WorldWideScience

Sample records for radial moment calculations

  1. Moment methods with effective nuclear Hamiltonians; calculations of radial moments

    International Nuclear Information System (INIS)

    Belehrad, R.H.

    1981-02-01

    A truncated orthogonal polynomial expansion is used to evaluate the expectation value of the radial moments of the one-body density of nuclei. The expansion contains the configuration moments, , , and 2 >, where R/sup (k)/ is the operator for the k-th power of the radial coordinate r, and H is the effective nuclear Hamiltonian which is the sum of the relative kinetic energy operator and the Bruckner G matrix. Configuration moments are calculated using trace reduction formulae where the proton and neutron orbitals are treated separately in order to find expectation values of good total isospin. The operator averages are taken over many-body shell model states in the harmonic oscillator basis where all particles are active and single-particle orbitals through six major shells are included. The radial moment expectation values are calculated for the nuclei 16 O, 40 Ca, and 58 Ni and find that is usually the largest term in the expansion giving a large model space dependence to the results. For each of the 3 nuclei, a model space is found which gives the desired rms radius and then we find that the other 5 lowest moments compare favorably with other theoretical predictions. Finally, we use a method of Gordon (5) to employ the lowest 6 radial moment expectation values in the calculation of elastic electron scattering from these nuclei. For low to moderate momentum transfer, the results compare favorably with the experimental data

  2. Moment approach to tandem mirror radial transport

    International Nuclear Information System (INIS)

    Siebert, K.D.; Callen, J.D.

    1986-02-01

    A moment approach is proposed for the study of tandem mirror radial transport in the resonant plateau regime. The salient features of the method are described with reference to axisymmetric tokamak transport theory. In particular, the importance of momentum conservation to the establishment of the azimuthal variations in the electrostatic potential is demonstrated. Also, an ad hoc drift kinetic equation is solved to determine parallel viscosity coefficients which are required to close the moment system

  3. A corrector for spacecraft calculated electron moments

    Directory of Open Access Journals (Sweden)

    J. Geach

    2005-03-01

    Full Text Available We present the application of a numerical method to correct electron moments calculated on-board spacecraft from the effects of potential broadening and energy range truncation. Assuming a shape for the natural distribution of the ambient plasma and employing the scalar approximation, the on-board moments can be represented as non-linear integral functions of the underlying distribution. We have implemented an algorithm which inverts this system successfully over a wide range of parameters for an assumed underlying drifting Maxwellian distribution. The outputs of the solver are the corrected electron plasma temperature Te, density Ne and velocity vector Ve. We also make an estimation of the temperature anisotropy A of the distribution. We present corrected moment data from Cluster's PEACE experiment for a range of plasma environments and make comparisons with electron and ion data from other Cluster instruments, as well as the equivalent ground-based calculations using full 3-D distribution PEACE telemetry.

  4. Precise calculations of the deuteron quadrupole moment

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-06-01

    Recently, two calculations of the deuteron quadrupole moment have have given predictions that agree with the measured value to within 1%, resolving a long-standing discrepancy. One of these uses the covariant spectator theory (CST) and the other chiral effective field theory (cEFT). In this talk I will first briefly review the foundations and history of the CST, and then compare these two calculations with emphasis on how the same physical processes are being described using very different language. The comparison of the two methods gives new insights into the dynamics of the low energy NN interaction.

  5. Corrections for a constant radial magnetic field in the muon g - 2 and electric-dipole-moment experiments in storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Silenko, Alexander J. [Belarusian State University, Research Institute for Nuclear Problems, Minsk (Belarus); Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation)

    2017-10-15

    We calculate the corrections for constant radial magnetic field in muon g - 2 and electric-dipole-moment experiments in storage rings. While the correction is negligible for the current generation of g - 2 experiments, it affects the upcoming muon electric-dipole-moment experiment at Fermilab. (orig.)

  6. Corrections for a constant radial magnetic field in the muon \\varvec{g}-2 and electric-dipole-moment experiments in storage rings

    Science.gov (United States)

    Silenko, Alexander J.

    2017-10-01

    We calculate the corrections for constant radial magnetic field in muon {g}-2 and electric-dipole-moment experiments in storage rings. While the correction is negligible for the current generation of {g}-2 experiments, it affects the upcoming muon electric-dipole-moment experiment at Fermilab.

  7. Calculation of the Moments of Polygons.

    Science.gov (United States)

    1987-06-01

    2.1) VowUK-1N0+IDIO TUUNTKPlNO.YKNO C Calculate AREA YKXK-YKPIND*IKNO-YKNO*XKP1NO AIKA-hEEA4YKXX C Calculate ACEIT ACENT (1)- ACEIT ( 1) VSUNI4TKIK... ACEIT (2) -ACENT(2) .VSUNYKXK C Calculate SECHON 3ECNON (1) -SCNON( 1) TKXK*(XX~PIdO*VSUNXKKO**2) SECNO(2) -SEn N(2) .yrf* (XKP114*YKP1MO.XKO*YXO+VB1hi

  8. Total Longitudinal Moment Calculation and Reliability Analysis of Yacht Structures

    Science.gov (United States)

    Zhi, Wenzheng; Lin, Shaofen

    In order to check the reliability of the yacht in FRP (Fiber Reinforce Plastic) materials, in this paper, the vertical force and the calculation method of the overall longitudinal bending moment on yacht was analyzed. Specially, this paper focuses on the impact of speed on the still water bending moment on yacht. Then considering the mechanical properties of the cap type stiffeners in composite materials, the ultimate bearing capacity of the yacht has been worked out, finally the reliability of the yacht was calculated with using response surface methodology. The result can be used in yacht design and yacht driving.

  9. Calculation of the atomic electric dipole moment of Pb2+ induced by nuclear Schiff moment

    Science.gov (United States)

    Ramachandran, S. M.; Latha, K. V. P.; Meenakshisundaram, N.

    2017-07-01

    We report the atomic electric dipole moment induced by the P, T violating interactions in the nuclear/sub-nuclear level, for 207Pb2+ and 207Pb, owing to the recent interest in the ferroelectric crystal PbTiO3 as one of the candidates for investigating macroscopic P, T-odd effects. In this paper, we calculate the atomic electric dipole moments of 207Pb and Pb2+, parametrized in terms of the P, T-odd coupling parameter, the nuclear Schiff moment (NSM), S, in the frame-work of the coupled-perturbed Hartree-Fock theory. We estimate the Schiff moment of Pb2+ using the experimental result of a system, which is electronically similar to the Pb2+ ion. We present the dominant contributions of the electric dipole moment (EDM) matrix elements and the important correlation effects contributing to the atomic EDM of Pb2+. Our results provide the first ever calculated EDM of the Pb2+ ion, and an estimate of its NSM from which the P, T-odd energy shift in a PbTiO3 crystal can be evaluated.

  10. Stress concentration factors for integral and pad reinforced nozzles in spherical pressure vessels subjected to radial load and moment

    International Nuclear Information System (INIS)

    Soliman, S.F.; Gill, S.S.

    1979-01-01

    Charts are presented giving the elastic stress concentration factors in spherical pressure vessels with pad and integral reinforcement for radial branches subjected to radial load and moment. The effect of all the geometrical parameters is discussed, including the limitations of thin shell theory on the validity of the results. (author)

  11. An Exact Formula for Calculating Inverse Radial Lens Distortions

    Directory of Open Access Journals (Sweden)

    Pierre Drap

    2016-06-01

    Full Text Available This article presents a new approach to calculating the inverse of radial distortions. The method presented here provides a model of reverse radial distortion, currently modeled by a polynomial expression, that proposes another polynomial expression where the new coefficients are a function of the original ones. After describing the state of the art, the proposed method is developed. It is based on a formal calculus involving a power series used to deduce a recursive formula for the new coefficients. We present several implementations of this method and describe the experiments conducted to assess the validity of the new approach. Such an approach, non-iterative, using another polynomial expression, able to be deduced from the first one, can actually be interesting in terms of performance, reuse of existing software, or bridging between different existing software tools that do not consider distortion from the same point of view.

  12. Calculations of mass and moment of inertia for neutron stars

    International Nuclear Information System (INIS)

    Moelnvik, T.; Oestgaard, E.

    1985-01-01

    Masses and moments of inertia for slowly-rotating neutron stars are calculated from the Tolman-Oppenheimer-Volkoff equations and various equations of state for neutron-star matter. We have also obtained pressure and density as a function of the distance from the centre of the star. Generally, two different equations of state are applied for particle densities n>0.47 fm -3 and n -3 . The maximum mass is, in our calculations for all equations of state except for the unrealistic non-relativistic ideal Fermi gas, given by 1.50 Msub(sun) 44 gxcm 2 45 gxcm 2 , which also seem to agree very well with 'experimental results'. The radius of the star corresponding to maximum mass and maximum moment of inertia is given by 8.2 km< R<10.0 km, but a smaller central density rhosub(c) will give a larger radius. (orig.)

  13. Axial SPN and radial MOC coupled whole core transport calculation

    International Nuclear Information System (INIS)

    Cho, Jin-Young; Kim, Kang-Seog; Lee, Chung-Chan; Zee, Sung-Quun; Joo, Han-Gyu

    2007-01-01

    The Simplified P N (SP N ) method is applied to the axial solution of the two-dimensional (2-D) method of characteristics (MOC) solution based whole core transport calculation. A sub-plane scheme and the nodal expansion method (NEM) are employed for the solution of the one-dimensional (1-D) SP N equations involving a radial transverse leakage. The SP N solver replaces the axial diffusion solver of the DeCART direct whole core transport code to provide more accurate, transport theory based axial solutions. In the sub-plane scheme, the radial equivalent homogenization parameters generated by the local MOC for a thick plane are assigned to the multiple finer planes in the subsequent global three-dimensional (3-D) coarse mesh finite difference (CMFD) calculation in which the NEM is employed for the axial solution. The sub-plane scheme induces a much less nodal error while having little impact on the axial leakage representation of the radial MOC calculation. The performance of the sub-plane scheme and SP N nodal transport solver is examined by solving a set of demonstrative problems and the C5G7MOX 3-D extension benchmark problems. It is shown in the demonstrative problems that the nodal error reaching upto 1,400 pcm in a rodded case is reduced to 10 pcm by introducing 10 sub-planes per MOC plane and the transport error is reduced from about 150 pcm to 10 pcm by using SP 3 . Also it is observed, in the C5G7MOX rodded configuration B problem, that the eigenvalues and pin power errors of 180 pcm and 2.2% of the 10 sub-planes diffusion case are reduced to 40 pcm and 1.4%, respectively, for SP 3 with only about a 15% increase in the computing time. It is shown that the SP 5 case gives very similar results to the SP 3 case. (author)

  14. Stieltjes-moment-theory technique for calculating resonance width's

    International Nuclear Information System (INIS)

    Hazi, A.U.

    1978-12-01

    A recently developed method for calculating the widths of atomic and molecular resonances is reviewed. The method is based on the golden-rule definition of the resonance width, GAMMA(E). The method uses only square-integrable, L 2 , basis functions to describe both the resonant and the non-resonant parts of the scattering wave function. It employs Stieltjes-moment-theory techniques to extract a continuous approximation for the width discrete representation of the background continuum. Its implementation requires only existing atomic and molecular structure codes. Many-electron effects, such as correlation and polarization, are easily incorporated into the calculation of the width via configuration interaction techniques. Once the width, GAMMA(E), has been determined, the energy shift can be computed by a straightforward evaluation of the required principal-value integral. The main disadvantage of the method is that it provides only the total width of a resonance which decays into more than one channel in a multichannel problem. A review of the various aspects of the theory is given first, and then representative results that have been obtained with this method for several atomic and molecular resonances are discussed. 28 references, 3 figures, 4 tables

  15. A Calculation of the Angular Moments of the Kernel for a Monatomic Gas Scatterer

    Energy Technology Data Exchange (ETDEWEB)

    Haakansson, Rune

    1964-07-15

    B. Davison has given in an unpublished paper a method of calculating the moments of the monatomic gas scattering kernel. We present here this method and apply it to calculate the first four moments. Numerical results for these moments for the masses M = 1 and 3.6 are also given.

  16. Calculation of parameters of radial-piston reducer based on the use of functional semantic networks

    Directory of Open Access Journals (Sweden)

    Pashkevich V.M.

    2016-12-01

    Full Text Available The questions of сalculation of parameters of radial-piston reducer are considered in this article. It is used the approach which is based technologies of functional semantic networks. It is considered possibility applications of functional se-mantic networks for calculation of parameters of radial-piston reducer. Semantic networks to calculate the mass of the radial piston reducer are given.

  17. Calculation of nuclear moment of inertia with proper treatment of pairing interaction

    International Nuclear Information System (INIS)

    Tazaki, S.; Ando, Y.; Hasegawa, M.

    1997-01-01

    An attempt to calculate nuclear moments of inertia treating the pairing interaction exactly is reported. As usual, hamiltonian is composed of the Nilsson's singleparticle energies and the pairing interaction, but the eigenstates and the eigenvalues are calculated exactly in a realistic, sufficiently large model space. The method of calculating the moment of inertia is presented. (author)

  18. Correct use of the Gordon decomposition in the calculation of nucleon magnetic dipole moments

    International Nuclear Information System (INIS)

    Mekhfi, Mustapha

    2008-01-01

    We perform the calculation of the nucleon dipole magnetic moment in full detail using the Gordon decomposition of the free quark current. This calculation has become necessary because of frequent misuse of the Gordon decomposition by some authors in computing the nucleon dipole magnetic moment

  19. Bending Moment Calculations for Piles Based on the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-xin Jie

    2013-01-01

    Full Text Available Using the finite element analysis program ABAQUS, a series of calculations on a cantilever beam, pile, and sheet pile wall were made to investigate the bending moment computational methods. The analyses demonstrated that the shear locking is not significant for the passive pile embedded in soil. Therefore, higher-order elements are not always necessary in the computation. The number of grids across the pile section is important for bending moment calculated with stress and less significant for that calculated with displacement. Although computing bending moment with displacement requires fewer grid numbers across the pile section, it sometimes results in variation of the results. For displacement calculation, a pile row can be suitably represented by an equivalent sheet pile wall, whereas the resulting bending moments may be different. Calculated results of bending moment may differ greatly with different grid partitions and computational methods. Therefore, a comparison of results is necessary when performing the analysis.

  20. Analytic moment method calculations of the drift wave spectrum

    International Nuclear Information System (INIS)

    Thayer, D.R.; Molvig, K.

    1985-11-01

    A derivation and approximate solution of renormalized mode coupling equations describing the turbulent drift wave spectrum is presented. Arguments are given which indicate that a weak turbulence formulation of the spectrum equations fails for a system with negative dissipation. The inadequacy of the weak turbulence theory is circumvented by utilizing a renormalized formation. An analytic moment method is developed to approximate the solution of the nonlinear spectrum integral equations. The solution method employs trial functions to reduce the integral equations to algebraic equations in basic parameters describing the spectrum. An approximate solution of the spectrum equations is first obtained for a mode dissipation with known solution, and second for an electron dissipation in the NSA

  1. A sum rule calculation of the neutron electric dipole moment from a quark chromoelectric dipole coupling

    International Nuclear Information System (INIS)

    Kogan, I.I.; Wyler, D.

    1992-01-01

    The neutron electric dipole moment (NEDM) from a quark chromoelectric dipole moment is calculated using a QCD sumrule approach. We demonstrate that leading contributions to the NEDM come from induced condensates (quark and quark-gluon condensate magnetic susceptibilities) which are also determined. Other possible contributions to the NEDM such as a quark electric dipole moment or a triple gluon operator are briefly discussed. (orig.)

  2. Calculation of three-dimensional groundwater transport using second-order moments

    International Nuclear Information System (INIS)

    Pepper, D.W.; Stephenson, D.E.

    1987-01-01

    Groundwater transport of contaminants from the F-Area seepage basin at the Savannah River Plant (SRP) was calculated using a three-dimensional, second-order moment technique. The numerical method calculates the zero, first, and second moment distributions of concentration within a cell volume. By summing the moments over the entire solution domain, and using a Lagrangian advection scheme, concentrations are transported without numerical dispersion errors. Velocities obtained from field tests are extrapolated and interpolated to all nodal points; a variational analysis is performed over the three-dimensional velocity field to ensure mass consistency. Transport predictions are calculated out to 12,000 days. 28 refs., 9 figs

  3. A calculation method of cracking moment for the high strength ...

    Indian Academy of Sciences (India)

    mal stress and crack width for the tensional behaviour of concrete and has been proposed by ... stresses. To calculate concrete stress in a cross section of high strength concrete beams, failure strain is ..... American Concrete. Institute, Detroit.

  4. Collective gyromagnetic ratio and moment of inertia from density-dependent Hartree-Fock calculations

    International Nuclear Information System (INIS)

    Sprung, D.W.L.; Lie, S.G.; Vallieres, M.; Quentin, P.

    1979-01-01

    The collective gyromagnetic ratio and moment of inertia of deformed even-even axially symmetric nuclei are calculated in the cranking approximation using wave functions obtained with the Skyrme force S-III. Good agreement is found for gsub(R), while the moment of inertia is about 20% too small. The cranking formula leads to better agreement than the projection method. (Auth.)

  5. Calculation of the electron magnetic moment in Fried-Yennie-gauge QED

    International Nuclear Information System (INIS)

    Adkins, G.S.

    1989-01-01

    The two-loop contribution to the electron magnetic moment is calculated in the Fried-Yennie gauge. This is the first treatment of the magnetic moment beyond one-loop order in a gauge other than the Feynman gauge. The Fried-Yennie gauge is infrared safe, and the calculation is done without introducing an infrared cutoff or photon mass. The Fried-Yennie-gauge result agrees with the Feynman-gauge result, as expected

  6. radial

    Directory of Open Access Journals (Sweden)

    JOHN WILLIAM BRANCH

    2007-01-01

    Full Text Available La creación de modelos de objetos reales es una tarea compleja para la cual se ha visto que el uso de técnicas tradicionales de modelamiento tiene restricciones. Para resolver algunos de estos problemas, los sensores de rango basados en láser se usan con frecuencia para muestrear la superficie de un objeto desde varios puntos de vista, lo que resulta en un conjunto de imágenes de rango que son registradas e integradas en un modelo final triangulado. En la práctica, debido a las propiedades reflectivas de la superficie, las oclusiones, y limitaciones de acceso, ciertas áreas de la superficie del objeto usualmente no son muestreadas, dejando huecos que pueden crear efectos indeseables en el modelo integrado. En este trabajo, presentamos un nuevo algoritmo para el llenado de huecos a partir de modelos triangulados. El algoritmo comienza localizando la frontera de las regiones donde están los huecos. Un hueco consiste de un camino cerrado de bordes de los triángulos en la frontera que tienen al menos un borde que no es compartido con ningún otro triangulo. El borde del hueco es entonces adaptado mediante un B-Spline donde la variación promedio de la torsión del la aproximación del B-spline es calculada. Utilizando un simple umbral de la variación promedio a lo largo del borde, se puede clasificar automáticamente, entre huecos reales o generados por intervención humana. Siguiendo este proceso de clasificación, se usa entonces una versión automatizada del interpolador de funciones de base radial para llenar el interior del hueco usando los bordes vecinos.

