Point Set Denoising Using Bootstrap-Based Radial Basis Function.
Khang Jie Liew
Full Text Available This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.
Point Set Denoising Using Bootstrap-Based Radial Basis Function.
Liew, Khang Jie; Ramli, Ahmad; Abd Majid, Ahmad
2016-01-01
This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.
Intensity-dependent point spread image processing
Cornsweet, T.N.; Yellott, J.I.
1984-01-01
There is ample anatomical, physiological and psychophysical evidence that the mammilian retina contains networks that mediate interactions among neighboring receptors, resulting in intersecting transformations between input images and their corresponding neural output patterns. The almost universally accepted view is that the principal form of interaction involves lateral inhibition, resulting in an output pattern that is the convolution of the input with a ''Mexican hat'' or difference-of-Gaussians spread function, having a positive center and a negative surround. A closely related process is widely applied in digital image processing, and in photography as ''unsharp masking''. The authors show that a simple and fundamentally different process, involving no inhibitory or subtractive terms can also account for the physiological and psychophysical findings that have been attributed to lateral inhibition. This process also results in a number of fundamental effects that occur in mammalian vision and that would be of considerable significance in robotic vision, but which cannot be explained by lateral inhibitory interaction
Acceleration of Meshfree Radial Point Interpolation Method on Graphics Hardware
Nakata, Susumu
2008-01-01
This article describes a parallel computational technique to accelerate radial point interpolation method (RPIM)-based meshfree method using graphics hardware. RPIM is one of the meshfree partial differential equation solvers that do not require the mesh structure of the analysis targets. In this paper, a technique for accelerating RPIM using graphics hardware is presented. In the method, the computation process is divided into small processes suitable for processing on the parallel architecture of the graphics hardware in a single instruction multiple data manner.
Point-spread function in depleted and partially depleted CCDs
Groom, D.E.; Eberhard, P.H.; Holland, S.E.; Levi, M.E.; Palaio, N.P.; Perlmutter, S.; Stover, R.J.; Wei, M.
1999-01-01
The point spread function obtainable in an astronomical instrument using CCD readout is limited by a number of factors, among them the lateral diffusion of charge before it is collected in the potential wells. They study this problem both theoretically and experimentally, with emphasis on the thick CCDs on high-resistivity n-type substrates being developed at Lawrence Berkeley National Laboratory
Scattering and the Point Spread Function of the New Generation Space Telescope
Schreur, Julian J.
1996-01-01
Preliminary design work on the New Generation Space Telescope (NGST) is currently under way. This telescope is envisioned as a lightweight, deployable Cassegrain reflector with an aperture of 8 meters, and an effective focal length of 80 meters. It is to be folded into a small-diameter package for launch by an Atlas booster, and unfolded in orbit. The primary is to consist of an octagon with a hole at the center, and with eight segments arranged in a flower petal configuration about the octagon. The comers of the petal-shaped segments are to be trimmed so that the package will fit atop the Atlas booster. This mirror, along with its secondary will focus the light from a point source into an image which is spread from a point by diffraction effects, figure errors, and scattering of light from the surface. The distribution of light in the image of a point source is called a point spread function (PSF). The obstruction of the incident light by the secondary mirror and its support structure, the trimmed corners of the petals, and the grooves between the segments all cause the diffraction pattern characterizing an ideal point spread function to be changed, with the trimmed comers causing the rings of the Airy pattern to become broken up, and the linear grooves causing diffraction spikes running radially away from the central spot, or Airy disk. Any figure errors the mirror segments may have, or any errors in aligning the petals with the central octagon will also spread the light out from the ideal point spread function. A point spread function for a mirror the size of the NGST and having an incident wavelength of 900 nm is considered. Most of the light is confined in a circle with a diameter of 0.05 arc seconds. The ring pattern ranges in intensity from 10(exp -2) near the center to 10(exp -6) near the edge of the plotted field, and can be clearly discerned in a log plot of the intensity. The total fraction of the light scattered from this point spread function is called
Lazzeroni, Marta; Brahme, Anders
2014-02-01
The use of positron emitter light ion beams in combination with PET (Positron Emission Tomography) and PET-CT (Computed Tomography) imaging could significantly improve treatment verification and dose delivery imaging during radiation therapy. The present study is dedicated to the analysis of the beam quality in terms of the effective source size, as well as radial, angular and energy spread of the 11C ion beam produced by projectile fragmentation of a primary point monodirectional and monoenergetic 12C ion beam in a dedicated range shifter of different materials. This study was performed combining analytical methods describing the transport of particles in matter and the Monte Carlo code SHIELD-HIT+. A high brilliance and production yield of 11C fragments with a small effective source size and emittance is best achieved with a decelerator made of two media: a first liquid hydrogen section of about 20 cm followed by a hydrogen rich section of variable length. The calculated intensity of the produced 11C ion beam ranges from about 5% to 8% of the primary 12C beam intensity depending on the exit energy and the acceptance of the beam transport system. The angular spread is lower than 1 degree for all the materials studied, but the brilliance of the beam is the highest with the proposed mixed decelerator.
Study of corium radial spreading between fuel rods in a PWR core
Roche, S.; Gatt, J.M.
1996-01-01
In the framework of severe accident studies for PWR like Three Mile Island Unit 2 (TMI-2), the reactor core essentially constituted of fuel rods begins to heat and then to melt. During the early degradation phase, a melt (essentially UO2 and ZrO2) that constitutes the corium flows first along the rods, and after a blockage formation, may radially propagate towards the core periphery. A simplified model has been elaborated to study the corium freezing phenomena during its crossflow between the fuel rods. The corium spreads on an horizontal support made, of either a corium crust, or a grid assembly. The model solves numerically the interface energy balance equation at the solid-liquid corium interface and the monodimensional heat balance equation in transient process with convective terms and heat source (residual power). ''Zukauskas'' correlations are used to calculate heat transfer coefficients. The model can be integrated in severe accident codes like ICARE II (IPSN) describing the in-vessel degradation scenarios. (author). 5 refs, 10 figs
Proper Analytic Point Spread Function for Lateral Modulation
Sumi, Chikayoshi; Shimizu, Kunio; Matsui, Norihiko
2010-07-01
For ultrasonic lateral modulation for the imaging and measurement of tissue motion, better envelope shapes of the point spread function (PSF) than of a parabolic function are searched for within analytic functions or windows on the basis of the knowledge of the ideal shape of PSF previously obtained, i.e., having a large full width at half maximum and short feet. Through simulation of displacement vector measurement, better shapes are determined. As a better shape, a new window is obtained from a Turkey window by changing Hanning windows by power functions with an order larger than the second order. The order of measurement accuracies obtained is as follows, the new window > rectangular window > power function with a higher order > parabolic function > Akaike window.
Finding Exoplanets Using Point Spread Function Photometry on Kepler Data
Amaro, Rachael Christina; Scolnic, Daniel; Montet, Ben
2018-01-01
The Kepler Mission has been able to identify over 5,000 exoplanet candidates using mostly aperture photometry. Despite the impressive number of discoveries, a large portion of Kepler’s data set is neglected due to limitations using aperture photometry on faint sources in crowded fields. We present an alternate method that overcomes those restrictions — Point Spread Function (PSF) photometry. This powerful tool, which is already used in supernova astronomy, was used for the first time on Kepler Full Frame Images, rather than just looking at the standard light curves. We present light curves for stars in our data set and demonstrate that PSF photometry can at least get down to the same photometric precision as aperture photometry. As a check for the robustness of this method, we change small variables (stamp size, interpolation amount, and noise correction) and show that the PSF light curves maintain the same repeatability across all combinations for one of our models. We also present our progress in the next steps of this project, including the creation of a PSF model from the data itself and applying the model across the entire data set at once.
Point spread functions and deconvolution of ultrasonic images.
Dalitz, Christoph; Pohle-Fröhlich, Regina; Michalk, Thorsten
2015-03-01
This article investigates the restoration of ultrasonic pulse-echo C-scan images by means of deconvolution with a point spread function (PSF). The deconvolution concept from linear system theory (LST) is linked to the wave equation formulation of the imaging process, and an analytic formula for the PSF of planar transducers is derived. For this analytic expression, different numerical and analytic approximation schemes for evaluating the PSF are presented. By comparing simulated images with measured C-scan images, we demonstrate that the assumptions of LST in combination with our formula for the PSF are a good model for the pulse-echo imaging process. To reconstruct the object from a C-scan image, we compare different deconvolution schemes: the Wiener filter, the ForWaRD algorithm, and the Richardson-Lucy algorithm. The best results are obtained with the Richardson-Lucy algorithm with total variation regularization. For distances greater or equal twice the near field distance, our experiments show that the numerically computed PSF can be replaced with a simple closed analytic term based on a far field approximation.
Point spread function engineering for iris recognition system design.
Ashok, Amit; Neifeld, Mark A
2010-04-01
Undersampling in the detector array degrades the performance of iris-recognition imaging systems. We find that an undersampling of 8 x 8 reduces the iris-recognition performance by nearly a factor of 4 (on CASIA iris database), as measured by the false rejection ratio (FRR) metric. We employ optical point spread function (PSF) engineering via a Zernike phase mask in conjunction with multiple subpixel shifted image measurements (frames) to mitigate the effect of undersampling. A task-specific optimization framework is used to engineer the optical PSF and optimize the postprocessing parameters to minimize the FRR. The optimized Zernike phase enhanced lens (ZPEL) imager design with one frame yields an improvement of nearly 33% relative to a thin observation module by bounded optics (TOMBO) imager with one frame. With four frames the optimized ZPEL imager achieves a FRR equal to that of the conventional imager without undersampling. Further, the ZPEL imager design using 16 frames yields a FRR that is actually 15% lower than that obtained with the conventional imager without undersampling.
Pricing and simulation for real estate index options: Radial basis point interpolation
Gong, Pu; Zou, Dong; Wang, Jiayue
2018-06-01
This study employs the meshfree radial basis point interpolation (RBPI) for pricing real estate derivatives contingent on real estate index. This method combines radial and polynomial basis functions, which can guarantee the interpolation scheme with Kronecker property and effectively improve accuracy. An exponential change of variables, a mesh refinement algorithm and the Richardson extrapolation are employed in this study to implement the RBPI. Numerical results are presented to examine the computational efficiency and accuracy of our method.
JOHN WILLIAM BRANCH
2007-01-01
Full Text Available La creación de modelos de objetos reales es una tarea compleja para la cual se ha visto que el uso de técnicas tradicionales de modelamiento tiene restricciones. Para resolver algunos de estos problemas, los sensores de rango basados en láser se usan con frecuencia para muestrear la superficie de un objeto desde varios puntos de vista, lo que resulta en un conjunto de imágenes de rango que son registradas e integradas en un modelo final triangulado. En la práctica, debido a las propiedades reflectivas de la superficie, las oclusiones, y limitaciones de acceso, ciertas áreas de la superficie del objeto usualmente no son muestreadas, dejando huecos que pueden crear efectos indeseables en el modelo integrado. En este trabajo, presentamos un nuevo algoritmo para el llenado de huecos a partir de modelos triangulados. El algoritmo comienza localizando la frontera de las regiones donde están los huecos. Un hueco consiste de un camino cerrado de bordes de los triángulos en la frontera que tienen al menos un borde que no es compartido con ningún otro triangulo. El borde del hueco es entonces adaptado mediante un B-Spline donde la variación promedio de la torsión del la aproximación del B-spline es calculada. Utilizando un simple umbral de la variación promedio a lo largo del borde, se puede clasificar automáticamente, entre huecos reales o generados por intervención humana. Siguiendo este proceso de clasificación, se usa entonces una versión automatizada del interpolador de funciones de base radial para llenar el interior del hueco usando los bordes vecinos.
Point kinetics model with one-dimensional (radial) heat conduction formalism
Jain, V.K.
1989-01-01
A point-kinetics model with one-dimensional (radial) heat conduction formalism has been developed. The heat conduction formalism is based on corner-mesh finite difference method. To get average temperatures in various conducting regions, a novel weighting scheme has been devised. The heat conduction model has been incorporated in the point-kinetics code MRTF-FUEL. The point-kinetics equations are solved using the method of real integrating factors. It has been shown by analysing the simulation of hypothetical loss of regulation accident in NAPP reactor that the model is superior to the conventional one in accuracy and speed of computation. (author). 3 refs., 3 tabs
Parallel Fixed Point Implementation of a Radial Basis Function Network in an FPGA
Alisson C. D. de Souza
2014-09-01
Full Text Available This paper proposes a parallel fixed point radial basis function (RBF artificial neural network (ANN, implemented in a field programmable gate array (FPGA trained online with a least mean square (LMS algorithm. The processing time and occupied area were analyzed for various fixed point formats. The problems of precision of the ANN response for nonlinear classification using the XOR gate and interpolation using the sine function were also analyzed in a hardware implementation. The entire project was developed using the System Generator platform (Xilinx, with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA.
Hosein Ghaffarzadeh
Full Text Available Abstract This paper investigates the numerical modeling of the flexural wave propagation in Euler-Bernoulli beams using the Hermite-type radial point interpolation method (HRPIM under the damage quantification approach. HRPIM employs radial basis functions (RBFs and their derivatives for shape function construction as a meshfree technique. The performance of Multiquadric(MQ RBF to the assessment of the reflection ratio was evaluated. HRPIM signals were compared with the theoretical and finite element responses. Results represent that MQ is a suitable RBF for HRPIM and wave propagation. However, the range of the proper shape parameters is notable. The number of field nodes is the main parameter for accurate wave propagation modeling using HRPIM. The size of support domain should be less thanan upper bound in order to prevent high error. With regard to the number of quadrature points, providing the minimum numbers of points are adequate for the stable solution, but the existence of more points in damage region does not leads to necessarily the accurate responses. It is concluded that the pure HRPIM, without any polynomial terms, is acceptable but considering a few terms will improve the accuracy; even though more terms make the problem unstable and inaccurate.
Kim, Kyung-O; Jeong, Hae Sun; Jo, Daeseong
2017-01-01
Highlights: • Employing the Radial Point Interpolation Method (RPIM) in numerical analysis of multi-group neutron-diffusion equation. • Establishing mathematical formation of modified multi-group neutron-diffusion equation by RPIM. • Performing the numerical analysis for 2D critical problem. - Abstract: A mesh-free method is introduced to overcome the drawbacks (e.g., mesh generation and connectivity definition between the meshes) of mesh-based (nodal) methods such as the finite-element method and finite-difference method. In particular, the Point Interpolation Method (PIM) using a radial basis function is employed in the numerical analysis for the multi-group neutron-diffusion equation. The benchmark calculations are performed for the 2D homogeneous and heterogeneous problems, and the Multiquadrics (MQ) and Gaussian (EXP) functions are employed to analyze the effect of the radial basis function on the numerical solution. Additionally, the effect of the dimensionless shape parameter in those functions on the calculation accuracy is evaluated. According to the results, the radial PIM (RPIM) can provide a highly accurate solution for the multiplication eigenvalue and the neutron flux distribution, and the numerical solution with the MQ radial basis function exhibits the stable accuracy with respect to the reference solutions compared with the other solution. The dimensionless shape parameter directly affects the calculation accuracy and computing time. Values between 1.87 and 3.0 for the benchmark problems considered in this study lead to the most accurate solution. The difference between the analytical and numerical results for the neutron flux is significantly increased in the edge of the problem geometry, even though the maximum difference is lower than 4%. This phenomenon seems to arise from the derivative boundary condition at (x,0) and (0,y) positions, and it may be necessary to introduce additional strategy (e.g., the method using fictitious points and
Siemons, M.E.; Thorsen, R.Ø; Smith, C.S.; Stallinga, S.
2018-01-01
Point spread function (PSF) engineering is used in single emitter localization to measure the emitter position in 3D and possibly other parameters such as the emission color or dipole orientation as well. Advanced PSF models such as spline fits to experimental PSFs or the vectorial PSF model can
Ohkubo, Masaki; Wada, Shinichi; Kobayashi, Teiji; Lee, Yongbum; Tsai, Du-Yih
2004-01-01
In the CT image system, we revealed the relationship between line spread function (LSF), or slice sensitivity profile (SSP), and point spread function (PSF). In the system, the following equation has been reported; I(x,y)=O(x,y) ** PSF(x,y), in which I(x,y) and O(x,y) are CT image and object function, respectively, and ** is 2-dimensional convolution. In the same way, the following 3-dimensional expression applies; I'(x,y,z)=O'(x,y,z) *** PSF'(x,y,z), in which z-axis is the direction perpendicular to the x/y-scan plane. We defined that the CT image system was separable, when the above two equations could be transformed into following equations; I(x,y)=[O(x,y) * LSF x (x)] * LSF y (y) and I'(x,y,z) =[O'(x,y,z) * SSP(z)] ** PSF(x,y), respectively, in which LSF x (x) and LSF y (y) are LSFs in x- and y-direction, respectively. Previous reports for the LSF and SSP are considered to assume the separable-system. Under the condition of separable-system, we derived following equations; PSF(x,y)=LSF x (x) ·LSF y (y) and PSF'(x,y,z)=PSF(x,y)·SSP(z). They were validated by the computer-simulations. When the study based on 1-dimensional functions of LSF and SSP are expanded to that based on 2- or 3-dimensional functions of PSF, derived equations must be required. (author)
An improved local radial point interpolation method for transient heat conduction analysis
Wang, Feng; Lin, Gao; Zheng, Bao-Jing; Hu, Zhi-Qiang
2013-06-01
The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions.
An improved local radial point interpolation method for transient heat conduction analysis
Wang Feng; Lin Gao; Hu Zhi-Qiang; Zheng Bao-Jing
2013-01-01
The smoothing thin plate spline (STPS) interpolation using the penalty function method according to the optimization theory is presented to deal with transient heat conduction problems. The smooth conditions of the shape functions and derivatives can be satisfied so that the distortions hardly occur. Local weak forms are developed using the weighted residual method locally from the partial differential equations of the transient heat conduction. Here the Heaviside step function is used as the test function in each sub-domain to avoid the need for a domain integral. Essential boundary conditions can be implemented like the finite element method (FEM) as the shape functions possess the Kronecker delta property. The traditional two-point difference method is selected for the time discretization scheme. Three selected numerical examples are presented in this paper to demonstrate the availability and accuracy of the present approach comparing with the traditional thin plate spline (TPS) radial basis functions
Kresno Wikan Sadono
2016-12-01
Full Text Available Persamaan differensial banyak digunakan untuk menggambarkan berbagai fenomena dalam bidang sains dan rekayasa. Berbagai masalah komplek dalam kehidupan sehari-hari dapat dimodelkan dengan persamaan differensial dan diselesaikan dengan metode numerik. Salah satu metode numerik, yaitu metode meshfree atau meshless berkembang akhir-akhir ini, tanpa proses pembuatan elemen pada domain. Penelitian ini menggabungkan metode meshless yaitu radial basis point interpolation method (RPIM dengan integrasi waktu discontinuous Galerkin method (DGM, metode ini disebut RPIM-DGM. Metode RPIM-DGM diaplikasikan pada advection equation pada satu dimensi. RPIM menggunakan basis function multiquadratic function (MQ dan integrasi waktu diturunkan untuk linear-DGM maupun quadratic-DGM. Hasil simulasi menunjukkan, metode ini mendekati hasil analitis dengan baik. Hasil simulasi numerik dengan RPIM DGM menunjukkan semakin banyak node dan semakin kecil time increment menunjukkan hasil numerik semakin akurat. Hasil lain menunjukkan, integrasi numerik dengan quadratic-DGM untuk suatu time increment dan jumlah node tertentu semakin meningkatkan akurasi dibandingkan dengan linear-DGM. [Title: Numerical solution of advection equation with radial basis interpolation method and discontinuous Galerkin method for time integration] Differential equation is widely used to describe a variety of phenomena in science and engineering. A variety of complex issues in everyday life can be modeled with differential equations and solved by numerical method. One of the numerical methods, the method meshfree or meshless developing lately, without making use of the elements in the domain. The research combines methods meshless, i.e. radial basis point interpolation method with discontinuous Galerkin method as time integration method. This method is called RPIM-DGM. The RPIM-DGM applied to one dimension advection equation. The RPIM using basis function multiquadratic function and time
Taisuke Murata
2016-10-01
Full Text Available Abstract Background The point spread function (PSF of positron emission tomography (PET depends on the position across the field of view (FOV. Reconstruction based on PSF improves spatial resolution and quantitative accuracy. The present study aimed to quantify the effects of PSF correction as a function of the position of a traceable point-like 22Na source over the FOV on two PET scanners with a different detector design. Methods We used Discovery 600 and Discovery 710 (GE Healthcare PET scanners and traceable point-like 22Na sources (<1 MBq with a spherical absorber design that assures uniform angular distribution of the emitted annihilation photons. The source was moved in three directions at intervals of 1 cm from the center towards the peripheral FOV using a three-dimensional (3D-positioning robot, and data were acquired over a period of 2 min per point. The PET data were reconstructed by filtered back projection (FBP, the ordered subset expectation maximization (OSEM, OSEM + PSF, and OSEM + PSF + time-of-flight (TOF. Full width at half maximum (FWHM was determined according to the NEMA method, and total counts in regions of interest (ROI for each reconstruction were quantified. Results The radial FWHM of FBP and OSEM increased towards the peripheral FOV, whereas PSF-based reconstruction recovered the FWHM at all points in the FOV of both scanners. The radial FWHM for PSF was 30–50 % lower than that of OSEM at the center of the FOV. The accuracy of PSF correction was independent of detector design. Quantitative values were stable across the FOV in all reconstruction methods. The effect of TOF on spatial resolution and quantitation accuracy was less noticeable. Conclusions The traceable 22Na point-like source allowed the evaluation of spatial resolution and quantitative accuracy across the FOV using different reconstruction methods and scanners. PSF-based reconstruction reduces dependence of the spatial resolution on the
Fu, Shihang; Zhang, Li; Hu, Yao; Ding, Xiang
2018-01-01
Confocal Raman Microscopy (CRM) has matured to become one of the most powerful instruments in analytical science because of its molecular sensitivity and high spatial resolution. Compared with conventional Raman Microscopy, CRM can perform three dimensions mapping of tiny samples and has the advantage of high spatial resolution thanking to the unique pinhole. With the wide application of the instrument, there is a growing requirement for the evaluation of the imaging performance of the system. Point-spread function (PSF) is an important approach to the evaluation of imaging capability of an optical instrument. Among a variety of measurement methods of PSF, the point source method has been widely used because it is easy to operate and the measurement results are approximate to the true PSF. In the point source method, the point source size has a significant impact on the final measurement accuracy. In this paper, the influence of the point source sizes on the measurement accuracy of PSF is analyzed and verified experimentally. A theoretical model of the lateral PSF for CRM is established and the effect of point source size on full-width at half maximum of lateral PSF is simulated. For long-term preservation and measurement convenience, PSF measurement phantom using polydimethylsiloxane resin, doped with different sizes of polystyrene microspheres is designed. The PSF of CRM with different sizes of microspheres are measured and the results are compared with the simulation results. The results provide a guide for measuring the PSF of the CRM.
Misganaw Abebe
2017-11-01
Full Text Available Springback in multi-point dieless forming (MDF is a common problem because of the small deformation and blank holder free boundary condition. Numerical simulations are widely used in sheet metal forming to predict the springback. However, the computational time in using the numerical tools is time costly to find the optimal process parameters value. This study proposes radial basis function (RBF to replace the numerical simulation model by using statistical analyses that are based on a design of experiment (DOE. Punch holding time, blank thickness, and curvature radius are chosen as effective process parameters for determining the springback. The Latin hypercube DOE method facilitates statistical analyses and the extraction of a prediction model in the experimental process parameter domain. Finite element (FE simulation model is conducted in the ABAQUS commercial software to generate the springback responses of the training and testing samples. The genetic algorithm is applied to find the optimal value for reducing and compensating the induced springback for the different blank thicknesses using the developed RBF prediction model. Finally, the RBF numerical result is verified by comparing with the FE simulation result of the optimal process parameters and both results show that the springback is almost negligible from the target shape.
Estimation Methods of the Point Spread Function Axial Position: A Comparative Computational Study
Javier Eduardo Diaz Zamboni
2017-01-01
Full Text Available The precise knowledge of the point spread function is central for any imaging system characterization. In fluorescence microscopy, point spread function (PSF determination has become a common and obligatory task for each new experimental device, mainly due to its strong dependence on acquisition conditions. During the last decade, algorithms have been developed for the precise calculation of the PSF, which fit model parameters that describe image formation on the microscope to experimental data. In order to contribute to this subject, a comparative study of three parameter estimation methods is reported, namely: I-divergence minimization (MIDIV, maximum likelihood (ML and non-linear least square (LSQR. They were applied to the estimation of the point source position on the optical axis, using a physical model. Methods’ performance was evaluated under different conditions and noise levels using synthetic images and considering success percentage, iteration number, computation time, accuracy and precision. The main results showed that the axial position estimation requires a high SNR to achieve an acceptable success level and higher still to be close to the estimation error lower bound. ML achieved a higher success percentage at lower SNR compared to MIDIV and LSQR with an intrinsic noise source. Only the ML and MIDIV methods achieved the error lower bound, but only with data belonging to the optical axis and high SNR. Extrinsic noise sources worsened the success percentage, but no difference was found between noise sources for the same method for all methods studied.
Demenikov, Mads
2011-01-01
to optimization results based on full-reference image measures of restored images. In comparison with full-reference measures, the kurtosis measure is fast to compute and requires no images, noise distributions, or alignment of restored images, but only the signal-to-noise-ratio. © 2011 Optical Society of America.......I propose a novel, but yet simple, no-reference, objective image quality measure based on the kurtosis of the restored point spread function. Using this measure, I optimize several phase masks for extended-depth-of-field in hybrid imaging systems and obtain results that are identical...
Measurement of the point spread function of a pixelated detector array
Ritzer, Christian; Hallen, Patrick; Schug, David; Schulz, Volkmar [Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen (Germany)
2015-05-18
In order to further understand the PET/MRI scanner of our group, we measured the point spread function of a preclinical scintillation crystal array with a pitch of 1 mm and a total size of 30 mm ~ 30 mm ~ 12 mm. It is coupled via a lightguide to a dSiPM from Philips Digital Photon Counting, used on the TEK-setup. Crystal identification is done with a centre of gravity algorithm and the whole data analysis is performed with the same processing software as for the PET insert, giving comparable results. The beam is created with a 22 NA-Point-Source and a lead collimator, with 0.5 mm bore diameter. The algorithm sorted 62 % of the coincidences into the correct crystal.
Measurement of the point spread function of a pixelated detector array
Ritzer, Christian; Hallen, Patrick; Schug, David; Schulz, Volkmar
2015-01-01
In order to further understand the PET/MRI scanner of our group, we measured the point spread function of a preclinical scintillation crystal array with a pitch of 1 mm and a total size of 30 mm ~ 30 mm ~ 12 mm. It is coupled via a lightguide to a dSiPM from Philips Digital Photon Counting, used on the TEK-setup. Crystal identification is done with a centre of gravity algorithm and the whole data analysis is performed with the same processing software as for the PET insert, giving comparable results. The beam is created with a 22 NA-Point-Source and a lead collimator, with 0.5 mm bore diameter. The algorithm sorted 62 % of the coincidences into the correct crystal.
In-flight calibration of the Hitomi Soft X-ray Spectrometer. (2) Point spread function
Maeda, Yoshitomo; Sato, Toshiki; Hayashi, Takayuki; Iizuka, Ryo; Angelini, Lorella; Asai, Ryota; Furuzawa, Akihiro; Kelley, Richard; Koyama, Shu; Kurashima, Sho; Ishida, Manabu; Mori, Hideyuki; Nakaniwa, Nozomi; Okajima, Takashi; Serlemitsos, Peter J.; Tsujimoto, Masahiro; Yaqoob, Tahir
2018-03-01
We present results of inflight calibration of the point spread function of the Soft X-ray Telescope that focuses X-rays onto the pixel array of the Soft X-ray Spectrometer system. We make a full array image of a point-like source by extracting a pulsed component of the Crab nebula emission. Within the limited statistics afforded by an exposure time of only 6.9 ks and limited knowledge of the systematic uncertainties, we find that the raytracing model of 1 {^'.} 2 half-power-diameter is consistent with an image of the observed event distributions across pixels. The ratio between the Crab pulsar image and the raytracing shows scatter from pixel to pixel that is 40% or less in all except one pixel. The pixel-to-pixel ratio has a spread of 20%, on average, for the 15 edge pixels, with an averaged statistical error of 17% (1 σ). In the central 16 pixels, the corresponding ratio is 15% with an error of 6%.
4Pi microscopy deconvolution with a variable point-spread function.
Baddeley, David; Carl, Christian; Cremer, Christoph
2006-09-20
To remove the axial sidelobes from 4Pi images, deconvolution forms an integral part of 4Pi microscopy. As a result of its high axial resolution, the 4Pi point spread function (PSF) is particularly susceptible to imperfect optical conditions within the sample. This is typically observed as a shift in the position of the maxima under the PSF envelope. A significantly varying phase shift renders deconvolution procedures based on a spatially invariant PSF essentially useless. We present a technique for computing the forward transformation in the case of a varying phase at a computational expense of the same order of magnitude as that of the shift invariant case, a method for the estimation of PSF phase from an acquired image, and a deconvolution procedure built on these techniques.
Fast and accurate three-dimensional point spread function computation for fluorescence microscopy.
Li, Jizhou; Xue, Feng; Blu, Thierry
2017-06-01
The point spread function (PSF) plays a fundamental role in fluorescence microscopy. A realistic and accurately calculated PSF model can significantly improve the performance in 3D deconvolution microscopy and also the localization accuracy in single-molecule microscopy. In this work, we propose a fast and accurate approximation of the Gibson-Lanni model, which has been shown to represent the PSF suitably under a variety of imaging conditions. We express the Kirchhoff's integral in this model as a linear combination of rescaled Bessel functions, thus providing an integral-free way for the calculation. The explicit approximation error in terms of parameters is given numerically. Experiments demonstrate that the proposed approach results in a significantly smaller computational time compared with current state-of-the-art techniques to achieve the same accuracy. This approach can also be extended to other microscopy PSF models.
Derivation of the point spread function for zero-crossing-demodulated position-sensitive detectors
Nowlin, C.H.
1976-07-01
This work is a mathematical derivation of a high-quality approximation to the point spread function for position-sensitive detectors (PSDs) that use pulse-shape modulation and crossover-time demodulation. The approximation is determined as a general function of the input signals to the crossover detectors so as to enable later determination of optimum position-decoding filters for PSDs. This work is precisely applicable to PSDs that use either RC or LC transmission line encoders. The effects of random variables, such as charge collection time, in the encoding process are included. In addition, this work presents a new, rigorous method for the determination of upper and lower bounds for conditional crossover-time distribution functions (closely related to first-passage-time distribution functions) for arbitrary signals and arbitrary noise covariance functions
Point spread function due to multiple scattering of light in the atmosphere
Pękala, J.; Wilczyński, H.
2013-01-01
The atmospheric scattering of light has a significant influence on the results of optical observations of air showers. It causes attenuation of direct light from the shower, but also contributes a delayed signal to the observed light. The scattering of light therefore should be accounted for, both in simulations of air shower detection and reconstruction of observed events. In this work a Monte Carlo simulation of multiple scattering of light has been used to determine the contribution of the scattered light in observations of a point source of light. Results of the simulations and a parameterization of the angular distribution of the scattered light contribution to the observed signal (the point spread function) are presented. -- Author-Highlights: •Analysis of atmospheric scattering of light from an isotropic point source. •Different geometries and atmospheric conditions were investigated. •A parameterization of scattered light distribution has been developed. •The parameterization allows one to easily account for the light scattering in air. •The results will be useful in analyses of observations of extensive air shower
In-flight calibration of the Swift XRT Point Spread Function
Moretti, A.; Campana, S.; Chincarini, G.; Covino, S.; Romano, P.; Tagliaferri, G.; Capalbi, M.; Giommi, P.; Perri, M.; Cusumano, G.; La Parola, V.; Mangano, V.; Mineo, T.
2006-01-01
The Swift X-ray Telescope (XRT) is designed to make astrometric, spectroscopic and photometric observations of the X-ray emission from Gamma-ray bursts and their afterglows, in the energy band 0.2-10 keV. Here we report the results of the analysis of Swift XRT Point Spread Function (PSF) as measured in the first four months of the mission during the instrument calibration phase. The analysis includes the study of the PSF of different point-like sources both on-axis and off-axis with different spectral properties. We compare the in-flight data with the expectations from the on-ground calibration. On the basis of the calibration data we built an analytical model to reproduce the PSF as a function of the energy and the source position within the detector which can be applied in the PSF correction calculation for any extraction region geometry. All the results of this study are implemented in the standard public software
“Hot Hand” in the National Basketball Association Point Spread Betting Market: A 34-Year Analysis
Benjamin Waggoner
2014-11-01
Full Text Available Several articles have looked at factors that affect the adjustments of point spreads, based on hot hands or streaks, for smaller durations of time. This study examines these effects for 34 regular seasons in the National Basketball Association (NBA. Estimating a Seemingly Unrelated Regression model using all 34 seasons, all streaks significantly impacted point spreads and difference in actual points. When estimating each season individually, differences emerged particularly examining winning and losing streaks of six games or more. The results indicate both the presence of momentum effects and the gambler’s fallacy.
Dmochowski, Jacek P; Bikson, Marom; Parra, Lucas C
2012-01-01
Rational development of transcranial current stimulation (tCS) requires solving the ‘forward problem’: the computation of the electric field distribution in the head resulting from the application of scalp currents. Derivation of forward models has represented a major effort in brain stimulation research, with model complexity ranging from spherical shells to individualized head models based on magnetic resonance imagery. Despite such effort, an easily accessible benchmark head model is greatly needed when individualized modeling is either undesired (to observe general population trends as opposed to individual differences) or unfeasible. Here, we derive a closed-form linear system which relates the applied current to the induced electric potential. It is shown that in the spherical harmonic (Fourier) domain, a simple scalar multiplication relates the current density on the scalp to the electric potential in the brain. Equivalently, the current density in the head follows as the spherical convolution between the scalp current distribution and the point spread function of the head, which we derive. Thus, if one knows the spherical harmonic representation of the scalp current (i.e. the electrode locations and current intensity to be employed), one can easily compute the resulting electric field at any point inside the head. Conversely, one may also readily determine the scalp current distribution required to generate an arbitrary electric field in the brain (the ‘backward problem’ in tCS). We demonstrate the simplicity and utility of the model with a series of characteristic curves which sweep across a variety of stimulation parameters: electrode size, depth of stimulation, head size and anode–cathode separation. Finally, theoretically optimal montages for targeting an infinitesimal point in the brain are shown. (paper)
Synthesis of atmospheric turbulence point spread functions by sparse and redundant representations
Hunt, Bobby R.; Iler, Amber L.; Bailey, Christopher A.; Rucci, Michael A.
2018-02-01
Atmospheric turbulence is a fundamental problem in imaging through long slant ranges, horizontal-range paths, or uplooking astronomical cases through the atmosphere. An essential characterization of atmospheric turbulence is the point spread function (PSF). Turbulence images can be simulated to study basic questions, such as image quality and image restoration, by synthesizing PSFs of desired properties. In this paper, we report on a method to synthesize PSFs of atmospheric turbulence. The method uses recent developments in sparse and redundant representations. From a training set of measured atmospheric PSFs, we construct a dictionary of "basis functions" that characterize the atmospheric turbulence PSFs. A PSF can be synthesized from this dictionary by a properly weighted combination of dictionary elements. We disclose an algorithm to synthesize PSFs from the dictionary. The algorithm can synthesize PSFs in three orders of magnitude less computing time than conventional wave optics propagation methods. The resulting PSFs are also shown to be statistically representative of the turbulence conditions that were used to construct the dictionary.
Extended Nijboer-Zernike approach for the computation of optical point-spread functions.
Janssen, Augustus J E M
2002-05-01
New Bessel-series representations for the calculation of the diffraction integral are presented yielding the point-spread function of the optical system, as occurs in the Nijboer-Zernike theory of aberrations. In this analysis one can allow an arbitrary aberration and a defocus part. The representations are presented in full detail for the cases of coma and astigmatism. The analysis leads to stably converging results in the case of large aberration or defocus values, while the applicability of the original Nijboer-Zernike theory is limited mainly to wave-front deviations well below the value of one wavelength. Because of its intrinsic speed, the analysis is well suited to supplement or to replace numerical calculations that are currently used in the fields of (scanning) microscopy, lithography, and astronomy. In a companion paper [J. Opt. Soc. Am. A 19, 860 (2002)], physical interpretations and applications in a lithographic context are presented, a convergence analysis is given, and a comparison is made with results obtained by using a numerical package.
Point spread function modeling and image restoration for cone-beam CT
Zhang Hua; Shi Yikai; Huang Kuidong; Xu Zhe
2015-01-01
X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection image degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed first. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection image restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection image restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasibility and effectiveness of the proposed methods. (authors)
Plasmon point spread functions: How do we model plasmon-mediated emission processes?
Willets, Katherine A.
2014-02-01
A major challenge with studying plasmon-mediated emission events is the small size of plasmonic nanoparticles relative to the wavelength of light. Objects smaller than roughly half the wavelength of light will appear as diffraction-limited spots in far-field optical images, presenting a significant experimental challenge for studying plasmonic processes on the nanoscale. Super-resolution imaging has recently been applied to plasmonic nanosystems and allows plasmon-mediated emission to be resolved on the order of ˜5 nm. In super-resolution imaging, a diffraction-limited spot is fit to some model function in order to calculate the position of the emission centroid, which represents the location of the emitter. However, the accuracy of the centroid position strongly depends on how well the fitting function describes the data. This Perspective discusses the commonly used two-dimensional Gaussian fitting function applied to super-resolution imaging of plasmon-mediated emission, then introduces an alternative model based on dipole point spread functions. The two fitting models are compared and contrasted for super-resolution imaging of nanoparticle scattering/luminescence, surface-enhanced Raman scattering, and surface-enhanced fluorescence.
Moussaoui, Ahmed; Bouziane, Touria
2016-01-01
The method LRPIM is a Meshless method with properties of simple implementation of the essential boundary conditions and less costly than the moving least squares (MLS) methods. This method is proposed to overcome the singularity associated to polynomial basis by using radial basis functions. In this paper, we will present a study of a 2D problem of an elastic homogenous rectangular plate by using the method LRPIM. Our numerical investigations will concern the influence of different shape parameters on the domain of convergence,accuracy and using the radial basis function of the thin plate spline. It also will presents a comparison between numerical results for different materials and the convergence domain by precising maximum and minimum values as a function of distribution nodes number. The analytical solution of the deflection confirms the numerical results. The essential points in the method are: •The LRPIM is derived from the local weak form of the equilibrium equations for solving a thin elastic plate.•The convergence of the LRPIM method depends on number of parameters derived from local weak form and sub-domains.•The effect of distributions nodes number by varying nature of material and the radial basis function (TPS).
Collateral damage: Spread of repeat-induced point mutation from a ...
Unknown
of the erg-3 gene, present in single copy, to the spread of RIP from duplications of adjoining sequences. Ge- ... RIP can spread across as much as 1 kb of unduplicated DNA. ... sequences that are > 500 bp and share > 80% similarity.
On soft clipping of Zernike moments for deblurring and enhancement of optical point spread functions
Becherer, Nico; Jödicke, Hanna; Schlosser, Gregor; Hesser, Jürgen; Zeilfelder, Frank; Männer, Reinhard
2006-02-01
Blur and noise originating from the physical imaging processes degrade the microscope data. Accurate deblurring techniques require, however, an accurate estimation of the underlying point-spread function (PSF). A good representation of PSFs can be achieved by Zernike Polynomials since they offer a compact representation where low-order coefficients represent typical aberrations of optical wavefronts while noise is represented in higher order coefficients. A quantitative description of the noise distribution (Gaussian) over the Zernike moments of various orders is given which is the basis for the new soft clipping approach for denoising of PSFs. Instead of discarding moments beyond a certain order, those Zernike moments that are more sensitive to noise are dampened according to the measured distribution and the present noise model. Further, a new scheme to combine experimental and theoretical PSFs in Zernike space is presented. According to our experimental reconstructions, using the new improved PSF the correlation between reconstructed and original volume is raised by 15% on average cases and up to 85% in the case of thin fibre structures, compared to reconstructions where a non improved PSF was used. Finally, we demonstrate the advantages of our approach on 3D images of confocal microscopes by generating visually improved volumes. Additionally, we are presenting a method to render the reconstructed results using a new volume rendering method that is almost artifact-free. The new approach is based on a Shear-Warp technique, wavelet data encoding techniques and a recent approach to approximate the gray value distribution by a Super spline model.
The point-spread function measure of resolution for the 3-D electrical resistivity experiment
Oldenborger, Greg A.; Routh, Partha S.
2009-02-01
The solution appraisal component of the inverse problem involves investigation of the relationship between our estimated model and the actual model. However, full appraisal is difficult for large 3-D problems such as electrical resistivity tomography (ERT). We tackle the appraisal problem for 3-D ERT via the point-spread functions (PSFs) of the linearized resolution matrix. The PSFs represent the impulse response of the inverse solution and quantify our parameter-specific resolving capability. We implement an iterative least-squares solution of the PSF for the ERT experiment, using on-the-fly calculation of the sensitivity via an adjoint integral equation with stored Green's functions and subgrid reduction. For a synthetic example, analysis of individual PSFs demonstrates the truly 3-D character of the resolution. The PSFs for the ERT experiment are Gaussian-like in shape, with directional asymmetry and significant off-diagonal features. Computation of attributes representative of the blurring and localization of the PSF reveal significant spatial dependence of the resolution with some correlation to the electrode infrastructure. Application to a time-lapse ground-water monitoring experiment demonstrates the utility of the PSF for assessing feature discrimination, predicting artefacts and identifying model dependence of resolution. For a judicious selection of model parameters, we analyse the PSFs and their attributes to quantify the case-specific localized resolving capability and its variability over regions of interest. We observe approximate interborehole resolving capability of less than 1-1.5m in the vertical direction and less than 1-2.5m in the horizontal direction. Resolving capability deteriorates significantly outside the electrode infrastructure.
Siemons, M.; Hulleman, C. N.; Thorsen, R. Ø.; Smith, C. S.; Stallinga, S.
2018-04-01
Point Spread Function (PSF) engineering is used in single emitter localization to measure the emitter position in 3D and possibly other parameters such as the emission color or dipole orientation as well. Advanced PSF models such as spline fits to experimental PSFs or the vectorial PSF model can be used in the corresponding localization algorithms in order to model the intricate spot shape and deformations correctly. The complexity of the optical architecture and fit model makes PSF engineering approaches particularly sensitive to optical aberrations. Here, we present a calibration and alignment protocol for fluorescence microscopes equipped with a spatial light modulator (SLM) with the goal of establishing a wavefront error well below the diffraction limit for optimum application of complex engineered PSFs. We achieve high-precision wavefront control, to a level below 20 m$\\lambda$ wavefront aberration over a 30 minute time window after the calibration procedure, using a separate light path for calibrating the pixel-to-pixel variations of the SLM, and alignment of the SLM with respect to the optical axis and Fourier plane within 3 $\\mu$m ($x/y$) and 100 $\\mu$m ($z$) error. Aberrations are retrieved from a fit of the vectorial PSF model to a bead $z$-stack and compensated with a residual wavefront error comparable to the error of the SLM calibration step. This well-calibrated and corrected setup makes it possible to create complex `3D+$\\lambda$' PSFs that fit very well to the vectorial PSF model. Proof-of-principle bead experiments show precisions below 10~nm in $x$, $y$, and $\\lambda$, and below 20~nm in $z$ over an axial range of 1 $\\mu$m with 2000 signal photons and 12 background photons.
Influence of Signal-to-Noise Ratio and Point Spread Function on Limits of Super-Resolution
Pham, T.Q.; Vliet, L.J. van; Schutte, K.
2005-01-01
This paper presents a method to predict the limit of possible resolution enhancement given a sequence of low resolution images. Three important parameters influence the outcome of this limit: the total Point Spread Function (PSF), the Signal-to-Noise Ratio (SNR) and the number of input images.
Influence of signal-to-noise ratio and point spread function on limits of super-resolution
Pham, T.Q.; Van Vliet, L.; Schutte, K.
2005-01-01
This paper presents a method to predict the limit of possible resolution enhancement given a sequence of lowresolution images. Three important parameters influence the outcome of this limit: the total Point Spread Function (PSF), the Signal-to-Noise Ratio (SNR) and the number of input images.
Hara, T.; Hofstad, van der R.W.; Slade, G.
2003-01-01
We consider spread-out models of self-avoiding walk, bond percolation, lattice trees and bond lattice animals on ${\\mathbb{Z}^d}$, having long finite-range connections, above their upper critical dimensions $d=4$ (self-avoiding walk), $d=6$ (percolation) and $d=8$ (trees and animals). The two-point
Regis, Rommel G.
2014-02-01
This article develops two new algorithms for constrained expensive black-box optimization that use radial basis function surrogates for the objective and constraint functions. These algorithms are called COBRA and Extended ConstrLMSRBF and, unlike previous surrogate-based approaches, they can be used for high-dimensional problems where all initial points are infeasible. They both follow a two-phase approach where the first phase finds a feasible point while the second phase improves this feasible point. COBRA and Extended ConstrLMSRBF are compared with alternative methods on 20 test problems and on the MOPTA08 benchmark automotive problem (D.R. Jones, Presented at MOPTA 2008), which has 124 decision variables and 68 black-box inequality constraints. The alternatives include a sequential penalty derivative-free algorithm, a direct search method with kriging surrogates, and two multistart methods. Numerical results show that COBRA algorithms are competitive with Extended ConstrLMSRBF and they generally outperform the alternatives on the MOPTA08 problem and most of the test problems.
Identifying the starting point of a spreading process in complex networks.
Comin, Cesar Henrique; Costa, Luciano da Fontoura
2011-11-01
When dealing with the dissemination of epidemics, one important question that can be asked is the location where the contamination began. In this paper, we analyze three spreading schemes and propose and validate an effective methodology for the identification of the source nodes. The method is based on the calculation of the centrality of the nodes on the sampled network, expressed here by degree, betweenness, closeness, and eigenvector centrality. We show that the source node tends to have the highest measurement values. The potential of the methodology is illustrated with respect to three theoretical complex network models as well as a real-world network, the email network of the University Rovira i Virgili.
Exponential spreading and singular behavior of quantum dynamics near hyperbolic points.
Iomin, A
2013-05-01
Quantum dynamics of a particle in the vicinity of a hyperbolic point is considered. Expectation values of dynamical variables are calculated, and the singular behavior is analyzed. Exponentially fast extension of quantum dynamics is obtained, and conditions for this realization are analyzed.
Chae, Kum Ju; Goo, Jin Mo; Ahn, Su Yeon; Yoo, Jin Young; Yoon, Soon Ho
2018-01-01
To evaluate the preference of observers for image quality of chest radiography using the deconvolution algorithm of point spread function (PSF) (TRUVIEW ART algorithm, DRTECH Corp.) compared with that of original chest radiography for visualization of anatomic regions of the chest. Prospectively enrolled 50 pairs of posteroanterior chest radiographs collected with standard protocol and with additional TRUVIEW ART algorithm were compared by four chest radiologists. This algorithm corrects scattered signals generated by a scintillator. Readers independently evaluated the visibility of 10 anatomical regions and overall image quality with a 5-point scale of preference. The significance of the differences in reader's preference was tested with a Wilcoxon's signed rank test. All four readers preferred the images applied with the algorithm to those without algorithm for all 10 anatomical regions (mean, 3.6; range, 3.2-4.0; p chest anatomical structures applied with the deconvolution algorithm of PSF was superior to the original chest radiography.
Braat, Joseph; Dirksen, Peter; Janssen, Augustus J E M
2002-05-01
We assess the validity of an extended Nijboer-Zernike approach [J. Opt. Soc. Am. A 19, 849 (2002)], based on ecently found Bessel-series representations of diffraction integrals comprising an arbitrary aberration and a defocus part, for the computation of optical point-spread functions of circular, aberrated optical systems. These new series representations yield a flexible means to compute optical point-spread functions, both accurately and efficiently, under defocus and aberration conditions that seem to cover almost all cases of practical interest. Because of the analytical nature of the formulas, there are no discretization effects limiting the accuracy, as opposed to the more commonly used numerical packages based on strictly numerical integration methods. Instead, we have an easily managed criterion, expressed in the number of terms to be included in the Bessel-series representations, guaranteeing the desired accuracy. For this reason, the analytical method can also serve as a calibration tool for the numerically based methods. The analysis is not limited to pointlike objects but can also be used for extended objects under various illumination conditions. The calculation schemes are simple and permit one to trace the relative strength of the various interfering complex-amplitude terms that contribute to the final image intensity function.
Lemen, J. R.; Claflin, E. S.; Brown, W. A.; Bruner, M. E.; Catura, R. C.
1989-01-01
A grazing incidence solar X-ray telescope, Soft X-ray Telescope (SXT), will be flown on the Solar-A satellite in 1991. Measurements have been conducted to determine the focal length, Point Spread Function (PSF), and effective area of the SXT mirror. The measurements were made with pinholes, knife edges, a CCD, and a proportional counter. The results show the 1/r character of the PSF, and indicate a half power diameter of 4.9 arcsec and an effective area of 1.33 sq cm at 13.3 A (0.93 keV). The mirror was found to provide a high contrast image with very little X-ray scattering.
Wang, Ruixing; Yang, LV [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha, Hunan (China); Xu, Kele [College of Electronical Science and Engineering, National University of Defense Technology, Changsha, Hunan (China); Zhu, Li [Institute of Electrostatic and Electromagnetic Protection, Mechanical Engineering College, Shijiazhuang, Hebei (China)
2016-06-15
Purpose: Deconvolution is a widely used tool in the field of image reconstruction algorithm when the linear imaging system has been blurred by the imperfect system transfer function. However, due to the nature of Gaussian-liked distribution for point spread function (PSF), the components with coherent high frequency in the image are hard to restored in most of the previous scanning imaging system, even the relatively accurate PSF is acquired. We propose a novel method for deconvolution of images which are obtained by using shape-modulated PSF. Methods: We use two different types of PSF - Gaussian shape and donut shape - to convolute the original image in order to simulate the process of scanning imaging. By employing deconvolution of the two images with corresponding given priors, the image quality of the deblurred images are compared. Then we find the critical size of the donut shape compared with the Gaussian shape which has similar deconvolution results. Through calculation of tightened focusing process using radially polarized beam, such size of donut is achievable under same conditions. Results: The effects of different relative size of donut and Gaussian shapes are investigated. When the full width at half maximum (FWHM) ratio of donut and Gaussian shape is set about 1.83, similar resolution results are obtained through our deconvolution method. Decreasing the size of donut will favor the deconvolution method. A mask with both amplitude and phase modulation is used to create a donut-shaped PSF compared with the non-modulated Gaussian PSF. Donut with size smaller than our critical value is obtained. Conclusion: The utility of donutshaped PSF are proved useful and achievable in the imaging and deconvolution processing, which is expected to have potential practical applications in high resolution imaging for biological samples.
