia, with the former accessing public transport less frequently. When clinicians advise drivers with dementia to cease driving, these patients need special attention to assist them in providing alternative ways of transportation.

  2. Aneurisma idiopático de artéria radial: relato de caso Idiopathic radial artery aneurysm: case report

    Directory of Open Access Journals (Sweden)

    Luiz Ernani Meira Jr.

    2011-12-01

    Full Text Available Os aneurismas da artéria radial são extremamente raros. Em sua maioria, consistem de pseudoaneurismas pós-traumáticos. Os aneurismas da artéria radial verdadeiros podem ser idiopáticos, congênitos, pós-estenóticos ou associados a patologias, tais como vasculites e doenças do tecido conjuntivo. Foi relatado um caso de aneurisma idiopático de artéria radial em uma criança de três anos, que, após completa investigação diagnóstica complementar, foi submetida à ressecção cirúrgica.Radial artery aneurysms are extremely rare. Post-traumatic pseudoaneurysms are the vast majority. True radial artery aneurysms can be idiopathic, congenital, poststenotic, or associated with some pathologies, such as vasculitis and conjunctive tissue diseases. We report a case of an idiopathic aneurysm of the radial artery in a three-year-old child who was submitted to surgical resection after a complete diagnostic approach.

  3. Turbulence induced radial transport of toroidal momentum in boundary plasma of EAST tokamak

    International Nuclear Information System (INIS)

    Zhao, N.; Yan, N.; Xu, G. S.; Wang, H. Q.; Wang, L.; Ding, S. Y.; Chen, R.; Chen, L.; Zhang, W.; Hu, G. H.; Shao, L. M.; Wang, Z. X.

    2016-01-01

    Turbulence induced toroidal momentum transport in boundary plasma is investigated in H-mode discharge using Langmuir-Mach probes on EAST. The Reynolds stress is found to drive an inward toroidal momentum transport, while the outflow of particles convects the toroidal momentum outwards in the edge plasma. The Reynolds stress driven momentum transport dominates over the passive momentum transport carried by particle flux, which potentially provides a momentum source for the edge plasma. The outflow of particles delivers a momentum flux into the scrape-off layer (SOL) region, contributing as a momentum source for the SOL flows. At the L-H transitions, the outward momentum transport suddenly decreases due to the suppression of edge turbulence and associated particle transport. The SOL flows start to decelerate as plasma entering into H-mode. The contributions from turbulent Reynolds stress and particle transport for the toroidal momentum transport are identified. These results shed lights on the understanding of edge plasma accelerating at L-H transitions.

  4. Ulnar nerve entrapment complicating radial head excision

    Directory of Open Access Journals (Sweden)

    Kevin Parfait Bienvenu Bouhelo-Pam

    Full Text Available Introduction: Several mechanisms are involved in ischemia or mechanical compression of ulnar nerve at the elbow. Presentation of case: We hereby present the case of a road accident victim, who received a radial head excision for an isolated fracture of the radial head and complicated by onset of cubital tunnel syndrome. This outcome could be the consequence of an iatrogenic valgus of the elbow due to excision of the radial head. Hitherto the surgical treatment of choice it is gradually been abandoned due to development of radial head implant arthroplasty. However, this management option is still being performed in some rural centers with low resources. Discussion: The radial head plays an important role in the stability of the elbow and his iatrogenic deformity can be complicated by cubital tunnel syndrome. Conclusion: An ulnar nerve release was performed with favorable outcome. Keywords: Cubital tunnel syndrome, Peripheral nerve palsy, Radial head excision, Elbow valgus

  5. Radial diffusion in the Uranian radiatian belts - Inferences from satellite absorption loss models

    Science.gov (United States)

    Hood, L. L.

    1989-01-01

    Low-energy charged particle (LECP) phase space density profiles available from the Voyager/1986 Uranus encounter are analyzed, using solutions of the time-averaged radial diffusion equation for charged particle transport in a dipolar planetary magnetic field. Profiles for lower-energy protons and electrons are first analyzed to infer radial diffusion rate as a function of L, assuming that satellite absorption is the dominant loss process and local sources for these particles are negligible. Satellite macrosignatures present in the experimentally derived profiles are approximately reproduced in several cases, lending credence to the loss model and indicating that magnetospheric distributed losses are not as rapid as satellite absorption near the minimum satellite L shells for the particles. Diffusion rates and L dependences are found to be similar to those previously inferred in the inner Jovian magnetosphere (Thomsen et al., 1977) and for the inner Saturnian magnetosphere (Hood, 1985). Profiles for higher energy electrons and protons are also analyzed using solutions that allow for the existence of significant particle sources as well as sinks. Possible implications for radial diffusion mechanisms in the Uranian radiation belts are discussed.

  6. Discontinuity model for internal transport barrier formation in reversed magnetic shear plasmas

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Dettrick, S.A.; Li, J.Q.; Shirai, S.; Kim, J.Y.; Horton, W.; Tajima, T.; LeBrun, M.J.

    2000-01-01

    It is becoming clear that tokamak anomalous transport is dominated by radially extended non-local modes which originate from strong toroidal coupling of rational surfaces in non-uniform plasmas. To aid in understanding the internal transport barrier (ITB) formed in reversed magnetic shear experiments, in addition to the well known shear flow effect, the article points out an important non-local effect and/or finite size effect which comes from the complex behaviour of the mode over a finite radial region around the minimum q (safety factor) surface. The non-local mode, which is characterized by its radial extent and the degree of tilting in the poloidal direction (Δr, θ 0 ), changes its structure depending on the sign of the magnetic shear, and as a result such modes are weakly excited across the q min surface. This leads to a discontinuity or gap which disconnects the phase relation in the global wave structure across the q min surface. Once such a discontinuity (or gap) is formed, transport suppression occurs and therefore a transport barrier can be expected near the q min surface. The existence of this discontinuity is confirmed through use of a toroidal particle simulation. It is also shown that whether such a discontinuity is efficiently established depends on the presence of the radial electric field and the related plasma shear flow. (author)

  7. Anisotropic Pressure, Transport, and Shielding of Magnetic Perturbations

    International Nuclear Information System (INIS)

    Mynick, H.E.; Boozer, A.H.

    2008-01-01

    We compute the effect on a tokamak of applying a nonaxisymmetric magnetic perturbation (delta)B. An equilibrium with scalar pressure p yields zero net radial current, and therefore zero torque. Thus, the usual approach, which assumes scalar pressure, is not self-consistent, and masks the close connection which exists between that radial current and the in-surface currents, which provide shielding or amplification of (delta)B. Here, we analytically compute the pressure anisotropy, anisotropy, p # parallel#, p # perpendicular# and ≠ p, and from this, both the radial and in-surface currents. The surface-average of the radial current recovers earlier expressions for ripple transport, while the in-surface currents provide an expression for the amount of self-consistent shielding the plasma provides.

  8. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  9. Anomalies of radial and ulnar arteries

    Directory of Open Access Journals (Sweden)

    Rajani Singh

    Full Text Available Abstract During dissection conducted in an anatomy department of the right upper limb of the cadaver of a 70-year-old male, both origin and course of the radial and ulnar arteries were found to be anomalous. After descending 5.5 cm from the lower border of the teres major, the brachial artery anomalously bifurcated into a radial artery medially and an ulnar artery laterally. In the arm, the ulnar artery lay lateral to the median nerve. It followed a normal course in the forearm. The radial artery was medial to the median nerve in the arm and then, at the level of the medial epicondyle, it crossed from the medial to the lateral side of the forearm, superficial to the flexor muscles. The course of the radial artery was superficial and tortuous throughout the arm and forearm. The variations of radial and ulnar arteries described above were associated with anomalous formation and course of the median nerve in the arm. Knowledge of neurovascular anomalies are important for vascular surgeons and radiologists.

  10. Variations in the usage and composition of a radial cocktail during radial access coronary angiography procedures.

    LENUS (Irish Health Repository)

    Pate, G

    2011-10-01

    A survey was conducted of medication administered during radial artery cannulation for coronary angiography in 2009 in Ireland; responses were obtained for 15 of 20 centres, in 5 of which no radial access procedures were undertaken. All 10 (100%) centres which provided data used heparin and one or more anti-spasmodics; verapamil in 9 (90%), nitrate in 1 (10%), both in 2 (20%). There were significant variations in the doses used. Further work needs to be done to determine the optimum cocktail to prevent radial artery injury following coronary angiography.

  11. Kinetic simulations of neoclassical and anomalous transport processes in helical systems

    International Nuclear Information System (INIS)

    Sugama, Hideo; Watanabe, Tomohiko; Nunami, Masanori; Satake, Shinsuke; Matsuoka, Seikichi; Tanaka, Kenji

    2012-01-01

    Drift kinetic and gyrokinetic theories and simulations are powerful means for quantitative predictions of neoclassical and anomalous transport fluxes in helical systems such as the Large Helical Device (LHD). The δf Monte Carlo particle simulation code, FORTEC-3D, is used to predict radial profiles of the neoclassical particle and heat transport fluxes and the radial electric field in helical systems. The radial electric field profiles in the LHD plasmas are calculated from the ambipolarity condition for the neoclassical particle fluxes obtained by the global simulations using the FORTEC-3D code, in which effects of ion or electron finite orbit widths are included. Gyrokinetic Vlasov simulations using the GKV code verify the theoretical prediction that the neoclassical optimization of helical magnetic configuration enhances the zonal flow generation which leads to the reduction of the turbulent heat diffusivity χ i due to the ion temperature gradient (ITG) turbulence. Comparisons between results for the high ion temperature LHD experiment and the gyrokinetic simulations using the GKV-X code show that the χ i profile and the poloidal wave number spectrum of the density fluctuation obtained from the simulations are in reasonable agreements with the experimental results. It is predicted theoretically and confirmed by the linear GKV simulations that the E × B rotation due to the background radial electric field E r can enhance the zonal-flow response to a given source. Thus, in helical systems, the turbulent transport is linked to the neoclassical transport through E r which is determined from the ambipolar condition for neoclassical particle fluxes and influences the zonal flow generation leading to reduction of the turbulent transport. In order to investigate the E r effect on the regulation of the turbulent transport by the zonal flow generation, the flux-tube bundle model is proposed as a new method for multiscale gyrokinetic simulations. (author)

  12. Design of radial reinforcement for prestressed concrete containments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shen, E-mail: swang@bechtel.com [Bechtel Power Corporation, 5275 Westview Drive, BP2-2C3, Frederick, MD 21703 (United States); Munshi, Javeed A., E-mail: jamunshi@bechtel.com [Bechtel Power Corporation, 5275 Westview Drive, BP2-2C3, Frederick, MD 21703 (United States)

    2013-02-15

    Highlights: ► A rigorous formulae is proposed to calculate radial stress within prestressed concrete containments. ► The proposed method is validated by finite element analysis in an illustrative practical example. ► A partially prestressed condition is more critical than a fully prestressed condition for radial tension. ► Practical design consideration is provided for detailing of radial reinforcement. -- Abstract: Nuclear containments are critical components for safety of nuclear power plants. Failure can result in catastrophic safety consequences as a result of leakage of radiation. Prestressed concrete containments have been used in large nuclear power plants with significant design internal pressure. These containments are generally reinforced with prestressing tendons in the circumferential (hoop) and meridional (vertical) directions. The curvature effect of the tendons introduces radial tensile stresses in the concrete shell which are generally neglected in the design of such structures. It is assumed that such tensile radial stresses are small as such no radial reinforcement is provided for this purpose. But recent instances of significant delaminations in Crystal River Unit 3 in Florida have elevated the need for reevaluation of the radial tension issue in prestressed containment. Note that currently there are no well accepted industry standards for design and detailing of radial reinforcement. This paper discusses the issue of radial tension in prestressed cylindrical and dome shaped structures and proposes formulae to calculate radial stresses. A practical example is presented to illustrate the use of the proposed method which is then verified by using state of art finite element analysis. This paper also provides some practical design consideration for detailing of radial reinforcement in prestressed containments.

  13. Methods and apparatus for radially compliant component mounting

    Science.gov (United States)

    Bulman, David Edward [Cincinnati, OH; Darkins, Jr., Toby George; Stumpf, James Anthony [Columbus, IN; Schroder, Mark S [Greenville, SC; Lipinski, John Joseph [Simpsonville, SC

    2012-03-27

    Methods and apparatus for a mounting assembly for a liner of a gas turbine engine combustor are provided. The combustor includes a combustor liner and a radially outer annular flow sleeve. The mounting assembly includes an inner ring surrounding a radially outer surface of the liner and including a plurality of axially extending fingers. The mounting assembly also includes a radially outer ring coupled to the inner ring through a plurality of spacers that extend radially from a radially outer surface of the inner ring to the outer ring.

  14. Statistical properties of turbulent transport and fluctuations in tokamak and stellarator devices

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, C; Pedrosa, M A; Milligen, B Van; Sanchez, E; Balbin, R; Garcia-Cortes, I [Euratom-CIEMAT Association, Madrid (Spain); Bleuel, J; Giannone, L.; Niedermeyer, H [Euratom-IPP Association, Garching (Germany)

    1997-05-01

    The statistical properties of fluctuations and turbulent transport have been studied in the plasma boundary region of stellarator (TJ-IU, W7-AS) and tokamak (TJ-I) devices. The local flux probability distribution function shows the bursty character of the flux and presents a systematic change as a function of the radial location. There exist large amplitude transport bursts that account for a significant part of the total flux. There is a strong similarity between the statistical properties of the turbulent fluxes in different devices. The value of the radial coherence associated with fluctuations and turbulent transport is strongly intermittent. This result emphasizes the importance of measurements with time resolution in understanding the interplay between the edge and the core regions in the plasma. For measurements in the plasma edge region of the TJ-IU torsatron, the turbulent flux does not, in general, show a larger radial coherence than the one associated with the fluctuations. (author). 14 refs, 6 figs.

  15. Neoclassical transport simulations for stellarators

    International Nuclear Information System (INIS)

    Turkin, Y.; Beidler, C. D.; Maassberg, H.; Murakami, S.; Wakasa, A.; Tribaldos, V.

    2011-01-01

    The benchmarking of the thermal neoclassical transport coefficients is described using examples of the Large Helical Device (LHD) and TJ-II stellarators. The thermal coefficients are evaluated by energy convolution of the monoenergetic coefficients obtained by direct interpolation or neural network techniques from the databases precalculated by different codes. The temperature profiles are calculated by a predictive transport code from the energy balance equations with the ambipolar radial electric field estimated from a diffusion equation to guarantee a unique and smooth solution, although several solutions of the ambipolarity condition may exist when root-finding is invoked; the density profiles are fixed. The thermal transport coefficients as well as the ambipolar radial electric field are compared and very reasonable agreement is found for both configurations. Together with an additional W7-X case, these configurations represent very different degrees of neoclassical confinement at low collisionalities. The impact of the neoclassical optimization on the energy confinement time is evaluated and the confinement times for different devices predicted by transport modeling are compared with the standard scaling for stellarators. Finally, all configurations are scaled to the same volume for a direct comparison of the volume-averaged pressure and the neoclassical degree of optimization.

  16. Observation of enhanced radial transport of energetic ion due to energetic particle mode destabilized by helically-trapped energetic ion in the Large Helical Device

    Science.gov (United States)

    Ogawa, K.; Isobe, M.; Kawase, H.; Nishitani, T.; Seki, R.; Osakabe, M.; LHD Experiment Group

    2018-04-01

    A deuterium experiment was initiated to achieve higher-temperature and higher-density plasmas in March 2017 in the Large Helical Device (LHD). The central ion temperature notably increases compared with that in hydrogen experiments. However, an energetic particle mode called the helically-trapped energetic-ion-driven resistive interchange (EIC) mode is often excited by intensive perpendicular neutral beam injections on high ion-temperature discharges. The mode leads to significant decrease of the ion temperature or to limiting the sustainment of the high ion-temperature state. To understand the effect of EIC on the energetic ion confinement, the radial transport of energetic ions is studied by means of the neutron flux monitor and vertical neutron camera newly installed on the LHD. Decreases of the line-integrated neutron profile in core channels show that helically-trapped energetic ions are lost from the plasma.

  17. Local and Nonlocal Parallel Heat Transport in General Magnetic Fields

    International Nuclear Information System (INIS)

    Castillo-Negrete, D. del; Chacon, L.

    2011-01-01

    A novel approach for the study of parallel transport in magnetized plasmas is presented. The method avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the fractal structure of the devil's staircase radial temperature profile. In fully chaotic fields, the temperature exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the effective radial heat transport is incompatible with the quasilinear diffusion model.

  18. Computer model analysis of the radial artery pressure waveform.

    Science.gov (United States)

    Schwid, H A; Taylor, L A; Smith, N T

    1987-10-01

    Simultaneous measurements of aortic and radial artery pressures are reviewed, and a model of the cardiovascular system is presented. The model is based on resonant networks for the aorta and axillo-brachial-radial arterial system. The model chosen is a simple one, in order to make interpretation of the observed relationships clear. Despite its simplicity, the model produces realistic aortic and radial artery pressure waveforms. It demonstrates that the resonant properties of the arterial wall significantly alter the pressure waveform as it is propagated from the aorta to the radial artery. Although the mean and end-diastolic radial pressures are usually accurate estimates of the corresponding aortic pressures, the systolic pressure at the radial artery is often much higher than that of the aorta due to overshoot caused by the resonant behavior of the radial artery. The radial artery dicrotic notch is predominantly dependent on the axillo-brachial-radial arterial wall properties, rather than on the aortic valve or peripheral resistance. Hence the use of the radial artery dicrotic notch as an estimate of end systole is unreliable. The rate of systolic upstroke, dP/dt, of the radial artery waveform is a function of many factors, making it difficult to interpret. The radial artery waveform usually provides accurate estimates for mean and diastolic aortic pressures; for all other measurements it is an inadequate substitute for the aortic pressure waveform. In the presence of low forearm peripheral resistance the mean radial artery pressure may significantly underestimate the mean aortic pressure, as explained by a voltage divider model.

  19. Density effects on tokamak edge turbulence and transport with magnetic X-points

    International Nuclear Information System (INIS)

    Xu, X.Q.; Cohen, R.H.; Nevins, W.M.; Rognlien, T.D.; Ryutov, D.D.; Umansky, M.V.; Pearlstein, L.D.; Bulmer, R.H.; Russell, D.A.; Myra, J.R.; D'Ippolito, D.A.; Greenwald, M.; Snyder, P.B.; Mahdavi, M.A.

    2005-01-01

    Results are presented from the 3D electromagnetic turbulence code BOUT, the 2D transport code UEDGE, and theoretical analysis of boundary turbulence and transport in a real divertor-plasma geometry and its relationship to the density limit. Key results include: (1) a transition of the boundary turbulence from resistive X-point to resistive-ballooning as a critical plasma density is exceeded; (2) formation of an X-point MARFE in 2D UEDGE transport simulations for increasing outboard radial transport as found by BOUT for increasing density; (3) identification of convective transport by localized plasma 'blobs' in the SOL at high density during neutral fueling, and decorrelation of turbulence between the midplane and the divertor leg due to strong X-point magnetic shear; (4) a new divertor-leg instability driven at high plasma beta by a radial tilt of the divertor plate. (author)

  20. Effects of magnetic drift tangential to magnetic surfaces on neoclassical transport in non-axisymmetric plasmas

    International Nuclear Information System (INIS)

    Matsuoka, Seikichi; Satake, Shinsuke; Kanno, Ryutaro; Sugama, Hideo

    2015-01-01

    In evaluating neoclassical transport by radially local simulations, the magnetic drift tangential to a flux surface is usually ignored in order to keep the phase-space volume conservation. In this paper, effect of the tangential magnetic drift on the local neoclassical transport is investigated. To retain the effect of the tangential magnetic drift in the local treatment of neoclassical transport, a new local formulation for the drift kinetic simulation is developed. The compressibility of the phase-space volume caused by the tangential magnetic drift is regarded as a source term for the drift kinetic equation, which is solved by using a two-weight δf Monte Carlo method for non-Hamiltonian system [G. Hu and J. A. Krommes, Phys. Plasmas 1, 863 (1994)]. It is demonstrated that the effect of the drift is negligible for the neoclassical transport in tokamaks. In non-axisymmetric systems, however, the tangential magnetic drift substantially changes the dependence of the neoclassical transport on the radial electric field E r . The peaked behavior of the neoclassical radial fluxes around E r  =   0 observed in conventional local neoclassical transport simulations is removed by taking the tangential magnetic drift into account

  1. Effects of magnetic drift tangential to magnetic surfaces on neoclassical transport in non-axisymmetric plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Seikichi, E-mail: matsuoka@rist.or.jp [Research Organization for Information Science and Technology, 6F Kimec-Center Build., 1-5-2 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047 (Japan); Satake, Shinsuke; Kanno, Ryutaro [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Department of Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); Sugama, Hideo [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)

    2015-07-15

    In evaluating neoclassical transport by radially local simulations, the magnetic drift tangential to a flux surface is usually ignored in order to keep the phase-space volume conservation. In this paper, effect of the tangential magnetic drift on the local neoclassical transport is investigated. To retain the effect of the tangential magnetic drift in the local treatment of neoclassical transport, a new local formulation for the drift kinetic simulation is developed. The compressibility of the phase-space volume caused by the tangential magnetic drift is regarded as a source term for the drift kinetic equation, which is solved by using a two-weight δf Monte Carlo method for non-Hamiltonian system [G. Hu and J. A. Krommes, Phys. Plasmas 1, 863 (1994)]. It is demonstrated that the effect of the drift is negligible for the neoclassical transport in tokamaks. In non-axisymmetric systems, however, the tangential magnetic drift substantially changes the dependence of the neoclassical transport on the radial electric field E{sub r}. The peaked behavior of the neoclassical radial fluxes around E{sub r }={sub  }0 observed in conventional local neoclassical transport simulations is removed by taking the tangential magnetic drift into account.

  2. HIF transport issues for P>10-3 Torr and Z>1

    International Nuclear Information System (INIS)

    Olson, C.L.

    1986-01-01

    Final transport schemes for HIF are examined, with emphasis on transport for p>10 -3 Torr and Z>1 since this should simplify the reactor design and reduce the length of the accelerator. Specifically the question of charge neutralization is addressed. We find (1) the fractional neutralization f needed scales as f/sub i/ = (1-Z -2 ) which means f/sub i/>0.89 is needed for Z>3; (2) axially-trapped electrons limit the net beam potential to ephi/sub min/ = α(1/2 m/sub e/v/sub i/ 2 ) with 1≤αapprox. <4; (3) radially-expelled plasma ions increase f/sub i/ especially near the pellet; (4) radially-oscillating plasma electrons have and adiabatic limit of f/sub i/≅0.5; and (5) as f/sub i/ approaches unity, plasma particle trajectories may involve drift motions along and radially away from the ion beam. Also, criteria are given for the maximum Z/A allowed for transporting very large currents. For the HIF parameters used, it appears that neutralization will probably be adequte for Zapprox. <3

  3. MR accuracy and arthroscopic incidence of meniscal radial tears

    Energy Technology Data Exchange (ETDEWEB)

    Magee, Thomas; Shapiro, Marc; Williams, David [Department of Radiology, Neuroimaging Institute, 27 East Hibiscus Blvd., Melbourne, FL 32901 (United States)

    2002-12-01

    A meniscal radial tear is a vertical tear that involves the inner meniscal margin. The tear is most frequent in the middle third of the lateral meniscus and may extend outward in any direction. We report (1) the arthroscopic incidence of radial tears, (2) MR signs that aid in the detection of radial tears and (3) our prospective accuracy in detection of radial tears. Design and patients. Three musculoskeletal radiologists prospectively read 200 consecutive MR examinations of the knee that went on to arthroscopy by one orthopedic surgeon. MR images were assessed for location and MR characteristics of radial tears. MR criteria used for diagnosis of a radial tear were those outlined by Tuckman et al.: truncation, abnormal morphology and/or lack of continuity or absence of the meniscus on one or more MR images. An additional criterion used was abnormal increased signal in that area on fat-saturated proton density or T2-weighted coronal and sagittal images. Prospective MR readings were correlated with the arthroscopic findings.Results. Of the 200 consecutive knee arthroscopies, 28 patients had radial tears reported arthroscopically (14% incidence). MR readings prospectively demonstrated 19 of the 28 radial tears (68% sensitivity) when the criteria for diagnosis of a radial tear were truncation or abnormal morphology of the meniscus. With the use of the additional criterion of increased signal in the area of abnormal morphology on fat-saturated T2-weighted or proton density weighted sequences, the prospective sensitivity was 25 of 28 radial tears (89% sensitivity). There were no radial tears described in MR reports that were not demonstrated on arthroscopy (i.e., there were no false positive MR readings of radial tears in these 200 patients). Radial tears are commonly seen at arthroscopy. There was a 14% incidence in this series of 200 patients who underwent arthroscopy. Prospective detection of radial tears was 68% as compared with arthroscopy when the criteria as

  4. MR accuracy and arthroscopic incidence of meniscal radial tears

    International Nuclear Information System (INIS)

    Magee, Thomas; Shapiro, Marc; Williams, David

    2002-01-01

    A meniscal radial tear is a vertical tear that involves the inner meniscal margin. The tear is most frequent in the middle third of the lateral meniscus and may extend outward in any direction. We report (1) the arthroscopic incidence of radial tears, (2) MR signs that aid in the detection of radial tears and (3) our prospective accuracy in detection of radial tears. Design and patients. Three musculoskeletal radiologists prospectively read 200 consecutive MR examinations of the knee that went on to arthroscopy by one orthopedic surgeon. MR images were assessed for location and MR characteristics of radial tears. MR criteria used for diagnosis of a radial tear were those outlined by Tuckman et al.: truncation, abnormal morphology and/or lack of continuity or absence of the meniscus on one or more MR images. An additional criterion used was abnormal increased signal in that area on fat-saturated proton density or T2-weighted coronal and sagittal images. Prospective MR readings were correlated with the arthroscopic findings.Results. Of the 200 consecutive knee arthroscopies, 28 patients had radial tears reported arthroscopically (14% incidence). MR readings prospectively demonstrated 19 of the 28 radial tears (68% sensitivity) when the criteria for diagnosis of a radial tear were truncation or abnormal morphology of the meniscus. With the use of the additional criterion of increased signal in the area of abnormal morphology on fat-saturated T2-weighted or proton density weighted sequences, the prospective sensitivity was 25 of 28 radial tears (89% sensitivity). There were no radial tears described in MR reports that were not demonstrated on arthroscopy (i.e., there were no false positive MR readings of radial tears in these 200 patients). Radial tears are commonly seen at arthroscopy. There was a 14% incidence in this series of 200 patients who underwent arthroscopy. Prospective detection of radial tears was 68% as compared with arthroscopy when the criteria as

  5. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  6. Study of finite-orbit-width effect on neoclassical transport in tokamak core region

    International Nuclear Information System (INIS)

    Satake, Shinsuke; Okamoto, Masao

    2004-01-01

    Neoclassical transport simulation using the δf Monte-Carlo method is carried out to investigate the finite-orbit-width (FOW) effect on the transport near the magnetic axis. The time evolution of the radial electric field to maintain the ambipolarity of the flux is calculated simultaneously. It is found that, in the near-axis region, the ion heat flux decreases from the value predicted by the standard neoclassical theory both in the banana and plateau regimes. Though the radial transport shows a strong dependence on the FOW effect, the ambipolar electric field profile at the steady state is similar to that calculated in the small-orbit-width limit approximation. (author)

  7. Propagation of Solar Energetic Particles in Three-dimensional Interplanetary Magnetic Fields: Radial Dependence of Peak Intensities

    Science.gov (United States)

    He, H.-Q.; Zhou, G.; Wan, W.

    2017-06-01

    A functional form {I}\\max (R)={{kR}}-α , where R is the radial distance of a spacecraft, was usually used to model the radial dependence of peak intensities {I}\\max (R) of solar energetic particles (SEPs). In this work, the five-dimensional Fokker-Planck transport equation incorporating perpendicular diffusion is numerically solved to investigate the radial dependence of SEP peak intensities. We consider two different scenarios for the distribution of a spacecraft fleet: (1) along the radial direction line and (2) along the Parker magnetic field line. We find that the index α in the above expression varies in a wide range, primarily depending on the properties (e.g., location and coverage) of SEP sources and on the longitudinal and latitudinal separations between the sources and the magnetic foot points of the observers. Particularly, whether the magnetic foot point of the observer is located inside or outside the SEP source is a crucial factor determining the values of index α. A two-phase phenomenon is found in the radial dependence of peak intensities. The “position” of the break point (transition point/critical point) is determined by the magnetic connection status of the observers. This finding suggests that a very careful examination of the magnetic connection between the SEP source and each spacecraft should be taken in the observational studies. We obtain a lower limit of {R}-1.7+/- 0.1 for empirically modeling the radial dependence of SEP peak intensities. Our findings in this work can be used to explain the majority of the previous multispacecraft survey results, and especially to reconcile the different or conflicting empirical values of the index α in the literature.

  8. Radial velocities of RR Lyrae stars

    International Nuclear Information System (INIS)

    Hawley, S.L.; Barnes, T.G. III

    1985-01-01

    283 spectra of 57 RR Lyrae stars have been obtained using the 2.1-m telescope at McDonald Observatory. Radial velocities were determined using a software cross-correlation technique. New mean radial velocities were determined for 46 of the stars. 11 references

  9. Phonon transport across nano-scale curved thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mansoor, Saad B.; Yilbas, Bekir S., E-mail: bsyilbas@kfupm.edu.sa

    2016-12-15

    Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.

  10. Phonon transport across nano-scale curved thin films

    International Nuclear Information System (INIS)

    Mansoor, Saad B.; Yilbas, Bekir S.

    2016-01-01

    Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.

  11. The physics of transport barrier formation in the PBX-M H-mode

    International Nuclear Information System (INIS)

    Tynan, G.R.; Schmitz, L.; Blush, L.

    1994-01-01

    Measurements of edge profiles, turbulence, and turbulent-driven transport were made inside the last-closed flux surface (LCFS) and in the scrape-off layer (SOL) of PBX-M L-mode and H-mode plasmas using a fast reciprocating Langmuir probe diagnostic. Direct measurements of the potential profile confirm the generation of a strong inward radial electric field (E r ∼ -100 V/cm) just inside the LCFS in H-mode. Density and potential fluctuations levels are reduced at the L-H transition, resulting in significantly lower turbulent transport. The reduction in turbulent transport occurs across the LCFS and SOL regions and is not localized to the region of strong radial electric field. (author)

  12. Visualization of intermittent blobby plasma transport in attached and detached plasmas of the NAGDIS-II

    International Nuclear Information System (INIS)

    Ohno, Noriyasu; Furuta, Katsuhiro; Takamura, Shuichi

    2004-01-01

    We investigated the intermittent convective plasma transport in a attached and/or detached plasma condition of the linear divertor plasma simulator, NAGDIS-II. Images taken by a fast-imaging camera clearly show that in attached plasmas, blobs are peeled off the bulk plasma, and propagate outward with an azimuthal motion. In detached plasmas, plasma turbulence observed near the plasma recombining region drives strong intermittent radial plasma transport, which could broaden the radial density profile. (author)

  13. Influence of radial magnetic field on the peristaltic flow of Williamson fluid in a curved complaint walls channel

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available Peristaltic transport of Williamson fluid in a curved geometry is modeled. Problem formulation is completed by complaint walls of channel. Radial magnetic field in the analysis is taken into account. Resulting problem formulation is simplified using long wavelength and low Reynolds number approximations. Series solution is obtained for small Weissenberg number. Influences of different embedded parameters on the axial velocity and stream function are examined. As expected the velocity in curved channel is not symmetric. Axial velocity is noticed decreasing for Hartman number. Trapped bolus increases for Hartman and curvature parameters. Keywords: Williamson fluid, Curved channel, Radial magnetic field, Complaint walls

  14. Control of radial propagation and polarity in a plasma jet in surrounding Ar

    KAUST Repository

    Gong, W.

    2018-01-08

    In recent years, the use of shielding gas to prevent the diffusion of the ambient air, particularly oxygen and nitrogen species, into the effluent of the atmospheric pressure plasma jet, and thus control the nature of chemical species used in the plasma treatment has increased. In this paper, the radial propagation of a plasma jet in ambient Ar is examined to find the key determinants of the polarity of plasma jets. The dynamics of the discharge reveal that the radial diffusion discharge is a special phenomenon observed only at the falling edge of the pulses. The radial transport of electrons, which is driven by the radial component of the applied electric field at the falling edge of the pulse, is shown to play an important role in increasing the seed electron density in the surrounding Ar. This result suggests a method to provide seed electrons at atmospheric pressure with a negative discharge. The polarity of the plasma jet is found to be determined by the pulse width rather than the polarity of the applied voltage, as it dictates the relative difference in the intensity of the two discharges in a single pulse, where the stronger discharge in a pulse dominates the behavior of the plasma jet. Accordingly, a method to control the polarity of a plasma jet through varying the pulse width is developed. Since plasma jets of different polarities differ remarkably in terms of their characteristics, the method to control the polarity reported in this paper will be of use for such applications as plasma-enhanced processing of materials and plasma biomedicine.

  15. Control of radial propagation and polarity in a plasma jet in surrounding Ar

    Science.gov (United States)

    Gong, W.; Yue, Y.; Ma, F.; Yu, F.; Wan, J.; Nie, L.; Bazaka, K.; Xian, Y.; Lu, X.; Ostrikov, K.

    2018-01-01

    In recent years, the use of shielding gas to prevent the diffusion of the ambient air, particularly oxygen and nitrogen species, into the effluent of the atmospheric pressure plasma jet, and thus control the nature of chemical species used in the plasma treatment has increased. In this paper, the radial propagation of a plasma jet in ambient Ar is examined to find the key determinants of the polarity of plasma jets. The dynamics of the discharge reveal that the radial diffusion discharge is a special phenomenon observed only at the falling edge of the pulses. The radial transport of electrons, which is driven by the radial component of the applied electric field at the falling edge of the pulse, is shown to play an important role in increasing the seed electron density in the surrounding Ar. This result suggests a method to provide seed electrons at atmospheric pressure with a negative discharge. The polarity of the plasma jet is found to be determined by the pulse width rather than the polarity of the applied voltage, as it dictates the relative difference in the intensity of the two discharges in a single pulse, where the stronger discharge in a pulse dominates the behavior of the plasma jet. Accordingly, a method to control the polarity of a plasma jet through varying the pulse width is developed. Since plasma jets of different polarities differ remarkably in terms of their characteristics, the method to control the polarity reported in this paper will be of use for such applications as plasma-enhanced processing of materials and plasma biomedicine.

  16. Radial MR images of the knee

    International Nuclear Information System (INIS)

    Hewes, R.C.; Miller, T.R.

    1988-01-01

    To profile optimally each portion of the meniscus, the authors use the multiangle, multisection feature of a General Electric SIGNA 1.5-T imager to produce radial images centered on each meniscus. A total of 12-15 sections are imaged at 10 0 -15 0 intervals of each meniscus, yielding perpendicular images of the entire meniscus, comparable with the arthrographic tangential views. The authors review their technique and demonstrate correlation cases between the radial gradient recalled acquisition in a steady state sequences, sagittal and coronal MR images, and arthrograms. Radial images should be a routine part of knee MR imaging

  17. 21 CFR 866.4800 - Radial immunodiffusion plate.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4800 Radial immunodiffusion plate. (a) Identification. A radial immunodiffusion plate for clinical use...

  18. Arbitrary poloidal gyroradius effects in tokamak pedestals and transport barriers

    International Nuclear Information System (INIS)

    Kagan, Grigory; Catto, Peter J

    2008-01-01

    A technique is developed and applied for analyzing pedestal and internal transport barrier (ITB) regions in a tokamak by formulating a special version of gyrokinetics. In contrast to typical gyrokinetic treatments, canonical angular momentum is taken as the gyrokinetic radial variable rather than the radial guiding center location. Such an approach allows strong radial plasma gradients to be treated, while retaining zonal flow and neoclassical (including orbit squeezing) behavior and the effects of turbulence. The new, nonlinear gyrokinetic variables are constructed to higher order than is typically the case. The nonlinear gyrokinetic equation obtained is capable of handling such problems as collisional zonal flow damping with radial wavelengths comparable to the ion poloidal gyroradius, as well as zonal flow and neoclassical transport in the pedestal or ITB. This choice of gyrokinetic variables allows the toroidally rotating Maxwellian solution of the isothermal tokamak limit to be recovered. More importantly, we prove that a physically acceptable solution for the lowest order ion distribution function in the banana regime anywhere in a tokamak and, in particular, in the pedestal must be nearly this same isothermal Maxwellian solution. That is, the ion temperature variation scale must be much greater than the poloidal ion gyroradius. Consequently, in the banana regime the background radial ion temperature profile cannot have a pedestal similar to that of plasma density

  19. Neoclassical transport optimization of LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Yamada, H.; Watanabe, K.Y.; Wakasa, A.; Maassberg, H.; Beidler, C.D.

    2002-06-01

    Neoclassical transport is studied for LHD configurations in which the magnetic axis has been shifted radially by determining the mono-energetic transport coefficient and the effective helical ripple. With respect to the transport in the long mean free path collisionality region - the so called 1/ν transport -, the optimum configuration is found when the magnetic axis has a major radius of 3.53m, which is 0.22m inward shifted from the standard'' configuration of LHD. In the optimized case, the effective helical ripple is very small, remaining below 2% inside 4/5 of the plasma radius. This indicates that a strong inward shift of the magnetic axis in the LHD can diminish the neoclassical transport to a level typical of so-called advanced stellarators''. (author)

  20. Theory of anomalous transport in H-mode plasmas

    International Nuclear Information System (INIS)

    Itoh, S.; Itoh, K.; Fukuyama, A.; Yagi, M.