  7. Consistent calculation of the polarization electric dipole moment by the shell-correction method

    International Nuclear Information System (INIS)

    Denisov, V.Yu.

    1992-01-01

    Macroscopic calculations of the polarization electric dipole moment which arises in nuclei with an octupole deformation are discussed in detail. This dipole moment is shown to depend on the position of the center of gravity. The conditions of consistency of the radii of the proton and neutron potentials and the radii of the proton and neutron surfaces, respectively, are discussed. These conditions must be incorporated in a shell-correction calculation of this dipole moment. A correct calculation of this moment by the shell-correction method is carried out. Dipole transitions between (on the one hand) levels belonging to an octupole vibrational band and (on the other) the ground state in rare-earth nuclei with a large quadrupole deformation are studied. 19 refs., 3 figs

  8. Radial electromagnetic force calculation of induction motor based on multi-loop theory

    Directory of Open Access Journals (Sweden)

    HE Haibo

    2017-12-01

    Full Text Available [Objectives] In order to study the vibration and noise of induction motors, a method of radial electromagnetic force calculation is established on the basis of the multi-loop model.[Methods] Based on the method of calculating air-gap magneto motive force according to stator and rotor fundamental wave current, the analytic formulas are deduced for calculating the air-gap magneto motive force and radial electromagnetic force generated in accordance with any stator winding and rotor conducting bar current. The multi-loop theory and calculation method for the electromagnetic parameters of a motor are introduced, and a dynamic simulation model of an induction motor built to achieve the current of the stator winding and rotor conducting bars, and obtain the calculation formula of radial electromagnetic force. The radial electromagnetic force and vibration are then estimated.[Results] The experimental results indicate that the vibration acceleration frequency and amplitude of the motor are consistent with the experimental results.[Conclusions] The results and calculation method can support the low noise design of converters.

  9. An improved method for calculating force distributions in moment-stiff timber connections

    DEFF Research Database (Denmark)

    Ormarsson, Sigurdur; Blond, Mette

    2012-01-01

    An improved method for calculating force distributions in moment-stiff metal dowel-type timber connections is presented, a method based on use of three-dimensional finite element simulations of timber connections subjected to moment action. The study that was carried out aimed at determining how...... the slip modulus varies with the angle between the direction of the dowel forces and the fibres in question, as well as how the orthotropic stiffness behaviour of the wood material affects the direction and the size of the forces. It was assumed that the force distribution generated by the moment action...

  10. Wave packet methods for the direct calculation of energy-transfer moments in molecular collisions

    International Nuclear Information System (INIS)

    Bradley, K.S.; Schatz, G.C.; Balint-Kurti, G.G.

    1999-01-01

    The authors present a new wave packet based theory for the direct calculation of energy-transfer moments in molecular collision processes. This theory does not contain any explicit reference to final state information associated with the collision dynamics, thereby avoiding the need for determining vibration-rotation bound states (other than the initial state) for the molecules undergoing collision and also avoiding the calculation of state-to-state transition probabilities. The theory applies to energy-transfer moments of any order, and it generates moments for a wide range of translational energies in a single calculation. Two applications of the theory are made that demonstrate its viability; one is to collinear He + H 2 and the other to collinear He + CS 2 (with two active vibrational modes in CS 2 ). The results of these applications agree well with earlier results based on explicit calculation of transition probabilities

  11. Bending moment evaluation of a long specimen using a radial speckle pattern interferometer in combination with relaxation methods

    Science.gov (United States)

    Pacheco, Anderson; Fontana, Filipe; Viotti, Matias R.; Veiga, Celso L. N.; Lothhammer, Lívia R.; Albertazzi G., Armando, Jr.

    2015-08-01

    The authors developed an achromatic speckle pattern interferometer able to measure in-plane displacements in polar coordinates. It has been used to measure combined stresses resulting from the superposition of mechanical loading and residual stresses. Relaxation methods have been applied to produce on the surface of the specimen a displacement field that can be used to determine the amount of combined stresses. Two relaxation methods are explored in this work: blind hole-drilling and indentation. The first one results from a blind hole drilled with a high-speed drilling unit in the area of interest. The measured displacement data is fitted in an appropriate model to quantify the stress level using an indirect approach based on a set of finite element coefficients. The second approach uses indentation, where a hard spherical tip is firmly pressed against the surface to be measured with a predetermined indentation load. A plastic flow occurs around the indentation mark producing a radial in-plane displacement field that is related to the amount of combined stresses. Also in this case, displacements are measured by the radial interferometer and used to determine the stresses by least square fitting it to a displacement field determined by calibration. Both approaches are used to quantify the amount of bending stresses and moment in eight sections of a 12 m long 200 mm diameter steel pipe submitted to a known transverse loading. Reference values of bending stresses are also determined by strain gauges. The comparison between the four results is discussed in the paper.

  12. Collective vector method for calculation of E1 moments in atomic transition arrays

    International Nuclear Information System (INIS)

    Bloom, S.D.; Goldberg, A.

    1985-10-01

    The CV (collective vector) method for calculating E1 moments for a transition array is described and applied in two cases, herein denoted Z26A and Z26B, pertaining to two different configurations of iron VI. The basic idea of the method is to create a CV from each of the parent (''initial state'') state-vectors of the transition array by application of the E1 operator. The moments of each of these CV's, referred to the parent energy, are then the rigorous moments for that parent, requiring no state decomposition of the manifold of daughter state-vectors. Since, in cases of practical interest, the daughter manifold can be orders of magnitude larger in size than the parent manifold, this makes possible the calculation of many moments higher than the second in situations hitherto unattainable via standard methods. The combination of the moments of all the parents, with proper statistical weighting, then yields the transition array moments from which the transition strength distribution can be derived by various procedures. We describe two of these procedures: (1) The well-known GC (Gram-Charlier) expansion in terms of Hermite polynomials, (2) The Lanczos algorithm or Stieltjes imaging method, also called herein the delta expansion. Application is made in the cases of Z26A (50 lines) and Z26B (5523 lines) and the relative merits and shortcomings of the two procedures are discussed. 10 refs., 15 figs., 2 tabs

  13. Multipole moments of water molecules in clusters and ice Ih from first principles calculations

    International Nuclear Information System (INIS)

    Batista, E.R.; Xantheas, S.S.; Jonsson, H.

    1999-01-01

    We have calculated molecular multipole moments for water molecules in clusters and in ice Ih by partitioning the charge density obtained from first principles calculations. Various schemes for dividing the electronic charge density among the water molecules were used. They include Bader close-quote s zero flux surfaces and Voronoi partitioning schemes. A comparison was also made with an induction model including dipole, dipole-quadrupole, quadrupole-quadrupole polarizability and first hyperpolarizability as well as fixed octopole and hexadecapole moments. We have found that the different density partitioning schemes lead to widely different values for the molecular multipoles, illustrating how poorly defined molecular multipoles are in clusters and condensed environments. For instance, the magnitude of the molecular dipole moment in ice Ih ranges between 2.3 D and 3.1 D depending on the partitioning scheme used. Within each scheme, though, the value for the molecular dipole moment in ice is larger than in the hexamer. The magnitude of the molecular dipole moment in the clusters shows a monotonic increase from the gas phase value to the one in ice Ih, with the molecular dipole moment in the water ring hexamer being smaller than the one in ice Ih for all the partitioning schemes used. copyright 1999 American Institute of Physics

  14. Calculation of hydrostatic radial bearing for main circulating pump of 500 BIKS type

    International Nuclear Information System (INIS)

    Hnatek, T.; Sojka, P.

    1978-01-01

    Computer calculations of the radial hydrostatic bearing were performed for the main circulating pump of the 500 BIKS type designed for WWER reactors. The calculations were based on the Reynolds equation of thin layer hydrodynamic pressure in turbulent flow. Relations were derived for orifice reducer flow. In contrast to previous calculations conducted for laminar flow, the results are more accurate because the nature of bearing lubrication evidently is turbulent. The required loading of 21,700 N in normal pump operation is fully compensated at a full eccentricity of 0.77. Operating tests of the pump also confirmed that the actual radial forces on the rotor did not attain the desired loading. On the other hand, thanks to the bearing brass design, the bearing is capable of short-time operation with limit eccentricity, ie., at start, in deceleration and in emergency conditions. (Z.M.)

  15. Calculation of the radial dose distribution around the trajectory of an ion

    International Nuclear Information System (INIS)

    Pretzsch, G.

    1979-01-01

    The dose caused in polyester by incoming protons, alpha beams, 127 I ions, and 16 O ions has been calculated as a function of the distance perpendicularly to their trajectory. Based on simplified assumptions regarding the binding state of target electrons, emission of secondary electrons and their propagation in matter, it has been found that the dose depends on the distance to the ion trajectory (R) in the form Rsup(-l), l being about 2. The calculated radial dose distributions agree well with values calculated or measured by other authors

  16. The method of arbitrarily large moments to calculate single scale processes in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC)

    2017-01-15

    We device a new method to calculate a large number of Mellin moments of single scale quantities using the systems of differential and/or difference equations obtained by integration-by-parts identities between the corresponding Feynman integrals of loop corrections to physical quantities. These scalar quantities have a much simpler mathematical structure than the complete quantity. A sufficiently large set of moments may even allow the analytic reconstruction of the whole quantity considered, holding in case of first order factorizing systems. In any case, one may derive highly precise numerical representations in general using this method, which is otherwise completely analytic.

  17. The method of arbitrarily large moments to calculate single scale processes in quantum field theory

    Directory of Open Access Journals (Sweden)

    Johannes Blümlein

    2017-08-01

    Full Text Available We devise a new method to calculate a large number of Mellin moments of single scale quantities using the systems of differential and/or difference equations obtained by integration-by-parts identities between the corresponding Feynman integrals of loop corrections to physical quantities. These scalar quantities have a much simpler mathematical structure than the complete quantity. A sufficiently large set of moments may even allow the analytic reconstruction of the whole quantity considered, holding in case of first order factorizing systems. In any case, one may derive highly precise numerical representations in general using this method, which is otherwise completely analytic.

  18. The statistic-thermodynamically calculations of magnetic thermodynamically functions for nuclear magnetic moments

    International Nuclear Information System (INIS)

    Zhu Zhenghe; Luo Deli; Feng Kaiming

    2013-01-01

    The present work is to calculate the magnetic thermodynamically functions, i.e. energy, the intensity of magnetization, enthalpy, entropy and Gibbs function for nuclear magnetic moments of T, D and neutron n at 2 T and 1, 50, 100 and 150 K from partition functions. It is shown that magnetic saturation of thermonuclear plasma does not easily occur for nuclear magneton is only of 10 -3 of Bohr magneton. The work done by magnetic field is considerable. (authors)

  19. Calculation of the hadronic vacuum polarization disconnected contribution to the muon anomalous magnetic moment

    CERN Document Server

    Blum, T.; Izubuchi, T.; Jin, L.; Jüttner, A.; Lehner, C.; Maltman, K.; Marinkovic, M.; Portelli, A.; Spraggs, M.

    2016-01-01

    We report the first lattice QCD calculation of the hadronic vacuum polarization disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique which enabled the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the $48^3 \\times 96$ physical-pion-mass lattice generated by the RBC and UKQCD collaborations. We find $a_\\mu^{\\rm HVP~(LO)~DISC} = -9.6(3.3)(2.3)\\times 10^{-10}$, where the first error is statistical and the second systematic.

  20. Calculation of the Hadronic Vacuum Polarization Disconnected Contribution to the Muon Anomalous Magnetic Moment.

    Science.gov (United States)

    Blum, T; Boyle, P A; Izubuchi, T; Jin, L; Jüttner, A; Lehner, C; Maltman, K; Marinkovic, M; Portelli, A; Spraggs, M

    2016-06-10

    We report the first lattice QCD calculation of the hadronic vacuum polarization (HVP) disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique that enables the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the 48^{3}×96 physical-pion-mass lattice generated by the RBC and UKQCD Collaborations. We find the leading-order hadronic vacuum polarization a_{μ}^{HVP(LO)disc}=-9.6(3.3)(2.3)×10^{-10}, where the first error is statistical and the second systematic.

  1. Calculation of the Hadronic Vacuum Polarization Disconnected Contribution to the Muon Anomalous Magnetic Moment

    Science.gov (United States)

    Blum, T.; Boyle, P. A.; Izubuchi, T.; Jin, L.; Jüttner, A.; Lehner, C.; Maltman, K.; Marinkovic, M.; Portelli, A.; Spraggs, M.; Rbc; Ukqcd Collaborations

    2016-06-01

    We report the first lattice QCD calculation of the hadronic vacuum polarization (HVP) disconnected contribution to the muon anomalous magnetic moment at physical pion mass. The calculation uses a refined noise-reduction technique that enables the control of statistical uncertainties at the desired level with modest computational effort. Measurements were performed on the 483×96 physical-pion-mass lattice generated by the RBC and UKQCD Collaborations. We find the leading-order hadronic vacuum polarization aμHVP (LO )disc=-9.6 (3.3 )(2.3 )×10-10 , where the first error is statistical and the second systematic.

  2. Calculation of pellet radial power distributions with a Monte Carlo burnup code

    International Nuclear Information System (INIS)

    Suzuki, Motomu; Yamamoto, Toru; Nakata, Tetsuo

    2010-01-01

    The Japan Nuclear Energy Safety Organization (JNES) has been working on an irradiation test program of high-burnup MOX fuel at Halden Boiling Water Reactor (HBWR). MOX and UO 2 fuel rods had been irradiated up to about 64 GWd/t (rod avg.) as a Japanese utilities research program (1st phase), and using those fuel rods, in-situ measurement of fuel pellet centerline temperature was done during the 2nd phase of irradiation as the JNES test program. As part of analysis of the temperature data, power distributions in a pellet radial direction were analyzed by using a Monte Carlo burnup code MVP-BURN. In addition, the calculated results of deterministic burnup codes SRAC and PLUTON for the same problem were compared with those of MVP-BURN to evaluate their accuracy. Burnup calculations with an assembly model were performed by using MVP-BURN and those with a pin cell model by using SRAC and PLUTON. The cell pitch and, therefore, fuel to moderator ratio in the pin cell calculation was determined from the comparison of neutron energy spectra with those of MVP-BURN. The fuel pellet radial distributions of burnup and fission reaction rates at the end of the 1st phase irradiation were compared between the three codes. The MVP-BURN calculation results show a large peaking in the burnup and fission rates in the pellet outer region for the UO 2 and MOX pellets. The SRAC calculations give very close results to those of the MVP-BURN. On the other hand, the PLUTON calculations show larger burnup for the UO 2 and lower burnup for the MOX pellets in the pellet outer region than those of MVP-BURN, which lead to larger fission rates for the UO 2 and lower fission rates for the MOX pellets, respectively. (author)

  3. Computing Moment-Based Probability Tables for Self-Shielding Calculations in Lattice Codes

    International Nuclear Information System (INIS)

    Hebert, Alain; Coste, Mireille

    2002-01-01

    As part of the self-shielding model used in the APOLLO2 lattice code, probability tables are required to compute self-shielded cross sections for coarse energy groups (typically with 99 or 172 groups). This paper describes the replacement of the multiband tables (typically with 51 subgroups) with moment-based tables in release 2.5 of APOLLO2. An improved Ribon method is proposed to compute moment-based probability tables, allowing important savings in CPU resources while maintaining the accuracy of the self-shielding algorithm. Finally, a validation is presented where the absorption rates obtained with each of these techniques are compared with exact values obtained using a fine-group elastic slowing-down calculation in the resolved energy domain. Other results, relative to the Rowland's benchmark and to three assembly production cases, are also presented

  4. GenLocDip: A Generalized Program to Calculate and Visualize Local Electric Dipole Moments.

    Science.gov (United States)

    Groß, Lynn; Herrmann, Carmen

    2016-09-30

    Local dipole moments (i.e., dipole moments of atomic or molecular subsystems) are essential for understanding various phenomena in nanoscience, such as solvent effects on the conductance of single molecules in break junctions or the interaction between the tip and the adsorbate in atomic force microscopy. We introduce GenLocDip, a program for calculating and visualizing local dipole moments of molecular subsystems. GenLocDip currently uses the Atoms-In-Molecules (AIM) partitioning scheme and is interfaced to various AIM programs. This enables postprocessing of a variety of electronic structure output formats including cube and wavefunction files, and, in general, output from any other code capable of writing the electron density on a three-dimensional grid. It uses a modified version of Bader's and Laidig's approach for achieving origin-independence of local dipoles by referring to internal reference points which can (but do not need to be) bond critical points (BCPs). Furthermore, the code allows the export of critical points and local dipole moments into a POVray readable input format. It is particularly designed for fragments of large systems, for which no BCPs have been calculated for computational efficiency reasons, because large interfragment distances prevent their identification, or because a local partitioning scheme different from AIM was used. The program requires only minimal user input and is written in the Fortran90 programming language. To demonstrate the capabilities of the program, examples are given for covalently and non-covalently bound systems, in particular molecular adsorbates. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. On a method of numerical calculation of nonlinear radial pulsations of stars

    International Nuclear Information System (INIS)

    Kosovichev, A.G.

    1984-01-01

    Some features of using the finite difference method for numerical investigation of nonradial pulsations of stars were considered. The mathematical model of these pulsations is described by time-dependent gasdynaMic equations with gravity. A one-dimentional (spherically-symmetric) case is considered. It was obtained a two-parametric family of ultimate conservative difference schemes where the diffepence analogy of the main conservative laws as well as the additional relations for the balance to individual kinds of energy are performed. Such difference schemes provide more exact calculation of nonlinear flows with shocks as compared with the other difference schemes with the same order of approximation. The methods of numerical solution of implicit (absolute stable) difference schemes for a given family were considered. The coupled equations are solved through iterative Newton method Using martrix and separate successive eliminations. Numerical method can be used for calculation of large amplitude radial pulsations of stars

  6. Calculating Higher-Order Moments of Phylogenetic Stochastic Mapping Summaries in Linear Time

    Science.gov (United States)

    Dhar, Amrit

    2017-01-01

    Abstract Stochastic mapping is a simulation-based method for probabilistically mapping substitution histories onto phylogenies according to continuous-time Markov models of evolution. This technique can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-based mapping, conditions on the observed data to randomly draw substitution mappings that do not necessarily require the minimum number of events on a tree. Most stochastic mapping applications simulate substitution mappings only to estimate the mean and/or variance of two commonly used mapping summaries: the number of particular types of substitutions (labeled substitution counts) and the time spent in a particular group of states (labeled dwelling times) on the tree. Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist. Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree. However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochastic mapping summaries. We present one such simulation-free dynamic programming algorithm that calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips. Our procedure suggests a general framework that can be used to efficiently compute higher-order moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of our algorithm by extending previously developed statistical tests for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences. PMID:28177780

  7. Radial basis function networks applied to DNBR calculation in digital core protection systems

    International Nuclear Information System (INIS)

    Lee, Gyu-Cheon; Heung Chang, Soon

    2003-01-01

    The nuclear power plant has to be operated with sufficient margin from the specified DNBR limit for assuring its safety. The digital core protection system calculates on-line real-time DNBR by using a complex subchannel analysis program, and triggers a reliable reactor shutdown if the calculated DNBR approaches the specified limit. However, it takes a relatively long calculation time even for a steady state condition, which may have an adverse effect on the operation flexibility. To overcome the drawback, a new method using a radial basis function network is presented in this paper. Nonparametric training approach is utilized, which shows dramatic reduction of the training time, no tedious heuristic process for optimizing parameters, and no local minima problem during the training. The test results show that the predicted DNBR is within about ±2% deviation from the target DNBR for the fixed axial flux shape case. For the variable axial flux case including severely skewed shapes that appeared during accidents, the deviation is within about ±10%. The suggested method could be the alternative that can calculate DNBR very quickly while guaranteeing the plant safety

  8. Long-range force and moment calculations in multiresolution simulations of molecular systems

    International Nuclear Information System (INIS)

    Poursina, Mohammad; Anderson, Kurt S.