Rapisarda, E; Bettinardi, V; Thielemans, K; Gilardi, M C
2010-07-21
The interest in positron emission tomography (PET) and particularly in hybrid integrated PET/CT systems has significantly increased in the last few years due to the improved quality of the obtained images. Nevertheless, one of the most important limits of the PET imaging technique is still its poor spatial resolution due to several physical factors originating both at the emission (e.g. positron range, photon non-collinearity) and at detection levels (e.g. scatter inside the scintillating crystals, finite dimensions of the crystals and depth of interaction). To improve the spatial resolution of the images, a possible way consists of measuring the point spread function (PSF) of the system and then accounting for it inside the reconstruction algorithm. In this work, the system response of the GE Discovery STE operating in 3D mode has been characterized by acquiring (22)Na point sources in different positions of the scanner field of view. An image-based model of the PSF was then obtained by fitting asymmetric two-dimensional Gaussians on the (22)Na images reconstructed with small pixel sizes. The PSF was then incorporated, at the image level, in a three-dimensional ordered subset maximum likelihood expectation maximization (OS-MLEM) reconstruction algorithm. A qualitative and quantitative validation of the algorithm accounting for the PSF has been performed on phantom and clinical data, showing improved spatial resolution, higher contrast and lower noise compared with the corresponding images obtained using the standard OS-MLEM algorithm.
Barbee, David L; Holden, James E; Nickles, Robert J; Jeraj, Robert; Flynn, Ryan T
2010-01-01
Tumor heterogeneities observed in positron emission tomography (PET) imaging are frequently compromised by partial volume effects which may affect treatment prognosis, assessment or future implementations such as biologically optimized treatment planning (dose painting). This paper presents a method for partial volume correction of PET-imaged heterogeneous tumors. A point source was scanned on a GE Discovery LS at positions of increasing radii from the scanner's center to obtain the spatially varying point spread function (PSF). PSF images were fit in three dimensions to Gaussian distributions using least squares optimization. Continuous expressions were devised for each Gaussian width as a function of radial distance, allowing for generation of the system PSF at any position in space. A spatially varying partial volume correction (SV-PVC) technique was developed using expectation maximization (EM) and a stopping criterion based on the method's correction matrix generated for each iteration. The SV-PVC was validated using a standard tumor phantom and a tumor heterogeneity phantom and was applied to a heterogeneous patient tumor. SV-PVC results were compared to results obtained from spatially invariant partial volume correction (SINV-PVC), which used directionally uniform three-dimensional kernels. SV-PVC of the standard tumor phantom increased the maximum observed sphere activity by 55 and 40% for 10 and 13 mm diameter spheres, respectively. Tumor heterogeneity phantom results demonstrated that as net changes in the EM correction matrix decreased below 35%, further iterations improved overall quantitative accuracy by less than 1%. SV-PVC of clinically observed tumors frequently exhibited changes of ±30% in regions of heterogeneity. The SV-PVC method implemented spatially varying kernel widths and automatically determined the number of iterations for optimal restoration, parameters which are arbitrarily chosen in SINV-PVC. Comparing SV-PVC to SINV-PVC demonstrated
Ghosh, Sreya; Preza, Chrysanthe
2015-07-01
A three-dimensional (3-D) point spread function (PSF) model for wide-field fluorescence microscopy, suitable for imaging samples with variable refractive index (RI) in multilayered media, is presented. This PSF model is a key component for accurate 3-D image restoration of thick biological samples, such as lung tissue. Microscope- and specimen-derived parameters are combined with a rigorous vectorial formulation to obtain a new PSF model that accounts for additional aberrations due to specimen RI variability. Experimental evaluation and verification of the PSF model was accomplished using images from 175-nm fluorescent beads in a controlled test sample. Fundamental experimental validation of the advantage of using improved PSFs in depth-variant restoration was accomplished by restoring experimental data from beads (6 μm in diameter) mounted in a sample with RI variation. In the investigated study, improvement in restoration accuracy in the range of 18 to 35% was observed when PSFs from the proposed model were used over restoration using PSFs from an existing model. The new PSF model was further validated by showing that its prediction compares to an experimental PSF (determined from 175-nm beads located below a thick rat lung slice) with a 42% improved accuracy over the current PSF model prediction.
Varrone, Andrea; Sjoeholm, Nils; Gulyas, Balazs; Halldin, Christer; Farde, Lars [Karolinska Hospital, Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section and Stockholm Brain Institute, Stockholm (Sweden); Eriksson, Lars [Karolinska Hospital, Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section and Stockholm Brain Institute, Stockholm (Sweden); Siemens Molecular Imaging, Knoxville, TN (United States); University of Stockholm, Department of Physics, Stockholm (Sweden)
2009-10-15
Image reconstruction including the modelling of the point spread function (PSF) is an approach improving the resolution of the PET images. This study assessed the quantitative improvements provided by the implementation of the PSF modelling in the reconstruction of the PET data using the High Resolution Research Tomograph (HRRT). Measurements were performed on the NEMA-IEC/2001 (Image Quality) phantom for image quality and on an anthropomorphic brain phantom (STEPBRAIN). PSF reconstruction was also applied to PET measurements in two cynomolgus monkeys examined with [{sup 18}F]FE-PE2I (dopamine transporter) and with [{sup 11}C]MNPA (D{sub 2} receptor), and in one human subject examined with [{sup 11}C]raclopride (D{sub 2} receptor). PSF reconstruction increased the recovery coefficient (RC) in the NEMA phantom by 11-40% and the grey to white matter ratio in the STEPBRAIN phantom by 17%. PSF reconstruction increased binding potential (BP{sub ND}) in the striatum and midbrain by 14 and 18% in the [{sup 18}F]FE-PE2I study, and striatal BP{sub ND} by 6 and 10% in the [{sup 11}C]MNPA and [{sup 11}C]raclopride studies. PSF reconstruction improved quantification by increasing the RC and thus reducing the partial volume effect. This method provides improved conditions for PET quantification in clinical studies with the HRRT system, particularly when targeting receptor populations in small brain structures. (orig.)
Stallinga, Sjoerd
2015-02-01
A study is presented of the point spread function (PSF) of electric dipole emitters that go through a series of absorption-emission cycles while the dipole orientation is changing due to rotational diffusion within the constraint of an orientational potential well. An analytical expression for the PSF is derived valid for arbitrary orientational potential wells in the limit of image acquisition times much larger than the rotational relaxation time. This framework is used to study the effects of the direction of incidence, polarization, and degree of coherence of the illumination. In the limit of fast rotational diffusion on the scale of the fluorescence lifetime the illumination influences only the PSF height, not its shape. In the limit of slow rotational diffusion on the scale of the fluorescence lifetime there is a significant effect on the PSF shape as well, provided the illumination is (partially) coherent. For oblique incidence, illumination asymmetries can arise in the PSF that give rise to position offsets in localization based on Gaussian spot fitting. These asymmetries persist in the limit of free diffusion in a zero orientational potential well.
Fdida, Nicolas; Blaisot, Jean-Bernard
2010-01-01
Measurement of drop size distributions in a spray depends on the definition of the control volume for drop counting. For image-based techniques, this implies the definition of a depth-of-field (DOF) criterion. A sizing procedure based on an imaging model and associated with a calibration procedure is presented. Relations between image parameters and object properties are used to provide a measure of the size of the droplets, whatever the distance from the in-focus plane. A DOF criterion independent of the size of the drops and based on the determination of the width of the point spread function (PSF) is proposed. It allows to extend the measurement volume to defocused droplets and, due to the calibration of the PSF, to clearly define the depth of the measurement volume. Calibrated opaque discs, calibrated pinholes and an optical edge are used for this calibration. A comparison of the technique with a phase Doppler particle analyser and a laser diffraction granulometer is performed on an application to an industrial spray. Good agreement is found between the techniques when particular care is given to the sampling of droplets. The determination of the measurement volume is used to determine the drop concentration in the spray and the maximum drop concentration that imaging can support
Ueno Keisuke
2012-04-01
Full Text Available Abstract Background Structural genomics approaches, particularly those solving the 3D structures of many proteins with unknown functions, have increased the desire for structure-based function predictions. However, prediction of enzyme function is difficult because one member of a superfamily may catalyze a different reaction than other members, whereas members of different superfamilies can catalyze the same reaction. In addition, conformational changes, mutations or the absence of a particular catalytic residue can prevent inference of the mechanism by which catalytic residues stabilize and promote the elementary reaction. A major hurdle for alignment-based methods for prediction of function is the absence (despite its importance of a measure of similarity of the physicochemical properties of catalytic sites. To solve this problem, the physicochemical features radially distributed around catalytic sites should be considered in addition to structural and sequence similarities. Results We showed that radial distribution functions (RDFs, which are associated with the local structural and physicochemical properties of catalytic active sites, are capable of clustering oxidoreductases and transferases by function. The catalytic sites of these enzymes were also characterized using the RDFs. The RDFs provided a measure of the similarity among the catalytic sites, detecting conformational changes caused by mutation of catalytic residues. Furthermore, the RDFs reinforced the classification of enzyme functions based on conventional sequence and structural alignments. Conclusions Our results demonstrate that the application of RDFs provides advantages in the functional classification of enzymes by providing information about catalytic sites.
Ruiz-Rodriguez, F.J.; Gomez-Gonzalez, M.; Jurado, F.
2013-01-01
Highlights: ► Loads and distributed generation production are modeled as random variables. ► Distribution system with biomass fueled gas engines. ► Random nature of lower heat value of biomass and load. ► The Cornish–Fisher expansion is used for approximating quantiles of a random variable. ► Computational cost is low enough than that required for Monte Carlo simulation. - Abstract: This paper shows that the technical constraints must be considered in radial distribution networks, where the voltage regulation is one of the primary problems to be dealt in distributed generation systems based on biomass fueled engine. Loads and distributed generation production are modeled as random variables. Results prove that the proposed method can be applied for the keeping of voltages within desired limits at all load buses of a distribution system with biomass fueled gas engines. To evaluate the performance of this distribution system, this paper has developed a probabilistic model that takes into account the random nature of lower heat value of biomass and load. The Cornish–Fisher expansion is used for approximating quantiles of a random variable. This work introduces a hybrid method that utilizes a new optimization method based on swarm intelligence and probabilistic radial load flow. It is demonstrated the reduction in computation time achieved by the more efficient probabilistic load flow in comparison to Monte Carlo simulation. Acceptable solutions are reached in a smaller number of iterations. Therefore, convergence is more rapidly attained and computational cost is significantly lower than that required for Monte Carlo methods.
Yuji Tsutsui
2017-06-01
Full Text Available Objective(s: We evaluated edge artifacts in relation to phantom diameter and reconstruction parameters in point spread function (PSF-based positron emission tomography (PET image reconstruction.Methods: PET data were acquired from an original cone-shaped phantom filled with 18F solution (21.9 kBq/mL for 10 min using a Biograph mCT scanner. The images were reconstructed using the baseline ordered subsets expectation maximization (OSEM algorithm and the OSEM with PSF correction model. The reconstruction parameters included a pixel size of 1.0, 2.0, or 3.0 mm, 1-12 iterations, 24 subsets, and a full width at half maximum (FWHM of the post-filter Gaussian filter of 1.0, 2.0, or 3.0 mm. We compared both the maximum recovery coefficient (RCmax and the mean recovery coefficient (RCmean in the phantom at different diameters.Results: The OSEM images had no edge artifacts, but the OSEM with PSF images had a dense edge delineating the hot phantom at diameters 10 mm or more and a dense spot at the center at diameters of 8 mm or less. The dense edge was clearly observed on images with a small pixel size, a Gaussian filter with a small FWHM, and a high number of iterations. At a phantom diameter of 6-7 mm, the RCmax for the OSEM and OSEM with PSF images was 60% and 140%, respectively (pixel size: 1.0 mm; FWHM of the Gaussian filter: 2.0 mm; iterations: 2. The RCmean of the OSEM with PSF images did not exceed 100%.Conclusion: PSF-based image reconstruction resulted in edge artifacts, the degree of which depends on the pixel size, number of iterations, FWHM of the Gaussian filter, and object size.
MeV gamma-ray observation with a well-defined point spread function based on electron tracking
Takada, A.; Tanimori, T.; Kubo, H.; Mizumoto, T.; Mizumura, Y.; Komura, S.; Kishimoto, T.; Takemura, T.; Yoshikawa, K.; Nakamasu, Y.; Matsuoka, Y.; Oda, M.; Miyamoto, S.; Sonoda, S.; Tomono, D.; Miuchi, K.; Kurosawa, S.; Sawano, T.
2016-07-01
The field of MeV gamma-ray astronomy has not opened up until recently owing to imaging difficulties. Compton telescopes and coded-aperture imaging cameras are used as conventional MeV gamma-ray telescopes; however their observations are obstructed by huge background, leading to uncertainty of the point spread function (PSF). Conventional MeV gamma-ray telescopes imaging utilize optimizing algorithms such as the ML-EM method, making it difficult to define the correct PSF, which is the uncertainty of a gamma-ray image on the celestial sphere. Recently, we have defined and evaluated the PSF of an electron-tracking Compton camera (ETCC) and a conventional Compton telescope, and thereby obtained an important result: The PSF strongly depends on the precision of the recoil direction of electron (scatter plane deviation, SPD) and is not equal to the angular resolution measure (ARM). Now, we are constructing a 30 cm-cubic ETCC for a second balloon experiment, Sub-MeV gamma ray Imaging Loaded-on-balloon Experiment: SMILE-II. The current ETCC has an effective area of 1 cm2 at 300 keV, a PSF of 10° at FWHM for 662 keV, and a large field of view of 3 sr. We will upgrade this ETCC to have an effective area of several cm2 and a PSF of 5° using a CF4-based gas. Using the upgraded ETCC, our observation plan for SMILE-II is to map of the electron-positron annihilation line and the 1.8 MeV line from 26Al. In this paper, we will report on the current performance of the ETCC and on our observation plan.
Yasuharu Wakabayashi
2016-01-01
Full Text Available Objective(s: The present study was conducted to examine whether the standardized uptake value (SUV may be affected by the spatial position of a lesion in the radial direction on positron emission tomography (PET images, obtained via two methods based on time-of-flight (TOF reconstruction and point spread function (PSF. Methods: A cylinder phantom with the sphere (30mm diameter, located in the center was used in this study. Fluorine-18 fluorodeoxyglucose (18F-FDG concentrations of 5.3 kBq/ml and 21.2 kBq/ml were used for the background in the cylinder phantom and the central sphere respectively. By the use of TOF and PSF, SUVmax and SUVmean were determined while moving the phantom in a horizontal direction (X direction from the center of field of view (FOV: 0 mm at 50, 100, 150 and 200 mm positions, respectively. Furthermore, we examined 41 patients (23 male, 18 female, mean age: 68±11.2 years with lymph node tumors , who had undergone 18F-FDG PET examinations. The distance of each lymph node from FOV center was measured, based on the clinical images. Results: As the distance of a lesion from the FOV center exceeded 100 mm, the value of SUVmax, which was obtained with the cylinder phantom, was overestimated, while SUVmean by TOF and/or PSF was underestimated. Based on the clinical examinations, the average volume of interest was 8.5 cm3. Concomitant use of PSF increased SUVmax and SUVmean by 27.9% and 2.8%, respectively. However, size of VOI and distance from the FOV center did not affect SUVmax or SUVmean in clinical examinations. Conclusion: The reliability of SUV quantification by TOF and/or PSF decreased, when the tumor was located at a 100 mm distance (or farther from the center of FOV. In clinical examinations, if the lymph node was located within 100 mm distance from the center of FOV, SUV remained stable within a constantly increasing range by use of both TOF and PSF. We conclude that, use of both TOF and PSF may be helpful.
Pino, Francisco; Roé, Nuria; Aguiar, Pablo; Falcon, Carles; Ros, Domènec; Pavía, Javier
2015-01-01
Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Three methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery
Pino, Francisco [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036, Spain and Servei de Física Mèdica i Protecció Radiològica, Institut Català d’Oncologia, L’Hospitalet de Llobregat 08907 (Spain); Roé, Nuria [Unitat de Biofísica, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036 (Spain); Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es [Fundación Ramón Domínguez, Complexo Hospitalario Universitario de Santiago de Compostela 15706, Spain and Grupo de Imagen Molecular, Instituto de Investigacións Sanitarias de Santiago de Compostela (IDIS), Galicia 15782 (Spain); Falcon, Carles; Ros, Domènec [Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain and CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); Pavía, Javier [Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 080836 (Spain); CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona 08036 (Spain); and Servei de Medicina Nuclear, Hospital Clínic, Barcelona 08036 (Spain)
2015-02-15
Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Three methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery
Ye, J.; Shi, J.; De Hoop, M. V.
2017-12-01
We develop a robust algorithm to compute seismic normal modes in a spherically symmetric, non-rotating Earth. A well-known problem is the cross-contamination of modes near "intersections" of dispersion curves for separate waveguides. Our novel computational approach completely avoids artificial degeneracies by guaranteeing orthonormality among the eigenfunctions. We extend Wiggins' and Buland's work, and reformulate the Sturm-Liouville problem as a generalized eigenvalue problem with the Rayleigh-Ritz Galerkin method. A special projection operator incorporating the gravity terms proposed by de Hoop and a displacement/pressure formulation are utilized in the fluid outer core to project out the essential spectrum. Moreover, the weak variational form enables us to achieve high accuracy across the solid-fluid boundary, especially for Stoneley modes, which have exponentially decaying behavior. We also employ the mixed finite element technique to avoid spurious pressure modes arising from discretization schemes and a numerical inf-sup test is performed following Bathe's work. In addition, the self-gravitation terms are reformulated to avoid computations outside the Earth, thanks to the domain decomposition technique. Our package enables us to study the physical properties of intersection points of waveguides. According to Okal's classification theory, the group velocities should be continuous within a branch of the same mode family. However, we have found that there will be a small "bump" near intersection points, which is consistent with Miropol'sky's observation. In fact, we can loosely regard Earth's surface and the CMB as independent waveguides. For those modes that are far from the intersection points, their eigenfunctions are localized in the corresponding waveguides. However, those that are close to intersection points will have physical features of both waveguides, which means they cannot be classified in either family. Our results improve on Okal
Martin, Thomas B.; Drissen, Laurent; Melchior, Anne-Laure
2018-01-01
We present a detailed description of the wavelength, astrometric and photometric calibration plan for SITELLE, the imaging Fourier transform spectrometer attached to the Canada-France-Hawaii telescope, based on observations of a red (647-685 nm) data cube of the central region (11 arcmin × 11 arcmin) of M 31. The first application, presented in this paper is a radial-velocity catalogue (with uncertainties of ∼2-6 km s-1) of nearly 800 emission-line point-like sources, including ∼450 new discoveries. Most of the sources are likely planetary nebulae, although we also detect five novae (having erupted in the first eight months of 2016) and one new supernova remnant candidate.
Oostrom, Martinus; Vail, Lance W.
2016-01-01
Researchers at Pacific Northwest National Laboratory served as members of a U.S. Nuclear Regulatory Commission review team for the Florida Power & Light Company's application for two combined construction permits and operating licenses (combined licenses or COLs) for two proposed new reactor units-Turkey Point Units 6 and 7. The review team evaluated the environmental impacts of the proposed action based on the October 29, 2014 revision of the COL application, including the Environmental Report, responses to requests for additional information, and supplemental information. As part of this effort, team members tasked with assessing the environmental effects of proposed construction and operation of Units 6 and 7 at the Turkey Point site reviewed two separate modeling studies that analyzed the interaction between surface water and groundwater that would be altered by the operation of radial collector wells (RCWs) at the site. To further confirm their understanding of the groundwater hydrodynamics and to consider whether certain actions, proposed after the two earlier modeling studies were completed, would alter the earlier conclusions documented by the review team in their draft environmental impact statement (EIS; NRC 2015), a third modeling analysis was performed. The third modeling analysis is discussed in this report.
Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Vail, Lance W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2016-08-01
Researchers at Pacific Northwest National Laboratory served as members of a U.S. Nuclear Regulatory Commission review team for the Florida Power & Light Company’s application for two combined construction permits and operating licenses (combined licenses or COLs) for two proposed new reactor units—Turkey Point Units 6 and 7. The review team evaluated the environmental impacts of the proposed action based on the October 29, 2014 revision of the COL application, including the Environmental Report, responses to requests for additional information, and supplemental information. As part of this effort, team members tasked with assessing the environmental effects of proposed construction and operation of Units 6 and 7 at the Turkey Point site reviewed two separate modeling studies that analyzed the interaction between surface water and groundwater that would be altered by the operation of radial collector wells (RCWs) at the site. To further confirm their understanding of the groundwater hydrodynamics and to consider whether certain actions, proposed after the two earlier modeling studies were completed, would alter the earlier conclusions documented by the review team in their draft environmental impact statement (EIS; NRC 2015), a third modeling analysis was performed. The third modeling analysis is discussed in this report.
Frostig, Ron D; Chen-Bee, Cynthia H; Johnson, Brett A; Jacobs, Nathan S
2017-07-01
This review brings together a collection of studies that specifically use wide-field high-resolution mesoscopic level imaging techniques (intrinsic signal optical imaging; voltage-sensitive dye optical imaging) to image the cortical point spread (PS): the total spread of cortical activation comprising a large neuronal ensemble evoked by spatially restricted (point) stimulation of the sensory periphery (e.g., whisker, pure tone, point visual stimulation). The collective imaging findings, combined with supporting anatomical and electrophysiological findings, revealed some key aspects about the PS including its very large (radius of several mm) and relatively symmetrical spatial extent capable of crossing cytoarchitectural borders and trespassing into other cortical areas; its relationship with underlying evoked subthreshold activity and underlying anatomical system of long-range horizontal projections within gray matter, both also crossing borders; its contextual modulation and plasticity; the ability of its relative spatiotemporal profile to remain invariant to major changes in stimulation parameters; its potential role as a building block for integrative cortical activity; and its ubiquitous presence across various cortical areas and across mammalian species. Together, these findings advance our understanding about the neocortex at the mesoscopic level by underscoring that the cortical PS constitutes a fundamental motif of neocortical structure-function relationship.
Gustavsson, Anna-Karin; Petrov, Petar N.; Lee, Maurice Y.; Shechtman, Yoav; Moerner, W. E.
2018-02-01
To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D superresolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.
Gustavsson, Anna-Karin; Petrov, Petar N; Lee, Maurice Y; Shechtman, Yoav; Moerner, W E
2018-02-01
To obtain a complete picture of subcellular nanostructures, cells must be imaged with high resolution in all three dimensions (3D). Here, we present tilted light sheet microscopy with 3D point spread functions (TILT3D), an imaging platform that combines a novel, tilted light sheet illumination strategy with engineered long axial range point spread functions (PSFs) for low-background, 3D super localization of single molecules as well as 3D super-resolution imaging in thick cells. TILT3D is built upon a standard inverted microscope and has minimal custom parts. The axial positions of the single molecules are encoded in the shape of the PSF rather than in the position or thickness of the light sheet, and the light sheet can therefore be formed using simple optics. The result is flexible and user-friendly 3D super-resolution imaging with tens of nm localization precision throughout thick mammalian cells. We validated TILT3D for 3D super-resolution imaging in mammalian cells by imaging mitochondria and the full nuclear lamina using the double-helix PSF for single-molecule detection and the recently developed Tetrapod PSF for fiducial bead tracking and live axial drift correction. We envision TILT3D to become an important tool not only for 3D super-resolution imaging, but also for live whole-cell single-particle and single-molecule tracking.
Chong Fan
2017-02-01
Full Text Available To solve the problem on inaccuracy when estimating the point spread function (PSF of the ideal original image in traditional projection onto convex set (POCS super-resolution (SR reconstruction, this paper presents an improved POCS SR algorithm based on PSF estimation of low-resolution (LR remote sensing images. The proposed algorithm can improve the spatial resolution of the image and benefit agricultural crop visual interpolation. The PSF of the highresolution (HR image is unknown in reality. Therefore, analysis of the relationship between the PSF of the HR image and the PSF of the LR image is important to estimate the PSF of the HR image by using multiple LR images. In this study, the linear relationship between the PSFs of the HR and LR images can be proven. In addition, the novel slant knife-edge method is employed, which can improve the accuracy of the PSF estimation of LR images. Finally, the proposed method is applied to reconstruct airborne digital sensor 40 (ADS40 three-line array images and the overlapped areas of two adjacent GF-2 images by embedding the estimated PSF of the HR image to the original POCS SR algorithm. Experimental results show that the proposed method yields higher quality of reconstructed images than that produced by the blind SR method and the bicubic interpolation method.
Nakamura, Akihiro; Tanizaki, Yasuo; Takeuchi, Miho
2014-01-01
While point spread function (PSF)-based positron emission tomography (PET) reconstruction effectively improves the spatial resolution and image quality of PET, it may damage its quantitative properties by producing edge artifacts, or Gibbs artifacts, which appear to cause overestimation of regional radioactivity concentration. In this report, we investigated how edge artifacts produce negative effects on the quantitative properties of PET. Experiments with a National Electrical Manufacturers Association (NEMA) phantom, containing radioactive spheres of a variety of sizes and background filled with cold air or water, or radioactive solutions, showed that profiles modified by edge artifacts were reproducible regardless of background μ values, and the effects of edge artifacts increased with increasing sphere-to-background radioactivity concentration ratio (S/B ratio). Profiles were also affected by edge artifacts in complex fashion in response to variable combinations of sphere sizes and S/B ratios; and central single-peak overestimation up to 50% was occasionally noted in relatively small spheres with high S/B ratios. Effects of edge artifacts were obscured in spheres with low S/B ratios. In patient images with a variety of focal lesions, areas of higher radioactivity accumulation were generally more enhanced by edge artifacts, but the effects were variable depending on the size of and accumulation in the lesion. PET images generated using PSF-based reconstruction are therefore not appropriate for the evaluation of SUV. (author)
Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M.; Allafort, A.; Bechtol, K.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Asano, K. [Interactive Research Center of Science, Tokyo Institute of Technology, Meguro City, Tokyo 152-8551 (Japan); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L.; Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [CNRS, IRAP, F-31028 Toulouse cedex 4 (France); Brigida, M. [Dipartimento di Fisica ' M. Merlin' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: mdwood@slac.stanford.edu, E-mail: mar0@uw.edu [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); and others
2013-03-01
The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to detect photons with energies from Almost-Equal-To 20 MeV to >300 GeV. The pre-launch response functions of the LAT were determined through extensive Monte Carlo simulations and beam tests. The point-spread function (PSF) characterizing the angular distribution of reconstructed photons as a function of energy and geometry in the detector is determined here from two years of on-orbit data by examining the distributions of {gamma} rays from pulsars and active galactic nuclei (AGNs). Above 3 GeV, the PSF is found to be broader than the pre-launch PSF. We checked for dependence of the PSF on the class of {gamma}-ray source and observation epoch and found none. We also investigated several possible spatial models for pair-halo emission around BL Lac AGNs. We found no evidence for a component with spatial extension larger than the PSF and set upper limits on the amplitude of halo emission in stacked images of low- and high-redshift BL Lac AGNs and the TeV blazars 1ES0229+200 and 1ES0347-121.
Nakamura, Akihiro; Tanizaki, Yasuo; Takeuchi, Miho; Ito, Shigeru; Sano, Yoshitaka; Sato, Mayumi; Kanno, Toshihiko; Okada, Hiroyuki; Torizuka, Tatsuo; Nishizawa, Sadahiko
2014-06-01
While point spread function (PSF)-based positron emission tomography (PET) reconstruction effectively improves the spatial resolution and image quality of PET, it may damage its quantitative properties by producing edge artifacts, or Gibbs artifacts, which appear to cause overestimation of regional radioactivity concentration. In this report, we investigated how edge artifacts produce negative effects on the quantitative properties of PET. Experiments with a National Electrical Manufacturers Association (NEMA) phantom, containing radioactive spheres of a variety of sizes and background filled with cold air or water, or radioactive solutions, showed that profiles modified by edge artifacts were reproducible regardless of background μ values, and the effects of edge artifacts increased with increasing sphere-to-background radioactivity concentration ratio (S/B ratio). Profiles were also affected by edge artifacts in complex fashion in response to variable combinations of sphere sizes and S/B ratios; and central single-peak overestimation up to 50% was occasionally noted in relatively small spheres with high S/B ratios. Effects of edge artifacts were obscured in spheres with low S/B ratios. In patient images with a variety of focal lesions, areas of higher radioactivity accumulation were generally more enhanced by edge artifacts, but the effects were variable depending on the size of and accumulation in the lesion. PET images generated using PSF-based reconstruction are therefore not appropriate for the evaluation of SUV.
Shang, Kun; Cui, Bixiao; Ma, Jie; Shuai, Dongmei; Liang, Zhigang; Jansen, Floris; Zhou, Yun; Lu, Jie; Zhao, Guoguang
2017-08-01
Hybrid positron emission tomography/magnetic resonance (PET/MR) imaging is a new multimodality imaging technology that can provide structural and functional information simultaneously. The aim of this study was to investigate the effects of the time-of-flight (TOF) and point-spread function (PSF) on small lesions observed in PET/MR images from clinical patient image sets. This study evaluated 54 small lesions in 14 patients who had undergone 18 F-fluorodeoxyglucose (FDG) PET/MR. Lesions up to 30mm in diameter were included. The PET data were reconstructed with a baseline ordered-subsets expectation-maximization (OSEM) algorithm, OSEM+PSF, OSEM+TOF and OSEM+TOF+PSF. PET image quality and small lesions were visually evaluated and scored by a 3-point scale. A quantitative analysis was then performed using the mean and maximum standardized uptake value (SUV) of the small lesions (SUV mean and SUV max ). The lesions were divided into two groups according to the long-axis diameter and the location respectively and evaluated with each reconstruction algorithm. We also evaluated the background signal by analyzing the SUV liver . OSEM+TOF+PSF provided the highest value and OSEM+TOF or PSF showed a higher value than OSEM for the visual assessment and quantitative analysis. The combination of TOF and PSF increased the SUV mean by 26.6% and the SUV max by 30.0%. The SUV liver was not influenced by PSF or TOF. For the OSEM+TOF+PSF model, the change in SUV mean and SUV max for lesions PET/MR images, potentially improving small lesion detectability. Copyright © 2017 Elsevier B.V. All rights reserved.
Orlove, Steven T.; Smith, Charles W.; Vasquez, Bernard J.; Schwadron, Nathan A. [Physics Department and Space Science Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH (United States); Skoug, Ruth M. [Los Alamos National Laboratory, MS D466, Los Alamos, NM 87545 (United States); Zurbuchen, Thomas H.; Zhao Liang, E-mail: stx33@wildcats.unh.edu, E-mail: Charles.Smith@unh.edu, E-mail: Bernie.Vasquez@unh.edu, E-mail: N.Schwadron@unh.edu, E-mail: rskoug@lanl.gov, E-mail: thomasz@umich.edu, E-mail: lzh@umich.edu [Department of Atmospheric, Oceanic and Space Science, University of Michigan, Ann Arbor, MI (United States)
2013-09-01
We have examined 226 intervals of nearly radial interplanetary magnetic field orientations at 1 AU lasting in excess of 6 hr. They are found within rarefaction regions as are the previously reported high-latitude observations. We show that these rarefactions typically do not involve high-speed wind such as that seen by Ulysses at high latitudes during solar minimum. We have examined both the wind speeds and the thermal ion composition before, during and after the rarefaction in an effort to establish the source of the flow that leads to the formation of the rarefaction. We find that the bulk of the measurements, both fast- and slow-wind intervals, possess both wind speeds and thermal ion compositions that suggest they come from typical low-latitude sources that are nominally considered slow-wind sources. In other words, we find relatively little evidence of polar coronal hole sources even when we examine the faster wind ahead of the rarefaction regions. While this is in contrast to high-latitude observations, we argue that this is to be expected of low-latitude observations where polar coronal hole sources are less prevalent. As with the previous high-latitude observations, we contend that the best explanation for these periods of radial magnetic field is interchange reconnection between two sources of different wind speed.
Spiga, D
2018-01-01
X-ray mirrors with high focusing performances are commonly used in different sectors of science, such as X-ray astronomy, medical imaging and synchrotron/free-electron laser beamlines. While deformations of the mirror profile may cause degradation of the focus sharpness, a deliberate deformation of the mirror can be made to endow the focus with a desired size and distribution, via piezo actuators. The resulting profile can be characterized with suitable metrology tools and correlated with the expected optical quality via a wavefront propagation code or, sometimes, predicted using geometric optics. In the latter case and for the special class of profile deformations with monotonically increasing derivative, i.e. concave upwards, the point spread function (PSF) can even be predicted analytically. Moreover, under these assumptions, the relation can also be reversed: from the desired PSF the required profile deformation can be computed analytically, avoiding the use of trial-and-error search codes. However, the computation has been so far limited to geometric optics, which entailed some limitations: for example, mirror diffraction effects and the size of the coherent X-ray source were not considered. In this paper, the beam-shaping formalism in the framework of physical optics is reviewed, in the limit of small light wavelengths and in the case of Gaussian intensity wavefronts. Some examples of shaped profiles are also shown, aiming at turning a Gaussian intensity distribution into a top-hat one, and checks of the shaping performances computing the at-wavelength PSF by means of the WISE code are made.
Kidera, Daisuke; Kihara, Ken; Akamatsu, Go; Mikasa, Shohei; Taniguchi, Takafumi; Tsutsui, Yuji; Takeshita, Toshiki; Maebatake, Akira; Miwa, Kenta; Sasaki, Masayuki
2016-02-01
The aim of this study was to quantitatively evaluate the edge artifacts in PET images reconstructed using the point-spread function (PSF) algorithm at different sphere-to-background ratios of radioactivity (SBRs). We used a NEMA IEC body phantom consisting of six spheres with 37, 28, 22, 17, 13 and 10 mm in inner diameter. The background was filled with (18)F solution with a radioactivity concentration of 2.65 kBq/mL. We prepared three sets of phantoms with SBRs of 16, 8, 4 and 2. The PET data were acquired for 20 min using a Biograph mCT scanner. The images were reconstructed with the baseline ordered subsets expectation maximization (OSEM) algorithm, and with the OSEM + PSF correction model (PSF). For the image reconstruction, the number of iterations ranged from one to 10. The phantom PET image analyses were performed by a visual assessment of the PET images and profiles, a contrast recovery coefficient (CRC), which is the ratio of SBR in the images to the true SBR, and the percent change in the maximum count between the OSEM and PSF images (Δ % counts). In the PSF images, the spheres with a diameter of 17 mm or larger were surrounded by a dense edge in comparison with the OSEM images. In the spheres with a diameter of 22 mm or smaller, an overshoot appeared in the center of the spheres as a sharp peak in the PSF images in low SBR. These edge artifacts were clearly observed in relation to the increase of the SBR. The overestimation of the CRC was observed in 13 mm spheres in the PSF images. In the spheres with a diameter of 17 mm or smaller, the Δ % counts increased with an increasing SBR. The Δ % counts increased to 91 % in the 10-mm sphere at the SBR of 16. The edge artifacts in the PET images reconstructed using the PSF algorithm increased with an increasing SBR. In the small spheres, the edge artifact was observed as a sharp peak at the center of spheres and could result in overestimation.
Neuropathy - radial nerve; Radial nerve palsy; Mononeuropathy ... Damage to one nerve group, such as the radial nerve, is called mononeuropathy . Mononeuropathy means there is damage to a single nerve. Both ...
Krausche, S.; Ohlsson, Johan
1998-04-01
The objective of this work was to develop a program dealing with design point calculations of radial turbine machinery, including both compressor and turbine, with as few input data as possible. Some simple stress calculations and turbine metal blade temperatures were also included. This program was then implanted in a German thermodynamics program, Gasturb, a program calculating design and off-design performance of gas turbines. The calculations proceed with a lot of assumptions, necessary to finish the task, concerning pressure losses, velocity distribution, blockage, etc., and have been correlated with empirical data from VAT. Most of these values could have been input data, but to prevent the user of the program from drowning in input values, they are set as default values in the program code. The output data consist of geometry, Mach numbers, predicted component efficiency etc., and a number of graphical plots of geometry and velocity triangles. For the cases examined, the error in predicted efficiency level was within {+-} 1-2% points, and quite satisfactory errors in geometrical and thermodynamic conditions were obtained Examination paper. 18 refs, 36 figs
Slip of Spreading Viscoplastic Droplets.
Jalaal, Maziyar; Balmforth, Neil J; Stoeber, Boris
2015-11-10
The spreading of axisymmetric viscoplastic droplets extruded slowly on glass surfaces is studied experimentally using shadowgraphy and swept-field confocal microscopy. The microscopy furnishes vertical profiles of the radial velocity using particle image velocimetry (PIV) with neutrally buoyant tracers seeded in the fluid. Experiments were conducted for two complex fluids: aqueous solutions of Carbopol and xanthan gum. On untreated glass surfaces, PIV demonstrates that both fluids experience a significant amount of effective slip. The experiments were repeated on glass that had been treated to feature positive surface charges, thereby promoting adhesion between the negatively charged polymeric constituents of the fluids and the glass surface. The Carbopol and xanthan gum droplets spread more slowly on the treated surface and to a smaller radial distance. PIV demonstrated that this reduced spreading was associated with a substantial reduction in slip. For Carbopol, the effective slip could be eliminated entirely to within the precision of the PIV measurements; the reduction in slip was less effective for xanthan gum, with a weak slip velocity remaining noticeable.
Radial transport with perturbed magnetic field
Hazeltine, R. D. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)
2015-05-15
It is pointed out that the viscosity coefficient describing radial transport of toroidal angular momentum is proportional to the second power of the gyro-radius—like the corresponding coefficients for particle and heat transport—regardless of any geometrical symmetry. The observation is widely appreciated, but worth emphasizing because some literature gives the misleading impression that asymmetry can allow radial moment transport in first-order.
Radial transport with perturbed magnetic field
Hazeltine, R. D.
2015-01-01
It is pointed out that the viscosity coefficient describing radial transport of toroidal angular momentum is proportional to the second power of the gyro-radius—like the corresponding coefficients for particle and heat transport—regardless of any geometrical symmetry. The observation is widely appreciated, but worth emphasizing because some literature gives the misleading impression that asymmetry can allow radial moment transport in first-order
Radial nerve dysfunction (image)
The radial nerve travels down the arm and supplies movement to the triceps muscle at the back of the upper arm. ... the wrist and hand. The usual causes of nerve dysfunction are direct trauma, prolonged pressure on the ...
Exceptional circles of radial potentials
Music, M; Perry, P; Siltanen, S
2013-01-01
A nonlinear scattering transform is studied for the two-dimensional Schrödinger equation at zero energy with a radial potential. Explicit examples are presented, both theoretically and computationally, of potentials with nontrivial singularities in the scattering transform. The singularities arise from non-uniqueness of the complex geometric optics solutions that define the scattering transform. The values of the complex spectral parameter at which the singularities appear are called exceptional points. The singularity formation is closely related to the fact that potentials of conductivity type are ‘critical’ in the sense of Murata. (paper)
Fluorescent visualization of a spreading surfactant
Fallest, David W; Lichtenberger, Adele M; Fox, Christopher J; Daniels, Karen E, E-mail: kdaniel@ncsu.ed [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States)
2010-07-15
The spreading of surfactants on thin films is an industrially and medically important phenomenon, but the dynamics are highly nonlinear and visualization of the surfactant dynamics has been a long-standing experimental challenge. We perform the first quantitative, spatiotemporally resolved measurements of the spreading of an insoluble surfactant on a thin fluid layer. During the spreading process, we directly observe both the radial height profile of the spreading droplet and the spatial distribution of the fluorescently tagged surfactant. We find that the leading edge of a spreading circular layer of surfactant forms a Marangoni ridge in the underlying fluid, with a trough trailing the ridge as expected. However, several novel features are observed using the fluorescence technique, including a peak in the surfactant concentration that trails the leading edge, and a flat, monolayer-scale spreading film that differs from concentration profiles predicted by current models. Both the Marangoni ridge and the surfactant leading edge can be described to spread as R{approx}t{sup {delta}}. We find spreading exponents {delta}{sub H}{approx}0.30 and {delta}{sub {Gamma}}{approx}0.22 for the ridge peak and surfactant leading edge, respectively, which are in good agreement with theoretical predictions of {delta}=1/4. In addition, we observe that the surfactant leading edge initially leads the peak of the Marangoni ridge, with the peak later catching up to the leading edge.
Smith, Karl H.
2002-01-01
A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.
Chen, Zhaoxue; Chen, Hao
2014-01-01
A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.
Radial smoothing and closed orbit
Burnod, L.; Cornacchia, M.; Wilson, E.
1983-11-01
A complete simulation leading to a description of one of the error curves must involve four phases: (1) random drawing of the six set-up points within a normal population having a standard deviation of 1.3 mm; (b) random drawing of the six vertices of the curve in the sextant mode within a normal population having a standard deviation of 1.2 mm. These vertices are to be set with respect to the axis of the error lunes, while this axis has as its origins the positions defined by the preceding drawing; (c) mathematical definition of six parabolic curves and their junctions. These latter may be curves with very slight curvatures, or segments of a straight line passing through the set-up point and having lengths no longer than one LSS. Thus one gets a mean curve for the absolute errors; (d) plotting of the actually observed radial positions with respect to the mean curve (results of smoothing)
Santos, Maria J; Khanna, Shruti; Hestir, Erin L; Greenberg, Jonathan A; Ustin, Susan L
2016-09-01
Processes of spread and patterns of persistence of invasive species affect species and communities in the new environment. Predicting future rates of spread is of great interest for timely management decisions, but this depends on models that rely on understanding the processes of invasion and historic observations of spread and persistence. Unfortunately, the rates of spread and patterns of persistence are difficult to model or directly observe, especially when multiple rates of spread and diverse persistence patterns may be co-occurring over the geographic distribution of the invaded ecosystem. Remote sensing systematically acquires data over large areas at fine spatial and spectral resolutions over multiple time periods that can be used to quantify spread processes and persistence patterns. We used airborne imaging spectroscopy data acquired once a year for 5 years from 2004 to 2008 to map an invaded submerged aquatic vegetation (SAV) community across 2220 km 2 of waterways in the Sacramento-San Joaquin River Delta, California, USA, and measured its spread rate and its persistence. Submerged aquatic vegetation covered 13-23 km 2 of the waterways (6-11%) every year. Yearly new growth accounted for 40-60% of the SAV area, ~50% of which survived to following year. Spread rates were overall negative and persistence decreased with time. From this dataset, we were able to identify both radial and saltatorial spread of the invaded SAV in the entire extent of the Delta over time. With both decreasing spread rate and persistence, it is possible that over time the invasion of this SAV community could decrease its ecological impact. A landscape-scale approach allows measurements of all invasion fronts and the spatial anisotropies associated with spread processes and persistence patterns, without spatial interpolation, at locations both proximate and distant to the focus of invasion at multiple points in time. © 2016 by the Ecological Society of America.
Sirenomelia with radial dysplasia.
Kulkarni, M L; Abdul Manaf, K M; Prasannakumar, D G; Kulkarni, Preethi M
2004-05-01
Sirenomelia is a rare anomaly usually associated with other multiple malformations. In this communication the authors report a case of sirenomelia associated with multiple malformations, which include radial hypoplasia also. Though several theories have been proposed regarding the etiology of multiple malformation syndromes in the past, the recent theory of primary developmental defect during blastogenesis holds good in this case.
Radially truncated galactic discs
Grijs, R. de; Kregel, M.; Wesson, K H
2000-01-01
Abstract: We present the first results of a systematic analysis of radially truncatedexponential discs for four galaxies of a sample of disc-dominated edge-onspiral galaxies. Edge-on galaxies are very useful for the study of truncatedgalactic discs, since we can follow their light distributions out
... How Is Mono Spread? Print My sister has mononucleosis. I drank out of her drink before we ... that I have mono now? – Kyle* Mono, or mononucleosis, is spread through direct contact with saliva. This ...
The Matlab Radial Basis Function Toolbox
Scott A. Sarra
2017-03-01
Full Text Available Radial Basis Function (RBF methods are important tools for scattered data interpolation and for the solution of Partial Differential Equations in complexly shaped domains. The most straight forward approach used to evaluate the methods involves solving a linear system which is typically poorly conditioned. The Matlab Radial Basis Function toolbox features a regularization method for the ill-conditioned system, extended precision floating point arithmetic, and symmetry exploitation for the purpose of reducing flop counts of the associated numerical linear algebra algorithms.
Variable stator radial turbine
Rogo, C.; Hajek, T.; Chen, A. G.
1984-01-01
A radial turbine stage with a variable area nozzle was investigated. A high work capacity turbine design with a known high performance base was modified to accept a fixed vane stagger angle moveable sidewall nozzle. The nozzle area was varied by moving the forward and rearward sidewalls. Diffusing and accelerating rotor inlet ramps were evaluated in combinations with hub and shroud rotor exit rings. Performance of contoured sidewalls and the location of the sidewall split line with respect to the rotor inlet was compared to the baseline. Performance and rotor exit survey data are presented for 31 different geometries. Detail survey data at the nozzle exit are given in contour plot format for five configurations. A data base is provided for a variable geometry concept that is a viable alternative to the more common pivoted vane variable geometry radial turbine.
Nilsson, Martin
2007-01-01
The demands for ride comfort quality in today's long haulage trucks are constantly growing. A part of the ride comfort problems are represented by internal vibrations caused by rotating mechanical parts. This thesis work focus on the vibrations generated from radial runout on the wheels. These long haulage trucks travel long distances on smooth highways, with a constant speed of 90 km/h resulting in a 7 Hz oscillation. This frequency creates vibrations in the cab, which can be found annoying....
Coufal, David
2017-01-01
Roč. 319, 15 July (2017), s. 1-27 ISSN 0165-0114 R&D Projects: GA MŠk(CZ) LD13002 Institutional support: RVO:67985807 Keywords : fuzzy systems * radial functions * coherence Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.718, year: 2016
Radial Field Piezoelectric Diaphragms
Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.
2002-01-01
A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.
Perceived radial translation during centrifugation
Bos, J.E.; Correia Grácio, B.J.
2015-01-01
BACKGROUND: Linear acceleration generally gives rise to translation perception. Centripetal acceleration during centrifugation, however, has never been reported giving rise to a radial, inward translation perception. OBJECTIVE: To study whether centrifugation can induce a radial translation
Radial reflection diffraction tomography
Lehman, Sean K.
2012-12-18
A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.
Radial semiconductor drift chambers
Rawlings, K.J.
1987-01-01
The conditions under which the energy resolution of a radial semiconductor drift chamber based detector system becomes dominated by the step noise from the detector dark current have been investigated. To minimise the drift chamber dark current attention should be paid to carrier generation at Si/SiO 2 interfaces. This consideration conflicts with the desire to reduce the signal risetime: a higher drift field for shorter signal pulses requires a larger area of SiO 2 . Calculations for the single shaping and pseudo Gaussian passive filters indicate that for the same degree of signal risetime sensitivity in a system dominated by the step noise from the detector dark current, the pseudo Gaussian filter gives only a 3% improvement in signal/noise and 12% improvement in rate capability compared with the single shaper performance. (orig.)
1983-01-01
There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water
Stone, M.B.; Abernathy, D.L.; Niedziela, J.L.; Overbay, M.A.
2015-01-01
We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. The collimator is composed of collimating blades (or septa). The septa are 12 micron thick Kapton foils coated on each side with 39 microns of enriched boron carbide ( 10 B 4 C with 10 B > 96%) in an ultra-high vacuum compatible binder. The collimator blades represent an additional 22 m 2 of surface area. In the article we present collimator's design and performance and methodologies for its effective use
Antiproton compression and radial measurements
Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jorgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y
2008-01-01
Control of the radial proﬁle of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial proﬁle, and its relation to that of the electron plasma. We also measure the outer radial proﬁle by ejecting antiprotons to the trap wall using an octupole magnet.
Radial transfer effects for poloidal rotation
Hallatschek, Klaus
2010-11-01
Radial transfer of energy or momentum is the principal agent responsible for radial structures of Geodesic Acoustic Modes (GAMs) or stationary Zonal Flows (ZF) generated by the turbulence. For the GAM, following a physical approach, it is possible to find useful expressions for the individual components of the Poynting flux or radial group velocity allowing predictions where a mathematical full analysis is unfeasible. Striking differences between up-down symmetric flux surfaces and asymmetric ones have been found. For divertor geometries, e.g., the direction of the propagation depends on the sign of the ion grad-B drift with respect to the X-point, reminiscent of a sensitive determinant of the H-mode threshold. In nonlocal turbulence computations it becomes obvious that the linear energy transfer terms can be completely overwhelmed by the action of the turbulence. In contrast, stationary ZFs are governed by the turbulent radial transfer of momentum. For sufficiently large systems, the Reynolds stress becomes a deterministic functional of the flows, which can be empirically determined from the stress response in computational turbulence studies. The functional allows predictions even on flow/turbulence states not readily obtainable from small amplitude noise, such as certain transport bifurcations or meta-stable states.
Radial expansion and multifragmentation
Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Kerambrun, A.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Meslin, C.; Nakagawa, T.; Patry, J.P.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.
1998-01-01
The light systems 36 Ar + 27 Al and 64 Zn + nat Ti were measured at several bombarding energies between ∼ 35 and 95 MeV/nucleon. It was found that the predominant part of the cross section is due to binary collisions. In this paper the focus is placed on the properties of the quasi-projectile nuclei. In the central collisions the excitation energies of the quasi-projectile reach values exceeding largely 10 MeV/nucleon. The slope of the high energy part of the distribution can give only an upper limit of the apparent temperature (the average temperature along the decay chain). The highly excited quasi-projectile may get rapidly fragmented rather than sequentially. The heavy fragments are excited and can emit light particles (n, p, d, t, 3 He, α,...) what perturbs additionally the spectrum of these particles. Concerning the expansion energy, one can determine the average kinetic energies of the product (in the quasi-projectile-framework) and compare with simulation values. To fit the experimental data an additional radial expansion energy is to be considered. The average expansion energy depends slightly on the impact parameter but it increases with E * / A, ranging from 0.4 to 1,2 MeV/nucleon for an excitation energy increasing from 7 to 10.5 MeV/nucleon. This collective radial energy seems to be independent of the fragment mass, what is possibly valid for the case of larger quasi-projectile masses. The origin of the expansion is to be determined. It may be due to a compression in the interaction zone at the initial stage of the collision, which propagates in the quasi-projectile and quasi-target, or else, may be due, simply, to the increase of thermal energy leading to a rapid fragment emission. The sequential de-excitation calculation overestimates light particle emission and consequently heavy residues, particularly, at higher excitation energies. This disagreement indicates that a sequential process can not account for the di-excitation of very hot nuclei
Optimizing Hybrid Spreading in Metapopulations.
Zhang, C.; Zhou, S.; Miller, J. C.; Cox, I. J.; Chain, B. M.
2015-01-01
Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemic...
Optimizing Hybrid Spreading in Metapopulations
Zhang, Changwang; Zhou, Shi; Miller, Joel C.; Cox, Ingemar J.; Chain, Benjamin M.
2014-01-01
Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemic...
2004-01-01
Diffusion of technology, environmental effects and rebound effects are the principal effects from the funding of renewable energy and energy economising. It is difficult to estimate the impact of the spread effects both prior to the measures are implemented and after the measures are carried out. Statistical methods can be used to estimate the spread effects, but they are insecure and always need to be complemented with qualitative and subjective evaluations. It is more adequate to evaluate potential spread effects from market and market data surveillance for a selection of technologies and parties. Based on this information qualitative indicators for spread effects can be constructed and used both ex ante and ex post (ml)
Krishna, K.S.
over the global midoceanic ridges have found some explicit relationships between spreading rate, seismic structure, and ridge-axis morphology. Bibliography Detrick, R. S., Buhl, P., Vera, E., Mutter, J., Orcutt, J., Madsen, J., and Brocher, T., 1987...
Valenzuela, Javier
2001-01-01
A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.