    1993-05-01

    Theory of the anomalous transport is developed, and the unified formula for the L- and H-mode plasmas is presented. The self-sustained ballooning-mode turbulence is solved in the presence of the inhomogeneous radial electric field, E r . Reductions in transport coefficients and the amplitude and decorrelation length of fluctuations due to E r ' are quantitatively analyzed. Combined with the E r -bifurcation model, the thickness of the transport barrier is simultaneously determined. (author)

  1. Stirling Engine With Radial Flow Heat Exchangers

    Science.gov (United States)

    Vitale, N.; Yarr, George

    1993-01-01

    Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.

  2. Understanding transport barriers through modelling

    International Nuclear Information System (INIS)

    Rozhansky, V

    2004-01-01

    Models of radial electric field formation are discussed and compared with the results of numerical simulations from fluid transport codes and Monte Carlo codes. A comparison of the fluid and Monte Carlo codes is presented. A conclusion is arrived at that all the simulations do not predict any bifurcation of the electric field, i.e. no bifurcation of poloidal rotation from low to high Mach number values is obtained. In most of the simulations, the radial electric field is close to the neoclassical electric field. The deviation from neoclassical electric field at the separatrix due to the existence of a transitional viscous layer is discussed. Scalings for the shear of the poloidal rotation are checked versus simulation results. It is demonstrated that assuming the critical shear to be of the order of 10 5 s -1 , it is possible to obtain a L-H transition power scaling close to that observed in the experiment. The dependence of the threshold on the magnetic field direction, pellet injection, aspect ratio and other factors are discussed on the basis of existing simulations. Transport codes where transport coefficients depend on the turbulence level and scenario simulations of L-H transition are analysed. However, the details of gyrofluid and gyrokinetic modelling should be discussed elsewhere. Simulations of internal transport barrier (ITB) formation are discussed as well as factors responsible for ITB formation

  3. The relationship between turbulence measurements and transport in different heating regimes in TFTR

    International Nuclear Information System (INIS)

    Bretz, N.L.; Mazzucato, E.; Nazikian, R.; Paul, S.F.; Hammett, G.; Rewoldt, G.; Tang, W.M.; Zarnstorff, M.C.

    1992-01-01

    The scaling of broad band density fluctuations in the confinement zone of TFTR measured by microwave scattering, beam emission spectroscopy (BES), and reflectometry show a relationship between these fluctuations and energy transport measured from power balance calculations. In L-mode plasmas scattering and BES indicates that the density fluctuation level, δn 2 , in the confinement zone for 0.2 aux and I p in a way that is consistent with variations in energy transport. Fluctuation levels measured with all systems increase strongly toward the edge in all heating regimes following increases in energy transport coefficients. Measurements using BES have shown that poloidal and radial correlation lengths in the confinement zone of L-mode and supershot plasmas fall in the range of 1 to 2 cm. with a wave structure which has k max ∼ 1 cm -1 (k perpendicular ps ∼ 0.2) in the poloidal direction and k max approaching zero in the radial direction. A simple estimate of the diffusion coefficient based on a measured radial correlation length and correlation time indicates good agreement with power balance calculations. Similar estimates using reflectometry give radial coherence lengths at 10 to 20 kHz in low density ohmic and supershot plasmas of between I and 2 cm

  4. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees.

    Science.gov (United States)

    Wullschleger, Stan D.; King, Anthony W.

    2000-04-01

    Canopy transpiration and forest water use are frequently estimated as the product of sap velocity and cross-sectional sapwood area. Few studies, however, have considered whether radial variation in sap velocity and the proportion of sapwood active in water transport are significant sources of uncertainty in the extrapolation process. Therefore, radial profiles of sap velocity were examined as a function of stem diameter and sapwood thickness for yellow-poplar (Liriodendron tulipifera L.) trees growing on two adjacent watersheds in eastern Tennessee. The compensation heat pulse velocity technique was used to quantify sap velocity at four equal-area depths in 20 trees that ranged in stem diameter from 15 to 69 cm, and in sapwood thickness from 2.1 to 14.8 cm. Sap velocity was highly dependent on the depth of probe insertion into the sapwood. Rates of sap velocity were greatest for probes located in the two outer sapwood annuli (P1 and P2) and lowest for probes in closest proximity to the heartwood (P3 and P4). Relative sap velocities averaged 0.98 at P1, 0.66 at P2, 0.41 at P3 and 0.35 at P4. Tree-specific sap velocities measured at each of the four probe positions, divided by the maximum sap velocity measured (usually at P1 or P2), indicated that the fraction of sapwood functional in water transport (f(S)) varied between 0.49 and 0.96. There was no relationship between f(S) and sapwood thickness, or between f(S) and stem diameter. The fraction of functional sapwood averaged 0.66 +/- 0.13 for trees on which radial profiles were determined. No significant depth-related differences were observed for sapwood density, which averaged 469 kg m(-3) across all four probe positions. There was, however, a significant decline in sapwood water content between the two outer probe positions (1.04 versus 0.89 kg kg(-1)). This difference was not sufficient to account for the observed radial variation in sap velocity. A Monte-Carlo analysis indicated that the standard error in

  5. Radial wedge flange clamp

    Science.gov (United States)

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  6. The evolution of Saturn's radiation belts modulated by changes in radial diffusion

    Science.gov (United States)

    Kollmann, P.; Roussos, E.; Kotova, A.; Paranicas, C.; Krupp, N.

    2017-12-01

    Globally magnetized planets, such as the Earth1 and Saturn2, are surrounded by radiation belts of protons and electrons with kinetic energies well into the million electronvolt range. The Earth's proton belt is supplied locally from galactic cosmic rays interacting with the atmosphere3, as well as from slow inward radial transport4. Its intensity shows a relationship with the solar cycle4,5 and abrupt dropouts due to geomagnetic storms6,7. Saturn's proton belts are simpler than the Earth's because cosmic rays are the principal source of energetic protons8 with virtually no contribution from inward transport, and these belts can therefore act as a prototype to understand more complex radiation belts. However, the time dependence of Saturn's proton belts had not been observed over sufficiently long timescales to test the driving mechanisms unambiguously. Here we analyse the evolution of Saturn's proton belts over a solar cycle using in-situ measurements from the Cassini Saturn orbiter and a numerical model. We find that the intensity in Saturn's proton radiation belts usually rises over time, interrupted by periods that last over a year for which the intensity is gradually dropping. These observations are inconsistent with predictions based on a modulation in the cosmic-ray source, as could be expected4,9 based on the evolution of the Earth's proton belts. We demonstrate that Saturn's intensity dropouts result instead from losses due to abrupt changes in magnetospheric radial diffusion.

  7. Impurity transport in internal transport barrier discharges on JET

    International Nuclear Information System (INIS)

    Dux, R.

    2002-01-01

    In JET plasmas with internal transport barrier (ITB) the behaviour of metallic and low-Z impurities (C, Ne) was investigated. In ITB discharges with reversed shear, the metallic impurities accumulate in cases with too strong peaking of the density profile, while the concentration of low-Z elements C and Ne is only mildly peaked. The accumulation might be so strong, that the central radiation approximately equals the central heating power followed by a radiative collapse of the transport barrier. The radial location with strong impurity gradients (convective barrier) was identified to be situated inside (not at!) the heat flux barrier. Calculations of neo-classical transport were performed for these discharges, including impurity-impurity collisions. It was found, that the observed Z-dependence of the impurity peaking and the location of the impurity 'barrier' can be explained with neo-classical transport. ITB discharges with monotonic shear show less inward convection and seem to be advantageous with respect to plasma purity. (author)

  8. Radial pattern of nuclear decay processes

    International Nuclear Information System (INIS)

    Iskra, W.; Mueller, M.; Rotter, I.; Technische Univ. Dresden

    1994-05-01

    At high level density of nuclear states, a separation of different time scales is observed (trapping effect). We calculate the radial profile of partial widths in the framework of the continuum shell model for some 1 - resonances with 2p-2h nuclear structure in 16 O as a function of the coupling strength to the continuum. A correlation between the lifetime of a nuclear state and the radial profile of the corresponding decay process is observed. We conclude from our numerical results that the trapping effect creates structures in space and time characterized by a small radial extension and a short lifetime. (orig.)

  9. Radial Distribution Functions of Strongly Coupled Two-Temperature Plasmas

    Science.gov (United States)

    Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.

    2017-10-01

    We present tests of three theoretical models for the radial distribution functions (RDFs) in two-temperature strongly coupled plasmas. RDFs are useful in extending plasma thermodynamics and kinetic theory to strong coupling, but they are usually known only for thermal equilibrium or for approximate one-component model plasmas. Accurate two-component modeling is necessary to understand the impact of strong coupling on inter-species transport, e.g., ambipolar diffusion and electron-ion temperature relaxation. We demonstrate that the Seuferling-Vogel-Toeppfer (SVT) extension of the hypernetted chain equations not only gives accurate RDFs (as compared with classical molecular dynamics simulations), but also has a simple connection with the Yukawa OCP model. This connection gives a practical means to recover the structure of the electron background from knowledge of the ion-ion RDF alone. Using the model RDFs in Effective Potential Theory, we report the first predictions of inter-species transport coefficients of strongly coupled plasmas far from equilibrium. This work is supported by NSF Grant No. PHY-1453736, AFSOR Award No. FA9550-16-1-0221, and used XSEDE computational resources.

  10. Extended fluid transport theory in the tokamak plasma edge

    Science.gov (United States)

    Stacey, W. M.

    2017-06-01

    Fluid theory expressions for the radial particle and energy fluxes and the radial distributions of pressure and temperature in the edge plasma are derived from fundamental conservation (particle, energy, momentum) relations, taking into account kinetic corrections arising from ion orbit loss, and integrated to illustrate the dependence of the observed edge pedestal profile structure on fueling, heating, and electromagnetic and thermodynamic forces. Solution procedures for the fluid plasma and associated neutral transport equations are discussed.

  11. Moment approach to neoclassical flows, currents and transport in auxiliary heated tokamaks

    International Nuclear Information System (INIS)

    Kim, Yil Bong.

    1988-02-01

    The moment approach is utilized to derive the full complement of neoclassical transport processes in auxiliary heated tokamaks. The effects of auxiliary heating [neutral beam injection (NBI) and ion cyclotron resonance heating (ICRH)] considered arise from the collisional interaction between the background plasma species and the fast-ion-tail species. From a known fast ion distribution function we evaluate the parallel (to the magnetic field) momentum and heat flow inputs to the background plasma. Then, through the momentum and heat flow balance equations, we can determine the induced parallel flows (and current) and radial transpot fluxes in ''equilibrium'' (on the time scale much longer than the collisional relaxation time, i.e., t >> 1ν/sub ii/). In addition to the fast-ion-induced current, the total neoclassical current includes the boostap current, which is driven by the pressure and temperature gradients, the Pfirsch-Schlueter current which is required for charge neutrality, and the neoclassical (including trapped particle effects) Spitzer current due to the parallel electric field. The radial transport fluxes also include off-diagonal compnents in the transport matrix which correspond to the Ware (neoclassical) pinch due to the inductive applied electric field an the fast-ion-induced radial fluxes, in addition to the usual pressure- and temperature-gradient-driven fluxes (particle diffusion and heat conduction). Once the tranport coefficient are completely determined, the radial fluxes and the heat fluxes can be substituted into the density and energy evolution equations to provide a complete description of ''equilibrium'' (δδt << ν/sub ii/) neoclassical transport processes in a plasma. 47 refs., 14 figs

  12. Intraluminal milrinone for dilation of the radial artery graft.

    Science.gov (United States)

    García-Rinaldi, R; Soltero, E R; Carballido, J; Mojica, J

    1999-01-01

    There is renewed interest in the use of the radial artery as a conduit for coronary artery bypass surgery. The radial artery is, however, a very muscular artery, prone to vasospasm. Milrinone, a potent vasodilator, has demonstrated vasodilatory properties superior to those of papaverine. In this report, we describe our technique of radial artery harvesting and the adjunctive use of intraluminal milrinone as a vasodilator in the preparation of this conduit for coronary artery bypass grafting. We have used these techniques in 25 patients who have undergone coronary artery bypass grafting using the radial artery. No hand ischemic complications have been observed in this group. Intraluminal milrinone appears to dilate and relax the radial artery, rendering this large conduit spasm free and very easy to use. We recommend the skeletonization technique for radial artery harvesting and the use of intraluminal milrinone as a radial artery vasodilator in routine myocardial revascularization. PMID:10524740

  13. Channeling of protons through radial deformed carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Borka Jovanović, V., E-mail: vborka@vinca.rs [Atomic Physics Laboratory (040), Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Borka, D. [Atomic Physics Laboratory (040), Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Galijaš, S.M.D. [Faculty of Physics, University of Belgrade, P.O. Box 368, 11001 Belgrade (Serbia)

    2017-05-18

    Highlights: • For the first time we presented theoretically obtained distributions of channeled protons with radially deformed SWNT. • Our findings indicate that influence of the radial deformation is very strong and it should not be omitted in simulations. • We show that the spatial and angular distributions depend strongly of level of radial deformation of nanotube. • Our obtained results can be compared with measured distributions to reveal the presence of various types of defects in SWNT. - Abstract: In this paper we have presented a theoretical investigation of the channeling of 1 GeV protons with the radial deformed (10, 0) single-wall carbon nanotubes (SWNTs). We have calculated channeling potential within the deformed nanotubes. For the first time we presented theoretically obtained spatial and angular distributions of channeled protons with radially deformed SWNT. We used a Monte Carlo (MC) simulation technique. We show that the spatial and angular distributions depend strongly of level of radial deformation of nanotube. These results may be useful for nanotube characterization and production and guiding of nanosized ion beams.

  14. Neoclassical transport optimization of LHD

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, S.; Yamada, H.; Watanabe, K.Y. [National Inst. for Fusion Science, Toki, Gifu (Japan); Wakasa, A. [Hokkaido Univ., Graduate School of Engineering, Sapporo, Hokkaido (Japan); Maassberg, H.; Beidler, C.D. [Teilinstitut Greifswald, Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany)

    2002-06-01

    Neoclassical transport is studied for LHD configurations in which the magnetic axis has been shifted radially by determining the mono-energetic transport coefficient and the effective helical ripple. With respect to the transport in the long mean free path collisionality region - the so called 1/{nu} transport -, the optimum configuration is found when the magnetic axis has a major radius of 3.53m, which is 0.22m inward shifted from the standard'' configuration of LHD. In the optimized case, the effective helical ripple is very small, remaining below 2% inside 4/5 of the plasma radius. This indicates that a strong inward shift of the magnetic axis in the LHD can diminish the neoclassical transport to a level typical of so-called advanced stellarators''. (author)

  15. Anomalous Medial Branch of Radial Artery: A Rare Variant

    Directory of Open Access Journals (Sweden)

    Surbhi Wadhwa

    2016-10-01

    Full Text Available Radial artery is an important consistent vessel of the upper limb. It is a useful vascular access site for coronary procedures and its reliable anatomy has resulted in an elevation of radial forearm flaps for reconstructive surgeries of head and neck. Technical failures, in both the procedures, are mainly due to anatomical variations, such as radial loops, ectopic radial arteries or tortuosity in the vessel. We present a rare and a unique anomalous medial branch of the radial artery spiraling around the flexor carpi radialis muscle in the forearm with a high rising superficial palmar branch of radial artery. Developmentally it probably is a remanent of the normal pattern of capillary vessel maintenance and regression. Such a case is of importance for reconstructive surgeons and coronary interventionists, especially in view of its unique medial and deep course.

  16. Fuel radial design using Path Relinking; Diseno radial de combustible usando Path Relinking

    Energy Technology Data Exchange (ETDEWEB)

    Campos S, Y. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    The present work shows the obtained results when implementing the combinatory optimization technique well-known as Path Re linking (Re-linkage of Trajectories), to the problem of the radial design of nuclear fuel assemblies, for boiling water reactors (BWR Boiling Water Reactor by its initials in English), this type of reactors is those that are used in the Laguna Verde Nucleo electric Central, Veracruz. As in any other electric power generation plant of that make use of some fuel to produce heat and that it needs each certain time (from 12 to 14 months) to make a supply of the same one, because this it wears away or it burns, in the nucleolectric plants to this activity is denominated fuel reload. In this reload different activities intervene, among those which its highlight the radial and axial designs of fuel assemblies, the patterns of control rods and the multi cycles study, each one of these stages with their own complexity. This work was limited to study in independent form the radial design, without considering the other activities. These phases are basic for the fuel reload design and of reactor operation strategies. (Author)

  17. Dynamic response analysis as a tool for investigating transport mechanisms

    International Nuclear Information System (INIS)

    Dudok de Wit, Th.; Joye, B.; Lister, J.B.; Moret, J.M.

    1990-01-01

    Dynamic response analysis provides an attractive method for studying transport mechanisms in tokamak plasmas. The analysis of the radial response has already been widely used for heat and particle transport studies. The frequency dependence of the dynamic response, which is often omitted, reveals further properties of the dominant transport mechanisms. Extended measurements of the soft X-ray emission were carried out on the TCA tokamak in order to determine the underlying transport processes. (author) 5 refs., 2 figs

  18. Clinical and Radiographic Outcomes of Unipolar and Bipolar Radial Head Prosthesis in Patients with Radial Head Fracture: A Systemic Review and Meta-Analysis.

    Science.gov (United States)

    Chen, Hongwei; Wang, Ziyang; Shang, Yongjun

    2018-06-01

    To compare clinical outcomes of unipolar and bipolar radial head prosthesis in the treatment of patients with radial head fracture. Medline, Cochrane, EMBASE, Google Scholar databases were searched until April 18, 2016 using the following search terms: radial head fracture, elbow fracture, radial head arthroplasty, implants, prosthesis, unipolar, bipolar, cemented, and press-fit. Randomized controlled trials, retrospective, and cohort studies were included. The Mayo elbow performance score (MEPS), disabilities of the arm, shoulder, and hand (DASH) score, radiologic assessment, ROM, and grip strength following elbow replacement were similar between prosthetic devices. The pooled mean excellent/good ranking of MEPS was 0.78 for unipolar and 0.73 for bipolar radial head arthroplasty, and the pooled mean MEPS was 86.9 and 79.9, respectively. DASH scores for unipolar and bipolar prosthesis were 19.0 and 16.3, respectively. Range of motion outcomes were similar between groups, with both groups have comparable risk of flexion arc, flexion, extension deficit, rotation arc, pronation, and supination (p values bipolar prosthesis). However, bipolar radial head prosthesis was associated with an increased chance of heterotopic ossification and lucency (p values ≤0.049) while unipolar prosthesis was not (p values ≥0.088). Both groups had risk for development of capitellar osteopenia or erosion/wear (p values ≤0.039). Unipolar and bipolar radial head prostheses were similar with respect to clinical outcomes. Additional comparative studies are necessary to further compare different radial head prostheses used to treat radial head fracture.

  19. Design of Radial Turbo-Expanders for Small Organic Rankine Cycle System

    Science.gov (United States)

    Arifin, M.; Pasek, A. D.

    2015-09-01

    This paper discusses the design of radial turbo-expanders for ORC systems. Firstly, the rotor blades were design and the geometry and the perfromance were calculated using several working fluid such as R134a, R143a, R245fa, n-Pentane, and R123. Then, a numerical study was carried out in the fluid flow area with R134a and R123 as the working fluid. Analyses were performed using Computational Fluid Dynamics (CFD) ANSYS CFX on two real gas models, with the k-epsilon and SST (shear stress transport) turbulence models. The results analysis shows the distribution of Mach number, pressure, velocity and temperature along the rotor blade of the radial turbo-expanders and estimation of performance at various operating conditions. CFD analysis show that if the flow area divided into 250,000 grid mesh, and using real gas model SST at steady state condition, 0.4 kg/s of mass flow rate, 15,000 rpm rotor speed, 5 bar inlet pressure, and 373K inlet temperature, the turbo expander produces 6.7 kW, and 5.5 kW of power when using R134a and R123 respectively.

  20. When did the lunar core dynamo cease?

    Science.gov (United States)

    Tikoo, S. M.; Weiss, B. P.; Shuster, D. L.; Fuller, M.

    2013-12-01

    Remanent magnetization in the lunar crust and in returned Apollo samples has long suggested that the Moon formed a metallic core and an ancient dynamo magnetic field. Recent paleomagnetic investigations of lunar samples demonstrate that the Moon had a core dynamo which produced ~30-110 μT surface fields between at least 4.2 and 3.56 billion years ago (Ga). Tikoo et al. (1) recently found that the field declined to below several μT by 3.19 Ga. However, given that even values of a few μT are at the upper end of the intensities predicted by dynamo theory for this late in lunar history, it remains uncertain when the lunar dynamo actually ceased completely. Determining this requires a young lunar rock with extraordinarily high magnetic recording fidelity. With this goal, we are conducting a new analysis of young regolith breccia 15498. Although the breccia's age is currently uncertain, the presence of Apollo 15-type mare basalt clasts provides an upper limit constraint of ~3.3 Ga, while trapped Ar data suggest a lithification age of ~1.3 Ga. In stark contrast to the multidomain character of virtually all lunar crystalline rocks, the magnetic carriers in 15498 are on average pseudo-single domain to superparamagnetic, indicating that the sample should provide high-fidelity paleointensity records. A previous alternating field (AF) and thermal demagnetization study of 15498 by Gose et al. (2) observed that the sample carries stable remanent magnetization which persists to unblocking temperatures of at least 650°C. Using a modified Thellier technique, they reported a paleointensity of 2 μT. Although this value may have been influenced by spurious remanence acquired during pretreatment with AF demagnetization, our results confirm the presence of an extremely stable (blocked to coercivities >290 mT) magnetization in the glassy matrix. We also found that this magnetization is largely unidirectional across mutually oriented subsamples. The cooling timescale of this rock (~1

  1. Vitreous veils and radial lattice in Marshall syndrome.

    Science.gov (United States)

    Brubaker, Jacob W; Mohney, Brian G; Pulido, Jose S; Babovic-Vuksanovic, Dusica

    2008-12-01

    To report the findings of membranous vitreous veils and radial lattice in a child with Marshall syndrome. Observational case report. Retrospective review of medical records and fundus photograph of a 6-year-old boy with Marshall syndrome. Vitreoretinal findings were significant for bilateral membranous vitreous veils and radial lattice degeneration. This case demonstrates the occurrence of vitreous veils and radial lattice degeneration in patients with Marshall syndrome.

  2. Long-Term Follow-up of Modular Metallic Radial Head Replacement: Commentary on an article by Jonathan P. Marsh, MD, FRCSC, et al.: "Radial Head Fractures Treated with Modular Metallic Radial Head Replacement: Outcomes at a Mean Follow-up of Eight Years".

    OpenAIRE

    Mansat, Pierre

    2016-01-01

    Radial head arthroplasty is used to stabilize the joint after a complex acute radial head fracture that is not amenable for fixation or to treat sequelae of radial head fractures. Most of the currently used radial head prostheses are metallic monoblock implants that are not consistently adaptable and raise technical challenges since their implantation requires lateral elbow subluxation. Metallic modular radial head arthroplasty implants available in various head and stem sizes have been devel...

  3. PEMODELAN KOLIMATOR DI RADIAL BEAM PORT REAKTOR KARTINI UNTUK BORON NEUTRON CAPTURE THERAPY

    Directory of Open Access Journals (Sweden)

    Bemby Yulio Vallenry

    2015-03-01

    BNCT (Boron Neutron Capture Therapy. BNCT utilizes neutron nature by 10B deposited on cancer cells. The superiority of BNCT compared to the rradiation therapy is the high level of selectivity since its level is within cell. This study was carried out on collimator modelling in radial beam port of reactor Kartini for BNCT. The modelling was conducted by simulation using software of Monte CarloN-Particle version5 (MCNP 5. MCNP5 is a package of the programs for both simulating and calculating the problem of particle transport by following the life cycle of a neutron since its birth from fission reaction, transport on materials, until eventually lost due to the absorption reaction or out from the system. The collimator modelling used materials which varied in size in order to generate the value of each of the parameters in accordance with the recommendation of the IAEA, the epithermal neutron flux (Фepi > 1.0 x 109n.cm-2s-1, the ratio between the neutron dose rate fast and epithermal neutron flux (Ḋf/Фepi 0.7. Based on the results of the optimization of the modeling, the materials and sizes of the collimator construction obtained were 0.75 cm Ni as collimator wall, 22 cm Al as a moderator and 4.5 cm Bi as a gamma shield. The outputs of the radiation beam generated from collimator modeling of the radial beam port were Фepi = 5.25 x 106 n.cm-2.s-1, Ḋf/Фepi = 1.17 x 10-13 Gy.cm2.n-1, Ḋγ/Фepi = 1.70 x 10-12 Gy.cm2.n-1, Фth/Фepi = 1.51 and J/Фepi = 0.731. Based on this study, the results of the beam radiation coming out of the radial beam port did not fully meet the criteria recommended by the IAEA so need to continue this study to get the criteria of IAEA. Keywords: BNCT, radial beamport, MCNP 5, collimator

  4. Radial electric field at the plasma edge on the FT-2 Tokamak in regimes with large gradients

    International Nuclear Information System (INIS)

    Lashkul, S.; Popov, A.

    2001-01-01

    The transport barrier formation is widely believed to be the fundamental element of transition into improved confinement regimes (H-mode). Experiments on many tokamaks demonstrate that transport barrier formation is connected with the suppression of turbulent transport by shear of E x B drift. Therefore, the calculation of radial electric field is of great importance. Our work is devoted to progress the neoclassical theory by taking into account electron viscosity and non-linear effects (ion inertia), presented results being valuable for interpretation transition into H-mode at the plasma edge in small tokamaks. Calculations of the electric field profile for FT-2 tokamak (a=8cm, R 0 =55cm, Ioffe Institute, Russia) according found expressions are in the good agreement with experimental results obtained. (orig.)

  5. Radial head fracture associated with posterior interosseous nerve injury

    Directory of Open Access Journals (Sweden)

    Bernardo Barcellos Terra

    Full Text Available ABSTRACT Fractures of the radial head and radial neck correspond to 1.7-5.4% of all fractures and approximately 30% may present associated injuries. In the literature, there are few reports of radial head fracture with posterior interosseous nerve injury. This study aimed to report a case of radial head fracture associated with posterior interosseous nerve injury. CASE REPORT: A male patient, aged 42 years, sought medical care after falling from a skateboard. The patient related pain and limitation of movement in the right elbow and difficulty to extend the fingers of the right hand. During physical examination, thumb and fingers extension deficit was observed. The wrist extension showed a slight radial deviation. After imaging, it became evident that the patient had a fracture of the radial head that was classified as grade III in the Mason classification. The patient underwent fracture fixation; at the first postoperative day, thumb and fingers extension was observed. Although rare, posterior interosseous nerve branch injury may be associated with radial head fractures. In the present case, the authors believe that neuropraxia occurred as a result of the fracture hematoma and edema.

  6. Radial Field Piezoelectric Diaphragms

    Science.gov (United States)

    Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.

    2002-01-01

    A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.

  7. Plasma transport in stochastic magnetic fields. I. General considerations and test particle transport

    International Nuclear Information System (INIS)

    Krommes, J.A.; Kleva, R.G.; Oberman, C.

    1978-05-01

    A systematic theory is developed for the computation of electron transport in stochastic magnetic fields. Small scale magnetic perturbations arising, for example, from finite-β micro-instabilities are assumed to destroy the flux surfaces of a standard tokamak equilibrium. Because the magnetic lines then wander in a volume, electron radial flux is enhanced due to the rapid particle transport along as well as across the lines. By treating the magnetic lines as random variables, it is possible to develop a kinetic equation for the electron distribution function. This is solved approximately to yield the diffusion coefficient

  8. Plasma transport in stochastic magnetic fields. I. General considerations and test particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Krommes, J.A.; Kleva, R.G.; Oberman, C.

    1978-05-01

    A systematic theory is developed for the computation of electron transport in stochastic magnetic fields. Small scale magnetic perturbations arising, for example, from finite-..beta.. micro-instabilities are assumed to destroy the flux surfaces of a standard tokamak equilibrium. Because the magnetic lines then wander in a volume, electron radial flux is enhanced due to the rapid particle transport along as well as across the lines. By treating the magnetic lines as random variables, it is possible to develop a kinetic equation for the electron distribution function. This is solved approximately to yield the diffusion coefficient.

  9. Radial transport in the far scrape-off layer of ASDEX upgrade during L-mode and ELMy H-mode

    DEFF Research Database (Denmark)

    Ionita, C.; Naulin, Volker; Mehlmann, F.

    2013-01-01

    The radial turbulent particle flux and the Reynolds stress in the scrape-off layer (SOL) of ASDEX Upgrade were investigated for two limited L-mode (low confinement) and one ELMy H-mode (high confinement) discharge. A fast reciprocating probe was used with a probe head containing five Langmuir...

  10. Studies of transport phenomena in tokamaks with nonstationary intervention into the discharge

    International Nuclear Information System (INIS)

    Kalmykov, S.G.

    1993-01-01

    Together with detailed plasma parameter measurements, an experimental basis is provided to deduce radial profiles of local transport coefficients, to obtain their temporal evolution in the transient phase of the discharge. The equations of heat and particle balance were used as proper instrument to perform the coefficients calculation. The majority of the experiments deals with heat transport processes in the electron component of plasma. A problem in getting ohmic heat deposit radial distribution arise with use of the electron population heat balance equation. For its solution, numerical simulation of the plasma column loop voltage based on poloidal magnetic field classical diffusion supposition was used. (L.C.J.A.)

  11. Deduction of the rates of radial diffusion of protons from the structure of the Earth's radiation belts

    Science.gov (United States)

    Kovtyukh, Alexander S.

    2016-11-01

    From the data on the fluxes and energy spectra of protons with an equatorial pitch angle of α0 ≈ 90° during quiet and slightly disturbed (Kp ≤ 2) periods, I directly calculated the value DLL, which is a measure of the rate of radial transport (diffusion) of trapped particles. This is done by successively solving the systems (chains) of integrodifferential equations which describe the balance of radial transport/acceleration and ionization losses of low-energy protons of the stationary belt. This was done for the first time. For these calculations, I used data of International Sun-Earth Explorer 1 (ISEE-1) for protons with an energy of 24 to 2081 keV at L = 2-10 and data of Explorer-45 for protons with an energy of 78.6 to 872 keV at L = 2-5. Ionization losses of protons (Coulomb losses and charge exchange) were calculated on the basis of modern models of the plasmasphere and the exosphere. It is shown that for protons with μ from ˜ 0.7 to ˜ 7 keV nT-1 at L ≈ 4.5-10, the functions of DLL can be approximated by the following equivalent expressions: DLL ≈ 4.9 × 10-14μ-4.1L8.2 or DLL ≈ 1.3 × 105(EL)-4.1 or DLL ≈ 1.2 × 10-9fd-4.1, where fd is the drift frequency of the protons (in mHz), DLL is measured in s-1, E is measured in kiloelectronvolt and μ is measured in kiloelectronvolt per nanotesla. These results are consistent with the radial diffusion of particles under the action of the electric field fluctuations (pulsations) in the range of Pc6 and contradict the mechanism of the radial diffusion of particles under the action of sudden impulses (SIs) of the magnetic field and also under the action of substorm impulses of the electric field. During magnetic storms DLL increases, and the expressions for DLL obtained here can change completely.

  12. Neoclassical transport of energetic minority tail ions generated by ion-cyclotron resonance heating in tokamak geometry

    International Nuclear Information System (INIS)

    Chang, C.S.; Hammett, G.W.; Goldston, R.J.

    1990-01-01

    Neoclassical transport of energetic minority tail ions, which are generated by high powered electromagnetic waves of the Ion Cyclotron Range of Frequencies (ICRF) at the fundamental harmonic resonance, is studied analytically in tokamak geometry. The effect of Coulomb collisions on the tail ion transport is investigated in the present work. The total tail ion transport will be the sum of the present collision-driven transport and the wave-driven transport, which is due to the ICRF-wave scattering of the tail particles as reported in the literature. The transport coefficients have been calculated kinetically, and it is found that the large tail ion viscosity, driven by the localized ICRF-heating and Coulomb slowing-down collisions, induces purely convective particle transport of the tail species, while the energy transport is both convective and diffusive. The rate of radial particle transport is shown to be usually small, but the rate of radial energy transport is larger and may not be negligible compared to the Coulomb slowing-down rate. 18 refs., 2 figs

  13. Formation and collapse of internal transport barrier

    International Nuclear Information System (INIS)

    Fukuyama, A.; Itoh, K.; Itoh, S.I.; Yagi, M.

    1999-01-01

    A theoretical model of internal transport barrier (ITB) is developed. The transport model based on the self-sustained turbulence theory of the current-diffusive ballooning mode is extended to include the effects of ExB rotation shear. Delayed formation of ITB is observed in transport simulations. The influence of finite gyroradius is also discussed. Simulation of the current ramp-up experiment successfully described the radial profile of density, temperature and safety factor. A model of ITB collapse due to magnetic braiding is proposed. Sudden enhancement of transport triggered by overlapping of magnetic islands terminates ITB. The possibility of destabilizing global low-n modes is also discussed. (author)

  14. Formation and collapse of internal transport barrier

    International Nuclear Information System (INIS)

    Fukuyama, A.; Itoh, K.; Itoh, S.-I.; Yagi, M.

    2001-01-01

    A theoretical model of internal transport barrier (ITB) is developed. The transport model based on the self-sustained turbulence theory of the current-diffusive ballooning mode is extended to include the effects of ExB rotation shear. Delayed formation of ITB is observed in transport simulations. The influence of finite gyroradius is also discussed. Simulation of the current ramp-up experiment successfully described the radial profile of density, temperature and safety factor. A model of ITB collapse due to magnetic braiding is proposed. Sudden enhancement of transport triggered by overlaping of magnetic islands terminates ITB. The possibility of destabilizing global low-n modes is also discussed. (author)

  15. Transport of secondary electrons and reactive species in ion tracks

    Science.gov (United States)

    Surdutovich, Eugene; Solov'yov, Andrey V.

    2015-08-01

    The transport of reactive species brought about by ions traversing tissue-like medium is analysed analytically. Secondary electrons ejected by ions are capable of ionizing other molecules; the transport of these generations of electrons is studied using the random walk approximation until these electrons remain ballistic. Then, the distribution of solvated electrons produced as a result of interaction of low-energy electrons with water molecules is obtained. The radial distribution of energy loss by ions and secondary electrons to the medium yields the initial radial dose distribution, which can be used as initial conditions for the predicted shock waves. The formation, diffusion, and chemical evolution of hydroxyl radicals in liquid water are studied as well. COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy.

  16. Development of micro-scale axial and radial turbines for low-temperature heat source driven organic Rankine cycle

    International Nuclear Information System (INIS)

    Al Jubori, Ayad; Daabo, Ahmed; Al-Dadah, Raya K.; Mahmoud, Saad; Ennil, Ali Bahr

    2016-01-01

    Highlights: • One and three-dimensional analysis with real gas properties are integrated. • Micro axial and radial-inflow turbines configurations are investigated. • Five organic working fluids are considered. • The maximum total isentropic efficiency of radial-inflow turbine 83.85%. • The maximum ORC thermal efficiency based on radial-inflow turbine is 10.60%. - Abstract: Most studies on the organic Rankine cycle (ORC) focused on parametric studies and selection working fluids to maximize the performance of organic Rankine cycle but without attention for turbine design features which are crucial to achieving them. The rotational speed, expansion ratio, mass flow rate and turbine size have markedly effect on turbine performance. For this purpose organic Rankine cycle modeling, mean-line design and three-dimensional computational fluid dynamics analysis were integrated for both micro axial and radial-inflow turbines with five organic fluids (R141b, R1234yf, R245fa, n-butane and n-pentane) for realistic low-temperature heat source <100 °C like solar and geothermal energy. Three-dimensional simulation is performed using ANSYS"R"1"7-CFX where three-dimensional Reynolds-averaged Navier-Stokes equations are solved with k-omega shear stress transport turbulence model. Both configurations of turbines are designed at wide range of mass flow rate (0.1–0.5) kg/s for each working fluid. The results showed that n-pentane has the highest performance at all design conditions where the maximum total-to-total efficiency and power output of radial-inflow turbine are 83.85% and 8.893 kW respectively. The performance of the axial turbine was 83.48% total-to-total efficiency and 8.507 kW power output. The maximum overall size of axial turbine was 64.685 mm compared with 70.97 mm for radial-inflow turbine. R245fa has the lowest overall size for all cases. The organic Rankine cycle thermal efficiency was about 10.60% with radial-inflow turbine and 10.14% with axial turbine

  17. Multi-energy soft-x-ray technique for impurity transport measurements in the fusion plasma edge

    International Nuclear Information System (INIS)

    Clayton, D J; Tritz, K; Stutman, D; Finkenthal, M; Kumar, D; Kaye, S M; LeBlanc, B P; Paul, S; Sabbagh, S A

    2012-01-01

    A new diagnostic technique was developed to produce high-resolution impurity transport measurements of the steep-gradient edge of fusion plasmas. Perturbative impurity transport measurements were performed for the first time in the NSTX plasma edge (r/a ∼ 0.6 to the SOL) with short neon gas puffs, and the resulting line and continuum emission was measured with the new edge multi-energy soft-x-ray (ME-SXR) diagnostic. Neon transport is modeled with the radial impurity transport code STRAHL and the resulting x-ray emission is computed using the ADAS atomic database. The radial transport coefficient profiles D(r) and v(r), and the particle flux from the gas puff Φ(t), are the free parameters in this model and are varied to find the best fit to experimental x-ray emissivity measurements, with bolometry used to constrain the impurity source. Initial experiments were successful and results were consistent with previous measurements of core impurity transport and neoclassical transport calculations. New diagnostic tools will be implemented on NSTX-U to further improve these transport measurements. (paper)

  18. Evolution of the radial electric field in a JET H-mode plasma

    International Nuclear Information System (INIS)

    Andrew, Y.; Hawkes, N.C.; Biewer, T.; Crombe, K.; Keeling, D.; De la Luna, E.; Giroud, C.; Korotkov, A.; Meigs, A.; Murari, A.; Nunes, I.; Sartori, R.; Tala, T.; Andrew, Y.; Hawkes, N.C.; Keeling, D.; Giroud, C.; Korotkov, A.; Meigs, A.; Biewer, T.; Crombe, K.; De la Luna, E.; Murari, A.; Nunes, I.; Sartori, R.; Tala, T.