    2012-01-01

    Multiresolution simulations of molecular systems such as DNAs, RNAs, and proteins are implemented using models with different resolutions ranging from a fully atomistic model to coarse-grained molecules, or even to continuum level system descriptions. For such simulations, pairwise force calculation is a serious bottleneck which can impose a prohibitive amount of computational load on the simulation if not performed wisely. Herein, we approximate the resultant force due to long-range particle-body and body-body interactions applicable to multiresolution simulations. Since the resultant force does not necessarily act through the center of mass of the body, it creates a moment about the mass center. Although this potentially important torque is neglected in many coarse-grained models which only use particle dynamics to formulate the dynamics of the system, it should be calculated and used when coarse-grained simulations are performed in a multibody scheme. Herein, the approximation for this moment due to far-field particle-body and body-body interactions is also provided.

  9. Lattice calculation of electric dipole moments and form factors of the nucleon

    Science.gov (United States)

    Abramczyk, M.; Aoki, S.; Blum, T.; Izubuchi, T.; Ohki, H.; Syritsyn, S.

    2017-07-01

    We analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF) F3 and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor F2 due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the C P -violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for F3. Finally, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.

  10. Extended wave-packet model to calculate energy-loss moments of protons in matter

    Science.gov (United States)

    Archubi, C. D.; Arista, N. R.

    2017-12-01

    In this work we introduce modifications to the wave-packet method proposed by Kaneko to calculate the energy-loss moments of a projectile traversing a target which is represented in terms of Gaussian functions for the momentum distributions of electrons in the atomic shells. These modifications are introduced using the Levine and Louie technique to take into account the energy gaps corresponding to the different atomic levels of the target. We use the extended wave-packet model to evaluate the stopping power, the energy straggling, the inverse mean free path, and the ionization cross sections for protons in several targets, obtaining good agreements for all these quantities on an extensive energy range that covers low-, intermediate-, and high-energy regions. The extended wave-packet model proposed here provides a method to calculate in a very straightforward way all the significant terms of the inelastic interaction of light ions with any element of the periodic table.

  11. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kellö, Vladimir [Department of Physical Chemistry, Comenius University, SK-842 15 Bratislava (Slovakia)

    2015-01-22

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  12. A simplified treatment of radial enrichment distributions of LWR fuel assemblies in criticality calculations

    International Nuclear Information System (INIS)

    Hennebach, M.; Schnorrenberg, N.

    2008-01-01

    Criticality safety assessments are usually performed for fuel assembly models that are as generic as possible to encompass small modifications in geometry that have no impact on criticality. Dealing with different radial enrichment distributions for a fuel assembly type, which is especially important for BWR fuel, poses more of a challenge, since this characteristic is rather obviously influencing the neutronic behaviour of the system. Nevertheless, the large variability of enrichment distributions makes it very desirable and even necessary to treat them in a generalized way, both to keep the criticality safety assessment from becoming too unwieldy and to avoid having to extend it every time a new variation comes up. To be viable, such a generic treatment has to be demonstrably covering, i.e. lead to a higher effective neutron multiplication factor k eff than any of the radial enrichment distributions it represents. Averaging the enrichment evenly over the fuel rods of the assembly is a general and simple approach, and under reactor conditions, it is also a covering assumption: the graded distribution is introduced to achieve a linear power distribution, therefore reducing the enrichment of the better moderated rods at the edge of the assembly. With an even distribution of the average enrichment over all rods, these wellmoderated rods will cause increased fission rates at the assembly edges and a rise in k eff . Since the moderator conditions in a spent nuclear fuel cask differ strongly from a reactor even when considering optimal moderation, the proof that a uniform enrichment distribution is a covering assumption compared with detailed enrichment distributions has to be cask-specific. In this report, a method for making that proof is presented along with results for fuel assemblies from BWR reactors. All results are from three-dimensional Monte Carlo calculations with the SCALE 5.1 code package [1], using a 44-group neutron crosssection library based on ENDF

  13. Calculation of radial couplings in the model-potential and pseudopotential approaches: The NaH quasimolecule

    International Nuclear Information System (INIS)

    Mo, O.; Riera, A.; Yaez, M.

    1985-01-01

    We present an extension of the analytical method of Macias and Riera to calculate radial couplings, to include model potentials or (local and nonlocal) pseudopotentials, in the Hamiltonian. As an illustration, energies, couplings, and momentum matrix elements are presented and discussed for the two-effective-electron NaH quasimolecule, as a stringent test case

  14. Calculation of radial couplings in the model-potential and pseudopotential approaches: The NaH quasimolecule

    Energy Technology Data Exchange (ETDEWEB)

    Mo, O.; Riera, A.; Yaez, M.

    1985-06-01

    We present an extension of the analytical method of Macias and Riera to calculate radial couplings, to include model potentials or (local and nonlocal) pseudopotentials, in the Hamiltonian. As an illustration, energies, couplings, and momentum matrix elements are presented and discussed for the two-effective-electron NaH quasimolecule, as a stringent test case.

  15. POLYANA-A tool for the calculation of molecular radial distribution functions based on Molecular Dynamics trajectories

    Science.gov (United States)

    Dimitroulis, Christos; Raptis, Theophanes; Raptis, Vasilios

    2015-12-01

    We present an application for the calculation of radial distribution functions for molecular centres of mass, based on trajectories generated by molecular simulation methods (Molecular Dynamics, Monte Carlo). When designing this application, the emphasis was placed on ease of use as well as ease of further development. In its current version, the program can read trajectories generated by the well-known DL_POLY package, but it can be easily extended to handle other formats. It is also very easy to 'hack' the program so it can compute intermolecular radial distribution functions for groups of interaction sites rather than whole molecules.

  16. Laser-induced ultrafast demagnetization time and spin moment in ferromagnets: First-principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G. P., E-mail: gpzhang@indstate.edu [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States); Si, M. S. [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); George, Thomas F. [Office of the Chancellor and Center for Nanoscience, Departments of Chemistry and Biochemistry and Physics and Astronomy, University of Missouri-St. Louis, St. Louis, Missouri 63121 (United States)

    2015-05-07

    When a laser pulse excites a ferromagnet, its spin undergoes a dramatic change. The initial demagnetization process is very fast. Experimentally, it is found that the demagnetization time is related to the spin moment in the sample. In this study, we employ the first-principles method to directly simulate such a process. We use the fixed spin moment method to change the spin moment in ferromagnetic nickel, and then we employ the Liouville equation to couple the laser pulse to the system. We find that in general the dependence of demagnetization time on the spin moment is nonlinear: It decreases with the spin moment up to a point, after which an increase with the spin moment is observed, followed by a second decrease. To understand this, we employ an extended Heisenberg model, which includes both the exchange interaction and spin-orbit coupling. The model directly links the demagnetization rate to the spin moment itself and demonstrates analytically that the spin relaxes more slowly with a small spin moment. A future experimental test of our predictions is needed.

  17. Progress in analytical calculations for the anomalous magnetic moment of the muon

    International Nuclear Information System (INIS)

    Baikov, P.A.

    2013-11-01

    We present results for certain classes of diagrams contributing to the anomalous magnetic moment of the muon at five-loop order. Our method is based on first constructing an approximating function for the vacuum polarization function of the photon at four loop order which later can be numerically integrated to obtain the anomalous magnetic moment of the muon.

  18. Progress in analytical calculations for the anomalous magnetic moment of the muon

    Energy Technology Data Exchange (ETDEWEB)

    Baikov, P.A. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Maier, A. [Technische Univ. Muenchen (Germany). Physik Dept. T31; Marquard, P. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-11-15

    We present results for certain classes of diagrams contributing to the anomalous magnetic moment of the muon at five-loop order. Our method is based on first constructing an approximating function for the vacuum polarization function of the photon at four loop order which later can be numerically integrated to obtain the anomalous magnetic moment of the muon.

  19. Control-surface hinge-moment calculations for a high-aspect-ratio supercritical wing

    Science.gov (United States)

    Perry, B., III

    1978-01-01

    The hinge moments, at selected flight conditions, resulting from deflecting two trailing edge control surfaces (one inboard and one midspan) on a high aspect ratio, swept, fuel conservative wing with a supercritical airfoil are estimated. Hinge moment results obtained from procedures which employ a recently developed transonic analysis are given. In this procedure a three dimensional inviscid transonic aerodynamics computer program is combined with a two dimensional turbulent boundary layer program in order to obtain an interacted solution. These results indicate that trends of the estimated hinge moment as a function of deflection angle are similar to those from experimental hinge moment measurements made on wind tunnel models with swept supercritical wings tested at similar values of free stream Mach number and angle of attack.

  20. On the calculation of x-ray scattering signals from pairwise radial distribution functions

    DEFF Research Database (Denmark)

    Dohn, Asmus Ougaard; Biasin, Elisa; Haldrup, Kristoffer

    2015-01-01

    We derive a formulation for evaluating (time-resolved) x-ray scattering signals of solvated chemical systems, based on pairwise radial distribution functions, with the aim of this formulation to accompany molecular dynamics simulations. The derivation is described in detail to eliminate any possi...

  1. Stresses from pressure, radial, and moment loads in cylinder-to-cylinder vessel by a finite plate method

    International Nuclear Information System (INIS)

    Brown, S.J.; Fox, M.E.

    1977-08-01

    A structural problem that has received continued interest and development over the last several decades is the determination of stresses in two normally intersecting cylindrical shells subjected to internal pressure and external loading. In nuclear pressure vessels the external loading of the vessel through the attachment is encountered in thermal interaction, seismic loading and various postulated rupture or failure mechanisms. A simple technique, the Finite Plate Method, (FPM) is presented to analyze stresses in cylinder-to-cylinder junctures. The approach uses shallow shell formulations and a three term series expansion plate formulation, which limits the range of applicability. It is felt that the value of the method is its accuracy, economy, and ease in modeling a structure which falls within the range of applicability. Another appealing feature of the method is that its simplistic approach of superposition of results permits an easy extension to include additional loads not treated. For those mechanical loadings not developed, it is felt that their effect can either be accounted for by the mechanisms discussed or by simple calculations. Generally, the stresses resulting from torsional or transverse shear are small compared to the loads discussed, however, these shear effects may be included. Finally, in the instance of thermal stress within the cylinder-to-cylinder structure, it has been shown in an unpublished study by Brown that the FPM yields very good results for the range of curvatures discussed

  2. Program for the calculation of the semiempirical radial wave functions by means of the variable Tomas-Fermi potential and for the determination of the radial integrals of the dipole transitions

    International Nuclear Information System (INIS)

    Kuzmitskite, L.L.

    1980-01-01

    The program is meant for the determination of the semiempirical radial wave functions of the positive ions and the calculation of the radial integrals of the dipole transition. The semiempirical wave functions are calculated using Tomas-Fermi potential with the variable parameter, which provides for the coincidence of the energy obtained with the ionization energy of the state under consideration. The program is written in the FORTRAN language for the BESM-6 computer

  3. Influence of inverse dynamics methods on the calculation of inter-segmental moments in vertical jumping and weightlifting

    Directory of Open Access Journals (Sweden)

    Cleather Daniel J

    2010-11-01

    Full Text Available Abstract Background A vast number of biomechanical studies have employed inverse dynamics methods to calculate inter-segmental moments during movement. Although all inverse dynamics methods are rooted in classical mechanics and thus theoretically the same, there exist a number of distinct computational methods. Recent research has demonstrated a key influence of the dynamics computation of the inverse dynamics method on the calculated moments, despite the theoretical equivalence of the methods. The purpose of this study was therefore to explore the influence of the choice of inverse dynamics on the calculation of inter-segmental moments. Methods An inverse dynamics analysis was performed to analyse vertical jumping and weightlifting movements using two distinct methods. The first method was the traditional inverse dynamics approach, in this study characterized as the 3 step method, where inter-segmental moments were calculated in the local coordinate system of each segment, thus requiring multiple coordinate system transformations. The second method (the 1 step method was the recently proposed approach based on wrench notation that allows all calculations to be performed in the global coordinate system. In order to best compare the effect of the inverse dynamics computation a number of the key assumptions and methods were harmonized, in particular unit quaternions were used to parameterize rotation in both methods in order to standardize the kinematics. Results Mean peak inter-segmental moments calculated by the two methods were found to agree to 2 decimal places in all cases and were not significantly different (p > 0.05. Equally the normalized dispersions of the two methods were small. Conclusions In contrast to previously documented research the difference between the two methods was found to be negligible. This study demonstrates that the 1 and 3 step method are computationally equivalent and can thus be used interchangeably in

  4. To the calculation technique and interpretation of atom radial distribution curves in ternary alloy systems

    International Nuclear Information System (INIS)

    Dutchak, Ya.I.; Frenchko, V.S.; Voznyak, O.M.

    1975-01-01

    Certain models of the structure of three-component melts are considered: the ''quasi-eutectic'' one, the model of statistical distribution of atoms and the ''polystructural'' model. The analytical expressions are given for the area under the first maximum of the curve describing the radial distribution of atoms for certain versions of the ''polystructural'' model. On the example of In-Ga-Ga and Bi-Cd-Sn eutectic melts the possibility of estimating the nature of atomic ordering in three-component melts through checking the models under consideration has been demonstrated

  5. First principles density functional calculation of magnetic moment and hyperfine fields of dilute transition metal impurities in Gd host

    International Nuclear Information System (INIS)

    Mohanta, S.K.; Mishra, S.N.; Srivastava, S.K.

    2014-01-01

    We present first principles calculations of electronic structure and magnetic properties of dilute transition metal (3d, 4d and 5d) impurities in a Gd host. The calculations have been performed within the density functional theory using the full potential linearized augmented plane wave technique and the GGA+U method. The spin and orbital contributions to the magnetic moment and the hyperfine fields have been computed. We find large magnetic moments for 3d (Ti–Co), 4d (Nb–Ru) and 5d (Ta–Os) impurities with magnitudes significantly different from the values estimated from earlier mean field calculation [J. Magn. Magn. Mater. 320 (2008) e446–e449]. The exchange interaction between the impurity and host Gd moments is found to be positive for early 3d elements (Sc–V) while in all other cases an anti-ferromagnetic coupling is observed. The trends for the magnetic moment and hyperfine field of d-impurities in Gd show qualitative difference with respect to their behavior in Fe, Co and Ni. The calculated total hyperfine field, in most cases, shows excellent agreement with the experimental results. A detailed analysis of the Fermi contact hyperfine field has been made, revealing striking differences for impurities having less or more than half filled d-shell. The impurity induced perturbations in host moments and the change in the global magnetization of the unit cell have also been computed. The variation within each of the d-series is found to correlate with the d–d hybridization strength between the impurity and host atoms. - Highlights: • Detailed study of transition metal impurities in ferromagnetic Gd has been carried out. • The trends in impurity magnetic moment are qualitatively different from Fe, Co and Ni. • The variation within each of the d-series is found to correlate with the d–d hybridization strength between the impurity and host atoms. • Experimental trend in a hyperfine field has been reproduced successfully

  6. Calculation of Self-consistent Radial Electric Field in Presence of Convective Electron Transport in a Stellarator

    International Nuclear Information System (INIS)

    Kernbichler, W.; Heyn, M.F.; Kasilov, S.V.

    2003-01-01

    Convective transport of supra-thermal electrons can play a significant role in the energy balance of stellarators in case of high power electron cyclotron heating. Here, together with neoclassical thermal particle fluxes also the supra-thermal electron flux should be taken into account in the flux ambipolarity condition, which defines the self-consistent radial electric field. Since neoclassical particle fluxes are non-linear functions of the radial electric field, one needs an iterative procedure to solve the ambipolarity condition, where the supra-thermal electron flux has to be calculated for each iteration. A conventional Monte-Carlo method used earlier for evaluation of supra-thermal electron fluxes is rather slow for performing the iterations in reasonable computer time. In the present report, the Stochastic Mapping Technique (SMT), which is more effective than the conventional Monte Carlo method, is used instead. Here, the problem with a local monoenergetic supra-thermal particle source is considered and the effect of supra-thermal electron fluxes on both, the self-consistent radial electric field and the formation of different roots of the ambipolarity condition are studied

  7. Comparison of Conductor-Temperature Calculations Based on Different Radial-Position-Temperature Detections for High-Voltage Power Cable

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2018-01-01

    Full Text Available In this paper, the calculation of the conductor temperature is related to the temperature sensor position in high-voltage power cables and four thermal circuits—based on the temperatures of insulation shield, the center of waterproof compound, the aluminum sheath, and the jacket surface are established to calculate the conductor temperature. To examine the effectiveness of conductor temperature calculations, simulation models based on flow characteristics of the air gap between the waterproof compound and the aluminum are built up, and thermocouples are placed at the four radial positions in a 110 kV cross-linked polyethylene (XLPE insulated power cable to measure the temperatures of four positions. In measurements, six cases of current heating test under three laying environments, such as duct, water, and backfilled soil were carried out. Both errors of the conductor temperature calculation and the simulation based on the temperature of insulation shield were significantly smaller than others under all laying environments. It is the uncertainty of the thermal resistivity, together with the difference of the initial temperature of each radial position by the solar radiation, which led to the above results. The thermal capacitance of the air has little impact on errors. The thermal resistance of the air gap is the largest error source. Compromising the temperature-estimation accuracy and the insulation-damage risk, the waterproof compound is the recommended sensor position to improve the accuracy of conductor-temperature calculation. When the thermal resistances were calculated correctly, the aluminum sheath is also the recommended sensor position besides the waterproof compound.