The VULCANO spreading programme
Cognet, G.; Laffont, G.; Jegou, C.; Journeau, C.; Sudreau, F.; Pierre, J.; Ramacciotti, M. [CEA (Atomic Energy Commission), DRN/DER - Bat. 212, CEA Cadarache, 13108 St. Paul Lez Durance (France)
1999-07-01
Among the currently studied core-catcher projects, some of them suppose corium spreading before cooling, in particular the EPR (European Pressurized Reactor) core-catcher concept is based on mixing the corium with a special concrete, spreading the molten mixture on a large multi-layer surface cooled from the bottom and subsequently cooling by flooding with water. Therefore, melt spreading deserves intensive investigation in order to determine and quantify key phenomena which govern the stopping of spreading. In France, for some years, the Nuclear Reactor Division of the Atomic Energy Commission (CEA/DRN) has undertaken a large program to improve knowledge on corium behaviour and coolability. This program is based on experimental and theoretical investigations which are finally gathered in scenario and mechanistic computer codes. In this framework, the real material experimental programme, VULCANO, conducted within an European frame, is currently devoted to the study of corium spreading. In 1997 and 1998, several tests have been performed on dry corium spreading with various composition of melts. Although all the observed phenomena, in particular the differences between simulant and real material melts have not been yet totally explained, these tests have already provided a lot of information about: The behaviour of complex mixtures including refractory oxides, silica, iron oxides and in one case iron metal; Spreading progression, which was never stopped in any of these tests by a crust formation at the front; The structure of spread melts (porosity, crusts,...); Physico-chemical interaction between melt and the refractory substratum which was composed of zirconia bricks. (authors)
The VULCANO spreading programme
Cognet, G.; Laffont, G.; Jegou, C.; Journeau, C.; Sudreau, F.; Pierre, J.; Ramacciotti, M.
1999-01-01
Among the currently studied core-catcher projects, some of them suppose corium spreading before cooling, in particular the EPR (European Pressurized Reactor) core-catcher concept is based on mixing the corium with a special concrete, spreading the molten mixture on a large multi-layer surface cooled from the bottom and subsequently cooling by flooding with water. Therefore, melt spreading deserves intensive investigation in order to determine and quantify key phenomena which govern the stopping of spreading. In France, for some years, the Nuclear Reactor Division of the Atomic Energy Commission (CEA/DRN) has undertaken a large program to improve knowledge on corium behaviour and coolability. This program is based on experimental and theoretical investigations which are finally gathered in scenario and mechanistic computer codes. In this framework, the real material experimental programme, VULCANO, conducted within an European frame, is currently devoted to the study of corium spreading. In 1997 and 1998, several tests have been performed on dry corium spreading with various composition of melts. Although all the observed phenomena, in particular the differences between simulant and real material melts have not been yet totally explained, these tests have already provided a lot of information about: The behaviour of complex mixtures including refractory oxides, silica, iron oxides and in one case iron metal; Spreading progression, which was never stopped in any of these tests by a crust formation at the front; The structure of spread melts (porosity, crusts,...); Physico-chemical interaction between melt and the refractory substratum which was composed of zirconia bricks. (authors)
Stability of radial swirl flows
Dou, H S; Khoo, B C
2012-01-01
The energy gradient theory is used to examine the stability of radial swirl flows. It is found that the flow of free vortex is always stable, while the introduction of a radial flow will induce the flow to be unstable. It is also shown that the pure radial flow is stable. Thus, there is a flow angle between the pure circumferential flow and the pure radial flow at which the flow is most unstable. It is demonstrated that the magnitude of this flow angle is related to the Re number based on the radial flow rate, and it is near the pure circumferential flow. The result obtained in this study is useful for the design of vaneless diffusers of centrifugal compressors and pumps as well as other industrial devices.
Radial retinotomy in the macula.
Bovino, J A; Marcus, D F
1984-01-01
Radial retinotomy is an operative procedure usually performed in the peripheral or equatorial retina. To facilitate retinal attachment, the authors used intraocular scissors to perform radial retinotomy in the macula of two patients during vitrectomy surgery. In the first patient, a retinal detachment complicated by periretinal proliferation and macula hole formation was successfully reoperated with the aid of three radial cuts in the retina at the edges of the macular hole. In the second patient, an intraoperative retinal tear in the macula during diabetic vitrectomy was also successfully repaired with the aid of radial retinotomy. In both patients, retinotomy in the macula was required because epiretinal membranes, which could not be easily delaminated, were hindering retinal reattachment.
Detonation in supersonic radial outflow
Kasimov, Aslan R.; Korneev, Svyatoslav
2014-01-01
We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations
Dedicated radial ventriculography pigtail catheter
Vidovich, Mladen I., E-mail: miv@uic.edu
2013-05-15
A new dedicated cardiac ventriculography catheter was specifically designed for radial and upper arm arterial access approach. Two catheter configurations have been developed to facilitate retrograde crossing of the aortic valve and to conform to various subclavian, ascending aortic and left ventricular anatomies. The “short” dedicated radial ventriculography catheter is suited for horizontal ascending aortas, obese body habitus, short stature and small ventricular cavities. The “long” dedicated radial ventriculography catheter is suited for vertical ascending aortas, thin body habitus, tall stature and larger ventricular cavities. This new design allows for improved performance, faster and simpler insertion in the left ventricle which can reduce procedure time, radiation exposure and propensity for radial artery spasm due to excessive catheter manipulation. Two different catheter configurations allow for optimal catheter selection in a broad range of patient anatomies. The catheter is exceptionally stable during contrast power injection and provides equivalent cavity opacification to traditional femoral ventriculography catheter designs.
Optimizing hybrid spreading in metapopulations.
Zhang, Changwang; Zhou, Shi; Miller, Joel C; Cox, Ingemar J; Chain, Benjamin M
2015-04-29
Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct target nodes and global spreading, where an infected node can infect every other node. In reality, many epidemics spread using a hybrid mixture of both types of spreading. In this study we develop a theoretical framework for studying hybrid epidemics, and examine the optimum balance between spreading mechanisms in terms of achieving the maximum outbreak size. We show the existence of critically hybrid epidemics where neither spreading mechanism alone can cause a noticeable spread but a combination of the two spreading mechanisms would produce an enormous outbreak. Our results provide new strategies for maximising beneficial epidemics and estimating the worst outcome of damaging hybrid epidemics.
Flame spread along thermally thick horizontal rods
Higuera, F. J.
2002-06-01
An analysis is carried out of the spread of a flame along a horizontal solid fuel rod, for which a weak aiding natural convection flow is established in the underside of the rod by the action of the axial gradient of the pressure variation that gravity generates in the warm gas surrounding the flame. The spread rate is determined in the limit of infinitely fast kinetics, taking into account the effect of radiative losses from the solid surface. The effect of a small inclination of the rod is discussed, pointing out a continuous transition between upward and downward flame spread. Flame spread along flat-bottomed solid cylinders, for which the gradient of the hydrostatically generated pressure drives the flow both along and across the direction of flame propagation, is also analysed.
2018-04-05
Dr. Colin Parrish, a Professor of Virology at the College of Veterinary Medicine, Cornell University, discusses the spread of influenza among dogs. Created: 4/5/2018 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID). Date Released: 4/5/2018.
Combinatorics of spreads and parallelisms
Johnson, Norman
2010-01-01
Partitions of Vector Spaces Quasi-Subgeometry Partitions Finite Focal-SpreadsGeneralizing André SpreadsThe Going Up Construction for Focal-SpreadsSubgeometry Partitions Subgeometry and Quasi-Subgeometry Partitions Subgeometries from Focal-SpreadsExtended André SubgeometriesKantor's Flag-Transitive DesignsMaximal Additive Partial SpreadsSubplane Covered Nets and Baer Groups Partial Desarguesian t-Parallelisms Direct Products of Affine PlanesJha-Johnson SL(2,
Measurement of distribution coefficients using a radial injection dual-tracer test
Pickens, J.F.; Jackson, R.E.; Inch, K.J.; Merritt, W.F.
1981-01-01
The dispersive and adsorptive properties of a sandy aquifer were evaluated by using a radial injection dual-tracer test with 131 I as the nonreactive tracer and 85 Sr as the reactive tracer. The tracer migration was monitored by using multilevel point-sampling devices located at various radial distances and depths. Nonequilibrium physical and chemical adsorption effects for 85 Sr were treated as a spreading or dispersion mechanism in the breakthrough curve analysis. The resulting effective dispersivity values for 85 Sr were typically a factor of 2 to 5 larger than those obtained for 131 I. The distribution coefficient (K/sub d//sup Sr/) values obtained from analysis of the breakthrough curves at three depths and two radial distances ranged from 2.6 to 4.5 ml/g. These compare favorably with values obtained by separation of fluids from solids in sediment cores, by batch experiments on core sediments and by analysis of a 25-year-old radioactive waste plume in another part of the same aquifer. Correlations of adsorbed 85 Sr radioactivity with grain size fractions demonstrated preferential adsorption to the coarsest fraction and to the finest fraction. The relative amounts of electrostatically and specifically adsorbed 85 Sr on the aquifer sediments were determined with desorption experiments on core sediments using selective chemical extractants. The withdrawal phase breakthrough curves for the well, obtained immediately following the injection phase, showed essentially full tracer recoveries for both 131 I and 85 Sr. Relatively slow desorption of 85 Sr provided further indication of the nonequilibrium nature of the adsorption-desorption phenomena
Radial lean direct injection burner
Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier
2012-09-04
A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.
Spread spectrum image steganography.
Marvel, L M; Boncelet, C R; Retter, C T
1999-01-01
In this paper, we present a new method of digital steganography, entitled spread spectrum image steganography (SSIS). Steganography, which means "covered writing" in Greek, is the science of communicating in a hidden manner. Following a discussion of steganographic communication theory and review of existing techniques, the new method, SSIS, is introduced. This system hides and recovers a message of substantial length within digital imagery while maintaining the original image size and dynamic range. The hidden message can be recovered using appropriate keys without any knowledge of the original image. Image restoration, error-control coding, and techniques similar to spread spectrum are described, and the performance of the system is illustrated. A message embedded by this method can be in the form of text, imagery, or any other digital signal. Applications for such a data-hiding scheme include in-band captioning, covert communication, image tamperproofing, authentication, embedded control, and revision tracking.
Hazeltine, R.D.
1988-12-01
The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig
Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere.
Zhou, Guoquan
2011-11-21
A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail. © 2011 Optical Society of America
Simple overlay device for determining radial head and neck height
Moon, Jun-Gyu; Southgate, Richard D.; Fitzsimmons, James S.; O'Driscoll, Shawn W.
2010-01-01
The purpose of this study was to test the hypothesis that a simple overlay device can be used on radiographs to measure radial head and neck height. Thirty anteroposterior elbow radiographs from 30 patients with a clinical diagnosis of lateral epicondylitis were examined to measure radial head and neck height. Three methods using different points along the bicipital tuberosity as a landmark were used. Method 1 used the proximal end of the bicipital tuberosity, method 2 used the most prominent point of the bicipital tuberosity, and method 3 used a simple overlay device (SOD) template that was aligned with anatomic reference points. All measurements were performed three times by three observers to determine interobserver and intraobserver reliability. Intraclass correlation coefficients revealed higher interobserver and intraobserver correlations for the SOD template method than for the other two methods. The 95% limits of agreement between observers were markedly better (-1.8 mm to +1.0 mm) for the SOD template method than for the proximal point method (-3.8 mm to +3.4 mm) or the prominent point method (-5.9 mm to +4.9 mm). We found that the SOD template method was reliable for assessing radial head and neck height. It had less variability than other methods, its 95% limit of agreement being less than 2 mm. This method could be helpful for assessing whether or not the insertion of a radial head prosthesis has resulted in over-lengthening of the radius. (orig.)
Simple overlay device for determining radial head and neck height
Moon, Jun-Gyu; Southgate, Richard D.; Fitzsimmons, James S.; O' Driscoll, Shawn W. [Mayo Clinic, Department of Orthopaedic Surgery, Rochester, MN (United States)
2010-09-15
The purpose of this study was to test the hypothesis that a simple overlay device can be used on radiographs to measure radial head and neck height. Thirty anteroposterior elbow radiographs from 30 patients with a clinical diagnosis of lateral epicondylitis were examined to measure radial head and neck height. Three methods using different points along the bicipital tuberosity as a landmark were used. Method 1 used the proximal end of the bicipital tuberosity, method 2 used the most prominent point of the bicipital tuberosity, and method 3 used a simple overlay device (SOD) template that was aligned with anatomic reference points. All measurements were performed three times by three observers to determine interobserver and intraobserver reliability. Intraclass correlation coefficients revealed higher interobserver and intraobserver correlations for the SOD template method than for the other two methods. The 95% limits of agreement between observers were markedly better (-1.8 mm to +1.0 mm) for the SOD template method than for the proximal point method (-3.8 mm to +3.4 mm) or the prominent point method (-5.9 mm to +4.9 mm). We found that the SOD template method was reliable for assessing radial head and neck height. It had less variability than other methods, its 95% limit of agreement being less than 2 mm. This method could be helpful for assessing whether or not the insertion of a radial head prosthesis has resulted in over-lengthening of the radius. (orig.)
Detonation in supersonic radial outflow
Kasimov, Aslan R.
2014-11-07
We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.
Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex
Dreier, Jens P; Major, Sebastian; Pannek, Heinz-Wolfgang
2012-01-01
Spreading depolarization of cells in cerebral grey matter is characterized by massive ion translocation, neuronal swelling and large changes in direct current-coupled voltage recording. The near-complete sustained depolarization above the inactivation threshold for action potential generating...... stimulations. Eventually, epileptic field potentials were recorded during the period that had originally seen spreading depression of activity. Such spreading convulsions are characterized by epileptic field potentials on the final shoulder of the large slow potential change of spreading depolarization. We...
Illumination Profile & Dispersion Variation Effects on Radial Velocity Measurements
Grieves, Nolan; Ge, Jian; Thomas, Neil B.; Ma, Bo; Li, Rui; SDSS-III
2015-01-01
The Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) measures radial velocities using a fiber-fed dispersed fixed-delay interferometer (DFDI) with a moderate dispersion spectrograph. This setup allows a unique insight into the 2D illumination profile from the fiber on to the dispersion grating. Illumination profile investigations show large changes in the profile over time and fiber location. These profile changes are correlated with dispersion changes and long-term radial velocity offsets, a major problem within the MARVELS radial velocity data. Characterizing illumination profiles creates a method to both detect and correct radial velocity offsets, allowing for better planet detection. Here we report our early results from this study including improvement of radial velocity data points from detected giant planet candidates. We also report an illumination profile experiment conducted at the Kitt Peak National Observatory using the EXPERT instrument, which has a DFDI mode similar to MARVELS. Using profile controlling octagonal-shaped fibers, long term offsets over a 3 month time period were reduced from ~50 m/s to within the photon limit of ~4 m/s.
Vortex Whistle in Radial Intake
Tse, Man-Chun
2004-01-01
In a radial-to-axial intake with inlet guide vanes (IGV) at the entry, a strong flow circulation Gamma can be generated from the tangential flow components created by the IGVs when their setting exceed about halfclosing (approx. 45 deg...
Estimation of wave directional spreading
Deo, M.C.; Gondane, D.S.; SanilKumar, V.
One of the useful measures of waves directional spreading at a given location is the directional spreading parameter. This paper presents a new approach to arrive at its characteristic value using the computational technique of Artificial Neural...
Modelling and analysis of radial thermal stresses and temperature ...
user
it acts as an insulating medium and prevents the heat flow, hence the need of providing insulation coating on valves is ... geometry metal components (piston, liner and cylinder head) and found a satisfactory .... model. Step8: Find the radial thermal stress at all the nodal point with the use of temperature ..... Cast iron St. 70.
Illusory spreading of watercolor.
Devinck, Frédéric; Hardy, Joseph L; Delahunt, Peter B; Spillmann, Lothar; Werner, John S
2006-05-04
The watercolor effect (WCE) is a phenomenon of long-range color assimilation occurring when a dark chromatic contour delineating a figure is flanked on the inside by a brighter chromatic contour; the brighter color spreads into the entire enclosed area. Here, we determined the optimal chromatic parameters and the cone signals supporting the WCE. To that end, we quantified the effect of color assimilation using hue cancellation as a function of hue, colorimetric purity, and cone modulation of inducing contours. When the inner and outer contours had chromaticities that were in opposite directions in color space, a stronger WCE was obtained as compared with other color directions. Additionally, equal colorimetric purity between the outer and inner contours was necessary to obtain a large effect compared with conditions in which the contours differed in colorimetric purity. However, there was no further increase in the magnitude of the effect when the colorimetric purity increased beyond a value corresponding to an equal vector length between the inner and outer contours. Finally, L-M-cone-modulated WCE was perceptually stronger than S-cone-modulated WCE for our conditions. This last result demonstrates that both L-M-cone and S-cone pathways are important for watercolor spreading. Our data suggest that the WCE depends critically upon the particular spatiochromatic arrangement in the display, with the relative chromatic contrast between the inducing contours being particularly important.
Digital feed back control for radial beam position
Mestha, L.K.
1989-09-01
In the development of wide spread large scale distributed digital control systems, there is a requirement to automate small processes like radial beam control which will not only improve the beam quality but will also add local intelligence. Hence use is made here of digital control principles for such applications. The work concerned with the radial beam control discussed in this report has been developed for ISIS at RAL. The structure of the report is hence inclined more towards the local hardware system. The general feed back loop techniques can also be implemented for other control purpose. For instance, the author has successfully tested similar techniques to minimise the RF cavity tuning error, where the improvement in performance could not be matched by the analogue loop. A description of the RF cavity tuning programme and the associated experimental results will be published as a local paper for ISIS division. (author)
Hybrid spread spectrum radio system
Smith, Stephen F [London, TN; Dress, William B [Camas, WA
2010-02-09
Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.
Radial head dislocation during proximal radial shaft osteotomy.
Hazel, Antony; Bindra, Randy R
2014-03-01
The following case report describes a 48-year-old female patient with a longstanding both-bone forearm malunion, who underwent osteotomies of both the radius and ulna to improve symptoms of pain and lack of rotation at the wrist. The osteotomies were templated preoperatively. During surgery, after performing the planned radial shaft osteotomy, the authors recognized that the radial head was subluxated. The osteotomy was then revised from an opening wedge to a closing wedge with improvement of alignment and rotation. The case report discusses the details of the operation, as well as ways in which to avoid similar shortcomings in the future. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Asymptotic Solutions of Serial Radial Fuel Shuffling
Xue-Nong Chen
2015-12-01
Full Text Available In this paper, the mechanism of traveling wave reactors (TWRs is investigated from the mathematical physics point of view, in which a stationary fission wave is formed by radial fuel drifting. A two dimensional cylindrically symmetric core is considered and the fuel is assumed to drift radially according to a continuous fuel shuffling scheme. A one-group diffusion equation with burn-up dependent macroscopic coefficients is set up. The burn-up dependent macroscopic coefficients were assumed to be known as functions of neutron fluence. By introducing the effective multiplication factor keff, a nonlinear eigenvalue problem is formulated. The 1-D stationary cylindrical coordinate problem can be solved successively by analytical and numerical integrations for associated eigenvalues keff. Two representative 1-D examples are shown for inward and outward fuel drifting motions, respectively. The inward fuel drifting has a higher keff than the outward one. The 2-D eigenvalue problem has to be solved by a more complicated method, namely a pseudo time stepping iteration scheme. Its 2-D asymptotic solutions are obtained together with certain eigenvalues keff for several fuel inward drifting speeds. Distributions of the neutron flux, the neutron fluence, the infinity multiplication factor kinf and the normalized power are presented for two different drifting speeds.
Nonlinear radial propagation of drift wave turbulence
Prakash, M.
1985-01-01
We study the linear and the nonlinear radial propagation of drift wave energy in an inhomogeneous plasma. The drift mode excited in such a plasma is dispersive in nature. The drift wave energy spreads out symmetrically along the direction of inhomogeneity with a finite group velocity. To study the effect of the nonlinear coupling on the propagation of energy in a collision free plasma, we solve the Hasegawa-Mima equation as a mixed initial boundary-value problem. The solutions of the linearized equation are used to check the reliability of our numerical calculations. Additional checks are also performed on the invariants of the system. Our results reveal that a pulse gets distorted as it propagates through the medium. The peak of the pulse propagates with a finite velocity that depends on the amplitude of the initial pulse. The polarity of propagation depends on the initial parameters of the pulse. We have also studied drift wave propagation in a resistive plasma. The Hasegawa-Wakatani equations are used to investigate this problem
Park, Jinil; Shin, Taehoon; Yoon, Soon Ho; Goo, Jin Mo; Park, Jang-Yeon
2016-05-01
The purpose of this work was to develop a 3D radial-sampling strategy which maintains uniform k-space sample density after retrospective respiratory gating, and demonstrate its feasibility in free-breathing ultrashort-echo-time lung MRI. A multi-shot, interleaved 3D radial sampling function was designed by segmenting a single-shot trajectory of projection views such that each interleaf samples k-space in an incoherent fashion. An optimal segmentation factor for the interleaved acquisition was derived based on an approximate model of respiratory patterns such that radial interleaves are evenly accepted during the retrospective gating. The optimality of the proposed sampling scheme was tested by numerical simulations and phantom experiments using human respiratory waveforms. Retrospectively, respiratory-gated, free-breathing lung MRI with the proposed sampling strategy was performed in healthy subjects. The simulation yielded the most uniform k-space sample density with the optimal segmentation factor, as evidenced by the smallest standard deviation of the number of neighboring samples as well as minimal side-lobe energy in the point spread function. The optimality of the proposed scheme was also confirmed by minimal image artifacts in phantom images. Human lung images showed that the proposed sampling scheme significantly reduced streak and ring artifacts compared with the conventional retrospective respiratory gating while suppressing motion-related blurring compared with full sampling without respiratory gating. In conclusion, the proposed 3D radial-sampling scheme can effectively suppress the image artifacts due to non-uniform k-space sample density in retrospectively respiratory-gated lung MRI by uniformly distributing gated radial views across the k-space. Copyright © 2016 John Wiley & Sons, Ltd.
RADIAL STABILITY IN STRATIFIED STARS
Pereira, Jonas P.; Rueda, Jorge A.
2015-01-01
We formulate within a generalized distributional approach the treatment of the stability against radial perturbations for both neutral and charged stratified stars in Newtonian and Einstein's gravity. We obtain from this approach the boundary conditions connecting any two phases within a star and underline its relevance for realistic models of compact stars with phase transitions, owing to the modification of the star's set of eigenmodes with respect to the continuous case
Velocidades radiales en Collinder 121
Arnal, M.; Morrell, N.
Se han llevado a cabo observaciones espectroscópicas de unas treinta estrellas que son posibles miembros del cúmulo abierto Collinder 121. Las mismas fueron realizadas con el telescopio de 2.15m del Complejo Astronómico El Leoncito (CASLEO). El análisis de las velocidades radiales derivadas del material obtenido, confirma la realidad de Collinder 121, al menos desde el punto de vista cinemático. La velocidad radial baricentral (LSR) del cúmulo es de +17 ± 3 km.s-1. Esta velocidad coincide, dentro de los errores, con la velocidad radial (LSR) de la nebulosa anillo S308, la cual es de ~20 ± 10 km.s-1. Como S308 se encuentra físicamente asociada a la estrella Wolf-Rayet HD~50896, es muy probable que esta última sea un miembro de Collinder 121. Desde un punto de vista cinemático, la supergigante roja HD~50877 (K3Iab) también pertenecería a Collinder 121. Basándonos en la pertenencia de HD~50896 a Collinder 121, y en la interacción encontrada entre el viento de esta estrella y el medio interestelar circundante a la misma, se estima para este cúmulo una distancia del orden de 1 kpc.
Radial propagation of microturbulence in tokamaks
Garbet, X.; Laurent, L.; Roubin, J.P.; Samain, A.
1992-01-01
Energy confinement time in tokamaks exhibits a clear dependence on global plasma parameters. This is not the case for transport coefficients; their dependence on local plasma parameters cannot be precisely established. The aim of the present paper is to give a possible explanation of this behaviour; turbulence propagates radially because of departure from cylindrical geometry. This implies that the turbulence level at a given point and hence transport coefficients are not only functions of local plasma parameters. A quantitative estimate of the propagation velocity is derived from a Lagrangian formalism. Two cases are considered: the effect of toroidicity and the effect of non linear mode-mode coupling. The consequences of this model are discussed. This process does not depend on the type of instability. For the sake of simplicity only electrostatic perturbations are considered
Radial expansion for spinning conformal blocks
Costa, Miguel S.; Penedones, João; Trevisani, Emilio
2016-07-12
This paper develops a method to compute any bosonic conformal block as a series expansion in the optimal radial coordinate introduced by Hogervorst and Rychkov. The method reduces to the known result when the external operators are all the same scalar operator, but it allows to compute conformal blocks for external operators with spin. Moreover, we explain how to write closed form recursion relations for the coefficients of the expansions. We study three examples of four point functions in detail: one vector and three scalars; two vectors and two scalars; two spin 2 tensors and two scalars. Finally, for the case of two external vectors, we also provide a more efficient way to generate the series expansion using the analytic structure of the blocks as a function of the scaling dimension of the exchanged operator.
Kamis, A.S.; Savage, S.G. [McGill Univ., Dept. of Civil Engineering, Montreal, Quebec (Canada)
1985-07-01
Landslides and rockfalls that initiate on a steep slope eventually come to rest after flowing for some runout distance on a flat. Rockfalls of very large masses have been observed to exhibit unexpectedly long runout distances. This problem becomes more significant as the development of resources in mountain regions becomes more intensive. As early as 1881, Albert Heim observed and described the Elm rockfall of Switzerland (quoted by as HsU). This rockfall produced a debris which moved more than 2 Km along a nearly horizontal valley floor and one of its branches surged up the side of the valley to a height of 100 m. From the deposit of the Elm and the eyewitnesses Heim concluded that the debris behaved as a flowing fluid rather than sliding solids. Davies, among others, suggested that the excessive runout distance is volume dependent and the larger the volume of the debris, the longer the relative travel distance. A summary of the numerous hypotheses which have been proposed to explain this puzzling phenomena were also presented by Davies. However, none of these have been completely satisfactory or generally accepted. A simple model of the flow and spreading of a finite mass of cohesionless granular material down incline has been developed as a part of the present preliminary investigation into the mechanics of rockfalls. (author)
A Practical Point Spread Model for Ocean Waters
Hou, Weilin; Gray, Deric; Weidemann, Alan D; Arnone, Robert A
2008-01-01
.... These inherent optical properties (IOP), although measured frequently due to their important applications in ocean optics, especially in remote sensing, cannot be applied to underwater imaging issues directly, since they inherently reflect the chance of the single scattering.
Surgical anatomy of the radial nerve at the elbow.
Artico, M; Telera, S; Tiengo, C; Stecco, C; Macchi, V; Porzionato, A; Vigato, E; Parenti, A; De Caro, R
2009-02-01
An anatomical study of the brachial portion of the radial nerve with surgical implications is proposed. Thirty specimens of arm from 20 fresh cadavers (11 male, 9 female) were used to examine the topographical relations of the radial nerve with reference to the following anatomical landmarks: acromion angle, medial and lateral epicondyles, point of division between the lateral and long heads of the triceps brachii, lateral intermuscular septum, site of division of the radial nerve into its superficial and posterior interosseous branches and entry and exit point of the posterior interosseous branch into the supinator muscle. The mean distances between the acromion angle and the medial and lateral levels of crossing the posterior aspect of the humerus were 109 (+/-11) and 157 (+/-11) mm, respectively. The mean length and calibre of the nerve in the groove were 59 (+/-4) and 6 (+/-1) mm, respectively. The division of the lateral and long heads of the triceps was found at a mean distance of 126 (+/-13) mm from the acromion angle. The mean distances between the lateral point of crossing the posterior aspect of the humerus and the medial and lateral epicondyles were 125 (+/-13) and 121 (+/-13) mm, respectively. The mean distance between the lateral point of crossing the posterior aspect of the humerus and the entry point in the lateral intermuscular septum (LIS) was 29 (+/-6) mm. The mean distances between the entry point of the nerve in the LIS and the medial and lateral epicondyles were 133 (+/-14) and 110 (+/-23) mm, respectively. Our study provides reliable and objective data of surgical anatomy of the radial nerve which should be always kept in mind by surgeons approaching to the surgery of the arm, in order to avoid iatrogenic injuries.
Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature
Ayata, Cenk; Lauritzen, Martin
2015-01-01
Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads...
Hal E. Anderson
1969-01-01
Experimental testing of a mathematical model showed that radiant heat transfer accounted for no more than 40% of total heat flux required to maintain rate of spread. A reasonable prediction of spread was possible by assuming a horizontal convective heat transfer coefficient when certain fuel and flame characteristics were known. Fuel particle size had a linear relation...
Information spreading dynamics in hypernetworks
Suo, Qi; Guo, Jin-Li; Shen, Ai-Zhong
2018-04-01
Contact pattern and spreading strategy fundamentally influence the spread of information. Current mathematical methods largely assume that contacts between individuals are fixed by networks. In fact, individuals are affected by all his/her neighbors in different social relationships. Here, we develop a mathematical approach to depict the information spreading process in hypernetworks. Each individual is viewed as a node, and each social relationship containing the individual is viewed as a hyperedge. Based on SIS epidemic model, we construct two spreading models. One model is based on global transmission, corresponding to RP strategy. The other is based on local transmission, corresponding to CP strategy. These models can degenerate into complex network models with a special parameter. Thus hypernetwork models extend the traditional models and are more realistic. Further, we discuss the impact of parameters including structure parameters of hypernetwork, spreading rate, recovering rate as well as information seed on the models. Propagation time and density of informed nodes can reveal the overall trend of information dissemination. Comparing these two models, we find out that there is no spreading threshold in RP, while there exists a spreading threshold in CP. The RP strategy induces a broader and faster information spreading process under the same parameters.
Radial stability of anisotropic strange quark stars
Arbañil, José D.V.; Malheiro, M., E-mail: jose.arbanil@upn.pe, E-mail: malheiro@ita.br [ITA—Instituto Tecnológico de Aeronáutica—Departamento de Física, 12228-900, São José dos Campos, São Paulo (Brazil)
2016-11-01
The influence of the anisotropy in the equilibrium and stability of strange stars is investigated through the numerical solution of the hydrostatic equilibrium equation and the radial oscillation equation, both modified from their original version to include this effect. The strange matter inside the quark stars is described by the MIT bag model equation of state. For the anisotropy two different kinds of local anisotropic σ = p {sub t} − p {sub r} are considered, where p {sub t} and p {sub r} are respectively the tangential and the radial pressure: one that is null at the star's surface defined by p {sub r} ( R ) = 0, and one that is nonnull at the surface, namely, σ {sub s} = 0 and σ {sub s} {sub ≠} {sub 0}. In the case σ {sub s} = 0, the maximum mass value and the zero frequency of oscillation are found at the same central energy density, indicating that the maximum mass marks the onset of the instability. For the case σ {sub s} {sub ≠} {sub 0}, we show that the maximum mass point and the zero frequency of oscillation coincide in the same central energy density value only in a sequence of equilibrium configurations with the same value of σ {sub s} . Thus, the stability star regions are determined always by the condition dM / d ρ {sub c} {sub >} {sub 0} only when the tangential pressure is maintained fixed at the star surface's p {sub t} ( R ). These results are also quite important to analyze the stability of other anisotropic compact objects such as neutron stars, boson stars and gravastars.
Cholemari, Murali R.; Arakeri, Jaywant H.
2005-08-01
We study the stability of surface waves on the radial film flow created by a vertical cylindrical water jet striking a horizontal plate. In such flows, surface waves have been found to be unstable and can cause transition to turbulence. This surface-wave-induced transition is different from the well-known Tollmien-Schlichting wave-induced transition. The present study aims at understanding the instability and the transition process. We do a temporal stability analysis by assuming the flow to be locally two-dimensional but including spatial variations to first order in the basic flow. The waves are found to be dispersive, mostly unstable, and faster than the mean flow. Spatial variation is the major destabilizing factor. Experiments are done to test the results of the linear stability analysis and to document the wave breakup and transition. Comparison between theory and experiments is fairly good and indicates the adequacy of the model.
Damm, F.C.
1975-01-01
The unique gas dynamic laser provides outward radial supersonic flow from a toroidal shaped stacked array of a plurality of nozzles, through a diffuser having ring shaped and/or linear shaped vanes, and through a cavity which is cylindrical and concentric with the stacked array, with the resultant laser beam passing through the housing parallel to the central axis of the diffuser which is coincident with the axis of the gas dynamic laser. Therefore, greater beam extraction flexibility is attainable, because of fewer flow shock disturbances, as compared to the conventional unidirectional flow gas dynamic laser in which unidirectional supersonic flow sweeps through a rectangular cavity and is exhausted through a two-dimensional diffuser. (auth)
Ulnar nerve entrapment complicating radial head excision
Kevin Parfait Bienvenu Bouhelo-Pam
Full Text Available Introduction: Several mechanisms are involved in ischemia or mechanical compression of ulnar nerve at the elbow. Presentation of case: We hereby present the case of a road accident victim, who received a radial head excision for an isolated fracture of the radial head and complicated by onset of cubital tunnel syndrome. This outcome could be the consequence of an iatrogenic valgus of the elbow due to excision of the radial head. Hitherto the surgical treatment of choice it is gradually been abandoned due to development of radial head implant arthroplasty. However, this management option is still being performed in some rural centers with low resources. Discussion: The radial head plays an important role in the stability of the elbow and his iatrogenic deformity can be complicated by cubital tunnel syndrome. Conclusion: An ulnar nerve release was performed with favorable outcome. Keywords: Cubital tunnel syndrome, Peripheral nerve palsy, Radial head excision, Elbow valgus
Stirling Engine With Radial Flow Heat Exchangers
Vitale, N.; Yarr, George
1993-01-01
Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.
Spreading gossip in social networks
Lind, Pedro G.; da Silva, Luciano R.; Andrade, José S., Jr.; Herrmann, Hans J.
2007-09-01
We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal reachability of the neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such a fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.
Spread effects - methodology; Spredningseffekter - metodegrunnlag
NONE
2004-07-01
Diffusion of technology, environmental effects and rebound effects are the principal effects from the funding of renewable energy and energy economising. It is difficult to estimate the impact of the spread effects both prior to the measures are implemented and after the measures are carried out. Statistical methods can be used to estimate the spread effects, but they are insecure and always need to be complemented with qualitative and subjective evaluations. It is more adequate to evaluate potential spread effects from market and market data surveillance for a selection of technologies and parties. Based on this information qualitative indicators for spread effects can be constructed and used both ex ante and ex post (ml)
Spreading gossip in social networks.
Lind, Pedro G; da Silva, Luciano R; Andrade, José S; Herrmann, Hans J
2007-09-01
We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal reachability of the neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such a fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.
Inward transport of a toroidally confined plasma subject to strong radial electric fields
Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Hong, J.; Kim, Y.
1977-01-01
The paper aims at showing that the density and confinement time of a toroidal plasma can be enhanced by radial electric fields far stronger than the ambipolar values, and that, if such electric fields point into the plasma, radially inward transport can result. The investigation deals with low-frequency fluctuation-induced transport using digitally implemented spectral analysis techniques and with the role of strong applied radial electric fields and weak vertical magnetic fields on plasma density and particle confinement times in a Bumpy Torus geometry. Results indicate that application of sufficiently strong radially inward electric fields results in radially inward fluctuation-induced transport into the toroidal electrostatic potential well; this inward transport gives rise to higher average electron densities and longer particle confinement times in the toroidal plasma.
Colonic motility and enema spreading
Hardy, J.G.; Wood, E.; Clark, A.G.; Reynolds, J.R.; Queen's Medical Centre, Nottingham
1986-01-01
Radiolabelled enema solution was administered to eight healthy subjects, both in fasted and fed states. Enema spreading was monitored over a 4-h period using gamma scintigraphy and colonic motility was recorded simultaneously using a pressure sensitive radiotelemetry capsule. The rate and extent of enema dispersion were unaffected by eating. Spreading could be correlated with colonic motility and was inhibited by aboral propulsion of the colonic contents. (orig.)
Radial head button holing: a cause of irreducible anterior radial head dislocation
Shin, Su-Mi; Chai, Jee Won; You, Ja Yeon; Park, Jina [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Bae, Kee Jeong [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Orthopedic Surgery, Seoul (Korea, Republic of)
2016-10-15
''Buttonholing'' of the radial head through the anterior joint capsule is a known cause of irreducible anterior radial head dislocation associated with Monteggia injuries in pediatric patients. To the best of our knowledge, no report has described an injury consisting of buttonholing of the radial head through the annular ligament and a simultaneous radial head fracture in an adolescent. In the present case, the radiographic findings were a radial head fracture with anterior dislocation and lack of the anterior fat pad sign. Magnetic resonance imaging (MRI) clearly demonstrated anterior dislocation of the fractured radial head through the torn annular ligament. The anterior joint capsule and proximal portion of the annular ligament were interposed between the radial head and capitellum, preventing closed reduction of the radial head. Familiarity with this condition and imaging findings will aid clinicians to make a proper diagnosis and fast decision to perform an open reduction. (orig.)
The introduction of radial streaming into Galanin's method
Leslie, D.C.
1963-08-01
In his original formulation of small-source theory, Galanin allowed only simple source/sinks at the lattice points. The effect of streaming across air gaps can be allowed for by including dipoles as well as simple sources at these points. The calculation is carried through and a formula is deduced for the radial streaming factor. This study was carried out during 1960, and was not published because it was to some extent superseded by other work. Galanin and Kuchorov have now published an analysis of this problem by a different method, and it seems that an account of the earlier study might now be of some interest. (author)
Photoelectric Radial Velocities, Paper XIX Additional Spectroscopic ...
ian velocity curve that does justice to the measurements, but it cannot be expected to have much predictive power. Key words. Stars: late-type—stars: radial velocities—spectroscopic binaries—orbits. 0. Preamble. The 'Redman K stars' are a lot of seventh-magnitude K stars whose radial velocities were first observed by ...
Radial velocities of RR Lyrae stars
Hawley, S.L.; Barnes, T.G. III
1985-01-01
283 spectra of 57 RR Lyrae stars have been obtained using the 2.1-m telescope at McDonald Observatory. Radial velocities were determined using a software cross-correlation technique. New mean radial velocities were determined for 46 of the stars. 11 references
Concepts of radial and angular kinetic energies
Dahl, Jens Peder; Schleich, W.P.
2002-01-01
We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...
Effects of applied dc radial electric fields on particle transport in a bumpy torus plasma
Roth, J. R.
1978-01-01
The influence of applied dc radial electric fields on particle transport in a bumpy torus plasma is studied. The plasma, magnetic field, and ion heating mechanism are operated in steady state. Ion kinetic temperature is more than a factor of ten higher than electron temperature. The electric fields raise the ions to energies on the order of kilovolts and then point radially inward or outward. Plasma number density profiles are flat or triangular across the plasma diameter. It is suggested that the radial transport processes are nondiffusional and dominated by strong radial electric fields. These characteristics are caused by the absence of a second derivative in the density profile and the flat electron temperature profiles. If the electric field acting on the minor radius of the toroidal plasma points inward, plasma number density and confinement time are increased.
Investigation of radial propagation of electrostatic fluctuations in the IR-T1 tokamak plasma edge
Shariatzadeh, R; Ghoranneviss, M; Salem, M K [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University (IAU), PO Box 14665-678, Tehran (Iran, Islamic Republic of); Emami, M, E-mail: rezashariatzadeh@gmail.com [Laser and Optics Research School, NSTRI, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)
2011-01-15
The radial propagation of electrostatic fluctuation is considered extremely important for understanding cross-field anomalous transport. In this paper, two arrays of Langmuir probes are used to analyze electrostatic fluctuations in the edge of IR-T1 tokamak plasma in both the radial and the poloidal directions. The propagation characteristics of the floating potential fluctuations are analyzed by the two-point correlation technique. The wavenumber spectrum shows that there is a net radially outward propagation of turbulent fluctuations in the edge and scrape-off layer (SOL) regions. Hence, edge turbulence presumably originates from core fluctuations.
Investigation of radial propagation of electrostatic fluctuations in the IR-T1 tokamak plasma edge
Shariatzadeh, R; Ghoranneviss, M; Salem, M K; Emami, M
2011-01-01
The radial propagation of electrostatic fluctuation is considered extremely important for understanding cross-field anomalous transport. In this paper, two arrays of Langmuir probes are used to analyze electrostatic fluctuations in the edge of IR-T1 tokamak plasma in both the radial and the poloidal directions. The propagation characteristics of the floating potential fluctuations are analyzed by the two-point correlation technique. The wavenumber spectrum shows that there is a net radially outward propagation of turbulent fluctuations in the edge and scrape-off layer (SOL) regions. Hence, edge turbulence presumably originates from core fluctuations.
Are Titan's radial Labyrinth terrains surface expressions of large laccoliths?
Schurmeier, L.; Dombard, A. J.; Malaska, M.; Radebaugh, J.
2017-12-01
The Labyrinth terrain unit may be the one of the best examples of the surface expression of Titan's complicated history. They are characterized as highly eroded, dissected, and elevated plateaus and remnant ridges, with an assumed composition that is likely organic-rich based on radar emissivity. How these features accumulated organic-rich sediments and formed topographic highs by either locally uplifting or surviving pervasive regional deflation or erosion is an important question for understanding the history of Titan. There are several subsets of Labyrinth terrains, presumably with differing evolutionary histories and formation processes. We aim to explain the formation of a subset of Labyrinth terrain units informally referred to as "radial Labyrinth terrains." They are elevated and appear dome-like, circular in planform, have a strong radial dissection pattern, are bordered by Undifferentiated Plains units, and are found in the mid-latitudes. Based on their shape, clustering, and dimensions, we suggest that they may be the surface expression of large subsurface laccoliths. A recent study by Manga and Michaut (Icarus, 2017) explained Europa's lenticulae (pits, domes, spots) with the formation of saucer-shaped sills that form laccoliths around the brittle-ductile transition depth within the ice shell (1-5 km). Here, we apply the same scaling relationships and find that the larger size of radial labyrinth terrains with Titan's higher gravity implies deeper intrusion depths of around 20-40 km. This intrusion depth matches the expected brittle-ductile transition on Titan based on our finite element simulations and yield strength envelope analyses. We hypothesize that Titan's radial labyrinth terrains formed as cryovolcanic (water) intrusions that rose to the brittle-ductile transition within the ice shell where they spread horizontally, and uplifted the overlying ice. The organic-rich sedimentary cover also uplifted, becoming more susceptible to pluvial and fluvial
One-dimensional analysis of plane and radial thin film flows including solid-body rotation
Thomas, S.; Hankey, W.; Faghri, A.; Swanson, T.
1989-01-01
The flow of a thin liquid film with a free surface along a horizontal plate which emanates from a pressurized vessel is examined by integrating the equations of motion across the thin liquid layer and discretizing the integrated equations using finite difference techniques. The effects of 0-g and solid-body rotation will be discussed. The two cases of interest are plane flow and radial flow. In plane flow, the liquid is considered to be flowing along a channel with no change in the width of the channel, whereas in radial flow the liquid spreads out radially over a disk, so that the area changes along the radius. It is desired to determine the height of the liquid film at any location along the plate of disk, so that the heat transfer from the plate or disk can be found. The possibility that the flow could encounter a hydraulic jump is accounted for.
An Exact Formula for Calculating Inverse Radial Lens Distortions
Pierre Drap
2016-06-01
Full Text Available This article presents a new approach to calculating the inverse of radial distortions. The method presented here provides a model of reverse radial distortion, currently modeled by a polynomial expression, that proposes another polynomial expression where the new coefficients are a function of the original ones. After describing the state of the art, the proposed method is developed. It is based on a formal calculus involving a power series used to deduce a recursive formula for the new coefficients. We present several implementations of this method and describe the experiments conducted to assess the validity of the new approach. Such an approach, non-iterative, using another polynomial expression, able to be deduced from the first one, can actually be interesting in terms of performance, reuse of existing software, or bridging between different existing software tools that do not consider distortion from the same point of view.
Turbulence Spreading into Linearly Stable Zone and Transport Scaling
Hahm, T.S.; Diamond, P.H.; Lin, Z.; Itoh, K.; Itoh, S.-I.
2003-01-01
We study the simplest problem of turbulence spreading corresponding to the spatio-temporal propagation of a patch of turbulence from a region where it is locally excited to a region of weaker excitation, or even local damping. A single model equation for the local turbulence intensity I(x, t) includes the effects of local linear growth and damping, spatially local nonlinear coupling to dissipation and spatial scattering of turbulence energy induced by nonlinear coupling. In the absence of dissipation, the front propagation into the linearly stable zone occurs with the property of rapid progression at small t, followed by slower subdiffusive progression at late times. The turbulence radial spreading into the linearly stable zone reduces the turbulent intensity in the linearly unstable zone, and introduces an additional dependence on the rho* is always equal to rho i/a to the turbulent intensity and the transport scaling. These are in broad, semi-quantitative agreements with a number of global gyrokinetic simulation results with zonal flows and without zonal flows. The front propagation stops when the radial flux of fluctuation energy from the linearly unstable region is balanced by local dissipation in the linearly stable region
New Method for Mesh Moving Based on Radial Basis Function Interpolation
De Boer, A.; Van der Schoot, M.S.; Bijl, H.
2006-01-01
A new point-by-point mesh movement algorithm is developed for the deformation of unstructured grids. The method is based on using radial basis function, RBFs, to interpolate the displacements of the boundary nodes to the whole flow mesh. A small system of equations has to be solved, only involving
Radial electric fields for improved tokamak performance
Downum, W.B.
1981-01-01
The influence of externally-imposed radial electric fields on the fusion energy output, energy multiplication, and alpha-particle ash build-up in a TFTR-sized, fusing tokamak plasma is explored. In an idealized tokamak plasma, an externally-imposed radial electric field leads to plasma rotation, but no charge current flows across the magnetic fields. However, a realistically-low neutral density profile generates a non-zero cross-field conductivity and the species dependence of this conductivity allows the electric field to selectively alter radial particle transport
Hewes, R.C.; Miller, T.R.
1988-01-01
To profile optimally each portion of the meniscus, the authors use the multiangle, multisection feature of a General Electric SIGNA 1.5-T imager to produce radial images centered on each meniscus. A total of 12-15 sections are imaged at 10 0 -15 0 intervals of each meniscus, yielding perpendicular images of the entire meniscus, comparable with the arthrographic tangential views. The authors review their technique and demonstrate correlation cases between the radial gradient recalled acquisition in a steady state sequences, sagittal and coronal MR images, and arthrograms. Radial images should be a routine part of knee MR imaging
Radial pattern of nuclear decay processes
Iskra, W.; Mueller, M.; Rotter, I.; Technische Univ. Dresden
1994-05-01
At high level density of nuclear states, a separation of different time scales is observed (trapping effect). We calculate the radial profile of partial widths in the framework of the continuum shell model for some 1 - resonances with 2p-2h nuclear structure in 16 O as a function of the coupling strength to the continuum. A correlation between the lifetime of a nuclear state and the radial profile of the corresponding decay process is observed. We conclude from our numerical results that the trapping effect creates structures in space and time characterized by a small radial extension and a short lifetime. (orig.)
Method and apparatus for producing and selectively directing x-rays to different points on an object
Haimson, J.
1981-01-01
The invention relates to apparatus suitable for use in a computer tomography X-ray scanner. High intensity X-rays are produced and directed towards the object of interest from any of a plurality of preselected coplanar points spaced from the object and spaced radially about a line through the object. There are no moving parts. The electron beam, which produces X-rays as a consequence of impact with the target, is directed selectively to preselected points on the stationary target. Beam-direction compensates for the beam spreading effect of space charge forces acting on the beam, and beam-shaping shapes the beam to a predetermined cross-sectional configuration at its point of incidence with the target. Beam aberrations including sextupole aberrations are corrected. (U.K.)
Spreading dynamics in complex networks
Pei, Sen; Makse, Hernán A.
2013-12-01
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality.
Spreading dynamics in complex networks
Pei, Sen; Makse, Hernán A
2013-01-01
Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality. (paper)
Dual polarized, heat spreading rectenna
Epp, Larry W. (Inventor); Khan, Abdur R. (Inventor); Smith, R. Peter (Inventor); Smith, Hugh K. (Inventor)
1999-01-01
An aperture coupled patch splits energy from two different polarization components to different locations to spread heat. In addition, there is no physical electrical connection between the slot, patch and circuitry. The circuitry is located under a ground plane which shields against harmonic radiation back to the RF source.
Radial pseudoaneurysm following diagnostic coronary angiography
Shankar Laudari
2015-06-01
Full Text Available The radial artery access has gained popularity as a method of diagnostic coronary catheterization compared to femoral artery puncture in terms of vascular complications and early ambulation. However, very rare complication like radial artery pseudoaneurysm may occur following cardiac catheterization which may give rise to serious consequences. Here, we report a patient with radial pseudoaneurysm following diagnostic coronary angiography. Adequate and correct methodology of compression of radial artery following puncture for maintaining hemostasis is the key to prevention.DOI: http://dx.doi.org/10.3126/jcmsn.v10i3.12776 Journal of College of Medical Sciences-Nepal, 2014, Vol-10, No-3, 48-50
The radial-hedgehog solution in Landau–de Gennes' theory for nematic liquid crystals
MAJUMDAR, APALA
2011-09-06
We study the radial-hedgehog solution in a three-dimensional spherical droplet, with homeotropic boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. The radial-hedgehog solution is a candidate for a global Landau-de Gennes minimiser in this model framework and is also a prototype configuration for studying isolated point defects in condensed matter physics. The static properties of the radial-hedgehog solution are governed by a non-linear singular ordinary differential equation. We study the analogies between Ginzburg-Landau vortices and the radial-hedgehog solution and demonstrate a Ginzburg-Landau limit for the Landau-de Gennes theory. We prove that the radial-hedgehog solution is not the global Landau-de Gennes minimiser for droplets of finite radius and sufficiently low temperatures and prove the stability of the radial-hedgehog solution in other parameter regimes. These results contain quantitative information about the effect of geometry and temperature on the properties of the radial-hedgehog solution and the associated biaxial instabilities. © Copyright Cambridge University Press 2011.
The radial-hedgehog solution in Landau–de Gennes' theory for nematic liquid crystals
MAJUMDAR, APALA
2011-01-01
We study the radial-hedgehog solution in a three-dimensional spherical droplet, with homeotropic boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. The radial-hedgehog solution is a candidate for a global Landau-de Gennes minimiser in this model framework and is also a prototype configuration for studying isolated point defects in condensed matter physics. The static properties of the radial-hedgehog solution are governed by a non-linear singular ordinary differential equation. We study the analogies between Ginzburg-Landau vortices and the radial-hedgehog solution and demonstrate a Ginzburg-Landau limit for the Landau-de Gennes theory. We prove that the radial-hedgehog solution is not the global Landau-de Gennes minimiser for droplets of finite radius and sufficiently low temperatures and prove the stability of the radial-hedgehog solution in other parameter regimes. These results contain quantitative information about the effect of geometry and temperature on the properties of the radial-hedgehog solution and the associated biaxial instabilities. © Copyright Cambridge University Press 2011.
Stability of radial and non-radial pulsation modes of massive ZAMS models
Odell, A.P.; Pausenwein, A.; Weiss, W.W.; Hajek, A.
1987-01-01
The authors have computed non-adiabatic eigenvalues for radial and non-radial pulsation modes of star models between 80 and 120 M solar with composition of chi=0.70 and Z=0.02. The radial fundamental mode is unstable in models with mass greater than 95 M solar , but the first overtone mode is always stable. The non-radial modes are all stable for all models, but the iota=2 f-mode is the closest to being driven. The non-radial modes are progressively more stable with higher iota and with higher n (for both rho- and g-modes). Thus, their results indicate that radial pulsation limits the upper mass of a star
21 CFR 866.4800 - Radial immunodiffusion plate.
2010-04-01
...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4800 Radial immunodiffusion plate. (a) Identification. A radial immunodiffusion plate for clinical use...