    2008-01-01

    Results from recent measurements of carbon impurity ion toroidal and poloidal rotation velocities, ion temperature, ion density and the resulting radial electric field (E r ) profiles are presented from an evolving Joint European Torus (JET) tokamak plasma over a range of energy and particle confinement regimes. Significant levels of edge plasma poloidal rotation velocity have been measured for the first time on JET, with maximum values of ±9 km/s. Such values of poloidal rotation provide an important contribution to the total edge plasma E r profiles. Large values of shear in the measured E r profiles are observed to arise as a consequence of the presence of the edge transport barrier (ETB) and do not appear to be necessary for their formation or destruction. These results have an important impact on potential mechanisms for transport barrier triggering and sustainment in present-day and future high-performance fusion plasmas. (authors)

  19. Latitudinal Dependence of the Radial IMF Component - Interplanetary Imprint

    Science.gov (United States)

    Suess, S. T.; Smith, E. J.; Phillips, J.; Goldstein, B. E.; Nerney, S.

    1996-01-01

    Ulysses measurements have confirmed that there is no significant gradient with respect to heliomagnetic latitude in the radial component, B(sub r,), of the interplanetary magnetic field. There are two processes responsible for this observation. In the corona, the plasma beta is much less than 1, except directly above streamers, so both longitudinal and latitudinal (meridional) gradients in field strength will relax, due to the transverse magnetic pressure gradient force, as the solar wind carries magnetic flux away from the Sun. This happens so quickly that the field is essentially uniform by 5 solar radius. Beyond 10 solar radius, beta is greater than 1 and it is possible for a meridional thermal pressure gradient to redistribute magnetic flux - an effect apparently absent in Ulysses and earlier ICE and Interplanetary Magnetic Physics (IMP) data. We discuss this second effect here, showing that its absence is mainly due to the perpendicular part of the anisotropic thermal pressure gradient in the interplanetary medium being too small to drive significant meridional transport between the Sun and approx. 4 AU. This is done using a linear analytic estimate of meridional transport. The first effect was discussed in an earlier paper.

  20. Concepts of radial and angular kinetic energies

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Schleich, W.P.

    2002-01-01

    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...

  1. On neoclassical impurity transport in stellarator geometry

    International Nuclear Information System (INIS)

    García-Regaña, J M; Kleiber, R; Beidler, C D; Turkin, Y; Maaßberg, H; Helander, P

    2013-01-01

    The impurity dynamics in stellarators has become an issue of moderate concern due to the inherent tendency of the impurities to accumulate in the core when the neoclassical ambipolar radial electric field points radially inwards (ion root regime). This accumulation can lead to collapse of the plasma due to radiative losses, and thus limit high performance plasma discharges in non-axisymmetric devices. A quantitative description of the neoclassical impurity transport is complicated by the breakdown of the assumption of small E × B drift and trapping due to the electrostatic potential variation on a flux surface Φ-tilde compared with those due to the magnetic field gradient. This work examines the impact of this potential variation on neoclassical impurity transport in the Large Helical Device heliotron. It shows that the neoclassical impurity transport can be strongly affected by Φ-tilde . The central numerical tool used is the δf particle in cell Monte Carlo code EUTERPE. The Φ-tilde used in the calculations is provided by the neoclassical code GSRAKE. The possibility of obtaining a more general Φ-tilde self-consistently with EUTERPE is also addressed and a preliminary calculation is presented. (paper)

  2. Sawtooth driven particle transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Nicolas, T.

    2013-01-01

    The radial transport of particles in tokamaks is one of the most stringent issues faced by the magnetic confinement fusion community, because the fusion power is proportional to the square of the pressure, and also because accumulation of heavy impurities in the core leads to important power losses which can lead to a 'radiative collapse'. Sawteeth and the associated periodic redistribution of the core quantities can significantly impact the radial transport of electrons and impurities. In this thesis, we perform numerical simulations of sawteeth using a nonlinear tridimensional magnetohydrodynamic code called XTOR-2F to study the particle transport induced by sawtooth crashes. We show that the code recovers, after the crash, the fine structures of electron density that are observed with fast-sweeping reflectometry on the JET and TS tokamaks. The presence of these structure may indicate a low efficiency of the sawtooth in expelling the impurities from the core. However, applying the same code to impurity profiles, we show that the redistribution is quantitatively similar to that predicted by Kadomtsev's model, which could not be predicted a priori. Hence finally the sawtooth flushing is efficient in expelling impurities from the core. (author) [fr

  3. Plasma transport simulation modeling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1991-08-01

    New empirical and theoretical transport models for helical confinement systems are developed based on the neoclassical transport theory including the effect of radial electric field and multi-helicity magnetic components, and the drift wave turbulence transport for electrostatic and electromagnetic modes, or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with CHS (Compact Helical System) experimental data, which indicates that the central transport coefficient of the ECH plasma agrees with the neoclassical axi-symmetric value and the transport outside the half radius is anomalous. On the other hand, the transport of NBI-heated plasmas is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these flat-density-profile discharges. For the detailed prediction of plasma parameters in LHD (Large Helical Device), 3-D(dimensional) equilibrium/1-D transport simulations including empirical or drift wave turbulence models are carried out, which suggests that the global confinement time of LHD is determined mainly by the electron anomalous transport near the plasma edge region rather than the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase of the global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to the half level of the present scaling, like so-called 'H-mode' of the tokamak discharge, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius is effective for improving plasma confinement and raising more than 50% of the fusion product by reducing this neoclassical asymmetric ion transport loss and increasing 10% in the plasma radius. (author)

  4. Analysis of radially heterogeneous ZPPR-13A benchmark for investigating the spatial dependence of the calculated-to-experiment ratio for control rod worths

    International Nuclear Information System (INIS)

    Mahalakshmi, B.; Mohanakrishnan, P.

    1993-01-01

    Investigation were performed on the ZPPR-13A critical assembly to determine the cause of the radial variation of the calculated-to-experimental (C/E) ratio for control rod worth in large heterogeneous cores. The effects of errors in cross section, mesh size, group condensation, transport, and modeling were studied by studied by using two- and three-dimensional diffusion calculations and three-dimensional transport calculations. In that process, the cross-section set and the calculation scheme that are being used for fast reactor design in India have been revalidated. The cross-section set was found to yield satisfactory results. Three-dimensional calculations with adjusted and unadjusted cross sections confirmed that the error in cross sections was largely responsible for the radial dependence of the C/E ratios. The contributions from group condensation and mesh size errors were < 2%, and from modeling errors and transport correction, < 1%. The effect of these errors is insignificant when compared with the effect of the cross-section error. The analysis also showed that even without the adjustment in diffusion coefficient suggested in earlier studies, a satisfactory prediction is found, at least for this benchmark. The diffusion-to-transport correction for control rod worth was found to be -7%

  5. Radial gradient and radial deviation radiomic features from pre-surgical CT scans are associated with survival among lung adenocarcinoma patients.

    Science.gov (United States)

    Tunali, Ilke; Stringfield, Olya; Guvenis, Albert; Wang, Hua; Liu, Ying; Balagurunathan, Yoganand; Lambin, Philippe; Gillies, Robert J; Schabath, Matthew B

    2017-11-10

    The goal of this study was to extract features from radial deviation and radial gradient maps which were derived from thoracic CT scans of patients diagnosed with lung adenocarcinoma and assess whether these features are associated with overall survival. We used two independent cohorts from different institutions for training (n= 61) and test (n= 47) and focused our analyses on features that were non-redundant and highly reproducible. To reduce the number of features and covariates into a single parsimonious model, a backward elimination approach was applied. Out of 48 features that were extracted, 31 were eliminated because they were not reproducible or were redundant. We considered 17 features for statistical analysis and identified a final model containing the two most highly informative features that were associated with lung cancer survival. One of the two features, radial deviation outside-border separation standard deviation, was replicated in a test cohort exhibiting a statistically significant association with lung cancer survival (multivariable hazard ratio = 0.40; 95% confidence interval 0.17-0.97). Additionally, we explored the biological underpinnings of these features and found radial gradient and radial deviation image features were significantly associated with semantic radiological features.

  6. Illumination Profile & Dispersion Variation Effects on Radial Velocity Measurements

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil B.; Ma, Bo; Li, Rui; SDSS-III

    2015-01-01

    The Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) measures radial velocities using a fiber-fed dispersed fixed-delay interferometer (DFDI) with a moderate dispersion spectrograph. This setup allows a unique insight into the 2D illumination profile from the fiber on to the dispersion grating. Illumination profile investigations show large changes in the profile over time and fiber location. These profile changes are correlated with dispersion changes and long-term radial velocity offsets, a major problem within the MARVELS radial velocity data. Characterizing illumination profiles creates a method to both detect and correct radial velocity offsets, allowing for better planet detection. Here we report our early results from this study including improvement of radial velocity data points from detected giant planet candidates. We also report an illumination profile experiment conducted at the Kitt Peak National Observatory using the EXPERT instrument, which has a DFDI mode similar to MARVELS. Using profile controlling octagonal-shaped fibers, long term offsets over a 3 month time period were reduced from ~50 m/s to within the photon limit of ~4 m/s.

  7. Anterior transposition of the radial nerve--a cadaveric study.

    Science.gov (United States)

    Yakkanti, Madhusudhan R; Roberts, Craig S; Murphy, Joshua; Acland, Robert D

    2008-01-01

    The radial nerve is at risk during the posterior plating of the humerus. The purpose of this anatomic study was to assess the extent of radial nerve dissection required for anterior transposition through the fracture site (transfracture anterior transposition). A cadaver study was conducted approaching the humerus by a posterior midline incision. The extent of dissection of the nerve necessary for plate fixation of the humerus fracture was measured. An osteotomy was created to model a humeral shaft fracture at the spiral groove (OTA classification 12-A2, 12-A3). The radial nerve was then transposed anterior to the humeral shaft through the fracture site. The additional dissection of the radial nerve and the extent of release of soft tissue from the humerus shaft to achieve the transposition were measured. Plating required a dissection of the radial nerve 1.78 cm proximal and 2.13 cm distal to the spiral groove. Transfracture anterior transposition of the radial nerve required an average dissection of 2.24 cm proximal and 2.68 cm distal to the spiral groove. The lateral intermuscular septum had to be released for 2.21 cm on the distal fragment to maintain laxity of the transposed nerve. Transfracture anterior transposition of the radial nerve before plating is feasible with dissection proximal and distal to the spiral groove and elevation of the lateral intermuscular septum. Potential clinical advantages of this technique include enhanced fracture site visualization, application of broader plates, and protection of the radial nerve during the internal fixation.

  8. A New Filtering Algorithm Utilizing Radial Velocity Measurement

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-feng; DU Zi-cheng; PAN Quan

    2005-01-01

    Pulse Doppler radar measurements consist of range, azimuth, elevation and radial velocity. Most of the radar tracking algorithms in engineering only utilize position measurement. The extended Kalman filter with radial velocity measureneut is presented, then a new filtering algorithm utilizing radial velocity measurement is proposed to improve tracking results and the theoretical analysis is also given. Simulation results of the new algorithm, converted measurement Kalman filter, extended Kalman filter are compared. The effectiveness of the new algorithm is verified by simulation results.

  9. Photoelectric Radial Velocities, Paper XIX Additional Spectroscopic ...

    Indian Academy of Sciences (India)

    ian velocity curve that does justice to the measurements, but it cannot be expected to have much predictive power. Key words. Stars: late-type—stars: radial velocities—spectroscopic binaries—orbits. 0. Preamble. The 'Redman K stars' are a lot of seventh-magnitude K stars whose radial velocities were first observed by ...

  10. Linear theory radial and nonradial pulsations of DA dwarf stars

    International Nuclear Information System (INIS)

    Starrfield, S.; Cox, A.N.; Hodson, S.; Pesnell, W.D.

    1982-01-01

    The Los Alamos stellar envelope and radial linear non-adiabatic computer code, along with a new Los Alamos non-radial code are used to investigate the total hydrogen mass necessary to produce the non-radial instability of DA dwarfs

  11. Radiation Belt Transport Driven by Solar Wind Dynamic Pressure Fluctuations

    Science.gov (United States)

    Kress, B. T.; Hudson, M. K.; Ukhorskiy, A. Y.; Mueller, H.

    2012-12-01

    The creation of the Earth's outer zone radiation belts is attributed to earthward transport and adiabatic acceleration of electrons by drift-resonant interactions with electromagnetic fluctuations in the magnetosphere. Three types of radial transport driven by solar wind dynamic pressure fluctuations that have been identified are: (1) radial diffusion [Falthammer, 1965], (2) significant changes in the phase space density radial profile due to a single or few ULF drift-resonant interactions [Ukhorskiy et al., 2006; Degeling et al., 2008], and (3) shock associated injections of radiation belt electrons occurring in less than a drift period [Li et al., 1993]. A progress report will be given on work to fully characterize different forms of radial transport and their effect on the Earth's radiation belts. The work is being carried out by computing test-particle trajectories in electric and magnetic fields from a simple analytic ULF field model and from global MHD simulations of the magnetosphere. Degeling, A. W., L. G. Ozeke, R. Rankin, I. R. Mann, and K. Kabin (2008), Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves, textit{J. Geophys. Res., 113}, A02208, doi:10.1029/2007JA012411. Fälthammar, C.-G. (1965), Effects of Time-Dependent Electric Fields on Geomagnetically Trapped Radiation, J. Geophys. Res., 70(11), 2503-2516, doi:10.1029/JZ070i011p02503. Li, X., I. Roth, M. Temerin, J. R. Wygant, M. K. Hudson, and J. B. Blake (1993), Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, textit{Geophys. Res. Lett., 20}(22), 2423-2426, doi:10.1029/93GL02701. Ukhorskiy, A. Y., B. J. Anderson, K. Takahashi, and N. A. Tsyganenko (2006), Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons, textit{Geophys. Res. Lett., 33}(6), L06111, doi:10.1029/2005GL024380.

  12. Confinement in W7-AS and the role of radial electric field and magnetic shear

    International Nuclear Information System (INIS)

    Brakel, R.; Anton, M.; Baldzuhn, J.; Burhenn, R.; Erckmann, V.; Fiedler, S.; Geiger, J.; Hartfuss, H.J.; Heinrich, O.; Hirsch, M.; Jaenicke, R.; Kick, M.; Kuehner, G.; Maassberg, H.; Stroth, U.; Wagner, F.; Weller, A.

    1997-01-01

    Improved neoclassical electron confinement in the centre of low-density ECRH plasmas has been observed in the presence of a strong positive radial electric field, which resembles the electron root solution of the neoclassical ambipolarity condition but is obviously driven by the loss of ECRH-generated suprathermal electrons. At higher densities and with NBI heating, a high confinement regime substantially above the ISS95-scaling and different from the H-mode is established with a strongly sheared negative radial electric field at the boundary. The application of plasma-current induced magnetic shear reveals that confinement in W7-AS is essentially determined by perturbations at high-order rational surfaces. For optimum confinement, these resonances have either to be avoided in the boundary region or magnetic shear must be sufficiently large. Independent of its sign, magnetic shear can reduce electron energy transport which is enhanced in the presence of such resonances to the neoclassical level. (author)

  13. Ion transport in stellarators

    International Nuclear Information System (INIS)

    Ho, D.D.M.; Kulsrud, R.M.

    1985-09-01

    Stellarator ion transport in the low-collisionality regime with a radial electric field is calculated by a systematic expansion of the drift-Boltzmann equation. The shape of the helical well is taken into account in this calculation. It is found that the barely trapped ions with three to four times the thermal energy give the dominant contribution to the diffusion. Expressions for the ion particle and energy fluxes are derived

  14. TEMPEST simulations of the plasma transport in a single-null tokamak geometry

    International Nuclear Information System (INIS)

    Xu, X.Q.; Cohen, R.H.; Rognlien, T.D.; Bodi, K.; Krasheninnikov, S.

    2010-01-01

    We present edge kinetic ion transport simulations of tokamak plasmas in magnetic divertor geometry using the fully nonlinear (full-f) continuum code TEMPEST. Besides neoclassical transport, a term for divergence of anomalous kinetic radial flux is added to mock up the effect of turbulent transport. To study the relative roles of neoclassical and anomalous transport, TEMPEST simulations were carried out for plasma transport and flow dynamics in a single-null tokamak geometry, including the pedestal region that extends across the separatrix into the scrape-off layer and private flux region. A series of TEMPEST simulations were conducted to investigate the transition of midplane pedestal heat flux and flow from the neoclassical to the turbulent limit and the transition of divertor heat flux and flow from the kinetic to the fluid regime via an anomalous transport scan and a density scan. The TEMPEST simulation results demonstrate that turbulent transport (as modelled by large diffusion) plays a similar role to collisional decorrelation of particle orbits and that the large turbulent transport (large diffusion) leads to an apparent Maxwellianization of the particle distribution. We also show the transition of parallel heat flux and flow at the entrance to the divertor plates from the fluid to the kinetic regime. For an absorbing divertor plate boundary condition, a non-half-Maxwellian is found due to the balance between upstream radial anomalous transport and energetic ion endloss.

  15. Electron thermal transport in tokamak: ETG or TEM turbulences?

    International Nuclear Information System (INIS)

    Lin, Z.; Chen, L.; Nishimura, Y.; Qu, H.; Hahm, T.S.; Lewandowski, J.; Rewoldt, G.; Wang, W.X.; Diamond, P.H.; Holland, C.; Zonca, F.; Li, Y.

    2005-01-01

    This paper reports progress on numerical and theoretical studies of electron transport in tokamak including: (1) electron temperature gradient turbulence; (2) trapped electron mode turbulence; and (3) a new finite element solver for global electromagnetic simulation. In particular, global gyrokinetic particle simulation and nonlinear gyrokinetic theory find that electron temperature gradient (ETG) instability saturates via nonlinear toroidal couplings, which transfer energy successively from unstable modes to damped modes preferably with longer poloidal wavelengths. The electrostatic ETG turbulence is dominated by nonlinearly generated radial streamers. The length of streamers scales with the device size and is much longer than the distance between mode rational surfaces or electron radial excursions. Both fluctuation intensity and transport level are independent of the streamer size. These simulations with realistic plasma parameters find that the electron heat conductivity is much smaller than the experimental value and in contrast with recent findings of flux-tube simulations that ETG turbulence is responsible for the anomalous electron thermal transport in fusion plasmas. The nonlinear toroidal couplings represent a new paradigm for the spectral cascade in plasma turbulence. (author)

  16. Physics of electron internal transport barrier in toroidal helical plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Toda, S.; Fujisawa, A.; Ida, K.; Itoh, S.-I.; Yagi, M.; Fukuyama, A.; Diamond, P.H.

    2006-10-01

    The role of zonal flows in the formation of the transport barrier in the helical plasmas is analyzed using the transport code. A set of one-dimensional transport equations is analyzed, including the effect of zonal flows. The turbulent transport coefficient is shown to be suppressed when the plasma state changes from the weak negative radial electric field to the strong positive one. This bifurcation of the turbulent transport is newly caused by the change of the damping rate of zonal flows. It is theoretically demonstrated that the damping rate of zonal flows governs the global confinement in toroidal plasmas. (author)

  17. A user's evaluation of radial flow HEPA filters

    International Nuclear Information System (INIS)

    Purcell, J.A.

    1992-07-01

    High efficiency particulate air (HEPA) filters of rectangular cross section have been used to remove particulates and the associated radioactivity from air ventilation streams since the advent of nuclear materials processing. Use of round axial flow HEPA filters is also longstanding. The advantages of radial flow filters in a circular configuration have been well demonstrated in UKAEA during the last 5--7 years. An evaluation of radial flow filters for fissile process gloveboxes reveals several substantial benefits in addition to the advantages claimed in UKAEA Facilities. The radial flow filter may be provided in a favorable geometry resulting in improved criticality safety. The filter configuration lends to in-place testing at the glovebox to exhaust duct interface. This will achieve compliance with DOE Order 6430.1A, Section 99.0.2. Preliminary testing at SRS for radial flow filters manufactured by Flanders Filters, Inc. revealed compliance in all the usual specifications for filtration efficiency, pressure differential and materials of construction. An evaluation, further detailed in this report, indicates that the radial flow HEPA filter should be considered for inclusion in new ventilation system designs

  18. Radial extension of drift waves in presence of velocity profiles

    International Nuclear Information System (INIS)

    Sen, S.; Weiland, J.

    1994-01-01

    The effect of a radially varying poloidal velocity field on the recently found radially extended toroidal drift waves is investigated analytically. The role of velocity curvature (υ φ '') is found to have robust effects on the radial model structure of the mode. For a positive value of the curvature (Usually found in the H-mode edges) the radial model envelope, similar to the sheared slab case, becomes fully outgoing. The mode is therefore stable. On the other hand, for a negative value of the curvature (usually observed in the L-mode edges) all the characteristics of conventional drift waves return back. The radial mode envelope reduces to a localized Gaussian shape and the mode is therefore unstable again for typical (magnetic) shear values in tokamaks. Velocity shear (υ φ ??) on the other hand is found to have rather insignificant role both in determining the radial model structure and stability

  19. Operation CeaseFire-New Orleans: an infectious disease model for addressing community recidivism from penetrating trauma.

    Science.gov (United States)

    McVey, Erin; Duchesne, Juan C; Sarlati, Siavash; O'Neal, Michael; Johnson, Kelly; Avegno, Jennifer

    2014-07-01

    CeaseFire, using an infectious disease approach, addresses violence by partnering hospital resources with the community by providing violence interruption and community-based services for an area roughly composed of a single city zip code (70113). Community-based violence interrupters start in the trauma center from the moment penetrating trauma occurs, through hospital stay, and in the community after release. This study interprets statistics from this pilot program, begun May 2012. We hypothesize a decrease in penetrating trauma rates in the target area compared with others after program implementation. This was a 3-year prospective data collection of trauma registry from May 2010 to May 2013. All intentional, target area, penetrating trauma treated at our Level I trauma center received immediate activation of CeaseFire personnel. Incidences of violent trauma and rates of change, by zip code, were compared with the same period for 2 years before implementation. During this period, the yearly incidence of penetrating trauma in Orleans Parish increased. Four of the highest rates were found in adjacent zip codes: 70112, 70113, 70119, and 70125. Average rates per 100,000 were 722.7, 523.6, 286.4, and 248, respectively. These areas represent four of the six zip codes citywide that saw year-to-year increases in violent trauma during this period. Zip 70113 saw a lower rate of rise in trauma compared with 70112 and a higher but comparable rise compared with that of 70119 and 70125. Hospital-based intervention programs that partner with culturally appropriate personnel and resources outside the institution walls have potential to have meaningful impact over the long term. While few conclusions of the effect of such a program can be drawn in a 12-month period, we anticipate long-term changes in the numbers of penetrating injuries in the target area and in the rest of the city as this program expands. Therapeutic study, level IV.

  20. Combined Radial and Femoral Access Strategy and Radial-Femoral Rendezvous in Patients With Long and Complex Iliac Occlusions.

    Science.gov (United States)

    Hanna, Elias B; Mogabgab, Owen N; Baydoun, Hassan

    2018-01-01

    We present cases of complex, calcified iliac occlusive disease revascularized via a combined radial-femoral access strategy. Through a 6-French, 125-cm transradial guiding catheter, antegrade guidewires and catheters are advanced into the iliac occlusion, while retrograde devices are advanced transfemorally. The transradial and transfemoral channels communicate, allowing the devices to cross the occlusion into the true lumen (radial-femoral antegrade-retrograde rendezvous).

  1. Theoretical modeling of transport barriers in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.; Ohyabu, N.

    2008-10-01

    A unified transport modelling to explain electron Internal Transport Barriers (e-ITB) in helical plasmas and Internal Diffusion Barriers (IDB) observed in Large Helical Device (LHD) is proposed. The e-ITB can be predicted with the effect of zonal flows to obtain the e-ITB in the low collisional regime when the radial variation of the particle anomalous diffusivity is included. Transport analysis in this article can newly show that the particle fuelling induces the IDB formation when this unified transport modelling is used in the high collisional regime. The density limit for the IDB in helical plasmas is also examined including the effect of the radiation loss. (author)

  2. Identification of zonal flows and their characteristics on transport barrier in CHS

    International Nuclear Information System (INIS)

    Fujisawa, A.; Shimizu, A.; Nakano, H.; Ohshima, S.; Iguchi, H.; Yoshimura, Y.; Minami, T.; Itoh, K.; Isobe, M.; Suzuki, C.; Nishimura, S.; Akiyama, T.; Nagaoka, K.; Takahashi, C.; Ida, K.; Toi, K.; Okamura, S.; Matsuoka, K.; Itoh, S.-I.; Diamond, P.H.

    2005-01-01

    Relation between turbulence and electric field has been one of the central issues related to the transport physics of toroidal plasmas. Recently, zonal flow, axi-symmetric band-like structure (m=n=0) with a finite radial wavelength, has just come up the third element responsible for the plasma transport. Theories and simulations have expected that the zonal flow should be a mechanism to control the saturation level of turbulence and the resultant transport. In CHS, dual heavy ion beam probes (HIBP) succeeded to prove the presence of the zonal flow and to show the dynamics and structure of the zonal flows. The experiment shows a long-distance correlation between radial electric field (or plasma flow) in low frequency range (< ∼1 kHz), together with radial structure of the zonal flow; characteristic radial length of ∼1.5 cm and life time of ∼1.5 ms. Different characteristics of the zonal flow and turbulence was found in states with and without a transport barrier; the zonal flow activity shrinks with an increase in turbulence level after the barrier breaks down. The recent HIBP experiments have just provided further insight into the system of zonal flow and turbulence. A wavelet analysis is performed on the fluctuation on the barrier position in the state with the transport barrier. The analysis reveals a causal relationship between the zonal flow evolution and turbulence level; the zonal flow is found to increase toward the mean flow direction as turbulence level decreases in the frequency range of 100-150kHz. The observation shows the presence of a nonlinear interaction between zonal flow and the turbulence, or a process of the zonal flow to affect the turbulence level. This paper presents surveys on zonal flow, particularly the recent experiments to demonstrate a causal relationship between zonal flow component and turbulence. Besides, other results obtained with a wavelet analysis are presented on the transport barrier; e.g., density and potential

  3. A novel structure of permanent-magnet-biased radial hybrid magnetic bearing

    International Nuclear Information System (INIS)

    Sun Jinji; Fang Jiancheng

    2011-01-01

    The paper proposes a novel structure for a permanent-magnet-biased radial hybrid magnetic bearing. Based on the air gap between the rotor and stator of traditional radial hybrid magnetic bearings, a subsidiary air gap is first constructed between the permanent magnets and the inner magnetic parts. Radial magnetic bearing makes X and Y magnetic fields independent of each other with separate stator poles, and the subsidiary air gap makes control flux to a close loop. As a result, magnetic field coupling of the X and Y channels is decreased significantly by the radial hybrid magnetic bearing and makes it easier to design control systems. Then an external rotor structure is designed into the radial hybrid magnetic bearing. The working principle of the radial hybrid magnetic bearing and its mathematical model is discussed. Finally, a non-linear magnetic network method is proposed to analyze the radial hybrid magnetic bearing. Simulation results indicate that magnetic fields in the two channels of the proposed radial hybrid magnetic bearing decouple well from each other.

  4. A novel structure of permanent-magnet-biased radial hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Sun Jinji, E-mail: sunjinji@aspe.buaa.edu.c [Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, 100191 (China); Fang Jiancheng [Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, 100191 (China)

    2011-01-15

    The paper proposes a novel structure for a permanent-magnet-biased radial hybrid magnetic bearing. Based on the air gap between the rotor and stator of traditional radial hybrid magnetic bearings, a subsidiary air gap is first constructed between the permanent magnets and the inner magnetic parts. Radial magnetic bearing makes X and Y magnetic fields independent of each other with separate stator poles, and the subsidiary air gap makes control flux to a close loop. As a result, magnetic field coupling of the X and Y channels is decreased significantly by the radial hybrid magnetic bearing and makes it easier to design control systems. Then an external rotor structure is designed into the radial hybrid magnetic bearing. The working principle of the radial hybrid magnetic bearing and its mathematical model is discussed. Finally, a non-linear magnetic network method is proposed to analyze the radial hybrid magnetic bearing. Simulation results indicate that magnetic fields in the two channels of the proposed radial hybrid magnetic bearing decouple well from each other.

  5. The effect of plasma fluctuations on parallel transport parameters in the SOL

    DEFF Research Database (Denmark)

    Havlíčková, E.; Fundamenski, W.; Naulin, Volker

    2011-01-01

    The effect of plasma fluctuations due to turbulence at the outboard midplane on parallel transport properties is investigated. Time-dependent fluctuating signals at different radial locations are used to study the effect of signal statistics. Further, a computational analysis of parallel transport...... to a comparison of steady-state and time-dependent modelling....

  6. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.

    2014-11-07

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.

  7. Radial nerve dysfunction (image)

    Science.gov (United States)

    The radial nerve travels down the arm and supplies movement to the triceps muscle at the back of the upper arm. ... the wrist and hand. The usual causes of nerve dysfunction are direct trauma, prolonged pressure on the ...

  8. Strong drifts effects on neoclassical transport

    International Nuclear Information System (INIS)

    Tessarotto, M.; Gregoratto, D.; White, R.B.

    1996-01-01

    It is well known that strong drifts play an important role in plasma equilibrium, stability and confinement A significant example concerns, in particular for tokamak plasmas, the case of strong toroidal differential rotation produced by E x B drift which is currently regarded as potentially important for its influence in equilibrium, stability and transport. In fact, theoretically, it has been found that shear flow can substantially affect the stability of microinstabilities as well modify substantially transport. Recent experimental observations of enhanced confinement and transport regimes in Tokamaks, show, however, evidence of the existence of strong drifts in the plasma core. These are produced not only by the radial electric field [which gives rise to the E x B drift], but also by density [N s ], temperature [T s ] and mass flow [V = ωRe var-phi , with e var-phi the toroidal unit vector, R the distance for the symmetry axis of the torus and ω being the toroidal angular rotation velocity] profiles which are suitably steep. This implies that, in a significant part of the plasma core, the relevant scale lengths of the gradients [of N s , T s , ω], i.e., respectively L N , L T and L ω can be as large as the radial scale length characterizing the banana orbits, L b . Interestingly enough, the transport estimates obtained appear close or even lower than the predictions based on the simplest neoclassical model. However, as is well known, the latter applies, in a strict sense only in the case of weak drifts and also ignoring even the contribution of shear flow related to strong E x B drift. Thus a fundamental problem appears the extension of neoclassical transport theory to include the effect of strong drifts in Tokamak confinement systems. The goal of this investigation is to develop a general formulation of neoclassical transport embodying such important feature

  9. Variable stator radial turbine

    Science.gov (United States)

    Rogo, C.; Hajek, T.; Chen, A. G.

    1984-01-01

    A radial turbine stage with a variable area nozzle was investigated. A high work capacity turbine design with a known high performance base was modified to accept a fixed vane stagger angle moveable sidewall nozzle. The nozzle area was varied by moving the forward and rearward sidewalls. Diffusing and accelerating rotor inlet ramps were evaluated in combinations with hub and shroud rotor exit rings. Performance of contoured sidewalls and the location of the sidewall split line with respect to the rotor inlet was compared to the baseline. Performance and rotor exit survey data are presented for 31 different geometries. Detail survey data at the nozzle exit are given in contour plot format for five configurations. A data base is provided for a variable geometry concept that is a viable alternative to the more common pivoted vane variable geometry radial turbine.

  10. Dependence of enhanced asymmetry-induced transport on collision frequency

    Science.gov (United States)

    Eggleston, D. L.

    2014-07-01

    A single-particle code with collisional effects is used to study how asymmetry-induced radial transport in a non-neutral plasma depends on collision frequency. For asymmetries of the form ϕ1(r) cos(kz) cos(ωt-lθ), two sources for the transport have been identified: resonant particles and axially trapped particles. The simulation shows that this latter type, which occurs near the radius where ω matches the azimuthal rotation frequency ωR, is usually dominant at low collision frequency ν but becomes negligible at higher ν. This behavior can be understood by noting that axially trapped particles have a lower trapping frequency than resonant particles. In the low ν (banana) regime, the radial oscillations have amplitude Δr ≈ vr/ωT, so axially trapped particles dominate, and the transport may even exceed the resonant particle plateau regime level. As ν increases, collisions start to interrupt the slower axially trapped particle oscillations, while the resonant particles are still in the banana regime, so the axially trapped particle contribution to the transport decreases. At the largest ν values, axially trapped particle transport is negligible and the observed diffusion coefficient matches that given by plateau regime resonant particle theory. Heuristic models based on these considerations give reasonable agreement with the observed scaling laws for the value of the collision frequency where axially trapped particle transport starts to decrease and for the enhancement of the diffusion coefficient produced by axially trapped particles.

  11. Dependence of enhanced asymmetry-induced transport on collision frequency

    International Nuclear Information System (INIS)

    Eggleston, D. L.

    2014-01-01

    A single-particle code with collisional effects is used to study how asymmetry-induced radial transport in a non-neutral plasma depends on collision frequency. For asymmetries of the form ϕ 1 (r) cos(kz) cos(ωt−lθ), two sources for the transport have been identified: resonant particles and axially trapped particles. The simulation shows that this latter type, which occurs near the radius where ω matches the azimuthal rotation frequency ω R , is usually dominant at low collision frequency ν but becomes negligible at higher ν. This behavior can be understood by noting that axially trapped particles have a lower trapping frequency than resonant particles. In the low ν (banana) regime, the radial oscillations have amplitude Δr ≈ v r /ω T , so axially trapped particles dominate, and the transport may even exceed the resonant particle plateau regime level. As ν increases, collisions start to interrupt the slower axially trapped particle oscillations, while the resonant particles are still in the banana regime, so the axially trapped particle contribution to the transport decreases. At the largest ν values, axially trapped particle transport is negligible and the observed diffusion coefficient matches that given by plateau regime resonant particle theory. Heuristic models based on these considerations give reasonable agreement with the observed scaling laws for the value of the collision frequency where axially trapped particle transport starts to decrease and for the enhancement of the diffusion coefficient produced by axially trapped particles

  12. Characteristics of internal transport barriers from the JET optimised shear database

    International Nuclear Information System (INIS)

    Rochard, F.; Litaudon, X.; Soeldner, F.

    2000-02-01

    The general features of the Internal Transport Barriers (ITBs) obtained in the JET 'Optimised Shear' regime are deduced from the analyses of a large database of discharges including the experiments performed with a mixture of Deuterium-Tritium (D-T) ions. The coupled and complex spatio-temporal dynamics of the ITBs are studied from the radial profiles measurements of the thermal ion and electron temperatures. The spatial locations of the ITBs inside the plasma column are deduced from the radial derivatives of the plasmas profiles. In particular, our analyses show that the radial positions of the ITB follow the same evolution for both the electron and ion temperature profiles. Among the JET 'Optimised Shear' database, we propose to distinguish two categories of discharges depending on the edge conditions: the ITBs are triggered either with an L-mode edge or simultaneously with an edge transport barrier (H-mode). The characteristics of the ITBs and plasma performances of these two categories are compared. Experimental conditions to successfully combine the edge and core transport barriers are given. In particular, emphasis is given on the description and analyses of the 'Optimised Shear' discharges which combine an ITB with an ELMy edge since this operating mode opens the route to high performance regimes which could be extrapolated towards steady-state conditions. (author)

  13. Radial-probe EBUS for the diagnosis of peripheral pulmonary lesions

    Directory of Open Access Journals (Sweden)

    Marcia Jacomelli

    Full Text Available ABSTRACT Objective: Conventional bronchoscopy has a low diagnostic yield for peripheral pulmonary lesions. Radial-probe EBUS employs a rotating ultrasound transducer at the end of a probe that is passed through the working channel of the bronchoscope. Radial-probe EBUS facilitates the localization of peripheral pulmonary nodules, thus increasing the diagnostic yield. The objective of this study was to present our initial experience using radial-probe EBUS in the diagnosis of peripheral pulmonary lesions at a tertiary hospital. Methods: We conducted a retrospective analysis of 54 patients who underwent radial-probe EBUS-guided bronchoscopy for the investigation of pulmonary nodules or masses between February of 2012 and September of 2013. Radial-probe EBUS was performed with a flexible 20-MHz probe, which was passed through the working channel of the bronchoscope and advanced through the bronchus to the target lesion. For localization of the lesion and for collection procedures (bronchial brushing, transbronchial needle aspiration, and transbronchial biopsy, we used fluoroscopy. Results: Radial-probe EBUS identified 39 nodules (mean diameter, 1.9 ± 0.7 cm and 19 masses (mean diameter, 4.1 ± 0.9 cm. The overall sensitivity of the method was 66.7% (79.5% and 25.0%, respectively, for lesions that were visible and not visible by radial-probe EBUS. Among the lesions that were visible by radial-probe EBUS, the sensitivity was 91.7% for masses and 74.1% for nodules. The complications were pneumothorax (in 3.7% and bronchial bleeding, which was controlled bronchoscopically (in 9.3%. Conclusions: Radial-probe EBUS shows a good safety profile, a low complication rate, and high sensitivity for the diagnosis of peripheral pulmonary lesions.