  8. Three-Dimensional Temperature Field Calculation and Analysis of an Axial-Radial Flux-Type Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Dong Li

    2018-05-01

    Full Text Available This article concentrates on the steady-state thermal characteristics of the Axial-Radial Flux-Type Permanent Magnet Synchronous Motor (ARFTPMSM. Firstly, the three-dimensional mathematical models for electromagnetic calculation and analyses are established, and the machine loss, including the stator loss, armature winding loss, rotor loss, and axial structure loss is calculated by using time-step Finite Element Method (FEM. Then, the loss distribution is assigned as the heat source for the thermal calculation. Secondly, the mathematical model for thermal calculation is also established. The assumptions and the boundary conditions are proposed to simplify the calculation and to improve convergence. Thirdly, the three-dimensional electromagnetic and thermal calculations of the machine, of which the armature winding and axial field winding are developed by using copper wires, are solved, from which the temperature distributions of the machine components are obtained. The experiments are carried out on the prototype with copper wires to validate the accuracy of the established models. Then, the temperature distributions of machine components under different Axial Magnetic Motive Force (AMMF are investigated. Since the machine is finally developing by using HTS wires, the temperature distributions of machine developed by utilizing High Temperature Superconducting (HTS wires, are also studied. The temperature distribution differences of the machine developed by using copper wires and HTS wires are drawn. All of these above will provide a helpful reference for the thermal calculation of the ARFTPMSM, as well as the design of the HTS coils and the cryogenic cooling system.

  9. Finite-temperature stress calculations in atomic models using moments of position

    Science.gov (United States)

    Parthasarathy, Ranganathan; Misra, Anil; Ouyang, Lizhi

    2018-07-01

    Continuum modeling of finite temperature mechanical behavior of atomic systems requires refined description of atomic motions. In this paper, we identify additional kinematical quantities that are relevant for a more accurate continuum description as the system is subjected to step-wise loading. The presented formalism avoids the necessity for atomic trajectory mapping with deformation, provides the definitions of the kinematic variables and their conjugates in real space, and simplifies local work conjugacy. The total work done on an atom under deformation is decomposed into the work corresponding to changing its equilibrium position and work corresponding to changing its second moment about equilibrium position. Correspondingly, we define two kinematic variables: a deformation gradient tensor and a vibration tensor, and derive their stress conjugates, termed here as static and vibration stresses, respectively. The proposed approach is validated using MD simulation in NVT ensembles for fcc aluminum subjected to uniaxial extension. The observed evolution of second moments in the MD simulation with macroscopic deformation is not directly related to the transformation of atomic trajectories through the deformation gradient using generator functions. However, it is noteworthy that deformation leads to a change in the second moment of the trajectories. Correspondingly, the vibration part of the Piola stress becomes particularly significant at high temperature and high tensile strain as the crystal approaches the softening limit. In contrast to the eigenvectors of the deformation gradient, the eigenvectors of the vibration tensor show strong spatial heterogeneity in the vicinity of softening. More importantly, the elliptic distribution of local atomic density transitions to a dumbbell shape, before significant non-affinity in equilibrium positions has occurred.

  10. Calculation of the fuel temperature coefficient of reactivity considering non-uniform radial temperature distribution in the fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Pazirandeh, Ali [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Science and Research Branch; Hooshyar Mobaraki, Almas

    2017-07-15

    The safe operation of a reactor is based on feedback models. In this paper we attempted to discuss the influence of a non-uniform radial temperature distribution on the fuel rod temperature coefficient of reactivity. The paper demonstrates that the neutron properties of a reactor core is based on effective temperature of the fuel to obtain the correct fuel temperature feedback. The value of volume-averaged temperature being used in the calculations of neutron physics with feedbacks would result in underestimating the probable event. In the calculation it is necessary to use the effective temperature of the fuel in order to provide correct accounting of the fuel temperature feedback. Fuel temperature changes in different zones of the core and consequently reactivity coefficient change are an important parameter for analysis of transient conditions. The restricting factor that compensates the inserted reactivity is the temperature reactivity coefficient and effective delayed neutron fraction.

  11. Calculated Specific Volumes and Magnetic Moments of the 3d Transition Metal Monoxides

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.

    1980-01-01

    We have performed self-consistent, spin-polarized band structure calculations as a function of the lattice spacing for the 3d metal monoxides in order to obtain the equilibrium lattice constants. The calculated binding from the 3d electrons and the occurrence of antiferromagnetism account...

  12. Half-metallic ferromagnetism with low magnetic moment in zinc-blende TiBi from first-principles calculations

    International Nuclear Information System (INIS)

    Chen, Zhi-Yuan; Xu, Bin; Gao, G.Y.

    2013-01-01

    The structural, electronic and magnetic properties of zinc-blende TiBi are investigated by using the first-principles full-potential linearized augmented plane-wave method. It is found that zinc-blende TiBi exhibits half-metallic ferromagnetism with the energy gap of 1.39 eV in the minority-spin channel. The calculated total magnetic moment of 1.00 µ B per formula unit mainly originates from the Ti atom. We also show that the half-metallicity of zinc-blende TiBi can be maintained up to 3% compression and 5% expansion of lattice constant with respect to the equilibrium lattice, and zinc-blende TiBi is still half-metallic when the spin–orbit coupling is considered. The robust half-metallicity and low magnetic moment make zinc-blende TiBi a potential candidate for spintronic applications. - Highlights: • Half-metallic ferromagnetism in zinc-blende TiBi. • Zinc-blende TiBi has low magnetic moment of 1.00 µ B /f.u. • Spin–orbit coupling does not destroy the half-metallicity of zinc-blende TiBi

  13. Benchmark Calculation of Radial Expectation Value for Confined Hydrogen-Like Atoms and Isotropic Harmonic Oscillators

    International Nuclear Information System (INIS)

    Yu, Rong Mei; Zan, Li Rong; Jiao, Li Guang; Ho, Yew Kam

    2017-01-01

    Spatially confined atoms have been extensively investigated to model atomic systems in extreme pressures. For the simplest hydrogen-like atoms and isotropic harmonic oscillators, numerous physical quantities have been established with very high accuracy. However, the expectation value of which is of practical importance in many applications has significant discrepancies among calculations by different methods. In this work we employed the basis expansion method with cut-off Slater-type orbitals to investigate these two confined systems. Accurate values for several low-lying bound states were obtained by carefully examining the convergence with respect to the size of basis. A scaling law for was derived and it is used to verify the accuracy of numerical results. Comparison with other calculations show that the present results establish benchmark values for this quantity, which may be useful in future studies. (author)

  14. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M. [Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  15. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    International Nuclear Information System (INIS)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-01-01

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H 2 O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm −1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band

  16. A first-order second-moment calculation for seismic hazard assessment with the consideration of uncertain magnitude conversion

    Directory of Open Access Journals (Sweden)

    J. P. Wang

    2013-10-01

    Full Text Available Earthquake size can be described with different magnitudes for different purposes. For example, local magnitude ML is usually adopted to compile an earthquake catalog, and moment magnitude Mw is often prescribed by a ground motion model. Understandably, when inconsistent units are encountered in an earthquake analysis, magnitude conversion needs to be performed beforehand. However, the conversion is not expected at full certainty owing to the model error of empirical relationships. This paper introduces a novel first-order second-moment (FOSM calculation to estimate the annual rate of earthquake motion (or seismic hazard on a probabilistic basis, including the consideration of the uncertain magnitude conversion and three other sources of earthquake uncertainties. In addition to the methodology, this novel FOSM application to engineering seismology is demonstrated in this paper with a case study. With a local ground motion model, magnitude conversion relationship and earthquake catalog, the analysis shows that the best-estimate annual rate of peak ground acceleration (PGA greater than 0.18 g (induced by earthquakes is 0.002 per year at a site in Taipei, given the uncertainties of magnitude conversion, earthquake size, earthquake location, and motion attenuation.

  17. A first-order second-moment calculation for seismic hazard assessment with the consideration of uncertain magnitude conversion

    Science.gov (United States)

    Wang, J. P.; Yun, X.; Wu, Y.-M.

    2013-10-01

    Earthquake size can be described with different magnitudes for different purposes. For example, local magnitude ML is usually adopted to compile an earthquake catalog, and moment magnitude Mw is often prescribed by a ground motion model. Understandably, when inconsistent units are encountered in an earthquake analysis, magnitude conversion needs to be performed beforehand. However, the conversion is not expected at full certainty owing to the model error of empirical relationships. This paper introduces a novel first-order second-moment (FOSM) calculation to estimate the annual rate of earthquake motion (or seismic hazard) on a probabilistic basis, including the consideration of the uncertain magnitude conversion and three other sources of earthquake uncertainties. In addition to the methodology, this novel FOSM application to engineering seismology is demonstrated in this paper with a case study. With a local ground motion model, magnitude conversion relationship and earthquake catalog, the analysis shows that the best-estimate annual rate of peak ground acceleration (PGA) greater than 0.18 g (induced by earthquakes) is 0.002 per year at a site in Taipei, given the uncertainties of magnitude conversion, earthquake size, earthquake location, and motion attenuation.

  18. The moment of inertia method to calculate equivalent ranges in non-proportional tension–torsion histories

    Directory of Open Access Journals (Sweden)

    Marco Antonio Meggiolaro

    2015-07-01

    Full Text Available A critical issue in multiaxial damage calculation in non-proportional (NP histories is to find the equivalent stress or strain ranges and mean components associated with each rainflow-counted cycle of the stress (or strain path. A traditional way to find such ranges is to use enclosing surface methods, which search for convex enclosures, such as balls or prisms, of the entire history path in stress or strain diagrams. These methods only work for relatively simple load histories, since the enclosing surfaces lose information of the original history. This work presents an approach to evaluate equivalent stress and strain ranges in NP histories, called the moment of inertia (MOI method. It is an integral approach that assumes the path contour in the stress diagram is a homogeneous wire with a unit mass. The center of mass of such wire gives then the mean component of the path, while the moments of inertia of the wire can be used to obtain the equivalent stress or strain ranges. Experimental results obtained from the literature for 13 different multiaxial histories prove the effectiveness of the MOI method to predict fatigue lives.

  19. Shell model calculation of the nuclear moments of 9Li in a 2hω space

    International Nuclear Information System (INIS)

    Chang, Y.; Meder, M.R.

    1984-01-01

    A recent measurement of the magnitude of quadrupole moment of the ground state of 9 Li, Q( 9 Li), finds that Vertical BarQ( 9 Li)/Q( 7 Li)Vertical Bar = 0.88 +- 0.18. A variety of shell-model calculations, using p-shell wave functions, predict Q( 9 Li)approx. =1.3Q( 7 Li) and yield quadrupole moments whose magnitudes are approximately half the experimental values. Agreement between theory and experiment is improved when effective charges are used, although the results are still not completely satisfactory. A calculation of the wave functions of the low-lying states of 7 Li and 9 Li using a modified version of the Sussex matrix elements in a model space, including all 0hω and 2hω excitations, has been performed. The resulting value for Q( 9 Li) was -3.46 fm 2 as ray transitions in /sup 52,53/Cr and /sup 54,55/Mn have been observed using 7 Li( 51 V,xn yp zα γ) fusion-evaporation reactions and γ-particle coincidence techniques. The experiment involved the same reaction at the same center-of-mass energy as the earlier work of Poletti et al., but with target and projectile interchanged. In the present work, eight additional transitions have been identified as occurring in 52 Cr. This provides corroboration of results obtained more recently via 50 Ti(α,2nγ) 52 Cr reaction studies. A simple, efficient approach to the spectroscopy of weakly populated nuclear states which provides for unambiguous isotopic assignments is thus demonstrated

  20. Photoabsorption in molecular nitrogen: A moment analysis of discrete-basis-set calculations in the static-exchange approximation

    International Nuclear Information System (INIS)

    Rescigno, T.N.; Bender, C.F.; McKoy, B.V.; Langhoff, P.W.

    1978-01-01

    Theoretical investigations of photoexcitation and ionization cross sections in molecular nitrogen are reported employing the recently devised Stieltjes--Tchebycheff moment-theory technique in the static-exchange approximation. The coupled-channel equations for photoabsorption are separated approximately by identifying the important physically distinct excitation processes associated with formation of the three lowest electronic states of the parent molecular ion. Approximate Rydberg series and pseudospectra of transition frequencies and oscillator strengths are constructed for the seven individual channel components identified using Hartree--Fock ionic core functions and normalizable Gaussian orbitals to describe the photoexcited and ejected electrons. Detailed comparisons of the theoretically determined discrete excitation series with available spectral data indicate general accord between the calculated and observed excitation frequencies and oscillator strengths, although there are some discrepancies and certain Rydberg series have apparently not yet been identified in the measured spectra. The total Stieltjes--Tchebycheff vertical photoionization cross section obtained from the discrete pseudospectra is in excellent agreement with recent electron--ion coincidence measurement of the cross section for parent--ion production from threshold to 50 eV excitation energy. Similarly, e calculated vertical partial cross sections for the production of the three lowest electronic states in the parent molecular ion are in excellent accord with the results of recent electron--electron coincidence and synchrotron--radiation branching ratio measurements. The origins of particularly intense resonancelike features in the discrete and continuum portions of the photoabsorption cross sections are discussed in terms of excitations into valencelike molecular orbitals

  1. Estimation of ground and excited-state dipole moments of 1, 2-diazines by solvatochromic method and quantum-chemical calculation

    DEFF Research Database (Denmark)

    Manohara, S.R.; Kumar, V. Udaya; Shivakumaraiah

    2013-01-01

    chemical calculations using the DFT method by adopting B3LYP/6-31G* level of theory (Gaussian 03) and using the AM1 method (Chem3D Ultra 8.0). It was observed that, dipole moments of diazines in the excited-state (μe) were greater than the corresponding ground-state values (μg), indicating a substantial...

  2. Equivalent non-Gaussian excitation method for response moment calculation of systems under non-Gaussian random excitation

    International Nuclear Information System (INIS)

    Tsuchida, Takahiro; Kimura, Koji

    2015-01-01

    Equivalent non-Gaussian excitation method is proposed to obtain the moments up to the fourth order of the response of systems under non-Gaussian random excitation. The excitation is prescribed by the probability density and power spectrum. Moment equations for the response can be derived from the stochastic differential equations for the excitation and the system. However, the moment equations are not closed due to the nonlinearity of the diffusion coefficient in the equation for the excitation. In the proposed method, the diffusion coefficient is replaced with the equivalent diffusion coefficient approximately to obtain a closed set of the moment equations. The square of the equivalent diffusion coefficient is expressed by the second-order polynomial. In order to demonstrate the validity of the method, a linear system to non-Gaussian excitation with generalized Gaussian distribution is analyzed. The results show the method is applicable to non-Gaussian excitation with the widely different kurtosis and bandwidth. (author)

  3. Magnetic moment calculation for p+d→ 3 He+γ process in Big=bang nucleosynthesis with effective field theory

    International Nuclear Information System (INIS)

    Bayegan, S.; Sadeghi, H.

    2004-01-01

    In big-bang nucleosynthesis, processes relevant ti increasing of nucleon density are more important. One of the theories that its solutions more accurately explain the experimental works is Effective Field Theory in this paper. Magnetic moment (χM1) for radiative capture of protons by deuterons p + d → 3 He+γ process is calculated using Effective Field Theory. The calculation includes coulomb interaction up to next-to -next-leading order (N 2 LO)

  4. Calculation of the radial and axial flux and power distribution for a CANDU 6 reactor with both the MCNP6 and Serpent codes

    International Nuclear Information System (INIS)

    Hussein, M.S.; Bonin, H.W.; Lewis, B.J.

    2014-01-01

    The most recent versions of the Monte Carlo-based probabilistic transport code MCNP6 and the continuous energy reactor physics burnup calculation code Serpent allow for a 3-D geometry calculation accounting for the detailed geometry without unit-cell homogenization. These two codes are used to calculate the axial and radial flux and power distributions for a CANDU6 GENTILLY-2 nuclear reactor core with 37-element fuel bundles. The multiplication factor, actual flux distribution and power density distribution were calculated by using a tally combination for MCNP6 and detector analysis for Serpent. Excellent agreement was found in the calculated flux and power distribution. The Serpent code is most efficient in terms of the computational time. (author)

  5. Calculation of the radial and axial flux and power distribution for a CANDU 6 reactor with both the MCNP6 and Serpent codes

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, M.S.; Bonin, H.W., E-mail: mohamed.hussein@rmc.ca, E-mail: bonin-h@rmc.ca [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, ON (Canada); Lewis, B.J., E-mail: Brent.Lewis@uoit.ca [Univ. of Ontario Inst. of Tech., Faculty of Energy Systems and Nuclear Science, Oshawa, ON (Canada)

    2014-07-01

    The most recent versions of the Monte Carlo-based probabilistic transport code MCNP6 and the continuous energy reactor physics burnup calculation code Serpent allow for a 3-D geometry calculation accounting for the detailed geometry without unit-cell homogenization. These two codes are used to calculate the axial and radial flux and power distributions for a CANDU6 GENTILLY-2 nuclear reactor core with 37-element fuel bundles. The multiplication factor, actual flux distribution and power density distribution were calculated by using a tally combination for MCNP6 and detector analysis for Serpent. Excellent agreement was found in the calculated flux and power distribution. The Serpent code is most efficient in terms of the computational time. (author)

  6. Analysis of radially heterogeneous ZPPR-13A benchmark for investigating the spatial dependence of the calculated-to-experiment ratio for control rod worths

    International Nuclear Information System (INIS)

    Mahalakshmi, B.; Mohanakrishnan, P.

    1993-01-01

    Investigation were performed on the ZPPR-13A critical assembly to determine the cause of the radial variation of the calculated-to-experimental (C/E) ratio for control rod worth in large heterogeneous cores. The effects of errors in cross section, mesh size, group condensation, transport, and modeling were studied by studied by using two- and three-dimensional diffusion calculations and three-dimensional transport calculations. In that process, the cross-section set and the calculation scheme that are being used for fast reactor design in India have been revalidated. The cross-section set was found to yield satisfactory results. Three-dimensional calculations with adjusted and unadjusted cross sections confirmed that the error in cross sections was largely responsible for the radial dependence of the C/E ratios. The contributions from group condensation and mesh size errors were < 2%, and from modeling errors and transport correction, < 1%. The effect of these errors is insignificant when compared with the effect of the cross-section error. The analysis also showed that even without the adjustment in diffusion coefficient suggested in earlier studies, a satisfactory prediction is found, at least for this benchmark. The diffusion-to-transport correction for control rod worth was found to be -7%

  7. Mixed-Degree Spherical Simplex-Radial Cubature Kalman Filter

    Directory of Open Access Journals (Sweden)

    Shiyuan Wang

    2017-01-01

    Full Text Available Conventional low degree spherical simplex-radial cubature Kalman filters often generate low filtering accuracy or even diverge for handling highly nonlinear systems. The high-degree Kalman filters can improve filtering accuracy at the cost of increasing computational complexity; nevertheless their stability will be influenced by the negative weights existing in the high-dimensional systems. To efficiently improve filtering accuracy and stability, a novel mixed-degree spherical simplex-radial cubature Kalman filter (MSSRCKF is proposed in this paper. The accuracy analysis shows that the true posterior mean and covariance calculated by the proposed MSSRCKF can agree accurately with the third-order moment and the second-order moment, respectively. Simulation results show that, in comparison with the conventional spherical simplex-radial cubature Kalman filters that are based on the same degrees, the proposed MSSRCKF can perform superior results from the aspects of filtering accuracy and computational complexity.