RTOD- RADIAL TURBINE OFF-DESIGN PERFORMANCE ANALYSIS
Glassman, A. J.
1994-01-01
The RTOD program was developed to accurately predict radial turbine off-design performance. The radial turbine has been used extensively in automotive turbochargers and aircraft auxiliary power units. It is now being given serious consideration for primary powerplant applications. In applications where the turbine will operate over a wide range of power settings, accurate off-design performance prediction is essential for a successful design. RTOD predictions have already illustrated a potential improvement in off-design performance offered by rotor back-sweep for high-work-factor radial turbines. RTOD can be used to analyze other potential performance enhancing design features. RTOD predicts the performance of a radial turbine (with or without rotor blade sweep) as a function of pressure ratio, speed, and stator setting. The program models the flow with the following: 1) stator viscous and trailing edge losses; 2) a vaneless space loss between the stator and the rotor; and 3) rotor incidence, viscous, trailing-edge, clearance, and disk friction losses. The stator and rotor viscous losses each represent the combined effects of profile, endwall, and secondary flow losses. The stator inlet and exit and the rotor inlet flows are modeled by a mean-line analysis, but a sector analysis is used at the rotor exit. The leakage flow through the clearance gap in a pivoting stator is also considered. User input includes gas properties, turbine geometry, and the stator and rotor viscous losses at a reference performance point. RTOD output includes predicted turbine performance over a specified operating range and any user selected flow parameters. The RTOD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 100K of 8 bit bytes. The RTOD program was developed in 1983.
Radial behavior of the average local ionization energies of atoms
Politzer, P.; Murray, J.S.; Grice, M.E.; Brinck, T.; Ranganathan, S.
1991-01-01
The radial behavior of the average local ionization energy bar I(r) has been investigated for the atoms He--Kr, using ab initio Hartree--Fock atomic wave functions. bar I(r) is found to decrease in a stepwise manner with the inflection points serving effectively to define boundaries between electronic shells. There is a good inverse correlation between polarizability and the ionization energy in the outermost region of the atom, suggesting that bar I(r) may be a meaningful measure of local polarizabilities in atoms and molecules
Spreading of a granular droplet
Clement, Eric; Sanchez, Ivan; Raynaud, Franck; Lanuza, Jose; Andreotti, Bruno; Aranson, Igor
2008-03-01
The influence of controlled vibrations on the granular rheology is investigated in a specifically designed experiment in which a granular film spreads under the action of horizontal vibrations. A nonlinear diffusion equation is derived theoretically that describes the evolution of the deposit shape. A self-similar parabolic shape (the``granular droplet'') and a spreading dynamics are predicted that both agree quantitatively with the experimental results. The theoretical analysis is used to extract effective friction coefficients between the base and the granular layer under sustained and controlled vibrations. A shear thickening regime characteristic of dense granular flows is evidenced at low vibration energy, both for glass beads and natural sand. Conversely, shear thinning is observed at high agitation.
Drop Spreading with Random Viscosity
Xu, Feng; Jensen, Oliver
2016-11-01
Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.
New PN Even Balanced Sequences for Spread-Spectrum Systems
Inácio JAL
2005-01-01
Full Text Available A new class of pseudonoise even balanced (PN-EB binary spreading sequences is derived from existing classical odd-length families of maximum-length sequences, such as those proposed by Gold, by appending or inserting one extra-zero element (chip to the original sequences. The incentive to generate large families of PN-EB spreading sequences is motivated by analyzing the spreading effect of these sequences from a natural sampling point of view. From this analysis a new definition for PG is established, from which it becomes clear that very high processing gains (PGs can be achieved in band-limited direct-sequence spread-spectrum (DSSS applications by using spreading sequences with zero mean, given that certain conditions regarding spectral aliasing are met. To obtain large families of even balanced (i.e., equal number of ones and zeros sequences, two design criteria are proposed, namely the ranging criterion (RC and the generating ranging criterion (GRC. PN-EB sequences in the polynomial range are derived using these criteria, and it is shown that they exhibit secondary autocorrelation and cross-correlation peaks comparable to the sequences they are derived from. The methods proposed not only facilitate the generation of large numbers of new PN-EB spreading sequences required for CDMA applications, but simultaneously offer high processing gains and good despreading characteristics in multiuser SS scenarios with band-limited noise and interference spectra. Simulation results are presented to confirm the respective claims made.
Potential corridors and barriers for plague spread in central Asia
2013-01-01
Background Plague (Yersinia pestis infection) is a vector-borne disease which caused millions of human deaths in the Middle Ages. The hosts of plague are mostly rodents, and the disease is spread by the fleas that feed on them. Currently, the disease still circulates amongst sylvatic rodent populations all over the world, including great gerbil (Rhombomys opimus) populations in Central Asia. Great gerbils are social desert rodents that live in family groups in burrows, which are visible on satellite images. In great gerbil populations an abundance threshold exists, above which plague can spread causing epizootics. The spatial distribution of the host species is thought to influence the plague dynamics, such as the direction of plague spread, however no detailed analysis exists on the possible functional or structural corridors and barriers that are present in this population and landscape. This study aims to fill that gap. Methods Three 20 by 20 km areas with known great gerbil burrow distributions were used to analyse the spatial distribution of the burrows. Object-based image analysis was used to map the landscape at several scales, and was linked to the burrow maps. A novel object-based method was developed – the mean neighbour absolute burrow density difference (MNABDD) – to identify the optimal scale and evaluate the efficacy of using landscape objects as opposed to square cells. Multiple regression using raster maps was used to identify the landscape-ecological variables that explain burrow density best. Functional corridors and barriers were mapped using burrow density thresholds. Cumulative resistance of the burrow distribution to potential disease spread was evaluated using cost distance analysis. A 46-year plague surveillance dataset was used to evaluate whether plague spread was radially symmetric. Results The burrow distribution was found to be non-random and negatively correlated with Greenness, especially in the floodplain areas. Corridors and
An, Hong-Yan; Xu, Hai-Liang; Ye, Mao; Yu, Pu-Ji; Gong, Jun-Jun
2011-01-01
Taking the Populus euphratica at lower reaches of Tarim River as test object, and by the methods of tree dendrohydrology, this paper studied the spatiotemporal variation of P. euphratic' s branch radial increment after ecological water transfer. There was a significant difference in the mean radial increment before and after ecological water transfer. The radial increment after the eco-water transfer was increased by 125%, compared with that before the water transfer. During the period of ecological water transfer, the radial increment was increased with increasing water transfer quantity, and there was a positive correlation between the annual radial increment and the total water transfer quantity (R2 = 0.394), suggesting that the radial increment of P. euphratica could be taken as the performance indicator of ecological water transfer. After the ecological water transfer, the radial increment changed greatly with the distance to the River, i.e. , decreased significantly along with the increasing distance to the River (P = 0.007). The P. euphratic' s branch radial increment also differed with stream segment (P = 0.017 ), i.e. , the closer to the head-water point (Daxihaizi Reservoir), the greater the branch radial increment. It was considered that the limited effect of the current ecological water transfer could scarcely change the continually deteriorating situation of the lower reaches of Tarim River.
Anomalies of radial and ulnar arteries
Rajani Singh
Full Text Available Abstract During dissection conducted in an anatomy department of the right upper limb of the cadaver of a 70-year-old male, both origin and course of the radial and ulnar arteries were found to be anomalous. After descending 5.5 cm from the lower border of the teres major, the brachial artery anomalously bifurcated into a radial artery medially and an ulnar artery laterally. In the arm, the ulnar artery lay lateral to the median nerve. It followed a normal course in the forearm. The radial artery was medial to the median nerve in the arm and then, at the level of the medial epicondyle, it crossed from the medial to the lateral side of the forearm, superficial to the flexor muscles. The course of the radial artery was superficial and tortuous throughout the arm and forearm. The variations of radial and ulnar arteries described above were associated with anomalous formation and course of the median nerve in the arm. Knowledge of neurovascular anomalies are important for vascular surgeons and radiologists.
Reverse preferential spread in complex networks
Toyoizumi, Hiroshi; Tani, Seiichi; Miyoshi, Naoto; Okamoto, Yoshio
2012-08-01
Large-degree nodes may have a larger influence on the network, but they can be bottlenecks for spreading information since spreading attempts tend to concentrate on these nodes and become redundant. We discuss that the reverse preferential spread (distributing information inversely proportional to the degree of the receiving node) has an advantage over other spread mechanisms. In large uncorrelated networks, we show that the mean number of nodes that receive information under the reverse preferential spread is an upper bound among any other weight-based spread mechanisms, and this upper bound is indeed a logistic growth independent of the degree distribution.
Moribayashi, Kengo, E-mail: moribayashi.kengo@jaea.go.jp
2015-12-15
A radial dose simulation model has been proposed in order to advance the treatment planning system for heavy particle cancer therapy. Here, the radial dose is the dose due to the irradiation of a heavy ion as a function of distances from this ion path. The model proposed here may overcome weak points of paradigms that are employed to produce the conventional radial dose distributions. To provide the radial dose with higher accuracy, this paper has discussed the relationship between the emission angles of secondary electrons and the radial dose. It is found that the effect of emission angles becomes stronger on the radial dose with increasing energies of the secondary electrons.
Ida, Katsumi; Miura, Yukitoshi; Itoh, Sanae
1994-10-01
Radial structures of plasma rotation and radial electric field are experimentally studied in tokamak, heliotron/torsatron and stellarator devices. The perpendicular and parallel viscosities are measured. The parallel viscosity, which is dominant in determining the toroidal velocity in heliotron/torsatron and stellarator devices, is found to be neoclassical. On the other hand, the perpendicular viscosity, which is dominant in dictating the toroidal rotation in tokamaks, is anomalous. Even without external momentum input, both a plasma rotation and a radial electric field exist in tokamaks and heliotrons/torsatrons. The observed profiles of the radial electric field do not agree with the theoretical prediction based on neoclassical transport. This is mainly due to the existence of anomalous perpendicular viscosity. The shear of the radial electric field improves particle and heat transport both in bulk and edge plasma regimes of tokamaks. (author) 95 refs
Manufacturing of Precision Forgings by Radial Forging
Wallner, S.; Harrer, O.; Buchmayr, B.; Hofer, F.
2011-01-01
Radial forging is a multi purpose incremental forging process using four tools on the same plane. It is widely used for the forming of tool steels, super alloys as well as titanium- and refractory metals. The range of application goes from reducing the diameters of shafts, tubes, stepped shafts and axels, as well as for creating internal profiles for tubes in Near-Net-Shape and Net-Shape quality. Based on actual development of a weight optimized transmission input shaft, the specific features of radial forging technology is demonstrated. Also a Finite Element Model for the simulation of the process is shown which leads to reduced pre-processing effort and reduced computing time compared to other published simulation methods for radial forging. The finite element model can be applied to quantify the effects of different forging strategies.
Competing spreading processes on multiplex networks: awareness and epidemics.
Granell, Clara; Gómez, Sergio; Arenas, Alex
2014-07-01
Epidemiclike spreading processes on top of multilayered interconnected complex networks reveal a rich phase diagram of intertwined competition effects. A recent study by the authors [C. Granell et al., Phys. Rev. Lett. 111, 128701 (2013).] presented an analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the spreading of information awareness to prevent infection, on top of multiplex networks. The results in the case in which awareness implies total immunization to the disease revealed the existence of a metacritical point at which the critical onset of the epidemics starts, depending on completion of the awareness process. Here we present a full analysis of these critical properties in the more general scenario where the awareness spreading does not imply total immunization, and where infection does not imply immediate awareness of it. We find the critical relation between the two competing processes for a wide spectrum of parameters representing the interaction between them. We also analyze the consequences of a massive broadcast of awareness (mass media) on the final outcome of the epidemic incidence. Importantly enough, the mass media make the metacritical point disappear. The results reveal that the main finding, i.e., existence of a metacritical point, is rooted in the competition principle and holds for a large set of scenarios.
Full Text Available ... en español Blog About OnSafety CPSC Stands for Safety The Tipping Point Home > 60 Seconds of Safety (Videos) > The Tipping Point The Tipping Point by ... danger death electrical fall furniture head injury product safety television tipover tv Watch the video in Adobe ...
Plume spread and atmospheric stability
Weber, R O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
The horizontal spread of a plume in atmospheric dispersion can be described by the standard deviation of horizontal direction. The widely used Pasquill-Gifford classes of atmospheric stability have assigned typical values of the standard deviation of horizontal wind direction and of the lapse rate. A measured lapse rate can thus be used to estimate the standard deviation of wind direction. It is examined by means of a large dataset of fast wind measurements how good these estimates are. (author) 1 fig., 2 refs.
Epidemic spreading on interconnected networks.
Saumell-Mendiola, Anna; Serrano, M Ángeles; Boguñá, Marián
2012-08-01
Many real networks are not isolated from each other but form networks of networks, often interrelated in nontrivial ways. Here, we analyze an epidemic spreading process taking place on top of two interconnected complex networks. We develop a heterogeneous mean-field approach that allows us to calculate the conditions for the emergence of an endemic state. Interestingly, a global endemic state may arise in the coupled system even though the epidemics is not able to propagate on each network separately and even when the number of coupling connections is small. Our analytic results are successfully confronted against large-scale numerical simulations.
Ray transference of a system with radial gradi- ent index
W. F. Harris
2012-12-01
Full Text Available The ray transference is central to the understanding of the first-order optical character of an optical system including the visual optical system of the eye. It can be calculated for dioptric and catadioptric systems from a knowledge of curvatures, tilts and spacing of surfaces in the system provided the material between successive surfaces has a uniform index of refraction. However the index of the natural lens of the eye is not uniform but varies with position. There is a need, therefore, for a method of calculating the transference of systems containing such gradient-index elements. As a first step this paper shows that the transference of elements in which the index varies radially can be obtained directly from published formulae. The transferences of radial-gradient systems are examined. Expressions are derived for several properties including the power, the front- and back-surface powers and the locations of the cardinal points. Equations are obtained for rays through such systems and for the locations of images of object points through them. Numerical examples are presented in the appen-dix. (S Afr Optom 2012 71(2 57-63
Radial velocity observations of VB10
Deshpande, R.; Martin, E.; Zapatero Osorio, M. R.; Del Burgo, C.; Rodler, F.; Montgomery, M. M.
2011-07-01
VB 10 is the smallest star known to harbor a planet according to the recent astrometric study of Pravdo & Shaklan [1]. Here we present near-infrared (J-band) radial velocity of VB 10 performed from high resolution (R~20,000) spectroscopy (NIRSPEC/KECK II). Our results [2] suggest radial velocity variability with amplitude of ~1 km/s, a result that is consistent with the presence of a massive planet companion around VB10 as found via long-term astrometric monitoring of the star by Pravdo & Shaklan. Employing an entirely different technique we verify the results of Pravdo & Shaklan.
Plasma Signatures of Radial Field Power Dropouts
Lucek, E.A.; Horbury, T.S.; Balogh, A.; McComas, D.J.
1998-01-01
A class of small scale structures, with a near-radial magnetic field and a drop in magnetic field fluctuation power, have recently been identified in the polar solar wind. An earlier study of 24 events, each lasting for 6 hours or more, identified no clear plasma signature. In an extension of that work, radial intervals lasting for 4 hours or more (89 in total), have been used to search for a statistically significant plasma signature. It was found that, despite considerable variations between intervals, there was a small but significant drop, on average, in plasma temperature, density and β during these events
Reble, a radially converging electron beam accelerator
Ramirez, J.J.; Prestwich, K.R.
1976-01-01
The Reble accelerator at Sandia Laboratories is described. This accelerator was developed to provide an experimental source for studying the relevant diode physics, beam propagation, beam energy deposition in a gas using a radially converging e-beam. The nominal parameters for Reble are 1 MV, 200 kA, 20 ns e-beam pulse. The anode and cathode are concentric cylinders with the anode as the inner cylinder. The radial beam can be propagated through the thin foil anode into the laser gas volume. The design and performance of the various components of the accelerator are presented
Coding-Spreading Tradeoff in CDMA Systems
Bolas, Eduardo
2002-01-01
.... Comparing different combinations of coding and spreading with a traditional DS-CDMA, as defined in the IS-95 standard, allows the criteria to be defined for the best coding-spreading tradeoff in CDMA systems...
Lexical Ambiguity: Making a Case against Spread
Kaplan, Jennifer J.; Rogness, Neal T.; Fisher, Diane G.
2012-01-01
We argue for decreasing the use of the word "spread" when describing the statistical idea of dispersion or variability in introductory statistics courses. In addition, we argue for increasing the use of the word "variability" as a replacement for "spread."
Improved WKB radial wave functions in several bases
Durand, B.; Durand, L.; Department of Physics, University of Wisconsin, Madison, Wisconsin 53706)
1986-01-01
We develop approximate WKB-like solutions to the radial Schroedinger equation for problems with an angular momentum barrier using Riccati-Bessel, Coulomb, and harmonic-oscillator functions as basis functions. The solutions treat the angular momentum singularity near the origin more accurately in leading approximation than the standard WKB solutions based on sine waves. The solutions based on Riccati-Bessel and free Coulomb wave functions continue smoothly through the inner turning point and are appropriate for scattering problems. The solutions based on oscillator and bound Coulomb wave functions incorporate both turning points smoothly and are particularly appropriate for bound-state problems; no matching of piecewise solutions using Airy functions is necessary
Payan, J
1994-05-01
After a review of turbulence and transport phenomena in tokamak plasmas and the radial electric field shear effect in various tokamaks, experimental measurements obtained at Tore Supra by the means of the ALTAIR plasma diagnostic technique, are presented. Electronic drift waves destabilization mechanisms, which are the main features that could describe the experimentally observed microturbulence, are then examined. The effect of a radial electric field shear on electronic drift waves is then introduced, and results with ohmic heating are studied together with relations between turbulence and transport. The possible existence of ionic waves is rejected, and a spectral frequency modelization is presented, based on the existence of an electric field sheared radial profile. The position of the inversion point of this field is calculated for different values of the mean density and the plasma current, and the modelization is applied to the TEXT tokamak. The radial electric field at Tore Supra is then estimated. The effect of the ergodic divertor on turbulence and abnormal transport is then described and the density fluctuation radial profile in presence of the ergodic divertor is modelled. 80 figs., 120 refs.
Numerical study of drop spreading on a flat surface
Wang, Sheng; Desjardins, Olivier
2017-11-01
In this talk, we perform a numerical study of a droplet on a flat surface with special emphasis on capturing the spreading dynamics. The computational methodology employed is tailored for simulating large-scale two-phase flows within complex geometries. It combines a conservative level-set method to capture the liquid-gas interface, a conservative immersed boundary method to represent the solid-fluid interface, and a sub-grid curvature model at the triple-point to implicitly impose the contact angle of the liquid-gas interface. The performance of the approach is assessed in the inertial droplet spreading regime, the viscous spreading regime of high viscosity drops, and with the capillary oscillation of low viscosity droplets.
On helicon wave induced radial plasma transport
Petrzilka, V.
1993-04-01
Estimates of helicon wave induced radial plasma transport are presented. The wave induced transport grows or decreases in dependence on the sign of the azimuthal wave number; these changes in transport may play an important role in helicon wave plasma sources. (author) 5 figs., 18 refs
Revealing the radial modes in vortex beams
Sephton, Bereneice C
2016-10-01
Full Text Available Light beams that carry orbital angular momentum are often approximated by modulating an initial beam, usually Gaussian, with an azimuthal phase variation to create a vortex beam. Such vortex beams are well defined azimuthally, but the radial profile...
Measurement of Wear in Radial Journal Bearings
Ligterink, D.J.; Ligterink, D.J.; de Gee, A.W.J.
1996-01-01
this article, the measurement of wear in radial journal bearings is discussed, where a distinction is made between stationary and non-stationary contact conditions. Starting with Holm/Archard's wear law, equations are derived for the calculation of the specific wear rate k of the bearing material as
Radial interchange motions of plasma filaments
Garcia, O.E.; Bian, N.H.; Fundamenski, W.
2006-01-01
on a biperiodic domain perpendicular to the magnetic field. It is demonstrated that a blob-like plasma structure develops dipolar vorticity and electrostatic potential fields, resulting in rapid radial acceleration and formation of a steep front and a trailing wake. While the dynamical evolution strongly depends...
Spectral problem for the radial Schroedinger equation
Vshivtsev, A.S.; Tatarintsev, A.V.; Prokopov, A.V.; Sorokin, V. N.
1998-01-01
For the first time, a procedure for determining spectra on the basis of generalized integral transformations is implemented for a wide class of radial Schroedinger equations. It is shown that this procedure works well for known types of potentials. Concurrently, this method makes it possible to obtain new analytic results for the Cornell potential. This may prove important for hadron physics
Computing modal dispersion characteristics of radially Asymmetric ...
We developed a matrix theory that applies to with non-circular/circular but concentric layers fibers. And we compute the dispersion characteristics of radially unconventional fiber, known as Asymmetric Bragg fiber. An attempt has been made to determine how the modal characteristics change as circular Bragg fiber is ...
A high efficiency Ku-band radial line relativistic klystron amplifier
Dang, Fangchao; Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Zhong, Huihuang; Zhang, Jun; Ju, Jinchuan [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)
2016-07-15
To achieve the gigawatt-level microwave amplification output at Ku-band, a radial-line relativistic klystron amplifier is proposed and investigated in this paper. Different from the annular electron beam in conventional axial relativistic klystron amplifiers, a radial-radiated electron beam is employed in this proposed klystron. Owing to its radially spreading speciality, the electron density and space charge effect are markedly weakened during the propagation in the radial line drift tube. Additionally, the power capacity, especially in the output cavity, is enhanced significantly because of its large volume, which is profitable for the long pulse operation. Particle-in-cell simulation results demonstrate that a high power microwave with the power of 3 GW and the frequency of 14.25 GHz is generated with a 500 kV, 12 kA electron beam excitation and the 30 kW radio-frequency signal injection. The power conversion efficiency is 50%, and the gain is about 50 dB. Meanwhile, there is insignificant electron beam self-excitation in the proposed structure by the adoption of two transverse electromagnetic reflectors. The relative phase difference between the injected signals and output microwaves keeps stable after the amplifier saturates.
Pate, G
2011-10-01
A survey was conducted of medication administered during radial artery cannulation for coronary angiography in 2009 in Ireland; responses were obtained for 15 of 20 centres, in 5 of which no radial access procedures were undertaken. All 10 (100%) centres which provided data used heparin and one or more anti-spasmodics; verapamil in 9 (90%), nitrate in 1 (10%), both in 2 (20%). There were significant variations in the doses used. Further work needs to be done to determine the optimum cocktail to prevent radial artery injury following coronary angiography.
Torrent, Daniel; Sánchez-Dehesa, José
2009-08-07
We demonstrate that metamaterials with anisotropic properties can be used to develop a new class of periodic structures that has been named radial wave crystals. They can be sonic or photonic, and wave propagation along the radial directions is obtained through Bloch states like in usual sonic or photonic crystals. The band structure of the proposed structures can be tailored in a large amount to get exciting novel wave phenomena. For example, it is shown that acoustical cavities based on radial sonic crystals can be employed as passive devices for beam forming or dynamically orientated antennas for sound localization.
Generation and reception of spread-spectrum signals
Moser, R.
1983-05-01
The term 'spread-spectrum' implies a technique whereby digitized information is added to a pseudo-random number sequence and the resultant bit stream changes some parameter of the carrier frequency in discrete increments. The discrete modulation of the carrier frequency is usually realized either as a multiple level phase shift keyed or frequency shift keyed signal. The resultant PSK-modulated frequency spectrum is referred to as direct sequence spread-spectrum, whereas the FSK-modulated carrier frequency is referred to as a frequency hopped spread spectrum. These can be considered the major subsets of the more general term 'spread-spectrum'. In discussing signal reception, it is pointed out that active correlation methods are used for channel synchronization when the psuedo random sequences are long or when the processing gain is large, whereas the passive methods may be used for either short pseudo-random noise generation codes or to assist in attaining initial synchronization in long sequence spread-spectrum systems.
Ondrus, Martin G.; And Others
1983-01-01
Advocates use of Waters Associates Radial Compression Separation System for high performance liquid chromatography. Discusses instrumentation and reagents, outlining procedure for analyzing various foods and discussing typical student data. Points out potential problems due to impurities and pump seal life. Suggests use of ribose as internal…
Cooperative spreading processes in multiplex networks.
Wei, Xiang; Chen, Shihua; Wu, Xiaoqun; Ning, Di; Lu, Jun-An
2016-06-01
This study is concerned with the dynamic behaviors of epidemic spreading in multiplex networks. A model composed of two interacting complex networks is proposed to describe cooperative spreading processes, wherein the virus spreading in one layer can penetrate into the other to promote the spreading process. The global epidemic threshold of the model is smaller than the epidemic thresholds of the corresponding isolated networks. Thus, global epidemic onset arises in the interacting networks even though an epidemic onset does not arise in each isolated network. Simulations verify the analysis results and indicate that cooperative spreading processes in multiplex networks enhance the final infection fraction.
Bank Lending, Housing and Spreads
Aslam, Aqib; Santoro, Emiliano
The framework presented in this paper takes its cue from recent financial events and attempts to develop a tractable framework for policy analysis of macro-linkages, in particular a first attempt at the integration of an independent profit-maximising banking sector that lends to and borrows from...... agents in the economy, and through which changes in the monetary policy rate by the central bank are transmitted. The inter-linkages between housing and the role of the banking sector in the transmission of monetary policy is emphasized. Two competing effects are highlighted: (i) a financial accelerator...... channel, due to the presence of collateralized borrowers, and (ii) a banking attenuator effect, which crucially arises from the spread in interest rates caused by the introduction of monopolistically competitive financial intermediaries. We show how the classical amplification mechanism explored in models...
Operator Spreading in Random Unitary Circuits
Nahum, Adam; Vijay, Sagar; Haah, Jeongwan
2018-04-01
Random quantum circuits yield minimally structured models for chaotic quantum dynamics, which are able to capture, for example, universal properties of entanglement growth. We provide exact results and coarse-grained models for the spreading of operators by quantum circuits made of Haar-random unitaries. We study both 1 +1 D and higher dimensions and argue that the coarse-grained pictures carry over to operator spreading in generic many-body systems. In 1 +1 D , we demonstrate that the out-of-time-order correlator (OTOC) satisfies a biased diffusion equation, which gives exact results for the spatial profile of the OTOC and determines the butterfly speed vB. We find that in 1 +1 D , the "front" of the OTOC broadens diffusively, with a width scaling in time as t1 /2. We address fluctuations in the OTOC between different realizations of the random circuit, arguing that they are negligible in comparison to the broadening of the front within a realization. Turning to higher dimensions, we show that the averaged OTOC can be understood exactly via a remarkable correspondence with a purely classical droplet growth problem. This implies that the width of the front of the averaged OTOC scales as t1 /3 in 2 +1 D and as t0.240 in 3 +1 D (exponents of the Kardar-Parisi-Zhang universality class). We support our analytic argument with simulations in 2 +1 D . We point out that, in two or higher spatial dimensions, the shape of the spreading operator at late times is affected by underlying lattice symmetries and, in general, is not spherical. However, when full spatial rotational symmetry is present in 2 +1 D , our mapping implies an exact asymptotic form for the OTOC, in terms of the Tracy-Widom distribution. For an alternative perspective on the OTOC in 1 +1 D , we map it to the partition function of an Ising-like statistical mechanics model. As a result of special structure arising from unitarity, this partition function reduces to a random walk calculation which can be
Quantifier spreading: children misled by ostensive cues
Katalin É. Kiss
2017-04-01
Full Text Available This paper calls attention to a methodological problem of acquisition experiments. It shows that the economy of the stimulus employed in child language experiments may lend an increased ostensive effect to the message communicated to the child. Thus, when the visual stimulus in a sentence-picture matching task is a minimal model abstracting away from the details of the situation, children often regard all the elements of the stimulus as ostensive clues to be represented in the corresponding sentence. The use of such minimal stimuli is mistaken when the experiment aims to test whether or not a certain element of the stimulus is relevant for the linguistic representation or interpretation. The paper illustrates this point by an experiment involving quantifier spreading. It is claimed that children find a universally quantified sentence like 'Every girl is riding a bicycle 'to be a false description of a picture showing three girls riding bicycles and a solo bicycle because they are misled to believe that all the elements in the visual stimulus are relevant, hence all of them are to be represented by the corresponding linguistic description. When the iconic drawings were replaced by photos taken in a natural environment rich in accidental details, the occurrence of quantifier spreading was radically reduced. It is shown that an extra object in the visual stimulus can lead to the rejection of the sentence also in the case of sentences involving no quantification, which gives further support to the claim that the source of the problem is not (or not only the grammatical or cognitive difficulty of quantification but the unintended ostensive effect of the extra object. This article is part of the special collection: Acquisition of Quantification
Lim, Dongwook; Lee, Young-Wook; Pasquato, Mario [Center for Galaxy Evolution Research and Department of Astronomy, Yonsei University, Seoul 03722 (Korea, Republic of); Han, Sang-Il; Roh, Dong-Goo, E-mail: dwlim@galaxy.yonsei.ac.kr, E-mail: ywlee2@yonsei.ac.kr [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of)
2016-12-01
Most globular clusters (GCs) are now known to host multiple stellar populations with different abundances of light elements. Here we use narrow-band photometry and low-resolution spectroscopy for NGC 362 and NGC 6723 to investigate their chemical properties and radial distributions of subpopulations. We confirm that NGC 362 and NGC 6723 are among the GCs with multiple populations showing bimodal CN distribution and CN–CH anticorrelation without a significant spread in calcium abundance. These two GCs show more centrally concentrated CN-weak, earlier generation stars compared to the CN-strong, later generation stars. These trends are reversed with respect to those found in previous studies for many other GCs. Our findings, therefore, seem contradictory to the current scenario for the formation of multiple stellar populations, but mass segregation acting on the two subpopulations might be a possible solution to explain this reversed radial trend.
Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 5. Fixed Points - From Russia with Love - A Primer of Fixed Point Theory. A K Vijaykumar. Book Review Volume 5 Issue 5 May 2000 pp 101-102. Fulltext. Click here to view fulltext PDF. Permanent link:
Full Text Available ... OnSafety CPSC Stands for Safety The Tipping Point Home > 60 Seconds of Safety (Videos) > The Tipping Point ... 24 hours a day. For young children whose home is a playground, it’s the best way to ...
Full Text Available ... 60 Seconds of Safety (Videos) > The Tipping Point The Tipping Point by CPSC Blogger September 22, 2009 appliance child Childproofing CPSC danger death electrical fall furniture head injury product safety television tipover tv Watch the video in Adobe Flash ...
Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks
Granell, Clara; Gómez, Sergio; Arenas, Alex
2013-09-01
We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.
Dynamical interplay between awareness and epidemic spreading in multiplex networks.
Granell, Clara; Gómez, Sergio; Arenas, Alex
2013-09-20
We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.
Fatum, Rasmus; Pedersen, Jesper; Sørensen, Peter Norman
This paper investigates the intraday effects of unannounced foreign exchange intervention on bid-ask exchange rate spreads using official intraday intervention data provided by the Danish central bank. Our starting point is a simple theoretical model of the bid-ask spread which we use to formulate...... exert a significant influence on the exchange rate spread, but in opposite directions: intervention purchases of the smaller currency, on average, reduce the spread while intervention sales, on average, increase the spread. We also show that intervention only affects the exchange rate spread when...... the state of the market is not abnormally volatile. Our results are consistent with the notion that illiquidity arises when traders fear speculative pressure against the smaller currency and confirms the asymmetry hypothesis of our theoretical model....
A mini axial and a permanent maglev radial heart pump.
Qian, Kun-Xi; Ru, Wei-Min; Wang, Hao; Jing, Teng
2007-05-31
The implantability and durability have been for decades the focus of artificial heart R&D. A mini axial and a maglev radial pump have been developed to meet with such requirements.The mini axial pump weighing 27g (incl.5g rotor) has an outer diameter of 21mm and a length of 10mm in its largest point, but can produce a maximal blood flow of 6l/min with 50mmHg pressure increase. Therefore, it is suitable for the patients of 40-60kg body weight. For other patients of 60-80kg or 80-100kg body weight, the mini axial pumps of 23mm and 25mm outer diameter had been developed before, these devices were acknowledged to be the world smallest LVADs by Guinness World Record Center in 2004.The permanent maglev radial pump weighing 150g is a shaft-less centrifugal pump with permanent magnetic bearings developed by the author. It needs no second coil for suspension of the rotor except the motor coil, different from all other maglev pumps developed in USA, Japan, European, etc. Thus no detecting and controlling systems as well as no additional power supply for maglev are necessary. The pump can produce a blood flow up to as large as 10l/min against 100mmHg pressure.An implantable and durable blood pump will be a viable alternative to natural donor heart for transplantation.
Right radial nerve dysfunction following laparoscopic sigmoid colectomy
Yoshikazu Takinami
2014-10-01
Full Text Available Here, we report a case of right radial nerve dysfunction following laparoscopic sigmoid colectomy under general anesthesia. A 75-year-old man was intubated without excessive retroflexion, and his upper body was held in place by lateral body positioners with protective cushions over the chest and acromioclavicular joints. The patient’s head was maintained at the center and held on the operation table with a memory-foam pillow to prevent hyperextension of the neck. The arms, abducted 80° with the forearms supinated, were held in place on the armrests with protective cushions. The surgical position was a 20° head-down lithotomy position with the right side of the body lowered by 15°. Surgery was completed successfully with no complications, and anesthesia time was 7 h and 37 min. After surgery, however, the patient complained of numbness and hypoesthesia on the radial and ulnar side, respectively, of the right arm from the elbow to the fingertips, with the boundary running between fingers 3 and 4. Dysesthesia was observed in the right fingertips of fingers 1–3. After 3 months of silver spike point low-frequency electrotherapy, hypoesthesia improved, while dysesthesia partially improved, in the dorsal area between right fingers 1 and 2.
Inflation and conformal invariance: the perspective from radial quantization
Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Theoretical Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Riotto, Antonio [Department of Theoretical Physics and Center for Astroparticle Physics (CAP) 24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)
2017-05-15
According to the dS/CFT correspondence, correlators of fields generated during a primordial de Sitter phase are constrained by three-dimensional conformal invariance. Using the properties of radially quantized conformal field theories and the operator-state correspondence, we glean information on some points. The Higuchi bound on the masses of spin-s states in de Sitter is a direct consequence of reflection positivity in radially quantized CFT{sub 3} and the fact that scaling dimensions of operators are energies of states. The partial massless states appearing in de Sitter correspond from the boundary CFT{sub 3} perspective to boundary states with highest weight for the conformal group. Finally, we discuss the inflationary consistency relations and the role of asymptotic symmetries which transform asymptotic vacua to new physically inequivalent vacua by generating long perturbation modes. We show that on the CFT{sub 3} side, asymptotic symmetries have a nice quantum mechanics interpretation. For instance, acting with the asymptotic dilation symmetry corresponds to evolving states forward (or backward) in ''time'' and the charge generating the asymptotic symmetry transformation is the Hamiltonian itself. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
The highlighting of an internal combustion engine piston ring radial oscillations
Djallel ZEBBAR
2016-06-01
Full Text Available This paper deals with the definition of the lube-oil film thickness in the piston ring cylinder liner junction of an internal combustion engine. At first, a mathematical model for the estimation of the film thickness is established. It is used to point out the oscillating motion of the piston ring normal to the cylinder wall. For the first time, has been highlighted and analytically evaluated the oscillating behavior of the piston ring in its housing in the radial direction. Furthermore, it is demonstrated that the radial oscillations frequency is a function of piston ring stiffness, material and geometry.
Nelson, Benjamin Earl; Wright, Jason Thomas; Wang, Sharon
2015-08-01
For this hack session, we will present three tools used in analyses of radial velocity exoplanet systems. RVLIN is a set of IDL routines used to quickly fit an arbitrary number of Keplerian curves to radial velocity data to find adequate parameter point estimates. BOOTTRAN is an IDL-based extension of RVLIN to provide orbital parameter uncertainties using bootstrap based on a Keplerian model. RUN DMC is a highly parallelized Markov chain Monte Carlo algorithm that employs an n-body model, primarily used for dynamically complex or poorly constrained exoplanet systems. We will compare the performance of these tools and their applications to various exoplanet systems.
Goldsmith, Shelly
1999-01-01
Dew Point was a solo exhibition originating at PriceWaterhouseCoopers Headquarters Gallery, London, UK and toured to the Centre de Documentacio i Museu Textil, Terrassa, Spain and Gallery Aoyama, Tokyo, Japan.
Full Text Available ... Point by CPSC Blogger September 22, 2009 appliance child Childproofing CPSC danger death electrical fall furniture head injury product safety television tipover tv Watch the video in Adobe Flash ...
... Point by CPSC Blogger September 22, 2009 appliance child Childproofing CPSC danger death electrical fall furniture head injury product safety television tipover tv Watch the video in Adobe Flash ...
Full Text Available ... Point by CPSC Blogger September 22, 2009 appliance child Childproofing CPSC danger death electrical fall furniture head ... see news reports about horrible accidents involving young children and furniture, appliance and tv tip-overs. The ...
Full Text Available ... Point by CPSC Blogger September 22, 2009 appliance child Childproofing CPSC danger death electrical fall furniture head ... TV falls with about the same force as child falling from the third story of a building. ...
Full Text Available ... Tipping Point by CPSC Blogger September 22, 2009 appliance child Childproofing CPSC danger death electrical fall furniture ... about horrible accidents involving young children and furniture, appliance and tv tip-overs. The force of a ...
WWER radial reflector modeling by diffusion codes
Petkov, P. T.; Mittag, S.
2005-01-01
The two commonly used approaches to describe the WWER radial reflectors in diffusion codes, by albedo on the core-reflector boundary and by a ring of diffusive assembly size nodes, are discussed. The advantages and disadvantages of the first approach are presented first, then the Koebke's equivalence theory is outlined and its implementation for the WWER radial reflectors is discussed. Results for the WWER-1000 reactor are presented. Then the boundary conditions on the outer reflector boundary are discussed. The possibility to divide the library into fuel assembly and reflector parts and to generate each library by a separate code package is discussed. Finally, the homogenization errors for rodded assemblies are presented and discussed (Author)
Oculoauriculovertebral spectrum with radial anomaly in child.
Taksande, Amar; Vilhekar, Krishna
2013-01-01
Oculoauriculovertebral spectrum (OAVS) or Goldenhar syndrome is a wide spectrum of congenital anomalies that involves structures arising from the first and second branchial arches. It is characterized by a wide spectrum of symptoms and physical features. These abnormalities mainly involve the cheekbones, jaws, mouth, ears, eyes, or vertebrae. Other conditions with ear and/or radial involvement, such as, the Nager syndrome, Holt-Oram syndrome, Radial-renal syndrome, facioauriculoradial dysplasia, Fanconi anemia, and Vertebral, Anal atresia, Cardiac, Trachea, Esophageal, Renal, and Limb (VACTERL) association should be considered for differential diagnosis. Here we report a child who had facial asymmetry, microsomia, microtia, congenital facial nerve palsy, conductive hearing loss, skin tags, iris coloboma, and preaxial polydactyly.
Oculoauriculovertebral spectrum with radial anomaly in child
Amar Taksande
2013-01-01
Full Text Available Oculoauriculovertebral spectrum (OAVS or Goldenhar syndrome is a wide spectrum of congenital anomalies that involves structures arising from the first and second branchial arches. It is characterized by a wide spectrum of symptoms and physical features. These abnormalities mainly involve the cheekbones, jaws, mouth, ears, eyes, or vertebrae. Other conditions with ear and/or radial involvement, such as, the Nager syndrome, Holt-Oram syndrome, Radial-renal syndrome, facioauriculoradial dysplasia, Fanconi anemia, and Vertebral, Anal atresia, Cardiac, Trachea, Esophageal, Renal, and Limb (VACTERL association should be considered for differential diagnosis. Here we report a child who had facial asymmetry, microsomia, microtia, congenital facial nerve palsy, conductive hearing loss, skin tags, iris coloboma, and preaxial polydactyly.
Linear radial pulsation theory. Lecture 5
Cox, A.N.
1983-01-01
We describe a method for getting an equilibrium stellar envelope model using as input the total mass, the envelope mass, the surface effective temperature, the total surface luminosity, and the composition of the envelope. Then wih the structure of the envelope model known, we present a method for obtaining the raidal pulsation periods and growth rates for low order modes. The large amplitude pulsations observed for the yellow and red giants and supergiants are always these radial models, but for the stars nearer the main sequence, as for all of our stars and for the white dwarfs, there frequently are nonradial modes occuring also. Application of linear theory radial pulsation theory is made to the giant star sigma Scuti variables, while the linear nonradial theory will be used for the B stars in later lectures
Douma, M.; Ligierko, G.; Angelov, I.
2008-10-01
The need for information has increased exponentially over the past decades. The current systems for constructing, exploring, classifying, organizing, and searching information face the growing challenge of enabling their users to operate efficiently and intuitively in knowledge-heavy environments. This paper presents SpicyNodes, an advanced user interface for difficult interaction contexts. It is based on an underlying structure known as a radial map, which allows users to manipulate and interact in a natural manner with entities called nodes. This technology overcomes certain limitations of existing solutions and solves the problem of browsing complex sets of linked information. SpicyNodes is also an organic system that projects users into a living space, stimulating exploratory behavior and fostering creative thought. Our interactive radial layout is used for educational purposes and has the potential for numerous other applications.
Stability of a radial immiscible drive
Bataille, J
1968-11-01
The stability of the displacement front between 2 immiscible fluids of radial flow between 2 parallel plates (Hele-Shaw model) is studied mathematically by superposing onto the circular displacement front a sinusoidal perturbation. The equations are reduced to dimensionless variables, and it is shown that the stable and unstable domains in a plot: dimensionless viscosity vs. dimensionless time are separated by a polygonal contour, each side of the contour being characterized by the (integer) number of perturbations along the circumference. There is a critical reduced time below which the perturbations are amortized but beyond which they are amplified. Experimental results have been in fair general agreement with theoretical results, the divergence between them being attributable to neglecting capillary phenomena, which may become very important at large radial distances. One test with miscible fluids has shown that even in this case, there is a critical time or an equivalent critical radius.
Radial oxygen gradients over rat cortex arterioles
Galler, Michael
2011-01-01
Purpose: We present the results of the visualisation of radial oxygen gradients in rats’ cortices and their use in neurocritical management. Methods: PO2 maps of the cortex of 10 wistar rats were obtained with a camera (SensiMOD, PCO, Kehlheim, Germany). Those pictures were analyzed and edited by a custom-made software. We chose a vessel for examination. A matrix, designed to evaluate the cortical O2 partial pressure, was placed vertically to the artery and afterwards multiple regio...
Variational method for integrating radial gradient field
Legarda-Saenz, Ricardo; Brito-Loeza, Carlos; Rivera, Mariano; Espinosa-Romero, Arturo
2014-12-01
We propose a variational method for integrating information obtained from circular fringe pattern. The proposed method is a suitable choice for objects with radial symmetry. First, we analyze the information contained in the fringe pattern captured by the experimental setup and then move to formulate the problem of recovering the wavefront using techniques from calculus of variations. The performance of the method is demonstrated by numerical experiments with both synthetic and real data.
Moment approach to tandem mirror radial transport
Siebert, K.D.; Callen, J.D.
1986-02-01
A moment approach is proposed for the study of tandem mirror radial transport in the resonant plateau regime. The salient features of the method are described with reference to axisymmetric tokamak transport theory. In particular, the importance of momentum conservation to the establishment of the azimuthal variations in the electrostatic potential is demonstrated. Also, an ad hoc drift kinetic equation is solved to determine parallel viscosity coefficients which are required to close the moment system
Numerical simulation of radial compressor stage
Syka, T.; Luňáček, O.
2013-04-01
Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.
Numerical simulation of radial compressor stage
Luňáček O.; Syka T.
2013-01-01
Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.
Numerical simulation of radial compressor stage
Luňáček O.
2013-04-01
Full Text Available Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.
Radial excitations in nucleon-nucleon scattering
Silvestre-Brac, B.; Carbonell, J.; Gignoux, C.
1986-01-01
In the non-relativistic constituent quark model, the role of the radial excitations of the nucleon is studied within a resonating group approach of the nucleon-nucleon scattering. It is shown that, rather than the inclusion of new channels, it is important to include mixed-symmetry spin-isospin components in the nucleon wave function. It is also found that during the collision there is no significant deformation of the nucleon. (orig.)
Learning Methods for Radial Basis Functions Networks
Neruda, Roman; Kudová, Petra
2005-01-01
Roč. 21, - (2005), s. 1131-1142 ISSN 0167-739X R&D Projects: GA ČR GP201/03/P163; GA ČR GA201/02/0428 Institutional research plan: CEZ:AV0Z10300504 Keywords : radial basis function networks * hybrid supervised learning * genetic algorithms * benchmarking Subject RIV: BA - General Mathematics Impact factor: 0.555, year: 2005
Fast radial basis functions for engineering applications
Biancolini, Marco Evangelos
2017-01-01
This book presents the first “How To” guide to the use of radial basis functions (RBF). It provides a clear vision of their potential, an overview of ready-for-use computational tools and precise guidelines to implement new engineering applications of RBF. Radial basis functions (RBF) are a mathematical tool mature enough for useful engineering applications. Their mathematical foundation is well established and the tool has proven to be effective in many fields, as the mathematical framework can be adapted in several ways. A candidate application can be faced considering the features of RBF: multidimensional space (including 2D and 3D), numerous radial functions available, global and compact support, interpolation/regression. This great flexibility makes RBF attractive – and their great potential has only been partially discovered. This is because of the difficulty in taking a first step toward RBF as they are not commonly part of engineers’ cultural background, but also due to the numerical complex...
Fuel radial design using Path Relinking
Campos S, Y.
2007-01-01
The present work shows the obtained results when implementing the combinatory optimization technique well-known as Path Re linking (Re-linkage of Trajectories), to the problem of the radial design of nuclear fuel assemblies, for boiling water reactors (BWR Boiling Water Reactor by its initials in English), this type of reactors is those that are used in the Laguna Verde Nucleo electric Central, Veracruz. As in any other electric power generation plant of that make use of some fuel to produce heat and that it needs each certain time (from 12 to 14 months) to make a supply of the same one, because this it wears away or it burns, in the nucleolectric plants to this activity is denominated fuel reload. In this reload different activities intervene, among those which its highlight the radial and axial designs of fuel assemblies, the patterns of control rods and the multi cycles study, each one of these stages with their own complexity. This work was limited to study in independent form the radial design, without considering the other activities. These phases are basic for the fuel reload design and of reactor operation strategies. (Author)
Development of a Radial Deconsolidation Method
Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Fred C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-12-01
A series of experiments have been initiated to determine the retention or mobility of fission products* in AGR fuel compacts [Petti, et al. 2010]. This information is needed to refine fission product transport models. The AGR-3/4 irradiation test involved half-inch-long compacts that each contained twenty designed-to-fail (DTF) particles, with 20-μm thick carbon-coated kernels whose coatings were deliberately fabricated such that they would crack under irradiation, providing a known source of post-irradiation isotopes. The DTF particles in these compacts were axially distributed along the compact centerline so that the diffusion of fission products released from the DTF kernels would be radially symmetric [Hunn, et al. 2012; Hunn et al. 2011; Kercher, et al. 2011; Hunn, et al. 2007]. Compacts containing DTF particles were irradiated at Idaho National Laboratory (INL) at the Advanced Test Reactor (ATR) [Collin, 2015]. Analysis of the diffusion of these various post-irradiation isotopes through the compact requires a method to radially deconsolidate the compacts so that nested-annular volumes may be analyzed for post-irradiation isotope inventory in the compact matrix, TRISO outer pyrolytic carbon (OPyC), and DTF kernels. An effective radial deconsolidation method and apparatus appropriate to this application has been developed and parametrically characterized.
Perineural spread in head and neck tumors.
Brea Álvarez, B; Tuñón Gómez, M
2014-01-01
Perineural spread is the dissemination of some types of head and neck tumors along nervous structures. Perineural spread has negative repercussions on treatment because it requires more extensive resection and larger fields of irradiation. Moreover, perineural spread is associated with increased local recurrence, and it is considered an independent indicator of poor prognosis in the TNM classification for tumor staging. However, perineural spread often goes undetected on imaging studies. In this update, we review the concept of perineural spread, its pathogenesis, and the main pathways and connections among the facial nerves, which are essential to understand this process. Furthermore, we discuss the appropriate techniques for imaging studies, and we describe and illustrate the typical imaging signs that help identify perineural spread on CT and MRI. Finally, we discuss the differential diagnosis with other entities. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.
Experimental investigation of the stability of a moving radial liquid sheet
Paramati, Manjula; Tirumkudulu, Mahesh
2013-11-01
Experiments were conducted to understand the stability of moving radial liquid sheets formed by the head-on impingement of two co-linear water jets using laser induced fluorescence technique (LIF). Acoustic sinusoidal fluctuations were introduced at the jet impingement point and we measured the displacement of the center line of the liquid sheet (sinuous mode) and the thickness variation (varicose mode) of the disturbed liquid sheet. Our experiments show that the sinuous disturbances grow as they are convected outward in the radial direction even in the smooth regime (We theory by Tirumkudulu and Paramati (Communicated to Phys. Of Fluids, 2013) which accounts for the inertia of the liquid phase and the surface tension force in a radial liquid sheet while neglecting the inertial effects due to the surrounding gas phase. The authors acknowledge the financial assistance from Indo-French Center for Pro- motion of Advanced Research and also Indian institute of technology Bombay.
Radial restricted solid-on-solid and etching interface-growth models
Alves, Sidiney G.
2018-03-01
An approach to generate radial interfaces is presented. A radial network recursively obtained is used to implement discrete model rules designed originally for the investigation in flat substrates. I used the restricted solid-on-solid and etching models as to test the proposed scheme. The results indicate the Kardar, Parisi, and Zhang conjecture is completely verified leading to a good agreement between the interface radius fluctuation distribution and the Gaussian unitary ensemble. The evolution of the radius agrees well with the generalized conjecture, and the two-point correlation function exhibits also a good agreement with the covariance of the Airy2 process. The approach can be used to investigate radial interfaces evolution for many other classes of universality.
Formula for radial profiles of temperature in steam-liquid sodium reactive jets
Hobbes, P.; Mora-Perez, J.L.; Carreau, J.L.; Gbahoue, L.; Roger, F.
1987-01-01
One of the important problems of the study of distribution of temperatures in the reactive steam-liquid sodium jet rests in the mathematical formulation of their radial effects. During the experiment, two forms have been brought to light: from a certain distance of the injector, the radial distribution of temperature can be represented, in a classical way, by an error function curve; close to the injector, the radial profile allows for a minimum located on the axis of the jet. An energy balance permits, by dividing the jet in three parts: a central nucleus composed of practically pure gas, a gas ring plus drops and a liquid peripheral area plus bubbles, to obtain a mathematical formulation of the profiles, close to the injection which accounts quite well for the experimental points and their form
Particle confinement by a radially polarized laser Bessel beam
Laredo, Gilad; Kimura, Wayne D.; Schächter, Levi
2017-03-01
The stable trajectory of a charged particle in an external guiding field is an essential condition for its acceleration or for forcing it to generate radiation. Examples of possible guiding devices include a solenoidal magnetic field or permanent periodic magnet in klystrons, a wiggler in free-electron lasers, the lattice of any accelerator, and finally the crystal lattice for the case of channeling radiation. We demonstrate that the trajectory of a point-charge in a radially polarized laser Bessel beam may be stable similarly to the case of a positron that bounces back and forth in the potential well generated by two adjacent atomic planes. While in the case of channeling radiation, the transverse motion is controlled by a harmonic oscillator equation, for a Bessel beam the transverse motion is controlled by the Mathieu equation. Some characteristics of the motion are presented.