  14. Sharp Dissection versus Electrocautery for Radial Artery Harvesting

    Science.gov (United States)

    Marzban, Mehrab; Arya, Reza; Mandegar, Mohammad Hossein; Karimi, Abbas Ali; Abbasi, Kiomars; Movahed, Namvar; Abbasi, Seyed Hesameddin

    2006-01-01

    Radial arteries have been increasingly used during the last decade as conduits for coronary artery revascularization. Although various harvesting techniques have been described, there has been little comparative study of arterial damage and patency. A radial artery graft was used in 44 consecutive patients, who were randomly divided into 2 groups. In the 1st group, the radial artery was harvested by sharp dissection and in the 2nd, by electrocautery. These groups were compared with regard to radial artery free flow, harvest time, number of clips used, complications, and endothelial damage. Radial artery free flow before and after intraluminal administration of papaverine was significantly greater in the electrocautery group (84.3 ± 50.7 mL/min and 109.7 ± 68.5 mL/min) than in the sharp-dissection group (52.9 ± 18.3 mL/min and 69.6 ± 28.2 mL/ min) (P =0.003). Harvesting time by electrocautery was significantly shorter (25.4 ± 4.3 min vs 34.4 ± 5.9 min) (P =0.0001). Electrocautery consumed an average of 9.76 clips, versus 22.45 clips consumed by sharp dissection. The 2 groups were not different regarding postoperative complications, except for 3 cases of temporary paresthesia of the thumb in the electrocautery group; histopathologic examination found no endothelial damage. We conclude that radial artery harvesting by electrocautery is faster and more economical than harvesting by sharp dissection and is associated with better intraoperative flow and good preservation of endothelial integrity. PMID:16572861

  15. Investigation of the impurity transport in the ASDEX tokamak by spectroscopical methods

    International Nuclear Information System (INIS)

    Krieger, K.W.

    1990-12-01

    Plasma impurities: a central problem of controlled thermonuclear fusion; magnetic plasma confinement in a Tokamak; methods to the determination of plasma impurity transport coefficients - by temporally modulated gas admission; the transport equation for impurities; neoclassical and anomalous transport; harmonic analysis of time-dependent signals; solutions of the transport equation; experimental equipment and measurements; measuring results - consistency of simple transport models with radial phase measurements; linearity of the transport processes; plasma disturbance by impurity injection; determination of the diffusion coefficient by simplified transport models; comparison of transport models for impurities and background plasma; measurements of the impurity transport at the plasma edge by high modulation frequencies. (AH)

  16. Interpretation of transport barriers and of subneoclassical transport in the framework of the revisited neoclassical theory

    International Nuclear Information System (INIS)

    Rogister, A.L.

    1999-01-01

    'Subneoclassical' heat fluxes are predicted in the high collisionality regime by the revisited neoclassical theory, which includes the roles of Finite Larmor Radius effects and Inertia, that we published earlier. Unlike conventional neoclassical theory, the revisited theory further provides a non degenerate ambipolarity constraint which defines unambiguously the radial electric field. Together with the parallel momentum equation, the ambipolarity constraint leads, under some conditions, to radial electric field profiles with high negative shear akin to those observed in spontaneous edge transport barriers. The predictions of the theory are outlined, with emphasis laid on the interpretation of experimental results such as magnitude of the jumps, width of the shear layer, local scaling laws. Extension of the theory to triggered transitions and cold pulse propagation studies is suggested. (author)

  17. Inter-machine validation study of neoclassical transport modelling in medium- to high-density stellarator-heliotron plasmas

    International Nuclear Information System (INIS)

    Dinklage, A.; Beidler, C.D.; Baldzuhn, J.; Feng, Y.; Geiger, J.; Jakubowski, M.; Maaßberg, H.; Yokoyama, M.; Tanaka, K.; Satake, S.; Ida, K.; Miyazawa, J.; Morisaki, T.; Velasco, J.L.; López-Bruna, D.; Ascasíbar, E.; Arévalo, J.; López-Fraguas, A.; Gates, D.; Isaev, M.

    2013-01-01

    A comparative study of energy transport for medium- to high-density discharges in the stellarator-heliotrons TJ-II, W7-AS and LHD is carried out. The specific discharge parameters are chosen to apply a recently concluded benchmarking study of neoclassical (NC) transport coefficients (Beidler et al 2011 Nucl. Fusion 51 076001) to perform this validation study. In contrast to previous experiments at low densities for which electron transport was predominant (Yokoyama et al 2007 Nucl. Fusion 47 1213), the current discharges also exhibit significant ion energy transport. As it affects the energy transport in 3D devices, the ambipolar radial electric field is addressed as well. For the discharges described, ion-root conditions, i.e. a small negative radial electric field were found. The energy transport in the peripheral region cannot be explained by NC theory. Within a ‘core region’(r/a < 1/2 ∼ 2/3), the predicted NC energy fluxes comply with experimental findings for W7-AS. For TJ-II, compliance in the core region is found for the particle transport and the electron energy transport. For the specific LHD discharges, the core energy transport complied with NC theory except for the electron energy transport in the inward-shifted magnetic configuration. The NC radial electric field tends to agree with experimental results for all devices but is measured to be more negative in the core of both LHD and TJ-II. As a general observation, the energy confinement time approaches the gyro-Bohm-type confinement scaling ISS04 (Yamada et al 2005 Nucl. Fusion 45 1684). This work is carried out within the International Stellarator-Heliotron Profile Database (www.ipp.mpg.de/ISS and http://ishpdb.nifs.ac.jp/index.html). (paper)

  18. Radial distribution of ions in pores with a surface charge

    NARCIS (Netherlands)

    Stegen, J.H.G. van der; Görtzen, J.; Kuipers, J.A.M.; Hogendoorn, J.A.; Versteeg, G.F.

    2001-01-01

    A sorption model applicable to calculate the radial equilibrium concentrations of ions in the pores of ion-selective membranes with a pore structure is developed. The model is called the radial uptake model. Because the model is applied to a Nafion sulfonic layer with very small pores and the radial

  19. The Matlab Radial Basis Function Toolbox

    Directory of Open Access Journals (Sweden)

    Scott A. Sarra

    2017-03-01

    Full Text Available Radial Basis Function (RBF methods are important tools for scattered data interpolation and for the solution of Partial Differential Equations in complexly shaped domains. The most straight forward approach used to evaluate the methods involves solving a linear system which is typically poorly conditioned. The Matlab Radial Basis Function toolbox features a regularization method for the ill-conditioned system, extended precision floating point arithmetic, and symmetry exploitation for the purpose of reducing flop counts of the associated numerical linear algebra algorithms.

  20. Stellar Angular Momentum Distributions and Preferential Radial Migration

    Science.gov (United States)

    Wyse, Rosemary; Daniel, Kathryne J.

    2018-04-01

    I will present some results from our recent investigations into the efficiency of radial migration in stellar disks of differing angular momentum distributions, within a given adopted 2D spiral disk potential. We apply to our models an analytic criterion that determines whether or not individual stars are in orbits that could lead to radial migration around the corotation resonance. We couch our results in terms of the local stellar velocity dispersion and find that the fraction of stars that could migrate radially decreases as the velocity dispersion increases. I will discuss implications and comparisons with the results of other approaches.

  1. Research on Radial Vibration of a Circular Plate

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2016-01-01

    Full Text Available Radial vibration of the circular plate is presented using wave propagation approach and classical method containing Bessel solution and Hankel solution for calculating the natural frequency theoretically. In cylindrical coordinate system, in order to obtain natural frequency, propagation and reflection matrices are deduced at the boundaries of free-free, fixed-fixed, and fixed-free using wave propagation approach. Furthermore, radial phononic crystal is constructed by connecting two materials periodically for the analysis of band phenomenon. Also, Finite Element Simulation (FEM is adopted to verify the theoretical results. Finally, the radial and piezoelectric effects on the band are also discussed.

  2. Radial-probe EBUS for the diagnosis of peripheral pulmonary lesions.

    Science.gov (United States)

    Jacomelli, Marcia; Demarzo, Sergio Eduardo; Cardoso, Paulo Francisco Guerreiro; Palomino, Addy Lidvina Mejia; Figueiredo, Viviane Rossi

    2016-01-01

    Conventional bronchoscopy has a low diagnostic yield for peripheral pulmonary lesions. Radial-probe EBUS employs a rotating ultrasound transducer at the end of a probe that is passed through the working channel of the bronchoscope. Radial-probe EBUS facilitates the localization of peripheral pulmonary nodules, thus increasing the diagnostic yield. The objective of this study was to present our initial experience using radial-probe EBUS in the diagnosis of peripheral pulmonary lesions at a tertiary hospital. We conducted a retrospective analysis of 54 patients who underwent radial-probe EBUS-guided bronchoscopy for the investigation of pulmonary nodules or masses between February of 2012 and September of 2013. Radial-probe EBUS was performed with a flexible 20-MHz probe, which was passed through the working channel of the bronchoscope and advanced through the bronchus to the target lesion. For localization of the lesion and for collection procedures (bronchial brushing, transbronchial needle aspiration, and transbronchial biopsy), we used fluoroscopy. Radial-probe EBUS identified 39 nodules (mean diameter, 1.9 ± 0.7 cm) and 19 masses (mean diameter, 4.1 ± 0.9 cm). The overall sensitivity of the method was 66.7% (79.5% and 25.0%, respectively, for lesions that were visible and not visible by radial-probe EBUS). Among the lesions that were visible by radial-probe EBUS, the sensitivity was 91.7% for masses and 74.1% for nodules. The complications were pneumothorax (in 3.7%) and bronchial bleeding, which was controlled bronchoscopically (in 9.3%). Radial-probe EBUS shows a good safety profile, a low complication rate, and high sensitivity for the diagnosis of peripheral pulmonary lesions. A broncoscopia convencional possui baixo rendimento diagnóstico para lesões pulmonares periféricas. A ecobroncoscopia radial (EBUS radial) emprega um transdutor ultrassonográfico rotatório na extremidade de uma sonda que é inserida no canal de trabalho do broncoscópio. O EBUS

  3. Radial vibration and ultrasonic field of a long tubular ultrasonic radiator.

    Science.gov (United States)

    Shuyu, Lin; Zhiqiang, Fu; Xiaoli, Zhang; Yong, Wang; Jing, Hu

    2013-09-01

    The radial vibration of a metal long circular tube is studied analytically and its electro-mechanical equivalent circuit is obtained. Based on the equivalent circuit, the radial resonance frequency equation is derived. The theoretical relationship between the radial resonance frequency and the geometrical dimensions is studied. Finite element method is used to simulate the radial vibration and the radiated ultrasonic field and the results are compared with those from the analytical method. It is concluded that the radial resonance frequency for a solid metal rod is larger than that for a metal tube with the same outer radius. The radial resonance frequencies from the analytical method are in good agreement with those from the numerical method. Based on the acoustic field analysis, it is concluded that the long metal tube with small wall thickness is superior to that with large wall thickness in producing radial vibration and ultrasonic radiation. Therefore, it is expected to be used as an effective radial ultrasonic radiator in ultrasonic sewage treatment, ultrasonic antiscale and descaling and other ultrasonic liquid handling applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.

    Science.gov (United States)

    Le, Nguyen-Quoc-Khanh; Nguyen, Trinh-Trung-Duong; Ou, Yu-Yen

    2017-05-01

    The electron transport proteins have an important role in storing and transferring electrons in cellular respiration, which is the most proficient process through which cells gather energy from consumed food. According to the molecular functions, the electron transport chain components could be formed with five complexes with several different electron carriers and functions. Therefore, identifying the molecular functions in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. This work includes two phases for discriminating electron transport proteins from transport proteins and classifying categories of five complexes in electron transport proteins. In the first phase, the performances from PSSM with AAIndex feature set were successful in identifying electron transport proteins in transport proteins with achieved sensitivity of 73.2%, specificity of 94.1%, and accuracy of 91.3%, with MCC of 0.64 for independent data set. With the second phase, our method can approach a precise model for identifying of five complexes with different molecular functions in electron transport proteins. The PSSM with AAIndex properties in five complexes achieved MCC of 0.51, 0.47, 0.42, 0.74, and 1.00 for independent data set, respectively. We suggest that our study could be a power model for determining new proteins that belongs into which molecular function of electron transport proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Plasma transport near material boundaries

    International Nuclear Information System (INIS)

    Singer, C.E.

    1985-06-01

    The fluid theory of two-dimensional (2-d) plasma transport in axisymmetric devices is reviewed. The forces which produce flow across the magnetic field in a collisional plasma are described. These flows may lead to up-down asymmetries in the poloidal rotation and radial fluxes. Emphasis is placed on understanding the conditions under which the known 2-d plasma fluid equations provide a valid description of these processes. Attempts to extend the fluid treatment to less collisional, turbulent plasmas are discussed. A reduction to the 1-d fluid equations used in many computer simulations is possible when sources or boundary conditions provide a large enough radial scale length. The complete 1-d fluid equations are given in the text, and 2-d fluid equations are given in the Appendix

  6. Simulating radial diffusion of energetic (MeV electrons through a model of fluctuating electric and magnetic fields

    Directory of Open Access Journals (Sweden)

    T. Sarris

    2006-10-01

    Full Text Available In the present work, a test particle simulation is performed in a model of analytic Ultra Low Frequency, ULF, perturbations in the electric and magnetic fields of the Earth's magnetosphere. The goal of this work is to examine if the radial transport of energetic particles in quiet-time ULF magnetospheric perturbations of various azimuthal mode numbers can be described as a diffusive process and be approximated by theoretically derived radial diffusion coefficients. In the model realistic compressional electromagnetic field perturbations are constructed by a superposition of a large number of propagating electric and consistent magnetic pulses. The diffusion rates of the electrons under the effect of the fluctuating fields are calculated numerically through the test-particle simulation as a function of the radial coordinate L in a dipolar magnetosphere; these calculations are then compared to the symmetric, electromagnetic radial diffusion coefficients for compressional, poloidal perturbations in the Earth's magnetosphere. In the model the amplitude of the perturbation fields can be adjusted to represent realistic states of magnetospheric activity. Similarly, the azimuthal modulation of the fields can be adjusted to represent different azimuthal modes of fluctuations and the contribution to radial diffusion from each mode can be quantified. Two simulations of quiet-time magnetospheric variability are performed: in the first simulation, diffusion due to poloidal perturbations of mode number m=1 is calculated; in the second, the diffusion rates from multiple-mode (m=0 to m=8 perturbations are calculated. The numerical calculations of the diffusion coefficients derived from the particle orbits are found to agree with the corresponding theoretical estimates of the diffusion coefficient within a factor of two.

  7. Radial Fuzzy Systems

    Czech Academy of Sciences Publication Activity Database

    Coufal, David

    2017-01-01

    Roč. 319, 15 July (2017), s. 1-27 ISSN 0165-0114 R&D Projects: GA MŠk(CZ) LD13002 Institutional support: RVO:67985807 Keywords : fuzzy systems * radial functions * coherence Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.718, year: 2016

  8. Acesso radial em intervenções coronarianas percutâneas: panorama atual brasileiro Acceso radial en intervenciones coronarias percutáneas: panorama actual brasileño Radial approach in percutaneous coronary interventions: current status in Brazil

    Directory of Open Access Journals (Sweden)

    Pedro Beraldo de Andrade

    2011-04-01

    Full Text Available FUNDAMENTO: Embora a técnica radial exiba resultados incontestáveis na redução de complicações vasculares e ocorrência de sangramento grave quando comparada à técnica femoral, seu emprego permanece restrito a poucos centros que a elegeram como via de acesso preferencial. OBJETIVO: Avaliar o cenário atual das intervenções coronarianas percutâneas no Brasil quanto à utilização da via de acesso radial. MÉTODOS: Análise dos dados cadastrados de forma espontânea na Central Nacional de Intervenções Cardiovasculares (CENIC durante o quadriênio de 2005-2008, o que totaliza 83.376 procedimentos. RESULTADOS: A técnica radial foi utilizada em 12,6% dos procedimentos efetivados, e a técnica femoral, em 84,3%. Os 3,1% restantes foram representados pela dissecção ou punção braquial. Com uma taxa de sucesso de 97,5%, a opção pelo acesso radial associou-se à redução significativa de complicações vasculares quando comparado ao femoral (2,5% versus 3,6%, p FUNDAMENTO: Aunque la técnica radial exhiba resultados incontestables en la reducción de complicaciones vasculares y ocurrencia de sangrado grave cuando es comparada a la técnica femoral, su empleo permanece restringido a pocos centros que la eligieron como vía de acceso preferencial. OBJETIVO:Evaluar el escenario actual de las intervenciones coronarias percutáneas en el Brasil en cuanto a la utilización de la vía de acceso radial. MÉTODOS:Análisis de los datos registrados de forma espontánea en la Central Nacional de Intervenciones Cardiovasculares (CENIC durante el cuatrienio de 2005-2008, lo que totaliza 83.376 procedimientos. RESULTADOS:La técnica radial fue utilizada en 12,6% de los procedimientos efectuados, y la técnica femoral, en 84,3%. Los 3,1% restantes fueron representados por la disección o punción braquial. Con una tasa de éxito de 97,5%, la opción por el acceso radial se asoció a la reducción significativa de complicaciones vasculares cuando

  9. Electron internal transport barrier in the core of TJ-II ECH plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, T.; Hidalgo, C. [Laboratorio Nacional de Fusion por Confinamiento Magnetico. Asociacion EURATOM CIEMAT, Madrid (Spain); Dreval, N. [and others

    2003-07-01

    The influence of the magnetic topology on the formation of electron internal transport barriers (e-ITB) has been experimentally studied in the stellarator TJ-II. The formation of e-ITBs in electron cyclotron heated plasmas can be triggered by positioning a low order rational surface close to the plasma core region, while in configurations without any low order rational there are no indications of barrier formation within the available heating power. The e-ITB formation is characterized by an increase in the core electron temperature and plasma potential. Positive radial electric field increases in a factor of three in the plasma central region when the e-ITB forms. The results demonstrate that low order rational surfaces modify radial electric fields and electron heat transport. (orig.)

  10. Deduction of the rates of radial diffusion of protons from the structure of the Earth's radiation belts

    Directory of Open Access Journals (Sweden)

    A. S. Kovtyukh

    2016-11-01

    Full Text Available From the data on the fluxes and energy spectra of protons with an equatorial pitch angle of α0 ≈ 90° during quiet and slightly disturbed (Kp ≤ 2 periods, I directly calculated the value DLL, which is a measure of the rate of radial transport (diffusion of trapped particles. This is done by successively solving the systems (chains of integrodifferential equations which describe the balance of radial transport/acceleration and ionization losses of low-energy protons of the stationary belt. This was done for the first time. For these calculations, I used data of International Sun–Earth Explorer 1 (ISEE-1 for protons with an energy of 24 to 2081 keV at L = 2–10 and data of Explorer-45 for protons with an energy of 78.6 to 872 keV at L = 2–5. Ionization losses of protons (Coulomb losses and charge exchange were calculated on the basis of modern models of the plasmasphere and the exosphere. It is shown that for protons with μ from  ∼ 0.7 to ∼ 7 keV nT−1 at L ≈ 4.5–10, the functions of DLL can be approximated by the following equivalent expressions: DLL ≈ 4.9 × 10−14μ−4.1L8.2 or DLL ≈ 1.3 × 105(EL−4.1 or DLL ≈ 1.2 × 10−9fd−4.1, where fd is the drift frequency of the protons (in mHz, DLL is measured in s−1, E is measured in kiloelectronvolt and μ is measured in kiloelectronvolt per nanotesla. These results are consistent with the radial diffusion of particles under the action of the electric field fluctuations (pulsations in the range of Pc6 and contradict the mechanism of the radial diffusion of particles under the action of sudden impulses (SIs of the magnetic field and also under the action of substorm impulses of the electric field. During magnetic storms DLL increases, and the expressions for DLL obtained here can change completely.

  11. Velocidades radiales en Collinder 121

    Science.gov (United States)

    Arnal, M.; Morrell, N.

    Se han llevado a cabo observaciones espectroscópicas de unas treinta estrellas que son posibles miembros del cúmulo abierto Collinder 121. Las mismas fueron realizadas con el telescopio de 2.15m del Complejo Astronómico El Leoncito (CASLEO). El análisis de las velocidades radiales derivadas del material obtenido, confirma la realidad de Collinder 121, al menos desde el punto de vista cinemático. La velocidad radial baricentral (LSR) del cúmulo es de +17 ± 3 km.s-1. Esta velocidad coincide, dentro de los errores, con la velocidad radial (LSR) de la nebulosa anillo S308, la cual es de ~20 ± 10 km.s-1. Como S308 se encuentra físicamente asociada a la estrella Wolf-Rayet HD~50896, es muy probable que esta última sea un miembro de Collinder 121. Desde un punto de vista cinemático, la supergigante roja HD~50877 (K3Iab) también pertenecería a Collinder 121. Basándonos en la pertenencia de HD~50896 a Collinder 121, y en la interacción encontrada entre el viento de esta estrella y el medio interestelar circundante a la misma, se estima para este cúmulo una distancia del orden de 1 kpc.

  12. Turbulent transport and shear at the E x B velocity in wall plasma of the TF-2 tokamak

    International Nuclear Information System (INIS)

    Budaev, V.P.

    1999-01-01

    Turbulence of near-the-wall plasma and potentialities of affecting the turbulence and periphery transport of the TF-2 tokamak by inducing radial electric fields and ergodization of periphery magnetic structure have been investigated, the results are presented. Essential role of the E x B velocity shear in suppression of the turbulence and turbulent transport in periphery has been pointed out. Decrease in transport losses stemming from effect of radial electric fields is brought about suppression of turbulence amplitude, decrease in correlations and decrease in the width of the wave numbers spectrum. Profiles of plasma density, electron temperature, turbulence level, electric fields over entire periphery of discharge change as a result. Ergodization of magnetic structure also results in the change of properties of periphery turbulence and turbulent transport [ru

  13. Radial supports of face motors with slack compensation

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsova, I I; Gelman, A B; Krekina, T V

    1982-01-01

    The design of a radial support of a face motor with slack compensation is described, and gives the results of field tests which confirm the performance capacity of the experimental support both from the viewpoint of durability, and in relation to preventing radial slack of the face motor shaft.

  14. Queratotomía radial versus miniqueratotomía radial: Experiencia en el Hospital "Ramón Pando Ferrer" Radial keratotomy versus radial minikeratotomy: Experience in "Ramón Pando Ferrer" Hospital

    Directory of Open Access Journals (Sweden)

    José Edilberto Pacheco Serrano

    2000-06-01

    Full Text Available La miniqueratotomía radial se viene realizando desde 1995. Se plantea que incisiones más cortas tienen el mismo efecto y producen menos debilidad corneal, ya que disminuye la susceptibilidad a sufrir complicaciones graves provenientes de traumas de la vida cotidiana. Esta idea nos motivó a realizar un estudio para observar el comportamiento de incisiones más cortas en nuestro centro y, en caso de resultados positivos, implementar la técnica de manera que nuestros pacientes puedan beneficiarse de ella. Se comparan resultados de la aplicación de dos técnicas quirúrgicas refractivas para corrección de miopía entre leve y moderada. Se seleccionaron 38 pacientes entre 20 y 40 años de edad, con miopías entre -2 y -6 dioptrías y astigmatismo no mayor a -0,75 dioptrías. Se realizó queratotomía radial convencional en el ojo derecho y miniqueratotomía radial en el ojo izquierdo del mismo paciente. Las variaciones obtenidas en promedio fueron, en el ojo derecho: la esfera (en dioptrías D de -3,38 a -0,32, cilindro de -0,48 a -0,45 D, la queratometría de 44,75 a 41,21 D. En el ojo izquierdo: la esfera de -3,38 D a -0,44 D, cilindro de -0,44 D a -0,38 D, la queratometría de 44,83 a 41,80 D. Hubo una mejoría de la agudeza visual sin cristales de 0,61 en el ojo derecho y 0,59 en el ojo izquierdo. Las dos técnicas no mostraron diferencias estadísticamente significativas, con el beneficio de que la nueva técnica disminuye el riesgo de ruptura postraumática, según la bibliografía revisada, a causa de la menor injuria corneal.In this hospital, radial keratotomy is performed sice 1995. We propose that shorter incisions have some effect and cause less corneal weakness, since dicreases susceptibility to severe complications from traumata of daily life. This notion encouraged us to carry out a study to observe behaviour of shorter incisions in our service, and in the event of positive results, implementation of the technique so that our

  15. Phloem as Capacitor: Radial Transfer of Water into Xylem of Tree Stems Occurs via Symplastic Transport in Ray Parenchyma[OPEN

    Science.gov (United States)

    Renard, Justine; Tjoelker, Mark G.; Salih, Anya

    2015-01-01

    The transfer of water from phloem into xylem is thought to mitigate increasing hydraulic tension in the vascular system of trees during the diel cycle of transpiration. Although a putative plant function, to date there is no direct evidence of such water transfer or the contributing pathways. Here, we trace the radial flow of water from the phloem into the xylem and investigate its diel variation. Introducing a fluorescent dye (0.1% [w/w] fluorescein) into the phloem water of the tree species Eucalyptus saligna allowed localization of the dye in phloem and xylem tissues using confocal laser scanning microscopy. Our results show that the majority of water transferred between the two tissues is facilitated via the symplast of horizontal ray parenchyma cells. The method also permitted assessment of the radial transfer of water during the diel cycle, where changes in water potential gradients between phloem and xylem determine the extent and direction of radial transfer. When injected during the morning, when xylem water potential rapidly declined, fluorescein was translocated, on average, farther into mature xylem (447 ± 188 µm) compared with nighttime, when xylem water potential was close to zero (155 ± 42 µm). These findings provide empirical evidence to support theoretical predictions of the role of phloem-xylem water transfer in the hydraulic functioning of plants. This method enables investigation of the role of phloem tissue as a dynamic capacitor for water storage and transfer and its contribution toward the maintenance of the functional integrity of xylem in trees. PMID:25588734

  16. Pseudarthrosis of radial shaft with dislocation of heads of radial and ulnar bones (case report

    Directory of Open Access Journals (Sweden)

    M. E. Puseva

    2013-01-01

    Full Text Available The authors presented a rare clinical case - the injury of forearm complicated by the formation of the pseudarthrosis of the radial shaft in combination with old dislocation of heads the radius and ulna. The differentiated approach to the choice of surgical tactics was proposed, which consists of several consistent stages: taking free autotransplant from the crest of iliac bone, resection of pseudarthrosis of radius with replacement of the bone defect by the graft for restoration of anatomic length, conducting combined strained osteosynthesis and elimination of dislocation of a head of radial and ulnar bones by transosseous osteosynthesis. The chosen treatment strategy allowed to restore the anatomy and function of the upper extremity.

  17. Plasma transport simulation modelling for helical confinement systems

    International Nuclear Information System (INIS)

    Yamazaki, K.; Amano, T.

    1992-01-01

    New empirical and theoretical transport models for helical confinement systems are developed on the basis of the neoclassical transport theory, including the effect of the radial electric field and of multi-helicity magnetic components as well as the drift wave turbulence transport for electrostatic and electromagnetic modes or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with experimental data from the Compact Helical System which indicate that the central transport coefficient of a plasma with electron cyclotron heating agrees with neoclassical axisymmetric value and the transport outside the half-radius is anomalous. On the other hand, the transport of plasmas with neutral beam injection heating is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these discharges with flat density profiles. For a detailed prediction of the plasma parameters in the Large Helical Device (LHD), 3-D equilibrium/1-D transport simulations including empirical or drift wave turbulence models are performed which suggest that the global confinement time of the LHD is determined mainly by the electron anomalous transport in the plasma edge region rather than by the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase in global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to half of the value used in the present scaling, as is the case in the H-mode of tokamak discharges, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius improves the plasma confinement and increases the fusion product by more than 50% by reducing the neoclassical asymmetric ion transport loss and increasing the plasma radius (10%). (author). 32 refs, 7 figs

  18. CONSTRAINED EVOLUTION OF A RADIALLY MAGNETIZED PROTOPLANETARY DISK: IMPLICATIONS FOR PLANETARY MIGRATION

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Matthew [Department of Physics, University of Toronto, 60 St. George St., Toronto, ON M5S 1A7 (Canada); Thompson, Christopher [Canadian Institute for Theoretical Astrophysics, 60 St. George St., Toronto, ON M5S 3H8 (Canada)

    2015-12-10

    We consider the inner ∼1 AU of a protoplanetary disk (PPD) at a stage where angular momentum transport is driven by the mixing of a radial magnetic field into the disk from a T Tauri wind. Because the radial profile of the imposed magnetic field is well constrained, a constrained calculation of the disk mass flow becomes possible. The vertical disk profiles obtained in Paper I imply a stronger magnetization in the inner disk, faster accretion, and a secular depletion of the disk material. Inward transport of solids allows the disk to maintain a broad optical absorption layer even when the grain abundance becomes too small to suppress its ionization. Thus, a PPD may show a strong mid- to near-infrared spectral excess even while its mass profile departs radically from the minimum-mass solar nebula. The disk surface density is buffered at ∼30 g cm{sup −2}; below this, X-rays trigger magnetorotational turbulence at the midplane strong enough to loft millimeter- to centimeter-sized particles high in the disk, followed by catastrophic fragmentation. A sharp density gradient bounds the inner depleted disk and propagates outward to ∼1–2 AU over a few megayears. Earth-mass planets migrate through the inner disk over a similar timescale, whereas the migration of Jupiters is limited by the supply of gas. Gas-mediated migration must stall outside 0.04 AU, where silicates are sublimated and the disk shifts to a much lower column. A transition disk emerges when the dust/gas ratio in the MRI-active layer falls below X{sub d} ∼ 10{sup −6} (a{sub d}/μm), where a{sub d} is the grain size.

  19. Ratchet effect for nanoparticle transport in hair follicles.

    Science.gov (United States)

    Radtke, Matthias; Patzelt, Alexa; Knorr, Fanny; Lademann, Jürgen; Netz, Roland R

    2017-07-01

    The motion of a single rigid nanoparticle inside a hair follicle is investigated by means of Brownian dynamics simulations. The cuticular hair structure is modeled as a periodic asymmetric ratchet-shaped surface. Induced by oscillating radial hair motion we find directed nanoparticle transport into the hair follicle with maximal velocity at a specific optimal frequency and an optimal particle size. We observe flow reversal when switching from radial to axial oscillatory hair motion. We also study the diffusion behavior and find strongly enhanced diffusion for axial motion with a diffusivity significantly larger than for free diffusion. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Poloidal spin up and electric-field generation related to displacement current and neoclassical transport

    International Nuclear Information System (INIS)

    Gervasini, G.; Lazzaro, E.; Minardi, E.

    1996-01-01

    In accordance with the conventional ordering of neoclassical theory, poloidal and toroidal accelerations with constant parallel flow can be driven by heat transport in the absence of external momentum input and with vanishing parallel viscous stress. In a transient phase in which the heat transport is the primary source of the time dependence, the torque generating the rotation is provided at third order in the adiabatic expansion by the surface-averaged (non ambipolar) displacement current, which in also responsible for charge build-up and for the radial electric field. The heat transport equation has been solved in a narrow layer interfaced with the intensely heated plasma core through heat flux continuity, assuming neoclassical multi collisional coefficients with self-consistent suppression mechanism of anomalous transport. Starting from low temperature in the edge layer, a strong temperature gradient, a mass poloidal rotation in the ion direction and a strongly negative sheared radial electric field can be generated, in agreement with the observations, and reach a stationary state after a displacement current-dominated triggering phase (intrinsically non-ambipolar) lasting few milliseconds. Momentum input becomes important on longer time scale and is responsible for the toroidal rotation, decoupled from temperature gradient and for a further development of the radial electric field. The results show the ability of edge transport processes to adapt flexibly to a high temperature imposed on the inner side of the edge layer and support the view that the edge processes are a integral part of a more fundamental global process involving possibly an internal bifurcation of state

  1. Manufacturing of Precision Forgings by Radial Forging

    International Nuclear Information System (INIS)

    Wallner, S.; Harrer, O.; Buchmayr, B.; Hofer, F.

    2011-01-01

    Radial forging is a multi purpose incremental forging process using four tools on the same plane. It is widely used for the forming of tool steels, super alloys as well as titanium- and refractory metals. The range of application goes from reducing the diameters of shafts, tubes, stepped shafts and axels, as well as for creating internal profiles for tubes in Near-Net-Shape and Net-Shape quality. Based on actual development of a weight optimized transmission input shaft, the specific features of radial forging technology is demonstrated. Also a Finite Element Model for the simulation of the process is shown which leads to reduced pre-processing effort and reduced computing time compared to other published simulation methods for radial forging. The finite element model can be applied to quantify the effects of different forging strategies.

  2. Radially truncated galactic discs

    NARCIS (Netherlands)

    Grijs, R. de; Kregel, M.; Wesson, K H

    2000-01-01

    Abstract: We present the first results of a systematic analysis of radially truncatedexponential discs for four galaxies of a sample of disc-dominated edge-onspiral galaxies. Edge-on galaxies are very useful for the study of truncatedgalactic discs, since we can follow their light distributions out

  3. Effect of ion orbit loss on the structure in the H-mode tokamak edge pedestal profiles of rotation velocity, radial electric field, density, and temperature

    International Nuclear Information System (INIS)

    Stacey, Weston M.

    2013-01-01

    An investigation of the effect of ion orbit loss of thermal ions and the compensating return ion current directly on the radial ion flux flowing in the plasma, and thereby indirectly on the toroidal and poloidal rotation velocity profiles, the radial electric field, density, and temperature profiles, and the interpretation of diffusive and non-diffusive transport coefficients in the plasma edge, is described. Illustrative calculations for a high-confinement H-mode DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] plasma are presented and compared with experimental results. Taking into account, ion orbit loss of thermal ions and the compensating return ion current is found to have a significant effect on the structure of the radial profiles of these quantities in the edge plasma, indicating the necessity of taking ion orbit loss effects into account in interpreting or predicting these quantities

  4. Official communique from the Government of Peru on the decision of the Government of Libya to cease production of weapons of mass destruction

    International Nuclear Information System (INIS)

    2004-01-01

    The Director General has received a letter from the Permanent Mission of Peru, dated 29 December 2003, enclosing an Official Communique by the Ministry of Foreign Affairs of Peru, regarding the decision of the Government of Libya to cease production of weapons of mass destruction. In the light of the wish expressed in the letter from the Permanent Mission of Peru, the text of the Communique is attached

  5. Radial velocity observations of VB10

    Science.gov (United States)

    Deshpande, R.; Martin, E.; Zapatero Osorio, M. R.; Del Burgo, C.; Rodler, F.; Montgomery, M. M.

    2011-07-01

    VB 10 is the smallest star known to harbor a planet according to the recent astrometric study of Pravdo & Shaklan [1]. Here we present near-infrared (J-band) radial velocity of VB 10 performed from high resolution (R~20,000) spectroscopy (NIRSPEC/KECK II). Our results [2] suggest radial velocity variability with amplitude of ~1 km/s, a result that is consistent with the presence of a massive planet companion around VB10 as found via long-term astrometric monitoring of the star by Pravdo & Shaklan. Employing an entirely different technique we verify the results of Pravdo & Shaklan.

  6. Shear flow effects on ion thermal transport in tokamaks

    International Nuclear Information System (INIS)

    Tajima, T.; Horton, W.; Dong, J.Q.; Kishimoto, Y.

    1995-03-01

    From various laboratory and numerical experiments, there is clear evidence that under certain conditions the presence of sheared flows in a tokamak plasma can significantly reduce the ion thermal transport. In the presence of plasma fluctuations driven by the ion temperature gradient, the flows of energy and momentum parallel and perpendicular to the magnetic field are coupled with each other. This coupling manifests itself as significant off-diagonal coupling coefficients that give rise to new terms for anomalous transport. The authors derive from the gyrokinetic equation a set of velocity moment equations that describe the interaction among plasma turbulent fluctuations, the temperature gradient, the toroidal velocity shear, and the poloidal flow in a tokamak plasma. Four coupled equations for the amplitudes of the state variables radially extended over the transport region by toroidicity induced coupling are derived. The equations show bifurcations from the low confinement mode without sheared flows to high confinement mode with substantially reduced transport due to strong shear flows. Also discussed is the reduced version with three state variables. In the presence of sheared flows, the radially extended coupled toroidal modes driven by the ion temperature gradient disintegrate into smaller, less elongated vortices. Such a transition to smaller spatial correlation lengths changes the transport from Bohm-like to gyrobohm-like. The properties of these equations are analyzed. The conditions for the improved confined regime are obtained as a function of the momentum-energy deposition rates and profiles. The appearance of a transport barrier is a consequence of the present theory

  7. Radial scar/complex sclerosing lesion of the breast--value of ultrasound.

    Science.gov (United States)

    Grunwald, S; Heyer, H; Kühl, A; Schwesinger, G; Schimming, A; Köhler, G; Ohlinger, R

    2007-04-01

    Although benign, radial scar/complex sclerosing adenosis is a lesion which histopathologically resembles tubular carcinoma. On physical examination, it is difficult to distinguish radial scar from a malignant tumour. Mammography cannot differentiate radial scar from malignancy. This clinical study aims to delineate the role of preoperative ultrasonography with emphasis on the question whether ultrasonography could lower the number of false-positive readings and therefore the number of open biopsies required. In this examination, we present the clinical, mammographic, ultrasonographic, and histopathological features of 6 cases of radial scars. Although most authors describe radial scars as non-palpable, 2 of 6 lesions were indeed palpable. On mammograms, radial scars have a spiculated appearance, a feature observed in all of our cases. Numerous ultrasonographic characteristics are listed in the literature, but ultrasonography is not reported to have clear-cut advantages. Although this study did not elucidate any unique ultrasonographic features to characterise these lesions, the analysis of all ultrasonographic results made us recognise a set of "nearly specific ultrasonographic features" of radial scars. Current B-mode imaging does not appear to lead to the desirable reduction of the rate of unnecessary open biopsies.