  8. Spectral function calculation of angle wakes, wake moments, and misalignment wakes for the SLAC Damped Detuned Structures (DDS)

    International Nuclear Information System (INIS)

    Jones, R.M.; Miller, R.H.; Kroll, N.M.

    1997-05-01

    Transverse wake functions so far reported for the SLAC DDS have been limited to those caused by uniform offset of the drive beam in a straight perfectly aligned structure. The complete description of the betatron oscillations of wake coupled bunches requires an array of wake functions, referred to as moments. Modifications of these arrays induced by structure misalignments are also of interest. In this paper we express the array elements in terms of a spectral function array. Examples are given based upon DDS1

  9. The influence of a non-uniform radial temperature distribution in the fuel on the results of calculation of transients

    International Nuclear Information System (INIS)

    Goltsev, A.O.; Davidenko, V.D.; Tsibulsky, V.F.; Lekomtsev, A.A.

    2003-01-01

    The paper is devoted to the discussion of results of computational studies of transients for different ways of accounting the temperature of the fuel in the full-scale comprehensive calculations of neutron physics. The paper demonstrates that in calculation of the neutron physics, it is necessary to use the effective temperature of the fuel in order to provide for correct accounting of the fuel temperature feedback, since the value of volume-averaged temperature being used in calculations of neutron physics with feedbacks would result in underestimation of consequences of accidents, especially accidents involving the dispersion of radiation

  10. Electric dipole moment function of the X1 Sigma/+/ state of CO - Vibration-rotation matrix elements for transitions of gas laser and astrophysical interest

    Science.gov (United States)

    Chackerian, C., Jr.

    1976-01-01

    The electric dipole moment function of the ground electronic state of carbon monoxide has been determined by combining numerical solutions of the radial Schrodinger equation with absolute intensity data of vibration-rotation bands. The derived dipole moment function is used to calculate matrix elements of interest to stellar astronomy and of importance in the carbon monoxide laser.

  11. Application of the finite-field coupled-cluster method to calculate molecular properties relevant to electron electric-dipole-moment searches

    Science.gov (United States)

    Abe, M.; Prasannaa, V. S.; Das, B. P.

    2018-03-01

    Heavy polar diatomic molecules are currently among the most promising probes of fundamental physics. Constraining the electric dipole moment of the electron (e EDM ), in order to explore physics beyond the standard model, requires a synergy of molecular experiment and theory. Recent advances in experiment in this field have motivated us to implement a finite-field coupled-cluster (FFCC) approach. This work has distinct advantages over the theoretical methods that we had used earlier in the analysis of e EDM searches. We used relativistic FFCC to calculate molecular properties of interest to e EDM experiments, that is, the effective electric field (Eeff) and the permanent electric dipole moment (PDM). We theoretically determine these quantities for the alkaline-earth monofluorides (AEMs), the mercury monohalides (Hg X ), and PbF. The latter two systems, as well as BaF from the AEMs, are of interest to e EDM searches. We also report the calculation of the properties using a relativistic finite-field coupled-cluster approach with single, double, and partial triples' excitations, which is considered to be the gold standard of electronic structure calculations. We also present a detailed error estimate, including errors that stem from our choice of basis sets, and higher-order correlation effects.

  12. Nuclear moments

    CERN Document Server

    Kopferman, H; Massey, H S W

    1958-01-01

    Nuclear Moments focuses on the processes, methodologies, reactions, and transformations of molecules and atoms, including magnetic resonance and nuclear moments. The book first offers information on nuclear moments in free atoms and molecules, including theoretical foundations of hyperfine structure, isotope shift, spectra of diatomic molecules, and vector model of molecules. The manuscript then takes a look at nuclear moments in liquids and crystals. Discussions focus on nuclear paramagnetic and magnetic resonance and nuclear quadrupole resonance. The text discusses nuclear moments and nucl

  13. NBI Calculations for the TJ-II Experimental Discharges; Ajustes de los Perfiles Radiales de Densidad y Temperatura para las Descargas con NBI del TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Guasp, J.; Fuentes, C.; Liniers, M.

    2005-07-01

    The density and electron temperature radial profiles, corresponding to the experimental TJ-II campaigns 2003-2004, with NBI, have been fitted to simple functionals in order to allow a fast approximative evaluation for any given density and injected power... The fits have been calculated, separately, for the four possibilities: ECRH and NBI Phases as well as On and Off Axis ECRH injection. The average difference between the experimental profiles for the individual discharges and the fit predictions are around 8% for the density and 10% for the temperature. The behaviour of the predicted profiles with average line density and injected power has been analysed. The central electron temperature decreases monotonically with increasing density and the ECRH phase On Axis central value is clearly higher than the Off axis one. The radial density profiles narrow with increasing density and the NBI On axis case is clearly wider than de Off one. The electron temperature profile widens slightly with increasing density and the width of the On Axix case is lesser than for the Off case in all phases. There exist Fortran subroutines, available at the three CIEMAT computers, allowing the fast approximative evaluation of all these profiles. (Author) 8 refs.

  14. Calculations of electric dipole moments and static dipole polarizabilities based on the two-component normalized elimination of the small component method

    Science.gov (United States)

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2016-11-01

    The analytical energy gradient and Hessian of the two-component Normalized Elimination of the Small Component (2c-NESC) method with regard to the components of the electric field are derived and used to calculate spin-orbit coupling (SOC) corrected dipole moments and dipole polarizabilities of molecules, which contain elements with high atomic number. Calculated 2c-NESC dipole moments and isotropic polarizabilities agree well with the corresponding four-component-Dirac Hartree-Fock or density functional theory values. SOC corrections for the electrical properties are in general small, but become relevant for the accurate prediction of these properties when the molecules in question contain sixth and/or seventh period elements (e.g., the SO effect for At2 is about 10% of the 2c-NESC polarizability). The 2c-NESC changes in the electric molecular properties are rationalized in terms of spin-orbit splitting and SOC-induced mixing of frontier orbitals with the same j = l + s quantum numbers.

  15. Calculations of electric dipole moments and static dipole polarizabilities based on the two-component normalized elimination of the small component method.

    Science.gov (United States)

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2016-11-14

    The analytical energy gradient and Hessian of the two-component Normalized Elimination of the Small Component (2c-NESC) method with regard to the components of the electric field are derived and used to calculate spin-orbit coupling (SOC) corrected dipole moments and dipole polarizabilities of molecules, which contain elements with high atomic number. Calculated 2c-NESC dipole moments and isotropic polarizabilities agree well with the corresponding four-component-Dirac Hartree-Fock or density functional theory values. SOC corrections for the electrical properties are in general small, but become relevant for the accurate prediction of these properties when the molecules in question contain sixth and/or seventh period elements (e.g., the SO effect for At 2 is about 10% of the 2c-NESC polarizability). The 2c-NESC changes in the electric molecular properties are rationalized in terms of spin-orbit splitting and SOC-induced mixing of frontier orbitals with the same j = l + s quantum numbers.

  16. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO⁺(H₂O) cluster using accurate potential energy and dipole moment surfaces.

    Science.gov (United States)

    Homayoon, Zahra

    2014-09-28

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO(+)(H2O) cluster is reported. The PES is based on fitting of roughly 32,000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO(+)(H2O) and NO(+)(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO(+)(H2O) and NO(+)(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO(+)(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  17. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO+(H2O) cluster using accurate potential energy and dipole moment surfaces

    Science.gov (United States)

    Homayoon, Zahra

    2014-09-01

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO+(H2O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO+(H2O) and NO+(D2O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO+(H2O) and NO+(D2O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO+(H2O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water "antisymmetric" stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  18. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO{sup +}(H{sub 2}O) cluster using accurate potential energy and dipole moment surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Homayoon, Zahra, E-mail: zhomayo@emory.edu [Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)

    2014-09-28

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO{sup +}(H{sub 2}O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO{sup +}(H{sub 2}O) and NO{sup +}(D{sub 2}O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO{sup +}(H{sub 2}O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water “antisymmetric” stretching mode with the low-frequency intermolecular modes results in intensity borrowing.

  19. MULTIMODE quantum calculations of vibrational energies and IR spectrum of the NO+(H2O) cluster using accurate potential energy and dipole moment surfaces

    International Nuclear Information System (INIS)

    Homayoon, Zahra

    2014-01-01

    A new, full (nine)-dimensional potential energy surface and dipole moment surface to describe the NO + (H 2 O) cluster is reported. The PES is based on fitting of roughly 32 000 CCSD(T)-F12/aug-cc-pVTZ electronic energies. The surface is a linear least-squares fit using a permutationally invariant basis with Morse-type variables. The PES is used in a Diffusion Monte Carlo study of the zero-point energy and wavefunction of the NO + (H 2 O) and NO + (D 2 O) complexes. Using the calculated ZPE the dissociation energies of the clusters are reported. Vibrational configuration interaction calculations of NO + (H 2 O) and NO + (D 2 O) using the MULTIMODE program are performed. The fundamental, a number of overtone, and combination states of the clusters are reported. The IR spectrum of the NO + (H 2 O) cluster is calculated using 4, 5, 7, and 8 modes VSCF/CI calculations. The anharmonic, coupled vibrational calculations, and IR spectrum show very good agreement with experiment. Mode coupling of the water “antisymmetric” stretching mode with the low-frequency intermolecular modes results in intensity borrowing

  20. Measurement of the Spectroscopic Quadrupole Moment for the 2+1 State in 10Be:. Testing AB Initio Calculations

    Science.gov (United States)

    Orce, J. N.; Djongolov, M.; Navratil, P.; Ball, G.; Garnsworthy, A. B.; Hackman, G.; Lassen, J.; Meissner, J.; Pearson, C. J.; Li, R.; Milovanovic, L.; Sjue, S. K. L.; Teigelhoefer, A.; Triambak, S.; Williams, S. J.; Falou, H. Al; Drake, T. E.; Andreoiu, C.; Cross, D.; Kshetri, R.; Finlay, P.; Garrett, P. E.; Leach, K. G.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Tardiff, E. R.; Wong, J.; Forssen, C.; Hayes, A. B.; Sarazin, F.; Stoyer, M. A.; Wu, C. Y.

    2013-03-01

    The highly efficient and segmented TIGRESS HPGe γ-ray array at TRIUMF has been used to perform a reorientation effect Coulomb excitation study of the 2+1 state at 3.368 MeV in 10Be. This is the first Coulomb excitation measurement that provides information on diagonal matrix elements for such a high lying first excited state from μ-ray data. With the availability of accurate lifetime data, a restriction on the diagonal matrix element is determined. This result is compared to a no core shell model calculation with the CD-Bonn 2000 two nucleon potential.

  1. High Accuracy Potential Energy Surface, Dipole Moment Surface, Rovibrational Energies and Line List Calculations for ^{14}NH_3

    Science.gov (United States)

    Coles, Phillip; Yurchenko, Sergei N.; Polyansky, Oleg; Kyuberis, Aleksandra; Ovsyannikov, Roman I.; Zobov, Nikolay Fedorovich; Tennyson, Jonathan

    2017-06-01

    We present a new spectroscopic potential energy surface (PES) for ^{14}NH_3, produced by refining a high accuracy ab initio PES to experimental energy levels taken predominantly from MARVEL. The PES reproduces 1722 matched J=0-8 experimental energies with a root-mean-square error of 0.035 cm-1 under 6000 cm^{-1} and 0.059 under 7200 cm^{-1}. In conjunction with a new DMS calculated using multi reference configuration interaction (MRCI) and H=aug-cc-pVQZ, N=aug-cc-pWCVQZ basis sets, an infrared (IR) line list has been computed which is suitable for use up to 2000 K. The line list is used to assign experimental lines in the 7500 - 10,500 cm^{-1} region and previously unassigned lines in HITRAN in the 6000-7000 cm^{-1} region. Oleg L. Polyansky, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Lorenzo Lodi, Jonathan Tennyson, Andrey Yachmenev, Sergei N. Yurchenko, Nikolai F. Zobov, J. Mol. Spec., 327 (2016) 21-30 Afaf R. Al Derzia, Tibor Furtenbacher, Jonathan Tennyson, Sergei N. Yurchenko, Attila G. Császár, J. Quant. Spectrosc. Rad. Trans., 161 (2015) 117-130

  2. Potential energy surface, dipole moment surface and the intensity calculations for the 10 μm, 5 μm and 3 μm bands of ozone

    Science.gov (United States)

    Polyansky, Oleg L.; Zobov, Nikolai F.; Mizus, Irina I.; Kyuberis, Aleksandra A.; Lodi, Lorenzo; Tennyson, Jonathan

    2018-05-01

    Monitoring ozone concentrations in the Earth's atmosphere using spectroscopic methods is a major activity which undertaken both from the ground and from space. However there are long-running issues of consistency between measurements made at infrared (IR) and ultraviolet (UV) wavelengths. In addition, key O3 IR bands at 10 μm, 5 μm and 3 μm also yield results which differ by a few percent when used for retrievals. These problems stem from the underlying laboratory measurements of the line intensities. Here we use quantum chemical techniques, first principles electronic structure and variational nuclear-motion calculations, to address this problem. A new high-accuracy ab initio dipole moment surface (DMS) is computed. Several spectroscopically-determined potential energy surfaces (PESs) are constructed by fitting to empirical energy levels in the region below 7000 cm-1 starting from an ab initio PES. Nuclear motion calculations using these new surfaces allow the unambiguous determination of the intensities of 10 μm band transitions, and the computation of the intensities of 10 μm and 5 μm bands within their experimental error. A decrease in intensities within the 3 μm is predicted which appears consistent with atmospheric retrievals. The PES and DMS form a suitable starting point both for the computation of comprehensive ozone line lists and for future calculations of electronic transition intensities.

  3. [Gene method for inconsistent hydrological frequency calculation. 2: Diagnosis system of hydrological genes and method of hydrological moment genes with inconsistent characters].

    Science.gov (United States)

    Xie, Ping; Zhao, Jiang Yan; Wu, Zi Yi; Sang, Yan Fang; Chen, Jie; Li, Bin Bin; Gu, Hai Ting

    2018-04-01

    The analysis of inconsistent hydrological series is one of the major problems that should be solved for engineering hydrological calculation in changing environment. In this study, the diffe-rences of non-consistency and non-stationarity were analyzed from the perspective of composition of hydrological series. The inconsistent hydrological phenomena were generalized into hydrological processes with inheritance, variability and evolution characteristics or regulations. Furthermore, the hydrological genes were identified following the theory of biological genes, while their inheritance bases and variability bases were determined based on composition of hydrological series under diffe-rent time scales. To identify and test the components of hydrological genes, we constructed a diagnosis system of hydrological genes. With the P-3 distribution as an example, we described the process of construction and expression of the moment genes to illustrate the inheritance, variability and evolution principles of hydrological genes. With the annual minimum 1-month runoff series of Yunjinghong station in Lancangjiang River basin as an example, we verified the feasibility and practicability of hydrological gene theory for the calculation of inconsistent hydrological frequency. The results showed that the method could be used to reveal the evolution of inconsistent hydrological series. Therefore, it provided a new research pathway for engineering hydrological calculation in changing environment and an essential reference for the assessment of water security.

  4. Effect of hammer mass on upper extremity joint moments.

    Science.gov (United States)

    Balendra, Nilanthy; Langenderfer, Joseph E

    2017-04-01

    This study used an OpenSim inverse-dynamics musculoskeletal model scaled to subject-specific anthropometrics to calculate three-dimensional intersegmental moments at the shoulder, elbow and wrist while 10 subjects used 1 and 2 lb hammers to drive nails. Motion data were collected via an optoelectronic system and the interaction of the hammer with nails was recorded with a force plate. The larger hammer caused substantial increases (50-150%) in moments, although increases differed by joint, anatomical component, and significance of the effect. Moment increases were greater in cocking and strike/follow-through phases as opposed to swinging and may indicate greater potential for injury. Compared to shoulder, absolute increases in peak moments were smaller for elbow and wrist, but there was a trend toward larger relative increases for distal joints. Shoulder rotation, elbow varus-valgus and pronation-supination, and wrist radial-ulnar deviation and rotation demonstrated large relative moment increases. Trial and phase durations were greater for the larger hammer. Changes in moments and timing indicate greater loads on musculoskeletal tissues for an extended period with the larger hammer. Additionally, greater variability in timing with the larger hammer, particularly for cocking phase, suggests differences in control of the motion. Increased relative moments for distal joints may be particularly important for understanding disorders of the elbow and wrist associated with hammer use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A novel integrated 4-DOF radial hybrid magnetic bearing for MSCMG

    Energy Technology Data Exchange (ETDEWEB)

    Jinji, Sun; Ziyan, Ju [School of Instrumentation Science & Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, Science and Technology on Inertial Laboratory, Beijing 100191 (China); Weitao, Han, E-mail: hanweitaotao@163.com [CRRC Qingdao Sifang CO., LTD, Qingdao 266111 (China); Gang, Liu [School of Instrumentation Science & Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, Science and Technology on Inertial Laboratory, Beijing 100191 (China)

    2017-01-01

    This paper proposes a novel integrated radial hybrid magnetic bearing (RHMB) for application with the small-sized magnetically suspended control moment gyroscope (MSCMG), which can control four degrees of freedom (4-DOFs), including two radial translational DOFs and two radial tilting DOFs, and provide the axial passive resilience. The configuration and working principle of the RHMB are introduced. Mathematical models of radial force, axial resilience and moment are established by using equivalent magnetic circuit method (EMCM), from which the radial force–radial displacement, radial force–current relationships are derived, as well as axial resilience–axial displacement, moment–tilting angle and moment–current. Finite element method (FEM) is also applied to analyze the performance and characteristics of the RHMB. The analysis results are in good agreement with that calculated by the EMCM, which is helpful in designing, optimizing and controlling the RHMB. The comparisons between the performances of the integrated 4-DOF RHMB and the traditional 4-DOF RHMB are made. The contrast results indicate that the proposed integrated 4-DOF RHMB possesses better performance compared to the traditional structure, such as copper loss, current stiffness, and tilting current stiffness. - Highlights: • An integrated 4-DOF RHMB is proposed for the small-sized MSCMG. • The 4-DOF RHMB has good linear force–displacement and force–current characteristics. • The RHMB has good linear moment–current and the moment–tilting angle characteristic.