Potential measurement and radial transport in GAMMA 10 tandem mirror
Ishii, K.; Katanuma, I.; Segawa, T.; Ohkawara, H.; Mase, A.; Miyoshi, S.
1989-01-01
GAMMA 10 is an effectively axisymmetric tandem mirror with thermal barriers. Potential information is important to investigate the plasma confinement. The barrier and central space potentials are determined by means of two gold neutral beam probes. Two-dimensional potential profiles have been measured in the barrier cell. In GAMMA 10, to assure magneto-hydrodynamic (MHD) stability, the nonaxisymmetric minimum-B mirror cells are contained between the central-solenoid and the plug/barrier cells at the ends of the machine. From the point of view of neoclassical resonant-plateau transport in circular equipotential contours, this effective axisymmetrization is successful. The measured potential profiles are slightly elongated during the onset of ω ce ECRH. In this paper we report the beam probe potential measurement, the neoclassical ion radial transport in the noncircular equipotential surface and the thermal barrier potential. (author) 6 refs., 5 figs
Non-linear radial spinwave modes in thin magnetic disks
Helsen, M.; De Clercq, J.; Vansteenkiste, A.; Van Waeyenberge, B.; Gangwar, A.; Back, C. H.; Weigand, M.
2015-01-01
We present an experimental investigation of radial spin-wave modes in magnetic nano-disks with a vortex ground state. The spin-wave amplitude was measured using a frequency-resolved magneto-optical spectrum analyzer, allowing for high-resolution resonance curves to be recorded. It was found that with increasing excitation amplitude up to about 10 mT, the lowest-order mode behaves strongly non-linearly as the mode frequency redshifts and the resonance peak strongly deforms. This behavior was quantitatively reproduced by micromagnetic simulations. Micromagnetic simulations showed that at higher excitation amplitudes, the spinwaves are transformed into a soliton by self-focusing, and collapse onto the vortex core, dispersing the energy in short-wavelength spinwaves. Additionally, this process can lead to switching of the vortex polarization through the injection of a Bloch point
MIMO Based Eigen-Space Spreading
Eltawil, Ahmed
2004-01-01
.... Combination of this powerful technique with orthogonal frequency division multiplexing (OFDM) based modulation and traditional time and frequency spreading techniques results in a highly secure mode of communications...
COMBINED SURGERY OF SPREAD THYROID CANCER
V. Zh. Brzhezovsky
2014-01-01
Full Text Available Results of treating of 99 patients with differentiated thyroid cancer spreading beyond the capsule of the organ were analysed. In most cases with spreading the tumor to the tracheal rings performing of organ-preserving operations (from “window-like” tracheal resections to circular tracheal resection with intertracheal anastomosis is possible. Choosing of type of operation to be performed depends on localisation and spread of tumor invasion of trachea, pharynx and esophagus. Using of combined operations in patients with locally-spread thyroid cancer allows to achieve long and stable remission in most of the cases.
Energy Spread Sources in TESLA and TTF
Mosnier, A.; Tessier, J.M.
1995-03-01
The beam energy spread in the TESLA linac must be small enough to limit the emittance dilution due to the dispersive effects. This report summarizes the major sources of energy spread both for the TESLA linac and the TTF linac, where these estimations will be carefully checked with beam experiments. The first part recalls the intra-bunch energy spread while the second part looks into the bunch-to-bunch energy spread induced by rf field fluctuations within the bunch train and from pulse-to-pulse. (author). 3 refs., 4 figs
Linear theory radial and nonradial pulsations of DA dwarf stars
Starrfield, S.; Cox, A.N.; Hodson, S.; Pesnell, W.D.
1982-01-01
The Los Alamos stellar envelope and radial linear non-adiabatic computer code, along with a new Los Alamos non-radial code are used to investigate the total hydrogen mass necessary to produce the non-radial instability of DA dwarfs
Radial distribution of ions in pores with a surface charge
Stegen, J.H.G. van der; Görtzen, J.; Kuipers, J.A.M.; Hogendoorn, J.A.; Versteeg, G.F.
2001-01-01
A sorption model applicable to calculate the radial equilibrium concentrations of ions in the pores of ion-selective membranes with a pore structure is developed. The model is called the radial uptake model. Because the model is applied to a Nafion sulfonic layer with very small pores and the radial
Blanco Muñoz, Miguel A.
2004-03-01
Full Text Available Chemical hydrogenation of unsaturated fatty acids is a commonly applied reaction to food industries. The process may imply the movement of double bonds in their positions on the fatty acid carbon chain, producing positional and geometrical isomers ( trans fatty acids. Through hydrogenation, unsaturated oils are converted to margarines and vegetable shortenings. The presence of trans fatty acids in foods is undesirable, as trans fatty acids raise the plasma levels of total and low-density lipoproteins (LDL, while decrease the plasma level of high-density lipoproteins (HDL, among other effects. The use of olive oil to prepare fat spread opens new insights into the commercial development of healthy novel foods with a positive image in terms of consumer appeal.La hidrogenación química de los ácidos grasos insaturados es una reacción que se utiliza con frecuencia en la industria alimentaria. El proceso implica el movimiento de los dobles enlaces en la cadena hidrocarbonada de los ácidos grasos, y la aparición de isómeros posicionales y geométricos (ácidos grasos trans . La ingesta inadecuada de alimentos que pueden contener cantidades significativas de ácidos grasos trans se asocia con el aumento en sangre de colesterol total y LDL, y la disminución de HDL, entre otros efectos. Por lo tanto, el uso de aceite de oliva en la preparación de grasas para untar constituye un importante avance en el desarrollo comercial de nuevos alimentos saludables con una imagen positiva para el consumidor.
Anomalous diffusion spreads its wings
Klafter, J. [School of Chemistry, Tel Aviv University, Tel-Aviv (Israel)]. E-mail: klafter@post.tau.ac.il; Sokolov, I.M. [Institute of Physics, Humboldt University, Berlin (Germany)]. E-mail: igor.sokolov@physik.hu-berlin.de
2005-08-01
An increasing number of natural phenomena do not fit into the relatively simple description of diffusion developed by Einstein a century ago. As all of us are no doubt aware, this year has been declared 'world year of physics' to celebrate the three remarkable breakthroughs made by Albert Einstein in 1905. However, it is not so well known that Einstein's work on Brownian motion - the random motion of tiny particles first observed and investigated by the botanist Robert Brown in 1827 - has been cited more times in the scientific literature than his more famous papers on special relativity and the quantum nature of light. In a series of publications that included his doctoral thesis, Einstein derived an equation for Brownian motion from microscopic principles - a feat that ultimately enabled Jean Perrin and others to prove the existence of atoms (see 'Einstein's random walk' Physics World January pp19-22). Einstein was not the only person thinking about this type of problem. The 27 July 1905 issue of Nature contained a letter with the title 'The problem of the random walk' by the British statistician Karl Pearson, who was interested in the way that mosquitoes spread malaria, which he showed was described by the well-known diffusion equation. As such, the displacement of a mosquito from its initial position is proportional to the square root of time, and the distribution of the positions of many such 'random walkers' starting from the same origin is Gaussian in form. The random walk has since turned out to be intimately linked to Einstein's work on Brownian motion, and has become a major tool for understanding diffusive processes in nature. (U.K.)
Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings
Shrestha, Suman K.
Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was
Ion confinement and transport in a toroidal plasma with externally imposed radial electric fields
Roth, J. R.; Krawczonek, W. M.; Powers, E. J.; Kim, Y. C.; Hong, H. Y.
1979-01-01
Strong electric fields were imposed along the minor radius of the toroidal plasma by biasing it with electrodes maintained at kilovolt potentials. Coherent, low-frequency disturbances characteristic of various magnetohydrodynamic instabilities were absent in the high-density, well-confined regime. High, direct-current radial electric fields with magnitudes up to 135 volts per centimeter penetrated inward to at least one-half the plasma radius. When the electric field pointed radially toward, the ion transport was inward against a strong local density gradient; and the plasma density and confinement time were significantly enhanced. The radial transport along the electric field appeared to be consistent with fluctuation-induced transport. With negative electrode polarity the particle confinement was consistent with a balance of two processes: a radial infusion of ions, in those sectors of the plasma not containing electrodes, that resulted from the radially inward fields; and ion losses to the electrodes, each of the which acted as a sink and drew ions out of the plasma. A simple model of particle confinement was proposed in which the particle confinement time is proportional to the plasma volume. The scaling predicted by this model was consistent with experimental measurements.
Bahadormanesh, Nikrouz; Rahat, Shayan; Yarali, Milad
2017-01-01
Highlights: • A multi-objective optimization for radial expander in Organic Rankine Cycles is implemented. • By using firefly algorithm, Pareto front based on the size of turbine and thermal efficiency is produced. • Tension and vibration constrains have a significant effect on optimum design points. - Abstract: Organic Rankine Cycles are viable energy conversion systems in sustainable energy systems due to their compatibility with low-temperature heat sources. In the present study, one dimensional model of radial expanders in conjunction with a thermodynamic model of organic Rankine cycles is prepared. After verification, by defining thermal efficiency of the cycle and size parameter of a radial turbine as the objective functions, a multi-objective optimization was conducted regarding tension and vibration constraints for 4 different organic working fluids (R22, R245fa, R236fa and N-Pentane). In addition to mass flow rate, evaporator temperature, maximum pressure of cycle and turbo-machinery design parameters are selected as the decision variables. Regarding Pareto fronts, by a little increase in size of radial expanders, it is feasible to reach high efficiency. Moreover, by assessing the distribution of decision variables, the variables that play a major role in trending between the objective functions are found. Effects of mechanical and vibration constrains on optimum decision variables are investigated. The results of optimization can be considered as an initial values for design of radial turbines for Organic Rankine Cycles.
Radial velocity curves of ellipsoidal red giant binaries in the Large Magellanic Cloud
Nie, J. D.; Wood, P. R.
2014-01-01
Ellipsoidal red giant binaries are close binary systems where an unseen, relatively close companion distorts the red giant, leading to light variations as the red giant moves around its orbit. These binaries are likely to be the immediate evolutionary precursors of close binary planetary nebula and post-asymptotic giant branch and post-red giant branch stars. Due to the MACHO and OGLE photometric monitoring projects, the light variability nature of these ellipsoidal variables has been well studied. However, due to the lack of radial velocity curves, the nature of their masses, separations, and other orbital details has so far remained largely unknown. In order to improve this situation, we have carried out spectral monitoring observations of a large sample of 80 ellipsoidal variables in the Large Magellanic Cloud and we have derived radial velocity curves. At least 12 radial velocity points with good quality were obtained for most of the ellipsoidal variables. The radial velocity data are provided with this paper. Combining the photometric and radial velocity data, we present some statistical results related to the binary properties of these ellipsoidal variables.
Turbulence in tokamak plasmas. Effect of a radial electric field shear
Payan, J.
1994-05-01
After a review of turbulence and transport phenomena in tokamak plasmas and the radial electric field shear effect in various tokamaks, experimental measurements obtained at Tore Supra by the means of the ALTAIR plasma diagnostic technique, are presented. Electronic drift waves destabilization mechanisms, which are the main features that could describe the experimentally observed microturbulence, are then examined. The effect of a radial electric field shear on electronic drift waves is then introduced, and results with ohmic heating are studied together with relations between turbulence and transport. The possible existence of ionic waves is rejected, and a spectral frequency modelization is presented, based on the existence of an electric field sheared radial profile. The position of the inversion point of this field is calculated for different values of the mean density and the plasma current, and the modelization is applied to the TEXT tokamak. The radial electric field at Tore Supra is then estimated. The effect of the ergodic divertor on turbulence and abnormal transport is then described and the density fluctuation radial profile in presence of the ergodic divertor is modelled. 80 figs., 120 refs
Term structure of sovereign spreads: a contingent claim model
Katia Rocha
2007-12-01
Full Text Available This paper proposes a simple structural model to estimate the termstructure and the implied default probability of a selected group of emerging countries, which account for 54% of the JPMorgan EMBIG index on average for the period 2000-2005. The real exchange rate dynamic, modeled as a pure diffusion process, is assumed to trigger default. The calibrated model generates sovereign spread curves consistent to market data. The results suggest that the market is systematically overpricing spreads for Brazil in 100 basis points, whereas for Mexico, Russia and Turkey the model is able to reproduce the market behavior.Este trabalho propõe um modelo estrutural para estimar a estrutura a termo e a probabilidade implícita de default de países emergentes que representam, em média, 54% do índice EMBIG do JPMorgan no período de 2000-2005. A taxa de câmbio real, modelada como um processo de difusão simples, é considerada como indicativa de default. O modelo calibrado gera a estrutura a termo dos spreads consistente com dados de mercado, indicando que o mercado sistematicamente sobre-estima os spreads para o Brasil em 100 pontos base na média, enquanto para México, Rússia e Turquia reproduz o comportamento do mercado.
Sensory evaluation of commercial fat spreads based on oilseeds and walnut
Dimić Etelka B.
2013-01-01
Full Text Available The main focus of this study was on the sensory evaluation of commercial oilseeds spreads, as the most significant characteristic of this type of product from the consumers’ point of view. Sensory analysis was conducted by five experts using a quantitative descriptive and sensory profile test, applying a scoring method according to the standard procedure. Five different spreads were evaluated: sunflower, pumpkin, sesame, peanut, and walnut. Oil content and amounts of separated oil on the surface were determined for each spread. The results have shown that the color of spreads was very different, depending on the oilseed: gray for sunflower, brown for walnut, yellowish-brown for peanut butter, ivory for sesame and profoundly dark green for pumpkin seeds spread. The flavor and odor of the spreads were characteristic for the raw materials used; however, the sunflower and walnut spreads had a slight rancid flavor. Generally, the spreadability of all spreads was good, but their mouth feel was not acceptable. During the consumption, all of them were sticking immensely to the roof of the mouth, which made the swallowing harder. The highest total score of 16.20 points (max. 20 was obtained for the peanut butter, while the lowest (10.38 was achieved by the sunflower butter. Oil separation (various degrees was noticed in all spreads, which negatively influenced the appearance and entire sensorial quality of the products. The quantity of separated oil depended on the age and total amount of oil in the spreads, and was between 1.13% in the peanut butter and 12.15% in the walnut spread in reference to the net weight of the product. [Projekat Ministarstva nauke Republike Srbije, br. TR 31014: Development of the new functional confectionery products based on oil crops
Methods and apparatus for radially compliant component mounting
Bulman, David Edward [Cincinnati, OH; Darkins, Jr., Toby George; Stumpf, James Anthony [Columbus, IN; Schroder, Mark S [Greenville, SC; Lipinski, John Joseph [Simpsonville, SC
2012-03-27
Methods and apparatus for a mounting assembly for a liner of a gas turbine engine combustor are provided. The combustor includes a combustor liner and a radially outer annular flow sleeve. The mounting assembly includes an inner ring surrounding a radially outer surface of the liner and including a plurality of axially extending fingers. The mounting assembly also includes a radially outer ring coupled to the inner ring through a plurality of spacers that extend radially from a radially outer surface of the inner ring to the outer ring.
On entanglement spreading from holography
Mezei, Márk [Princeton Center for Theoretical Science, Princeton University,Princeton, NJ 08544 (United States)
2017-05-11
A global quench is an interesting setting where we can study thermalization of subsystems in a pure state. We investigate entanglement entropy (EE) growth in global quenches in holographic field theories and relate some of its aspects to quantities characterizing chaos. More specifically we obtain four key results: We prove holographic bounds on the entanglement velocity v{sub E} and the butterfly effect speed v{sub B} that arises in the study of chaos. We obtain the EE as a function of time for large spherical entangling surfaces analytically. We show that the EE is insensitive to the details of the initial state or quenchÂ protocol. In a thermofield double state we determine analytically the two-sided mutual information between two large concentric spheres separated in time. We derive a bound on the rate of growth of EE for arbitrary shapes, and develop an expansion for EE at early times. In a companion paper https://arxiv.org/abs/1608.05101, these results are put in the broader context of EE growth in chaotic systems: we relate EE growth to the chaotic spreading of operators, derive bounds on EE at a given time, and compare the holographic results to spin chain numerics and toy models. In this paper, we perform holographic calculations that provide the basis of arguments presented in that paper. We prove holographic bounds on the entanglement velocity v{sub E} and the butterfly effect speed v{sub B} that arises in the study of chaos. We obtain the EE as a function of time for large spherical entangling surfaces analytically. We show that the EE is insensitive to the details of the initial state or quenchÂ protocol. In a thermofield double state we determine analytically the two-sided mutual information between two large concentric spheres separated in time. We derive a bound on the rate of growth of EE for arbitrary shapes, and develop an expansion for EE at early times.
Spreading to localized targets in complex networks
Sun, Ye; Ma, Long; Zeng, An; Wang, Wen-Xu
2016-12-01
As an important type of dynamics on complex networks, spreading is widely used to model many real processes such as the epidemic contagion and information propagation. One of the most significant research questions in spreading is to rank the spreading ability of nodes in the network. To this end, substantial effort has been made and a variety of effective methods have been proposed. These methods usually define the spreading ability of a node as the number of finally infected nodes given that the spreading is initialized from the node. However, in many real cases such as advertising and news propagation, the spreading only aims to cover a specific group of nodes. Therefore, it is necessary to study the spreading ability of nodes towards localized targets in complex networks. In this paper, we propose a reversed local path algorithm for this problem. Simulation results show that our method outperforms the existing methods in identifying the influential nodes with respect to these localized targets. Moreover, the influential spreaders identified by our method can effectively avoid infecting the non-target nodes in the spreading process.
Epidemic spreading through direct and indirect interactions.
Ganguly, Niloy; Krueger, Tyll; Mukherjee, Animesh; Saha, Sudipta
2014-09-01
In this paper we study the susceptible-infected-susceptible epidemic dynamics, considering a specialized setting where popular places (termed passive entities) are visited by agents (termed active entities). We consider two types of spreading dynamics: direct spreading, where the active entities infect each other while visiting the passive entities, and indirect spreading, where the passive entities act as carriers and the infection is spread via them. We investigate in particular the effect of selection strategy, i.e., the way passive entities are chosen, in the spread of epidemics. We introduce a mathematical framework to study the effect of an arbitrary selection strategy and derive formulas for prevalence, extinction probabilities, and epidemic thresholds for both indirect and direct spreading. We also obtain a very simple relationship between the extinction probability and the prevalence. We pay special attention to preferential selection and derive exact formulas. The analysis reveals that an increase in the diversity in the selection process lowers the epidemic thresholds. Comparing the direct and indirect spreading, we identify regions in the parameter space where the prevalence of the indirect spreading is higher than the direct one.
Age, spreading rates, and spreading asymmetry of the world's ocean crust
National Oceanic and Atmospheric Administration, Department of Commerce — The authors present four companion digital models of the age, age uncertainty, spreading rates and spreading asymmetries of the world's ocean basins as geographic...
RADIALLY MAGNETIZED PROTOPLANETARY DISK: VERTICAL PROFILE
Russo, Matthew; Thompson, Christopher
2015-01-01
This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field B r ∼ (10 −4 –10 −2 )(r/ AU) −2 G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ∼1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10 −8 M ⊙ yr −1 are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper
RADIALLY MAGNETIZED PROTOPLANETARY DISK: VERTICAL PROFILE
Russo, Matthew [Department of Physics, University of Toronto, 60 St. George St., Toronto, ON M5S 1A7 (Canada); Thompson, Christopher [Canadian Institute for Theoretical Astrophysics, 60 St. George St., Toronto, ON M5S 3H8 (Canada)
2015-11-10
This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field B{sub r} ∼ (10{sup −4}–10{sup −2})(r/ AU){sup −2} G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ∼1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10{sup −8} M{sub ⊙} yr{sup −1} are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.
Radial fractional Laplace operators and Hessian inequalities
Ferrari, Fausto; Verbitsky, Igor E.
In this paper we deduce a formula for the fractional Laplace operator ( on radially symmetric functions useful for some applications. We give a criterion of subharmonicity associated with (, and apply it to a problem related to the Hessian inequality of Sobolev type: ∫Rn |(u| dx⩽C∫Rn -uFk[u] dx, where Fk is the k-Hessian operator on Rn, 1⩽kFerrari et al. [5] contains the extremal functions for the Hessian Sobolev inequality of X.-J. Wang (1994) [15]. This is proved using logarithmic convexity of the Gaussian ratio of hypergeometric functions which might be of independent interest.
Convex and Radially Concave Contoured Distributions
Wolf-Dieter Richter
2015-01-01
Full Text Available Integral representations of the locally defined star-generalized surface content measures on star spheres are derived for boundary spheres of balls being convex or radially concave with respect to a fan in Rn. As a result, the general geometric measure representation of star-shaped probability distributions and the general stochastic representation of the corresponding random vectors allow additional specific interpretations in the two mentioned cases. Applications to estimating and testing hypotheses on scaling parameters are presented, and two-dimensional sample clouds are simulated.
On radial flow between parallel disks
Wee, A Y L; Gorin, A
2015-01-01
Approximate analytical solutions are presented for converging flow in between two parallel non rotating disks. The static pressure distribution and radial component of the velocity are developed by averaging the inertial term across the gap in between parallel disks. The predicted results from the first approximation are favourable to experimental results as well as results presented by other authors. The second approximation shows that as the fluid approaches the center, the velocity at the mid channel slows down which is due to the struggle between the inertial term and the flowrate. (paper)
Spread F in the Midlatitude Ionosphere According to DPS-4 Ionosonde Data
Panchenko, V. A.; Telegin, V. A.; Vorob'ev, V. G.; Zhbankov, G. A.; Yagodkina, O. I.; Rozhdestvenskaya, V. I.
2018-03-01
The results of studying spread F obtained from the DPS-4 ionosonde data at the observatory of the Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation (Moscow) are presented. The methodical questions that arise during the study of a spread F phenomenon in the ionosphere are considered; the current results of terrestrial observations are compared with previously published data and the results of sounding onboard an Earth-satellite vehicle. The automated algorithm for estimation of the intensity of frequency spread F, which was developed by the authors and was successfully verified via comparison of the data of the digisonde DPS-4 and the results of manual processing, is described. The algorithm makes it possible to quantify the intensity of spread F in megahertz (the dFs parameter) and in the number of points (0, 1, 2, 3). The strongest spread (3 points) is shown to be most likely around midnight, while the weakest spread (0 points) is highly likely to occur during the daytime. The diurnal distribution of a 1-2 point spread F in the winter indicates the presence of additional maxima at 0300-0600 UT and 1400-1700 UT, which may appear due to the terminator. Despite the large volume of processed data, we can not definitively state that the appearance of spread F depends on the magnetic activity indices Kp, Dst, and AL, although the values of the dFs frequency spread interval strongly increased both at day and night during the magnetic storm of March 17-22, 2015, especially in the phase of storm recovery on March 20-22.
Spread and Liquidity Issues: A markets comparison
Strašek Sebastjan
2016-03-01
Full Text Available The financial crises are closely connected with spread changes and liquidity issues. After defining and addressing spread considerations, we research in this paper the topic of liquidity issues in times of economic crisis. We analyse the liquidity effects as recorded on spreads of securities from different markets. We stipulate that higher international risk aversion in times of financial crises coincides with widening security spreads. The paper then introduces liquidity as a risk factor into the standard value-at-risk framework, using GARCH methodology. The comparison of results of these models suggests that the size of the tested markets does not have a strong effect on the models. Thus, we find that spread analysis is an appropriate tool for analysing liquidity issues during a financial crisis.
Intraluminal milrinone for dilation of the radial artery graft.
García-Rinaldi, R; Soltero, E R; Carballido, J; Mojica, J
1999-01-01
There is renewed interest in the use of the radial artery as a conduit for coronary artery bypass surgery. The radial artery is, however, a very muscular artery, prone to vasospasm. Milrinone, a potent vasodilator, has demonstrated vasodilatory properties superior to those of papaverine. In this report, we describe our technique of radial artery harvesting and the adjunctive use of intraluminal milrinone as a vasodilator in the preparation of this conduit for coronary artery bypass grafting. We have used these techniques in 25 patients who have undergone coronary artery bypass grafting using the radial artery. No hand ischemic complications have been observed in this group. Intraluminal milrinone appears to dilate and relax the radial artery, rendering this large conduit spasm free and very easy to use. We recommend the skeletonization technique for radial artery harvesting and the use of intraluminal milrinone as a radial artery vasodilator in routine myocardial revascularization. PMID:10524740
Warning signals for eruptive events in spreading fires.
Fox, Jerome M; Whitesides, George M
2015-02-24
Spreading fires are noisy (and potentially chaotic) systems in which transitions in dynamics are notoriously difficult to predict. As flames move through spatially heterogeneous environments, sudden shifts in temperature, wind, or topography can generate combustion instabilities, or trigger self-stabilizing feedback loops, that dramatically amplify the intensities and rates with which fires propagate. Such transitions are rarely captured by predictive models of fire behavior and, thus, complicate efforts in fire suppression. This paper describes a simple, remarkably instructive physical model for examining the eruption of small flames into intense, rapidly moving flames stabilized by feedback between wind and fire (i.e., "wind-fire coupling"-a mechanism of feedback particularly relevant to forest fires), and it presents evidence that characteristic patterns in the dynamics of spreading flames indicate when such transitions are likely to occur. In this model system, flames propagate along strips of nitrocellulose with one of two possible modes of propagation: a slow, structured mode, and a fast, unstructured mode sustained by wind-fire coupling. Experimental examination of patterns in dynamics that emerge near bifurcation points suggests that symptoms of critical slowing down (i.e., the slowed recovery of the system from perturbations as it approaches tipping points) warn of impending transitions to the unstructured mode. Findings suggest that slowing responses of spreading flames to sudden changes in environment (e.g., wind, terrain, temperature) may anticipate the onset of intense, feedback-stabilized modes of propagation (e.g., "blowup fires" in forests).
Spherical radial basis functions, theory and applications
Hubbert, Simon; Morton, Tanya M
2015-01-01
This book is the first to be devoted to the theory and applications of spherical (radial) basis functions (SBFs), which is rapidly emerging as one of the most promising techniques for solving problems where approximations are needed on the surface of a sphere. The aim of the book is to provide enough theoretical and practical details for the reader to be able to implement the SBF methods to solve real world problems. The authors stress the close connection between the theory of SBFs and that of the more well-known family of radial basis functions (RBFs), which are well-established tools for solving approximation theory problems on more general domains. The unique solvability of the SBF interpolation method for data fitting problems is established and an in-depth investigation of its accuracy is provided. Two chapters are devoted to partial differential equations (PDEs). One deals with the practical implementation of an SBF-based solution to an elliptic PDE and another which describes an SBF approach for solvi...
Xie, Cai-Xia; Zhang, Miao; Li, Ya-Jing; Geng, Xiao-Tong; Wang, Feng-Qing; Zhang, Zhong-Yi
2017-11-01
An HPLC method was established to determine the contents of catalpol, acteoside, rehmaionoside A, rehmaionoside D, leonuride in three part of Rehmanni glutinosa in Beijing No.1 variety R. glutinosa during the growth period, This method, in combination with its HPLC fingerprint was used to evaluate its overall quality characteristics.The results showed that：① the content of main components of R. glutinosa varied in different growth stages ;② there was a great difference of the content of main components between theradial striations and the non-radial striations; ③ the two sections almost have the same content distribution of catalpol, acteoside and rehmaionoside D; ④the content of rehmaionoside A in non-radial striations was higher than that in radial striations,while the content of leonuride in radial striations was higher than that in non-radial striations.; ⑤the HPLC fingerprint of radial striations, non-radial striations and whole root tuber were basically identical, except for the big difference in the content of chemical components. The result of clustering displayed that the radial striations, non-radial striations, and whole root were divided into two groups. In conclusion, there was a significant difference in the quality characteristics of radial striations and non-radial striations of R. glutinosa. This research provides a reference for quality evaluation and geoherbalism of R. glutinosa. Copyright© by the Chinese Pharmaceutical Association.
Spreading of correlations in the Falicov-Kimball model
Herrmann, Andreas J.; Antipov, Andrey E.; Werner, Philipp
2018-04-01
We study dynamical properties of the one- and two-dimensional Falicov-Kimball model using lattice Monte Carlo simulations. In particular, we calculate the spreading of charge correlations in the equilibrium model and after an interaction quench. The results show a reduction of the light-cone velocity with interaction strength at low temperature, while the phase velocity increases. At higher temperature, the initial spreading is determined by the Fermi velocity of the noninteracting system and the maximum range of the correlations decreases with increasing interaction strength. Charge order correlations in the disorder potential enhance the range of the correlations. We also use the numerically exact lattice Monte Carlo results to benchmark the accuracy of equilibrium and nonequilibrium dynamical cluster approximation calculations. It is shown that the bias introduced by the mapping to a periodized cluster is substantial, and that from a numerical point of view, it is more efficient to simulate the lattice model directly.
Mathematical analysis of dynamic spread of Pine Wilt disease.
Dimitrijevic, D D; Bacic, J
2013-01-01
Since its detection in Portugal in 1999, the pinewood nematode Bursaphelenchus xylophilus (Steiner and Buhrer), a causal agent of Pine Wilt Disease, represents a threat to European forestry. Significant amount of money has been spent on its monitoring and eradication. This paper presents mathematical analysis of spread of pine wilt disease using a set of partial differential equations with space (longitude and latitude) and time as parameters of estimated spread of disease. This methodology can be used to evaluate risk of various assumed entry points of disease and make defense plans in advance. In case of an already existing outbreak, it can be used to draw optimal line of defense and plan removal of trees. Optimization constraints are economic loss of removal of susceptible trees as well as budgetary constraints of workforce cost.
Development of Pistachio (Pistacia vera L.) spread.
Shakerardekani, Ahmad; Karim, Roselina; Ghazali, Hasanah Mohd; Chin, Nyuk Ling
2013-03-01
Pistachio nut (Pistacia vera L.) is one of the most delicious and nutritious nuts in the world. Pistachio spreads were developed using pistachio paste as the main component, icing sugar, soy protein isolate (SPI), and red palm oil (RPO), at different ratios. The highest mean scores of all the sensory attributes were depicted by spreads that were made without addition of SPI. It was found that the work of shear was 0 to 11.0 kg s for an acceptable spread. Sensory spreadability, overall texture, spreadability, and overall acceptability were negatively correlated (R > 0.83) with the work of shear of spreads. The findings indicated that the presence of RPO had a direct effect on the viscoelastic behavior of the pistachio spreads. The a values, which are related to the green color of the pistachio product ranged from 1.7 to 3.9 for spread without addition of RPO, and 4.0 to 5.3 in the presence of RPO. The development of pistachio spread would potentially increase the food uses of pistachio and introduce consumers with a healthier snack food. © 2013 Institute of Food Technologists®
SEIR Model of Rumor Spreading in Online Social Network with Varying Total Population Size
Dong Suyalatu; Deng Yan-Bin; Huang Yong-Chang
2017-01-01
Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to describe the online social network with varying total number of users and user deactivation rate. We calculate the exact equilibrium points and reproduction number for this model. Furthermore, we perform the rumor spreading process in the online social network with increasing population size based on the original real world Facebook network. The simulation results indicate that the SEIR model of rumor spreading in online social network with changing total number of users can accurately reveal the inherent characteristics of rumor spreading process in online social network . (paper)
The effect of network topologies on the spreading of technological developments
Kocsis, Gergely; Kun, Ferenc
2008-01-01
We study an agent-based model, as a special type of opinion dynamics, of the spreading of innovations in socio-economic systems varying the topology of agents' social contacts. The agents are organized on a square lattice where the connections are rewired with a certain probability. We show that the degree polydispersity and long range connections of agents can facilitate, but can also hinder the spreading of new technologies, depending on the amount of advantages provided by the innovation. We determine the critical fraction of innovative agents required to initiate spreading and to obtain a significant technological progress. As the fraction of innovative agents approaches the critical value, the spreading process slows down analogously to the critical slowing down observed at continuous phase transitions. The characteristic timescale at the critical point proved to have the same scaling as the average shortest path of the underlying social network. The model captures some relevant features of the spreading of innovations in telecommunication technologies
SEIR Model of Rumor Spreading in Online Social Network with Varying Total Population Size
Dong, Suyalatu; Deng, Yan-Bin; Huang, Yong-Chang
2017-10-01
Based on the infectious disease model with disease latency, this paper proposes a new model for the rumor spreading process in online social network. In this paper what we establish an SEIR rumor spreading model to describe the online social network with varying total number of users and user deactivation rate. We calculate the exact equilibrium points and reproduction number for this model. Furthermore, we perform the rumor spreading process in the online social network with increasing population size based on the original real world Facebook network. The simulation results indicate that the SEIR model of rumor spreading in online social network with changing total number of users can accurately reveal the inherent characteristics of rumor spreading process in online social network. Supported by National Natural Science Foundation of China under Grant Nos. 11275017 and 11173028
Neuronal spike sorting based on radial basis function neural networks
Taghavi Kani M
2011-02-01
Full Text Available "nBackground: Studying the behavior of a society of neurons, extracting the communication mechanisms of brain with other tissues, finding treatment for some nervous system diseases and designing neuroprosthetic devices, require an algorithm to sort neuralspikes automatically. However, sorting neural spikes is a challenging task because of the low signal to noise ratio (SNR of the spikes. The main purpose of this study was to design an automatic algorithm for classifying neuronal spikes that are emitted from a specific region of the nervous system."n "nMethods: The spike sorting process usually consists of three stages: detection, feature extraction and sorting. We initially used signal statistics to detect neural spikes. Then, we chose a limited number of typical spikes as features and finally used them to train a radial basis function (RBF neural network to sort the spikes. In most spike sorting devices, these signals are not linearly discriminative. In order to solve this problem, the aforesaid RBF neural network was used."n "nResults: After the learning process, our proposed algorithm classified any arbitrary spike. The obtained results showed that even though the proposed Radial Basis Spike Sorter (RBSS reached to the same error as the previous methods, however, the computational costs were much lower compared to other algorithms. Moreover, the competitive points of the proposed algorithm were its good speed and low computational complexity."n "nConclusion: Regarding the results of this study, the proposed algorithm seems to serve the purpose of procedures that require real-time processing and spike sorting.
Confinement of ripple-trapped slowing-down ions by a radial electric field
Herrmann, W.
1998-03-01
Weakly collisional ions trapped in the toroidal field ripples at the outer plasma edge can be prevented to escape the plasma due to grad B-drift by a counteracting radial electric field. This leads to an increase in the density of ripple-trapped ions, which can be monitored by the analysis of charge exchange neutrals. The minimum radial electric field E r necessary to confine ions with energy E and charge q (q=-1: charge of the electron) is E r = -E/(q * R), where R is the major radius at the measuring point. Slowing-down ions from neutral injection are usually in the right energy range to be sufficiently collisionless in the plasma edge and show the confinement by radial electric fields in the range of tens of kV/m. The density of banana ions is almost unaffected by the radial electric field. Neither in L/H- nor in H/L-transitions does the density of ripple-trapped ions and, hence, the neutral particle fluxes, show jumps in times shorter than 1 ms. According to [1,2] the response time of the density and the fluxes to a sudden jump in the radial electric field is less than 200 μs, if the halfwidth of the electric field is larger or about 2 cm. This would exclude rapid jumps in the radial electric field at the transition. Whether the halfwidth of the electric field is that large during transition cannot be decided from the measurement of the fluxes alone. (orig.)
Radial displacement of clinical target volume in node negative head and neck cancer
Jeon, Wan; Wu, Hong Gyun; Song, Sang Hyuk; Kim, Jung In
2012-01-01
To evaluate the radial displacement of clinical target volume in the patients with node negative head and neck (H and N) cancer and to quantify the relative positional changes compared to that of normal healthy volunteers. Three node-negative H and N cancer patients and fi ve healthy volunteers were enrolled in this study. For setup accuracy, neck thermoplastic masks and laser alignment were used in each of the acquired computed tomography (CT) images. Both groups had total three sequential CT images in every two weeks. The lymph node (LN) level of the neck was delineated based on the Radiation Therapy Oncology Group (RTOG) consensus guideline by one physician. We use the second cervical vertebra body as a reference point to match each CT image set. Each of the sequential CT images and delineated neck LN levels were fused with the primary image, then maximal radial displacement was measured at 1.5 cm intervals from skull base (SB) to caudal margin of LN level V, and the volume differences at each node level were quantified. The mean radial displacements were 2.26 (±1.03) mm in the control group and 3.05 (±1.97) in the H and N cancer patients. There was a statistically significant difference between the groups in terms of the mean radial displacement (p = 0.03). In addition, the mean radial displacement increased with the distance from SB. As for the mean volume differences, there was no statistical significance between the two groups. This study suggests that a more generous radial margin should be applied to the lower part of the neck LN for better clinical target coverage and dose delivery.
Credit Spreads Across the Business Cycle
Nielsen, Mads Stenbo
This paper studies how corporate bond spreads vary with the business cycle. I show that both level and slope of empirical credit spread curves are correlated with the state of the economy, and I link this to variation in idiosyncratic jump risk. I develop a structural credit risk model...... that accounts for both business cycle and jump risk, and show by estimation that the model captures the counter-cyclical level and pro-cyclical slope of empirical credit spread curves. In addition, I provide a new procedure for estimation of idiosyncratic jump risk, which is consistent with observed shocks...
Modelling unidirectional liquid spreading on slanted microposts
Cavalli, Andrea; Blow, Matthew L.; Yeomans, Julia M.
2013-01-01
A lattice Boltzmann algorithm is used to simulate the slow spreading of drops on a surface patterned with slanted micro-posts. Gibb's pinning of the interface on the sides or top of the posts leads to unidirectional spreading over a wide range of contact angles and inclination angles of the posts....... Regimes for spreading in no, one or two directions are identified, and shown to agree well with a two-dimensional theory proposed in Chu, Xiao and Wang. A more detailed numerical analysis of the contact line shapes allows us to understand deviations from the two dimensional model, and to identify...
Adaptive radial basis function mesh deformation using data reduction
Gillebaart, T.; Blom, D. S.; van Zuijlen, A. H.; Bijl, H.
2016-09-01
Radial Basis Function (RBF) mesh deformation is one of the most robust mesh deformation methods available. Using the greedy (data reduction) method in combination with an explicit boundary correction, results in an efficient method as shown in literature. However, to ensure the method remains robust, two issues are addressed: 1) how to ensure that the set of control points remains an accurate representation of the geometry in time and 2) how to use/automate the explicit boundary correction, while ensuring a high mesh quality. In this paper, we propose an adaptive RBF mesh deformation method, which ensures the set of control points always represents the geometry/displacement up to a certain (user-specified) criteria, by keeping track of the boundary error throughout the simulation and re-selecting when needed. Opposed to the unit displacement and prescribed displacement selection methods, the adaptive method is more robust, user-independent and efficient, for the cases considered. Secondly, the analysis of a single high aspect ratio cell is used to formulate an equation for the correction radius needed, depending on the characteristics of the correction function used, maximum aspect ratio, minimum first cell height and boundary error. Based on the analysis two new radial basis correction functions are derived and proposed. This proposed automated procedure is verified while varying the correction function, Reynolds number (and thus first cell height and aspect ratio) and boundary error. Finally, the parallel efficiency is studied for the two adaptive methods, unit displacement and prescribed displacement for both the CPU as well as the memory formulation with a 2D oscillating and translating airfoil with oscillating flap, a 3D flexible locally deforming tube and deforming wind turbine blade. Generally, the memory formulation requires less work (due to the large amount of work required for evaluating RBF's), but the parallel efficiency reduces due to the limited
Computer model analysis of the radial artery pressure waveform.
Schwid, H A; Taylor, L A; Smith, N T
1987-10-01
Simultaneous measurements of aortic and radial artery pressures are reviewed, and a model of the cardiovascular system is presented. The model is based on resonant networks for the aorta and axillo-brachial-radial arterial system. The model chosen is a simple one, in order to make interpretation of the observed relationships clear. Despite its simplicity, the model produces realistic aortic and radial artery pressure waveforms. It demonstrates that the resonant properties of the arterial wall significantly alter the pressure waveform as it is propagated from the aorta to the radial artery. Although the mean and end-diastolic radial pressures are usually accurate estimates of the corresponding aortic pressures, the systolic pressure at the radial artery is often much higher than that of the aorta due to overshoot caused by the resonant behavior of the radial artery. The radial artery dicrotic notch is predominantly dependent on the axillo-brachial-radial arterial wall properties, rather than on the aortic valve or peripheral resistance. Hence the use of the radial artery dicrotic notch as an estimate of end systole is unreliable. The rate of systolic upstroke, dP/dt, of the radial artery waveform is a function of many factors, making it difficult to interpret. The radial artery waveform usually provides accurate estimates for mean and diastolic aortic pressures; for all other measurements it is an inadequate substitute for the aortic pressure waveform. In the presence of low forearm peripheral resistance the mean radial artery pressure may significantly underestimate the mean aortic pressure, as explained by a voltage divider model.
Study and Control of a Radial Vaned Diffuser Stall
Aurélien Marsan
2012-01-01
Full Text Available The aim of the present study is to evaluate the efficiency of a boundary layer suction technique in case of a centrifugal compressor stage in order to extend its stable operating range. First, an analysis of the flow pattern within the radial vaned diffuser is presented. It highlights the stall of the diffuser vanes when reaching a low massflow. A boundary layer separation in the hub-suction side corner grows when decreasing the massflow from the nominal operating point to the surge and finally leads to a massive stall. An aspiration strategy is investigated in order to control the stall. The suction slot is put in the vicinity of the saddle that originates the main separating skin-friction line, identified thanks to the analysis of the skin-friction pattern. Several aspiration massflow rates are tested, and two different modelings of the aspiration are evaluated. Finally, an efficient control is reached with a removal of only 0,1% of the global massflow and leads—from a steady-state calculations point of view—to an increase by 40% of the compressor operating range extent.
Pelliccia, Francesco; Trani, Carlo; Biondi-Zoccai, Giuseppe G L; Nazzaro, Marco; Berni, Andrea; Patti, Giuseppe; Patrizi, Roberto; Pironi, Bruno; Mazzarotto, Pietro; Gioffrè, Gaetano; Speciale, Giulio; Pristipino, Christian
2012-09-15
It remains undefined if transradial coronary angiography from a right or left radial arterial approach differs in real-world practice. To address this issue, we performed a subanalysis of the PREVAIL study. The PREVAIL study was a prospective, multicenter, observational survey of unselected consecutive patients undergoing invasive cardiovascular procedures over a 1-month observation period, specifically aimed at assessing the outcomes of radial approach in the contemporary real world. The choice of arterial approach was left to the discretion of the operator. Prespecified end points of this subanalysis were procedural characteristics. Of 1,052 patients consecutively enrolled, 509 patients underwent transradial catheterization, 304 with a right radial and 205 with a left radial approach. Procedural success rates were similar between the 2 groups. Compared to the left radial group, the right radial group had longer procedure duration (46 ± 29 vs 33 ± 24 minutes, p <0.0001) and fluoroscopy time (765 ± 787 vs 533 ± 502, p <0.0001). At multivariate analysis, including a parsimonious propensity score for the choice of left radial approach, duration of procedure (beta coefficient 11.38, p <0.001) and total dose-area product (beta coefficient 11.38, p <0.001) were independently associated with the choice of the left radial artery approach. The operator's proficiency in right/left radial approach did not influence study results. In conclusion, right and left radial approaches are feasible and effective to perform percutaneous procedures. In the contemporary real world, however, the left radial route is associated with shorter procedures and lower radiologic exposure than the right radial approach, independently of an operator's proficiency. Copyright © 2012 Elsevier Inc. All rights reserved.
He, H.-Q.; Zhou, G.; Wan, W.
2017-06-01
A functional form {I}\\max (R)={{kR}}-α , where R is the radial distance of a spacecraft, was usually used to model the radial dependence of peak intensities {I}\\max (R) of solar energetic particles (SEPs). In this work, the five-dimensional Fokker-Planck transport equation incorporating perpendicular diffusion is numerically solved to investigate the radial dependence of SEP peak intensities. We consider two different scenarios for the distribution of a spacecraft fleet: (1) along the radial direction line and (2) along the Parker magnetic field line. We find that the index α in the above expression varies in a wide range, primarily depending on the properties (e.g., location and coverage) of SEP sources and on the longitudinal and latitudinal separations between the sources and the magnetic foot points of the observers. Particularly, whether the magnetic foot point of the observer is located inside or outside the SEP source is a crucial factor determining the values of index α. A two-phase phenomenon is found in the radial dependence of peak intensities. The “position” of the break point (transition point/critical point) is determined by the magnetic connection status of the observers. This finding suggests that a very careful examination of the magnetic connection between the SEP source and each spacecraft should be taken in the observational studies. We obtain a lower limit of {R}-1.7+/- 0.1 for empirically modeling the radial dependence of SEP peak intensities. Our findings in this work can be used to explain the majority of the previous multispacecraft survey results, and especially to reconcile the different or conflicting empirical values of the index α in the literature.
MR accuracy and arthroscopic incidence of meniscal radial tears
Magee, Thomas; Shapiro, Marc; Williams, David [Department of Radiology, Neuroimaging Institute, 27 East Hibiscus Blvd., Melbourne, FL 32901 (United States)
2002-12-01
A meniscal radial tear is a vertical tear that involves the inner meniscal margin. The tear is most frequent in the middle third of the lateral meniscus and may extend outward in any direction. We report (1) the arthroscopic incidence of radial tears, (2) MR signs that aid in the detection of radial tears and (3) our prospective accuracy in detection of radial tears. Design and patients. Three musculoskeletal radiologists prospectively read 200 consecutive MR examinations of the knee that went on to arthroscopy by one orthopedic surgeon. MR images were assessed for location and MR characteristics of radial tears. MR criteria used for diagnosis of a radial tear were those outlined by Tuckman et al.: truncation, abnormal morphology and/or lack of continuity or absence of the meniscus on one or more MR images. An additional criterion used was abnormal increased signal in that area on fat-saturated proton density or T2-weighted coronal and sagittal images. Prospective MR readings were correlated with the arthroscopic findings.Results. Of the 200 consecutive knee arthroscopies, 28 patients had radial tears reported arthroscopically (14% incidence). MR readings prospectively demonstrated 19 of the 28 radial tears (68% sensitivity) when the criteria for diagnosis of a radial tear were truncation or abnormal morphology of the meniscus. With the use of the additional criterion of increased signal in the area of abnormal morphology on fat-saturated T2-weighted or proton density weighted sequences, the prospective sensitivity was 25 of 28 radial tears (89% sensitivity). There were no radial tears described in MR reports that were not demonstrated on arthroscopy (i.e., there were no false positive MR readings of radial tears in these 200 patients). Radial tears are commonly seen at arthroscopy. There was a 14% incidence in this series of 200 patients who underwent arthroscopy. Prospective detection of radial tears was 68% as compared with arthroscopy when the criteria as
MR accuracy and arthroscopic incidence of meniscal radial tears
Magee, Thomas; Shapiro, Marc; Williams, David
2002-01-01
A meniscal radial tear is a vertical tear that involves the inner meniscal margin. The tear is most frequent in the middle third of the lateral meniscus and may extend outward in any direction. We report (1) the arthroscopic incidence of radial tears, (2) MR signs that aid in the detection of radial tears and (3) our prospective accuracy in detection of radial tears. Design and patients. Three musculoskeletal radiologists prospectively read 200 consecutive MR examinations of the knee that went on to arthroscopy by one orthopedic surgeon. MR images were assessed for location and MR characteristics of radial tears. MR criteria used for diagnosis of a radial tear were those outlined by Tuckman et al.: truncation, abnormal morphology and/or lack of continuity or absence of the meniscus on one or more MR images. An additional criterion used was abnormal increased signal in that area on fat-saturated proton density or T2-weighted coronal and sagittal images. Prospective MR readings were correlated with the arthroscopic findings.Results. Of the 200 consecutive knee arthroscopies, 28 patients had radial tears reported arthroscopically (14% incidence). MR readings prospectively demonstrated 19 of the 28 radial tears (68% sensitivity) when the criteria for diagnosis of a radial tear were truncation or abnormal morphology of the meniscus. With the use of the additional criterion of increased signal in the area of abnormal morphology on fat-saturated T2-weighted or proton density weighted sequences, the prospective sensitivity was 25 of 28 radial tears (89% sensitivity). There were no radial tears described in MR reports that were not demonstrated on arthroscopy (i.e., there were no false positive MR readings of radial tears in these 200 patients). Radial tears are commonly seen at arthroscopy. There was a 14% incidence in this series of 200 patients who underwent arthroscopy. Prospective detection of radial tears was 68% as compared with arthroscopy when the criteria as
Epidemic spreading in a hierarchical social network.
Grabowski, A; Kosiński, R A
2004-09-01
A model of epidemic spreading in a population with a hierarchical structure of interpersonal interactions is described and investigated numerically. The structure of interpersonal connections is based on a scale-free network. Spatial localization of individuals belonging to different social groups, and the mobility of a contemporary community, as well as the effectiveness of different interpersonal interactions, are taken into account. Typical relations characterizing the spreading process, like a range of epidemic and epidemic curves, are discussed. The influence of preventive vaccinations on the spreading process is investigated. The critical value of preventively vaccinated individuals that is sufficient for the suppression of an epidemic is calculated. Our results are compared with solutions of the master equation for the spreading process and good agreement of the character of this process is found.
Heterogeneous incidence and propagation of spreading depolarizations
Kaufmann, Dan; Theriot, Jeremy J; Zyuzin, Jekaterina; Service, C Austin; Chang, Joshua C; Tang, Y Tanye; Bogdanov, Vladimir B; Multon, Sylvie; Schoenen, Jean; Ju, Y Sungtaek
2016-01-01
Spreading depolarizations are implicated in a diverse set of neurologic diseases. They are unusual forms of nervous system activity in that they propagate very slowly and approximately concentrically, apparently not respecting the anatomic, synaptic, functional, or vascular architecture of the brain. However, there is evidence that spreading depolarizations are not truly concentric, isotropic, or homogeneous, either in space or in time. Here we present evidence from KCl-induced spreading depolarizations, in mouse and rat, in vivo and in vitro, showing the great variability that these depolarizations can exhibit. This variability can help inform the mechanistic understanding of spreading depolarizations, and it has implications for their phenomenology in neurologic disease. PMID:27562866
Interference management using direct sequence spread spectrum ...
Interference management using direct sequence spread spectrum (DSSS) technique ... Journal of Fundamental and Applied Sciences ... Keywords: DSSS, LTE network; Wi-Fi network; SINR; interference management and interference power.
Sensory evaluation of commercial fat spreads based on oilseeds and walnut
Dimić, Etelka B.; Vujasinović, Vesna B.; Radočaj, Olga F.; Borić, Bojan D.
2013-01-01
The main focus of this study was on the sensory evaluation of commercial oilseeds spreads, as the most significant characteristic of this type of product from the consumers’ point of view. Sensory analysis was conducted by five experts using a quantitative descriptive and sensory profile test, applying a scoring method according to the standard procedure. Five different spreads were evaluated: sunflower, pumpkin, sesame, peanut, and walnut. Oil content and ...
Three-dimensional flow field measurements in a radial inflow turbine scroll using LDV
Malak, M. F.; Hamed, A.; Tabakoff, W.
1986-01-01
The results of an experimental study of the three-dimensional flow field in a radial inflow turbine scroll are presented. A two-color LDV system was used in the measurement of three orthogonal velocity components at 758 points located throughout the scroll and the unvaned portion of the nozzle. The cold flow experimental results are presented for through-flow velocity contours and the cross velocity vectors.
Radial particle distributions in PARMILA simulation beams
Boicourt, G.P.