  8. Radial Structure Scaffolds Convolution Patterns of Developing Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Mir Jalil Razavi

    2017-08-01

    Full Text Available Commonly-preserved radial convolution is a prominent characteristic of the mammalian cerebral cortex. Endeavors from multiple disciplines have been devoted for decades to explore the causes for this enigmatic structure. However, the underlying mechanisms that lead to consistent cortical convolution patterns still remain poorly understood. In this work, inspired by prior studies, we propose and evaluate a plausible theory that radial convolution during the early development of the brain is sculptured by radial structures consisting of radial glial cells (RGCs and maturing axons. Specifically, the regionally heterogeneous development and distribution of RGCs controlled by Trnp1 regulate the convex and concave convolution patterns (gyri and sulci in the radial direction, while the interplay of RGCs' effects on convolution and axons regulates the convex (gyral convolution patterns. This theory is assessed by observations and measurements in literature from multiple disciplines such as neurobiology, genetics, biomechanics, etc., at multiple scales to date. Particularly, this theory is further validated by multimodal imaging data analysis and computational simulations in this study. We offer a versatile and descriptive study model that can provide reasonable explanations of observations, experiments, and simulations of the characteristic mammalian cortical folding.

  9. Heat and momentum transport of ion internal transport barrier plasmas on Large Helical Device

    International Nuclear Information System (INIS)

    Nagaoka, K.; Ida, K.; Yoshinuma, M.

    2010-11-01

    The peaked ion-temperature profile with steep gradient so called ion internal transport barrier (ion ITB) was formed in the neutral beam heated plasmas on the Large Helical Device (LHD) and the high-ion-temperature regime of helical plasmas has been significantly extended. The ion thermal diffusivity in the ion ITB plasma decreases down to the neoclassical transport level. The heavy ion beam probe (HIBP) observed the smooth potential profile with negative radial electric field (ion root) in the core region where the ion thermal diffusivity decreases significantly. The large toroidal rotation was also observed in the ion ITB core and the transport of toroidal momentum was analyzed qualitatively. The decrease of momentum diffusivity with ion temperature increase was observed in the ion ITB core. The toroidal rotation driven by ion temperature gradient so called intrinsic rotation is also identified. (author)

  10. Energy transport in radially accreting white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.M.

    1986-10-01

    Some of the non-thermal energy transport processes which may be present in a white dwarf accretion column are examined and it is determined whether these could in any way contribute to a resolution of the soft X-ray puzzle. The first two Chapters of this Thesis constitute a review of the observations and proposed models for white dwarf accretion columns. In Chapter 3 we show that in Kuijpers and Pringle's original bombardment model of white dwarf accretion columns, in which the energy of the accreting material is deposited uniformly into a static atmosphere which then radiates the energy away as optically thin bremsstrahlung/line radiation, an incorrect Coulomb collisional timescale was used. In Chapter 4 we extend the calculations of Chapter 3 to include the effect of cyclotron radiation. It is concluded that a cyclotron cooled bombardment solution for a white dwarf accretion column may exist. We extend this calculation to derive a simple piecewise uniform temperature structure for such an accretion column, incorporating the effect of thermal conduction. In Chaper 5 we examine two of the non thermal emission mechanisms that might be present in white dwarf accretion columns:- non thermal Lyman-{alpha} emission and non thermal inverse bremsstrahlung emission. It is shown that neither would actually be sufficiently large to be detectable. In Chapter 6 some possible extensions to the work presented are suggested. (author).

  11. Monte Carlo estimation of neoclassical transport for the TJ-II stellarator

    International Nuclear Information System (INIS)

    Tribaldos, V.

    2001-01-01

    The neoclassical transport properties of TJ-II stellarator [C. Alejaldre et al., Fusion Technol. 13, 521 (1988)] are studied with the monoenergetic Monte Carlo technique. A compromise between the number of modes and particles and the required computing time to obtain reliable estimates, from the computational point of view, of the monoenergetic diffusion coefficients is shown to be of one thousand particles and one hundred harmonics, because of the rich magnetic-field structure of TJ-II. Although, these requirements are probably too demanding in making the transport estimations. The data base containing the normalized monoenergetic diffusion coefficient for several radial positions, radial electric fields and collisionalities have been fitted using a neural network. This fit reduces the number of points necessary in the data base and allows a smooth interpolation and extrapolation to perform the convolutions of the monoenergetic coefficients with the Maxwellian. For two different typical TJ-II discharges the ambipolar radial electric field, and the neoclassical particle and heat fluxes are presented both showing rather large positive radial electric fields at the plasma core and small negative fields at the edge. The neoclassical particle and energy confinement time are in surprisingly good agreement with the experimental energy balance analysis and the international stellarator scaling. Although no satisfactory explanation is available yet the large neoclassical diffusion caused by the complex ripple structure of TJ-II magnetic field may be an important ingredient

  12. Towards self-consistent plasma modelisation in presence of neoclassical tearing mode and sawteeth: effects on transport coefficients

    Science.gov (United States)

    Basiuk, V.; Huynh, P.; Merle, A.; Nowak, S.; Sauter, O.; Contributors, JET; the EUROfusion-IM Team

    2017-12-01

    The neoclassical tearing modes (NTM) increase the effective heat and particle radial transport inside the plasma, leading to a flattening of the electron and ion temperature and density profiles at a given location depending on the safety factor q rational surface (Hegna and Callen 1997 Phys. Plasmas 4 2940). In burning plasma such as in ITER, this NTM-induced increased transport could reduce significantly the fusion performance and even lead to a disruption. Validating models describing the NTM-induced transport in present experiment is thus important to help quantifying this effect on future devices. In this work, we apply an NTM model to an integrated simulation of current, heat and particle transport on JET discharges using the European transport simulator. In this model, the heat and particle radial transport coefficients are modified by a Gaussian function locally centered at the NTM position and characterized by a full width proportional to the island size through a constant parameter adapted to obtain the best simulations of experimental profiles. In the simulation, the NTM model is turned on at the same time as the mode is triggered in the experiment. The island evolution is itself determined by the modified Rutherford equation, using self-consistent plasma parameters determined by the transport evolution. The achieved simulation reproduces the experimental measurements within the error bars, before and during the NTM. A small discrepancy is observed on the radial location of the island due to a shift of the position of the computed q = 3/2 surface compared to the experimental one. To explain such small shift (up to about 12% with respect to the position observed from the experimental electron temperature profiles), sensitivity studies of the NTM location as a function of the initialization parameters are presented. First results validate both the transport model and the transport modification calculated by the NTM model.

  13. Effect of robust torus on the dynamical transport

    International Nuclear Information System (INIS)

    Martins, C G L; Carvalho, R Egydio de; Caldas, I L; Roberto, M

    2010-01-01

    In the present work, we quantify the fraction of trajectories that reach a specific region of the phase space when we vary a control parameter using two symplectic maps: one non-twist and another one twist. The two maps were studied with and without a robust torus. We compare the obtained patterns and we identify the effect of the robust torus on the dynamical transport. We show that the effect of meandering-like barriers loses importance in blocking the radial transport when the robust torus is present.

  14. Fast electron generation and transport in a turbulent, magnetized plasma

    International Nuclear Information System (INIS)

    Stoneking, W.R.

    1994-05-01

    The nature of fast electron generation and transport in the Madison Symmetric Torus (MST) reversed field pinch (RFP) is investigated using two electron energy analyzer (EEA) probes and a thermocouple calorimeter. The parallel velocity distribution of the fast electron population is well fit by a drifted Maxwellian distribution with temperature of about 100 eV and drift velocity of about 2 x 10 6 m/s. Cross-calibration of the EEA with the calorimeter provides a measurement of the fast electron perpendicular temperature of 30 eV, much lower than the parallel temperature, and is evidence that the kinetic dynamo mechanism (KDT) is not operative in MST. The fast electron current is found to match to the parallel current at the edge, and the fast electron density is about 4 x 10 11 cm -3 independent of the ratio of the applied toroidal electric field to the critical electric field for runaways. First time measurements of magnetic fluctuation induced particle transport are reported. By correlating electron current fluctuations with radial magnetic fluctuations the transported flux of electrons is found to be negligible outside r/a∼0.9, but rises the level of the expected total particle losses inside r/a∼0.85. A comparison of the measured diffusion coefficient is made with the ausilinear stochastic diffusion coefficient. Evidence exists that the reduction of the transport is due to the presence of a radial ambipolar electric field of magnitude 500 V/m, that acts to equilibrate the ion and electron transport rates. The convective energy transport associated with the measured particle transport is large enough to account for the observed magnetic fluctuation induced energy transport in MST

  15. Poleward energy transport: is the standard definition physically relevant at all time scales?

    Science.gov (United States)

    Liang, Minyi; Czaja, Arnaud; Graversen, Rune; Tailleux, Remi

    2018-03-01

    Poleward energy transport in the atmosphere and oceans constitutes an important branch of the global energy budget, and its role in the climate system has been the subject of many studies. In the atmosphere, the transport is affected by "eddies" and large scale meridional cells, both with zero net mass transport across latitude circles, but also partly by processes associated with a net transport of mass across latitude circles. The latter must cease to operate in steady state, but they may be significant when time variability of the heat budget is considered. Indeed, examination of reanalysis data on short (daily to monthly) timescales shows that mass variations on these timescales result in surprisingly large fluctuations (in excess of 10^{15} W = 1 PW) in the poleward heat transport. These fluctuations are referred to as "extensive", for they primarily alter the mass integrated energy of the region considered, but not its averaged value. It is suggested that extensive fluctuations mask more meaningful climate signals present in the heat transport variability on monthly and interannual timescales, and a new formulation is proposed to isolate the latter. This new formulation is applied successfully to reanalysis data and climate model simulations.

  16. Fuel radial design using Path Relinking

    International Nuclear Information System (INIS)

    Campos S, Y.

    2007-01-01

    The present work shows the obtained results when implementing the combinatory optimization technique well-known as Path Re linking (Re-linkage of Trajectories), to the problem of the radial design of nuclear fuel assemblies, for boiling water reactors (BWR Boiling Water Reactor by its initials in English), this type of reactors is those that are used in the Laguna Verde Nucleo electric Central, Veracruz. As in any other electric power generation plant of that make use of some fuel to produce heat and that it needs each certain time (from 12 to 14 months) to make a supply of the same one, because this it wears away or it burns, in the nucleolectric plants to this activity is denominated fuel reload. In this reload different activities intervene, among those which its highlight the radial and axial designs of fuel assemblies, the patterns of control rods and the multi cycles study, each one of these stages with their own complexity. This work was limited to study in independent form the radial design, without considering the other activities. These phases are basic for the fuel reload design and of reactor operation strategies. (Author)

  17. Modelling of transport phenomena

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae; Fukuyama, Atsushi.

    1993-09-01

    In this review article, we discuss key features of the transport phenomena and theoretical modelling to understand them. Experimental observations have revealed the nature of anomalous transport, i.e., the enhancement of the transport coefficients by the gradients of the plasma profiles, the pinch phenomena, the radial profile of the anomalous transport coefficients, the variation of the transport among the Bohm diffusion, Pseudo-classical confinement, L-mode and variety of improved confinement modes, and the sudden jumps such as L-H transition. Starting from the formalism of the transport matrix, the modelling based on the low frequency instabilities are reviewed. Theoretical results in the range of drift wave frequency are examined. Problems in theories based on the quasilinear and mixing-length estimates lead to the renewal of the turbulence theory, and the physics picture of the self-sustained turbulence is discussed. The theory of transport using the fluid equation of plasma is developed, showing that the new approach is very promising in explaining abovementioned characteristics of anomalous transport in both L-mode and improved confinement plasmas. The interference of the fluxes is the key to construct the physics basis of the bifurcation theory for the L-H transition. The present status of theories on the mechanisms of improved confinement is discussed. Modelling on the nonlocal nature of transport is briefly discussed. Finally, the impact of the anomalous transport on disruptive phenomena is also described. (author) 95 refs

  18. Numerical Simulation of Hydraulic Fracture Propagation Guided by Single Radial Boreholes

    Directory of Open Access Journals (Sweden)

    Tiankui Guo

    2017-10-01

    Full Text Available Conventional hydraulic fracturing is not effective in target oil development zones with available wellbores located in the azimuth of the non-maximum horizontal in-situ stress. To some extent, we think that the radial hydraulic jet drilling has the function of guiding hydraulic fracture propagation direction and promoting deep penetration, but this notion currently lacks an effective theoretical support for fracture propagation. In order to verify the technology, a 3D extended finite element numerical model of hydraulic fracturing promoted by the single radial borehole was established, and the influences of nine factors on propagation of hydraulic fracture guided by the single radial borehole were comprehensively analyzed. Moreover, the term ‘Guidance factor (Gf’ was introduced for the first time to effectively quantify the radial borehole guidance. The guidance of nine factors was evaluated through gray correlation analysis. The experimental results were consistent with the numerical simulation results to a certain extent. The study provides theoretical evidence for the artificial control technology of directional propagation of hydraulic fracture promoted by the single radial borehole, and it predicts the guidance effect of a single radial borehole on hydraulic fracture to a certain extent, which is helpful for planning well-completion and fracturing operation parameters in radial borehole-promoted hydraulic fracturing technology.

  19. Radial collective flow in heavy-ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Borderie, B.

    1996-11-01

    The production of radial collective flow is associated with collisions leading to sources which undergo multifragmentation/explosion processes. After a theoretical survey of possible causes of production of radial flow, methods used to derive experimental values are discussed. Finally, a large set of data is presented which can be used to study and disentangle the different effects leading to radial collective flow. The dominant role of compression in the lower energy domain is emphasized. (author)

  20. Rotary and radial forcing effects on center-of-mass locomotion dynamics.

    Science.gov (United States)

    Shen, Z H; Larson, P L; Seipel, J E

    2014-09-01

    Rotary and radial forcing are two common actuation methods for legged robots. However, these two orthogonal methods of center-of-mass (CoM) forcing have not been compared as potentially alternative strategies of actuation. In this paper, we compare the CoM stability and energetics of running with rotary and radial actuation through the simulation of two models: the rotary-forced spring-loaded inverted pendulum (rotary-forced-SLIP), and the radially-forced-SLIP. We model both radial and rotary actuation in the simplest way, applying them as a constant force during the stance portion of the gait. A simple application of constant rotary forcing throughout stance is capable of producing fully-asymptotically stable motion; however, a similarly constant application of radial forcing throughout the stance is not capable of producing stable solutions. We then allow both the applied rotary and radial forcing functions to turn on or off based on the occurrence of the mid-stance event, which breaks the symmetry of actuation during stance towards a net forward propulsion. We find that both a rotary force applied in the first half of stance and a radial force applied in the second half of stance, are capable of stabilizing running. Interestingly, these two forcing methods improve the motion stability in different ways. Rotary forcing first reduces then greatly increases the size of the stable parameter region when gradually increased. Radial forcing expands the stable parameter region, but only in a moderate way. Also, it is found that parameter region stabilized by rotary and radial forcing are largely complementary. Overall, rotary forcing can better stabilize running for both constant and event-based forcing functions that were attempted. This indicates that rotary forcing has an inherent capability of stabilizing running, even when minimal time-or-event-or-state feedback is present. Radial forcing, however, tends to be more energy efficient when compared to rotary forcing

  1. Coherent exciton transport in dendrimers and continuous-time quantum walks

    Science.gov (United States)

    Mülken, Oliver; Bierbaum, Veronika; Blumen, Alexander

    2006-03-01

    We model coherent exciton transport in dendrimers by continuous-time quantum walks. For dendrimers up to the second generation the coherent transport shows perfect recurrences when the initial excitation starts at the central node. For larger dendrimers, the recurrence ceases to be perfect, a fact which resembles results for discrete quantum carpets. Moreover, depending on the initial excitation site, we find that the coherent transport to certain nodes of the dendrimer has a very low probability. When the initial excitation starts from the central node, the problem can be mapped onto a line which simplifies the computational effort. Furthermore, the long time average of the quantum mechanical transition probabilities between pairs of nodes shows characteristic patterns and allows us to classify the nodes into clusters with identical limiting probabilities. For the (space) average of the quantum mechanical probability to be still or to be again at the initial site, we obtain, based on the Cauchy-Schwarz inequality, a simple lower bound which depends only on the eigenvalue spectrum of the Hamiltonian.

  2. Fast radial basis functions for engineering applications

    CERN Document Server

    Biancolini, Marco Evangelos

    2017-01-01

    This book presents the first “How To” guide to the use of radial basis functions (RBF). It provides a clear vision of their potential, an overview of ready-for-use computational tools and precise guidelines to implement new engineering applications of RBF. Radial basis functions (RBF) are a mathematical tool mature enough for useful engineering applications. Their mathematical foundation is well established and the tool has proven to be effective in many fields, as the mathematical framework can be adapted in several ways. A candidate application can be faced considering the features of RBF:  multidimensional space (including 2D and 3D), numerous radial functions available, global and compact support, interpolation/regression. This great flexibility makes RBF attractive – and their great potential has only been partially discovered. This is because of the difficulty in taking a first step toward RBF as they are not commonly part of engineers’ cultural background, but also due to the numerical complex...

  3. On improved confinement in mirror plasmas by a radial electric field

    Science.gov (United States)

    Ågren, O.; Moiseenko, V. E.

    2017-11-01

    A weak radial electric field can suppress radial excursions of a guiding center from its mean magnetic surface. The physical origin of this effect is the smearing action by a poloidal E × B rotation, which tend to cancel out the inward and outward radial drifts. A use of this phenomenon may provide larger margins for magnetic field shaping with radial confinement of particles maintained in the collision free idealization. Mirror fields, stabilized by a quadrupolar field component, are of particular interest for their MHD stability and the possibility to control the quasi neutral radial electric field by biased potential plates outside the confinement region. Flux surface footprints on the end tank wall have to be traced to avoid short-circuiting between biased plates. Assuming a robust biasing procedure, moderate voltage demands for the biased plates seems adequate to cure even the radial excursions of Yushmanov ions which could be locally trapped near the mirrors. Analytical expressions are obtained for a magnetic quadrupolar mirror configuration which possesses minimal radial magnetic drifts in the central confinement region. By adding a weak controlled radial quasi-neutral electric field, the majority of gyro centers are predicted to be forced to move even closer to their respective mean magnetic surface. The gyro center radial coordinate is in such a case an accurate approximation for a constant of motion. By using this constant of motion, the analysis is in a Vlasov description extended to finite β. A correspondence between that Vlasov system and a fluid description with a scalar pressure and an electric potential is verified. The minimum B criterion is considered and implications for flute mode stability in the considered magnetic field is analyzed. By carrying out a long-thin expansion to a higher order, the validity of the calculations are extended to shorter and more compact device designs.

  4. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.; Korneev, Svyatoslav

    2014-01-01

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations

  5. THE OCCURRENCE OF THE RADIAL CLUB HAND IN CHILDREN WITH DIFFERENT SYNDROMES

    Directory of Open Access Journals (Sweden)

    Sergey Ivanovich Golyana

    2013-03-01

    Full Text Available Radial club hand is a developmental anomaly of the upper extremity, being characterized as a longitudinal underdevelopment of a forearm and a hand on the radial surface, consisting in a hypo-/ aplazy radial bone and the thumb of various degree of expressiveness. Characteristic symptoms of this developmental anomaly are: shortening and bow-shaped curvature of a forearm, palmar and radial deviation of a hand, underdevelopment of the thumb from its proximal departments and structures, anomaly of development of three-phalanx fingers of a hand (is more often than the 2-4th, violation of a cosmetic condition and functionality of the affected segment. From 2000 for 2012 in FSI SRICO n.a. H.Turner examination and treatment of 23 children with various syndromes at which the radial club hand was revealed are conducted. The main syndromes at which it is revealed radial club hand - Holt-Orama syndrome, TAR- syndrome and VACTERL syndrome. Tactics and techniques of surgical treatment of a radial club hand it various syndromes most often don’t differ from treatment of other types of a radial club hand though demand an individual approach depending on severity and a type of deformation of the upper extremity.

  6. The effect of radial migration on galactic disks

    International Nuclear Information System (INIS)

    Vera-Ciro, Carlos; D'Onghia, Elena; Navarro, Julio; Abadi, Mario

    2014-01-01

    We study the radial migration of stars driven by recurring multi-arm spiral features in an exponential disk embedded in a dark matter halo. The spiral perturbations redistribute angular momentum within the disk and lead to substantial radial displacements of individual stars, in a manner that largely preserves the circularity of their orbits and that results, after 5 Gyr (∼40 full rotations at the disk scale length), in little radial heating and no appreciable changes to the vertical or radial structure of the disk. Our results clarify a number of issues related to the spatial distribution and kinematics of migrators. In particular, we find that migrators are a heavily biased subset of stars with preferentially low vertical velocity dispersions. This 'provenance bias' for migrators is not surprising in hindsight, for stars with small vertical excursions spend more time near the disk plane, and thus respond more readily to non-axisymmetric perturbations. We also find that the vertical velocity dispersion of outward migrators always decreases, whereas the opposite holds for inward migrators. To first order, newly arrived migrators simply replace stars that have migrated off to other radii, thus inheriting the vertical bias of the latter. Extreme migrators might therefore be recognized, if present, by the unexpectedly small amplitude of their vertical excursions. Our results show that migration, understood as changes in angular momentum that preserve circularity, can strongly affect the thin disk, but cast doubts on models that envision the Galactic thick disk as a relic of radial migration.

  7. Rayleigh-Taylor instability of cylindrical jets with radial motion

    International Nuclear Information System (INIS)

    Chen, X.M.; Schrock, V.E.; Peterson, P.F.

    1997-01-01

    Rayleigh-Taylor instability of an interface between fluids with different densities subjected to acceleration normal to itself has interested researchers for almost a century. The classic analyses of a flat interface by Rayleigh and Taylor have shown that this type of instability depends on the direction of acceleration and the density differences of the two fluids. Plesset later analyzed the stability of a spherically symmetric flows (and a spherical interface) and concluded that the instability also depends on the velocity of the interface as well as the direction and magnitude of radial acceleration. The instability induced by radial motion in cylindrical systems seems to have been neglected by previous researchers. This paper analyzes the Rayleigh-Taylor type of instability for a cylindrical surface with radial motions. The results of the analysis show that, like the spherical case, the radial velocity also plays an important role. As an application, the example of a liquid jet surface in an Inertial Confinement Fusion (ICF) reactor design is analyzed. (orig.)

  8. Collisional transport in a plasma with steep gradients

    International Nuclear Information System (INIS)

    Wang, W.; Okamoto, M.; Nakajima, N.; Murakami, S.

    1999-06-01

    The validity is given to the newly proposed two δf method for neoclassical transport calculation, which can be solve the drift kinetic equation considering effects of steep plasma gradients, large radial electric field, finite banana width, and an orbit topology near the axis. The new method is applied to the study of ion transport with steep plasma gradients. It is found that the ion thermal diffusivity decreases as the scale length of density gradient decreases, while the ion particle flux due to ion-ion self collisions increases with increasing gradient. (author)

  9. A Novel Integrated Structure with a Radial Displacement Sensor and a Permanent Magnet Biased Radial Magnetic Bearing

    Directory of Open Access Journals (Sweden)

    Jinji Sun

    2014-01-01

    Full Text Available In this paper, a novel integrated structure is proposed in order to reduce the axial length of the high speed of a magnetically suspended motor (HSMSM to ensure the maximum speed, which combines radial displacement sensor probes and the permanent magnet biased radial magnetic bearing in HSMSM. The sensor probes are integrated in the magnetic bearing, and the sensor preamplifiers are placed in the control system of the HSMSM, separate from the sensor probes. The proposed integrated structure can save space in HSMSMs, improve the working frequency, reduce the influence of temperature on the sensor circuit, and improve the stability of HSMSMs.

  10. Radial-piston pump for drive of test machines

    Science.gov (United States)

    Nizhegorodov, A. I.; Gavrilin, A. N.; Moyzes, B. B.; Cherkasov, A. I.; Zharkevich, O. M.; Zhetessova, G. S.; Savelyeva, N. A.

    2018-01-01

    The article reviews the development of radial-piston pump with phase control and alternating-flow mode for seismic-testing platforms and other test machines. The prospects for use of the developed device are proved. It is noted that the method of frequency modulation with the detection of the natural frequencies is easily realized by using the radial-piston pump. The prospects of further research are given proof.

  11. Development of tool for simulating the effect of radial electric fields on Ion-Temperature-Gradient modes in 3D configurations

    International Nuclear Information System (INIS)

    Eriksson, Lars

    2003-03-01

    The heat flux level observed in magnetic plasma confinement experiments such as tokamaks is much higher than what can be explained from neoclassical theory. There is a strong interest in the controlled nuclear fusion community to fully understand this phenomenon, called anomalous transport. One idea is that radial electric fields play a key role in the stabilization process of the electrostatic instabilities called micro instabilities that are considered responsible for the anomalous heat flux. This work studies the effect of a static ad-hoc radial electric field on microinstabilities, especially the ion temperature gradient (ITG) driven mode, within the frame of a global 3D gyrokinetic model. This will make it possible to extend the simulations done in tokamaks and helically symmetric systems to fully 313 magnetic configurations. Technically the work consists of extending the 3D gyrokinetic code Euterpe to also include the effect of the drifts induced by an imposed radial electrostatic potential. Simulations are performed in tokamak and helically symmetric configurations. The results indicate that this modified version of Euterpe can be used in studying more complex 3D fusion devices

  12. Particle transport in field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Tuszewski, M.; Linford, R.K.

    1982-05-01

    Particle transport in field-reversed configurations is investigated using a one-dimensional, nondecaying, magnetic field structure. The radial profiles are constrained to satisfy an average ..beta.. condition from two-dimensional equilibrium and a boundary condition at the separatrix to model the balance between closed and open-field-line transport. When applied to the FRX-B experimental data and to the projected performance of the FRX-C device, this model suggests that the particle confinement times obtained with anomalous lower-hybrid-drift transport are in good agreement with the available numerical and experimental data. Larger values of confinement times can be achieved by increasing the ratio of the separatrix radius to the conducting wall radius. Even larger increases in lifetimes might be obtained by improving the open-field-line confinement.

  13. Particle transport in field-reversed configurations

    International Nuclear Information System (INIS)

    Tuszewski, M.; Linford, R.K.

    1982-01-01

    Particle transport in field-reversed configurations is investigated using a one-dimensional, nondecaying, magnetic field structure. The radial profiles are constrained to satisfy an average β condition from two-dimensional equilibrium and a boundary condition at the separatrix to model the balance between closed and open-field-line transport. When applied to the FRX-B experimental data and to the projected performance of the FRX-C device, this model suggests that the particle confinement times obtained with anomalous lower-hybrid-drift transport are in good agreement with the available numerical and experimental data. Larger values of confinement times can be achieved by increasing the ratio of the separatrix radius to the conducting wall radius. Even larger increases in lifetimes might be obtained by improving the open-field-line confinement

  14. SpicyNodes Radial Map Engine

    Science.gov (United States)

    Douma, M.; Ligierko, G.; Angelov, I.

    2008-10-01

    The need for information has increased exponentially over the past decades. The current systems for constructing, exploring, classifying, organizing, and searching information face the growing challenge of enabling their users to operate efficiently and intuitively in knowledge-heavy environments. This paper presents SpicyNodes, an advanced user interface for difficult interaction contexts. It is based on an underlying structure known as a radial map, which allows users to manipulate and interact in a natural manner with entities called nodes. This technology overcomes certain limitations of existing solutions and solves the problem of browsing complex sets of linked information. SpicyNodes is also an organic system that projects users into a living space, stimulating exploratory behavior and fostering creative thought. Our interactive radial layout is used for educational purposes and has the potential for numerous other applications.

  15. Transport phenomena in the edge of Alcator C-Mod plasmas

    International Nuclear Information System (INIS)

    Terry, J.L.; Basse, N.P.; Cziegler, I.; Greenwald, M.; LaBombard, B.; Edlund, E.M.; Hughes, J.W.; Lin, L.; Lin, Y.; Porkolab, M.; Veto, B.; Wukitch, S.J.; Grulke, O.; Zweben, S.J.; Sampsell, M.

    2005-01-01

    Two aspects of edge turbulence and transport in Alcator C-Mod are explored. The quasi-coherent mode, an edge fluctuation present in Enhanced Da H-mode plasmas, is examined with regard to its role in the enhanced particle transport found in these plasmas, its in/out asymmetry, its poloidal wave number, and its radial width and location. It is shown to play a dominant role in the perpendicular particle transport. The QCM is not observed at the inboard midplane, indicating that its amplitude there is significantly smaller than on the outboard side. The peak amplitude of the QCM is found just inside the separatrix, with a radial width ≥5 mm, leading to a non-zero amplitude outside the separatrix and qualitatively consistent with its transport enhancement. Also examined are the characteristics of the intermittent convective transport, associated with 'blobs' and typically occurring in the scrape-off-layer. The blobs are qualitatively similar in L- and H-mode. When their sizes, occurrence frequencies, and magnitudes are compared, it is found that the blob size may be somewhat smaller in ELMfree H-Mode, and blob frequency is similar. A clear difference is seen in the blob magnitude in the far SOL, with ELMfree H-mode showing a smaller perturbation there than L-mode. As the Greenwald density limit is approached (n/n GW ≥0.7), blobs are seen inside the separatrix, consistent with the observation that the high cross-field transport region, normally found in the far scrape-off, penetrates the closed flux surfaces at high n/n GW . (author)

  16. Plasmator. A numerical code for simulation of plasma transport in Tokamaks

    International Nuclear Information System (INIS)

    Guasp, J.

    1979-01-01

    Plasmator is a flexible monodimensional numerical code for plasma transport in Tokamaks of circular cross-section, it allows neutral particle transport and impurity effects. The code leaves a total freedom in the analytical form of transport coefficients. It has been writen in Fortran-V for the UNIVAC-1100/80 from JEN and allows for the possibility of graphics for radial profiles and temporal evolution of the main plasma magnitudes, as well in three-dimensional as in two-dimensional representation either on a Calcomp plotter or in the printer. (author)

  17. Modelling and analysis of radial thermal stresses and temperature ...

    African Journals Online (AJOL)

    A theoretical investigation has been undertaken to study operating temperatures, heat fluxes and radial thermal stresses in the valves of a modern diesel engine with and without air-cavity. Temperatures, heat fluxes and radial thermal stresses were measured theoretically for both cases under all four thermal loading ...

  18. A novel integrated 4-DOF radial hybrid magnetic bearing for MSCMG

    Energy Technology Data Exchange (ETDEWEB)

    Jinji, Sun; Ziyan, Ju [School of Instrumentation Science & Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, Science and Technology on Inertial Laboratory, Beijing 100191 (China); Weitao, Han, E-mail: hanweitaotao@163.com [CRRC Qingdao Sifang CO., LTD, Qingdao 266111 (China); Gang, Liu [School of Instrumentation Science & Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, Science and Technology on Inertial Laboratory, Beijing 100191 (China)

    2017-01-01

    This paper proposes a novel integrated radial hybrid magnetic bearing (RHMB) for application with the small-sized magnetically suspended control moment gyroscope (MSCMG), which can control four degrees of freedom (4-DOFs), including two radial translational DOFs and two radial tilting DOFs, and provide the axial passive resilience. The configuration and working principle of the RHMB are introduced. Mathematical models of radial force, axial resilience and moment are established by using equivalent magnetic circuit method (EMCM), from which the radial force–radial displacement, radial force–current relationships are derived, as well as axial resilience–axial displacement, moment–tilting angle and moment–current. Finite element method (FEM) is also applied to analyze the performance and characteristics of the RHMB. The analysis results are in good agreement with that calculated by the EMCM, which is helpful in designing, optimizing and controlling the RHMB. The comparisons between the performances of the integrated 4-DOF RHMB and the traditional 4-DOF RHMB are made. The contrast results indicate that the proposed integrated 4-DOF RHMB possesses better performance compared to the traditional structure, such as copper loss, current stiffness, and tilting current stiffness. - Highlights: • An integrated 4-DOF RHMB is proposed for the small-sized MSCMG. • The 4-DOF RHMB has good linear force–displacement and force–current characteristics. • The RHMB has good linear moment–current and the moment–tilting angle characteristic.

  19. Impact of radial transport on the quasilinear plateau formation due to electron cyclotron wave absorption

    NARCIS (Netherlands)

    Peeters, A.G.; Westerhof, E.

    1996-01-01

    Numerical simulations using a three-dimensional Fokker-Planck code show that for small tokamaks the transport of electrons across the magnetic surfaces at a level consistent with anomalous transport has a large influence on the formation of the quasilinear plateau during electron cyclotron resonant

  20. Deduction of the rates of radial diffusion of protons from the structure of the Earth's radiation belts

    Energy Technology Data Exchange (ETDEWEB)

    Kovtyukh, Alexander S. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics

    2016-07-01

    From the data on the fluxes and energy spectra of protons with an equatorial pitch angle of α{sub 0} ∼ 90 during quiet and slightly disturbed (Kp≤2) periods, I directly calculated the value D{sub LL}, which is a measure of the rate of radial transport (diffusion) of trapped particles. This is done by successively solving the systems (chains) of integrodifferential equations which describe the balance of radial transport/acceleration and ionization losses of low-energy protons of the stationary belt. This was done for the first time. For these calculations, I used data of International Sun-Earth Explorer 1 (ISEE-1) for protons with an energy of 24 to 2081 keV at L = 2-10 and data of Explorer-45 for protons with an energy of 78.6 to 872 keV at L = 2-5. Ionization losses of protons (Coulomb losses and charge exchange) were calculated on the basis of modern models of the plasmasphere and the exosphere. It is shown that for protons with μ from ∝0.7 to ∝7 keV nT{sup -1} at L ∼ 4.5-10, the functions of D{sub LL} can be approximated by the following equivalent expressions: D{sub LL} ∼ 4.9 x 10{sup -14}μ{sup -4.1}L{sup 8.2} or D{sub LL} ∼ 1.3 x 10{sup 5}(EL){sup -4.1} or D{sub LL} ∼ 1.2 x 10{sup -9}f{sub d}{sup -4.1}, where f{sub d} is the drift frequency of the protons (in mHz), D{sub LL} is measured in s{sup -1}, E is measured in kiloelectronvolt and μ is measured in kiloelectronvolt per nanotesla. These results are consistent with the radial diffusion of particles under the action of the electric field fluctuations (pulsations) in the range of Pc6 and contradict the mechanism of the radial diffusion of particles under the action of sudden impulses (SIs) of the magnetic field and also under the action of substorm impulses of the electric field. During magnetic storms D{sub LL} increases, and the expressions for D{sub LL} obtained here can change completely.

  1. Reduction of the turbulent blob transport in the scrape-off layer by a resonant magnetic perturbation in TEXTOR

    International Nuclear Information System (INIS)

    Xu, Y.; Weynants, R.R.; Van Schoor, M.; Vergote, M.; Jachmich, S.; Jakubowski, M.W.; Mitri, M.; Schmitz, O.; Unterberg, B.; Reiser, D.; Finken, K.H.; Lehnen, M.; Beyer, P.

    2009-01-01

    During the static 6/2 Dynamic Ergodic Divertor experiments in TEXTOR, a significant influence of the edge resonant magnetic perturbation (RMP) on the turbulent blob transport in the scrape-off layer (SOL) has been observed. In ohmic discharges without the RMP, the blobs extend 4-5 cm deep into the SOL with a radially outward moving speed of about 1 km s -1 and hence constitute a strong outflow of mass. With the application of the RMP, the blob amplitudes and their radially moving velocity are both reduced, resulting in a significant reduction of the blob transport in the SOL. The reduction effect of the RMP on blobs is found to be robust to changes in the operational regime and to phasing variations of the RMP as well. The blob dynamics appears to be consistent with the paradigm of the radial motions of the blob structures driven by the interchange instability.

  2. MRI of radial displacement of the meniscus in the knee

    International Nuclear Information System (INIS)

    Chen Jian; Lv Houshan; Lao Shan; Guan Zhenpeng; Hong Nan; Liang Hao

    2006-01-01

    Objective: To describe the phenomenon of radial displacement of the meniscus of the knees in the study population with MR imaging, and to establish MRI diagnostic criteria for radial displacement of the meniscus and displacement index. Methods: MR signs of radial displacement of the meniscus were evaluated retrospectively in 398 patients with knee symptoms who were examined with non- weight bearing MR images from Jan. 2000 to Feb. 2004. The patients younger than 18 years old, with joint effusion or serious arthropathy were excluded and 312 patients were eligible to be enrolled in this study. The criterion for radial displacement of the meniscus was defined as the location of the edge of meniscal body beyond the femoral and tibial outer border line. A displacement index, defined as the ratio of meniscal overhang to meniscal width, was used to quantify meniscal displacement. Results: The prevalence of radial displacement of the meniscus was 16.7% (52/312) and 13.9% (21/151) in right knee and 19.3% (31/161 )in left knee, respectively. There was no significant difference between left and right knee (χ 2 =1.60, P>0.05) and the ratio between medial and lateral meniscus was 7.8:1. The average displacement index was 0.54±0.24. The displacement indices were significant higher in older group (F=3.63, P<0.05). The incidence and indices of radial displacement of the meniscus for patients under or above 50 year older were 12.0%(17/142), 0.46±0.22 and 20.6% (35/170), 0.64±0.20, respectively. Difference was highly significant (t=0.84, P<0.01). Conclusion: It was concluded that radial displacement of the meniscus in knees was not a rare finding with MR imaging in patients with knee symptoms. The incidence increased in older age group. Further investigations were recommended to understand the etiology and clinical significance of the phenomenon of radial displacement of the meniscus. (authors)

  3. Concentration of membrane antigens by forward transport and trapping in neuronal growth cones.

    Science.gov (United States)

    Sheetz, M P; Baumrind, N L; Wayne, D B; Pearlman, A L

    1990-04-20

    Formation of the nervous system requires that neuronal growth cones follow specific paths and then stop at recognition signals, sensed at the growth cone's leading edge. We used antibody-coated gold particles viewed by video-enhanced differential interference contrast microscopy to observe the distribution and movement of two cell surface molecules, N-CAM and the 2A1 antigen, on growth cones of cultured cortical neurons. Gold particles are occasionally transported forward at 1-2 microns/s to the leading edge where they are trapped but continue to move. Concentration at the edge persists after cytochalasin D treatment or ATP depletion, but active movements to and along edges cease. We also observed a novel outward movement of small cytoplasmic aggregates at 1.8 microns/s in filopodia. We suggest that active forward transport and trapping involve reversible attachment of antigens to and transport along cytoskeletal elements localized to edges of growth cones.