  6. Nuclear Anapole Moments

    Energy Technology Data Exchange (ETDEWEB)

    Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu

    2002-03-29

    Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments.

  7. Nuclear Anapole Moments

    International Nuclear Information System (INIS)

    Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu

    2002-01-01

    Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments

  8. The Application of CPA to Calculations of the Mean Magnetic Moment in the Gd1-xNi, Gd1-xFe, Gd1xCox, and Y1-xCox Intermetallic Compounds

    DEFF Research Database (Denmark)

    Szpunar, B.; Kozarzewski, B.

    1977-01-01

    with a narrow d-band is considered. The magnetic moment of the alloy at zero temperature is calculated within the molecular field and Hartree-Fock approximations. Disorder is treated in the coherent potential approximation. Results are in good agreement with the experimental data obtained for the crystalline......Calculations are made of the mean magnetic moment per atom of the transition metal and the rare-earth metal in the intermetallic compounds, Gd1-x,Nix, Gd1-x Fex, Gd1-x Cox, and Y1-x Cox. A simple model of the disordered alloy consisting of spins localized on the rare-earth atoms and interacting...

  9. Quadrupole moments of hadrons

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.

    1985-01-01

    In chiral bag model an expression is obtained for the quark wave functions with account of color and pion interaction of quarks. The quadrupole moments of nonstrange hadrons are calculated. Quadrupole moment of nucleon isobar is found to be Q(Δ)=-6.3x10 -28 esub(Δ)(cm)sup(2). Fredictions of the chiral bag model are in strong disagreement with the non-relativistic quark model

  10. The Calculation Spontaneous Polarization and Quadrupole Moment of Electric Potential PIZT (PbInxZryTi1-x-yO3-x/2

    Directory of Open Access Journals (Sweden)

    Irzaman

    2004-12-01

    Full Text Available ZT (PbZr1-xTixO3 is a perovskite crystal that can be used for IR sensor. Small amount of dopant can drastically change the specific characteristic of ferroelectric ceramic such as spontaneous polarization, dielectric constant, electromechanical and also electro-optic properties. The addition of In3+ ion (called as hard doping has been applied in this research. Thin film of PIZT (PbInxZryTi1-x-yO3-x/2 has been deposited on Si(100 substrate with Chemical Solution Deposition (CSD method. The concentration of solution is 0,5 M and the angular speed applied of spin coating is 3000 rpm. The PIZT sample has been analyzed with x-ray diffraction method. Rietveld analyses using GSAS-EXPGUI software resulted lattice parameter of crystal and phase compositions of PIZT samples. The values of all sample PIZT spontaneous polarization (Ps have been calculated lower than PZT. The optimally Ps was reached at 0,5% to 1% In2O3 doping. Quadrupole moment of electric potential (ΦQ(r at point P (0,0,2a reached optimum at 6% In2O3 doping and they also showed that PIZT thin film have ΦQ(r higher value than their bulk form for In2O3 doping >1%.

  11. A simple scaling law for the equation of state and the radial distribution functions calculated by density-functional theory molecular dynamics

    Science.gov (United States)

    Danel, J.-F.; Kazandjian, L.

    2018-06-01

    It is shown that the equation of state (EOS) and the radial distribution functions obtained by density-functional theory molecular dynamics (DFT-MD) obey a simple scaling law. At given temperature, the thermodynamic properties and the radial distribution functions given by a DFT-MD simulation remain unchanged if the mole fractions of nuclei of given charge and the average volume per atom remain unchanged. A practical interest of this scaling law is to obtain an EOS table for a fluid from that already obtained for another fluid if it has the right characteristics. Another practical interest of this result is that an asymmetric mixture made up of light and heavy atoms requiring very different time steps can be replaced by a mixture of atoms of equal mass, which facilitates the exploration of the configuration space in a DFT-MD simulation. The scaling law is illustrated by numerical results.

  12. On the representation of the electric charge distribution in ethane for calculations of the molecular quadrupole moment and intermolecular electrostatic energy

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Alldredge, G. P.; Bruch, L. W.

    1985-01-01

    and gives a repulsive rather than an attractive electrostatic interaction at typical intermolecular distances. In the local multipole model, the atom-site dipoles give the largest contribution to both the molecular quadrupole moment and the intermolecular interaction. The Journal of Chemical Physics...

  13. Investigation on Thrust and Moment Coefficients of a Centrifugal Turbomachine

    Directory of Open Access Journals (Sweden)

    Bo Hu

    2018-04-01

    Full Text Available In radial pumps and turbines, the centrifugal through-flow in both the front and the back chambers is quite common. It strongly impacts the core swirl ratio, pressure distribution, axial thrust and frictional torque. In order to investigate these relationships experimentally, a test rig was designed at the University of Duisburg-Essen and described in this paper. Based on both the experimental and numerical results, correlations are determined to predict the impacts of the centrifugal through-flow on the core swirl ratio, the thrust coefficient and the moment coefficient. Two correlations respectively are determined to associate the core swirl ratio with the local through-flow coefficient for both Batchelor type flow and Stewartson type flow. The correlations describing the thrust coefficient and the moment coefficient in a rotor-stator cavity with centripetal through-flow (Hu et al., 2017 are modified for the case of centrifugal through-flow. The Daily and Nece diagram distinguishing between different flow regimes in rotor-stator cavities is extended with a through-flow coordinate into 3D. The achieved results provide a comprehensive data base which is intended to support the calculation of axial thrust and moment coefficients during the design process of radial pumps and turbines in a more accurate manner.

  14. Radial transport with perturbed magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hazeltine, R. D. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-05-15

    It is pointed out that the viscosity coefficient describing radial transport of toroidal angular momentum is proportional to the second power of the gyro-radius—like the corresponding coefficients for particle and heat transport—regardless of any geometrical symmetry. The observation is widely appreciated, but worth emphasizing because some literature gives the misleading impression that asymmetry can allow radial moment transport in first-order.

  15. Radial transport with perturbed magnetic field

    International Nuclear Information System (INIS)

    Hazeltine, R. D.

    2015-01-01

    It is pointed out that the viscosity coefficient describing radial transport of toroidal angular momentum is proportional to the second power of the gyro-radius—like the corresponding coefficients for particle and heat transport—regardless of any geometrical symmetry. The observation is widely appreciated, but worth emphasizing because some literature gives the misleading impression that asymmetry can allow radial moment transport in first-order

  16. Structures, stability, magnetic moments and growth strategies of the Fe_nN (n = 1–7) clusters: All-electron density functional theory calculations

    International Nuclear Information System (INIS)

    Li, Zhi; Zhao, Zhen

    2017-01-01

    The geometries, electronic properties, magnetic moments and growth strategies of the Fe_nN (n = 1–7) clusters are investigated using all-electron density functional theory. The results show that N doping significantly distorts the Fe_n clusters. Fe_4N and Fe_6N clusters are more stable structures than other considered Fe_nN clusters. Local peaks of HOMO-LUMO gap curve are found at n = 3, 7, implying that the chemical stability of the Fe_3N and Fe_7N clusters is higher. Fe_2N, Fe_4N and Fe_6N clusters have larger magnetic moments compared to other considered Fe_nN (n = 1–7) clusters. It can be seen that the Fe_5 clusters are easier to adsorb a Fe atom while the Fe_4 clusters are easier to adsorb a N atom. The considered Fe_mN clusters prefer to adsorb a Fe atom and larger Fe_mN clusters are easier to grow. - Highlights: • The structural stability of the Fe_4N and Fe_6N clusters is higher. • The chemical stability of the Fe_3N and Fe_7N clusters is higher. • Fe_5 clusters are easier to adsorb a Fe atom while Fe_4 clusters are easier to adsorb a N atom. • Fe_nN clusters prefer to adsorb a Fe atom.

  17. Radial nerve dysfunction

    Science.gov (United States)

    Neuropathy - radial nerve; Radial nerve palsy; Mononeuropathy ... Damage to one nerve group, such as the radial nerve, is called mononeuropathy . Mononeuropathy means there is damage to a single nerve. Both ...

  18. Structures, stability, magnetic moments and growth strategies of the Fe{sub n}N (n = 1–7) clusters: All-electron density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi, E-mail: lizhi81723700@163.com [School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan, 114051 (China); Zhao, Zhen [School of Chemistry and Life Science, Anshan Normal University, Anshan, 114007 (China)

    2017-02-01

    The geometries, electronic properties, magnetic moments and growth strategies of the Fe{sub n}N (n = 1–7) clusters are investigated using all-electron density functional theory. The results show that N doping significantly distorts the Fe{sub n} clusters. Fe{sub 4}N and Fe{sub 6}N clusters are more stable structures than other considered Fe{sub n}N clusters. Local peaks of HOMO-LUMO gap curve are found at n = 3, 7, implying that the chemical stability of the Fe{sub 3}N and Fe{sub 7}N clusters is higher. Fe{sub 2}N, Fe{sub 4}N and Fe{sub 6}N clusters have larger magnetic moments compared to other considered Fe{sub n}N (n = 1–7) clusters. It can be seen that the Fe{sub 5} clusters are easier to adsorb a Fe atom while the Fe{sub 4} clusters are easier to adsorb a N atom. The considered Fe{sub m}N clusters prefer to adsorb a Fe atom and larger Fe{sub m}N clusters are easier to grow. - Highlights: • The structural stability of the Fe{sub 4}N and Fe{sub 6}N clusters is higher. • The chemical stability of the Fe{sub 3}N and Fe{sub 7}N clusters is higher. • Fe{sub 5} clusters are easier to adsorb a Fe atom while Fe{sub 4} clusters are easier to adsorb a N atom. • Fe{sub n}N clusters prefer to adsorb a Fe atom.

  19. Magnetic Moment of $^{59}$Cu

    CERN Multimedia

    2002-01-01

    Experiment IS358 uses the intense and pure beams of copper isotopes provided by the ISOLDE RILIS (resonance ionization laser ion source). The isotopes are implanted and oriented in the low temperature nuclear orientation set-up NICOLE. Magnetic moments are measured by $\\beta$-NMR. Copper (Z=29), with a single proton above the proton-magic nickel isotopes provides an ideal testground for precise shell model calculations of magnetic moments and their experimental verification. In the course of our experiments we already determined the magnetic moments of $^{67}$Ni, $^{67}$Cu, $^{68g}$Cu, $^{69}$Cu and $^{71}$Cu which provide important information on the magicity of the N=40 subshell closure. In 2001 we plan to conclude our systematic investigations by measuring the magnetic moment of the neutron-deficient isotope $^{59}$Cu. This will pave the way for a subsequent study of the magnetic moment of $^{57}$Cu with a complementary method.

  20. On the baryon magnetic moments

    International Nuclear Information System (INIS)

    Ferreira, P.L.

    1976-01-01

    In the context of quark confinement ideas, the baryon magnetic moments are calculated by assuming a SU(3) breaking due to the inequalities of the quark masses (m sub(p) different m sub(n) different m lambda ). The modified SU(6) result for the ratio of the magnetic moments of the neutron and proton is obtained. The p-quark is found heavier than the n-quark by circa 15 MeV. and alternative way of evaluating the baryon magnetic moments by means of simple physical considerations based on the properties of the SU(6) baryon S-waves functions is given

  1. Moment Magnitude discussion in Austria

    Science.gov (United States)

    Weginger, Stefan; Jia, Yan; Hausmann, Helmut; Lenhardt, Wolfgang

    2017-04-01

    We implemented and tested the Moment Magnitude estimation „dbmw" from the University of Trieste in our Antelope near real-time System. It is used to get a fast Moment Magnitude solutions and Ground Motion Parameter (PGA, PGV, PSA 0.3, PSA 1.0 and PSA 3.0) to calculate Shake and Interactive maps. A Moment Magnitude Catalogue was generated and compared with the Austrian Earthquake Catalogue and all available Magnitude solution of the neighbouring agencies. Relations of Mw to Ml and Ground Motion to Intensity are presented.

  2. Magnetic moment of 33Cl

    International Nuclear Information System (INIS)

    Matsuta, K.; Arimura, K.; Nagatomo, T.; Akutsu, K.; Iwakoshi, T.; Kudo, S.; Ogura, M.; Takechi, M.; Tanaka, K.; Sumikama, T.; Minamisono, K.; Miyake, T.; Minamisono, T.; Fukuda, M.; Mihara, M.; Kitagawa, A.; Sasaki, M.; Kanazawa, M.; Torikoshi, M.; Suda, M.; Hirai, M.; Momota, S.; Nojiri, Y.; Sakamoto, A.; Saihara, M.; Ohtsubo, T.; Alonso, J.R.; Krebs, G.F.; Symons, T.J.M.

    2004-01-01

    The magnetic moment of 33 Cl (Iπ=3/2+, T1/2=2.51s) has been re-measured precisely by β-NMR method. The obtained magnetic moment |μ|=0.7549(3)μN is consistent with the old value 0.7523(16)μN, but is 5 times more accurate. The value is well reproduced by the shell model calculation, μSM=0.70μN. Combined with the magnetic moment of the mirror partner 33 S, the nuclear matrix elements , , , and were derived

  3. Radial optimization of a BWR fuel cell using genetic algorithms

    International Nuclear Information System (INIS)

    Martin del Campo M, C.; Carmona H, R.; Oropeza C, I.P.

    2006-01-01

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U 235 and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix the placement of

  4. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the molecules CO, HB, HF and LiH are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. It is discussed the possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment. (Author) [pt

  5. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the CO, HB, HF and LiH molecules are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. The possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment is discussed. (Author) [pt

  6. Neutron Electric Dipole Moment

    International Nuclear Information System (INIS)

    Mischke, R.E.

    2003-01-01

    The status of experiments to measure the electric dipole moment of the neutron is presented and the planned experiment at Los Alamos is described. The goal of this experiment is an improvement in sensitivity of a factor of 50 to 100 over the current limit. It has the potential to reveal new sources of T and CP violation and to challenge calculations that propose extensions to the Standard Model. The experiment employs several advances in technique to reach its goals and the feasibility of meeting these technical challenges is currently under study

  7. Dynamical moments of inertia for superdeformed nuclei

    International Nuclear Information System (INIS)

    Obikhod, T.V.

    1995-01-01

    The method of quantum groups has been applied for calculation the dynamical moments of inertia for the yrast superdeformed bands in 194 Hg and 192 Hg as well as to calculation of the dynamical moments of inertia of superdeformed bands in 150 Gd and 148 Gd

  8. Moments of inertia in a semiclassical approach

    International Nuclear Information System (INIS)

    Benchein, K.

    1993-01-01

    Semiclassical calculations have been performed for 31 nuclei. As a result of preliminary non-fully self-consistent calculations, the moments of inertia in investigated nuclei abd spin degrees of freedom are found

  9. Radial gas turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Krausche, S.; Ohlsson, Johan

    1998-04-01

    The objective of this work was to develop a program dealing with design point calculations of radial turbine machinery, including both compressor and turbine, with as few input data as possible. Some simple stress calculations and turbine metal blade temperatures were also included. This program was then implanted in a German thermodynamics program, Gasturb, a program calculating design and off-design performance of gas turbines. The calculations proceed with a lot of assumptions, necessary to finish the task, concerning pressure losses, velocity distribution, blockage, etc., and have been correlated with empirical data from VAT. Most of these values could have been input data, but to prevent the user of the program from drowning in input values, they are set as default values in the program code. The output data consist of geometry, Mach numbers, predicted component efficiency etc., and a number of graphical plots of geometry and velocity triangles. For the cases examined, the error in predicted efficiency level was within {+-} 1-2% points, and quite satisfactory errors in geometrical and thermodynamic conditions were obtained Examination paper. 18 refs, 36 figs

  10. Radial semiconductor drift chambers

    International Nuclear Information System (INIS)

    Rawlings, K.J.

    1987-01-01

    The conditions under which the energy resolution of a radial semiconductor drift chamber based detector system becomes dominated by the step noise from the detector dark current have been investigated. To minimise the drift chamber dark current attention should be paid to carrier generation at Si/SiO 2 interfaces. This consideration conflicts with the desire to reduce the signal risetime: a higher drift field for shorter signal pulses requires a larger area of SiO 2 . Calculations for the single shaping and pseudo Gaussian passive filters indicate that for the same degree of signal risetime sensitivity in a system dominated by the step noise from the detector dark current, the pseudo Gaussian filter gives only a 3% improvement in signal/noise and 12% improvement in rate capability compared with the single shaper performance. (orig.)

  11. Assembling Transgender Moments

    Science.gov (United States)

    Greteman, Adam J.

    2017-01-01

    In this article, the author seeks to assemble moments--scholarly, popular, and aesthetic--in order to explore the possibilities that emerge as moments collect in education's encounters with the needs, struggles, and possibilities of transgender lives and practices. Assembling moments, the author argues, illustrates the value of "moments"…

  12. Moment of Inertia by Differentiation

    Science.gov (United States)

    Rizcallah, Joseph A.

    2015-01-01

    The calculation of the moment of inertia of an extended body, as presented in standard introductory-level textbooks, involves the evaluation of a definite integral--an operation often not fully mastered by beginners, let alone the conceptual difficulties it presents, even to the advanced student, in understanding and setting up the integral in the…

  13. Moment methods and Lanczos methods

    International Nuclear Information System (INIS)

    Whitehead, R.R.

    1980-01-01

    In contrast to many of the speakers at this conference I am less interested in average properties of nuclei than in detailed spectroscopy. I will try to show, however, that the two are very closely connected and that shell-model calculations may be used to give a great deal of information not normally associated with the shell-model. It has been demonstrated clearly to us that the level spacing fluctuations in nuclear spectra convey very little physical information. This is true when the fluctuations are averaged over the entire spectrum but not if one's interest is in the lowest few states, whose spacings are relatively large. If one wishes to calculate a ground state (say) accurately, that is with an error much smaller than the excitation energy of the first excited state, very high moments, μ/sub n/, n approx. 200, are needed. As I shall show, we use such moments as a matter of course, albeit without actually calculating them; in fact I will try to show that, if at all possible, the actual calculations of moments is to be avoided like the plague. At the heart of the new shell-model methods embodied in the Glasgow shell-model program and one or two similar ones is the so-called Lanczos method and this, it turns out, has many deep and subtle connections with the mathematical theory of moments. It is these connections that I will explore here

  14. Noncommutative QED and anomalous dipole moments

    International Nuclear Information System (INIS)

    Riad, I.F.; Sheikh-Jabbari, M.M.

    2000-09-01

    We study QED on noncommutative spaces, NCQED. In particular we present the detailed calculation for the noncommutative electron-photon vertex and show that the Ward identity is satisfied. We discuss that in the noncommutative case moving electron will show electric dipole effects. In addition, we work out the electric and magnetic dipole moments up to one loop level. For the magnetic moment we show that noncommutative electron has an intrinsic (spin independent) magnetic moment. (author)

  15. W-boson electric dipole moment

    International Nuclear Information System (INIS)

    He, X.; McKellar, B.H.J.