1984-03-01
The estimation of beam spill in particle accelerators is becoming of greater importance as higher current designs are being funded. To the present, no numerical method for predicting beam-spill has been available. In this paper, we present an approach to the loss-estimation problem that uses probability distributions fitted to particle-simulation beams. The properties of the PARMILA code's radial particle distribution are discussed, and a broad class of probability distributions are examined to check their ability to fit it. The possibility that the PARMILA distribution is a mixture is discussed, and a fitting distribution consisting of a mixture of two generalized gamma distributions is found. An efficient algorithm to accomplish the fit is presented. Examples of the relative prediction of beam spill are given. 26 references, 18 figures, 1 table
Hydrostatic radial bearing of centrifugal pump
Skalicky, A.
1976-01-01
A hydrostatic radial pump is described characterized by the fact that part of the medium off-taken from delivery is used as a lubricating medium. Two additional bodies are placed alongside a hydrostatic bearing with coils in between them and the pump shaft; the coils have an opposite pitch. The feed channel for the hydrostatic bearing pocket is linked to delivery. The coil outlets are connected to the pump suction unit. Two rotating coils placed alongside the hydrostatic bearing will considerably simplify the communication channel design and reduce the dependence on the pump shaft deflections. The addition of another rotating coil in the close vicinity of the pump shaft or directly on the shaft further increases the efficiency. The bearing can be used in designing vertical circulating pumps for the cooling circuits of nuclear reactors. (J.B.)
The radial velocity variations in IC 418
Mendez, R.H.; Verga, A.D.
1981-01-01
The observations presented are part of a search for spectral and radial velocity variations among central stars of planetary nebulae and include the following new data: 1) Weak, previously undetected C III emissions are visible at 4056, 4186, 4516, 5270 and 5826 A. The famous unidentified emissions at 4485 and 4503 A were also found. 2) The He I absorptions at 4471 and 5875 A are blue-shifted relative to the nebular emissions. The same happens with Hsub(delta) and Hsub(γ), although in this case the shift can be at least partly attributed to blends with the strong He II absorptions, which are estimated to contribute about one half of the equivalent width at Hsub(delta) and Hsub(γ). 3) O III 5592 and C IV 5801, 5811 are also found in absorption. (Auth.)
Doubly stochastic radial basis function methods
Yang, Fenglian; Yan, Liang; Ling, Leevan
2018-06-01
We propose a doubly stochastic radial basis function (DSRBF) method for function recoveries. Instead of a constant, we treat the RBF shape parameters as stochastic variables whose distribution were determined by a stochastic leave-one-out cross validation (LOOCV) estimation. A careful operation count is provided in order to determine the ranges of all the parameters in our methods. The overhead cost for setting up the proposed DSRBF method is O (n2) for function recovery problems with n basis. Numerical experiments confirm that the proposed method not only outperforms constant shape parameter formulation (in terms of accuracy with comparable computational cost) but also the optimal LOOCV formulation (in terms of both accuracy and computational cost).
Anomalous Medial Branch of Radial Artery: A Rare Variant
Surbhi Wadhwa
2016-10-01
Full Text Available Radial artery is an important consistent vessel of the upper limb. It is a useful vascular access site for coronary procedures and its reliable anatomy has resulted in an elevation of radial forearm flaps for reconstructive surgeries of head and neck. Technical failures, in both the procedures, are mainly due to anatomical variations, such as radial loops, ectopic radial arteries or tortuosity in the vessel. We present a rare and a unique anomalous medial branch of the radial artery spiraling around the flexor carpi radialis muscle in the forearm with a high rising superficial palmar branch of radial artery. Developmentally it probably is a remanent of the normal pattern of capillary vessel maintenance and regression. Such a case is of importance for reconstructive surgeons and coronary interventionists, especially in view of its unique medial and deep course.
Radial extension of drift waves in presence of velocity profiles
Sen, S.; Weiland, J.
1994-01-01
The effect of a radially varying poloidal velocity field on the recently found radially extended toroidal drift waves is investigated analytically. The role of velocity curvature (υ φ '') is found to have robust effects on the radial model structure of the mode. For a positive value of the curvature (Usually found in the H-mode edges) the radial model envelope, similar to the sheared slab case, becomes fully outgoing. The mode is therefore stable. On the other hand, for a negative value of the curvature (usually observed in the L-mode edges) all the characteristics of conventional drift waves return back. The radial mode envelope reduces to a localized Gaussian shape and the mode is therefore unstable again for typical (magnetic) shear values in tokamaks. Velocity shear (υ φ ??) on the other hand is found to have rather insignificant role both in determining the radial model structure and stability
Spreading paths in partially observed social networks
Onnela, Jukka-Pekka; Christakis, Nicholas A.
2012-01-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using a static, s...
Mapping the Spread of Mounted Warfare
Peter Turchin
2016-12-01
Full Text Available Military technology is one of the most important factors affecting the evolution of complex societies. In particular, mounted warfare, the use of horse-riders in military operations, revolutionized war as it spread to different parts of Eurasia and Africa during the Ancient and Medieval eras, and to the Americas during the Early Modern period. Here we use a variety of sources to map this spread.
Ignition and spread of electrical wire fires
Huang, Xinyan
2012-01-01
Ignition of electrical wires by external heating is investigated in order to gain a better understanding of the initiation of electrical-wire fires. An ignition-to- spread model is developed to systematically explain ignition and the following transition to spread. The model predicts that for a higher-conductance wire it is more difficult to achieve ignition and the weak flame may extinguish during the transition phase because of a large conductive heat loss along the wire core. Wires with tw...
Spreading characteristics of proprietary rectal steroid preparations
Hay, D.J.
1982-01-01
Three types of rectal steroid preparation were labelled with Technetium 99 or Indium 111, and the extent of spread of each within the bowel was followed, immediately after administration and at 2hrs, using a gamma camera. Patients with ulcerative colitis were compared with controls. Results indicate that 'Colifoam' enema and 'Predsol' suppository act mainly in the rectum, but 'Predsol retention' enema spreads further into the colon, making it more useful for patients with extensive ulcerative colitis. (U.K.)
Radial-Electric-Field Piezoelectric Diaphragm Pumps
Bryant, Robert G.; Working, Dennis C.; Mossi, Karla; Castro, Nicholas D.; Mane, Pooma
2009-01-01
In a recently invented class of piezoelectric diaphragm pumps, the electrode patterns on the piezoelectric diaphragms are configured so that the electric fields in the diaphragms have symmetrical radial (along-the-surface) components in addition to through-the-thickness components. Previously, it was accepted in the piezoelectric-transducer art that in order to produce the out-of-plane bending displacement of a diaphragm needed for pumping, one must make the electric field asymmetrical through the thickness, typically by means of electrodes placed on only one side of the piezoelectric material. In the present invention, electrodes are placed on both sides and patterned so as to produce substantial radial as well as through-the-thickness components. Moreover, unlike in the prior art, the electric field can be symmetrical through the thickness. Tests have shown in a given diaphragm that an electrode configuration according to this invention produces more displacement than does a conventional one-sided electrode pattern. The invention admits of numerous variations characterized by various degrees of complexity. Figure 1 is a simplified depiction of a basic version. As in other piezoelectric diaphragm pumps of similar basic design, the prime mover is a piezoelectric diaphragm. Application of a suitable voltage to the electrodes on the diaphragm causes it to undergo out-of-plane bending. The bending displacement pushes a fluid out of, or pulls the fluid into, a chamber bounded partly by the diaphragm. Also as in other diaphragm pumps in general, check valves ensure that the fluid flows only in through one port and only out through another port.
Dynamical Model about Rumor Spreading with Medium
Xiaxia Zhao
2013-01-01
Full Text Available Rumor is a kind of social remark, that is untrue, and not be confirmed, and spreads on a large scale in a short time. Usually, it can induce a cloud of pressure, anxiety, and panic. Traditionally, it is propagated by word of mouth. Nowadays, with the emergence of the internet, rumors can be spread by instant messengers, emails, or publishing. With this new pattern of spreading, an ISRW dynamical model considering the medium as a subclass is established. Beside the dynamical analysis of the model, we mainly explore the mechanism of spreading of individuals-to-individuals and medium-to-individual. By numerical simulation, we find that if we want to control the rumor spreading, it will not only need to control the rate of change of the spreader subclass, but also need to control the change of the information about rumor in medium which has larger influence. Moreover, to control the effusion of rumor is more important than deleting existing information about rumor. On the one hand, government should enhance the management of internet. On the other hand, relevant legal institutions for punishing the rumor creator and spreader on internet who can be tracked should be established. Using this way, involved authorities can propose efficient measures to control the rumor spreading to keep the stabilization of society and development of economy.
Gossip spread in social network Models
Johansson, Tobias
2017-04-01
Gossip almost inevitably arises in real social networks. In this article we investigate the relationship between the number of friends of a person and limits on how far gossip about that person can spread in the network. How far gossip travels in a network depends on two sets of factors: (a) factors determining gossip transmission from one person to the next and (b) factors determining network topology. For a simple model where gossip is spread among people who know the victim it is known that a standard scale-free network model produces a non-monotonic relationship between number of friends and expected relative spread of gossip, a pattern that is also observed in real networks (Lind et al., 2007). Here, we study gossip spread in two social network models (Toivonen et al., 2006; Vázquez, 2003) by exploring the parameter space of both models and fitting them to a real Facebook data set. Both models can produce the non-monotonic relationship of real networks more accurately than a standard scale-free model while also exhibiting more realistic variability in gossip spread. Of the two models, the one given in Vázquez (2003) best captures both the expected values and variability of gossip spread.
Roles of the spreading scope and effectiveness in spreading dynamics on multiplex networks
Li, Ming; Liu, Run-Ran; Peng, Dan; Jia, Chun-Xiao; Wang, Bing-Hong
2018-02-01
Comparing with single networks, the multiplex networks bring two main effects on the spreading process among individuals. First, the pathogen or information can be transmitted to more individuals through different layers at one time, which enlarges the spreading scope. Second, through different layers, an individual can also transmit the pathogen or information to the same individuals more than once at one time, which makes the spreading more effective. To understand the different roles of the spreading scope and effectiveness, we propose an epidemic model on multiplex networks with link overlapping, where the spreading effectiveness of each interaction as well as the variety of channels (spreading scope) can be controlled by the number of overlapping links. We find that for Poisson degree distribution, increasing the epidemic scope (the first effect) is more efficient than enhancing epidemic probability (the second effect) to facilitate the spreading process. However, for power-law degree distribution, the effects of the two factors on the spreading dynamics become complicated. Enhancing epidemic probability makes pathogen or rumor easier to outbreak in a finite system. But after that increasing epidemic scopes is still more effective for a wide spreading. Theoretical results along with reasonable explanation for these phenomena are all given in this paper, which indicates that the epidemic scope could play an important role in the spreading dynamics.
A New Filtering Algorithm Utilizing Radial Velocity Measurement
LIU Yan-feng; DU Zi-cheng; PAN Quan
2005-01-01
Pulse Doppler radar measurements consist of range, azimuth, elevation and radial velocity. Most of the radar tracking algorithms in engineering only utilize position measurement. The extended Kalman filter with radial velocity measureneut is presented, then a new filtering algorithm utilizing radial velocity measurement is proposed to improve tracking results and the theoretical analysis is also given. Simulation results of the new algorithm, converted measurement Kalman filter, extended Kalman filter are compared. The effectiveness of the new algorithm is verified by simulation results.
Vitreous veils and radial lattice in Marshall syndrome.
Brubaker, Jacob W; Mohney, Brian G; Pulido, Jose S; Babovic-Vuksanovic, Dusica
2008-12-01
To report the findings of membranous vitreous veils and radial lattice in a child with Marshall syndrome. Observational case report. Retrospective review of medical records and fundus photograph of a 6-year-old boy with Marshall syndrome. Vitreoretinal findings were significant for bilateral membranous vitreous veils and radial lattice degeneration. This case demonstrates the occurrence of vitreous veils and radial lattice degeneration in patients with Marshall syndrome.
Radial k-t SPIRiT: autocalibrated parallel imaging for generalized phase-contrast MRI.
Santelli, Claudio; Schaeffter, Tobias; Kozerke, Sebastian
2014-11-01
To extend SPIRiT to additionally exploit temporal correlations for highly accelerated generalized phase-contrast MRI and to compare the performance of the proposed radial k-t SPIRiT method relative to frame-by-frame SPIRiT and radial k-t GRAPPA reconstruction for velocity and turbulence mapping in the aortic arch. Free-breathing navigator-gated two-dimensional radial cine imaging with three-directional multi-point velocity encoding was implemented and fully sampled data were obtained in the aortic arch of healthy volunteers. Velocities were encoded with three different first gradient moments per axis to permit quantification of mean velocity and turbulent kinetic energy. Velocity and turbulent kinetic energy maps from up to 14-fold undersampled data were compared for k-t SPIRiT, frame-by-frame SPIRiT, and k-t GRAPPA relative to the fully sampled reference. Using k-t SPIRiT, improvements in magnitude and velocity reconstruction accuracy were found. Temporally resolved magnitude profiles revealed a reduction in spatial blurring with k-t SPIRiT compared with frame-by-frame SPIRiT and k-t GRAPPA for all velocity encodings, leading to improved estimates of turbulent kinetic energy. k-t SPIRiT offers improved reconstruction accuracy at high radial undersampling factors and hence facilitates the use of generalized phase-contrast MRI for routine use. Copyright © 2013 Wiley Periodicals, Inc.
Channeling potential in single-walled carbon nanotubes: The effect of radial deformation
Abu-Assy, M.K.; Soliman, M.S.
2016-01-01
We study the effect of radial deformation in single-walled carbon nanotubes (SWCNTs), due to one external factor, on the channeling potential. The calculations covered the channeling potential for positrons of 100 MeV move along the z-axis, which is the axis of the radially deformed SWCNTs (6, 0), (8, 0) under external mechanical stress at different values for the induced strain and also for radially deformed SWCNT (5, 5) under external transverse electric field of 1.8 and 2.6 V/Å. The calculations executed according to the continuum model approximation given by Lindhard for the case of an axial channeling in single crystals. The results of the calculations in this work agreed well with previous calculations depending on the equilibrium electron density in perfect carbon nanotubes. It has been found that, for perfect nanotubes, the channeling potential, i.e., the potential at any point (x, y) in a plane normal to the nanotube axis (xy-plane), is a function of the distance from the nanotube center whatever the (x, y) coordinate and hence, it could be expressed in terms of one independent variable. On the other hand, in radially deformed SWCNTs, the channeling potential was found to be a function of two independent variables (x, y) and could be given here by a general formula in terms of fitting parameters for each nanotube with chiral index (n, m). The obtained formula has been used in plotting the contour plot for the channeling potential.
Radial dose distribution of 192Ir and 137Cs seed sources
Thomason, C.; Higgins, P.
1989-01-01
The radial dose distributions in water around /sup 192/ Ir seed sources with both platinum and stainless steel encapsulation have been measured using LiF thermoluminescent dosimeters (TLD) for distances of 1 to 12 cm along the perpendicular bisector of the source to determine the effect of source encapsulation. Similar measurements also have been made around a /sup 137/ Cs seed source of comparable dimensions. The data were fit to a third order polynomial to obtain an empirical equation for the radial dose factor which then can be used in dosimetry. The coefficients of this equation for each of the three sources are given. The radial dose factor of the stainless steel encapsulated /sup 192/ Ir and that of the platinum encapsulated /sup 192/ Ir agree to within 2%. The radial dose distributions measured here for /sup 192/ Ir with either type of encapsulation and for /sup 137/ Cs are indistinguishable from those of other authors when considering uncertainties involved. For clinical dosimetry based on isotropic point or line source models, any of these equations may be used without significantly affecting accuracy
Channeling potential in single-walled carbon nanotubes: The effect of radial deformation
Abu-Assy, M.K. [Physics Department, Faculty of Science, Suez-Canal University, Ismailia 41522 (Egypt); Soliman, M.S., E-mail: Mahmoud_einstien2@yahoo.com [Physics Department, Faculty of Science, Suez-Canal University, El-Arish (Egypt)
2016-10-01
We study the effect of radial deformation in single-walled carbon nanotubes (SWCNTs), due to one external factor, on the channeling potential. The calculations covered the channeling potential for positrons of 100 MeV move along the z-axis, which is the axis of the radially deformed SWCNTs (6, 0), (8, 0) under external mechanical stress at different values for the induced strain and also for radially deformed SWCNT (5, 5) under external transverse electric field of 1.8 and 2.6 V/Å. The calculations executed according to the continuum model approximation given by Lindhard for the case of an axial channeling in single crystals. The results of the calculations in this work agreed well with previous calculations depending on the equilibrium electron density in perfect carbon nanotubes. It has been found that, for perfect nanotubes, the channeling potential, i.e., the potential at any point (x, y) in a plane normal to the nanotube axis (xy-plane), is a function of the distance from the nanotube center whatever the (x, y) coordinate and hence, it could be expressed in terms of one independent variable. On the other hand, in radially deformed SWCNTs, the channeling potential was found to be a function of two independent variables (x, y) and could be given here by a general formula in terms of fitting parameters for each nanotube with chiral index (n, m). The obtained formula has been used in plotting the contour plot for the channeling potential.
Pai, C N; Shinshi, T; Shimokohbe, A
2010-01-01
Evaluation of the hydraulic forces in a magnetically levitated (maglev) centrifugal blood pump is important from the point of view of the magnetic bearing design. Direct measurement is difficult due to the absence of a rotor shaft, and computational fluid dynamic analysis demands considerable computational resource and time. To solve this problem, disturbance force observers were developed, using the radial controlled magnetic bearing of a centrifugal blood pump, to estimate the radial forces on the maglev impeller. In order to design the disturbance observer, the radial dynamic characteristics of a maglev impeller were evaluated under different working conditions. It was observed that the working fluid affects the additional mass and damping, while the rotational speed affects the damping and stiffness of the maglev system. Based on these results, disturbance force observers were designed and implemented. The designed disturbance force observers present a bandwidth of 45 Hz. In non-pulsatile conditions, the magnitude of the estimated radial thrust increases in proportion to the flowrate, and the rotational speed has little effect on the force direction. At 5 l/min against 100 mmHg, the estimated radial thrust is 0.95 N. In pulsatile conditions, this method was capable of estimating the pulsatile radial thrust with good response.
Mbah, Nsehniitooh; Philips, Prejesh; Voor, Michael J; Martin, Robert C G
2017-12-01
The optimal use of esophageal stents for malignant and benign esophageal strictures continues to be plagued with variability in pain tolerance, migration rates, and reflux-related symptoms. The aim of this study was to evaluate the differences in radial force exhibited by a variety of esophageal stents with respect to the patient's esophageal stricture. Radial force testing was performed on eight stents manufactured by four different companies using a hydraulic press and a 5000 N force gage. Radial force was measured using three different tests: transverse compression, circumferential compression, and a three-point bending test. Esophageal stricture composition and diameters were measured to assess maximum diameter, length, and proximal esophageal diameter among 15 patients prior to stenting. There was a statistically significant difference in mean radial force for transverse compression tests at the middle (range 4.25-0.66 newtons/millimeter N/mm) and at the flange (range 3.32-0.48 N/mm). There were also statistical differences in mean radial force for circumferential test (ranged from 1.19 to 10.50 N/mm, p force, which provides further clarification of stent pain and intolerance in certain patients, with either benign or malignant disease. Similarly, current stent diameters do not successfully exclude the proximal esophagus, which can lead to obstructive-type symptoms. Awareness of radial force, esophageal stricture composition, and proximal esophageal diameter must be known and understood for optimal stent tolerance.
From human behavior to the spread of mobile phone viruses
Wang, Pu
Percolation theory was initiated some 50 years ago as a mathematical framework for the study of random physical processes such as the flow of a fluid through a disordered porous medium. It has been proved to be a remarkably rich theory, with applications from thermodynamic phase transitions to complex networks. In this dissertation percolation theory is used to study the diffusion process of mobile phone viruses. Some methodologies widely used in statistical physics are also applied to uncover the underlying statistical laws of human behavior and simulate the spread of mobile phone viruses in a large population. I find that while Bluetooth viruses can reach all susceptible handsets with time, they spread slowly due to human mobility, offering ample opportunities to deploy antiviral software. In contrast, viruses utilizing multimedia messaging services (MMS) could infect all users in hours, but currently a phase transition on the underlying call graph limits them to only a small fraction of the susceptible users. These results explain the lack of a major mobile virus breakout so far and predict that once a mobile operating system's market share reaches the phase transition point, viruses will pose a serious threat to mobile communications. These studies show how the large datasets and tools of statistical physics can be used to study some specific and important problems, such as the spread of mobile phone viruses.
Pseudarthrosis of radial shaft with dislocation of heads of radial and ulnar bones (case report
M. E. Puseva
2013-01-01
Full Text Available The authors presented a rare clinical case - the injury of forearm complicated by the formation of the pseudarthrosis of the radial shaft in combination with old dislocation of heads the radius and ulna. The differentiated approach to the choice of surgical tactics was proposed, which consists of several consistent stages: taking free autotransplant from the crest of iliac bone, resection of pseudarthrosis of radius with replacement of the bone defect by the graft for restoration of anatomic length, conducting combined strained osteosynthesis and elimination of dislocation of a head of radial and ulnar bones by transosseous osteosynthesis. The chosen treatment strategy allowed to restore the anatomy and function of the upper extremity.
Richard J Chen, MD
2018-04-01
Full Text Available History of present illness: 70-year-old male with a history ventricular arrhythmia, AICD (automated implantable cardioverter defibrillator, coronary artery disease and cardiac stents presented to the Emergency Department after three AICD discharges with dyspnea but no chest pain. During triage, he was found to have an irregular radial pulse and was placed on a cardiac monitor. Significant findings: The patient was found to be in a polymorphic ventricular tachycardia; he was alert, awake and asymptomatic. A rhythm strip showed a wide complex tachycardia with the QRS complex varying in amplitude around the isoelectric line consistent with Torsades de Pointes. Discussion: Torsades de Pointes (TdP is a specific type of polymorphic ventricular tachycardia. The arrhythmia’s characteristic morphology consists of the QRS complex “twisting” around the isoelectric line with gradual variation of the amplitude, reflecting its literal translation of “twisting of the points.”1 This arrhythmia occurs in the context of prolonged QT. The most common form of acquired QT prolongation is medication induced. Common causes include antiarrhythmics, antipsychotics, antiemetics, and antibiotics.2 Patient specific risk factors include female sex, bradycardia, hypokalemia, hypomagnesemia, hypocalcemia, hypothermia and heart disease.3 In the setting of prolonged QT, the repolarization phase is extended. TdP is initiated when a PVC (premature ventricular contraction occurs during this repolarization, known as an ‘R on T’ phenomenon. TdP is often asymptomatic and self-limited. The danger in TdP is its potential to deteriorate into ventricular fibrillation. A mainstay of management of TdP is prevention of risk factors when possible.4 Unstable patients should be treated with synchronized cardioversion. Magnesium sulfate should be administered in all cases of TdP.1 If a patient is not responsive to magnesium, consider isoproterenol, amiodarone, and overdrive
Migraine strikes as neuronal excitability reaches a tipping point
Scheffer, Marten; van den Berg, Albert; Ferrari, Michel D.
2013-01-01
Self-propagating waves of cerebral neuronal firing, known as spreading depolarisations, are believed to be at the roots of migraine attacks. We propose that the start of spreading depolarisations corresponds to a critical transition that occurs when dynamic brain networks approach a tipping point.
Migraine Strikes as Neuronal Excitability Reaches a Tipping Point
Scheffer, M.; Berg, van den A.; Ferrari, B.
2013-01-01
Self-propagating waves of cerebral neuronal firing, known as spreading depolarisations, are believed to be at the roots of migraine attacks. We propose that the start of spreading depolarisations corresponds to a critical transition that occurs when dynamic brain networks approach a tipping point.
A network model for Ebola spreading.
Rizzo, Alessandro; Pedalino, Biagio; Porfiri, Maurizio
2016-04-07
The availability of accurate models for the spreading of infectious diseases has opened a new era in management and containment of epidemics. Models are extensively used to plan for and execute vaccination campaigns, to evaluate the risk of international spreadings and the feasibility of travel bans, and to inform prophylaxis campaigns. Even when no specific therapeutical protocol is available, as for the Ebola Virus Disease (EVD), models of epidemic spreading can provide useful insight to steer interventions in the field and to forecast the trend of the epidemic. Here, we propose a novel mathematical model to describe EVD spreading based on activity driven networks (ADNs). Our approach overcomes the simplifying assumption of homogeneous mixing, which is central to most of the mathematically tractable models of EVD spreading. In our ADN-based model, each individual is not bound to contact every other, and its network of contacts varies in time as a function of an activity potential. Our model contemplates the possibility of non-ideal and time-varying intervention policies, which are critical to accurately describe EVD spreading in afflicted countries. The model is calibrated from field data of the 2014 April-to-December spreading in Liberia. We use the model as a predictive tool, to emulate the dynamics of EVD in Liberia and offer a one-year projection, until December 2015. Our predictions agree with the current vision expressed by professionals in the field, who consider EVD in Liberia at its final stage. The model is also used to perform a what-if analysis to assess the efficacy of timely intervention policies. In particular, we show that an earlier application of the same intervention policy would have greatly reduced the number of EVD cases, the duration of the outbreak, and the infrastructures needed for the implementation of the intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.
High-temperature spreading kinetics of metals
Rauch, N.
2005-05-15
In this PhD work a drop transfer setup combined with high speed photography has been used to analyze the spreading of Ag on polished polycrystalline Mo and single crystalline Mo (110) and (100) substrates. The objective of this work was to unveil the basic phenomena controlling spreading in metal-metal systems. The observed spreading kinetics were compared with current theories of low and high temperature spreading such as a molecular kinetic model and a fluid flow model. Analyses of the data reveal that the molecular model does describe the fastest velocity data well for all the investigated systems. Therefore, the energy which is dissipated during the spreading process is a dissipation at the triple line rather than dissipation due to the viscosity in the liquid. A comparison of the determined free activation energy for wetting of {delta}G95{approx}145kJ/mol with literature values allows the statement that the rate determining step seems to be a surface diffusion of the Ag atoms along the triple line. In order to investigate possible ridge formation, due to local atomic diffusion of atoms of the substrate at the triple during the spreading process, grooving experiments of the polycrystalline Mo were performed to calculate the surface diffusities that will control ridge evolution. The analyses of this work showed that a ridge formation at the fastest reported wetting velocities was not possible if there is no initial perturbation for a ridge. If there was an initial perturbation for a ridge the ridge had to be much smaller than 1 nm in order to be able to move with the liquid font. Therefore ridge formation does not influence the spreading kinetics for the studied system and the chosen conditions. SEM, AFM and TEM investigations of the triple line showed that ridge formation does also not occur at the end of the wetting experiment when the drop is close to equilibrium and the wetting velocity is slow. (orig.)
Numerical simulation of liquid-metal-flows in radial-toroidal-radial bends
Molokov, S.; Buehler, L.
1993-09-01
Magnetohydrodynamic flows in a U-bend and right-angle bend are considered with reference to the radial-toroidal-radial concept of a self-cooled liquid-metal blanket. The ducts composing bends have rectangular cross-section. The applied magnetic field is aligned with the toroidal duct and perpendicular to the radial ones. At high Hartmann number the flow region is divided into cores and boundary layers of different types. The magnetohydrodynamic equations are reduced to a system of partial differential equations governing wall electric potentials and the core pressure. The system is solved numerically by two different methods. The first method is iterative with iteration between wall potential and the core pressure. The second method is a general one for the solution of the core flow equations in curvilinear coordinates generated by channel geometry and magnetic field orientation. Results obtained are in good agreement. They show, that the 3D-pressure drop of MHD flows in a U-bend is not a critical issue for blanket applications. (orig./HP) [de
Fuel radial design using Path Relinking; Diseno radial de combustible usando Path Relinking
Campos S, Y. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)
2007-07-01
The present work shows the obtained results when implementing the combinatory optimization technique well-known as Path Re linking (Re-linkage of Trajectories), to the problem of the radial design of nuclear fuel assemblies, for boiling water reactors (BWR Boiling Water Reactor by its initials in English), this type of reactors is those that are used in the Laguna Verde Nucleo electric Central, Veracruz. As in any other electric power generation plant of that make use of some fuel to produce heat and that it needs each certain time (from 12 to 14 months) to make a supply of the same one, because this it wears away or it burns, in the nucleolectric plants to this activity is denominated fuel reload. In this reload different activities intervene, among those which its highlight the radial and axial designs of fuel assemblies, the patterns of control rods and the multi cycles study, each one of these stages with their own complexity. This work was limited to study in independent form the radial design, without considering the other activities. These phases are basic for the fuel reload design and of reactor operation strategies. (Author)
Measurements of oil spill spreading in a wave tank using digital image processing
Flores, H.; Saavedra, I.; Andreatta, A.; Llona, G.
1998-01-01
In this work, an experimental study of spreading of crude oil is carried out in a wave tank. The tests are performed by spilling different volumes and types of crude oil on the water surface. An experimental measurement technique was developed based on digital processing of video images. The acquisition and processing of such images is carried out by using a video camera and inexpensive microcomputer hardware and software. Processing is carried out by first performing a digital image filter, then edge detection is performed on the filtered image data. The final result is a file that contains the coordinates of a polygon that encloses the observed slick for each time step. Different types of filters are actually used in order to adequately separate the color intensifies corresponding to each of the elements in the image. Postprocessing of the vectorized images provides accurate measurements of the slick edge, thus obtaining a complete geometric representation, which is significantly different from simplified considerations of radially symmetric spreading. The spreading of the oil slick was recorded for each of the tests. Results of the experimental study are presented for each spreading regime, and analyzed in terms of the wave parameters such as period and wave height. (author)
Sotin, C.; Senske, D. A.; Head, J. W.; Parmentier, E. M.
1989-01-01
The model of Reid and Jackson (1981) for terrestrial spreading centers is applied to Venus conditions. On the basis of spreading rate, mantle temperature, and surface temperature, the model predicts both isostatic topography and crustal thickness. The model and Pioneer Venus altimetry and gravity data are used to test the hypothesis of Head and Crumpler (1987) that Western Aphrodite Terra is the location of crustal spreading on Venus. It is concluded that a spreading center model for Ovda Regio in Western Aphrodite Terra could account for the observed topography and line-of-sight gravity anomalies found in the Pioneer data.
Design of radial reinforcement for prestressed concrete containments
Wang, Shen, E-mail: swang@bechtel.com [Bechtel Power Corporation, 5275 Westview Drive, BP2-2C3, Frederick, MD 21703 (United States); Munshi, Javeed A., E-mail: jamunshi@bechtel.com [Bechtel Power Corporation, 5275 Westview Drive, BP2-2C3, Frederick, MD 21703 (United States)
2013-02-15
Highlights: ► A rigorous formulae is proposed to calculate radial stress within prestressed concrete containments. ► The proposed method is validated by finite element analysis in an illustrative practical example. ► A partially prestressed condition is more critical than a fully prestressed condition for radial tension. ► Practical design consideration is provided for detailing of radial reinforcement. -- Abstract: Nuclear containments are critical components for safety of nuclear power plants. Failure can result in catastrophic safety consequences as a result of leakage of radiation. Prestressed concrete containments have been used in large nuclear power plants with significant design internal pressure. These containments are generally reinforced with prestressing tendons in the circumferential (hoop) and meridional (vertical) directions. The curvature effect of the tendons introduces radial tensile stresses in the concrete shell which are generally neglected in the design of such structures. It is assumed that such tensile radial stresses are small as such no radial reinforcement is provided for this purpose. But recent instances of significant delaminations in Crystal River Unit 3 in Florida have elevated the need for reevaluation of the radial tension issue in prestressed containment. Note that currently there are no well accepted industry standards for design and detailing of radial reinforcement. This paper discusses the issue of radial tension in prestressed cylindrical and dome shaped structures and proposes formulae to calculate radial stresses. A practical example is presented to illustrate the use of the proposed method which is then verified by using state of art finite element analysis. This paper also provides some practical design consideration for detailing of radial reinforcement in prestressed containments.
Multiscale analysis of spreading in a large communication network
Kivelä, Mikko; Pan, Raj Kumar; Kaski, Kimmo; Kertész, János; Saramäki, Jari; Karsai, Márton
2012-01-01
In temporal networks, both the topology of the underlying network and the timings of interaction events can be crucial in determining how a dynamic process mediated by the network unfolds. We have explored the limiting case of the speed of spreading in the SI model, set up such that an event between an infectious and a susceptible individual always transmits the infection. The speed of this process sets an upper bound for the speed of any dynamic process that is mediated through the interaction events of the network. With the help of temporal networks derived from large-scale time-stamped data on mobile phone calls, we extend earlier results that indicate the slowing-down effects of burstiness and temporal inhomogeneities. In such networks, links are not permanently active, but dynamic processes are mediated by recurrent events taking place on the links at specific points in time. We perform a multiscale analysis and pinpoint the importance of the timings of event sequences on individual links, their correlations with neighboring sequences, and the temporal pathways taken by the network-scale spreading process. This is achieved by studying empirically and analytically different characteristic relay times of links, relevant to the respective scales, and a set of temporal reference models that allow for removing selected time-domain correlations one by one. Our analysis shows that for the spreading velocity, time-domain inhomogeneities are as important as the network topology, which indicates the need to take time-domain information into account when studying spreading dynamics. In particular, results for the different characteristic relay times underline the importance of the burstiness of individual links
Free energy analysis of cell spreading.
McEvoy, Eóin; Deshpande, Vikram S; McGarry, Patrick
2017-10-01
In this study we present a steady-state adaptation of the thermodynamically motivated stress fiber (SF) model of Vigliotti et al. (2015). We implement this steady-state formulation in a non-local finite element setting where we also consider global conservation of the total number of cytoskeletal proteins within the cell, global conservation of the number of binding integrins on the cell membrane, and adhesion limiting ligand density on the substrate surface. We present a number of simulations of cell spreading in which we consider a limited subset of the possible deformed spread-states assumed by the cell in order to examine the hypothesis that free energy minimization drives the process of cell spreading. Simulations suggest that cell spreading can be viewed as a competition between (i) decreasing cytoskeletal free energy due to strain induced assembly of cytoskeletal proteins into contractile SFs, and (ii) increasing elastic free energy due to stretching of the mechanically passive components of the cell. The computed minimum free energy spread area is shown to be lower for a cell on a compliant substrate than on a rigid substrate. Furthermore, a low substrate ligand density is found to limit cell spreading. The predicted dependence of cell spread area on substrate stiffness and ligand density is in agreement with the experiments of Engler et al. (2003). We also simulate the experiments of Théry et al. (2006), whereby initially circular cells deform and adhere to "V-shaped" and "Y-shaped" ligand patches. Analysis of a number of different spread states reveals that deformed configurations with the lowest free energy exhibit a SF distribution that corresponds to experimental observations, i.e. a high concentration of highly aligned SFs occurs along free edges, with lower SF concentrations in the interior of the cell. In summary, the results of this study suggest that cell spreading is driven by free energy minimization based on a competition between decreasing
Spreading paths in partially observed social networks
Onnela, Jukka-Pekka; Christakis, Nicholas A.
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Spreading paths in partially observed social networks.
Onnela, Jukka-Pekka; Christakis, Nicholas A
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Assessment of thema code against spreading experiments
Spindler, B.; Veteau, J.M.; Cecco, L. de; Montanelli, P.; Pineau, D.
2000-01-01
In the frame work of severe accident research, the spreading code THEMA, developed at CEA/DRN, aims at predicting the spreading extent of molten core after a vessel melt-through. The code solves fluid balance equations integrated over the fluid depth for oxidic and/or metallic phases under the shallow water assumption, using a finite difference scheme. Solidification is taken into account through crust formation on the substrate and at contact with the surroundings, as well as increase of fluid viscosity with solid fraction in the melt. A separate energy equation is solved for the solid substrate, including possible ablation. The assessment of THEMA code against the spreading experiments performed in the framework of the corium spreading and coolability project of the European Union is presented. These experiments use either simulating materials at medium (RIT), or at high temperature (KATS), or corium (VULCANO, FARO), conducted at different mass flow rates and with large or low solidification interval. THEMA appears to be able to simulate the whole set of the experiments investigated. Comparison between experimental and computed spreading lengths and substrate temperatures are quite satisfactory. The results show a rather large sensitivity at mass flow rate and inlet temperature, indicating that, generally, efforts should be made to improve the accuracy of the measurements of such parameters in the experiments. (orig.)
Post-Tanner spreading of nematic droplets
Mechkov, S; Oshanin, G; Cazabat, A M
2009-01-01
The quasistationary spreading of a circular liquid drop on a solid substrate typically obeys the so-called Tanner law, with the instantaneous base radius R(t) growing with time as R∼t 1/10 -an effect of the dominant role of capillary forces for a small-sized droplet. However, for droplets of nematic liquid crystals, a faster spreading law sets in at long times, so that R∼t α with α significantly larger than the Tanner exponent 1/10. In the framework of the thin film model (or lubrication approximation), we describe this 'acceleration' as a transition to a qualitatively different spreading regime driven by a strong substrate-liquid interaction specific to nematics (antagonistic anchoring at the interfaces). The numerical solution of the thin film equation agrees well with the available experimental data for nematics, even though the non-Newtonian rheology has yet to be taken into account. Thus we complement the theory of spreading with a post-Tanner stage, noting that the spreading process can be expected to cross over from the usual capillarity-dominated stage to a regime where the whole reservoir becomes a diffusive film in the sense of Derjaguin.
Cardoso, Vitor; Lemos, Jose P.S.
2003-01-01
In this paper, we consider the gravitational radiation generated by the collision of highly relativistic particles with rotating Kerr black holes. We use the Sasaki-Nakamura formalism to compute the waveform, energy spectra, and total energy radiated during this process. We show that the gravitational spectrum for high-energy collisions has definite characteristic universal features, which are independent of the spin of the colliding objects. We also discuss the possible connections between these results and black-hole-black-hole collisions at the speed of light. Our results show that during the high-speed collision of a nonrotating hole with a rotating one, at most 35% of the total energy can get converted into gravitational waves. This 35% efficiency occurs only in the most optimistic situation, that of a zero impact parameter collision, along the equatorial plane, with an almost extreme Kerr black hole. In the general situation, the total gravitational energy radiated is expected to be much less, especially if the impact parameter increases. Thus, if one is able to produce black holes at the CERN Large Hadron Collider, at most 35% of the partons' energy should be emitted during the so-called balding phase. This energy will be missing, since we do not have gravitational wave detectors able to measure such amplitudes. The collision at the speed of light between one rotating black hole and a nonrotating one or two rotating black holes turns out to be the most efficient gravitational wave generator in the Universe
Measurement analysis of two radials with a common-origin point and its application.
Liu, Zhenyao; Yang, Jidong; Zhu, Weiwei; Zhou, Shang; Tan, Xuanping
2017-08-01
In spectral analysis, a chemical component is usually identified by its characteristic spectra, especially the peaks. If two components have overlapping spectral peaks, they are generally considered to be indiscriminate in current analytical chemistry textbooks and related literature. However, if the intensities of the overlapping major spectral peaks are additive, and have different rates of change with respect to variations in the concentration of the individual components, a simple method, named the 'common-origin ray', for the simultaneous determination of two components can be established. Several case studies highlighting its applications are presented. Copyright © 2017 John Wiley & Sons, Ltd.
Dynamics of Radially Expanding Liquid Sheets
Majumdar, Nayanika; Tirumkudulu, Mahesh S.
2018-04-01
The process of atomization often involves ejecting thin liquid sheets at high speeds from a nozzle that causes the sheet to flap violently and break up into fine droplets. The flapping of the liquid sheet has long been attributed to the sheet's interaction with the surrounding gas phase. Here, we present experimental evidence to the contrary and show that the flapping is caused by the thinning of the liquid sheet as it spreads out from the nozzle exit. The measured growth rates of the waves agree remarkably well with the predictions of a recent theory that accounts for the sheet's thinning but ignores aerodynamic interactions. We anticipate these results to not only lead to more accurate predictions of the final drop-size distribution but also enable more efficient designs of atomizers.
Observational hints of radial migration in disc galaxies from CALIFA
Ruiz-Lara, T.; Pérez, I.; Florido, E.; Sánchez-Blázquez, P.; Méndez-Abreu, J.; Sánchez-Menguiano, L.; Sánchez, S. F.; Lyubenova, M.; Falcón-Barroso, J.; van de Ven, G.; Marino, R. A.; de Lorenzo-Cáceres, A.; Catalán-Torrecilla, C.; Costantin, L.; Bland-Hawthorn, J.; Galbany, L.; García-Benito, R.; Husemann, B.; Kehrig, C.; Márquez, I.; Mast, D.; Walcher, C. J.; Zibetti, S.; Ziegler, B.
2017-01-01
Context. According to numerical simulations, stars are not always kept at their birth galactocentric distances but they have a tendency to migrate. The importance of this radial migration in shaping galactic light distributions is still unclear. However, if radial migration is indeed important,
Radial supports of face motors with slack compensation
Kuznetsova, I I; Gelman, A B; Krekina, T V
1982-01-01
The design of a radial support of a face motor with slack compensation is described, and gives the results of field tests which confirm the performance capacity of the experimental support both from the viewpoint of durability, and in relation to preventing radial slack of the face motor shaft.
Radial Color Gradient in a Globular Cluster 1. M68
Sukyoung Yi
1990-12-01
Full Text Available Stars in M68 from the observed color-magnitude diagrams with CCD were integrated to find any radial gradient. The result shows that M68 has a slightly bluer core. The main cause of these calculated radial color variations seems to come from the random distribution of giants.
Modelling and analysis of radial thermal stresses and temperature ...
A theoretical investigation has been undertaken to study operating temperatures, heat fluxes and radial thermal stresses in the valves of a modern diesel engine with and without air-cavity. Temperatures, heat fluxes and radial thermal stresses were measured theoretically for both cases under all four thermal loading ...
Radiographic study of distal radial physeal closure in thoroughbred horses
Vulcano, L.C.; Mamprim, M.J.; Muniz, L.M.R.; Moreira, A.F.; Luna, S.P.L.
1997-01-01
Monthly radiography was performed to study distal radial physeal closure in ten male and ten female Throughbred horses. The height, thoracic circumference and metacarpus circumference were also measured, Distal radial physeal closure time was sooner in females than males, and took 701 +/- 37 and 748 +/- 55 days respectively
Radial Velocities of 41 Kepler Eclipsing Binaries
Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.
2017-12-01
Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.
THE NIRSPEC ULTRACOOL DWARF RADIAL VELOCITY SURVEY
Blake, Cullen H.; Charbonneau, David; White, Russel J.
2010-01-01
We report the results of an infrared Doppler survey designed to detect brown dwarf and giant planetary companions to a magnitude-limited sample of ultracool dwarfs. Using the NIRSPEC spectrograph on the Keck II telescope, we obtained approximately 600 radial velocity (RV) measurements over a period of six years of a sample of 59 late-M and L dwarfs spanning spectral types M8/L0 to L6. A subsample of 46 of our targets has been observed on three or more epochs. We rely on telluric CH 4 absorption features in Earth's atmosphere as a simultaneous wavelength reference and exploit the rich set of CO absorption features found in the K-band spectra of cool stars and brown dwarfs to measure RVs and projected rotational velocities. For a bright, slowly rotating M dwarf standard we demonstrate an RV precision of 50 m s -1 and for slowly rotating L dwarfs we achieve a typical RV precision of approximately 200 m s -1 . This precision is sufficient for the detection of close-in giant planetary companions to mid-L dwarfs as well as more equal mass spectroscopic binary systems with small separations (a +0.7 -0.6 Gyr, similar to that of nearby sun-like stars. We simulate the efficiency with which we detect spectroscopic binaries and find that the rate of tight (a +8.6 -1.6 %, consistent with recent estimates in the literature of a tight binary fraction of 3%-4%.
Vortex Ring Dynamics in Radially Confined Domains
Stewart, Kelley; Niebel, Casandra; Jung, Sunghwan; Vlachos, Pavlos
2010-11-01
Vortex ring dynamics have been studied extensively in semi-infinite quiescent volumes. However, very little is known about vortex-ring formation in wall-bounded domains where vortex wall interaction will affect both the vortex ring pinch-off and propagation velocity. This study addresses this limitation and studies vortex formation in radially confined domains to analyze the affect of vortex-ring wall interaction on the formation and propagation of the vortex ring. Vortex rings were produced using a pneumatically driven piston cylinder arrangement and were ejected into a long cylindrical tube which defined the confined downstream domain. A range of confinement domains were studied with varying confinement diameters Velocity field measurements were performed using planar Time Resolved Digital Particle Image Velocimetry (TRDPIV) and were processed using an in-house developed cross-correlation PIV algorithm. The experimental analysis was used to facilitate the development of a theoretical model to predict the variations in vortex ring circulation over time within confined domains.
Seasonal variations of equatorial spread-F
B. V. Krishna Murthy
Full Text Available The occurrence of spread-F at Trivandrum (8.5°N, 77°E, dip 0.5°N has been investigated on a seasonal basis in sunspot maximum and minimum years in terms of the growth rate of irregularities by the generalized collisional Rayleigh-Taylor (GRT instability mechanism which includes the gravitational and cross-field instability terms. The occurrence statistics of spread-F at Trivandrum have been obtained using quarter hourly ionograms. The nocturnal variations of the growth rate of irregularities by the GRT mechanism have been estimated for different seasons in sunspot maximum and minimum years at Trivandrum using h'F values and vertical drift velocities obtained from ionograms. It is found that the seasonal variation of spread-F occurrence at Trivandrum can, in general, be accounted for on the basis of the GRT mechanism.
Seasonal variations of equatorial spread-F
K. S. V. Subbarao
1994-01-01
Full Text Available The occurrence of spread-F at Trivandrum (8.5°N, 77°E, dip 0.5°N has been investigated on a seasonal basis in sunspot maximum and minimum years in terms of the growth rate of irregularities by the generalized collisional Rayleigh-Taylor (GRT instability mechanism which includes the gravitational and cross-field instability terms. The occurrence statistics of spread-F at Trivandrum have been obtained using quarter hourly ionograms. The nocturnal variations of the growth rate of irregularities by the GRT mechanism have been estimated for different seasons in sunspot maximum and minimum years at Trivandrum using h'F values and vertical drift velocities obtained from ionograms. It is found that the seasonal variation of spread-F occurrence at Trivandrum can, in general, be accounted for on the basis of the GRT mechanism.
Diffusive spreading in nature, technology and society
Caro, Jürgen; Kärger, Jörg; Vogl, Gero
2018-01-01
This book deals with randomly moving objects and their spreading. The objects considered are particles like atoms and molecules, just as living beings like humans, animals, plants, bacteria and even abstract entities like ideas, rumors, information, innovations and linguistic features. The book explores and communicates the laws behind these movements and reports about astonishing similarities and very specific features typical of the given object under considerations. Leading scientists in disciplines as different as archeology, epidemics, linguistics and sociology, in contact with their colleagues from engineering, natural sciences and mathematics, introduce into the phenomena of spreading as relevant for their fields. An introductory chapter on “Spreading Fundamentals” provides a common basis for all these considerations, with a minimum of mathematics, selected and presented for enjoying rather than frustrating the reader.
Linear theory of equatorial spread F
Hudson, M.K.; Kennel, C.F.
1975-01-01
A fluid dispersion relation for the drift and interchange (Rayleigh-Taylor) modes in a collisional plasma forms the basis for a linear theory of equatorial spread F. The collisional drift mode growth rate will exceed the growth rate of the Rayleigh-Taylor mode at short perpendicular wavelengths and density gradient scale lengths, and the drift mode can grow on top side as well as on bottom side density gradients. However, below the F peak, where spread F predominates, it is concluded that both the drift and the Rayleigh-Taylor modes contribute to the total spread F spectrum, the Rayleigh-Taylor mode dominating at long and the drift mode at short perpendicular wavelengths above the ion Larmor radius
Radial shock wave therapy in dogs with hip osteoarthritis.
Souza, Alexandre N A; Ferreira, Marcio P; Hagen, Stefano C F; Patrício, Geni C F; Matera, Julia M
2016-01-01
The study aims were to evaluate the effects of radial shock wave therapy (RSWT) in dogs with hip osteoarthritis (OA) using clinical assessment and kinetic analysis. Thirty dogs diagnosed with bilateral hip OA and 30 healthy dogs were used. In OA dogs, one limb was randomly selected for treatment with RSWT while the contralateral limb served as an untreated control. Dogs were evaluated while walking on a pressure walkway. Peak vertical force (PVF) and vertical impulse (VI) were documented; symmetry index (SI) was also calculated. Blinded clinical evaluation was performed using a visual analogue scale (VAS). Owner perception data regarding levels of physical activity were also collected. The RSWT protocol (2000 pulses, 10 Hz, 2-3.4 bars) consisted of three weekly treatment sessions (days 1, 8 and 16). Follow-up data were collected 30, 60 and 90 days after the first session. Data were compared between time points, groups and limbs pairs. At the end of the experimental period, mean PVF and VI values had increased (25.9 to 27.6%BW and 2.1 to 12.7%BW × s respectively) in treated limbs, with no significant differences in control limbs; SI values suggest improvement. Mean PVF and VI remained lower in the treated compared to the healthy group following treatment. The VAS scores suggested improvement in pain and lameness in treated dogs. Owner perception data suggested improved levels of physical activity following treatment. Outcomes of this study suggested beneficial effects of RSWT in dogs with hip osteoarthritis.
Turbulent forces within river plumes affect spread
Bhattacharya, Atreyee
2012-08-01
When rivers drain into oceans through narrow mouths, hydraulic forces squeeze the river water into buoyant plumes that are clearly visible in satellite images. Worldwide, river plumes not only disperse freshwater, sediments, and nutrients but also spread pollutants and organisms from estuaries into the open ocean. In the United States, the Columbia River—the largest river by volume draining into the Pacific Ocean from North America—generates a plume at its mouth that transports juvenile salmon and other fish into the ocean. Clearly, the behavior and spread of river plumes, such as the Columbia River plume, affect the nation's fishing industry as well as the global economy.
The spread of gossip in American schools
Lind, P. G.; da Silva, L. R.; Andrade, J. S., Jr.; Herrmann, H. J.
2007-06-01
Gossip is defined as a rumor which specifically targets one individual and essentially only propagates within its friendship connections. How fast and how far a gossip can spread is for the first time assessed quantitatively in this study. For that purpose we introduce the "spread factor" and study it on empirical networks of school friendships as well as on various models for social connections. We discover that there exists an ideal number of friendship connections an individual should have to minimize the danger of gossip propagation.
Can rewiring strategy control the epidemic spreading?
Dong, Chao; Yin, Qiuju; Liu, Wenyang; Yan, Zhijun; Shi, Tianyu
2015-11-01
Relation existed in the social contact network can affect individuals' behaviors greatly. Considering the diversity of relation intimacy among network nodes, an epidemic propagation model is proposed by incorporating the link-breaking threshold, which is normally neglected in the rewiring strategy. The impact of rewiring strategy on the epidemic spreading in the weighted adaptive network is explored. The results show that the rewiring strategy cannot always control the epidemic prevalence, especially when the link-breaking threshold is low. Meanwhile, as well as strong links, weak links also play a significant role on epidemic spreading.
Development of Optimum Manufacturing Technologies of Radial Plates for the ITER Toroidal Field Coils
Nakajima, H.; Hamada, K.; Okuno, K.; Abe, K.; Kakui, H.; Yamaoka, H.; Maruyama, N.