  4. Vortex Whistle in Radial Intake

    National Research Council Canada - National Science Library

    Tse, Man-Chun

    2004-01-01

    In a radial-to-axial intake with inlet guide vanes (IGV) at the entry, a strong flow circulation Gamma can be generated from the tangential flow components created by the IGVs when their setting exceed about halfclosing (approx. 45 deg...

  5. TRANSPORT BY INTERMITTENCY IN THE BOUNDARY OF THE DIII-D TOKAMAK

    International Nuclear Information System (INIS)

    BOEDO, JA; RUDAKOV, DL; MOYER, RA; MCKEE, GR; COLCHIN, RJ; SCHAFFER, MJ; STANGEBY, PG; WEST, WP; ALLEN, SL; EVANS, TE; FONCK, RJ; HOLLMANN, EM; KRASHENINNIKOV, S; LEONARD, AW; NEVINS, W; MAHDAVI, MA; PORTER, GD; TYNAN, GR; WHYTE, DG; XU, X

    2002-01-01

    A271 TRANSPORT BY INTERMITTENCY IN THE BOUNDARY OF THE DIII-D TOKAMAK. Intermittent plasma objectives (IPOs) featuring higher pressure than the surrounding plasma, are responsible for ∼ 50% of the E x B T radial transport in the scrape off layer (SOL) of the DIII-D tokamak in L- and H-mode discharges. Conditional averaging reveals that the IPOs are positively charged and feature internal poloidal electric fields of up to 4000 V/m. The IPOs move radially with E x B T /B 2 velocities of ∼ 2600 m/s near the last closed flux surface (LCFS), and ∼ 330 m/s near the wall. The IPOs slow down as they shrink in radial size from 4 cm at the LCFS to 0.5 cm near the wall. The skewness (i.e. asymmetry of fluctuations from the average) of probe and beam emission spectroscopy (BES) data indicate IPO formation at or near the LCFS and the existence of positive and negative IPOs which move in opposite directions. The particle content of the IPOs at the LCFS is linearly dependent on the local density and decays over ∼ 3 cm into the SOL while their temperature decays much faster (∼ 1 cm)

  6. Radial force measurement of endovascular stents: Influence of stent design and diameter.

    Science.gov (United States)

    Matsumoto, Takuya; Matsubara, Yutaka; Aoyagi, Yukihiko; Matsuda, Daisuke; Okadome, Jun; Morisaki, Koichi; Inoue, Kentarou; Tanaka, Shinichi; Ohkusa, Tomoko; Maehara, Yoshihiko

    2016-04-01

    Angioplasty and endovascular stent placement is used in case to rescue the coverage of main branches to supply blood to brain from aortic arch in thoracic endovascular aortic repair. This study assessed mechanical properties, especially differences in radial force, of different endovascular and thoracic stents. We analyzed the radial force of three stent models (Epic, E-Luminexx and SMART) stents using radial force-tester method in single or overlapping conditions. We also analyzed radial force in three thoracic stents using Mylar film testing method: conformable Gore-TAG, Relay, and Valiant Thoracic Stent Graft. Overlapping SMART stents had greater radial force than overlapping Epic or Luminexx stents (P stents was greater than that of all three endovascular stents (P stents, site of deployment, and layer characteristics. In clinical settings, an understanding of the mechanical characteristics, including radial force, is important in choosing a stent for each patient. © The Author(s) 2015.

  7. PROLONGED RADIAL ARTERY SPASM IN THE CATHETERIZATION LABORATORY - RELIEF BY PHARMACOLOGICAL INTERVENTION

    Directory of Open Access Journals (Sweden)

    Krishna Kumar

    2010-11-01

    Full Text Available Radial spasm is often very prolonged and painful to the patient. Here, we describe a novel way to deal with the same. The total spasm lasted over 4 hours. A 3.4 6 JR catheter was introduced via the femoral route and papav arine one ampoule was injected directly into the right subclavian artery. After about 10 min we were able to pull out the radial catheter. Radial angiography is a simple procedure with reportedly less complications 1,2. How ever ,it has one major complication radial spasm. We describe here a patient with radial spasm that persisted for more than 2 hours and how we dealt with it.

  8. Rotary and radial forcing effects on center-of-mass locomotion dynamics

    International Nuclear Information System (INIS)

    Shen, Z H; Larson, P L; Seipel, J E

    2014-01-01

    Rotary and radial forcing are two common actuation methods for legged robots. However, these two orthogonal methods of center-of-mass (CoM) forcing have not been compared as potentially alternative strategies of actuation. In this paper, we compare the CoM stability and energetics of running with rotary and radial actuation through the simulation of two models: the rotary-forced spring-loaded inverted pendulum (rotary-forced-SLIP), and the radially-forced-SLIP. We model both radial and rotary actuation in the simplest way, applying them as a constant force during the stance portion of the gait. A simple application of constant rotary forcing throughout stance is capable of producing fully-asymptotically stable motion; however, a similarly constant application of radial forcing throughout the stance is not capable of producing stable solutions. We then allow both the applied rotary and radial forcing functions to turn on or off based on the occurrence of the mid-stance event, which breaks the symmetry of actuation during stance towards a net forward propulsion. We find that both a rotary force applied in the first half of stance and a radial force applied in the second half of stance, are capable of stabilizing running. Interestingly, these two forcing methods improve the motion stability in different ways. Rotary forcing first reduces then greatly increases the size of the stable parameter region when gradually increased. Radial forcing expands the stable parameter region, but only in a moderate way. Also, it is found that parameter region stabilized by rotary and radial forcing are largely complementary. Overall, rotary forcing can better stabilize running for both constant and event-based forcing functions that were attempted. This indicates that rotary forcing has an inherent capability of stabilizing running, even when minimal time-or-event-or-state feedback is present. Radial forcing, however, tends to be more energy efficient when compared to rotary forcing

  9. The First Experience of Triple Nerve Transfer in Proximal Radial Nerve Palsy.

    Science.gov (United States)

    Emamhadi, Mohammadreza; Andalib, Sasan

    2018-01-01

    Injury to distal portion of posterior cord of brachial plexus leads to palsy of radial and axillary nerves. Symptoms are usually motor deficits of the deltoid muscle; triceps brachii muscle; and extensor muscles of the wrist, thumb, and fingers. Tendon transfers, nerve grafts, and nerve transfers are options for surgical treatment of proximal radial nerve palsy to restore some motor functions. Tendon transfer is painful, requires a long immobilization, and decreases donor muscle strength; nevertheless, nerve transfer produces promising outcomes. We present a patient with proximal radial nerve palsy following a blunt injury undergoing triple nerve transfer. The patient was involved in a motorcycle accident with complete palsy of the radial and axillary nerves. After 6 months, on admission, he showed spontaneous recovery of axillary nerve palsy, but radial nerve palsy remained. We performed triple nerve transfer, fascicle of ulnar nerve to long head of the triceps branch of radial nerve, flexor digitorum superficialis branch of median nerve to extensor carpi radialis brevis branch of radial nerve, and flexor carpi radialis branch of median nerve to posterior interosseous nerve, for restoration of elbow, wrist, and finger extensions, respectively. Our experience confirmed functional elbow, wrist, and finger extensions in the patient. Triple nerve transfer restores functions of the upper limb in patients with debilitating radial nerve palsy after blunt injuries. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Basic equations of interfacial area transport in gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Kataoka, I.; Yoshida, K.; Naitoh, M.; Okada, H.; Morii, T.

    2011-01-01

    The rigorous and consistent formulations of basic equations of interfacial area transport were derived using correlation functions of characteristic function of each phase and velocities of each phase. Turbulent transport term of interfacial area concentration was consistently derived and related to the difference between interfacial velocity and averaged velocity of each phase. Constitutive equations of turbulent transport terms of interfacial area concentration were proposed for bubbly flow. New transport model and constitutive equations were developed for churn flow. These models and constitutive equations are validated by experimental data of radial distributions of interfacial area concentration in bubbly and churn flow. (author)

  11. Theoretical issues in tokamak confinement: (i) Internal/edge transport barriers and (ii) runaway avalanche confinement

    International Nuclear Information System (INIS)

    Connor, J.W.; Helander, P.; Thyagaraja, A.; Andersson, F.; Fueloep, T.; Eriksson, L.-G.; Romanelli, M.

    2001-01-01

    This paper summarises a number of distinct, but related, pieces of work on key confinement issues for tokamaks, in particular the formation of internal and edge transport barriers, both within turbulent and neoclassical models, and radial diffusion of avalanching runaway electrons. First-principle simulations of tokamak turbulence and transport using the two-fluid, electromagnetic, global code CUTIE are described. The code has demonstrated the spontaneous formation of internal transport barriers near mode rational surfaces, in qualitative agreement with observations on JET and RTP. The theory of neoclassical transport in an impure, toroidal plasma has been extended to allow for steeper pressure and temperature gradients than are usually considered, and is then found to become nonlinear under conditions typical of the tokamak edge. For instance, the particle flux is found to be a nonmonotonic function of the gradients, thus allowing for a bifurcation in the ion particle flux. Finally, it is shown that radial diffusion caused by magnetic fluctuations can effectively suppress avalanches of runaway electrons if the fluctuation amplitude exceeds δB/B∼10 -3 . (author)

  12. A visual study of radial inward choked flow of liquid nitrogen.

    Science.gov (United States)

    Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.

    1973-01-01

    Data and high speed movies were acquired on pressurized subcooled liquid nitrogen flowing radially inward through a 0.0076 cm gap. The stagnation pressure ranged from 0.7 to 4 MN/sq m. Steady radial inward choked flow appears equivalent to steady choked flow through axisymmetric nozzles. Transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets. The critical mass flow rate data for the transient case appear different from those for the steady case. On the mass flow rate vs pressure map, the slope and separation of the isotherms appear to be less for transient than for steady radial choked flow.

  13. Mejoramiento de imágenes usando funciones de base radial Images improvement using radial basis functions

    Directory of Open Access Journals (Sweden)

    Jaime Alberto Echeverri Arias

    2009-07-01

    Full Text Available La eliminación del ruido impulsivo es un problema clásico del procesado no lineal para el mejoramiento de imágenes y las funciones de base radial de soporte global son útiles para enfrentarlo. Este trabajo presenta una técnica de interpolación que disminuye eficientemente el ruido impulsivo en imágenes, mediante el uso de interpolante obtenido por funciones de base radial en el marco de la investigación enfocada en el desarrollo de un Sistema de recuperación de imágenes de recursos acuáticos amazónicos. Esta técnica primero etiqueta los píxeles de la imagen que son ruidosos y, mediante la interpolación, genera un valor de reconstrucción de dicho píxel usando sus vecinos. Los resultados obtenidos son comparables y muchas veces mejores que otras técnicas ya publicadas y reconocidas. Según el análisis de resultados, se puede aplicar a imágenes con altas tasas de ruido, manteniendo un bajo error de reconstrucción de los píxeles "ruidosos", así como la calidad visual.Global support radial base functions are effective in eliminating impulsive noise in non-linear processing. This paper introduces an interpolation technique which efficiently reduces image impulsive noise by means of an interpolant obtained through radial base functions. These functions have been used in a research project designed to develop a system for the recovery of images of Amazonian aquatic resources. This technique starts with the tagging by interpolation of noisy image pixels. Thus, a value of reconstruction for the noisy pixels is generated using neighboring pixels. The results obtained with this technique have proved comparable and often better than those obtained with previously known techniques. According to results analysis, this technique can be successfully applied on images with high noise levels. The results are low error in noisy pixel reconstruction and better visual quality.

  14. Sirenomelia with radial dysplasia.

    Science.gov (United States)

    Kulkarni, M L; Abdul Manaf, K M; Prasannakumar, D G; Kulkarni, Preethi M

    2004-05-01

    Sirenomelia is a rare anomaly usually associated with other multiple malformations. In this communication the authors report a case of sirenomelia associated with multiple malformations, which include radial hypoplasia also. Though several theories have been proposed regarding the etiology of multiple malformation syndromes in the past, the recent theory of primary developmental defect during blastogenesis holds good in this case.

  15. Comparison of Deterministic and Probabilistic Radial Distribution Systems Load Flow

    Science.gov (United States)

    Gupta, Atma Ram; Kumar, Ashwani

    2017-12-01

    Distribution system network today is facing the challenge of meeting increased load demands from the industrial, commercial and residential sectors. The pattern of load is highly dependent on consumer behavior and temporal factors such as season of the year, day of the week or time of the day. For deterministic radial distribution load flow studies load is taken as constant. But, load varies continually with a high degree of uncertainty. So, there is a need to model probable realistic load. Monte-Carlo Simulation is used to model the probable realistic load by generating random values of active and reactive power load from the mean and standard deviation of the load and for solving a Deterministic Radial Load Flow with these values. The probabilistic solution is reconstructed from deterministic data obtained for each simulation. The main contribution of the work is: Finding impact of probable realistic ZIP load modeling on balanced radial distribution load flow. Finding impact of probable realistic ZIP load modeling on unbalanced radial distribution load flow. Compare the voltage profile and losses with probable realistic ZIP load modeling for balanced and unbalanced radial distribution load flow.

  16. Introducing radiality constraints in capacitated location-routing problems

    Directory of Open Access Journals (Sweden)

    Eliana Mirledy Toro Ocampo

    2017-03-01

    Full Text Available In this paper, we introduce a unified mathematical formulation for the Capacitated Vehicle Routing Problem (CVRP and for the Capacitated Location Routing Problem (CLRP, adopting radiality constraints in order to guarantee valid routes and eliminate subtours. This idea is inspired by formulations already employed in electric power distribution networks, which requires a radial topology in its operation. The results show that the proposed formulation greatly improves the convergence of the solver.

  17. Analysis on Coupled Vibration of a Radially Polarized Piezoelectric Cylindrical Transducer

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2017-12-01

    Full Text Available Coupled vibration of a radially polarized piezoelectric cylindrical transducer is analyzed with the mechanical coupling coefficient method. The method has been utilized to analyze the metal cylindrical transducer and the axially polarized piezoelectric cylindrical transducer. In this method, the mechanical coupling coefficient is introduced and defined as the stress ratio in different directions. Coupled vibration of the cylindrical transducer is regarded as the interaction of the plane radial vibration of a ring and the longitudinal vibration of a tube. For the radially polarized piezoelectric cylindrical transducer, the radial and longitudinal electric admittances as functions of mechanical coupling coefficients and angular frequencies are derived, respectively. The resonance frequency equations are obtained. The dependence of resonance frequency and mechanical coupling coefficient on aspect ratio is studied. Vibrational distributions on the surfaces of the cylindrical transducer are presented with experimental measurement. On the support of experiments, this work is verified and provides a theoretical foundation for the analysis and design of the radially polarized piezoelectric cylindrical transducer.

  18. Characteristics of convective heat transport in a packed pebble-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abdulmohsin, Rahman S., E-mail: rsar62@mst.edu [Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 400 West 11th Street/231 Schrenk Hall, Rolla, MO 65409-1230 (United States); Al-Dahhan, Muthanna H., E-mail: aldahhanm@mst.edu [Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 400 West 11th Street/231 Schrenk Hall, Rolla, MO 65409-1230 (United States); Department of Nuclear Engineering, 301 W. 14th St./222 Fulton Hall (United States)

    2015-04-01

    Highlights: • A fast-response heat transfer probe has been developed and used in this work. • Heat transport has been quantified in terms of local heat transfer coefficients. • The method of the electrically heated single sphere in packing has been applied. • The heat transfer coefficient increases from the center to the wall of packed bed. • This work advancing the knowledge of heat transport in the studied packed bed. - Abstract: Obtaining more precise results and a better understanding of the heat transport mechanism in the dynamic core of packed pebble-bed reactors is needed because this mechanism poses extreme challenges to the reliable design and efficient operation of these reactors. This mechanism can be quantified in terms of a solid-to-gas convective heat transfer coefficient. Therefore, in this work, the local convective heat transfer coefficients and their radial profiles were measured experimentally in a separate effect pilot-plant scale and cold-flow experimental setup of 0.3 m in diameter, using a sophisticated noninvasive heat transfer probe of spherical type. The effect of gas velocity on the heat transfer coefficient was investigated over a wide range of Reynolds numbers of practical importance. The experimental investigations of this work include various radial locations along the height of the bed. It was found that an increase in coolant gas flow velocity causes an increase in the heat transfer coefficient and that effect of the gas flow rate varies from laminar to turbulent flow regimes at all radial positions of the studied packed pebble-bed reactor. The results show that the local heat transfer coefficient increases from the bed center to the wall due to the change in the bed structure, and hence, in the flow pattern of the coolant gas. The findings clearly indicate that one value of an overall heat transfer coefficient cannot represent the local heat transfer coefficients within the bed; therefore, correlations are needed to

  19. Revisited neoclassical transport theory for steep, collisional plasma edge profiles

    International Nuclear Information System (INIS)

    Rogister, A.L.

    1994-01-01

    Published neoclassical results are misleading as concerns the plasma edge for they do not adequately take the peculiar local conditions into account, in particular the fact that the density and temperature variation length-scales are quite small. Coupled novel neoclassical equations obtain, not only for the evolution of the density and temperatures, but also for the radial electric field and the evolution of the parallel ion momentum: gyro-stresses and inertia indeed upset the otherwise de facto ambipolarity of particle transport and a radial electric field necessarily builds up. The increased nonlinear character of these revisited neoclassical equations widens the realm of possible plasma behaviors. (author)

  20. Transport in a fusion plasma in presence of a chaotic magnetic field

    International Nuclear Information System (INIS)

    Nguyen, F.

    1992-09-01

    In the tokamak Tore Supra, the magnetic field ensuring the confinement is stochastic at the plasma edge due to a resonant perturbation. This perturbation is created by a set of six helicoidal coils inside the vacuum vessel, the ergodic divertor. The first part of the study concerns the analysis of the transport of particles and energy in a fusion plasma in presence of a stochastic magnetic field, without physical wall. The effective transport of electrons, i.e. heat transport, increases. The ions transport increases too but less than heat transport. The discrepancy produces a mean radial electric field. The second part is devoted to the influence of the physical wall. The topology of the magnetic connexion on the wall is precisely determined with the code Mastoc. The transport of particles and energy is then described from the confined plasma until the wall. This study enlights severals important observations of the experience Tore Supra in the ergodic divertor configuration: the spreading of the power deposition on the wall components without anomalous concentration, the robustness of this configuration relatively to misalignment, the edge structures visible in H α light during plasma reattachment. In order to study the transport of impurity ions, a variational approach of minimum entropy production has been developped. This principle is applied to the calculation of the neoclassical diffusion of impurity ions with the radial electric field. This electric field deconfines ions if the pressure profile is not balanced by a Lorentz force, i.e. if the plasma is locked in rotation, poloidally and toroidally, because of magnetic perturbation or friction force

  1. Plasma Signatures of Radial Field Power Dropouts

    International Nuclear Information System (INIS)

    Lucek, E.A.; Horbury, T.S.; Balogh, A.; McComas, D.J.

    1998-01-01

    A class of small scale structures, with a near-radial magnetic field and a drop in magnetic field fluctuation power, have recently been identified in the polar solar wind. An earlier study of 24 events, each lasting for 6 hours or more, identified no clear plasma signature. In an extension of that work, radial intervals lasting for 4 hours or more (89 in total), have been used to search for a statistically significant plasma signature. It was found that, despite considerable variations between intervals, there was a small but significant drop, on average, in plasma temperature, density and β during these events

  2. Reble, a radially converging electron beam accelerator

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Prestwich, K.R.

    1976-01-01

    The Reble accelerator at Sandia Laboratories is described. This accelerator was developed to provide an experimental source for studying the relevant diode physics, beam propagation, beam energy deposition in a gas using a radially converging e-beam. The nominal parameters for Reble are 1 MV, 200 kA, 20 ns e-beam pulse. The anode and cathode are concentric cylinders with the anode as the inner cylinder. The radial beam can be propagated through the thin foil anode into the laser gas volume. The design and performance of the various components of the accelerator are presented

  3. Whole core transport calculation for the VHTR hexagonal core

    International Nuclear Information System (INIS)

    Cho, J. Y.; Kim, K. S.; Lee, C. C.; Joo, H. G.

    2007-01-01

    Recently, the DeCART code which performs the whole core calculation by coupling the radial MOC transport kernel with the axial nodal kernel has equipped a kernel to deal with the hexagonal geometry and applied to the VHTR hexagonal core to examine the accuracy and the computational efficiency of the implemented kernel. The implementation includes a modular ray tracing module based on the hexagonal assembly and a multi-group CMFD module to perform an efficient transport calculation. The requirements for the modular ray are: (1) the assembly based path linking and (2) the complete reflection capabilities. The first requirement is met by adjusting the azimuthal angle and the ray spacing for the modular ray to construct a core ray by the path linking. The second requirement is met by expanding the constructed azimuthal angle in the range of [0,30 degree] to the remained range to reflect completely at the core boundaries. The considered reflecting surface angles for the complete reflection are 30n's (n=1,2,1,12). The CMFD module performs the equivalent diffusion calculation to the radial MOC transport calculation based on the homogenized structure units. The structure units include the hexagonal pin cells and gap cells appearing at the assembly boundary. Therefore, the CMFD module is programmed to deal with the unstructured cells such as the gap cells. The CMFD equation consists of the two parts of (1) the conventional FDM and (2) the current corrective parts. Since the second part of the CMFD equation guarantees the reproducibility of the radial MOC transport solutions for the cell averaged reaction rate and the net current at the cell surfaces, how to build the first part of the CMFD equation is not important. Therefore, the first part of the CMFD equation is roughly built by using the normal distance from the gravity center to the surface. The VHTR core uses helium as a coolant which is realized as a void hole in a neutronics calculation. This void hole which

  4. Observational hints of radial migration in disc galaxies from CALIFA

    NARCIS (Netherlands)

    Ruiz-Lara, T.; Pérez, I.; Florido, E.; Sánchez-Blázquez, P.; Méndez-Abreu, J.; Sánchez-Menguiano, L.; Sánchez, S. F.; Lyubenova, M.; Falcón-Barroso, J.; van de Ven, G.; Marino, R. A.; de Lorenzo-Cáceres, A.; Catalán-Torrecilla, C.; Costantin, L.; Bland-Hawthorn, J.; Galbany, L.; García-Benito, R.; Husemann, B.; Kehrig, C.; Márquez, I.; Mast, D.; Walcher, C. J.; Zibetti, S.; Ziegler, B.

    2017-01-01

    Context. According to numerical simulations, stars are not always kept at their birth galactocentric distances but they have a tendency to migrate. The importance of this radial migration in shaping galactic light distributions is still unclear. However, if radial migration is indeed important,

  5. Radial mixing of material in the asterodial zone

    International Nuclear Information System (INIS)

    Ruzmaikina, T.V.; Safronov, V.S.; Weidenschilling, S.J.

    1989-01-01

    The asteroid belt shows radial zoning of compositional structure. The most abundant types are successively S, C and P types from the inner to the outer parts of the main belt, and D type in the Trojan clouds. Boundaries between compositional zones are not sharp, but gradual transitions over scales ∼1 AU in semimajor axis. The authors examine processes for producing this structure before, during and after the accretion of asteroids. The initial structure is established by temperature and composition gradients in the turbulent solar nebula during the collapse of the presolar cloud. The radial scale of the zoning, comparable to the disk thickness, favors disk models with relatively low turbulent viscosity. Radial decay of solid bodies due to gas drag during settling to the central plane and planetesimal formation probably causes only a small degree of mixing, due to the systematic nature of drag-induced motions

  6. Mixed-Degree Spherical Simplex-Radial Cubature Kalman Filter

    Directory of Open Access Journals (Sweden)

    Shiyuan Wang

    2017-01-01

    Full Text Available Conventional low degree spherical simplex-radial cubature Kalman filters often generate low filtering accuracy or even diverge for handling highly nonlinear systems. The high-degree Kalman filters can improve filtering accuracy at the cost of increasing computational complexity; nevertheless their stability will be influenced by the negative weights existing in the high-dimensional systems. To efficiently improve filtering accuracy and stability, a novel mixed-degree spherical simplex-radial cubature Kalman filter (MSSRCKF is proposed in this paper. The accuracy analysis shows that the true posterior mean and covariance calculated by the proposed MSSRCKF can agree accurately with the third-order moment and the second-order moment, respectively. Simulation results show that, in comparison with the conventional spherical simplex-radial cubature Kalman filters that are based on the same degrees, the proposed MSSRCKF can perform superior results from the aspects of filtering accuracy and computational complexity.

  7. Transport analysis of oscillatory state for plasma dynamics in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2012-11-01

    In helical plasmas, two kinds of the oscillation for the plasma quantities are experimentally observed. Firstly, the limit cycle phenomena in the temporal evolution of the electrostatic potential, namely the electric pulsation, have been observed in the core region. The temporally self-generated oscillation of the radial electric field is shown as a simulation result in the core region. The dependence of the transition point for the radial electric field on the source is examined. Secondly, the density limit oscillation in the helical device was reported. To realize the oscillation phenomena at the density limit, the temporal evolution of the density profile is newly included in a simulation when the radiative loss is calculated in the edge region. Two stationary plasma states, where the transport loss or radiative loss is dominant in the edge region, are obtained. The dynamics of the plasma quantity is found to show the transition from the transport-dominated state to the radiation-dominated state. (author)

  8. Chamber transport for heavy ion fusion

    International Nuclear Information System (INIS)

    Olson, Craig L.

    2014-01-01

    A brief review is given of research on chamber transport for HIF (heavy ion fusion) dating from the first HIF Workshop in 1976 to the present. Chamber transport modes are categorized into ballistic transport modes and channel-like modes. Four major HIF reactor studies are summarized (HIBALL-II, HYLIFE-II, Prometheus-H, OSIRIS), with emphasis on the chamber transport environment. In general, many beams are used to provide the required symmetry and to permit focusing to the required small spots. Target parameters are then discussed, with a summary of the individual heavy ion beam parameters required for HIF. The beam parameters are then classified as to their line charge density and perveance, with special emphasis on the perveance limits for radial space charge spreading, for the space charge limiting current, and for the magnetic (Alfven) limiting current. The major experiments on ballistic transport (SFFE, Sabre beamlets, GAMBLE II, NTX, NDCX) are summarized, with specific reference to the axial electron trapping limit for charge neutralization. The major experiments on channel-like transport (GAMBLE II channel, GAMBLE II self-pinch, LBNL channels, GSI channels) are discussed. The status of current research on HIF chamber transport is summarized, and the value of future NDCX-II transport experiments for the future of HIF is noted

  9. Impurities in a non-axisymmetric plasma: Transport and effect on bootstrap current

    Energy Technology Data Exchange (ETDEWEB)

    Mollén, A., E-mail: albertm@chalmers.se [Department of Applied Physics, Chalmers University of Technology, Göteborg (Sweden); Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); Landreman, M. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Smith, H. M.; Helander, P. [Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); Braun, S. [Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); German Aerospace Center, Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany)

    2015-11-15

    Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21, 042503 (2014)] which employs the full linearized Fokker-Planck-Landau operator, to calculate neoclassical impurity transport coefficients for a Wendelstein 7-X (W7-X) magnetic configuration. We compare SFINCS calculations with theoretical asymptotes in the high collisionality limit. We observe and explain a 1/ν-scaling of the inter-species radial transport coefficient at low collisionality, arising due to the field term in the inter-species collision operator, and which is not found with simplified collision models even when momentum correction is applied. However, this type of scaling disappears if a radial electric field is present. We also use SFINCS to analyze how the impurity content affects the neoclassical impurity dynamics and the bootstrap current. We show that a change in plasma effective charge Z{sub eff} of order unity can affect the bootstrap current enough to cause a deviation in the divertor strike point locations.

  10. Analysis of radial runout for symmetric and asymmetric HDD spindle motors with rotor eccentricity

    International Nuclear Information System (INIS)

    Kim, T.-J.; Kim, K.-T.; Hwang, S.-M.; Lee, S.-B.; Park, N.-G.

    2001-01-01

    Radial runout of disk drive spindle is one of the major limiting factors in achieving higher track densities in hard disk drives. Mechanical, magnetic and their coupled origins, such as unbalanced mass, reaction forces and magnetic forces, introduce radial runout of spindle motors. In this paper, radial magnetic forces are calculated with respect to the various rotor eccentricities using analytic method. Based on the results of the radial magnetic forces, the radial runout of the spindle motor is analyzed using finite element and transfer matrices. Results show that an asymmetric motor has a worse performance on unbalanced magnetic forces and radial runout when mechanical and magnetic coupling exists

  11. The radial-hedgehog solution in Landau–de Gennes' theory for nematic liquid crystals

    KAUST Repository

    MAJUMDAR, APALA

    2011-09-06

    We study the radial-hedgehog solution in a three-dimensional spherical droplet, with homeotropic boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. The radial-hedgehog solution is a candidate for a global Landau-de Gennes minimiser in this model framework and is also a prototype configuration for studying isolated point defects in condensed matter physics. The static properties of the radial-hedgehog solution are governed by a non-linear singular ordinary differential equation. We study the analogies between Ginzburg-Landau vortices and the radial-hedgehog solution and demonstrate a Ginzburg-Landau limit for the Landau-de Gennes theory. We prove that the radial-hedgehog solution is not the global Landau-de Gennes minimiser for droplets of finite radius and sufficiently low temperatures and prove the stability of the radial-hedgehog solution in other parameter regimes. These results contain quantitative information about the effect of geometry and temperature on the properties of the radial-hedgehog solution and the associated biaxial instabilities. © Copyright Cambridge University Press 2011.

  12. The radial-hedgehog solution in Landau–de Gennes' theory for nematic liquid crystals

    KAUST Repository

    MAJUMDAR, APALA

    2011-01-01

    We study the radial-hedgehog solution in a three-dimensional spherical droplet, with homeotropic boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. The radial-hedgehog solution is a candidate for a global Landau-de Gennes minimiser in this model framework and is also a prototype configuration for studying isolated point defects in condensed matter physics. The static properties of the radial-hedgehog solution are governed by a non-linear singular ordinary differential equation. We study the analogies between Ginzburg-Landau vortices and the radial-hedgehog solution and demonstrate a Ginzburg-Landau limit for the Landau-de Gennes theory. We prove that the radial-hedgehog solution is not the global Landau-de Gennes minimiser for droplets of finite radius and sufficiently low temperatures and prove the stability of the radial-hedgehog solution in other parameter regimes. These results contain quantitative information about the effect of geometry and temperature on the properties of the radial-hedgehog solution and the associated biaxial instabilities. © Copyright Cambridge University Press 2011.

  13. Radial nerve palsy in mid/distal humeral fractures: is early exploration effective?

    Science.gov (United States)

    Keighley, Geffrey; Hermans, Deborah; Lawton, Vidya; Duckworth, David

    2018-03-01

    Radial nerve palsies are a common complication with displaced distal humeral fractures. This case series examines the outcomes of early operative exploration and decompression of the nerve with fracture fixation with the view that this provides a solid construct for optimisation of nerve recovery. A total of 10 consecutive patients with a displaced distal humeral fracture and an acute radial nerve palsy were treated by the senior author by open reduction and internal fixation of the distal humerus and exploration and decompression of the radial nerve. Motor function and sensation of the radial nerve was assessed in the post-operative period every 2 months or until full recovery of the radial nerve function had occurred. All patients (100%) had recovery of motor and sensation function of their upper limb in the radial nerve distribution over a 12-month period. Recovery times ranged between 4 and 32 weeks, with the median time to recovery occurring at 26 weeks and the average time to full recovery being 22.9 weeks. Wrist extension recovered by an average of 3 months (range 2-26 weeks) and then finger extension started to recover 2-6 weeks after this. Disability of the arm, shoulder and hand scores ranged from 0 to 11.8 at greater than 1 year post-operatively. Our study demonstrated that early operative exploration of the radial nerve when performing an open stabilization of displaced distal humeral fractures resulted in a 100% recovery of the radial nerve. © 2017 Royal Australasian College of Surgeons.

  14. Observational hints of radial migration in disc galaxies from CALIFA

    Science.gov (United States)

    Ruiz-Lara, T.; Pérez, I.; Florido, E.; Sánchez-Blázquez, P.; Méndez-Abreu, J.; Sánchez-Menguiano, L.; Sánchez, S. F.; Lyubenova, M.; Falcón-Barroso, J.; van de Ven, G.; Marino, R. A.; de Lorenzo-Cáceres, A.; Catalán-Torrecilla, C.; Costantin, L.; Bland-Hawthorn, J.; Galbany, L.; García-Benito, R.; Husemann, B.; Kehrig, C.; Márquez, I.; Mast, D.; Walcher, C. J.; Zibetti, S.; Ziegler, B.; Califa Team

    2017-07-01

    Context. According to numerical simulations, stars are not always kept at their birth galactocentric distances but they have a tendency to migrate. The importance of this radial migration in shaping galactic light distributions is still unclear. However, if radial migration is indeed important, galaxies with different surface brightness (SB) profiles must display differences in their stellar population properties. Aims: We investigate the role of radial migration in the light distribution and radial stellar content by comparing the inner colour, age, and metallicity gradients for galaxies with different SB profiles. We define these inner parts, avoiding the bulge and bar regions and up to around three disc scale lengths (type I, pure exponential) or the break radius (type II, downbending; type III, upbending). Methods: We analysed 214 spiral galaxies from the CALIFA survey covering different SB profiles. We made use of GASP2D and SDSS data to characterise the light distribution and obtain colour profiles of these spiral galaxies. The stellar age and metallicity profiles were computed using a methodology based on full-spectrum fitting techniques (pPXF, GANDALF, and STECKMAP) to the Integral Field Spectroscopic CALIFA data. Results: The distributions of the colour, stellar age, and stellar metallicity gradients in the inner parts for galaxies displaying different SB profiles are unalike as suggested by Kolmogorov-Smirnov and Anderson-Darling tests. We find a trend in which type II galaxies show the steepest profiles of all, type III show the shallowest, and type I display an intermediate behaviour. Conclusions: These results are consistent with a scenario in which radial migration is more efficient for type III galaxies than for type I systems, where type II galaxies present the lowest radial migration efficiency. In such a scenario, radial migration mixes the stellar content, thereby flattening the radial stellar properties and shaping different SB profiles. However

  15. Radially global δf computation of neoclassical phenomena in a tokamak pedestal

    International Nuclear Information System (INIS)

    Landreman, Matt; Parra, Felix I; Catto, Peter J; Ernst, Darin R; Pusztai, Istvan

    2014-01-01

    Conventional radially-local neoclassical calculations become inadequate if the radial gradient scale lengths of the H-mode pedestal become as small as the poloidal ion gyroradius. Here, we describe a radially global δf continuum code that generalizes neoclassical calculations to allow for stronger gradients. As with conventional neoclassical calculations, the formulation is time-independent and requires only the solution of a single sparse linear system. We demonstrate precise agreement with an asymptotic analytic solution of the radially global kinetic equation in the appropriate limits of aspect ratio and collisionality. This agreement depends crucially on accurate treatment of finite orbit width effects. (paper)

  16. CeasIng Cpap At standarD criteriA (CICADA): impact on weight gain, time to full feeds and caffeine use.

    Science.gov (United States)

    Broom, Margaret; Ying, Lei; Wright, Audrey; Stewart, Alice; Abdel-Latif, Mohamed E; Shadbolt, Bruce; Todd, David A

    2014-09-01

    In our previous randomised controlled trial (RCT), we have shown in preterm babies (PBs) Cpap At standarD criteriA (CICADA (method 1)) compared with cycling off continuous positive airway pressure (CPAP) gradually (method 2) or cycling off CPAP gradually with low flow air/oxygen during periods off CPAP (method 3) reduces CPAP cessation time in PBs CPAP; the CICADA method, does not adversely affect weight gain, time to reach full feeds and may reduce time to cease caffeine in PBs <30 weeks gestation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Effects of Radial Gap Ratio between Impeller and Vaned Diffuser on Performance of Centrifugal Compressors

    Directory of Open Access Journals (Sweden)

    Mohammadjavad Hosseini

    2017-07-01

    Full Text Available A high-performance centrifugal compressor is needed for numerous industry applications nowadays. The radial gap ratio between the impeller and the diffuser vanes plays an important role in the improvement of the compressor performance. In this paper, the effects of the radial gap ratio on a high-pressure ratio centrifugal compressor are investigated using numerical simulations. The performance and the flow field are compared for six different radial gap ratios and five rotational speeds. The minimal radial gap ratio was 1.04 and the maximal was 1.14. Results showed that reducing the radial gap ratio decreases the choke mass flow rate. For the tip-speed Mach number (impeller inlet with Mu < 1, the pressure recovery and the loss coefficients are not sensitive to the radial gap ratio. However, for Mu ≥ 1, the best radial gap ratio is 1.08 for the pressure recovery and the loss coefficients. Furthermore, the impeller pressure ratio and efficiency are reduced by increasing the radial gap ratio. Finally, the compressor efficiency was compared for different radial gap ratios. For Mu < 1, the radial gap ratio does not have noticeable effects. In comparison, the radial gap ratio of 1.08 has the best performance for Mu ≥ 1.

  18. Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere.

    Science.gov (United States)

    Zhou, Guoquan

    2011-11-21

    A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail. © 2011 Optical Society of America

  19. Study on the radial vibration and acoustic field of an isotropic circular ring radiator.

    Science.gov (United States)

    Lin, Shuyu; Xu, Long

    2012-01-01

    Based on the exact analytical theory, the radial vibration of an isotropic circular ring is studied and its electro-mechanical equivalent circuit is obtained. By means of the equivalent circuit model, the resonance frequency equation is derived; the relationship between the radial resonance frequency, the radial displacement amplitude magnification and the geometrical dimensions, the material property is analyzed. For comparison, numerical method is used to simulate the radial vibration of isotropic circular rings. The resonance frequency and the radial vibrational displacement distribution are obtained, and the radial radiation acoustic field of the circular ring in radial vibration is simulated. It is illustrated that the radial resonance frequencies from the analytical method and the numerical method are in good agreement when the height is much less than the radius. When the height becomes large relative to the radius, the frequency deviation from the two methods becomes large. The reason is that the exact analytical theory is limited to thin circular ring whose height must be much less than its radius. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Surface interpolation with radial basis functions for medical imaging

    International Nuclear Information System (INIS)

    Carr, J.C.; Beatson, R.K.; Fright, W.R.