    1990-01-01

    The W-boson electric dipole moment is calculated in the SU(3) C xSU(2) L xU(1) Y model with several Higgs-boson doublets. Using the constraint on the CP-violating parameters from the experimental upper bound of the neutron electric dipole moment, we find that the W-boson electric dipole moment is constrained to be less than 10 -4

  16. Radial distribution of ions in pores with a surface charge

    NARCIS (Netherlands)

    Stegen, J.H.G. van der; Görtzen, J.; Kuipers, J.A.M.; Hogendoorn, J.A.; Versteeg, G.F.

    2001-01-01

    A sorption model applicable to calculate the radial equilibrium concentrations of ions in the pores of ion-selective membranes with a pore structure is developed. The model is called the radial uptake model. Because the model is applied to a Nafion sulfonic layer with very small pores and the radial

  17. 6-quark contribution to nuclear magnetic moments

    International Nuclear Information System (INIS)

    Ito, H.

    1985-01-01

    The magnetic moments of nuclei with LS closed shell +/-1 particle are calculated. Core polarization and meson exchange current are treated realistically in order to single out the 6-quark contribution. Overall agreement with experimental values is quite good. It is shown that the 6-quark system contributes to the respective iso-vector and iso-scalar moments with reasonable magnitudes

  18. D-dimensional moments of inertia

    International Nuclear Information System (INIS)

    Bender, C.M.; Mead, L.R.

    1995-01-01

    We calculate the moments of inertia of D-dimensional spheres and spherical shells, where D is a complex number. We also examine the moments of inertia of fractional-dimensional geometrical objects such as the Cantor set and the Sierpinski carpet and their D-dimensional analogs. copyright 1995 American Association of Physics Teachers

  19. Consistent force field modeling of matrix isolated molecules. V. Minimum energy path potential to the conformer conversion of 1,2-difluoroethane: Ar 364, ab initio calculation of electric multipole moments and electric polarization contribution to the conversion barrier

    Science.gov (United States)

    Gunde, R.; Ha, T.-K.; Günthard, H. H.

    1990-08-01

    In this paper results of consistent force field modeling (CFF) of the potential function to conversion of the gauche (g) to the trans (t) conformer of 1,2-difluoroethane (DFE) isolated in an argon matrix will be reported. Starting point are locally stable configurations gDFE:Ar 364 (defect GH1) and tDFE:Ar 364 (TH1) obtained in previous work from CFF modeling of a cube shaped Ar 364 fragment containing one DFE molecule in its center. Using the dihedral angle of DFE as an independent parameter the minimum energy path of the conversion process gDFE:Ar 364→tDFE:Ar 364 will be determined by CFF energy minimization. Determination of the minimum energy path is found to require large numbers of energy minimization steps and to lead to a rather complicated motion of the molecule with respect to the crystal fragment. Surprisingly the molecule-matrix interactions lead to a reduction of the g-t barrier by ≈500 cal/mol and to a stabilization of the trans species by ≈500 cal/mol. This finding is a consequence of a delicate interplay of matrix-molecule and matrix-matrix interactions. Calculation of the electric polarization energy (induced dipole-first-order polarization approximation) is based on extended ab initio calculations of dipole and quadrupole moments and a bond polarizability estimate of the first-order polarizability of DFE as a function of the internal rotation angle, on Fourier expansion of multipole components and use of symmetry for reduction of the order of the linear system defining the (self-consistent) induced dipole moments of all Ar atoms. Electric polarization is found to alter the potential function of the conversion process in a profound way: the g-t barrier and the t-g energy difference are increased to ≈3000 cal/mol and to ≈1500 cal/mol respectively (≈2500 and ≈530 cal/mol respectively for free DFE). Further applications of the technique developed in this work to related problems of matrix isolated molecules, e.g., vibrational matrix

  20. Magnetic moments of baryons

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1983-06-01

    The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties are encountered which are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing present in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks; e.g. from a pion cloud. The large magnitude of the ω - moment may indicate that the strange quark contribution to the ω moments is considerably larger than the value μ(#betta#) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the μ - moment include a value very close to -(1/2)μ(μ + ) which would indicate that strange quarks do not contribute at all to the μ moments. (author)

  1. Radial pattern of nuclear decay processes

    International Nuclear Information System (INIS)

    Iskra, W.; Mueller, M.; Rotter, I.; Technische Univ. Dresden

    1994-05-01

    At high level density of nuclear states, a separation of different time scales is observed (trapping effect). We calculate the radial profile of partial widths in the framework of the continuum shell model for some 1 - resonances with 2p-2h nuclear structure in 16 O as a function of the coupling strength to the continuum. A correlation between the lifetime of a nuclear state and the radial profile of the corresponding decay process is observed. We conclude from our numerical results that the trapping effect creates structures in space and time characterized by a small radial extension and a short lifetime. (orig.)

  2. Radial expansion and multifragmentation

    International Nuclear Information System (INIS)

    Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Kerambrun, A.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Meslin, C.; Nakagawa, T.; Patry, J.P.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    The light systems 36 Ar + 27 Al and 64 Zn + nat Ti were measured at several bombarding energies between ∼ 35 and 95 MeV/nucleon. It was found that the predominant part of the cross section is due to binary collisions. In this paper the focus is placed on the properties of the quasi-projectile nuclei. In the central collisions the excitation energies of the quasi-projectile reach values exceeding largely 10 MeV/nucleon. The slope of the high energy part of the distribution can give only an upper limit of the apparent temperature (the average temperature along the decay chain). The highly excited quasi-projectile may get rapidly fragmented rather than sequentially. The heavy fragments are excited and can emit light particles (n, p, d, t, 3 He, α,...) what perturbs additionally the spectrum of these particles. Concerning the expansion energy, one can determine the average kinetic energies of the product (in the quasi-projectile-framework) and compare with simulation values. To fit the experimental data an additional radial expansion energy is to be considered. The average expansion energy depends slightly on the impact parameter but it increases with E * / A, ranging from 0.4 to 1,2 MeV/nucleon for an excitation energy increasing from 7 to 10.5 MeV/nucleon. This collective radial energy seems to be independent of the fragment mass, what is possibly valid for the case of larger quasi-projectile masses. The origin of the expansion is to be determined. It may be due to a compression in the interaction zone at the initial stage of the collision, which propagates in the quasi-projectile and quasi-target, or else, may be due, simply, to the increase of thermal energy leading to a rapid fragment emission. The sequential de-excitation calculation overestimates light particle emission and consequently heavy residues, particularly, at higher excitation energies. This disagreement indicates that a sequential process can not account for the di-excitation of very hot nuclei

  3. Effects of the racket polar moment of inertia on dominant upper limb joint moments during tennis serve.

    Directory of Open Access Journals (Sweden)

    Isabelle Rogowski

    Full Text Available This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2. An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players.

  4. Effects of the racket polar moment of inertia on dominant upper limb joint moments during tennis serve.

    Science.gov (United States)

    Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Macé, Pierre; Dumas, Raphaël

    2014-01-01

    This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players.

  5. Exchange currents for hypernuclear magnetic moments

    International Nuclear Information System (INIS)

    Saito, K.; Oka, M.; Suzuki, T.

    1997-01-01

    The meson (K and π) exchange currents for the hypernuclear magnetic moments are calculated using the effective Lagrangian method. The seagull diagram, the mesonic diagram and the Σ 0 -excitation diagram are considered. The Λ-N exchange magnetic moments for 5 Λ He and A=6 hypernuclei are calculated employing the harmonic oscillator shell model. It is found that the two-body correction is about -9% of the single particle value for 5 Λ He. The π exchange current, induced only in the Σ 0 -excitation diagram, is found to give dominant contribution for the isovector magnetic moments of hypernuclei with A=6. (orig.)

  6. Dipole moments of the rho meson

    International Nuclear Information System (INIS)

    Hecht, M.B.; McKellar, B.H.P.

    1997-04-01

    The electric and magnetic dipole moments (EDM) of the rho meson are calculated using the propagators and vertices derived from the quantum chromodynamics Dyson-Schwinger equations. Results obtained from using the Bethe-Salpeter amplitude studied by Chappell, Mitchell et. al., and Pichowsky and Lee, are compared. The rho meson EDM is generated through the inclusion of a quark electric dipole moment, which is left as a free variable. These results are compared to the perturbative results to obtain a measure of the effects of quark interactions and confinement. The two dipole moments are also calculated using the phenomenological MIT bag model to provide a further basis for comparison

  7. Analysis of scaled-factorial-moment data

    International Nuclear Information System (INIS)

    Seibert, D.

    1990-01-01

    We discuss the two standard constructions used in the search for intermittency, the exclusive and inclusive scaled factorial moments. We propose the use of a new scaled factorial moment that reduces to the exclusive moment in the appropriate limit and is free of undesirable multiplicity correlations that are contained in the inclusive moment. We show that there are some similarities among most of the models that have been proposed to explain factorial-moment data, and that these similarities can be used to increase the efficiency of testing these models. We begin by calculating factorial moments from a simple independent-cluster model that assumes only approximate boost invariance of the cluster rapidity distribution and an approximate relation among the moments of the cluster multiplicity distribution. We find two scaling laws that are essentially model independent. The first scaling law relates the moments to each other with a simple formula, indicating that the different factorial moments are not independent. The second scaling law relates samples with different rapidity densities. We find evidence for much larger clusters in heavy-ion data than in light-ion data, indicating possible spatial intermittency in the heavy-ion events

  8. Radial nerve dysfunction (image)

    Science.gov (United States)

    The radial nerve travels down the arm and supplies movement to the triceps muscle at the back of the upper arm. ... the wrist and hand. The usual causes of nerve dysfunction are direct trauma, prolonged pressure on the ...

  9. Lepton dipole moments

    CERN Document Server

    Marciano, William J

    2010-01-01

    This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many o

  10. Radial optimization of a BWR fuel cell using genetic algorithms; Optimizacion radial de una celda de combustible BWR usando algoritmos geneticos

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C.; Carmona H, R.; Oropeza C, I.P. [UNAM, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: cmcm@fi-b.unam.mx

    2006-07-01

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U{sup 235} and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix

  11. Moments of structure functions in full QCD

    International Nuclear Information System (INIS)

    Dolgov, D.; Brower, R.; Capitani, S.; Negele, J.W.; Pochinsky, A.; Renner, D.; Eicker, N.; Lippert, T.; Schilling, K.; Edwards, R.G.; Heller, U.M.

    2001-01-01

    Moments of the quark density distribution, moments of the quark helicity distribution, and the tensor charge are calculated in full QCD. Calculations of matrix elements of operators from the operator product expansion have been performed on 16 3 x 32 lattices for Wilson fermions at β = 5.6 using configurations from the SESAM collaboration and at β = 5.5 using configurations from SCRI. One-loop perturbative renormalization corrections are included. Selected results are compared with corresponding quenched calculations and with calculations using cooled configurations

  12. Electric dipole moments reconsidered

    International Nuclear Information System (INIS)

    Rupertsberger, H.

    1989-01-01

    The electric dipole moments of elementary particles, atoms, molecules and their connection to the electric susceptibility are discussed for stationary states. Assuming rotational invariance it is emphasized that for such states only in the case of a parity and time reversal violating interaction the considered particles can obtain a nonvanishing expectation value for the electric dipole moment. 1 fig., 13 refs. (Author)

  13. Multi-moment maps

    DEFF Research Database (Denmark)

    Swann, Andrew Francis; Madsen, Thomas Bruun

    2012-01-01

    We introduce a notion of moment map adapted to actions of Lie groups that preserve a closed three-form. We show existence of our multi-moment maps in many circumstances, including mild topological assumptions on the underlying manifold. Such maps are also shown to exist for all groups whose second...

  14. Maximal Electric Dipole Moments of Nuclei with Enhanced Schiff Moments

    CERN Document Server

    Ellis, John; Pilaftsis, Apostolos

    2011-01-01

    The electric dipole moments (EDMs) of heavy nuclei, such as 199Hg, 225Ra and 211Rn, can be enhanced by the Schiff moments induced by the presence of nearby parity-doublet states. Working within the framework of the maximally CP-violating and minimally flavour-violating (MCPMFV) version of the MSSM, we discuss the maximal values that such EDMs might attain, given the existing experimental constraints on the Thallium, neutron and Mercury EDMs. The maximal EDM values of the heavy nuclei are obtained with the help of a differential-geometrical approach proposed recently that enables the maxima of new CP-violating observables to be calculated exactly in the linear approximation. In the case of 225Ra, we find that its EDM may be as large as 6 to 50 x 10^{-27} e.cm.

  15. The moment problem

    CERN Document Server

    Schmüdgen, Konrad

    2017-01-01

    This advanced textbook provides a comprehensive and unified account of the moment problem. It covers the classical one-dimensional theory and its multidimensional generalization, including modern methods and recent developments. In both the one-dimensional and multidimensional cases, the full and truncated moment problems are carefully treated separately. Fundamental concepts, results and methods are developed in detail and accompanied by numerous examples and exercises. Particular attention is given to powerful modern techniques such as real algebraic geometry and Hilbert space operators. A wide range of important aspects are covered, including the Nevanlinna parametrization for indeterminate moment problems, canonical and principal measures for truncated moment problems, the interplay between Positivstellensätze and moment problems on semi-algebraic sets, the fibre theorem, multidimensional determinacy theory, operator-theoretic approaches, and the existence theory and important special topics of multidime...

  16. On multipole moments in general relativity

    International Nuclear Information System (INIS)

    Hoenselaers, C.

    1986-01-01

    In general situations, involving gravitational waves the question of multiple moments in general relativity restricts the author to stationary axisymmetric situations. Here it has been shown that multipole moments, a set of numbers defined at spatial infinity as far away from the source as possible, determine a solution of Einstein's equations uniquely. With the rather powerful methods for generating solutions one might hope to get solutions with predefined multipole moments. Before doing so, however, one needs an efficient algorithm for calculating the moments of a given solution. Chapter 2 deals with a conjecture pertaining to such a calculational procedure and shows it to be not true. There is another context in which multipole moments are important. Consider a system composed of several objects. To separate, if possible, the various parts of their interaction, one needs a definition for multipole moments of individual members of a many body system. In spite of the fact that there is no definition for individual moments, with the exception of mass and angular momentum, Chapter 3 shows what can be done for the double Kerr solution. The authors can identify various terms in he interaction of two aligned Kerr objects and show that gravitational spin-spin interaction is indeed proportional to the product of the angular momenta

  17. Moments method in the theory of accelerators

    International Nuclear Information System (INIS)

    Perel'shtejn, Eh.A.

    1984-01-01

    The moments method is widely used for solution of different physical and calculation problems in the theory of accelerators, magnetic optics and dynamics of high-current beams. Techniques using moments of the second order-mean squape characteristics of charged particle beams is shown to be most developed. The moments method is suitable and sometimes even the only technique applicable for solution of computerized problems on optimization of accelerating structures, beam transport channels, matching and other systems with accout of a beam space charge

  18. Kπ=0+ band moment of inertia anomaly

    International Nuclear Information System (INIS)

    Zeng, J.Y.; Wu, C.S.; Cheng, L.; Lin, C.Z.; China Center of Advanced Science and Technology

    1990-01-01

    The moments of inertia of K π =0 + bands in the well-deformed nuclei are calculated by a particle-number-conserving treatment for the cranked shell model. The very accurate solutions to the low-lying K π =0 + bands are obtained by making use of an effective K truncation. Calculations show that the main contribution to the moments of inertia comes from the nucleons in the intruding high-j orbits. Considering the fact that no free parameter is involved in the calculation and no extra inert core contribution is added, the agreement between the calculated and the observed moments of inertia of 0 + bands in 168 Er is very satisfactory

  19. Droplet-model predictions of charge moments

    International Nuclear Information System (INIS)

    Myers, W.D.

    1982-04-01

    The Droplet Model expressions for calculating various moments of the nuclear charge distribution are given. There are contributions to the moments from the size and shape of the system, from the internal redistribution induced by the Coulomb repulsion, and from the diffuseness of the surface. A case is made for the use of diffuse charge distributions generated by convolution as an alternative to Fermi-functions

  20. From moments to functions in quantum chromodynamics

    International Nuclear Information System (INIS)

    Bluemlein, Johannes; Klein, Sebastian; Kauers, Manuel; Schneider, Carsten

    2009-02-01

    Single-scale quantities, like the QCD anomalous dimensions andWilson coefficients, obey difference equations. Therefore their analytic form can be determined from a finite number of moments. We demonstrate this in an explicit calculation by establishing and solving large scale recursions by means of computer algebra for the anomalous dimensions and Wilson coefficients in unpolarized deeply inelastic scattering from their Mellin moments to 3-loop order. (orig.)

  1. From moments to functions in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes; Klein, Sebastian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Kauers, Manuel; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation

    2009-02-15

    Single-scale quantities, like the QCD anomalous dimensions andWilson coefficients, obey difference equations. Therefore their analytic form can be determined from a finite number of moments. We demonstrate this in an explicit calculation by establishing and solving large scale recursions by means of computer algebra for the anomalous dimensions and Wilson coefficients in unpolarized deeply inelastic scattering from their Mellin moments to 3-loop order. (orig.)

  2. Radial wedge flange clamp

    Science.gov (United States)

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  3. Particle electric dipole moments

    CERN Document Server

    Pendlebury, J M

    2000-01-01

    Measurements of particle electric dipole moments (EDMs) continue to put powerful constraints on theories of T-symmetry and CP-symmetry violation, which form currently one of the most prominent fields in particle physics. EDM measurements have been concentrated on neutral systems such as the neutron and atoms and molecules. These measurements allow one to deduce, in turn, the electric dipole moments of the fundamental fermions, that is, the lighter leptons and quarks and also those of some heavy nuclei.

  4. Sirenomelia with radial dysplasia.

    Science.gov (United States)

    Kulkarni, M L; Abdul Manaf, K M; Prasannakumar, D G; Kulkarni, Preethi M

    2004-05-01

    Sirenomelia is a rare anomaly usually associated with other multiple malformations. In this communication the authors report a case of sirenomelia associated with multiple malformations, which include radial hypoplasia also. Though several theories have been proposed regarding the etiology of multiple malformation syndromes in the past, the recent theory of primary developmental defect during blastogenesis holds good in this case.

  5. Radially truncated galactic discs

    NARCIS (Netherlands)

    Grijs, R. de; Kregel, M.; Wesson, K H

    2000-01-01

    Abstract: We present the first results of a systematic analysis of radially truncatedexponential discs for four galaxies of a sample of disc-dominated edge-onspiral galaxies. Edge-on galaxies are very useful for the study of truncatedgalactic discs, since we can follow their light distributions out

  6. On the moment of inertia of a quantum harmonic oscillator

    International Nuclear Information System (INIS)

    Khamzin, A. A.; Sitdikov, A. S.; Nikitin, A. S.; Roganov, D. A.