2006-01-01
A stainless steel structure called a radial plate is used in the toroidal field (TF) coils of the International Thermonuclear Experimental Reactor (ITER) in order to support large electromagnetic force generated in the conductors. It is a 13.7 m x 8.7 m D-shaped plate having 11 grooves on each side in which conductors are wound. Although severe dimensional accuracy, for example flatness within 2 mm, and tight schedule that all radial plates for 9 TF coils (63 plates) have to be manufactured in about 4 years are required in manufacture of the radial plates, there are no industries in the world who have manufactured a large complicated structure like the radial plate with high accuracy. Japan Atomic Energy Agency (JAEA) has been studying rational manufacturing method and developing the optimum manufacturing technologies of the radial plates in order to satisfy the above requirements in collaboration with the Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI). Several trial manufactures of radial plates have been performed to clarify the following key points: · Effect of nitrogen content in material on machinability · Effect of cutting direction of a piece on deformation caused by machining · Effect of machining shape (curve or straight) on machining condition · Effect of laser welding technique on penetration and welding deformation Three different 316LN materials having nitrogen content of 0.12 %, 0.17%, and 0.20% were used to investigate nitrogen content effect on machinability. Machinability of lower nitrogen content material was slightly better than that of higher nitrogen content material. Three sectoral pieces were cut by plasma cutting technique from a hot rolled plate without any difficulties and one of them was machined to a curved segment of the radial plate having the same size as actual one. However, unacceptable large deformation over 5 mm flatness was found during machining which would be caused by curved shape of grooves and/or cutting direction
Algorithm for detection of the broken phase conductor in the radial networks
Ostojić Mladen M.
2016-01-01
Full Text Available The paper presents an algorithm for a directional relay to be used for a detection of the broken phase conductor in the radial networks. The algorithm would use synchronized voltages, measured at the beginning and at the end of the line, as input signals. During the process, the measured voltages would be phase-compared. On the basis of the normalized energy, the direction of the phase conductor, with a broken point, would be detected. Software tool Matlab/Simulink package has developed a radial network model which simulates the broken phase conductor. The simulations generated required input signals by which the algorithm was tested. Development of the algorithm along with the formation of the simulation model and the test results of the proposed algorithm are presented in this paper.
ZHENG Guangguo; ZHOU Dongsheng; WEI Xiaopeng; ZHANG Qiang
2012-01-01
Compactly supported radial basis function can enable the coefficient matrix of solving weigh linear system to have a sparse banded structure, thereby reducing the complexity of the algorithm. Firstly, based on the compactly supported radial basis function, the paper makes the complex quadratic function （Multiquadric, MQ for short） to be transformed and proposes a class of compactly supported MQ function. Secondly, the paper describes a method that interpolates discrete motion capture data to solve the motion vectors of the interpolation points and they are used in facial expression reconstruction. Finally, according to this characteris- tic of the uneven distribution of the face markers, the markers are numbered and grouped in accordance with the density level, and then be interpolated in line with each group. The approach not only ensures the accuracy of the deformation of face local area and smoothness, but also reduces the time complexity of computing.
Direct generation of abruptly focusing vortex beams using a 3/2 radial phase-only pattern.
Davis, Jeffrey A; Cottrell, Don M; Zinn, Jonathan M
2013-03-20
Abruptly focusing Airy beams have previously been generated using a radial cubic phase pattern that represents the Fourier transform of the Airy beam. The Fourier transform of this pattern is formed using a system length of 2f, where f is the focal length of the Fourier transform lens. In this work, we directly generate these abruptly focusing Airy beams using a 3/2 radial phase pattern encoded onto a liquid crystal display. The resulting optical system is much shorter. In addition, we can easily produce vortex patterns at the focal point of these beams. Experimental results match theoretical predictions.
RADIAL VELOCITY MONITORING OF KEPLER HEARTBEAT STARS
Shporer, Avi [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Fuller, Jim [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, Caltech, Pasadena, CA 91125 (United States); Isaacson, Howard [Department of Astronomy, University of California, Berkeley CA 94720 (United States); Hambleton, Kelly; Prša, Andrej [Department of Astrophysics and Planetary Science, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 (United States); Thompson, Susan E. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Kurtz, Donald W. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston, PR1 2HE (United Kingdom); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); O’Leary, Ryan M. [JILA, University of Colorado and NIST, 440 UCB, Boulder, 80309-0440 (United States)
2016-09-20
Heartbeat stars (HB stars) are a class of eccentric binary stars with close periastron passages. The characteristic photometric HB signal evident in their light curves is produced by a combination of tidal distortion, heating, and Doppler boosting near orbital periastron. Many HB stars continue to oscillate after periastron and along the entire orbit, indicative of the tidal excitation of oscillation modes within one or both stars. These systems are among the most eccentric binaries known, and they constitute astrophysical laboratories for the study of tidal effects. We have undertaken a radial velocity (RV) monitoring campaign of Kepler HB stars in order to measure their orbits. We present our first results here, including a sample of 22 Kepler HB systems, where for 19 of them we obtained the Keplerian orbit and for 3 other systems we did not detect a statistically significant RV variability. Results presented here are based on 218 spectra obtained with the Keck/HIRES spectrograph during the 2015 Kepler observing season, and they have allowed us to obtain the largest sample of HB stars with orbits measured using a single instrument, which roughly doubles the number of HB stars with an RV measured orbit. The 19 systems measured here have orbital periods from 7 to 90 days and eccentricities from 0.2 to 0.9. We show that HB stars draw the upper envelope of the eccentricity–period distribution. Therefore, HB stars likely represent a population of stars currently undergoing high eccentricity migration via tidal orbital circularization, and they will allow for new tests of high eccentricity migration theories.
Scaling laws for radial foil bearings
Honavara Prasad, Srikanth
The effects of fluid pressurization, structural deformation of the compliant members and heat generation in foil bearings make the design and analysis of foil bearings very complicated. The complex fluid-structural-thermal interactions in foil bearings also make modeling efforts challenging because these phenomena are governed by highly non-linear partial differential equations. Consequently, comparison of various bearing designs require detailed calculation of the flow fields (velocities, pressures), bump deflections (structural compliance) and heat transfer phenomena (viscous dissipation in the fluid, frictional heating, temperature profile etc.,) resulting in extensive computational effort (time/hardware). To obviate rigorous computations and aid in feasibility assessments of foil bearings of various sizes, NASA developed the "rule of thumb" design guidelines for estimation of journal bearing load capacity. The guidelines are based on extensive experimental data. The goal of the current work is the development of scaling laws for radial foil bearings to establish an analytical "rule of thumb" for bearing clearance and bump stiffness. The use of scale invariant Reynolds equation and experimentally observed NASA "rule of thumb" yield scale factors which can be deduced from first principles. Power-law relationships between: a. Bearing clearance and bearing radius, and b. bump stiffness and bearing radius, are obtained. The clearance and bump stiffness values obtained from scaling laws are used as inputs for Orbit simulation to study various cases. As the clearance of the bearing reaches the dimensions of the material surface roughness, asperity contact breaks the fluid film which results in wear. Similarly, as the rotor diameter increases (requiring larger bearing diameters), the load capacity of the fluid film should increase to prevent dry rubbing. This imposes limits on the size of the rotor diameter and consequently bearing diameter. Therefore, this thesis aims
RADIAL VELOCITY MONITORING OF KEPLER HEARTBEAT STARS
Shporer, Avi; Fuller, Jim; Isaacson, Howard; Hambleton, Kelly; Prša, Andrej; Thompson, Susan E.; Kurtz, Donald W.; Howard, Andrew W.; O’Leary, Ryan M.
2016-01-01
Heartbeat stars (HB stars) are a class of eccentric binary stars with close periastron passages. The characteristic photometric HB signal evident in their light curves is produced by a combination of tidal distortion, heating, and Doppler boosting near orbital periastron. Many HB stars continue to oscillate after periastron and along the entire orbit, indicative of the tidal excitation of oscillation modes within one or both stars. These systems are among the most eccentric binaries known, and they constitute astrophysical laboratories for the study of tidal effects. We have undertaken a radial velocity (RV) monitoring campaign of Kepler HB stars in order to measure their orbits. We present our first results here, including a sample of 22 Kepler HB systems, where for 19 of them we obtained the Keplerian orbit and for 3 other systems we did not detect a statistically significant RV variability. Results presented here are based on 218 spectra obtained with the Keck/HIRES spectrograph during the 2015 Kepler observing season, and they have allowed us to obtain the largest sample of HB stars with orbits measured using a single instrument, which roughly doubles the number of HB stars with an RV measured orbit. The 19 systems measured here have orbital periods from 7 to 90 days and eccentricities from 0.2 to 0.9. We show that HB stars draw the upper envelope of the eccentricity–period distribution. Therefore, HB stars likely represent a population of stars currently undergoing high eccentricity migration via tidal orbital circularization, and they will allow for new tests of high eccentricity migration theories.
Energy spread of different electron beams. Part I: thermoionic electron beams
Troyon, M.; Zinzindohoue, P.
1987-01-01
Energy spread ΔE and brightness B are the two important parameters for defining electron beam quality. An attempt in this paper for three types of generally used thermionic cathodes (hairpin, pointed and LaB6) and three particular Wehnelt shapes (re-entrant, flat and conical) has been made. It has been demonstrated that the energy spread is much more dependent on brightness than on total emitted current; for a given brightness the best gun is the one that gives smaller total emitted current. One can expect with pointed and LaB6 filaments when compared with hairpin filament at a given constant energy spread, the brightness increases by about 2 to 3 times. Higher brightness is obtained simultaneously with larger energy spread: for example, at 20 kV, the maximum brightness and corresponding energy spread of a pointed and a hairpin filament mounted in a flat Wehnelt are B = 4x10 5 Acm -2 sr -1 , ΔE = 3.3 eV and B = 6 x 10 4 Acm -2 sr -1 , ΔE = 2 eV respectively
Polarization reversal of electron cyclotron wave due to radial boundary condition
Takahashi, K.; Kaneko, T.; Hatakeyama, R.
2004-01-01
The electron cyclotron wave is an important plasma wave in the fields of basic plasma physics and nuclear fusion. Propagation and absorption of electromagnetic waves with electron cyclotron resonance (ECR) frequency are experimentally and theoretically investigated for the case of inhomogeneously magnetized plasma column with peripheral vacuum layer, when a left-hand polarized wave (LHPW) is selectively launched. The polarization reversal from the LHPW to the right-hand polarized wave is found to occur near the ECR point. As a result, it is clarified that the LHPW, which has been considered not to be absorbed at the ECR point, is absorbed near the ECR point. The phenomena can be explained by taking into account the effects of the radial boundary conditions. In addition, it is found that the polarization reversal point can be adjusted by the external parameters, for example, plasma radius. (authors)
Experiments on non-isothermal spreading
Ehrhard, P.
1992-09-01
Experiments are performed on axisymmetric spreading of viscous drops on glass plates. Two liquids are investigated: silicone oil (M-100) spreads to 'infinity' and paraffin oil spreads to a finite-radius steady state. The experiments with silicone oil partly recover the behaviour of previous workers data; those experiments with paraffin oil provide new data. It is found that gravitational forces dominate at long enough times while at shorter times capillary forces dominate. When the plate is heated or cooled with respect to the ambient gas, thermocapillary forces generate flows that alter the spreading dynamics. Heating (cooling) the plate is found to retard (augment) the streading. Moreover, in case of partial wetting, the finally-approached drop radius is smaller (larger) for a heated (cooled) plate. These data are all new. All these observations are in excellent quantitative agreement with the related model predictions of Ehrhard and Davis (1991). A breakdown of the axisymmetric character of the flow is observed only for very long times and/or very thin liquid layers. (orig.) [de
Social Distancing Strategies against Disease Spreading
Valdez, L. D.; Buono, C.; Macri, P. A.; Braunstein, L. A.
2013-12-01
The recurrent infectious diseases and their increasing impact on the society has promoted the study of strategies to slow down the epidemic spreading. In this review we outline the applications of percolation theory to describe strategies against epidemic spreading on complex networks. We give a general outlook of the relation between link percolation and the susceptible-infected-recovered model, and introduce the node void percolation process to describe the dilution of the network composed by healthy individual, i.e., the network that sustain the functionality of a society. Then, we survey two strategies: the quenched disorder strategy where an heterogeneous distribution of contact intensities is induced in society, and the intermittent social distancing strategy where health individuals are persuaded to avoid contact with their neighbors for intermittent periods of time. Using percolation tools, we show that both strategies may halt the epidemic spreading. Finally, we discuss the role of the transmissibility, i.e., the effective probability to transmit a disease, on the performance of the strategies to slow down the epidemic spreading.
Disease spreading in real-life networks
Gallos, Lazaros; Argyrakis, Panos
2002-08-01
In recent years the scientific community has shown a vivid interest in the network structure and dynamics of real-life organized systems. Many such systems, covering an extremely wide range of applications, have been recently shown to exhibit scale-free character in their connectivity distribution, meaning that they obey a power law. Modeling of epidemics on lattices and small-world networks suffers from the presence of a critical infection threshold, above which the entire population is infected. For scale-free networks, the original assumption was that the formation of a giant cluster would lead to an epidemic spreading in the same way as in simpler networks. Here we show that modeling epidemics on a scale-free network can greatly improve the predictions on the rate and efficiency of spreading, as compared to lattice models and small-world networks. We also show that the dynamics of a disease are greatly influenced by the underlying population structure. The exact same model can describe a plethora of networks, such as social networks, virus spreading in the Web, rumor spreading, signal transmission etc.
Spread of Rare Fungus from Vancouver Island
2006-12-20
Cryptococcus gattii, a rare fungus normally found in the tropics, has infected people and animals on Vancouver Island, Canada. Dr. David Warnock, Director, Division of Foodborne, Bacterial, and Mycotic Diseases, CDC, discusses public health concerns about further spread of this organism. Created: 12/20/2006 by Emerging Infectious Diseases. Date Released: 12/29/2006.
DataSpread: Unifying Databases and Spreadsheets.
Bendre, Mangesh; Sun, Bofan; Zhang, Ding; Zhou, Xinyan; Chang, Kevin ChenChuan; Parameswaran, Aditya
2015-08-01
Spreadsheet software is often the tool of choice for ad-hoc tabular data management, processing, and visualization, especially on tiny data sets. On the other hand, relational database systems offer significant power, expressivity, and efficiency over spreadsheet software for data management, while lacking in the ease of use and ad-hoc analysis capabilities. We demonstrate DataSpread, a data exploration tool that holistically unifies databases and spreadsheets. It continues to offer a Microsoft Excel-based spreadsheet front-end, while in parallel managing all the data in a back-end database, specifically, PostgreSQL. DataSpread retains all the advantages of spreadsheets, including ease of use, ad-hoc analysis and visualization capabilities, and a schema-free nature, while also adding the advantages of traditional relational databases, such as scalability and the ability to use arbitrary SQL to import, filter, or join external or internal tables and have the results appear in the spreadsheet. DataSpread needs to reason about and reconcile differences in the notions of schema, addressing of cells and tuples, and the current "pane" (which exists in spreadsheets but not in traditional databases), and support data modifications at both the front-end and the back-end. Our demonstration will center on our first and early prototype of the DataSpread, and will give the attendees a sense for the enormous data exploration capabilities offered by unifying spreadsheets and databases.
Unidirectional spreading of oil under solid ice
Weerasuriya, S.A.; Yapa, P.D.
1993-01-01
Equations are presented to describe the unidirectional spreading of oil under solid ice covers floating in calm water. These spreading equations are derived using a simplified form of the Navier-Stokes equations, and cover both the constant discharge and the constant volume modes. An equation for computing final slick length is also given. Laboratory experiments using physical models were conducted to verify the equations. The experiments used oils of different viscosities, ice cover roughnesses varying from smooth to rough, and a variety of discharge conditions. The emphasis of the study was on the dominant spreading mechanism for oil under ice, which is the buoyancy-viscous phase. The laboratory results agree closely with the theoretical predictions. Discrepancies can be attributed to the experimental difficulties and errors introduced from the assumptions made in deriving the theory. The equations presented will be useful in computing spreading rate during an accidental oil spill or in contingency planning. The equations are simple to use, suitable for hand calculations or for incorporation into numerical models for oil spill simulation. 24 refs., 10 figs., 1 tab
Modelling of fire spread in car parks
Noordijk, L.M.; Lemaire, A.D.
2005-01-01
Currently, design codes assume that in a car park fire at most 3-4 vehicles are on fire at the same time. Recent incidents in car parks have drawn international attention to such assumptions and have raised questions as to the fire spreading mechanism and the resulting fire load on the structure.
Spread of Rare Fungus from Vancouver Island
Cryptococcus gattii, a rare fungus normally found in the tropics, has infected people and animals on Vancouver Island, Canada. Dr. David Warnock, Director, Division of Foodborne, Bacterial, and Mycotic Diseases, CDC, discusses public health concerns about further spread of this organism
Energy spread in ion beam analysis
Szilagyi, E.
2000-01-01
In ion beam analysis (IBA) the depth profiles are extracted from the experimentally determined energy profiles. The spectra, however, are subject to finite energy resolution of both extrinsic and intrinsic origin. Calculation of those effects such as instrumental beam, geometry and detection-related energy and angular spreads as well as energy straggling, multiple scattering and Doppler effects in the sample itself is not trivial, especially since it involves treatment of non-independent random processes. A proper account for energy spread is vital in IBA not only for correct extraction of elemental and isotopic depth profiles from the measured spectra, but already prior to data acquisition, in optimising experimental conditions to reach the required depth resolution at a certain depth. After a short review of the literature on the different energy spread contributions experimental examples are given from resonance, RBS, elastic BS and ERDA practice in which an account for energy spread contributions is essential. Some further examples illustrate extraction of structural information (roughness, pore size, etc.) from elaborated depth resolution calculation for such layer structures
Energy spread in ion beam analysis
Szilagyi, E. E-mail: szilagyi@rmki.kkfki.hu
2000-03-01
In ion beam analysis (IBA) the depth profiles are extracted from the experimentally determined energy profiles. The spectra, however, are subject to finite energy resolution of both extrinsic and intrinsic origin. Calculation of those effects such as instrumental beam, geometry and detection-related energy and angular spreads as well as energy straggling, multiple scattering and Doppler effects in the sample itself is not trivial, especially since it involves treatment of non-independent random processes. A proper account for energy spread is vital in IBA not only for correct extraction of elemental and isotopic depth profiles from the measured spectra, but already prior to data acquisition, in optimising experimental conditions to reach the required depth resolution at a certain depth. After a short review of the literature on the different energy spread contributions experimental examples are given from resonance, RBS, elastic BS and ERDA practice in which an account for energy spread contributions is essential. Some further examples illustrate extraction of structural information (roughness, pore size, etc.) from elaborated depth resolution calculation for such layer structures.
Solar cycle dependence of the radial gradient of cosmic ray intensity
Allen, J.A.V.
1988-01-01
Observation of the interplanetary intensity of cosmic rays (E/sub p/>80 MeV) by Pioneers 10 and 11 now spans a sixteen-year time period 1972--1988 and heliocentric radial distances, r/sub 10/ and r/sub 11/, out to 43.7 AU for Pioneer 10 and 25.8 AU for Pioneer 11. Solar modulation continues to be present at the current distances of both spacecraft. The radial gradient of intensity is measured continuously over the slowly varying, outward moving radial segment Δr = r/sub 10/--r/sub 11/. The 50-day mean values of the gradient G vary systematically and cyclically in phase with solar activity as measured by sunspot number, with a maximum value of about 2.1 percent (AU)/sup -1/ at sunspot maximum and a miminum value of about 1.2 percent (AU)/sup -1/ at sunspot minimum. Thus, the apparent scale size of the heliospheric modulation region as measured by 1/G is about 48 AU at solar max and about 83 AU at solar min: a result that is the inverse of the conjectural inference of Randall and Van Allen [1986] using most of the same body of data but a different analytical point of view. There is persuasive evidence that G is independent of radial distance over the range 2.5 to 34 AU in the mid-point of the segment Δr. No dependence of G on heliographic latitude is evident, but this result does not lend itself to a quantitative statement. copyright American Geophysical Union 1988
Radial head fracture associated with posterior interosseous nerve injury
Bernardo Barcellos Terra
Full Text Available ABSTRACT Fractures of the radial head and radial neck correspond to 1.7-5.4% of all fractures and approximately 30% may present associated injuries. In the literature, there are few reports of radial head fracture with posterior interosseous nerve injury. This study aimed to report a case of radial head fracture associated with posterior interosseous nerve injury. CASE REPORT: A male patient, aged 42 years, sought medical care after falling from a skateboard. The patient related pain and limitation of movement in the right elbow and difficulty to extend the fingers of the right hand. During physical examination, thumb and fingers extension deficit was observed. The wrist extension showed a slight radial deviation. After imaging, it became evident that the patient had a fracture of the radial head that was classified as grade III in the Mason classification. The patient underwent fracture fixation; at the first postoperative day, thumb and fingers extension was observed. Although rare, posterior interosseous nerve branch injury may be associated with radial head fractures. In the present case, the authors believe that neuropraxia occurred as a result of the fracture hematoma and edema.
Stellar Angular Momentum Distributions and Preferential Radial Migration
Wyse, Rosemary; Daniel, Kathryne J.
2018-04-01
I will present some results from our recent investigations into the efficiency of radial migration in stellar disks of differing angular momentum distributions, within a given adopted 2D spiral disk potential. We apply to our models an analytic criterion that determines whether or not individual stars are in orbits that could lead to radial migration around the corotation resonance. We couch our results in terms of the local stellar velocity dispersion and find that the fraction of stars that could migrate radially decreases as the velocity dispersion increases. I will discuss implications and comparisons with the results of other approaches.
Research on Radial Vibration of a Circular Plate
Wei Liu
2016-01-01
Full Text Available Radial vibration of the circular plate is presented using wave propagation approach and classical method containing Bessel solution and Hankel solution for calculating the natural frequency theoretically. In cylindrical coordinate system, in order to obtain natural frequency, propagation and reflection matrices are deduced at the boundaries of free-free, fixed-fixed, and fixed-free using wave propagation approach. Furthermore, radial phononic crystal is constructed by connecting two materials periodically for the analysis of band phenomenon. Also, Finite Element Simulation (FEM is adopted to verify the theoretical results. Finally, the radial and piezoelectric effects on the band are also discussed.
Topological data analysis of contagion maps for examining spreading processes on networks.
Taylor, Dane; Klimm, Florian; Harrington, Heather A; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A; Mucha, Peter J
2015-07-21
Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges-for example, due to airline transportation or communication media-allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.
Topological data analysis of contagion maps for examining spreading processes on networks
Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramár, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.
2015-07-01
Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges--for example, due to airline transportation or communication media--allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct `contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.
Topological data analysis of contagion maps for examining spreading processes on networks
Taylor, Dane; Klimm, Florian; Harrington, Heather A.; Kramá r, Miroslav; Mischaikow, Konstantin; Porter, Mason A.; Mucha, Peter J.
2015-01-01
Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth's surface; however, in modern contagions long-range edges - for example, due to airline transportation or communication media - allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct 'contagion maps' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.
Topological data analysis of contagion maps for examining spreading processes on networks
Taylor, Dane
2015-07-21
Social and biological contagions are influenced by the spatial embeddedness of networks. Historically, many epidemics spread as a wave across part of the Earth\\'s surface; however, in modern contagions long-range edges - for example, due to airline transportation or communication media - allow clusters of a contagion to appear in distant locations. Here we study the spread of contagions on networks through a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct \\'contagion maps\\' that use multiple contagions on a network to map the nodes as a point cloud. By analysing the topology, geometry and dimensionality of manifold structure in such point clouds, we reveal insights to aid in the modelling, forecast and control of spreading processes. Our approach highlights contagion maps also as a viable tool for inferring low-dimensional structure in networks.
A comparative study for the estimation of geodetic point velocity by ...
Geodetic point velocity; artificial neural networks; back propagation; radial basis function; Kriging. J. Earth Syst. Sci. ...... The employment of BPANN is an alternative tool to KRIG for .... Computational Intelligence and Multimedia Applications.
Granular Corneal Dystrophy Manifesting after Radial Keratotomy
Sepehr Feizi
2008-12-01
Full Text Available
PURPOSE: To report manifestation of granular corneal dystrophy after radial keratotomy (RK. CASE REPORT: A 32-year-old man presented with white radial lines in both corneas. He had undergone uncomplicated RK in both eyes 8 years ago. Preoperative refraction had been OD: -3.5 -0.75@180 and OS: -3.0 -0.5@175. Uncorrected visual acuity was OD: 8/10 and OS: 7/10; best corrected visual acuity was 9/10 in both eyes with OD: -0.5 -0.5@60 and OS: -0.75 -0.5@80. Slit lamp examination revealed discrete well-demarcated whitish lesions with clear intervening stroma in the central anterior cornea consistent with granular dystrophy. Similar opacities were present within the RK incisions. CONCLUSION: Granular dystrophy deposits may appear within RK incisions besides other previously reported locations.
Endoscopic Radial Artery Harvest for Coronary Artery Bypass Surgery
Kuan-Ming Chiu
2006-01-01
Conclusion: Endoscopic harvest of the radial artery is technically demanding, but excellent results can be achieved. The endoscopic approach can provide suitable conduits in a less invasive way than the open harvest technique.
Analyzing radial acceleration with a smartphone acceleration sensor
Vogt, Patrik; Kuhn, Jochen
2013-03-01
This paper continues the sequence of experiments using the acceleration sensor of smartphones (for description of the function and the use of the acceleration sensor, see Ref. 1) within this column, in this case for analyzing the radial acceleration.
Social networks and spreading of epidemics
Trimper, Steffen; Zheng, Dafang; Brandau, Marian
2004-05-01
Epidemiological processes are studied within a recently proposed social network model using the susceptible-infected-refractory dynamics (SIR) of an epidemic. Within the network model, a population of individuals may be characterized by H independent hierarchies or dimensions, each of which consists of groupings of individuals into layers of subgroups. Detailed numerical simulations reveals that for H > 1, the global spreading results regardless of the degree of homophily α of the individuals forming a social circle. For H = 1, a transition from a global to a local spread occurs as the population becomes decomposed into increasingly homophilous groups. Multiple dimensions in classifying individuals (nodes) thus make a society (computer network) highly susceptible to large scale outbreaks of infectious diseases (viruses). The SIR-model can be extended by the inclusion of waiting times resulting in modified distribution function of the recovered.
GENERAL: Epidemic spreading on networks with vaccination
Shi, Hong-Jing; Duan, Zhi-Sheng; Chen, Guan-Rong; Li, Rong
2009-08-01
In this paper, a new susceptible-infected-susceptible (SIS) model on complex networks with imperfect vaccination is proposed. Two types of epidemic spreading patterns (the recovered individuals have or have not immunity) on scale-free networks are discussed. Both theoretical and numerical analyses are presented. The epidemic thresholds related to the vaccination rate, the vaccination-invalid rate and the vaccination success rate on scale-free networks are demonstrated, showing different results from the reported observations. This reveals that whether or not the epidemic can spread over a network under vaccination control is determined not only by the network structure but also by the medicine's effective duration. Moreover, for a given infective rate, the proportion of individuals to vaccinate can be calculated theoretically for the case that the recovered nodes have immunity. Finally, simulated results are presented to show how to control the disease prevalence.
Epidemic spreading on weighted complex networks
Sun, Ye; Liu, Chuang; Zhang, Chu-Xu; Zhang, Zi-Ke
2014-01-01
Nowadays, the emergence of online services provides various multi-relation information to support the comprehensive understanding of the epidemic spreading process. In this Letter, we consider the edge weights to represent such multi-role relations. In addition, we perform detailed analysis of two representative metrics, outbreak threshold and epidemic prevalence, on SIS and SIR models. Both theoretical and simulation results find good agreements with each other. Furthermore, experiments show that, on fully mixed networks, the weight distribution on edges would not affect the epidemic results once the average weight of whole network is fixed. This work may shed some light on the in-depth understanding of epidemic spreading on multi-relation and weighted networks.
Epidemic spreading on weighted complex networks
Sun, Ye [Institute of Information Economy, Hangzhou Normal University, Hangzhou 311121 (China); Alibaba Research Center of Complexity Science, Hangzhou Normal University, Hangzhou 311121 (China); Liu, Chuang, E-mail: liuchuang@hznu.edu.cn [Institute of Information Economy, Hangzhou Normal University, Hangzhou 311121 (China); Alibaba Research Center of Complexity Science, Hangzhou Normal University, Hangzhou 311121 (China); Zhang, Chu-Xu [Institute of Information Economy, Hangzhou Normal University, Hangzhou 311121 (China); Alibaba Research Center of Complexity Science, Hangzhou Normal University, Hangzhou 311121 (China); Zhang, Zi-Ke, E-mail: zhangzike@gmail.com [Institute of Information Economy, Hangzhou Normal University, Hangzhou 311121 (China); Alibaba Research Center of Complexity Science, Hangzhou Normal University, Hangzhou 311121 (China)
2014-01-31
Nowadays, the emergence of online services provides various multi-relation information to support the comprehensive understanding of the epidemic spreading process. In this Letter, we consider the edge weights to represent such multi-role relations. In addition, we perform detailed analysis of two representative metrics, outbreak threshold and epidemic prevalence, on SIS and SIR models. Both theoretical and simulation results find good agreements with each other. Furthermore, experiments show that, on fully mixed networks, the weight distribution on edges would not affect the epidemic results once the average weight of whole network is fixed. This work may shed some light on the in-depth understanding of epidemic spreading on multi-relation and weighted networks.
Carranza, Christian L; Ballegaard, Martin; Werner, Mads U
2014-01-01
the postoperative complications will be registered, and we will evaluate muscular function, scar appearance, vascular supply to the hand, and the graft patency including the patency of the central radial artery anastomosis. A patency evaluation by multi-slice computer tomography will be done at one year...... to aorto-radial revascularisation techniques but this objective is exploratory. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT01848886.Danish Ethics committee number: H-3-2012-116.Danish Data Protection Agency: 2007-58-0015/jr.n:30-0838....
Anterior transposition of the radial nerve--a cadaveric study.
Yakkanti, Madhusudhan R; Roberts, Craig S; Murphy, Joshua; Acland, Robert D
2008-01-01
The radial nerve is at risk during the posterior plating of the humerus. The purpose of this anatomic study was to assess the extent of radial nerve dissection required for anterior transposition through the fracture site (transfracture anterior transposition). A cadaver study was conducted approaching the humerus by a posterior midline incision. The extent of dissection of the nerve necessary for plate fixation of the humerus fracture was measured. An osteotomy was created to model a humeral shaft fracture at the spiral groove (OTA classification 12-A2, 12-A3). The radial nerve was then transposed anterior to the humeral shaft through the fracture site. The additional dissection of the radial nerve and the extent of release of soft tissue from the humerus shaft to achieve the transposition were measured. Plating required a dissection of the radial nerve 1.78 cm proximal and 2.13 cm distal to the spiral groove. Transfracture anterior transposition of the radial nerve required an average dissection of 2.24 cm proximal and 2.68 cm distal to the spiral groove. The lateral intermuscular septum had to be released for 2.21 cm on the distal fragment to maintain laxity of the transposed nerve. Transfracture anterior transposition of the radial nerve before plating is feasible with dissection proximal and distal to the spiral groove and elevation of the lateral intermuscular septum. Potential clinical advantages of this technique include enhanced fracture site visualization, application of broader plates, and protection of the radial nerve during the internal fixation.
Radial-piston pump for drive of test machines
Nizhegorodov, A. I.; Gavrilin, A. N.; Moyzes, B. B.; Cherkasov, A. I.; Zharkevich, O. M.; Zhetessova, G. S.; Savelyeva, N. A.
2018-01-01
The article reviews the development of radial-piston pump with phase control and alternating-flow mode for seismic-testing platforms and other test machines. The prospects for use of the developed device are proved. It is noted that the method of frequency modulation with the detection of the natural frequencies is easily realized by using the radial-piston pump. The prospects of further research are given proof.
Radially Polarized Conical Beam from an Embedded Etched Fiber
Kalaidji , D.; Spajer , M.; Marthouret , N.; Grosjean , T.
2009-01-01
International audience; We propose a method for producing a conical beam based on the lateral refraction of the TM01 mode from a two-mode fiber after chemical etching of the cladding, and for controlling its radial polarization. The whole power of the guided mode is transferred to the refracted beam with low diffraction. Polarization control by a series of azimuthal detectors and a stress controller affords the transmission of a stabilized radial polarization through an optical fiber. A solid...
Luxation of the radial carpal bone in a cat
Pitcher, G.D.C.
1996-01-01
A case of radial carpal bone luxation in the cat and its management is described. Open reduction was performed and surgically maintained, in combination with repair of rupture of the short radial collateral ligament and joint capsule. The carpus was supported for one month following surgery by application of transarticular external fixation. Four months after treatment the cat was sound, despite evidence of degenerative joint disease. The mechanism of luxation appears to be analogous to that seen in the dog
Introducing radiality constraints in capacitated location-routing problems
Eliana Mirledy Toro Ocampo
2017-03-01
Full Text Available In this paper, we introduce a unified mathematical formulation for the Capacitated Vehicle Routing Problem (CVRP and for the Capacitated Location Routing Problem (CLRP, adopting radiality constraints in order to guarantee valid routes and eliminate subtours. This idea is inspired by formulations already employed in electric power distribution networks, which requires a radial topology in its operation. The results show that the proposed formulation greatly improves the convergence of the solver.
Spread of edema with brain tumors
Hosoya, Takaaki
1987-01-01
Cerebral edema associated with brain tumors is visualized on CT as a hypodensity lesion involving mainly the white matter. The detailed features of its evolution were investigated in a review of CT examinations performed on 56 patients with brain tumors, with the following results. 1. The susceptibility to edema varied according to the types of fibers. Association fibers were more sensitive to edema than projection and commissural fibers. 2. The edema had a characteristic of spreading along not only the association fibers but also the projection and commissural fibers. 3. The spread of edema along the association fibers was interupted in sites of convergence of the fibers such as the external capsule and just beneath the central sulcus in the certrum semiovale. 4. In some cases with intra-axial tumors, the edema extended mainly in the projection and commissural fibers considered to be more resistant to it. For example, in cases with parietal and temporal intra-axial tumors, the posterior limb of the internal capsule was often more edematous than the external capsule. 5. The edema associated with meningioma had a characteristic of spreading mainly along the association fibers. When situated close to the corpus callosum, however, the commissural fibers were also involved. Edema extending mainly in the internal capsule, thus, was rarely observed in meningioma. 6. There was unique pattern of spread of edema in frontal tumors, which differentiated their CT pattern. Therefore, the location of the tumor could be correctly diagnosed by the pattern of the edema extension, even near the central sulcus or in the operculum region. (author)
Spreading of a relativistic wave packet
Almeida, C.; Jabs, A.
1983-01-01
A simple general proof that the spreading velocity of a relativistic free wave packet of the Broglie waves is limited is presented. For a wide class of packets it is confirmed that the limit is the velocity of light, and it is shown how this limit is approached when the width Δp of the wave packet in momentum space tends to infinity and the minimum width σ(t=o) in ordinary space tends to zero. (Author) [pt
The Equilibrium Spreading Tension of Pulmonary Surfactant
Dagan, Maayan P.; Hall, Stephen B.
2015-01-01
Monomolecular films at an air/water interface coexist at the equilibrium spreading tension (γe) with the bulk phase from which they form. For individual phospholipids, γe is single-valued, and separates conditions at which hydrated vesicles adsorb from tensions at which overcompressed monolayers collapse. With pulmonary surfactant, isotherms show that monolayers compressed on the surface of bubbles coexist with the three-dimensional collapsed phase over a range of surface tensions. γe therefo...
Physical model for membrane protrusions during spreading
Chamaraux, F; Ali, O; Fourcade, B; Keller, S; Bruckert, F
2008-01-01
During cell spreading onto a substrate, the kinetics of the contact area is an observable quantity. This paper is concerned with a physical approach to modeling this process in the case of ameboid motility where the membrane detaches itself from the underlying cytoskeleton at the leading edge. The physical model we propose is based on previous reports which highlight that membrane tension regulates cell spreading. Using a phenomenological feedback loop to mimic stress-dependent biochemistry, we show that the actin polymerization rate can be coupled to the stress which builds up at the margin of the contact area between the cell and the substrate. In the limit of small variation of membrane tension, we show that the actin polymerization rate can be written in a closed form. Our analysis defines characteristic lengths which depend on elastic properties of the membrane–cytoskeleton complex, such as the membrane–cytoskeleton interaction, and on molecular parameters, the rate of actin polymerization. We discuss our model in the case of axi-symmetric and non-axi-symmetric spreading and we compute the characteristic time scales as a function of fundamental elastic constants such as the strength of membrane–cytoskeleton adherence
Diffusion, spread, and migration of botulinum toxin.
Ramirez-Castaneda, Juan; Jankovic, Joseph; Comella, Cynthia; Dashtipour, Khashayar; Fernandez, Hubert H; Mari, Zoltan
2013-11-01
Botulinum toxin (BoNT) is an acetylcholine release inhibitor and a neuromuscular blocking agent used for the treatment of a variety of neurologic and medical conditions. The efficacy and safety of BoNT depends on accurate selection and identification of intended targets but also may be determined by other factors, including physical spread of the molecule from the injection site, passive diffusion, and migration to distal sites via axonal or hematogenous transport. The passive kinetic dispersion of the toxin away from the injection site in a gradient-dependent manner may also play a role in toxin spread. In addition to unique properties of the various BoNT products, volume and dilution may also influence local and systemic distribution of BoNT. Most of the local and remote complications of BoNT injections are thought to be due to unwanted spread or diffusion of the toxin's biologic activity into adjacent and distal muscles. Despite widespread therapeutic and cosmetic use of BoNT over more than three decades, there is a remarkable paucity of published data on the mechanisms of distribution and its effects on clinical outcomes. The primary aim of this article is to critically review the available experimental and clinical literature and place it in the practical context. © 2013 International Parkinson and Movement Disorder Society.
Mechanistic movement models to understand epidemic spread.
Fofana, Abdou Moutalab; Hurford, Amy
2017-05-05
An overlooked aspect of disease ecology is considering how and why animals come into contact with one and other resulting in disease transmission. Mathematical models of disease spread frequently assume mass-action transmission, justified by stating that susceptible and infectious hosts mix readily, and foregoing any detailed description of host movement. Numerous recent studies have recorded, analysed and modelled animal movement. These movement models describe how animals move with respect to resources, conspecifics and previous movement directions and have been used to understand the conditions for the occurrence and the spread of infectious diseases when hosts perform a type of movement. Here, we summarize the effect of the different types of movement on the threshold conditions for disease spread. We identify gaps in the literature and suggest several promising directions for future research. The mechanistic inclusion of movement in epidemic models may be beneficial for the following two reasons. Firstly, the estimation of the transmission coefficient in an epidemic model is possible because animal movement data can be used to estimate the rate of contacts between conspecifics. Secondly, unsuccessful transmission events, where a susceptible host contacts an infectious host but does not become infected can be quantified. Following an outbreak, this enables disease ecologists to identify 'near misses' and to explore possible alternative epidemic outcomes given shifts in ecological or immunological parameters.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Author(s).
Spreading Sequence Design and Theoretical Limits for Quasisynchronous CDMA Systems
Fan Pingzhi
2004-01-01
Full Text Available For various quasisynchronous (QS CDMA systems such as LAS-CDMA system which emerged recently, in order to reduce or eliminate the multiple access interference and multipath interference, it is required to design a set of spreading sequences which are mutually orthogonal within a designed shift zone, called orthogonal zone. For traditional orthogonal sequences, such as Walsh sequences and orthogonal Gold sequences, the orthogonality can only be achieved at the inphase point; in other words, the orthogonality is destroyed whenever there is a relative shift between the sequences, that is, their orthogonal zone is 0. In this paper, new concepts of generalized orthogonality (GO and generalized quasiorthogonality (GQO for spreading sequence design in both direct sequence (DS QS-CDMA systems and time/frequency hopping (TH/FH QS-CDMA systems are presented. Besides, selected GO/GQO sequence designs and general theoretical periodic and aperiodic limits, together with several applications in QS-CDMA systems, are also reviewed and analyzed.
Channeling of protons through radial deformed carbon nanotubes
Borka Jovanović, V., E-mail: vborka@vinca.rs [Atomic Physics Laboratory (040), Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Borka, D. [Atomic Physics Laboratory (040), Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Galijaš, S.M.D. [Faculty of Physics, University of Belgrade, P.O. Box 368, 11001 Belgrade (Serbia)
2017-05-18
Highlights: • For the first time we presented theoretically obtained distributions of channeled protons with radially deformed SWNT. • Our findings indicate that influence of the radial deformation is very strong and it should not be omitted in simulations. • We show that the spatial and angular distributions depend strongly of level of radial deformation of nanotube. • Our obtained results can be compared with measured distributions to reveal the presence of various types of defects in SWNT. - Abstract: In this paper we have presented a theoretical investigation of the channeling of 1 GeV protons with the radial deformed (10, 0) single-wall carbon nanotubes (SWNTs). We have calculated channeling potential within the deformed nanotubes. For the first time we presented theoretically obtained spatial and angular distributions of channeled protons with radially deformed SWNT. We used a Monte Carlo (MC) simulation technique. We show that the spatial and angular distributions depend strongly of level of radial deformation of nanotube. These results may be useful for nanotube characterization and production and guiding of nanosized ion beams.
Chandarana, Hersh; Block, Kai T.; Winfeld, Matthew J.; Lala, Shailee V.; Mazori, Daniel; Giuffrida, Emalyn; Babb, James S.; Milla, Sarah S. [New York University Langone Medical Center, Department of Radiology, New York, NY (United States)
2014-02-15
To compare the image quality of contrast-enhanced abdominopelvic 3D fat-suppressed T1-weighted gradient-echo imaging with radial and conventional Cartesian k-space acquisition schemes in paediatric patients. Seventy-three consecutive paediatric patients were imaged at 1.5 T with sequential contrast-enhanced T1-weighted Cartesian (VIBE) and radial gradient echo (GRE) acquisition schemes with matching parameters when possible. Cartesian VIBE was acquired as a breath-hold or as free breathing in patients who could not suspend respiration, followed by free-breathing radial GRE in all patients. Two paediatric radiologists blinded to the acquisition schemes evaluated multiple parameters of image quality on a five-point scale, with higher score indicating a more optimal examination. Lesion presence or absence, conspicuity and edge sharpness were also evaluated. Mixed-model analysis of variance was performed to compare radial GRE and Cartesian VIBE. Radial GRE had significantly (all P < 0.001) higher scores for overall image quality, hepatic edge sharpness, hepatic vessel clarity and respiratory motion robustness than Cartesian VIBE. More lesions were detected on radial GRE by both readers than on Cartesian VIBE, with significantly higher scores for lesion conspicuity and edge sharpness (all P < 0.001). Radial GRE has better image quality and lesion conspicuity than conventional Cartesian VIBE in paediatric patients undergoing contrast-enhanced abdominopelvic MRI. (orig.)
Correlation of ICME Magnetic Fields at Radially Aligned Spacecraft
Good, S. W.; Forsyth, R. J.; Eastwood, J. P.; Möstl, C.
2018-03-01
The magnetic field structures of two interplanetary coronal mass ejections (ICMEs), each observed by a pair of spacecraft close to radial alignment, have been analysed. The ICMEs were observed in situ by MESSENGER and STEREO-B in November 2010 and November 2011, while the spacecraft were separated by more than 0.6 AU in heliocentric distance, less than 4° in heliographic longitude, and less than 7° in heliographic latitude. Both ICMEs took approximately two days to travel between the spacecraft. The ICME magnetic field profiles observed at MESSENGER have been mapped to the heliocentric distance of STEREO-B and compared directly to the profiles observed by STEREO-B. Figures that result from this mapping allow for easy qualitative assessment of similarity in the profiles. Macroscale features in the profiles that varied on timescales of one hour, and which corresponded to the underlying flux rope structure of the ICMEs, were well correlated in the solar east-west and north-south directed components, with Pearson's correlation coefficients of approximately 0.85 and 0.95, respectively; microscale features with timescales of one minute were uncorrelated. Overall correlation values in the profiles of one ICME were increased when an apparent change in the flux rope axis direction between the observing spacecraft was taken into account. The high degree of similarity seen in the magnetic field profiles may be interpreted in two ways. If the spacecraft sampled the same region of each ICME ( i.e. if the spacecraft angular separations are neglected), the similarity indicates that there was little evolution in the underlying structure of the sampled region during propagation. Alternatively, if the spacecraft observed different, nearby regions within the ICMEs, it indicates that there was spatial homogeneity across those different regions. The field structure similarity observed in these ICMEs points to the value of placing in situ space weather monitors well upstream of the
Design and performance analysis of gas and liquid radial turbines
Tan, Xu
In the first part of the research, pumps running in reverse as turbines are studied. This work uses experimental data of wide range of pumps representing the centrifugal pumps' configurations in terms of specific speed. Based on specific speed and specific diameter an accurate correlation is developed to predict the performances at best efficiency point of the centrifugal pump in its turbine mode operation. The proposed prediction method yields very good results to date compared to previous such attempts. The present method is compared to nine previous methods found in the literature. The comparison results show that the method proposed in this paper is the most accurate. The proposed method can be further complemented and supplemented by more future tests to increase its accuracy. The proposed method is meaningful because it is based both specific speed and specific diameter. The second part of the research is focused on the design and analysis of the radial gas turbine. The specification of the turbine is obtained from the solar biogas hybrid system. The system is theoretically analyzed and constructed based on the purchased compressor. Theoretical analysis results in a specification of 100lb/min, 900ºC inlet total temperature and 1.575atm inlet total pressure. 1-D and 3-D geometry of the rotor is generated based on Aungier's method. 1-D loss model analysis and 3-D CFD simulations are performed to examine the performances of the rotor. The total-to-total efficiency of the rotor is more than 90%. With the help of CFD analysis, modifications on the preliminary design obtained optimized aerodynamic performances. At last, the theoretical performance analysis on the hybrid system is performed with the designed turbine.
Evaluation of Spur Gear Pair on Tooth Root Bending Stress in Radial Misalignment Contact Condition
Lias M.R.
2014-07-01
Full Text Available This paper evaluates the effects of radial misalignment contact on the tooth root bending stress values of spur gear pair during the gear meshing cycle. Radial misalignment (H is denoted as the deviation of the pinion nominal position with respect to the gear tooth along the pinion axis to the gear which happened from manufacturing assembly errors (AE. A model based on involute 3D parametric CAD geometry, of spur gear design ISO 6336:2006 is analysed with allowable AE values from minimum 10μm to maximum 40μm with Finite-Element Method (FEM model based methodology using a dynamics module from ANSYS. Main parameters of interest are the Tooth root bending stress (TRBS in H condition with AE along the critical region with respect to face width of pinion-gear section. A comparison between standard High point single tooth contact models (HPSTC to this model showed a good agreement that H with AE had great influence on TRBS as the values’ increase. Radial misalignment influence factor (RMIF was introduced as indication of TRBS values in consideration of H due to AE shows and inverted patterns higher for pinion, give a good justification that the pinion is weaker compared to the gear.
Radial transport in the Elmo Bumpy Torus in collisionless electron regimes
Jaeger, E.F.; Hedrick, C.L.; Spong, D.A.
1979-01-01
One important area of disagreement between radial transport theory and the ELMO Bumpy Torus (EBT) experiment has been the degree of collisionality of the toroidal plasma electrons. Experiment shows relatively warm electrons (kTsub(e) approximately 300-600eV) and collisionless scaling, i.e. energy confinement increasing with temperature. But results of early one-dimensional (1-D), neoclassical transport models with radially inward pointing electric fields are limited to relatively cool electrons (kTsub(e) approximately 100-200eV) and collisional scaling. In this paper these early results are extended to include lowest-order effects of ion diffusion in regions where poloidal drift frequencies are small. The effects of direct, or non-diffusive, losses in such regions are neglected along with the effects of finite radial electric fields on electron transport coefficients and of self-consistent poloidal electric fields on ion transport coefficients. Results show that solutions in the collisionless electron regime do exist. Furthermore, when the effects of finite electron ring beta on magnetic fields near the plasma edge are included, these solutions occur at power levels consistent with experiment. (author)
The rate of rise, fall and gravity spreading at Siahou diapir (Southern Iran)
Aftabi, P.; Roustaie, M.
2009-04-01
InSAR imaging can be used for extracting three dimensional information of the diapirs surface by using the phase part of the radar signal. We used InSAR to examine the cumulative surface deformation between 920706 to 060518, in a 10×10 km region surrounding the salt diapir at Kuh-e-Namak Siahou. The interferograms span periods was between 35-70 and 1248 days. Images acquired in 12 increments provided by ESA. This technique used here involves computation and subsequent combinations of interferometric phase gradient maps were used for mapping the salt flow deformation in the Zagros. Kuh-e-Namak Siahou is one of the salt extrusions currently active in the Zagros range in Iran. Salt rises from a mother salt horizon about 4 km deep and extruded as a dome with glacier on the surface. The geometry and inferred flow pattern of the salt changed between the increments, emphasizing that the extrusion rate and gravity spreading is not steady. Elevations in the salt mountain range from 1000 to 1640 meters and the displacements exceed to 20cm per year . Our InSAR study(Fig1) suggest that the dimensions and velocity of the salt movements are changing between 2 to 20mm per year(-0.7 to0.59 mm per day).The rate of surface dissolution changed between 2 to 4 cm a-1, and its rate of rise out of its orifice at 0 to 200 mm per year. The InSAR study suggest that the vigorous salt extrusion in Siahou is probably active.The deep source probably rise at a similar rates in the past but it fall in the time of InSAR study. The rate of fall was 260 mm per year(for 14 years). The InSAR images suggest that salt extrusion in Siahou flow laterally at rate 20-25 mm per year and the namakiers felt at -2 mm per month. The InSAR results indicated concentric and radial flow in the diapir from a central point at summit and spreading glaciers in sideways.Phase differences measured in our interferograms generally in the range of 0-260 mm/yr(-260 mm) within the studied period, with exceptional high rates
A ripple-spreading genetic algorithm for the aircraft sequencing problem.
Hu, Xiao-Bing; Di Paolo, Ezequiel A
2011-01-01
When genetic algorithms (GAs) are applied to combinatorial problems, permutation representations are usually adopted. As a result, such GAs are often confronted with feasibility and memory-efficiency problems. With the aircraft sequencing problem (ASP) as a study case, this paper reports on a novel binary-representation-based GA scheme for combinatorial problems. Unlike existing GAs for the ASP, which typically use permutation representations based on aircraft landing order, the new GA introduces a novel ripple-spreading model which transforms the original landing-order-based ASP solutions into value-based ones. In the new scheme, arriving aircraft are projected as points into an artificial space. A deterministic method inspired by the natural phenomenon of ripple-spreading on liquid surfaces is developed, which uses a few parameters as input to connect points on this space to form a landing sequence. A traditional GA, free of feasibility and memory-efficiency problems, can then be used to evolve the ripple-spreading related parameters in order to find an optimal sequence. Since the ripple-spreading model is the centerpiece of the new algorithm, it is called the ripple-spreading GA (RSGA). The advantages of the proposed RSGA are illustrated by extensive comparative studies for the case of the ASP.
Radial cracks and fracture mechanism of radially oriented ring 2:17 type SmCo magnets
Tian Jianjun; Pan Dean; Zhou Hao; Yin Fuzheng; Tao Siwu; Zhang Shengen; Qu Xuanhui
2009-01-01
Radially oriented ring 2:17 type SmCo magnets have different microstructure in the radial direction (easy magnetization) and axial direction (hard magnetization). The structure of the cross-section in radial direction is close-packed atomic plane, which shows cellular microstructure. The microstructure of the cross-section in axial direction consists of a mixture of rhombic microstructure and parallel lamella phases. So the magnets have obvious anisotropy of thermal expansion in different directions. The difference of the thermal expansion coefficients reaches the maximum value at 830-860 deg. C, which leads to radial cracks during quenching. The magnets have high brittlement because there are fewer slip systems in crystal structure. The fracture is brittle cleavage fracture.