    1997-01-01

    Radial basis functions are presented as a practical solution to the problem of interpolating incomplete surfaces derived from three-dimensional (3-D) medical graphics. The specific application considered is the design of cranial implants for the repair of defects, usually holes, in the skull. Radial basis functions impose few restrictions on the geometry of the interpolation centers and are suited to problems where interpolation centers do not form a regular grid. However, their high computational requirements have previously limited their use to problems where the number of interpolation centers is small (<300). Recently developed fast evaluation techniques have overcome these limitations and made radial basis interpolation a practical approach for larger data sets. In this paper radial basis functions are fitted to depth-maps of the skull's surface, obtained from X-ray computed tomography (CT) data using ray-tracing techniques. They are used to smoothly interpolate the surface of the skull across defect regions. The resulting mathematical description of the skull's surface can be evaluated at any desired resolution to be rendered on a graphics workstation or to generate instructions for operating a computer numerically controlled (CNC) mill

  1. Optical cage generated by azimuthal- and radial-variant vector beams.

    Science.gov (United States)

    Man, Zhongsheng; Bai, Zhidong; Li, Jinjian; Zhang, Shuoshuo; Li, Xiaoyu; Zhang, Yuquan; Ge, Xiaolu; Fu, Shenggui

    2018-05-01

    We propose a method to generate an optical cage using azimuthal- and radial-variant vector beams in a high numerical aperture optical system. A new kind of vector beam that has azimuthal- and radial-variant polarization states is proposed and demonstrated theoretically. Then, an integrated analytical model to calculate the electromagnetic field and Poynting vector distributions of the input azimuthal- and radial-variant vector beams is derived and built based on the vector diffraction theory of Richards and Wolf. From calculations, a full polarization-controlled optical cage is obtained by simply tailoring the radial index of the polarization, the uniformity U of which is up to 0.7748, and the cleanness C is zero. Additionally, a perfect optical cage can be achieved with U=1, and C=0 by introducing an amplitude modulation; its magnetic field and energy flow are also demonstrated in detail. Such optical cages may be helpful in applications such as optical trapping and high-resolution imaging.

  2. Linear radial pulsation theory. Lecture 5

    International Nuclear Information System (INIS)

    Cox, A.N.

    1983-01-01

    We describe a method for getting an equilibrium stellar envelope model using as input the total mass, the envelope mass, the surface effective temperature, the total surface luminosity, and the composition of the envelope. Then wih the structure of the envelope model known, we present a method for obtaining the raidal pulsation periods and growth rates for low order modes. The large amplitude pulsations observed for the yellow and red giants and supergiants are always these radial models, but for the stars nearer the main sequence, as for all of our stars and for the white dwarfs, there frequently are nonradial modes occuring also. Application of linear theory radial pulsation theory is made to the giant star sigma Scuti variables, while the linear nonradial theory will be used for the B stars in later lectures

  3. Optimization of a radially cooled pebble bed reactor - HTR2008-58117

    International Nuclear Information System (INIS)

    Boer, B.; Kloosterman, J. L.; Lathouwers, D.; Van Der Hagen, T. H. J. J.; Van Dam, H.

    2008-01-01

    By altering the coolant flow direction in a pebble bed reactor from axial to radial, the pressure drop can be reduced tremendously. In this case the coolant flows from the outer reflector through the pebble bed and finally to flow paths in the inner reflector. As a consequence, the fuel temperatures are elevated due to the reduced heat transfer of the coolant. However, the power profile and pebble size in a radially cooled pebble bed reactor can be optimized to achieve lower fuel temperatures than current axially cooled designs, while the low pressure drop can be maintained. The radial power profile in the core can be altered by adopting multi-pass fuel management using several radial fuel zones in the core. The optimal power profile yielding a flat temperature profile is derived analytically and is approximated by radial fuel zoning. In this case, the pebbles pass through the outer region of the core first and each consecutive pass is located in a fuel zone closer to the inner reflector. Thereby, the resulting radial distribution of the fissile material in the core is influenced and the temperature profile is close to optimal. The fuel temperature in the pebbles can be further reduced by reducing the standard pebble diameter from 6 cm to a value as low as I cm. An analytical investigation is used to demonstrate the effects on the fuel temperature and pressure drop for both radial and axial cooling. Finally, two-dimensional numerical calculations were performed, using codes for neutronics, thermal-hydraulics and fuel depletion analysis, in order to validate the results for the optimized design that were obtained from the analytical investigations. It was found that for a radially cooled design with an optimized power profile and reduced pebble diameter (below 3.5 cm) both a reduction in the pressure drop (Δp = -2.6 bar), which increases the reactor efficiency with several percent, and a reduction in the maximum fuel temperature (ΔT = -50 deg. C) can be achieved

  4. Radiographic study of distal radial physeal closure in thoroughbred horses

    International Nuclear Information System (INIS)

    Vulcano, L.C.; Mamprim, M.J.; Muniz, L.M.R.; Moreira, A.F.; Luna, S.P.L.

    1997-01-01

    Monthly radiography was performed to study distal radial physeal closure in ten male and ten female Throughbred horses. The height, thoracic circumference and metacarpus circumference were also measured, Distal radial physeal closure time was sooner in females than males, and took 701 +/- 37 and 748 +/- 55 days respectively

  5. Plasma transport in stochastic magnetic field caused by vacuum resonant magnetic perturbations at diverted tokamak edge

    International Nuclear Information System (INIS)

    Park, G.; Chang, C. S.; Joseph, I.; Moyer, R. A.

    2010-01-01

    A kinetic transport simulation for the first 4 ms of the vacuum resonant magnetic perturbations (RMPs) application has been performed for the first time in realistic diverted DIII-D tokamak geometry [J. Luxon, Nucl. Fusion 42, 614 (2002)], with the self-consistent evaluation of the radial electric field and the plasma rotation. It is found that, due to the kinetic effects, the stochastic parallel thermal transport is significantly reduced when compared to the standard analytic model [A. B. Rechester and M. N. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978)] and the nonaxisymmetric perpendicular radial particle transport is significantly enhanced from the axisymmetric level. These trends agree with recent experimental result trends [T. E. Evans, R. A. Moyer, K. H. Burrell et al., Nat. Phys. 2, 419 (2006)]. It is also found, as a side product, that an artificial local reduction of the vacuum RMP fields in the vicinity of the magnetic separatrix can bring the kinetic simulation results to a more detailed agreement with experimental plasma profiles.

  6. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration

    Science.gov (United States)

    Edwards, Aurélie; Layton, Anita T.

    2015-01-01

    The goal of this study was to investigate the reciprocal interactions among oxygen (O2), nitric oxide (NO), and superoxide (O2−) and their effects on medullary oxygenation and urinary output. To accomplish that goal, we developed a detailed mathematical model of solute transport in the renal medulla of the rat kidney. The model represents the radial organization of the renal tubules and vessels, which centers around the vascular bundles in the outer medulla and around clusters of collecting ducts in the inner medulla. Model simulations yield significant radial gradients in interstitial fluid oxygen tension (Po2) and NO and O2− concentration in the OM and upper IM. In the deep inner medulla, interstitial fluid concentrations become much more homogeneous, as the radial organization of tubules and vessels is not distinguishable. The model further predicts that due to the nonlinear interactions among O2, NO, and O2−, the effects of NO and O2− on sodium transport, osmolality, and medullary oxygenation cannot be gleaned by considering each solute's effect in isolation. An additional simulation suggests that a sufficiently large reduction in tubular transport efficiency may be the key contributing factor, more so than oxidative stress alone, to hypertension-induced medullary hypoxia. Moreover, model predictions suggest that urine Po2 could serve as a biomarker for medullary hypoxia and a predictor of the risk for hospital-acquired acute kidney injury. PMID:25651567

  7. Effects of relativistic small radial component on atomic photoionization cross sections

    International Nuclear Information System (INIS)

    Liu Xiaobin; Xing Yongzhong; Sun Xiaowei

    2008-01-01

    The effects of relativistic small radial component on atomic photoionization cross sections have been studied within relativistic average self-consistent field theory. Relativistic effects are relatively unimportant for low photon energy, along with a review of high-energy photoionization the relativistic effects are quite important. The effects of relativistic small radial component on photoionization process should show breakdown when the nuclear finite-size effects is taken into account. The compression of wavefunction into the space near nucleus is so strong in highly charged ions that the electronic radius greatly decreases, and the effects of relativistic small radial component on photoionization cross sections turn to stronger than ordinary atoms. Since relativistic effects are extremely sensitive to the behavior of small radial component, the results are in good agreement with relativistic effects on photoionization cross section. (authors)

  8. Bessel-like beams modulated by arbitrary radial functions

    Science.gov (United States)

    Herman; Wiggins

    2000-06-01

    An approximate method for determining the radial and axial intensity of a Bessel-like beam is presented for the general case in which a radial Bessel distribution of any order is modulated by an arbitrary function. For Bessel-Gauss, generalized Bessel-Gauss, and Bessel-super-Gauss beams, this simple approximation yields results that are very close to the exact values, while they are exact for Bessel beams. A practical beam that can be generated with a combination of simple lenses is also analyzed and illustrated.

  9. Bilateral radial neck fractures – A Case Report

    Directory of Open Access Journals (Sweden)

    ABY Ng

    2007-11-01

    Full Text Available Radial head and neck fractures are the most frequently seen elbow fractures. The usual cause of this injury is a fall onto an outstretched hand with a partly flexed elbow. We report here an unusual case of bilateral non-displaced radial neck fractures in a patient who presented with complaints of pain in both elbows following a simple fall. This case highlights the need for a high index of suspicion in the diagnosis of multiple injuries, no matter how `trivial` the mechanism of injury.

  10. Confinement and related transport in Extrap geometry

    International Nuclear Information System (INIS)

    Tendler, M.

    1983-01-01

    The properties of the plasma dynamic equilibrium are investigated for the Extrap magnetic confinement geometry. The temperatures achieved so far in the high-#betta# pinches are much lower than the predicted values. Here, it is shown that the particle containment in Extrap may be improved as compared to the other pinches due to the electrostatic confinement. An analytic solution for the profiles of the plasma parameters are found under the assumption that the energy is lost primarily in the radial direction by heat conduction and convection. An estimate of the radial particle confinement time is given, showing favourable scaling with plasma density and temperature. The conventional assumption of a uniform current density is shown to be unjustified in the case of an inhomogeneous electron temperature. An analytical expression is found for the pinch radius at different mechanisms of the heat transport. (orig.)

  11. Heating and transport in TFTR D-T plasmas

    International Nuclear Information System (INIS)

    Zarnstorff, M.C.; Scott, S.D.

    1994-01-01

    The confinement and heating of supershot plasmas are significantly enhanced with tritium beam injection relative to deuterium injection in TFTR. The global energy confinement and local thermal transport are analyzed for deuterium and tritium fueled plasmas to quantify their dependence on the average mass of the hydrogenic ions. The radial profiles of the deuterium and tritium densities are determined from the DT fusion neutron emission profile

  12. Radial Color Gradient in a Globular Cluster 1. M68

    Directory of Open Access Journals (Sweden)

    Sukyoung Yi

    1990-12-01

    Full Text Available Stars in M68 from the observed color-magnitude diagrams with CCD were integrated to find any radial gradient. The result shows that M68 has a slightly bluer core. The main cause of these calculated radial color variations seems to come from the random distribution of giants.

  13. MEASUREMENTS ON, AND MODELING OF DIFFUSIVE AND ADVECTIVE RADON TRANSPORT IN SOIL

    NARCIS (Netherlands)

    VANDERGRAAF, ER; WITTEMAN, GAA; VANDERSPOEL, WH; ANDERSEN, CE; DEMEIJER, RJ

    1994-01-01

    Results are presented of measurements on radon transport in soil under controlled conditions with a laboratory facility consisting of a stainless steel vessel (height and diameter 2 m) filled with a uniform column of sand. At several depths under the sand surface, probes are radially inserted into

  14. The contribution of CXCL12-expressing radial glia cells to neuro-vascular patterning during human cerebral cortex development

    Directory of Open Access Journals (Sweden)

    Mariella eErrede

    2014-10-01

    Full Text Available This study was conducted on human developing brain by laser confocal and transmission electron microscopy to make a detailed analysis of important features of blood-brain barrier microvessels and possible control mechanisms of vessel growth and differentiation during cerebral cortex vascularization. The blood-brain barrier status of cortex microvessels was examined at a defined stage of cortex development, at the end of neuroblast waves of migration and before cortex lamination, with blood-brain barrier-endothelial cell markers, namely tight junction proteins (occludin and claudin-5 and influx and efflux transporters (Glut-1 and P-glycoprotein, the latter supporting evidence for functional effectiveness of the fetal blood-brain barrier. According to the well-known roles of astroglia cells on microvessel growth and differentiation, the early composition of astroglia/endothelial cell relationships was analysed by detecting the appropriate astroglia, endothelial, and pericyte markers. GFAP, chemokine CXCL12, and connexin 43 (Cx43 were utilized as markers of radial glia cells, CD105 (endoglin as a marker of angiogenically activated endothelial cells, and proteoglycan NG2 as a marker of immature pericytes. Immunolabeling for CXCL12 showed the highest level of the ligand in radial glial fibres in contact with the growing cortex microvessels. These specialized contacts, recognizable on both perforating radial vessels and growing collaterals, appeared as CXCL12-reactive en passant, symmetrical and asymmetrical vessel-specific RG fibre swellings. At the highest confocal resolution, these RG varicosities showed a CXCL12-reactive dot-like content whose microvesicular nature was confirmed by ultrastructural observations. A further analysis of radial glial varicosities reveals colocalization of CXCL12 with connexin Cx43, which is possibly implicated in vessel-specific chemokine signalling.

  15. Results from transient transport experiments in Rijnhuizen tokamak project: Heat convection, transport barriers and 'non-local' effects

    International Nuclear Information System (INIS)

    Mantica, P.; Gorini, G.; Hogeweij, G.M.D.; Kloe, J. de; Lopez Cardozo, N.J.; Schilham, A.M.R.

    2001-01-01

    An overview of experimental transport studies performed on the Rijnhuizen Tokamak Project (RTP) using transient transport techniques in both Ohmic and ECH dominated plasmas is presented. Modulated Electron Cyclotron Heating (ECH) and oblique pellet injection (OPI) have been used to induce electron temperature (T e ) perturbations at different radial locations. These were used to probe the electron transport barriers observed near low order rational magnetic surfaces in ECH dominated steady-state RTP plasmas. Layers of inward electron heat convection in off-axis ECH plasmas were detected with modulated ECH. This suggests that RTP electron transport barriers consist of heat pinch layers rather than layers of low thermal diffusivity. In a different set of experiments, OPI triggered a transient rise of the core T e due to an increase of the T e gradient in the 1< q<2 region. These transient transport barriers were probed with modulated ECH and found to be due to a transient drop of the electron heat diffusivity, except for off-axis ECH plasmas, where a transient inward pinch is also observed. Transient transport studies in RTP could not solve this puzzling interplay between heat diffusion and convection in determining an electron transport barrier. They nevertheless provided challenging experimental evidence both for theoretical modelling and for future experiments. (author)

  16. Turbulent edge transport in the Princeton Beta Experiment-Modified high confinement mode

    Science.gov (United States)

    Tynan, G. R.; Schmitz, L.; Blush, L.; Boedo, J. A.; Conn, R. W.; Doerner, R.; Lehmer, R.; Moyer, R.; Kugel, H.; Bell, R.; Kaye, S.; Okabayashi, M.; Sesnic, S.; Sun, Y.

    1994-10-01

    The first probe measurements of edge turbulence and transport in a neutral beam induced high confinement mode (H-mode) are reported. A strong negative radial electric field is directly observed in H-mode. A transient suppression of normalized ion saturation and floating potential fluctuation levels occurs at the low confinement mode to high confinement mode (L-H) transition, followed by a recovery to near low mode (L-mode) levels. The average poloidal wave number and the poloidal wave-number spectral width are decreased, and the correlation between fluctuating density and potential is reduced. A large-amplitude coherent oscillation, localized to the strong radial electric field region, is observed in H-mode but does not cause transport. In H-mode the effective turbulent diffusion coefficient is reduced by an order of magnitude inside the last closed flux surface and in the scrape-off layer. The results are compared with a heuristic model of turbulence suppression by velocity-shear stabilization.

  17. Management of post-traumatic elbow instability after failed radial head excision: A case report

    Directory of Open Access Journals (Sweden)

    Georgios Touloupakis

    2017-02-01

    Full Text Available Radial head excision has always been a safe commonly used surgical procedure with a satisfactory clinical outcome for isolated comminuted radial head fractures. However, diagnosis of elbow instability is still very challenging and often underestimated in routine orthopaedic evaluation. We present the case of a 21-years old female treated with excision after radial head fracture, resulting in elbow instability. The patient underwent revision surgery after four weeks. We believe that ligament reconstruction without radial head substitution is a safe alternative choice for Mason III radial head fractures accompanied by complex ligament lesions.

  18. Autorefraction versus subjective refraction in a radially asymmetric multifocal intraocular lens

    NARCIS (Netherlands)

    Linden, J.W.M. van der; Vrijman, V.; El-Saady, R.; Meulen, I.J. van der; Mourits, M.P.; Lapid-Gortzak, R.

    2014-01-01

    PURPOSE: To evaluate whether the automated refraction (AR) correlates with subjective manifest (MR) refraction in eyes implanted with radially asymmetric multifocal intraocular lens (IOLs). METHODS: This retrospective study evaluated 52 eyes (52 patients) implanted with a radially asymmetric

  19. RTOD- RADIAL TURBINE OFF-DESIGN PERFORMANCE ANALYSIS

    Science.gov (United States)

    Glassman, A. J.

    1994-01-01

    The RTOD program was developed to accurately predict radial turbine off-design performance. The radial turbine has been used extensively in automotive turbochargers and aircraft auxiliary power units. It is now being given serious consideration for primary powerplant applications. In applications where the turbine will operate over a wide range of power settings, accurate off-design performance prediction is essential for a successful design. RTOD predictions have already illustrated a potential improvement in off-design performance offered by rotor back-sweep for high-work-factor radial turbines. RTOD can be used to analyze other potential performance enhancing design features. RTOD predicts the performance of a radial turbine (with or without rotor blade sweep) as a function of pressure ratio, speed, and stator setting. The program models the flow with the following: 1) stator viscous and trailing edge losses; 2) a vaneless space loss between the stator and the rotor; and 3) rotor incidence, viscous, trailing-edge, clearance, and disk friction losses. The stator and rotor viscous losses each represent the combined effects of profile, endwall, and secondary flow losses. The stator inlet and exit and the rotor inlet flows are modeled by a mean-line analysis, but a sector analysis is used at the rotor exit. The leakage flow through the clearance gap in a pivoting stator is also considered. User input includes gas properties, turbine geometry, and the stator and rotor viscous losses at a reference performance point. RTOD output includes predicted turbine performance over a specified operating range and any user selected flow parameters. The RTOD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 100K of 8 bit bytes. The RTOD program was developed in 1983.

  20. Leakage Account for Radial Face Contact Seal in Aircraft Engine Support

    Science.gov (United States)

    Vinogradov, A. S.; Sergeeva, T. V.

    2018-01-01

    The article is dedicated to the development of a methodology for the radial face contact seal design taking into consideration the supporting elements deformations in different aircraft engine operating modes. Radial face contact seals are popular in the aircraft engines bearing support. However, there are no published leakage calculation methodologies of these seals. Radial face contact seal leakage is determined by the gap clearance in the carbon seal ring split. In turn, the size gap clearance depends on the deformation of the seal assembly parts and from the engine operation. The article shows the leakage detection sequence in the intershaft radial face contact seal of the compressor support for take-off and cruising modes. Evaluated calculated leakage values (2.4 g/s at takeoff and 0.75 g/s at cruising) go with experience in designing seals.

  1. Clinical Outcomes following median to radial nerve transfers

    Science.gov (United States)

    Ray, Wilson Z.; Mackinnon, Susan E.

    2010-01-01

    Purpose In this study the authors evaluate the clinical outcomes in patients with radial nerve palsy who underwent nerve transfers utilizing redundant fascicles of median nerve (innervating the flexor digitorum superficialis and flexor carpi radialis muscles) to the posterior interosseous nerve and the nerve to the extensor carpi radialis brevis. Methods A retrospective review of the clinical records of 19 patients with radial nerve injuries who underwent nerve transfer procedures using the median nerve as a donor nerve were included. All patients were evaluated using the Medical Research Council (MRC) grading system. Results The mean age of patients was 41 years (range 17 – 78 years). All patients received at least 12 months of follow-up (20.3 ± 5.8 months). Surgery was performed at a mean of 5.7 ± 1.9 months post-injury. Post-operative functional evaluation was graded according to the following scale: grades MRC 0/5 - MRC 2/5 were considered poor outcomes, while MRC of 3/5 was a fair result, MRC grade 4/5 was a good result, and grade 4+/5 was considered an excellent outcome. Seventeen patients (89%) had a complete radial nerve palsy while two patients (11%) had intact wrist extension but no finger or thumb extension. Post-operatively all patients except one had good to excellent recovery of wrist extension. Twelve patients recovered good to excellent finger and thumb extension, two patients had fair recovery, five patients had a poor recovery. Conclusions The radial nerve is a commonly injured nerve, causing significant morbidity in affected patients. The median nerve provides a reliable source of donor nerve fascicles for radial nerve reinnervation. This transfer was first performed in 1999 and evolved over the subsequent decade. The important nuances of both surgical technique and motor re-education critical for to the success of this transfer have been identified and are discussed. PMID:21168979

  2. Free radial forearm adiposo-fascial flap for inferior maxillectomy defect reconstruction

    Science.gov (United States)

    Thankappan, Krishnakumar; Trivedi, Nirav P.; Sharma, Mohit; Kuriakose, Moni A.; Iyer, Subramania

    2009-01-01

    A free radial forearm fascial flap has been described for intraoral reconstruction. Adiposo-fascial flap harvesting involves few technical modifications from the conventional radial forearm fascio-cutaneous free flap harvesting. We report a case of inferior maxillectomy defect reconstruction in a 42-year-old male with a free radial forearm adiposo-fascial flap with good aesthetic and functional outcome with minimal primary and donor site morbidity. The technique of raising the flap and closing the donor site needs to be meticulous in order to achieve good cosmetic and functional outcome. PMID:19881028

  3. Free radial forearm adiposo-fascial flap for inferior maxillectomy defect reconstruction

    Directory of Open Access Journals (Sweden)

    Thankappan Krishnakumar

    2009-01-01

    Full Text Available A free radial forearm fascial flap has been described for intraoral reconstruction. Adiposo-fascial flap harvesting involves few technical modifications from the conventional radial forearm fascio-cutaneous free flap harvesting. We report a case of inferior maxillectomy defect reconstruction in a 42-year-old male with a free radial forearm adiposo-fascial flap with good aesthetic and functional outcome with minimal primary and donor site morbidity. The technique of raising the flap and closing the donor site needs to be meticulous in order to achieve good cosmetic and functional outcome.

  4. The radial distribution of plutonium in high burnup UO2 fuels

    International Nuclear Information System (INIS)

    Lassmann, K.; O'Carroll, C.; Laar, J. van de; Walker, C.T.

    1994-01-01

    A new model (TUBRNP) is described which predicts the radial power density distribution as a function of burnup (and hence the radial burnup profile as a function of time) together with the radial profile of uranium and plutonium isotopes. Comparisons between measurements and the predictions of the TUBRNP model are made on fuels with enrichments in the range 2.9 to 8.25% and with burnups between 21 000 and 64 000 MWd/t. It is shown to be in excellent agreement with experimental measurements and is a marked improvement on earlier versions. (orig.)

  5. Combined Radial-Pedal Access Strategy and Radial-Pedal Rendezvous in the Revascularization of Complex Total Occlusions of the Superficial Femoral Artery (the "No Femoral Access" Strategy).

    Science.gov (United States)

    Hanna, Elias B; Prout, Davey L

    2016-04-01

    To describe the combined use of radial-pedal access for recanalization of complex superficial femoral artery (SFA) occlusions unsuitable for transfemoral recanalization. Patients are selected for this strategy if they have a long (≥ 10 cm) SFA occlusion with unfavorable aortoiliac anatomy, an absent ostial stump, or severely diseased and calcified distal reconstitution. Left radial artery and distal anterior or posterior tibial artery are accessed with 6-F and 4-F sheaths, respectively. The SFA lesion is crossed retrogradely with a 0.035-inch wire system. If retrograde crossing is not immediately successful, transradial subintimal tracking and radial-pedal subintimal rendezvous are used to allow retrograde reentry. Fifteen patients (mean age 62 ± 5 years; 11 men) have been treated in this fashion, and frequently stented, through the tibiopedal access. Seven patients required radial-pedal rendezvous to facilitate retrograde reentry. Two patients underwent transradial iliac stenting during the same session, and 1 patient underwent transradial kissing angioplasty of the profunda. No major complication occurred in any patient. After the procedure, the pulse across the accessed tibial artery was palpable in all patients. In patients with long and complex SFA occlusion unsuitable for transfemoral recanalization, a radial-pedal strategy can overcome revascularization obstacles. © The Author(s) 2016.

  6. Oculoauriculovertebral spectrum with radial anomaly in child.

    Science.gov (United States)

    Taksande, Amar; Vilhekar, Krishna

    2013-01-01

    Oculoauriculovertebral spectrum (OAVS) or Goldenhar syndrome is a wide spectrum of congenital anomalies that involves structures arising from the first and second branchial arches. It is characterized by a wide spectrum of symptoms and physical features. These abnormalities mainly involve the cheekbones, jaws, mouth, ears, eyes, or vertebrae. Other conditions with ear and/or radial involvement, such as, the Nager syndrome, Holt-Oram syndrome, Radial-renal syndrome, facioauriculoradial dysplasia, Fanconi anemia, and Vertebral, Anal atresia, Cardiac, Trachea, Esophageal, Renal, and Limb (VACTERL) association should be considered for differential diagnosis. Here we report a child who had facial asymmetry, microsomia, microtia, congenital facial nerve palsy, conductive hearing loss, skin tags, iris coloboma, and preaxial polydactyly.

  7. Oculoauriculovertebral spectrum with radial anomaly in child

    Directory of Open Access Journals (Sweden)

    Amar Taksande

    2013-01-01

    Full Text Available Oculoauriculovertebral spectrum (OAVS or Goldenhar syndrome is a wide spectrum of congenital anomalies that involves structures arising from the first and second branchial arches. It is characterized by a wide spectrum of symptoms and physical features. These abnormalities mainly involve the cheekbones, jaws, mouth, ears, eyes, or vertebrae. Other conditions with ear and/or radial involvement, such as, the Nager syndrome, Holt-Oram syndrome, Radial-renal syndrome, facioauriculoradial dysplasia, Fanconi anemia, and Vertebral, Anal atresia, Cardiac, Trachea, Esophageal, Renal, and Limb (VACTERL association should be considered for differential diagnosis. Here we report a child who had facial asymmetry, microsomia, microtia, congenital facial nerve palsy, conductive hearing loss, skin tags, iris coloboma, and preaxial polydactyly.

  8. WWER radial reflector modeling by diffusion codes

    International Nuclear Information System (INIS)

    Petkov, P. T.; Mittag, S.

    2005-01-01

    The two commonly used approaches to describe the WWER radial reflectors in diffusion codes, by albedo on the core-reflector boundary and by a ring of diffusive assembly size nodes, are discussed. The advantages and disadvantages of the first approach are presented first, then the Koebke's equivalence theory is outlined and its implementation for the WWER radial reflectors is discussed. Results for the WWER-1000 reactor are presented. Then the boundary conditions on the outer reflector boundary are discussed. The possibility to divide the library into fuel assembly and reflector parts and to generate each library by a separate code package is discussed. Finally, the homogenization errors for rodded assemblies are presented and discussed (Author)

  9. Evidence for Radial Anisotropy in Earth's Upper Inner Core from Normal Modes

    Science.gov (United States)

    Lythgoe, K.; Deuss, A. F.

    2017-12-01

    The structure of the uppermost inner core is related to solidification of outer core material at the inner core boundary. Previous seismic studies using body waves indicate an isotropic upper inner core, although radial anisotropy has not been considered since it cannot be uniquely determined by body waves. Normal modes, however, do constrain radial anisotropy in the inner core. Centre frequency measurements indicate 2-5 % radial anisotropy in the upper 100 km of the inner core, with a fast direction radially outwards and a slow direction along the inner core boundary. This seismic structure provides constraints on solidification processes at the inner core boundary and appears consistent with texture predicted due to anisotropic inner core growth.

  10. Blade bowing effects on radial equilibrium of inlet flow in axial compressor cascades

    Directory of Open Access Journals (Sweden)

    Han XU

    2017-10-01

    Full Text Available The circumferentially averaged equation of the inlet flow radial equilibrium in axial compressor was deduced. It indicates that the blade inlet radial pressure gradient is closely related to the radial component of the circumferential fluctuation (CF source item. Several simplified cascades with/without aerodynamic loading were numerically studied to investigate the effects of blade bowing on the inlet flow radial equilibrium. A data reduction program was conducted to obtain the CF source from three-dimensional (3D simulation results. Flow parameters at the passage inlet were focused on and each term in the radial equilibrium equation was discussed quantitatively. Results indicate that the inviscid blade force is the inducement of the inlet CF due to geometrical asymmetry. Blade bowing induces variation of the inlet CF, thus changes the radial pressure gradient and leads to flow migration before leading edge (LE in the cascades. Positive bowing drives the inlet flow to migrate from end walls to mid-span and negative bowing turns it to the reverse direction to build a new equilibrium. In addition, comparative studies indicate that the inlet Mach number and blade loading can efficiently impact the effectiveness of blade bowing on radial equilibrium in compressor design.

  11. Vertical, radial and drag force analysis of superconducting magnetic bearings

    International Nuclear Information System (INIS)

    Cansiz, Ahmet

    2009-01-01

    The behavior of the force between a permanent magnet (PM) and a high temperature superconductor (HTS) was tested with the frozen-image model based on flux pinning. It was found that the associated dipole moment assumptions of the method of the frozen image underestimate the force somewhat; thus a quadrupole moment analysis is proposed. The radial and drag forces associated with the rotation of the PM levitated above the HTS were measured by using a force transducer and by means of a cantilevered beam technique. The radial force was found not to be dependent on the radial direction, and the least radial force was found to be periodic with an angular displacement during the slow rotation of the PM relative to the HTS. The periodicity behavior of the force is attributed to the geometric eccentricity from the magnetization distribution of the PM and HTS. The drag force associated with the torsional stiffness of the levitated PM during the low and high rotational speeds was incorporated with the data from the literature.

  12. Model-Based Optimization of Scaffold Geometry and Operating Conditions of Radial Flow Packed-Bed Bioreactors for Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Danilo Donato

    2014-01-01

    Full Text Available Radial flow perfusion of cell-seeded hollow cylindrical porous scaffolds may overcome the transport limitations of pure diffusion and direct axial perfusion in the realization of bioengineered substitutes of failing or missing tissues. Little has been reported on the optimization criteria of such bioreactors. A steady-state model was developed, combining convective and dispersive transport of dissolved oxygen with Michaelis-Menten cellular consumption kinetics. Dimensional analysis was used to combine more effectively geometric and operational variables in the dimensionless groups determining bioreactor performance. The effectiveness of cell oxygenation was expressed in terms of non-hypoxic fractional construct volume. The model permits the optimization of the geometry of hollow cylindrical constructs, and direction and magnitude of perfusion flow, to ensure cell oxygenation and culture at controlled oxygen concentration profiles. This may help engineer tissues suitable for therapeutic and drug screening purposes.

  13. Galactic Cosmic-ray Transport in the Global Heliosphere: A Four-Dimensional Stochastic Model

    Science.gov (United States)

    Florinski, V.

    2009-04-01

    We study galactic cosmic-ray transport in the outer heliosphere and heliosheath using a newly developed transport model based on stochastic integration of the phase-space trajectories of Parker's equation. The model employs backward integration of the diffusion-convection transport equation using Ito calculus and is four-dimensional in space+momentum. We apply the model to the problem of galactic proton transport in the heliosphere during a negative solar minimum. Model results are compared with the Voyager measurements of galactic proton radial gradients and spectra in the heliosheath. We show that the heliosheath is not as efficient in diverting cosmic rays during solar minima as predicted by earlier two-dimensional models.

  14. Autorefraction versus subjective refraction in a radially asymmetric multifocal intraocular lens

    NARCIS (Netherlands)

    van der Linden, Jan Willem; Vrijman, Violette; Al-Saady, Rana; El-Saady, Rana; van der Meulen, Ivanka J.; Mourits, Maarten P.; Lapid-Gortzak, Ruth

    2014-01-01

    To evaluate whether the automated refraction (AR) correlates with subjective manifest (MR) refraction in eyes implanted with radially asymmetric multifocal intraocular lens (IOLs). This retrospective study evaluated 52 eyes (52 patients) implanted with a radially asymmetric multifocal IOL (LS-312

  15. Utility of the puncture of the radial artery in interventionist radiology

    International Nuclear Information System (INIS)

    Triana Rodriguez, Carlos Eduardo; Montes S, Mauricio; Barragan F, Jaime; Ucros Diaz Pablo; Ucros Diaz, Ignacio; Castillo, Luis Fernando

    1998-01-01

    We present the radial artery access, previous evaluation of collateral circulation with Allen's Test, as an alternative vascular access in patients with contraindications for femoral or axillary approaches. The radial artery puncture offers advantages, such as diminished bleeding and hematoma formation

  16. Core density fluctuations in reverse magnetic shear plasmas with internal transport barrier on JT-60U

    International Nuclear Information System (INIS)

    Nazikian, R.; Shinohara, K.; Yoshino, R.; Fujita, T.; Shirai, H.; Kramer, G.T.

    1999-01-01

    First measurements of the radial correlation length of density fluctuations in JT-60U plasmas with internal transport barrier (ITB) is reported. The measurements are obtained using a newly installed correlation reflectometer operating in the upper X-mode. Before transport barrier formation in the low beam power current ramp-up phase of the discharge, reflectometer measurements indicate density fluctuation levels n-tilde/n∼0.1-0.2% and radial correlation lengths 2-3 cm (k r p i ≤0.5) in the central plasma region (r/a r p i ∼3. However, fluctuation levels are considerably higher than measured near the magnetic axis. Reflectometer measurements obtained at the foot of the ITB also indicate high fluctuation levels compared to measurements in the central region of the discharge. (author)

  17. Transverse and radial flow in intermediate energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Vestfall, D. Gary

    1997-01-01

    We have studied transverse and radial flow in nucleus-nucleus collisions ranging in energy from 15 to 155 MeV/nucleon. We have measured the impact parameter dependence of the balance energy for Ar + Sc and compared the results with Quantum Molecular Dynamics calculations with and without momentum dependence. We have shown that transverse flow and the balance energy dependence on the isospin of the system using the systems 58 Fe + 58 Fe, 58 Ni + 58 Ni, and 58 Mn + 58 Fe. These results are compared with Boltzmann-Uehling-Uehlenbeck calculations incorporating isospin-dependence. We have measured radial flow for Ar + Sc and find that about 50% of the observed energy is related to radial flow. (author)

  18. Radial restricted solid-on-solid and etching interface-growth models

    Science.gov (United States)

    Alves, Sidiney G.

    2018-03-01

    An approach to generate radial interfaces is presented. A radial network recursively obtained is used to implement discrete model rules designed originally for the investigation in flat substrates. I used the restricted solid-on-solid and etching models as to test the proposed scheme. The results indicate the Kardar, Parisi, and Zhang conjecture is completely verified leading to a good agreement between the interface radius fluctuation distribution and the Gaussian unitary ensemble. The evolution of the radius agrees well with the generalized conjecture, and the two-point correlation function exhibits also a good agreement with the covariance of the Airy2 process. The approach can be used to investigate radial interfaces evolution for many other classes of universality.

  19. Unifying role of radial electric field shear in the confinement trends of transitionless regimes in TFTR

    International Nuclear Information System (INIS)

    Ernst, D.R.; Beer, M.; Batha, S.

    2001-01-01

    Turbulence suppression by radial electric field shear (E r ) is shown to be important in the enhanced confinement of TFTR supershot plasmas. Simulations of supershot ion temperature profiles are performed using an existing parameterization of transport due to toroidal ion temperature gradient modes, extended to include suppression by E r shear. New spectroscopic measurements of E r differ significantly from prior neoclassical estimates. Supershot temperature profiles appear to be consistent with a criterion describing near-complete turbulence suppression by intrinsically generated E r shear. Helium spoiling and xenon puffing experiments are simulated to illustrate the role of E r shear in the confinement changes observed. (author)

  20. Unifying role of radial electric field shear in the confinement trends of transitionless regimes in TFTR

    International Nuclear Information System (INIS)

    Ernst, D.R.; Beer, M.; Batha, S.