Computing closest saddle node bifurcations in a radial system via conic programming
Jabr, R.A. [Electrical, Computer and Communication Engineering Department, Notre Dame University, P.O. Box 72, Zouk Mikhael, Zouk Mosbeh (Lebanon); Pal, B.C. [Department of Electrical and Electronic Engineering, Imperial College London, SW7 2BT (United Kingdom)
2009-07-15
This paper considers the problem of computing the loading limits in a radial system which are (i) locally closest to current operating load powers and (ii) at which saddle node bifurcation occurs. The procedure is based on a known technique which requires iterating between two computational steps until convergence. In essence, step 1 produces a vector normal to the real and/or reactive load solution space boundary, whereas step 2 computes the bifurcation point along that vector. The paper shows that each of the above computational steps can be formulated as a second-order cone program for which polynomial time interior-point methods and efficient implementations exist. The proposed conic programming approach is used to compute the closest bifurcation points and the corresponding worst case load power margins of eleven different distribution systems. The approach is validated graphically and the existence of multiple load power margins is investigated. (author)
Hanna, Elias B; Mogabgab, Owen N; Baydoun, Hassan
2018-01-01
We present cases of complex, calcified iliac occlusive disease revascularized via a combined radial-femoral access strategy. Through a 6-French, 125-cm transradial guiding catheter, antegrade guidewires and catheters are advanced into the iliac occlusion, while retrograde devices are advanced transfemorally. The transradial and transfemoral channels communicate, allowing the devices to cross the occlusion into the true lumen (radial-femoral antegrade-retrograde rendezvous).
Mathematical model for HIV spreads control program with ART treatment
Maimunah; Aldila, Dipo
2018-03-01
In this article, using a deterministic approach in a seven-dimensional nonlinear ordinary differential equation, we establish a mathematical model for the spread of HIV with an ART treatment intervention. In a simplified model, when no ART treatment is implemented, disease-free and the endemic equilibrium points were established analytically along with the basic reproduction number. The local stability criteria of disease-free equilibrium and the existing criteria of endemic equilibrium were analyzed. We find that endemic equilibrium exists when the basic reproduction number is larger than one. From the sensitivity analysis of the basic reproduction number of the complete model (with ART treatment), we find that the increased number of infected humans who follow the ART treatment program will reduce the basic reproduction number. We simulate this result also in the numerical experiment of the autonomous system to show how treatment intervention impacts the reduction of the infected population during the intervention time period.
Design and Modeling of RF Power Amplifiers with Radial Basis Function Artificial Neural Networks
Ali Reza Zirak; Sobhan Roshani
2016-01-01
A radial basis function (RBF) artificial neural network model for a designed high efficiency radio frequency class-F power amplifier (PA) is presented in this paper. The presented amplifier is designed at 1.8 GHz operating frequency with 12 dB of gain and 36 dBm of 1dB output compression point. The obtained power added efficiency (PAE) for the presented PA is 76% under 26 dBm input power. The proposed RBF model uses input and DC power of the PA as inputs variables and considers output power a...
Minimum weight designs for reinforcement of spherical pressure vessels with flush radial nozzles
Yeo, K.T.; Robinson, M.
1978-01-01
A cylinder-sphere pressure vessel, reinforced in the sphere by a section of constant thickness, has been analysed from the point of view of minimum weight. The reinforcement is allowed to be offset from the main sphere and the design has to be such that the test pressure of the vessel equals the limit pressure. It is shown that in most circumstances an economy of weight may be obtained by making the reinforcement thicker, but less extensive, than suggested in a previous proposal. Further benefit can be obtained by offsetting the reinforcement radially outwards so that the inside surfaces of main sphere and reinforcement are flush. (author)
Comment on "A note on generalized radial mesh generation for plasma electronic structure"
Pain, J.-Ch.
2011-12-01
In a recent note, B.G. Wilson and V. Sonnad [1] proposed a very useful closed form expression for the efficient generation of analytic log-linear radial meshes. The central point of the note is an implicit equation for the parameter h, involving Lambert's function W[x]. The authors mention that they are unaware of any direct proof of this equation (they obtained it by re-summing the Taylor expansion of h[α] using high-order coefficients obtained by analytic differentiation of the implicit definition using symbolic manipulation). In the present comment, we propose a direct proof of that equation.
Luiz Ernani Meira Jr.
2011-12-01
Full Text Available Os aneurismas da artéria radial são extremamente raros. Em sua maioria, consistem de pseudoaneurismas pós-traumáticos. Os aneurismas da artéria radial verdadeiros podem ser idiopáticos, congênitos, pós-estenóticos ou associados a patologias, tais como vasculites e doenças do tecido conjuntivo. Foi relatado um caso de aneurisma idiopático de artéria radial em uma criança de três anos, que, após completa investigação diagnóstica complementar, foi submetida à ressecção cirúrgica.Radial artery aneurysms are extremely rare. Post-traumatic pseudoaneurysms are the vast majority. True radial artery aneurysms can be idiopathic, congenital, poststenotic, or associated with some pathologies, such as vasculitis and conjunctive tissue diseases. We report a case of an idiopathic aneurysm of the radial artery in a three-year-old child who was submitted to surgical resection after a complete diagnostic approach.
The cost of simplifying air travel when modeling disease spread.
Justin Lessler
Full Text Available BACKGROUND: Air travel plays a key role in the spread of many pathogens. Modeling the long distance spread of infectious disease in these cases requires an air travel model. Highly detailed air transportation models can be over determined and computationally problematic. We compared the predictions of a simplified air transport model with those of a model of all routes and assessed the impact of differences on models of infectious disease. METHODOLOGY/PRINCIPAL FINDINGS: Using U.S. ticket data from 2007, we compared a simplified "pipe" model, in which individuals flow in and out of the air transport system based on the number of arrivals and departures from a given airport, to a fully saturated model where all routes are modeled individually. We also compared the pipe model to a "gravity" model where the probability of travel is scaled by physical distance; the gravity model did not differ significantly from the pipe model. The pipe model roughly approximated actual air travel, but tended to overestimate the number of trips between small airports and underestimate travel between major east and west coast airports. For most routes, the maximum number of false (or missed introductions of disease is small (<1 per day but for a few routes this rate is greatly underestimated by the pipe model. CONCLUSIONS/SIGNIFICANCE: If our interest is in large scale regional and national effects of disease, the simplified pipe model may be adequate. If we are interested in specific effects of interventions on particular air routes or the time for the disease to reach a particular location, a more complex point-to-point model will be more accurate. For many problems a hybrid model that independently models some frequently traveled routes may be the best choice. Regardless of the model used, the effect of simplifications and sensitivity to errors in parameter estimation should be analyzed.
Comparison and Validation of Point Spread Models for Imaging in Natural Waters
Hou, Weilin; Gray, Deric; Weidemann, Alan; Arnone, Robert
2008-01-01
.... This will extend the performance range as well as the information retrieval from underwater electro-optical systems, which is critical in many civilian and military applications, including target...
Point Spread Function of ASTRO-H Soft X-Ray Telescope (SXT)
Hayashi, Takayuki; Sato, Toshiki; Kikuchi, Naomichi; Iizuka, Ryo; Maeda, Yoshitomo; Ishida, Manabu; Kurashima, Sho; Nakaniwa, Nozomi; Okajima, Takashi; Mori, Hideyuki;
2016-01-01
ASTRO-H (Hitomi) satellite equips two Soft X-ray Telescopes (SXTs), one of which (SXT-S) is coupled to Soft-X-ray Spectrometer (SXS) while the other (SXT-I) is coupled to Soft X-ray Imager (SXI). Although SXTs are lightweight of approximately 42 kgmodule1 and have large on-axis effective area (EA) of approximately 450 cm(exp 2) at 4.5 keV module(sub 1) by themselves, their angular resolutions are moderate approximately 1.2 arcmin in half power diameter. The amount of contamination into the SXS FOV (3.05 times 3.05 arcmin(exp 2) from nearby sources was measured in the ground-based calibration at the beamline in Institute of Space and Astronautical Science. The contamination at 4.5 keV were measured with sources distant from the SXS center by one width of the FOV in perpendicular and diagonal directions, that is, 3 and 4.5 arcmin-off, respectively. The average EA of the contamination in the four directions with the 3 and 4.5 arcmin-off were measured to be 2 and 0.6% of the on-axis EA of 412 cm (exp) for the SXS FOV, respectively. The contamination from a source distant by two FOV widths in a diagonal direction, that is, 8.6 arcmin-off was measured to be 0.1% of the on-axis at 4.5 keV. The contamination amounts were also measured at 1.5 keV and 8.0 keV which indicated that the ratio of the contamination EA to that of on-axis hardly depended on the source energy. The off-axis SXT-I images from 4.5 to 27 arcmin were acquired at intervals of -4.5 arcmin for the SXI FOV of 38 times 38 arcmin(exp 2). The image shrinked as the off-axis angle increased. Above 13.5 arcmin of off-angle, a stray appeared around the image center in the off-axis direction. As for the on-axis image, a ring-shaped stray appeared at the edge of SXI of approximately 18 arcmin distant from the image center.
Influence of the corneal optical zone on the point-spread function of the human eye
Rol, Pascal O.; Parel, Jean-Marie A.
1992-08-01
In refractive surgery, a number of surgical techniques have been developed to correct ametropia (refractive defaults) of the eye by changing the exterior shape of the cornea. Because the air-cornea interface makes up for about two thirds of the refractive power of the eye, a refractive correction can be obtained by a suitable reshaping of the cornea. Postoperatively, it is usually observed that the corneal region consists of two or more zones which are characterized by different optical parameters exhibiting in particular different focal distances. Under normal circumstances, only the central area of the cornea is involved in the formation of the retinal image. However, if part of the light entering the eye through peripheral portions of the cornea with refractive properties different from the central area can pass the pupil, an out-of-focus `ghost' image may be overlaid on the retina causing a blur. In such a case the resolution, and the contrast performance of the eye which is expected from a successful operation, may be reduced. This study is an attempt to quantify the vision blur as a function of the diameter of the central zone, i.e., the optical zone which is of importance for vision.
Chandra's Ultimate Angular Resolution: Studies of the HRC-I Point Spread Function
Juda, Michael; Karovska, M.
2010-03-01
The Chandra High Resolution Camera (HRC) should provide an ideal imaging match to the High-Resolution Mirror Assembly (HRMA). The laboratory-measured intrinsic resolution of the HRC is 20 microns FWHM. HRC event positions are determined via a centroiding method rather than by using discrete pixels. This event position reconstruction method and any non-ideal performance of the detector electronics can introduce distortions in event locations that, when combined with spacecraft dither, produce artifacts in source images. We compare ray-traces of the HRMA response to "on-axis" observations of AR Lac and Capella as they move through their dither patterns to images produced from filtered event lists to characterize the effective intrinsic PSF of the HRC-I. A two-dimensional Gaussian, which is often used to represent the detector response, is NOT a good representation of the intrinsic PSF of the HRC-I; the actual PSF has a sharper peak and additional structure which will be discussed. This work was supported under NASA contract NAS8-03060.
Detecting Near-Earth Objects Using Cross-Correlation with a Point Spread Function
2009-03-01
impact in the Yucatan Peninsula caused the extinction of the dinosaurs in the Cretaceous Period [Fix, 1995]. Even the Moon is pot marked by many...the atmosphere that the light traverses. For this reason , it is typically better to be at higher elevations to decrease the amount of atmosphere the...detection on average for the Rayleigh sampling with cross-correlation of a PSF than the Rayleigh sampling without cross- correlation. For this reason
Rehabilitation for distal radial fractures in adults.
Handoll, Helen H G; Elliott, Joanne
2015-09-25
Fracture of the distal radius is a common clinical problem, particularly in older people with osteoporosis. There is considerable variation in the management, including rehabilitation, of these fractures. This is an update of a Cochrane review first published in 2002 and last updated in 2006. To examine the effects of rehabilitation interventions in adults with conservatively or surgically treated distal radial fractures. We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL 2014; Issue 12), MEDLINE, EMBASE, CINAHL, AMED, PEDro, OTseeker and other databases, trial registers, conference proceedings and reference lists of articles. We did not apply any language restrictions. The date of the last search was 12 January 2015. Randomised controlled trials (RCTs) or quasi-RCTs evaluating rehabilitation as part of the management of fractures of the distal radius sustained by adults. Rehabilitation interventions such as active and passive mobilisation exercises, and training for activities of daily living, could be used on their own or in combination, and be applied in various ways by various clinicians. The review authors independently screened and selected trials, and reviewed eligible trials. We contacted study authors for additional information. We did not pool data. We included 26 trials, involving 1269 mainly female and older patients. With few exceptions, these studies did not include people with serious fracture or treatment-related complications, or older people with comorbidities and poor overall function that would have precluded trial participation or required more intensive treatment. Only four of the 23 comparisons covered by these 26 trials were evaluated by more than one trial. Participants of 15 trials were initially treated conservatively, involving plaster cast immobilisation. Initial treatment was surgery (external fixation or internal fixation) for all participants
Default Spread dan Term Spread sebagai Variabel Proxy Siklus Bisnis pada Model Fama-French
Edwin Hendra
2015-08-01
Full Text Available This research aims to apply the Fama-French models and test the effect of alternative variable of bond yield spread, default spread (RBBB – RAAA and RAAA – RF, and the term spread (RSUN10-RSUN1, as proxy variables of the business cycle, in IDX stock data during 2005-2010. Four types of asset pricing models tested are Sharpe-Lintner CAPM, Fama-French models, Hwang et al.model, and hybrid model. The results showed that the size effect and value effect has an impact on excess stock returns. Slopes of market beta, SMB, and HML are more sensitive to stock big size and high B / M. Default spreads and term spreads in Hwang et al. model can explain the value effect, and weakly explain the size effect, meanwhile the power of explanation disappeared on Hybrid models. Based on the assessment adjusted R2 and the frequency of rejection of non-zero alpha, is found that the hybrid model is the most suitable model.
Spreading in online social networks: the role of social reinforcement.
Zheng, Muhua; Lü, Linyuan; Zhao, Ming
2013-07-01
Some epidemic spreading models are usually applied to analyze the propagation of opinions or news. However, the dynamics of epidemic spreading and information or behavior spreading are essentially different in many aspects. Centola's experiments [Science 329, 1194 (2010)] on behavior spreading in online social networks showed that the spreading is faster and broader in regular networks than in random networks. This result contradicts with the former understanding that random networks are preferable for spreading than regular networks. To describe the spreading in online social networks, a unknown-known-approved-exhausted four-status model was proposed, which emphasizes the effect of social reinforcement and assumes that the redundant signals can improve the probability of approval (i.e., the spreading rate). Performing the model on regular and random networks, it is found that our model can well explain the results of Centola's experiments on behavior spreading and some former studies on information spreading in different parameter space. The effects of average degree and network size on behavior spreading process are further analyzed. The results again show the importance of social reinforcement and are accordant with Centola's anticipation that increasing the network size or decreasing the average degree will enlarge the difference of the density of final approved nodes between regular and random networks. Our work complements the former studies on spreading dynamics, especially the spreading in online social networks where the information usually requires individuals' confirmations before being transmitted to others.
Predictive validation of an influenza spread model.
Ayaz Hyder
Full Text Available BACKGROUND: Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. METHODS AND FINDINGS: We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998-1999. Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type. Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. CONCLUSIONS: Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve
Vectorised Spreading Activation algorithm for centrality measurement
Alexander Troussov
2011-01-01
Full Text Available Spreading Activation is a family of graph-based algorithms widely used in areas such as information retrieval, epidemic models, and recommender systems. In this paper we introduce a novel Spreading Activation (SA method that we call Vectorised Spreading Activation (VSA. VSA algorithms, like “traditional” SA algorithms, iteratively propagate the activation from the initially activated set of nodes to the other nodes in a network through outward links. The level of the node’s activation could be used as a centrality measurement in accordance with dynamic model-based view of centrality that focuses on the outcomes for nodes in a network where something is flowing from node to node across the edges. Representing the activation by vectors allows the use of the information about various dimensionalities of the flow and the dynamic of the flow. In this capacity, VSA algorithms can model multitude of complex multidimensional network flows. We present the results of numerical simulations on small synthetic social networks and multidimensional network models of folksonomies which show that the results of VSA propagation are more sensitive to the positions of the initial seed and to the community structure of the network than the results produced by traditional SA algorithms. We tentatively conclude that the VSA methods could be instrumental to develop scalable and computationally efficient algorithms which could achieve synergy between computation of centrality indexes with detection of community structures in networks. Based on our preliminary results and on improvements made over previous studies, we foresee advances and applications in the current state of the art of this family of algorithms and their applications to centrality measurement.
Predictive Validation of an Influenza Spread Model
Hyder, Ayaz; Buckeridge, David L.; Leung, Brian
2013-01-01
Background Modeling plays a critical role in mitigating impacts of seasonal influenza epidemics. Complex simulation models are currently at the forefront of evaluating optimal mitigation strategies at multiple scales and levels of organization. Given their evaluative role, these models remain limited in their ability to predict and forecast future epidemics leading some researchers and public-health practitioners to question their usefulness. The objective of this study is to evaluate the predictive ability of an existing complex simulation model of influenza spread. Methods and Findings We used extensive data on past epidemics to demonstrate the process of predictive validation. This involved generalizing an individual-based model for influenza spread and fitting it to laboratory-confirmed influenza infection data from a single observed epidemic (1998–1999). Next, we used the fitted model and modified two of its parameters based on data on real-world perturbations (vaccination coverage by age group and strain type). Simulating epidemics under these changes allowed us to estimate the deviation/error between the expected epidemic curve under perturbation and observed epidemics taking place from 1999 to 2006. Our model was able to forecast absolute intensity and epidemic peak week several weeks earlier with reasonable reliability and depended on the method of forecasting-static or dynamic. Conclusions Good predictive ability of influenza epidemics is critical for implementing mitigation strategies in an effective and timely manner. Through the process of predictive validation applied to a current complex simulation model of influenza spread, we provided users of the model (e.g. public-health officials and policy-makers) with quantitative metrics and practical recommendations on mitigating impacts of seasonal influenza epidemics. This methodology may be applied to other models of communicable infectious diseases to test and potentially improve their predictive
Directional spread parameter at intermediate water depth
SanilKumar, V.; Deo, M.C.; Anand, N.M.; AshokKumar, K.
’ involves only the significant wave height, zero crossing wave period and water depth, the spreading function based on ‘s 3 ’ can be used for practical appli- cation. In the model based on ‘s 3 ’ the mean wave direction is an input and this has...-linearity parameter can be recommended for practical use as it provides an averaged distribution. Acknowledgements The authors would like to thank the Department of Science and Technology, New Delhi, for funding the project titled “Directional wave modelling...
Trigeminal perineural spread of renal cell carcinoma
Hornik, Alejandro; Rosenblum, Jordan; Biller, Jose
2012-01-01
A 55-year-old man had a five-day history of “pins and needles” sensation on the left chin. Examination showed decreased pinprick sensation on the territory of the left mandibular branch of the trigeminal nerve. Brain magnetic resonance imaging (MRI) with gadolinium showed enhancement involving the left mandibular branch. Computed tomography (CT) of the chest, abdomen, and pelvis showed a left kidney mass diagnosed as renal carcinoma following nephrectomy. The “numb-chin” syndrome heralds or accompanies systemic malignancies. Trigeminal perineural spread has been well-documented in head and neck neoplasms, however, to our knowledge, it has not been reported in renal neoplasms. (author)
Simultaneous spreading and evaporation: recent developments.
Semenov, Sergey; Trybala, Anna; Rubio, Ramon G; Kovalchuk, Nina; Starov, Victor; Velarde, Manuel G
2014-04-01
The recent progress in theoretical and experimental studies of simultaneous spreading and evaporation of liquid droplets on solid substrates is discussed for pure liquids including nanodroplets, nanosuspensions of inorganic particles (nanofluids) and surfactant solutions. Evaporation of both complete wetting and partial wetting liquids into a nonsaturated vapour atmosphere are considered. However, the main attention is paid to the case of partial wetting when the hysteresis of static contact angle takes place. In the case of complete wetting the spreading/evaporation process proceeds in two stages. A theory was suggested for this case and a good agreement with available experimental data was achieved. In the case of partial wetting the spreading/evaporation of a sessile droplet of pure liquid goes through four subsequent stages: (i) the initial stage, spreading, is relatively short (1-2 min) and therefore evaporation can be neglected during this stage; during the initial stage the contact angle reaches the value of advancing contact angle and the radius of the droplet base reaches its maximum value, (ii) the first stage of evaporation is characterised by the constant value of the radius of the droplet base; the value of the contact angle during the first stage decreases from static advancing to static receding contact angle; (iii) during the second stage of evaporation the contact angle remains constant and equal to its receding value, while the radius of the droplet base decreases; and (iv) at the third stage of evaporation both the contact angle and the radius of the droplet base decrease until the drop completely disappears. It has been shown theoretically and confirmed experimentally that during the first and second stages of evaporation the volume of droplet to power 2/3 decreases linearly with time. The universal dependence of the contact angle during the first stage and of the radius of the droplet base during the second stage on the reduced time has been
Dynamic Modeling of CDS Index Tranche Spreads
Dorn, Jochen
This paper provides a Market Model which implies a dynamics for standardized CDS index tranche spreads, i.e. tranches which securitise CDS index series and dispose of predefined subordination. This model is useful for pricing options on tranches with future Issue Dates as well as for modeling...... options on structured credit derivatives. With the upcoming regulation of the CDS market in perspective, the model presented here is also an attempt to face the effects on pricing approaches provoked by an eventual Clearing Chamber . It becomes also possible to calibrate Index Tranche Options with bespoke...... tenors/tranche subordination to market data obtained by more liquid Index Tranche Options with standard characteristics....
Spread of Ebola disease with susceptible exposed infected isolated recovered (SEIIhR) model
Azizah, Afina; Widyaningsih, Purnami; Retno Sari Saputro, Dewi
2017-06-01
Ebola is a deadly infectious disease and has caused an epidemic on several countries in West Africa. Mathematical modeling to study the spread of Ebola disease has been developed, including through models susceptible infected removed (SIR) and susceptible exposed infected removed (SEIR). Furthermore, susceptible exposed infected isolated recovered (SEIIhR) model has been derived. The aims of this research are to derive SEIIhR model for Ebola disease, to determine the patterns of its spread, to determine the equilibrium point and stability of the equilibrium point using phase plane analysis, and also to apply the SEIIhR model on Ebola epidemic in Sierra Leone in 2014. The SEIIhR model is a differential equation system. Pattern of ebola disease spread with SEIIhR model is solution of the differential equation system. The equilibrium point of SEIIhR model is unique and it is a disease-free equilibrium point that stable. Application of the model is based on the data Ebola epidemic in Sierra Leone. The free-disease equilibrium point (Se; Ee; Ie; Ihe; Re )=(5743865, 0, 0, 0, 0) is stable.
Spread of Ebola disease with susceptible exposed infected isolated recovered (SEIIhR) model
Azizah, Afina; Widyaningsih, Purnami; Saputro, Dewi Retno Sari
2017-01-01
Ebola is a deadly infectious disease and has caused an epidemic on several countries in West Africa. Mathematical modeling to study the spread of Ebola disease has been developed, including through models susceptible infected removed (SIR) and susceptible exposed infected removed (SEIR). Furthermore, susceptible exposed infected isolated recovered (SEII h R) model has been derived. The aims of this research are to derive SEII h R model for Ebola disease, to determine the patterns of its spread, to determine the equilibrium point and stability of the equilibrium point using phase plane analysis, and also to apply the SEII h R model on Ebola epidemic in Sierra Leone in 2014. The SEII h R model is a differential equation system. Pattern of ebola disease spread with SEII h R model is solution of the differential equation system. The equilibrium point of SEII h R model is unique and it is a disease-free equilibrium point that stable. Application of the model is based on the data Ebola epidemic in Sierra Leone. The free-disease equilibrium point ( S e ; E e ; I e ; I he ; R e )=(5743865, 0, 0, 0, 0) is stable. (paper)
Edelmann, Kathrin; Glashauser, Lena; Sprungala, Susanne; Hesl, Birgit; Fritschle, Maike; Ninkovic, Jovica; Godinho, Leanne; Chapouton, Prisca
2013-09-01
The zebrafish has recently become a source of new data on the mechanisms of neural stem cell (NSC) maintenance and ongoing neurogenesis in adult brains. In this vertebrate, neurogenesis occurs at high levels in all ventricular regions of the brain, and brain injuries recover successfully, owing to the recruitment of radial glia, which function as NSCs. This new vertebrate model of adult neurogenesis is thus advancing our knowledge of the molecular cues in use for the activation of NSCs and fate of their progeny. Because the regenerative potential of somatic stem cells generally weakens with increasing age, it is important to assess the extent to which zebrafish NSC potential decreases or remains unaltered with age. We found that neurogenesis in the ventricular zone, in the olfactory bulb, and in a newly identified parenchymal zone of the telencephalon indeed declines as the fish ages and that oligodendrogenesis also declines. In the ventricular zone, the radial glial cell population remains largely unaltered morphologically but enters less frequently into the cell cycle and hence produces fewer neuroblasts. The neuroblasts themselves do not change their behavior with age and produce the same number of postmitotic neurons. Thus, decreased neurogenesis in the physiologically aging zebrafish brain is correlated with an increasing quiescence of radial glia. After injuries, radial glia in aged brains are reactivated, and the percentage of cell cycle entry is increased in the radial glia population. However, this reaction is far less pronounced than in younger animals, pointing to irreversible changes in aging zebrafish radial glia. Copyright © 2013 Wiley Periodicals, Inc.
Observational hints of radial migration in disc galaxies from CALIFA
Ruiz-Lara, T.; Pérez, I.; Florido, E.; Sánchez-Blázquez, P.; Méndez-Abreu, J.; Sánchez-Menguiano, L.; Sánchez, S. F.; Lyubenova, M.; Falcón-Barroso, J.; van de Ven, G.; Marino, R. A.; de Lorenzo-Cáceres, A.; Catalán-Torrecilla, C.; Costantin, L.; Bland-Hawthorn, J.; Galbany, L.; García-Benito, R.; Husemann, B.; Kehrig, C.; Márquez, I.; Mast, D.; Walcher, C. J.; Zibetti, S.; Ziegler, B.; Califa Team
2017-07-01
Context. According to numerical simulations, stars are not always kept at their birth galactocentric distances but they have a tendency to migrate. The importance of this radial migration in shaping galactic light distributions is still unclear. However, if radial migration is indeed important, galaxies with different surface brightness (SB) profiles must display differences in their stellar population properties. Aims: We investigate the role of radial migration in the light distribution and radial stellar content by comparing the inner colour, age, and metallicity gradients for galaxies with different SB profiles. We define these inner parts, avoiding the bulge and bar regions and up to around three disc scale lengths (type I, pure exponential) or the break radius (type II, downbending; type III, upbending). Methods: We analysed 214 spiral galaxies from the CALIFA survey covering different SB profiles. We made use of GASP2D and SDSS data to characterise the light distribution and obtain colour profiles of these spiral galaxies. The stellar age and metallicity profiles were computed using a methodology based on full-spectrum fitting techniques (pPXF, GANDALF, and STECKMAP) to the Integral Field Spectroscopic CALIFA data. Results: The distributions of the colour, stellar age, and stellar metallicity gradients in the inner parts for galaxies displaying different SB profiles are unalike as suggested by Kolmogorov-Smirnov and Anderson-Darling tests. We find a trend in which type II galaxies show the steepest profiles of all, type III show the shallowest, and type I display an intermediate behaviour. Conclusions: These results are consistent with a scenario in which radial migration is more efficient for type III galaxies than for type I systems, where type II galaxies present the lowest radial migration efficiency. In such a scenario, radial migration mixes the stellar content, thereby flattening the radial stellar properties and shaping different SB profiles. However
Effect of the radial electric field on turbulence
Carreras, B.A.; Lynch, V.E.
1990-01-01
For many years, the neoclassical transport theory for three- dimensional magnetic configurations, such as magnetic mirrors, ELMO Bumpy Tori (EBTs), and stellarators, has recognized the critical role of the radial electric field in the confinement. It was in these confinement devices that the first experimental measurements of the radial electric field were made and correlated with confinement losses. In tokamaks, the axisymmetry implies that the neoclassical fluxes are ambipolar and, as a consequence, independent of the radial electric field. However, axisymmetry is not strict in a tokamak with turbulent fluctuations, and near the limiter ambipolarity clearly breaks down. Therefore, the question of the effect of the radial electric field on tokamak confinement has been raised in recent years. In particular, the radial electric field has been proposed to explain the transition from L-mode to H-mode confinement. There is some initial experimental evidence supporting this type of explanation, although there is not yet a self-consistent theory explaining the generation of the electric field and its effect on the transport. Here, a brief review of recent results is presented. 27 refs., 4 figs
Radial Structure Scaffolds Convolution Patterns of Developing Cerebral Cortex
Mir Jalil Razavi
2017-08-01
Full Text Available Commonly-preserved radial convolution is a prominent characteristic of the mammalian cerebral cortex. Endeavors from multiple disciplines have been devoted for decades to explore the causes for this enigmatic structure. However, the underlying mechanisms that lead to consistent cortical convolution patterns still remain poorly understood. In this work, inspired by prior studies, we propose and evaluate a plausible theory that radial convolution during the early development of the brain is sculptured by radial structures consisting of radial glial cells (RGCs and maturing axons. Specifically, the regionally heterogeneous development and distribution of RGCs controlled by Trnp1 regulate the convex and concave convolution patterns (gyri and sulci in the radial direction, while the interplay of RGCs' effects on convolution and axons regulates the convex (gyral convolution patterns. This theory is assessed by observations and measurements in literature from multiple disciplines such as neurobiology, genetics, biomechanics, etc., at multiple scales to date. Particularly, this theory is further validated by multimodal imaging data analysis and computational simulations in this study. We offer a versatile and descriptive study model that can provide reasonable explanations of observations, experiments, and simulations of the characteristic mammalian cortical folding.
Comparison of Deterministic and Probabilistic Radial Distribution Systems Load Flow
Gupta, Atma Ram; Kumar, Ashwani
2017-12-01
Distribution system network today is facing the challenge of meeting increased load demands from the industrial, commercial and residential sectors. The pattern of load is highly dependent on consumer behavior and temporal factors such as season of the year, day of the week or time of the day. For deterministic radial distribution load flow studies load is taken as constant. But, load varies continually with a high degree of uncertainty. So, there is a need to model probable realistic load. Monte-Carlo Simulation is used to model the probable realistic load by generating random values of active and reactive power load from the mean and standard deviation of the load and for solving a Deterministic Radial Load Flow with these values. The probabilistic solution is reconstructed from deterministic data obtained for each simulation. The main contribution of the work is: Finding impact of probable realistic ZIP load modeling on balanced radial distribution load flow. Finding impact of probable realistic ZIP load modeling on unbalanced radial distribution load flow. Compare the voltage profile and losses with probable realistic ZIP load modeling for balanced and unbalanced radial distribution load flow.
The effect of radial migration on galactic disks
Vera-Ciro, Carlos; D'Onghia, Elena; Navarro, Julio; Abadi, Mario
2014-01-01
We study the radial migration of stars driven by recurring multi-arm spiral features in an exponential disk embedded in a dark matter halo. The spiral perturbations redistribute angular momentum within the disk and lead to substantial radial displacements of individual stars, in a manner that largely preserves the circularity of their orbits and that results, after 5 Gyr (∼40 full rotations at the disk scale length), in little radial heating and no appreciable changes to the vertical or radial structure of the disk. Our results clarify a number of issues related to the spatial distribution and kinematics of migrators. In particular, we find that migrators are a heavily biased subset of stars with preferentially low vertical velocity dispersions. This 'provenance bias' for migrators is not surprising in hindsight, for stars with small vertical excursions spend more time near the disk plane, and thus respond more readily to non-axisymmetric perturbations. We also find that the vertical velocity dispersion of outward migrators always decreases, whereas the opposite holds for inward migrators. To first order, newly arrived migrators simply replace stars that have migrated off to other radii, thus inheriting the vertical bias of the latter. Extreme migrators might therefore be recognized, if present, by the unexpectedly small amplitude of their vertical excursions. Our results show that migration, understood as changes in angular momentum that preserve circularity, can strongly affect the thin disk, but cast doubts on models that envision the Galactic thick disk as a relic of radial migration.
A user's evaluation of radial flow HEPA filters
Purcell, J.A.
1992-07-01
High efficiency particulate air (HEPA) filters of rectangular cross section have been used to remove particulates and the associated radioactivity from air ventilation streams since the advent of nuclear materials processing. Use of round axial flow HEPA filters is also longstanding. The advantages of radial flow filters in a circular configuration have been well demonstrated in UKAEA during the last 5--7 years. An evaluation of radial flow filters for fissile process gloveboxes reveals several substantial benefits in addition to the advantages claimed in UKAEA Facilities. The radial flow filter may be provided in a favorable geometry resulting in improved criticality safety. The filter configuration lends to in-place testing at the glovebox to exhaust duct interface. This will achieve compliance with DOE Order 6430.1A, Section 99.0.2. Preliminary testing at SRS for radial flow filters manufactured by Flanders Filters, Inc. revealed compliance in all the usual specifications for filtration efficiency, pressure differential and materials of construction. An evaluation, further detailed in this report, indicates that the radial flow HEPA filter should be considered for inclusion in new ventilation system designs
Infections Unlikely to be Spread Through Swimming Pools
... Water Home Infections Unlikely to be Spread Through Swimming Pools Language: English (US) Español (Spanish) Recommend on ... included below. Infections Unlikely to be Spread by Swimming Pools Head Lice Head lice are unlikely to ...
Spreading depolarisations and outcome after traumatic brain injury
Hartings, Jed A; Bullock, M Ross; Okonkwo, David O
2011-01-01
Pathological waves of spreading mass neuronal depolarisation arise repeatedly in injured, but potentially salvageable, grey matter in 50-60% of patients after traumatic brain injury (TBI). We aimed to ascertain whether spreading depolarisations are independently associated with unfavourable...
Stopping the Spread of Germs at Home, Work and School
... Pandemic Other Stopping the Spread of Germs at Home, Work & School Language: English (US) Español Recommend on Facebook ... everyone from getting germs or spreading germs at home, work, or school. Clean and disinfect surfaces or objects. ...
Recording, analysis, and interpretation of spreading depolarizations in neurointensive care
Dreier, Jens P; Fabricius, Martin; Ayata, Cenk
2017-01-01
Spreading depolarizations (SD) are waves of abrupt, near-complete breakdown of neuronal transmembrane ion gradients, are the largest possible pathophysiologic disruption of viable cerebral gray matter, and are a crucial mechanism of lesion development. Spreading depolarizations are increasingly r...
Peeler, Christopher R; Titt, Uwe
2012-01-01
In spot-scanning intensity-modulated proton therapy, numerous unmodulated proton beam spots are delivered over a target volume to produce a prescribed dose distribution. To accurately model field size-dependent output factors for beam spots, the energy deposition at positions radial to the central axis of the beam must be characterized. In this study, we determined the difference in the central axis dose for spot-scanned fields that results from secondary particle doses by investigating energy deposition radial to the proton beam central axis resulting from primary protons and secondary particles for mathematical point source and distributed source models. The largest difference in the central axis dose from secondary particles resulting from the use of a mathematical point source and a distributed source model was approximately 0.43%. Thus, we conclude that the central axis dose for a spot-scanned field is effectively independent of the source model used to calculate the secondary particle dose. (paper)
Preoperative evaluation of locally spreaded pelvic tumors
Baramia, M.; Todua, F.; Gotsadze, D.; Khutulashvili, N.; Lashkhi, K.; Nadareishvili, A.
1998-01-01
Am of the study: preoperative evaluation of patients with locally advanced pelvic tumors subjected to pelvic exenteration. Determine operability to avoid explorative laparatomies, which cause serious complications in these patients. Evaluate condition of urinary system in case of this pathology. Materials and methods: 34 patients with locally advanced pelvic tumors where pelvic exenteration was attempted were studied. Along with other methods of diagnostic CT and MRI were performed. Results: In all patients secondary involvement of the urinary bladder was noted. In 30 patients CT and MR findings were confirmed (88,2%) intraoperatively and different types of pelvic organs exenteration were performed. In 1 case spread of tomoruos infiltrate to the pelvic wall and common iliac vessels was detected intraoperatively (patient had history of radiation therapy). In 2 cases carcinomatosis of the peritoneum was found. In 1 case involvement of urinary bladder was simulated by close attachment of enlarged uterus. Conclusion: Obtained results show, that CT and MR are highly informative methods of disease spread evaluation and thus determining operability. Radiotherapy performed prior to operation sets difficulties in differentiation for tumourous infiltrate and post-radiotherapy changes in pelvis. (Full text)
A lattice model for influenza spreading.
Antonella Liccardo
Full Text Available We construct a stochastic SIR model for influenza spreading on a D-dimensional lattice, which represents the dynamic contact network of individuals. An age distributed population is placed on the lattice and moves on it. The displacement from a site to a nearest neighbor empty site, allows individuals to change the number and identities of their contacts. The dynamics on the lattice is governed by an attractive interaction between individuals belonging to the same age-class. The parameters, which regulate the pattern dynamics, are fixed fitting the data on the age-dependent daily contact numbers, furnished by the Polymod survey. A simple SIR transmission model with a nearest neighbors interaction and some very basic adaptive mobility restrictions complete the model. The model is validated against the age-distributed Italian epidemiological data for the influenza A(H1N1 during the [Formula: see text] season, with sensible predictions for the epidemiological parameters. For an appropriate topology of the lattice, we find that, whenever the accordance between the contact patterns of the model and the Polymod data is satisfactory, there is a good agreement between the numerical and the experimental epidemiological data. This result shows how rich is the information encoded in the average contact patterns of individuals, with respect to the analysis of the epidemic spreading of an infectious disease.
Principles of spread-spectrum communication systems
Torrieri, Don
2015-01-01
This book provides a concise but lucid explanation of the fundamentals of spread-spectrum systems with an emphasis on theoretical principles. The choice of specific topics is tempered by the author’s judgment of their practical significance and interest to both researchers and system designers. The book contains many improved derivations of the classical theory and presents the latest research results that bring the reader to the frontier of the field. This third edition includes new coverage of topics such as CDMA networks, acquisition and synchronization in DS-CDMA cellular networks, hopsets for FH-CDMA ad hoc networks, implications of information theory, the central limit theorem, the power spectral density of FH/CPM complex envelopes, adaptive filters, and adaptive arrays. · Focuses on the fundamentals of spread-spectrum communication systems and provides current examples of their applications · Includes problem sets at the end of each chapter to assist readers in co...
Wave-like spread of Ebola Zaire.
2005-11-01
Full Text Available In the past decade the Zaire strain of Ebola virus (ZEBOV has emerged repeatedly into human populations in central Africa and caused massive die-offs of gorillas and chimpanzees. We tested the view that emergence events are independent and caused by ZEBOV variants that have been long resident at each locality. Phylogenetic analyses place the earliest known outbreak at Yambuku, Democratic Republic of Congo, very near to the root of the ZEBOV tree, suggesting that viruses causing all other known outbreaks evolved from a Yambuku-like virus after 1976. The tendency for earlier outbreaks to be directly ancestral to later outbreaks suggests that outbreaks are epidemiologically linked and may have occurred at the front of an advancing wave. While the ladder-like phylogenetic structure could also bear the signature of positive selection, our statistical power is too weak to reach a conclusion in this regard. Distances among outbreaks indicate a spread rate of about 50 km per year that remains consistent across spatial scales. Viral evolution is clocklike, and sequences show a high level of small-scale spatial structure. Genetic similarity decays with distance at roughly the same rate at all spatial scales. Our analyses suggest that ZEBOV has recently spread across the region rather than being long persistent at each outbreak locality. Controlling the impact of Ebola on wild apes and human populations may be more feasible than previously recognized.
Epidemics spreading in interconnected complex networks
Wang, Y.; Xiao, G.
2012-01-01
We study epidemic spreading in two interconnected complex networks. It is found that in our model the epidemic threshold of the interconnected network is always lower than that in any of the two component networks. Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. Theoretical analysis and simulation results show that, generally speaking, the epidemic size is not significantly affected by the inter-network correlation. In interdependent networks which can be viewed as a special case of interconnected networks, however, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant. -- Highlights: ► We study epidemic spreading in two interconnected complex networks. ► The epidemic threshold is lower than that in any of the two networks. And Interconnection correlation has impacts on threshold and average outbreak size. ► Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. ► We demonstrated and proved that Interconnection correlation does not affect epidemic size significantly. ► In interdependent networks, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant.
Epidemic spreading on preferred degree adaptive networks.
Jolad, Shivakumar; Liu, Wenjia; Schmittmann, B; Zia, R K P
2012-01-01
We study the standard SIS model of epidemic spreading on networks where individuals have a fluctuating number of connections around a preferred degree κ. Using very simple rules for forming such preferred degree networks, we find some unusual statistical properties not found in familiar Erdös-Rényi or scale free networks. By letting κ depend on the fraction of infected individuals, we model the behavioral changes in response to how the extent of the epidemic is perceived. In our models, the behavioral adaptations can be either 'blind' or 'selective'--depending on whether a node adapts by cutting or adding links to randomly chosen partners or selectively, based on the state of the partner. For a frozen preferred network, we find that the infection threshold follows the heterogeneous mean field result λ(c)/μ = / and the phase diagram matches the predictions of the annealed adjacency matrix (AAM) approach. With 'blind' adaptations, although the epidemic threshold remains unchanged, the infection level is substantially affected, depending on the details of the adaptation. The 'selective' adaptive SIS models are most interesting. Both the threshold and the level of infection changes, controlled not only by how the adaptations are implemented but also how often the nodes cut/add links (compared to the time scales of the epidemic spreading). A simple mean field theory is presented for the selective adaptations which capture the qualitative and some of the quantitative features of the infection phase diagram.
Epidemics spreading in interconnected complex networks
Wang, Y. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Institute of High Performance Computing, Agency for Science, Technology and Research (A-STAR), Singapore 138632 (Singapore); Xiao, G., E-mail: egxxiao@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)
2012-09-03
We study epidemic spreading in two interconnected complex networks. It is found that in our model the epidemic threshold of the interconnected network is always lower than that in any of the two component networks. Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. Theoretical analysis and simulation results show that, generally speaking, the epidemic size is not significantly affected by the inter-network correlation. In interdependent networks which can be viewed as a special case of interconnected networks, however, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant. -- Highlights: ► We study epidemic spreading in two interconnected complex networks. ► The epidemic threshold is lower than that in any of the two networks. And Interconnection correlation has impacts on threshold and average outbreak size. ► Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. ► We demonstrated and proved that Interconnection correlation does not affect epidemic size significantly. ► In interdependent networks, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant.
Modelling dengue epidemic spreading with human mobility
Barmak, D. H.; Dorso, C. O.; Otero, M.
2016-04-01
We explored the effect of human mobility on the spatio-temporal dynamics of Dengue with a stochastic model that takes into account the epidemiological dynamics of the infected mosquitoes and humans, with different mobility patterns of the human population. We observed that human mobility strongly affects the spread of infection by increasing the final size and by changing the morphology of the epidemic outbreaks. When the spreading of the disease is driven only by mosquito dispersal (flight), a main central focus expands diffusively. On the contrary, when human mobility is taken into account, multiple foci appear throughout the evolution of the outbreaks. These secondary foci generated throughout the outbreaks could be of little importance according to their mass or size compared with the largest main focus. However, the coalescence of these foci with the main one generates an effect, through which the latter develops a size greater than the one obtained in the case driven only by mosquito dispersal. This increase in growth rate due to human mobility and the coalescence of the foci are particularly relevant in temperate cities such as the city of Buenos Aires, since they give more possibilities to the outbreak to grow before the arrival of the low-temperature season. The findings of this work indicate that human mobility could be the main driving force in the dynamics of vector epidemics.
Autorefraction versus subjective refraction in a radially asymmetric multifocal intraocular lens.
van der Linden, Jan Willem; Vrijman, Violette; Al-Saady, Rana; El-Saady, Rana; van der Meulen, Ivanka J; Mourits, Maarten P; Lapid-Gortzak, Ruth
2014-12-01
To evaluate whether the automated refraction (AR) correlates with subjective manifest (MR) refraction in eyes implanted with radially asymmetric multifocal intraocular lens (IOLs). This retrospective study evaluated 52 eyes (52 patients) implanted with a radially asymmetric multifocal IOL (LS-312 MF30, Oculentis, Germany). At 3 months postoperatively, the AR and MR values were compared to determine the correlation between the sphere (S), the spherical equivalent (SE) and the astigmatic components J0 and J45. The difference of mean spherical measurement was +0.98D ± 0.62, with the AR measuring more myopic. The difference of the mean spherical equivalent was +1.11D ± 0.57, again with AR being more myopic. Both these differences were statistically significant (p < 0.001). The astigmatic components showed less differences, with the mean difference of the J0 being -0.09D ± 0.43, and the J45 of +0.04D ± 0.47, which were both not statistically significant (p = 0.123 and p = 0.531, respectively). Correlation analysis of the refractive parameters showed r(2) = 0.067, r(2) = 0.078, r(2) = 0.018 and r(2) = 0.015, respectively, all of which point to a low correlation between the AR and the MR. Autorefraction shows poor correlation to manifest subjective refraction with these radially asymmetric multifocal IOLs. The autorefraction systematically underestimates the spherical and spherical equivalent power, while the correlation between the astigmatic components was also low. Autorefraction seems not a valid starting point for manifest subjective refraction with these types of lenses, unless a corrective factor of about +1 dioptre is used. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Radial Fingering in a Porous Medium Digitation radiale dans un milieu poreux
Ni W.
2006-11-01
Full Text Available The theory of immiscible radial displacement in a Hele-Shaw cell is extended to the case of a porous medium contained between two closely-spaced parallel plates, and experiments are described for the displacement of glycerine by paraffin oil in such a system. Data are presented for the number of fingers, the breakthrough time, and the glycerine recovery, for a range of flowrates varying through three orders of magnitude. Good agreement between theory and experiment is observed. La théorie s'appliquant aux déplacements radiaux dans les cellules Hele-Shaw a été étendue à un système qui consiste en une couche mince de milieux poreux encapsulée entre deux plaques en verre. Dans cet article, on examine les déplacements de la glycérine par de l'huile de paraffine. En faisant varier le débit de l'huile de paraffine dans un intervalle de trois ordres de grandeur, on a étudié les variables telles que le nombre de digitations, le temps de percée et le taux de récupération de la glycérine. On a observé un bon accord entre la théorie et les résultats expérimentaux.
Becerril, L.; Galindo, I.; Martí, J.; Gudmundsson, A.
2015-04-01
Using new surface structural data as well as subsurface structural data obtained from seventeen water galleries, we provide a comprehensive model of the volcano-tectonic evolution of El Hierro (Canary Islands). We have identified, measured and analysed more than 1700 volcano-structural elements including vents, eruptive fissures, dykes and faults. The new data provide important information on the main structural patterns of the island and on its stress and strain fields, all of which are crucial for reliable hazard assessments. We conducted temporal and spatial analyses of the main structural elements, focusing on their relative age and association with the three main cycles in the construction of the island: the Tiñor Edifice, the El Golfo-Las Playas Edifice, and the Rift Volcanism. A radial strike distribution, which can be related to constructive episodes, is observed in the on-land structures. A similar strike distribution is seen in the submarine eruptive fissures, which are radial with respect to the centre of the island. However, the volcano-structural elements identified onshore and reflecting the entire volcano-tectonic evolution of the island also show a predominant NE-SW strike, which coincides with the main regional trend of the Canary archipelago as a whole. Two other dominant directions of structural elements, N-S and WNW-ESE, are evident from the establishment of the El Golfo-Las Playas edifice, during the second constructive cycle. We suggest that the radial-striking structures reflect comparatively uniform stress fields during the constructive episodes, mainly conditioned by the combination of overburden pressure, gravitational spreading, and magma-induced stresses in each of the volcanic edifices. By contrast, in the shallower parts of the edifice the NE-SW, N-S and WNW-ESE-striking structures reflect local stress fields related to the formation of mega-landslides and masking the general and regional radial patterns.
Kubota, S.; Peebles, W.A., E-mail: skubota@ucla.edu [UCLA, Los Angeles (United States); Bush, C. E.; Maingi, R. [Oak Ridge National Laboratory, Oak Ridge (United States); Zweben, S. J.; Bell, R.; Crocker, N.; Diallo, A.; Kaye, S.; LeBlanc, B. P.; Park, J. K.; Ren, Y. [Princeton Plasma Physics Laboratory, Princeton University, Princeton (United States); Maqueda, R. J. [Nova Photonics, Princeton (United States); Raman, R. [University of Washington, Seattle (United States)
2012-09-15
Full text: The measurement of radially extended meso-scale structures such as zonal flows and streamers, as well as the underlying microinstabilities driving them, is critical for understanding turbulence-driven transport in plasma devices. In particular, the shape and evolution of the radial wavenumber spectrum indicate details of the nonlinear spectral energy transfer, the spreading of turbulence, as well as the formation of transport barriers. In the National Spherical Torus Experiment (NSTX), the FMCW backscattering diagnostic is used to probe the turbulence radial wavenumber spectrum (k{sub r} = 0 - 22 cm-1 ) across the outboard minor radius near the L- to H-mode transition in Ohmic discharges. During the L-mode phase, a broad spectral component (k{sub r} {approx} 2 - 10 cm{sup -1} ) extends over a significant portion of the edge-core from R = 120 to 155 cm ({rho} = 0.4 - 0.95). At the L-H transition, turbulence is quenched across the measurable k{sub r} range at the ETB location, where the radial correlation length drops from {approx} 1.5 - 0.5 cm. The k{sub r} spectrum away from the ETB location is modified on a time scale of tens of microseconds, indicating that nonlocal turbulence dynamics are playing a strong role. Close to the L-H transition, oscillations in the density gradient and edge turbulence quenching become highly correlated. These oscillations are also present in Ohmic discharges without an L-H transition, but are far less frequent. Similar behavior is also seen near the L-H transition in NB-heated discharges. (author)
Preventing Superinfection in Malaria Spreads with Repellent and Medical Treatment Policy
Fitri, Fanny; Aldila, Dipo
2018-03-01
Malaria is a kind of a vector-borne disease. That means this disease needs a vector (in this case, the anopheles mosquito) to spread. In this article, a mathematical model for malaria disease spread will be discussed. The model is constructed as a seven-dimensional of a non-linear ordinary differential equation. The interventions of treatment for infected humans and use of repellent are included in the model to see how these interventions could be considered as alternative ways to control the spread of malaria. Analysis will be made of the disease-free equilibrium point along with its local stability criteria, construction of the next generation matrix which followed with the sensitivity analysis of basic reproduction number. We found that both medical treatment and repellent intervention succeeded in reducing the basic reproduction number as the endemic indicator of the model. Finally, some numerical simulations are given to give a better interpretation of the analytical results.
A fundamental look at fire spread in California chaparral
David R. Weise; Thomas Fletcher; Larry Baxter; Shankar Mahalingam; Xiangyang Zhou; Patrick Pagni; Rod Linn; Bret Butler
2004-01-01
The USDA Forest Service National Fire Plan funded a research program to study fire spread in live fuels of the southwestern United States. In the U.S. current operational fire spread models do not distinguish between live and dead fuels in a sophisticated manner because the study of live fuels has been limited. The program is experimentally examining fire spread at 3...
The joint estimation of term structures and credit spreads
Houweling, P.; Hoek, J.; Kleibergen, F.R.
1999-01-01
We present a new framework for the joint estimation of the default-free government term structure and corporate credit spread curves. By using a data set of liquid, German mark denominated bonds, we show that this yields more realistic spreads than traditionally obtained spread curves that result