    1999-01-01

    Turbulence suppression by radial electric field shear (E r ) is shown to be important in the enhanced confinement of TFTR supershot plasmas. Simulations of supershot ion temperature profiles are performed using an existing parameterization of transport due to toroidal ion temperature gradient modes, extended to include suppression by E r shear. New spectroscopic measurements of E r differ significantly from prior neoclassical estimates. Supershot temperature profiles appear to be consistent with a criterion describing near-complete turbulence suppression by intrinsically generated E r shear. Helium spoiling and xenon puffing experiments are simulated to illustrate the role of E r shear in the confinement changes observed. (author)

  1. Variation of Drying Strains between Tangential and Radial Directions in Asian White Birch

    Directory of Open Access Journals (Sweden)

    Zongying Fu

    2016-03-01

    Full Text Available In this study, wood disks of 30 mm in thickness cut from white birch (Betula platyphylla Suk logs were dried at a constant temperature (40 °C. The drying strains including practical shrinkage strain, elastic strain, viscoelastic creep strain and mechano-sorptive creep were measured both tangentially and radially. The effects of moisture content and radial position on each strain were also discussed qualitatively. Overall, the difference of the practical shrinkage strain between the tangential and radial directions was proportional to the distance from the pith. The tangential elastic strain and viscoelastic creep strain were higher than these strains in a radial direction, and they all decreased with the decrease of moisture content. Additionally, there were opposite mechano-sorptive creep between tangential and radial directions.

  2. Recent Progress on Understanding SEP Acceleration and Transport

    Science.gov (United States)

    Cohen, C.

    2017-12-01

    Joint observations between near-Earth spacecraft and the twin STEREO spacecraft have allowed new examinations of the longitudinal extent of solar energetic particles (SEPs). Although the radial dependence will not be measured in detail until Parker Solar Probe and Solar Orbiter have launched, recent developments in modeling SEP acceleration and transport have revealed interesting dependences on magnetic field configurations and the characteristics of seed particle populations. This talk will review recent SEP in-situ observations along with theoretical studies and their implications for our understanding of SEP acceleration and transport in the inner heliosphere and our expectations for upcoming Solar Orbiter and Parker Solar Probe observations.

  3. Dynamics of a radially expanding liquid sheet: Experiments

    Science.gov (United States)

    Majumdar, Nayanika; Tirumkudulu, Mahesh

    2017-11-01

    A recent theory predicts that sinuous waves generated at the center of a radially expanding liquid sheet grow spatially even in absence of a surrounding gas phase. Unlike flat liquid sheets, the thickness of a radially expanding liquid sheet varies inversely with distance from the center of the sheet. To test the predictions of the theory, experiments were carried out on a horizontal, radially expanding liquid sheet formed by collision of a single jet on a solid impactor. The latter was placed on a speaker-vibrator with controlled amplitude and frequency. The growth of sinuous waves was determined by measuring the wave surface inclination angle using reflected laser light under both atmospheric and sub-atmospheric pressure conditions. It is shown that the measured growth rate matches with the predictions of the theory over a large range of Weber numbers for both pressure conditions suggesting that the thinning of the liquid sheet plays a dominant role in setting the growth rate of sinuous waves with minimal influence of the surrounding gas phase on its dynamics. IIT Bombay.

  4. Dynamic radial distribution function from inelastic neutron scattering

    International Nuclear Information System (INIS)

    McQueeney, R.J.

    1998-01-01

    A real-space, local dynamic structure function g(r,ω) is defined from the dynamic structure function S(Q,ω), which can be measured using inelastic neutron scattering. At any particular frequency ω, S(Q,ω) contains Q-dependent intensity oscillations which reflect the spatial distribution and relative displacement directions for the atoms vibrating at that frequency. Information about local and dynamic atomic correlations is obtained from the Fourier transform of these oscillations g(r,ω) at the particular frequency. g(r,ω) can be formulated such that the elastic and frequency-summed limits correspond to the average and instantaneous radial distribution function, respectively, and is thus called the dynamic radial distribution function. As an example, the dynamic radial distribution function is calculated for fcc nickel in a model which considers only the harmonic atomic displacements due to phonons. The results of these calculations demonstrate that the magnitude of the atomic correlations can be quantified and g(r,ω) is a well-defined correlation function. This leads to a simple prescription for investigating local lattice dynamics. copyright 1998 The American Physical Society

  5. Theoretical interpretation of the observed interplanetary magnetic field radial variation in the outer solar system

    Science.gov (United States)

    Suess, S. T.; Thomas, B. T.; Nerney, S. F.

    1985-01-01

    Observations of the azimuthal component of the IMF are evaluated through the use of an MHD model which shows the effect of magnetic flux tubes opening in the outer solar system. It is demonstrated that the inferred meridional transport of magnetic flux is consistent with predictions by the MHD model. The computed azimuthal and radial magnetic flux deficits are almost identical to the observations. It is suggested that the simplest interpretation of the observations is that meridional flows are created by a direct body force on the plasma. This is consistent with the analytic model of Nerney and Suess (1975), in which such flux deficits in the IMF arise naturally from the meridional gradient in the spiralling field.

  6. Transport modeling of convection dominated helicon discharges in Proto-MPEX with the B2.5-Eirene code

    Science.gov (United States)

    Owen, L. W.; Rapp, J.; Canik, J.; Lore, J. D.

    2017-11-01

    Data-constrained interpretative analyses of plasma transport in convection dominated helicon discharges in the Proto-MPEX linear device, and predictive calculations with additional Electron Cyclotron Heating/Electron Bernstein Wave (ECH/EBW) heating, are reported. The B2.5-Eirene code, in which the multi-fluid plasma code B2.5 is coupled to the kinetic Monte Carlo neutrals code Eirene, is used to fit double Langmuir probe measurements and fast camera data in front of a stainless-steel target. The absorbed helicon and ECH power (11 kW) and spatially constant anomalous transport coefficients that are deduced from fitting of the probe and optical data are additionally used for predictive simulations of complete axial distributions of the densities, temperatures, plasma flow velocities, particle and energy fluxes, and possible effects of alternate fueling and pumping scenarios. The somewhat hollow electron density and temperature radial profiles from the probe data suggest that Trivelpiece-Gould wave absorption is the dominant helicon electron heating source in the discharges analyzed here. There is no external ion heating, but the corresponding calculated ion temperature radial profile is not hollow. Rather it reflects ion heating by the electron-ion equilibration terms in the energy balance equations and ion radial transport resulting from the hollow density profile. With the absorbed power and the transport model deduced from fitting the sheath limited discharge data, calculated conduction limited higher recycling conditions were produced by reducing the pumping and increasing the gas fueling rate, resulting in an approximate doubling of the target ion flux and reduction of the target heat flux.

  7. A Raikov-Type Theorem for Radial Poisson Distributions: A Proof of Kingman's Conjecture

    OpenAIRE

    Van Nguyen, Thu

    2011-01-01

    In the present paper we prove the following conjecture in Kingman, J.F.C., Random walks with spherical symmetry, Acta Math.,109, (1963), 11-53. concerning a famous Raikov's theorem of decomposition of Poisson random variables: "If a radial sum of two independent random variables X and Y is radial Poisson, then each of them must be radial Poisson."

  8. Theoretical studies of turbulence and anomalous transport in toroidal confinement devices

    International Nuclear Information System (INIS)

    Terry, P.W.

    1990-01-01

    The research performed under this grant during the current year has focused on key issues with respect to turbulence and transport in toroidal confinement devices. This work includes theoretical and computational studies of electron thermal confinement which have concentrated on the role of sheared poloidal flow in suppressing turbulence and transport, trapped ion convective cell turbulence and microtearing turbulence; analytical studies of anomalous particle transport and pinch mechanisms, and comparison with experimental measurement; development of the theory of self-consistent radial transport of field-aligned momentum in the tokamak and RFP; and work on other topics (ion temperature gradient driven turbulence, RFP fluctuation theory, coherent structures). Progress and publications in these areas are briefly summarized in this report. 20 refs

  9. Radial Domany-Kinzel models with mutation and selection

    Science.gov (United States)

    Lavrentovich, Maxim O.; Korolev, Kirill S.; Nelson, David R.

    2013-01-01

    We study the effect of spatial structure, genetic drift, mutation, and selective pressure on the evolutionary dynamics in a simplified model of asexual organisms colonizing a new territory. Under an appropriate coarse-graining, the evolutionary dynamics is related to the directed percolation processes that arise in voter models, the Domany-Kinzel (DK) model, contact process, and so on. We explore the differences between linear (flat front) expansions and the much less familiar radial (curved front) range expansions. For the radial expansion, we develop a generalized, off-lattice DK model that minimizes otherwise persistent lattice artifacts. With both simulations and analytical techniques, we study the survival probability of advantageous mutants, the spatial correlations between domains of neutral strains, and the dynamics of populations with deleterious mutations. “Inflation” at the frontier leads to striking differences between radial and linear expansions. For a colony with initial radius R0 expanding at velocity v, significant genetic demixing, caused by local genetic drift, occurs only up to a finite time t*=R0/v, after which portions of the colony become causally disconnected due to the inflating perimeter of the expanding front. As a result, the effect of a selective advantage is amplified relative to genetic drift, increasing the survival probability of advantageous mutants. Inflation also modifies the underlying directed percolation transition, introducing novel scaling functions and modifications similar to a finite-size effect. Finally, we consider radial range expansions with deflating perimeters, as might arise from colonization initiated along the shores of an island.

  10. Stability of a radial immiscible drive

    Energy Technology Data Exchange (ETDEWEB)

    Bataille, J

    1968-11-01

    The stability of the displacement front between 2 immiscible fluids of radial flow between 2 parallel plates (Hele-Shaw model) is studied mathematically by superposing onto the circular displacement front a sinusoidal perturbation. The equations are reduced to dimensionless variables, and it is shown that the stable and unstable domains in a plot: dimensionless viscosity vs. dimensionless time are separated by a polygonal contour, each side of the contour being characterized by the (integer) number of perturbations along the circumference. There is a critical reduced time below which the perturbations are amortized but beyond which they are amplified. Experimental results have been in fair general agreement with theoretical results, the divergence between them being attributable to neglecting capillary phenomena, which may become very important at large radial distances. One test with miscible fluids has shown that even in this case, there is a critical time or an equivalent critical radius.

  11. Elbow joint laxity after experimental radial head excision and lateral collateral ligament rupture

    DEFF Research Database (Denmark)

    Jensen, Steen Lund; Olsen, Bo Sanderhoff; Tyrdal, Stein

    2005-01-01

    The objectives of this experimental study were to investigate the effect of radial head excision and lateral collateral ligament (LCL) division on elbow joint laxity and to determine the efficacy of radial head prosthetic replacement and LCL repair. Valgus, varus, internal rotation, and external...... rotation of the ulna were measured during passive flexion-extension and application of a 0.75-Nm torque in 6 intact cadaveric elbows and after (1) either excision of the radial head or division of the LCL, (2) removal of both constraints, (3) isolated radial head prosthetic replacement, (4) isolated LCL...... normalized varus laxity but resulted in a 2.9 degrees increase in external rotatory laxity. The combined procedures restored laxity completely. The radial head is a constraint to varus and external rotation in the elbow joint, functioning by maintaining tension in the LCL. Still, removal of both constraints...

  12. Point Set Denoising Using Bootstrap-Based Radial Basis Function.

    Science.gov (United States)

    Liew, Khang Jie; Ramli, Ahmad; Abd Majid, Ahmad

    2016-01-01

    This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.

  13. Rayleigh-Taylor instability of cylindrical jets with radial motion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang M. [GE Nuclear, Wilmington, NC (United States); Schrock, V.E.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States)

    1995-09-01

    Rayleigh-Taylor instability of an interface between fluids with different densities subjected to accelleration normal to itself has interested researchers for almost a century. The classic analyses of a flat interface by Rayleigh and Taylor have shown that this type of instability depends on the direction of acceleration and the density differences of the two fluids. Plesset later analyzed the stability of a spherically symmetric flows (and a spherical interface) and concluded that the instability also depends on the velocity of the interface as well as the direction and magnitude of radial acceleration. The instability induced by radial motion in cylindrical systems seems to have been neglected by previous researchers. This paper analyzes the Rayleigh-Taylor type of the spherical case, the radial velocity also plays an important role. As an application, the example of a liquid jet surface in an Inertial Confinement Fusion (ICF) reactor design is analyzed.

  14. THE RADIAL VELOCITY EXPERIMENT (RAVE): THIRD DATA RELEASE

    International Nuclear Information System (INIS)

    Siebert, A.; Williams, M. E. K.; Siviero, A.; Boeche, C.; Steinmetz, M.; De Jong, R. S.; Enke, H.; Anguiano, B.; Reid, W.; Ritter, A.; Fulbright, J.; Wyse, R. F. G.; Munari, U.; Zwitter, T.; Watson, F. G.; Burton, D.; Cass, C. J. P.; Fiegert, K.; Hartley, M.; Russel, K. S.

    2011-01-01

    We present the third data release of the RAdial Velocity Experiment (RAVE) which is the first milestone of the RAVE project, releasing the full pilot survey. The catalog contains 83,072 radial velocity measurements for 77,461 stars in the southern celestial hemisphere, as well as stellar parameters for 39,833 stars. This paper describes the content of the new release, the new processing pipeline, as well as an updated calibration for the metallicity based upon the observation of additional standard stars. Spectra will be made available in a future release. The data release can be accessed via the RAVE Web site.

  15. RADIALLY MAGNETIZED PROTOPLANETARY DISK: VERTICAL PROFILE

    International Nuclear Information System (INIS)

    Russo, Matthew; Thompson, Christopher

    2015-01-01

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field B r ∼ (10 −4 –10 −2 )(r/ AU) −2 G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ∼1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10 −8 M ⊙ yr −1 are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper

  16. Adsorption and movement of water by skin of the Australian thorny devil (Agamidae: Moloch horridus)

    Science.gov (United States)

    Comanns, Philipp; Esser, Falk J.; Kappel, Peter H.; Baumgartner, Werner; Shaw, Jeremy; Withers, Philip C.

    2017-09-01

    Moisture-harvesting lizards, such as the Australian thorny devil Moloch horridus, have remarkable adaptations for inhabiting arid regions. Their microstructured skin surface, with channels in between overlapping scales, enables them to collect water by capillarity and passively transport it to the mouth for ingestion. We characterized this capillary water transport for live thorny devils using high-speed video analyses. Comparison with preserved specimens showed that live lizards are required for detailed studies of skin water transport. For thorny devils, there was no directionality in cutaneous water transport (unlike Phrynosoma) as 7 µl water droplets applied to the skin were transported radially over more than 9.2 mm. We calculated the total capillary volume as 5.76 µl cm-2 (dorsal) and 4.45 µl cm-2 (ventral), which is reduced to 50% filling by the time transportation ceases. Using micro-computed tomography and scanning electron microscopy of shed skin to investigate capillary morphology, we found that the channels are hierarchically structured as a large channel between the scales that is sub-divided by protrusions into smaller sub-capillaries. The large channel quickly absorbs water whereas the sub-capillary structure extends the transport distance by about 39% and potentially reduces the water volume required for drinking. An adapted dynamics function, which closely reflects the channel morphology, includes that ecological role.

  17. Comparative study of active plasma lenses in high-quality electron accelerator transport lines

    Science.gov (United States)

    van Tilborg, J.; Barber, S. K.; Benedetti, C.; Schroeder, C. B.; Isono, F.; Tsai, H.-E.; Geddes, C. G. R.; Leemans, W. P.

    2018-05-01

    Electrically discharged active plasma lenses (APLs) are actively pursued in compact high-brightness plasma-based accelerators due to their high-gradient, tunable, and radially symmetric focusing properties. In this manuscript, the APL is experimentally compared with a conventional quadrupole triplet, highlighting the favorable reduction in the energy dependence (chromaticity) in the transport line. Through transport simulations, it is explored how the non-uniform radial discharge current distribution leads to beam-integrated emittance degradation and a charge density reduction at focus. However, positioning an aperture at the APL entrance will significantly reduce emittance degradation without additional loss of charge in the high-quality core of the beam. An analytical model is presented that estimates the emittance degradation from a short beam driving a longitudinally varying wakefield in the APL. Optimizing laser plasma accelerator operation is discussed where emittance degradation from the non-uniform discharge current (favoring small beams inside the APL) and wakefield effects (favoring larger beam sizes) is minimized.

  18. Estimation of Radial Runout

    OpenAIRE

    Nilsson, Martin

    2007-01-01

    The demands for ride comfort quality in today's long haulage trucks are constantly growing. A part of the ride comfort problems are represented by internal vibrations caused by rotating mechanical parts. This thesis work focus on the vibrations generated from radial runout on the wheels. These long haulage trucks travel long distances on smooth highways, with a constant speed of 90 km/h resulting in a 7 Hz oscillation. This frequency creates vibrations in the cab, which can be found annoying....

  19. Transport increase and confinement degradation caused by MARFE

    Science.gov (United States)

    Shi, Peng; Zhuang, Ge; Gao, Li; Zhou, Yinan

    2017-10-01

    Recently, the MARFE phenomenon associated with high density plasmas has been observed on J-TEXT Ohmically heated discharges. The MARFE on J-TEXT is charactered by the poloidally local region at high field side (HFS) edge with high density and strong radiation. At the almost same time of MARFE appearance, the density peaking factor and sawtooth oscillation reach maximum and decrease with density increasing, infers that the plasma confinement is saturated. By analyzing the far-forward scattering signals from polarimeter-interferometer, it is found that the local radial density turbulence at high field edge increases significantly after MARFE onset. It is inferred that the local particle transport at MARFE affected region (HFS edge) is enhanced. The enhancement of radial transport at MARFE affected region is considered as the possible reason for confinement saturation on J-TEXT. Furthermore, the trapped electron mode (TEM) with quasi-coherent characteristics is measured by far-forward scattering. The TEMs are always observed in plasmas with low density, and disappear after the plasma density exceeds a threshold. The density threshold of TEM disappearance is consistent with the density threshold of MARFE onset. The evolution of turbulences affirms that the MARFE may be the cause of energy confinement transition from LOC to SOC.

  20. Multi-axial correction system in the treatment of radial club hand.

    Science.gov (United States)

    Bhat, Suneel B; Kamath, Atul F; Sehgal, Kriti; Horn, B David; Hosalkar, Harish S

    2009-12-01

    Radial club hand is a well-recognized congenital malformation characterized by hypoplasia of bone and soft tissue on the radial aspect of the forearm and hand. The modalities of treatment have traditionally varied from stretching casts with soft-tissue procedures to the use of multiple corrective osteotomies. These osteotomies can be stabilized by a variety of methods, including external fixators that allow the possibility of gradual distraction with neohistiogenesis. This current study outlines the usage of one such device (multi-axial correction system [MAC]) in the management of deformity associated with severe radial club hand. Three consecutive cases of unilateral or bilateral severe (Bayne type IV) congenital radial club hand were corrected using MAC fixation in the last 5 years. This is a retrospective review of all three cases. Data parameters included: patient demographics, presentation findings, degree of deformity, amount of correction/lengthening, length of procedure, length of treatment, and associated complications. The surgical technique is described in detail for the benefit of the readership. The three patients with severe congenital radial club hand had a total of four limb involvements that underwent correction using osteotomies and usage of the MAC device for external fixation. All three patients underwent successful correction of deformity with the restoration of alignment, lengthening of forearm for improvement of function, and stabilization of the wrist (mean duration, mean lengthening, mean time to consolidation). The MAC system was well tolerated in all patients and associated complications were limited. The MAC fixator seems to be a good alternative modality of stabilization and correction for severe congenital radial club hand deformities. Its usage is fairly simple and it provides the ease of application of a mono-lateral fixator with far superior three-dimensional control, like the circular external fixator. We recommend that

  1. Radial Velocity Survey of T Tauri Stars in Taurus-Auriga

    Science.gov (United States)

    Crockett, Christopher; Mahmud, N.; Huerta, M.; Prato, L.; Johns-Krull, C.; Hartigan, P.; Jaffe, D.

    2009-01-01

    Is the frequency of giant planet companions to young stars similar to that seen around old stars? Is the "brown dwarf desert" a product of how low-mass companion objects form, or of how they evolve? Some models indicate that both giant planets and brown dwarfs should be common at young ages within 3 AU of a primary star, but migration induced by massive disks drive brown dwarfs into the parent stars, leaving behind proportionally more giant planets. Our radial velocity survey of young stars will provide a census of the young giant planet and brown dwarf population in Taurus-Auriga. In this poster we present our progress in quantifying how spurious radial velocity signatures are caused by stellar activity and in developing models to help distinguish between companion induced and spot induced radial velocity variations. Early results stress the importance of complementary observations in both visible light and NIR. We present our technique to determine radial velocities by fitting telluric features and model stellar features to our observed spectra. Finally, we discuss ongoing observations at McDonald Observatory, KPNO, and the IRTF, and several new exoplanet host candidates.

  2. A high efficiency Ku-band radial line relativistic klystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Fangchao; Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Zhong, Huihuang; Zhang, Jun; Ju, Jinchuan [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2016-07-15

    To achieve the gigawatt-level microwave amplification output at Ku-band, a radial-line relativistic klystron amplifier is proposed and investigated in this paper. Different from the annular electron beam in conventional axial relativistic klystron amplifiers, a radial-radiated electron beam is employed in this proposed klystron. Owing to its radially spreading speciality, the electron density and space charge effect are markedly weakened during the propagation in the radial line drift tube. Additionally, the power capacity, especially in the output cavity, is enhanced significantly because of its large volume, which is profitable for the long pulse operation. Particle-in-cell simulation results demonstrate that a high power microwave with the power of 3 GW and the frequency of 14.25 GHz is generated with a 500 kV, 12 kA electron beam excitation and the 30 kW radio-frequency signal injection. The power conversion efficiency is 50%, and the gain is about 50 dB. Meanwhile, there is insignificant electron beam self-excitation in the proposed structure by the adoption of two transverse electromagnetic reflectors. The relative phase difference between the injected signals and output microwaves keeps stable after the amplifier saturates.

  3. Tuning porosity and radial mechanical properties of DNA origami nanotubes via crossover design

    Science.gov (United States)

    Ma, Zhipeng; Kawai, Kentaro; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2017-06-01

    DNA origami nanotubes are utilized as structural platforms for the fabrication of various micro/nanosystems for drug delivery, optical or biological sensing, and even nanoscale robots. Their radial structural and mechanical properties, which play a crucial role in the effective use of micro/nanosystems, have not been fully studied. In particular, the effects of crossovers, which are basic structures for rationally assembling double-stranded DNA (dsDNA) helices into a nanotube configuration, have not yet been characterized experimentally. To investigate the effects of crossovers on the porosity and the radial mechanical properties of DNA origami nanotubes, we fabricated a DNA origami nanotube with varied crossover designs along the nanotube axis. The radial geometry of the DNA origami nanotube is experimentally characterized by both atomic force microscopy (AFM) and electron cryomicroscopy (cryo-EM). Moreover, the radial mechanical properties of the DNA origami nanotube including the radial modulus are directly measured by force-distance-based AFM. These measurements reveal that the porosity and the radial modulus of DNA origami nanotubes can be tuned by adjusting the crossover design, which enables the optimal design and construction of DNA origami nanostructures for various applications.

  4. Radially Polarized Conical Beam from an Embedded Etched Fiber

    OpenAIRE

    Kalaidji , D.; Spajer , M.; Marthouret , N.; Grosjean , T.

    2009-01-01

    International audience; We propose a method for producing a conical beam based on the lateral refraction of the TM01 mode from a two-mode fiber after chemical etching of the cladding, and for controlling its radial polarization. The whole power of the guided mode is transferred to the refracted beam with low diffraction. Polarization control by a series of azimuthal detectors and a stress controller affords the transmission of a stabilized radial polarization through an optical fiber. A solid...

  5. Luxation of the radial carpal bone in a cat

    International Nuclear Information System (INIS)

    Pitcher, G.D.C.

    1996-01-01

    A case of radial carpal bone luxation in the cat and its management is described. Open reduction was performed and surgically maintained, in combination with repair of rupture of the short radial collateral ligament and joint capsule. The carpus was supported for one month following surgery by application of transarticular external fixation. Four months after treatment the cat was sound, despite evidence of degenerative joint disease. The mechanism of luxation appears to be analogous to that seen in the dog

  6. 21 CFR 888.3170 - Elbow joint radial (hemi-elbow) polymer prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Elbow joint radial (hemi-elbow) polymer prosthesis. 888.3170 Section 888.3170 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... (hemi-elbow) polymer prosthesis. (a) Identification. An elbow joint radial (hemi-elbow) polymer...

  7. The effect on stellarator neoclassical transport of a fluctuating electrostatic spectrum

    International Nuclear Information System (INIS)

    Mynick, H.E.; Boozer, A.H.

    2005-01-01

    A study is presented of the effect on neoclassical transport of a fluctuating electrostatic spectrum, such as produced either by plasma turbulence, or imposed externally. For tokamaks, it is usually assumed that the neoclassical and 'anomalous' contributions to the transport roughly superpose, D=D nc +D an , an intuition also used in modeling stellarators. An alternate intuition, however, is one where it is the collisional and anomalous scattering frequencies which superpose, ν ef =ν+ν an . For nonaxisymmetric systems, in regimes where ∂D/∂ν ef picture' implies that turning on the fluctuations can decrease the total radial transport. Using numerical and analytic means, it is found that the total transport has contributions conforming to each of these intuitions, either of which can dominate. In particular, for stellarators, the ν ef picture is often valid, producing transport behavior differing from tokamaks

  8. Radial scars detected mammographically in a breast cancer screening programme

    International Nuclear Information System (INIS)

    Azavedo, E.; Svane, G.

    1992-01-01

    Radial scars are getting more and more common since implementation of mammography as diagnostic tool in screening women for breast cancer. At Karolinska Hospital, 18987 asymptomatic women, aged 50-69, were screened for breast cancer through mammography during August 1989-May 1991. A total of 735 (3.87%) were recalled for additional views after initial mammograms and 463 (2.44%) were assessed with help of cytology. In all 175 women (0.92%) were selected for surgery and 146 (0.77%) had histologically verified cancers. The remaining 29 (0.15%) had non- malignant lesions of which 11 (0.06%) were radial scars. All radial scars were diagnosed on mammograms and later confirmed with histology. The radiologic characteristics were found to be a) rather thick and long radiating structures accompanied by radiolucent linear structures parallel to some of the spicules, b) absence of calcifications, c) radiolucent areas in the body of the lesion, d) an average mean size of 6 mm and e) changing image in different views. Most of the lesions, 73% (8/11), were in moderately dense breasts and there was no specific relation to the right or left breast. A majority of radial scars, 64% (7/11), were found in the upper outer quadrants, 3/11 in the lower outer quadrants and 1/11 in the lower inner quadrant. Literature shows that histology uses many synonyms for radial scars and therefore team work between radiologists and pathologists is suggested for better conformity of the diagnosis. (author). 32 refs.; 1 fig

  9. Radial interchange motions of plasma filaments

    DEFF Research Database (Denmark)

    Garcia, O.E.; Bian, N.H.; Fundamenski, W.

    2006-01-01

    on a biperiodic domain perpendicular to the magnetic field. It is demonstrated that a blob-like plasma structure develops dipolar vorticity and electrostatic potential fields, resulting in rapid radial acceleration and formation of a steep front and a trailing wake. While the dynamical evolution strongly depends...

  10. Point Set Denoising Using Bootstrap-Based Radial Basis Function.

    Directory of Open Access Journals (Sweden)

    Khang Jie Liew

    Full Text Available This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.

  11. Management of post-traumatic elbow instability after failed radial head excision: A case report.

    Science.gov (United States)

    Touloupakis, Georgios; Theodorakis, Emmanouil; Favetti, Fabio; Nannerini, Massimiliano

    2017-02-01

    Radial head excision has always been a safe commonly used surgical procedure with a satisfactory clinical outcome for isolated comminuted radial head fractures. However, diagnosis of elbow instability is still very challenging and often underestimated in routine orthopaedic evaluation. We present the case of a 21-years old female treated with excision after radial head fracture, resulting in elbow instability. The patient underwent revision surgery after four weeks. We believe that ligament reconstruction without radial head substitution is a safe alternative choice for Mason III radial head fractures accompanied by complex ligament lesions. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  12. Differential gene expression and transport functionality in the bundle sheath versus mesophyll - a potential role in leaf mineral homeostasis.

    Science.gov (United States)

    Wigoda, Noa; Pasmanik-Chor, Metsada; Yang, Tianyuan; Yu, Ling; Moshelion, Menachem; Moran, Nava

    2017-06-01

    Under fluctuating ambient conditions, the ability of plants to maintain hydromineral homeostasis requires the tight control of long distance transport. This includes the control of radial transport within leaves, from veins to mesophyll. The bundle sheath is a structure that tightly wraps around leaf vasculature. It has been suggested to act as a selective barrier in the context of radial transport. This suggestion is based on recent physiological transport assays of bundle sheath cells (BSCs), as well as the anatomy of these cells.We hypothesized that the unique transport functionality of BSCs is apparent in their transcriptome. To test this, we compared the transcriptomes of individually hand-picked protoplasts of GFP-labeled BSCs and non-labeled mesophyll cells (MCs) from the leaves of Arabidopsis thaliana. Of the 90 genes differentially expressed between BSCs and MCs, 45% are membrane related and 20% transport related, a prominent example being the proton pump AHA2. Electrophysiological assays showed that the major AKT2-like membrane K+ conductances of BSCs and MCs had different voltage dependency ranges. Taken together, these differences may cause simultaneous but oppositely directed transmembrane K+ fluxes in BSCs and MCs, in otherwise similar conditions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Local measurement of transport parameters for laser injected trace impurities

    Energy Technology Data Exchange (ETDEWEB)

    Giannella, R; Lauro-Taroni, L [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    A procedure has been developed that determines local measurements of transport parameters`s profiles for injected impurities. The measured profiles extend from the plasma centre up to a certain radial position (usually {rho} = 0.6-0.7). In the outer region of the plasma the procedure supplies ``most suitable extensions`` up to the plasma edge of the measured transport profiles. The procedure intrinsically assures consistency and excellent agreement between the simulated and experimental data of local broad band soft X-ray emissivity and intensities of individual emission lines from different ion states of the injected impurities. 4 refs., 3 figs.

  14. KARAKTERISTIK SIFAT FISIK KAYU JABON(Anthocephalus cadamba Miq PADA ARAH LONGITUDINAL DAN RADIAL

    Directory of Open Access Journals (Sweden)

    Ary Widiyanto

    2017-06-01

    Full Text Available This study aims to investigate the characteristics of the physical properties of jabon (Anthocephalus cadambaMiq. wood and its variations in the stem longitudinaland radial direction. A total of 3samplesof jabontrees were taken from private forest in Talagawangi Village, Pakenjeng sub-District, Garut District, West Java Province. Speciments of physical properties were taken at 3 different heightsof the longitudinal direction(bottom, midle and top of trunkas well as 3 differentradialdirections (near pith, middle and near barkof the jabontrunk. The observation focused on the physical properties in three position of both longitudinal and radial orientation. The parameters observed were green wood moisture content(GMC, air-driedmoisture content (ADMC, specific gravity on green wood moisture volume (SGG, and specific gravity on air-dried moisture volume (SGAD. Result showed that the average of GMC and ADMC of jabon wood were 118,43% and 15.36% respectively, while SGG and SGAD are 0.33 and 0.37 respectively.The specific gravity (both SGG and SGAD of jabon wood was significantly differencein bothlongitudinal and radial direction; while the ADMC and FMC were not significantly difference for longitudinal direction but significantly difference for radial direction. On radial direction, the GMC decreased from the pith to midle and increased near ther bark; while the ADMC regularly decreased from the pith to bark. The specific gravity value on the longitudinaldirection consistently increases from the bottom of the trunk to the top. On radial direction, the specific gravity value consistently increases from the pith to near the bark. Penelitian ini bertujuan untuk mengetahui karakteristik sifat fisik kayu jabon (Anthocepalus cadamba Miq dan variasinya pada arah longitudinal dan radial batang.Sebanyak 3 pohon, masing-masing diambil sampel 3 titik pada arah longitudinal dan radial batang kayu jabondiambil dari hutan rakyat Desa Talagawangi, Kecamatan Pakenjeng

  15. Gyrokinetics Simulation of Energetic Particle Turbulence and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, Patrick H.

    2011-09-21

    Progress in research during this year elucidated the physics of precession resonance and its interaction with radial scattering to form phase space density granulations. Momentum theorems for drift wave-zonal flow systems involving precession resonance were derived. These are directly generalizable to energetic particle modes. A novel nonlinear, subcritical growth mechanism was identified, which has now been verified by simulation. These results strengthen the foundation of our understanding of transport in burning plasmas

  16. Gyrokinetics Simulation of Energetic Particle Turbulence and Transport

    International Nuclear Information System (INIS)

    Diamond, Patrick H.

    2011-01-01

    Progress in research during this year elucidated the physics of precession resonance and its interaction with radial scattering to form phase space density granulations. Momentum theorems for drift wave-zonal flow systems involving precession resonance were derived. These are directly generalizable to energetic particle modes. A novel nonlinear, subcritical growth mechanism was identified, which has now been verified by simulation. These results strengthen the foundation of our understanding of transport in burning plasmas

  17. Remarks on transport theories of interplanetary fluctuations

    International Nuclear Information System (INIS)

    Ye Zhou; Matthaeus, W.H.

    1990-01-01

    The structure of approximate transport theories for the radial behavior of interplanetary fluctuations is reconsidered. The emphasis is on theories derived under the assumption of scale separation; i.e., the correlation length of the fluctuations is much less than the scale of large inhomogeneities. In these cases the zero-wavelength limit provides a first approximation to the spectral evolution equations for the radial dependence of interplanetary fluctuation spectra. The goal here is to investigate the structure of a recently presented (Zhou and Matthaeus, 1989) transport theory, in which coupling of inward- and outward-type fluctuations appears in the leading order, an effect the authors call mixing. In linear theory, mixing-type couplings of inward-type and outward-type waves are formally a nonresonant effect. However, leading order mixing terms do not vanish at zero wavelength for fluctuations that vary nearly perpendicular to the local magnetic field, or when the mean magnetic field is weak. Leading order mixing terms also survive when the dispersion relation fails and there is a nonunique relationship between frequency and wave number. The former case corresponds to nearly two-dimensional structures; these are included, for example, in isotropic models of turbulence. The latter instance occurs when wave-wave couplings are sufficiently strong. Thus there are a variety of situations in which leading order mixing effects are expected to be present

  18. Radial artery spasm occurred in transradial coronary intervention for coronary heart disease: its occurrence and predictors

    International Nuclear Information System (INIS)

    Zhong Jiming; Li Lang; Lu Yongguang; Zeng Shuyi

    2011-01-01

    Objective: To discuss the incidence and clinical predictors of radial artery spasm occurred in performing transradial coronary intervention for coronary heart disease. Methods: A total of 1020 patients, who underwent transradial coronary procedures for coronary heart disease during the period of May 2007 Jan 2010 in authors' hospital, were enrolled in this study. All clinical information and medication were recorded in detail. Arteriography via radial artery was performed in all patients. The diameter of the radial artery as well as the arterial anatomy, including arterial variations, were determined and observed, which was follow by coronary angiography or percutaneous coronary intervention. Multivariate Logistic regression analysis was adopted to evaluate the variables, such as clinical parameters, angiographic characteristics of the radial artery and procedure-related factors, in predicting the occurrence of radial artery spasm. Results: Radial artery spasm occurred in 209 (20.5%) patients. Multivariate Logistic regression analysis showed that the following eight factors were independently associated with the occurrence of radial artery spasm. These factors were as follows: female gender (OR=2.8, 95% CI 2.5-5.8; P=0.001), age (OR=0.68, 95% CI 0.60-0.92; P=0.003), smoking (OR=2.3, 95% CI 1.8-4.1; P=0.026), moderate-to-severe pain of forearm during radial artery cannulation (OR=3.0, 95% CI 2.3-4.8; P=0.006), radial artery anatomical abnormalities (OR=4.7, 95% CI 3.6-7.2; P=0.002), the ratio of radial artery diameter to patient's height (RAH) (OR=5.2, 95% CI 3.7-8.1; P=0.012), the ratio of radial artery diameter to outer diameter of the sheath (RAOD) (OR=5.8, 95% CI 4.2-6.9; P=0.006) and the number of catheter exchange (OR=2.3, 95% CI 1.4-4.3; P=0.038). Conclusion: Radial artery spasm occurred in performing transradial coronary intervention for coronary heart disease is frequently seen in clinical practice. Female gender, younger age, smoking, forearm pain during

  19. 3D MHD Simulations of Radial Wire Array Z-pinches

    International Nuclear Information System (INIS)

    Niasse, N.; Chittenden, J. P.; Bland, S. N.; Suzuki-Vidal, F. A.; Hall, G. N.; Lebedev, S. V.; Calamy, H.; Zucchini, F.; Lassalle, F.; Bedoch, J. P.

    2009-01-01

    Recent experiments carried out on the MAGPIE (1 MA, 250 ns), OEDIPE (730 kA, 1.5 μs) and SPHINX (4 MA, 700 ns)[1] facilities have shown the relatively high level of scalability of the Radial Wire Array Z-pinches. These configurations where the wires stretch radially outwards from a central cathode offer numerous advantages over standard cylindrical arrays. In particular, imploding in a very stable and compact way, they seem suitable for coupling to small scale hohlraums. Making use of the 3D resistive magneto-hydrodynamic code GORGON[2] developed at Imperial College, the dynamic of the radial wire arrays is investigated. Influence of the cathode hotspots and wires angle on the x-ray emissions is also discussed. Comparison with experiments is offered to validate the numerical studies.

  20. The stability of internal transport barriers to MHD ballooning modes and drift waves: A formalism for low magnetic shear and for velocity shear

    International Nuclear Information System (INIS)

    Connor, J.W.; Hastie, R.J.; Webster, A.J.; Wilson, H.R.

    2005-01-01

    Tokamak discharges with internal transport barriers (ITBs) provide improved confinement, so it is important to understand their stability properties. The stability to an important class of modes with high wave-numbers perpendicular to the magnetic field, is usually studied with the standard ballooning transformation and eikonal approach. However, ITBs are often characterised by radial q profiles that have regions of negative or low magnetic shear and by radially sheared electric fields. Both these features affect the validity of the standard method. A new approach to calculating stability in these circumstances is developed and applied to ideal MHD ballooning modes and to micro-instabilities responsible for anomalous transport. (author)