    2013-01-01

    An original method for calculating the moment of inertia of the collective rotation of a nucleus on the basis of the cranking model with the harmonic-oscillator Hamiltonian at arbitrary frequencies of rotation and finite temperature is proposed. In the adiabatic limit, an oscillating chemical-potential dependence of the moment of inertia is obtained by means of analytic calculations. The oscillations of the moment of inertia become more pronounced as deformations approach the spherical limit and decrease exponentially with increasing temperature.

  7. Measurement of Wear in Radial Journal Bearings

    NARCIS (Netherlands)

    Ligterink, D.J.; Ligterink, D.J.; de Gee, A.W.J.

    1996-01-01

    this article, the measurement of wear in radial journal bearings is discussed, where a distinction is made between stationary and non-stationary contact conditions. Starting with Holm/Archard's wear law, equations are derived for the calculation of the specific wear rate k of the bearing material as

  8. Table of Nuclear Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2013-12-01

    This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended value of the moment is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary reference EFG/moment references are required and their use is specified. The literature search covers the period to mid-2013. (author)

  9. Radial Color Gradient in a Globular Cluster 1. M68

    Directory of Open Access Journals (Sweden)

    Sukyoung Yi

    1990-12-01

    Full Text Available Stars in M68 from the observed color-magnitude diagrams with CCD were integrated to find any radial gradient. The result shows that M68 has a slightly bluer core. The main cause of these calculated radial color variations seems to come from the random distribution of giants.

  10. The dipole moments of the linear polycarbon monosulfides

    International Nuclear Information System (INIS)

    Murakami, Akinori

    1989-01-01

    The dipole moments of the linear polycarbon monosulfides, CS, C 2 S and C 3 S molecule (radical)s were calculated by ab initio SCF-CI method. The equilibrium geometries of the C n S molecules were obtained by MP3 method using the 6-31G** basis set. From the split balencetype (MIDI-4) to the Huzinaga's well tempered extended type(WT) were used to evaluate dipole moments. Final results were obtained using the WT+2d basis set and CI calculation. The calculated dipole moment of the CS molecule, 1.96 debye, is in good agreement with experimental one. The dipole moment of the C 2 S radical is calculated to be 2.81 debye and 3.66 debye for C 3 S molecule. The calculated dipole moments of the C n S will be accurate with in 0.1 debye(5%)

  11. Variable stator radial turbine

    Science.gov (United States)

    Rogo, C.; Hajek, T.; Chen, A. G.

    1984-01-01

    A radial turbine stage with a variable area nozzle was investigated. A high work capacity turbine design with a known high performance base was modified to accept a fixed vane stagger angle moveable sidewall nozzle. The nozzle area was varied by moving the forward and rearward sidewalls. Diffusing and accelerating rotor inlet ramps were evaluated in combinations with hub and shroud rotor exit rings. Performance of contoured sidewalls and the location of the sidewall split line with respect to the rotor inlet was compared to the baseline. Performance and rotor exit survey data are presented for 31 different geometries. Detail survey data at the nozzle exit are given in contour plot format for five configurations. A data base is provided for a variable geometry concept that is a viable alternative to the more common pivoted vane variable geometry radial turbine.

  12. Estimation of Radial Runout

    OpenAIRE

    Nilsson, Martin

    2007-01-01

    The demands for ride comfort quality in today's long haulage trucks are constantly growing. A part of the ride comfort problems are represented by internal vibrations caused by rotating mechanical parts. This thesis work focus on the vibrations generated from radial runout on the wheels. These long haulage trucks travel long distances on smooth highways, with a constant speed of 90 km/h resulting in a 7 Hz oscillation. This frequency creates vibrations in the cab, which can be found annoying....

  13. Radial Fuzzy Systems

    Czech Academy of Sciences Publication Activity Database

    Coufal, David

    2017-01-01

    Roč. 319, 15 July (2017), s. 1-27 ISSN 0165-0114 R&D Projects: GA MŠk(CZ) LD13002 Institutional support: RVO:67985807 Keywords : fuzzy systems * radial functions * coherence Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.718, year: 2016

  14. MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries

    Science.gov (United States)

    Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team

    2016-01-01

    Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.

  15. Radial Field Piezoelectric Diaphragms

    Science.gov (United States)

    Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.

    2002-01-01

    A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.

  16. Perceived radial translation during centrifugation

    NARCIS (Netherlands)

    Bos, J.E.; Correia Grácio, B.J.

    2015-01-01

    BACKGROUND: Linear acceleration generally gives rise to translation perception. Centripetal acceleration during centrifugation, however, has never been reported giving rise to a radial, inward translation perception. OBJECTIVE: To study whether centrifugation can induce a radial translation

  17. Moment magnitude scale

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, T.C.; Kanamori, H.

    1979-05-10

    The nearly conincident forms of the relations between seismic moment M/sub o/ and the magnitudes M/sub L/, M/sub s/, and M/sub w/ imply a moment magnitude scale M=2/3 log M/sub o/-10.7 which is uniformly valid for 3< or approx. =M/sub L/< or approx. = 7, 5 < or approx. =M/sub s/< or approx. =7 1/2 and M/sub w/> or approx. = 7 1/2.

  18. Magnetic moments of hyperons

    International Nuclear Information System (INIS)

    Overseth, O.E.

    1981-01-01

    The Fermilab Neutral Hyperon Beam Collaboration has measured the magnetic moments of Λ 0 , XI-neutral and XI-minus hyperons. With a recently published result for the Σ + hyperon, we now have precision measurements on the magnetic moments of six baryons. This allows a sensitive test of the quark model. The data are in qualitative agreement with the simple additive static quark model. Quantitatively however the data disagree with theoretical predictions by typically 15%. Several theoretical attempts to understand or remedy this discrepancy will be mentioned

  19. Multipole electromagnetic moments of neutrino in dispersive medium

    International Nuclear Information System (INIS)

    Semikov, V.B.; Smorodinskij, Ya.A.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow

    1989-01-01

    Four multipole moments for a Dirac and Majorana neutrino in a dispersive medium are calculated viz., the electric monopole (charge), electric dipole, magnetic dipole and anapole dipole moment. For comparison the same quantities are presented in the case of vacuum. The neutrino does not possess an (induced) anapole moment in an isotropic medium; however, in a ferromagnetic such a moment exists and for the Majorana neutrino it is the only electromagnetic cjaracteristic. As an example the cross section for elastic scattering of a Majorana neutrino by nuclei in an isotropic plasma is calculated

  20. Moments of Negotiation

    NARCIS (Netherlands)

    Pieters, Jurgen

    2001-01-01

    'Moments of Negotiation' offers the first book-length and indepth analysis of the New Historicist reading method, which the American Shakespeare-scolar Stephen Greenblatt introduced at the beginning of the 1980s. Ever since, Greenblatt has been hailed as the prime representative of this movement,

  1. Magnetic moments revisited

    International Nuclear Information System (INIS)

    Towner, I.S.; Khanna, F.C.

    1984-01-01

    Consideration of core polarization, isobar currents and meson-exchange processes gives a satisfactory understanding of the ground-state magnetic moments in closed-shell-plus (or minus)-one nuclei, A = 3, 15, 17, 39 and 41. Ever since the earliest days of the nuclear shell model the understanding of magnetic moments of nuclear states of supposedly simple configurations, such as doubly closed LS shells +-1 nucleon, has been a challenge for theorists. The experimental moments, which in most cases are known with extraordinary precision, show a small yet significant departure from the single-particle Schmidt values. The departure, however, is difficult to evaluate precisely since, as will be seen, it results from a sensitive cancellation between several competing corrections each of which can be as large as the observed discrepancy. This, then, is the continuing fascination of magnetic moments. In this contribution, we revisit the subjet principally to identify the role played by isobar currents, which are of much concern at this conference. But in so doing we warn quite strongly of the dangers of considering just isobar currents in isolation; equal consideration must be given to competing processes which in this context are the mundane nuclear structure effects, such as core polarization, and the more popular meson-exchange currents

  2. The Humanist Moment

    Science.gov (United States)

    Higgins, Chris

    2014-01-01

    In "The Humanist Moment," Chris Higgins sets out to recover a tenable, living humanism, rejecting both the version vilified by the anti-humanists and the one sentimentalized by the reactionary nostalgists. Rescuing humanism from such polemics is only the first step, as we find at least nine rival, contemporary definitions of humanism.…

  3. Radial reflection diffraction tomography

    Science.gov (United States)

    Lehman, Sean K.

    2012-12-18

    A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.

  4. The isotopic dipole moment of HDO

    Energy Technology Data Exchange (ETDEWEB)

    Assafrao, Denise; Mohallem, Jose R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte, MG (Brazil)

    2007-03-14

    An adiabatic variational approximation is used to study the monodeuterated water molecule, HDO, accounting for the isotopic effect. The isotopic dipole moment, pointing from D to H, is then calculated for the first time, yielding (1.5 {+-} 0.1) x 10{sup -3} Debye, being helpful in the interpretation of experiments. (fast track communication)

  5. Redefining the political moment

    Directory of Open Access Journals (Sweden)

    James Arvanitakis

    2011-07-01

    Full Text Available On 16 February 2003, more than half a million people gathered in Sydney, Australia, as part of a global anti-war protest aimed at stopping the impending invasion of Iraq by the then US Administration. It is difficult to estimate how many millions marched on the coordinated protest, but it was by far the largest mobilization of a generation. Walking and chanting on the streets of Sydney that day, it seemed that a political moment was upon us. In a culture that rarely embraces large scale activism, millions around Australian demanded to be heard. The message was clear: if you do not hear us, we would be willing to bring down a government. The invasion went ahead, however, with the then Australian government, under the leadership of John Howard, being one of the loudest and staunchest supporters of the Bush Administrations drive to war. Within 18 months, anti-war activists struggled to have a few hundred participants take part in anti-Iraq war rallies, and the Howard Government was comfortably re-elected for another term. The political moment had come and gone, with both social commentators and many members of the public looking for a reason. While the conservative media was often the focus of analysis, this paper argues that in a time of late capitalism, the political moment is hollowed out by ‘Politics’ itself. That is to say, that formal political processes (or ‘Politics’ undermine the political practices that people participate in everyday (or ‘politics’. Drawing on an ongoing research project focusing on democracy and young people, I discuss how the concept of ’politics‘ has been destabilised and subsequently, the political moment has been displaced. This displacement has led to a re-definition of ‘political action’ and, I argue, the emergence of a different type of everyday politics.

  6. Projective moment invariants

    Czech Academy of Sciences Publication Activity Database

    Suk, Tomáš; Flusser, Jan

    2004-01-01

    Roč. 26, č. 10 (2004), s. 1364-1367 ISSN 0162-8828 R&D Projects: GA ČR GA201/03/0675 Institutional research plan: CEZ:AV0Z1075907 Keywords : projective transform * moment invariants * object recognition Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.352, year: 2004 http://library.utia.cas.cz/prace/20040112.pdf

  7. Design of radial reinforcement for prestressed concrete containments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shen, E-mail: swang@bechtel.com [Bechtel Power Corporation, 5275 Westview Drive, BP2-2C3, Frederick, MD 21703 (United States); Munshi, Javeed A., E-mail: jamunshi@bechtel.com [Bechtel Power Corporation, 5275 Westview Drive, BP2-2C3, Frederick, MD 21703 (United States)

    2013-02-15

    Highlights: ► A rigorous formulae is proposed to calculate radial stress within prestressed concrete containments. ► The proposed method is validated by finite element analysis in an illustrative practical example. ► A partially prestressed condition is more critical than a fully prestressed condition for radial tension. ► Practical design consideration is provided for detailing of radial reinforcement. -- Abstract: Nuclear containments are critical components for safety of nuclear power plants. Failure can result in catastrophic safety consequences as a result of leakage of radiation. Prestressed concrete containments have been used in large nuclear power plants with significant design internal pressure. These containments are generally reinforced with prestressing tendons in the circumferential (hoop) and meridional (vertical) directions. The curvature effect of the tendons introduces radial tensile stresses in the concrete shell which are generally neglected in the design of such structures. It is assumed that such tensile radial stresses are small as such no radial reinforcement is provided for this purpose. But recent instances of significant delaminations in Crystal River Unit 3 in Florida have elevated the need for reevaluation of the radial tension issue in prestressed containment. Note that currently there are no well accepted industry standards for design and detailing of radial reinforcement. This paper discusses the issue of radial tension in prestressed cylindrical and dome shaped structures and proposes formulae to calculate radial stresses. A practical example is presented to illustrate the use of the proposed method which is then verified by using state of art finite element analysis. This paper also provides some practical design consideration for detailing of radial reinforcement in prestressed containments.

  8. Nonlinear Radon Transform Using Zernike Moment for Shape Analysis

    Directory of Open Access Journals (Sweden)

    Ziping Ma

    2013-01-01

    Full Text Available We extend the linear Radon transform to a nonlinear space and propose a method by applying the nonlinear Radon transform to Zernike moments to extract shape descriptors. These descriptors are obtained by computing Zernike moment on the radial and angular coordinates of the pattern image's nonlinear Radon matrix. Theoretical and experimental results validate the effectiveness and the robustness of the method. The experimental results show the performance of the proposed method in the case of nonlinear space equals or outperforms that in the case of linear Radon.

  9. Analysis of radial runout for symmetric and asymmetric HDD spindle motors with rotor eccentricity

    International Nuclear Information System (INIS)

    Kim, T.-J.; Kim, K.-T.; Hwang, S.-M.; Lee, S.-B.; Park, N.-G.

    2001-01-01

    Radial runout of disk drive spindle is one of the major limiting factors in achieving higher track densities in hard disk drives. Mechanical, magnetic and their coupled origins, such as unbalanced mass, reaction forces and magnetic forces, introduce radial runout of spindle motors. In this paper, radial magnetic forces are calculated with respect to the various rotor eccentricities using analytic method. Based on the results of the radial magnetic forces, the radial runout of the spindle motor is analyzed using finite element and transfer matrices. Results show that an asymmetric motor has a worse performance on unbalanced magnetic forces and radial runout when mechanical and magnetic coupling exists

  10. ISR Radial Field Magnet

    CERN Multimedia

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  11. The ARCS radial collimator

    International Nuclear Information System (INIS)

    Stone, M.B.; Abernathy, D.L.; Niedziela, J.L.; Overbay, M.A.

    2015-01-01

    We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. The collimator is composed of collimating blades (or septa). The septa are 12 micron thick Kapton foils coated on each side with 39 microns of enriched boron carbide ( 10 B 4 C with 10 B > 96%) in an ultra-high vacuum compatible binder. The collimator blades represent an additional 22 m 2 of surface area. In the article we present collimator's design and performance and methodologies for its effective use

  12. Heavy quark and magnetic moment

    International Nuclear Information System (INIS)

    Mubarak, Ahmad; Jallu, M.S.

    1979-01-01

    The magnetic moments and transition moments of heavy hadrons including the conventional particles are obtained under the SU(5) truth symmetry scheme. To this end state vectors are defined and the quark additivity principle is taken into account. (author)

  13. Moment methods for nonlinear maps

    International Nuclear Information System (INIS)

    Pusch, G.D.; Atomic Energy of Canada Ltd., Chalk River, ON

    1993-01-01

    It is shown that Differential Algebra (DA) may be used to push moments of distributions through a map, at a computational cost per moment comparable to pushing a single particle. The algorithm is independent of order, and whether or not the map is symplectic. Starting from the known result that moment-vectors transform linearly - like a tensor - even under a nonlinear map, I suggest that the form of the moment transformation rule indicates that the moment-vectors are elements of the dual to DA-vector space. I propose several methods of manipulating moments and constructing invariants using DA. I close with speculations on how DA might be used to ''close the circle'' to solve the inverse moment problem, yielding an entirely DA-and-moment-based space-charge code. (Author)

  14. The status of the electric dipole moment of the neutron

    International Nuclear Information System (INIS)

    Grimus, W.

    1990-01-01

    The electric dipole moment of particles in quantum mechanics and quantum field theory is discussed. Furthermore, calculations of the neutron electric dipole moment in the standard model and several of its low-energy extensions are reviewed. 47 refs., 7 figs. (Author)

  15. Antiproton compression and radial measurements

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jorgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile, and its relation to that of the electron plasma. We also measure the outer radial profile by ejecting antiprotons to the trap wall using an octupole magnet.

  16. Vertical, radial and drag force analysis of superconducting magnetic bearings

    International Nuclear Information System (INIS)

    Cansiz, Ahmet

    2009-01-01

    The behavior of the force between a permanent magnet (PM) and a high temperature superconductor (HTS) was tested with the frozen-image model based on flux pinning. It was found that the associated dipole moment assumptions of the method of the frozen image underestimate the force somewhat; thus a quadrupole moment analysis is proposed. The radial and drag forces associated with the rotation of the PM levitated above the HTS were measured by using a force transducer and by means of a cantilevered beam technique. The radial force was found not to be dependent on the radial direction, and the least radial force was found to be periodic with an angular displacement during the slow rotation of the PM relative to the HTS. The periodicity behavior of the force is attributed to the geometric eccentricity from the magnetization distribution of the PM and HTS. The drag force associated with the torsional stiffness of the levitated PM during the low and high rotational speeds was incorporated with the data from the literature.

  17. The vector meson with anomalous magnetic moment

    International Nuclear Information System (INIS)

    Boyarkin, O.M.

    1976-01-01

    The possibility of introducing an anomalous magnetic moment into the Stuckelberg version of the charged vector meson theory is considered. It is shown that the interference of states with spins equal to one and zero is absent in the presence of an anomalous magnetic moment of a particle. The differential cross section of scattering on the Coulomb field of a nucleus is calculated, and so are the differential and integral cross sections of meson pair production on annihilation of two gamma quanta. The two-photon mechanism of production of a meson pair in colliding electron-positron beams is considered. It is shown that with any value of the anomalous magnetic moment the cross section of the esup(+)esup(-) → esup(+)esup(-)γsup(*)γsup(*) → esup(+)esup(-)Wsup(+)Wsup(-) reaction exceeds that of the esup(+)esup(-) → γsup(*) → Wsup(+)Wsup(-) at sufficiently high energies

  18. Baryon magnetic moments: Symmetries and relations

    Energy Technology Data Exchange (ETDEWEB)

    Parreno, Assumpta [University of Barcelona; Savage, Martin [Univ. of Washington, Seattle, WA (United States); Tiburzi, Brian [City College of New York, NY (United States); City Univ. (CUNY), NY (United States); Wilhelm, Jonas [Justus-Liebig-Universitat Giessen, Giessen, Germany; Univ. of Washington, Seattle, WA (United States); Chang, Emmanuel [Univ. of Washington, Seattle, WA (United States); Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-04-01

    Magnetic moments of the octet baryons are computed using lattice QCD in background magnetic fields, including the first treatment of the magnetically coupled Σ0- Λ system. Although the computations are performed for relatively large values of the up and down quark masses, we gain new insight into the symmetries and relations between magnetic moments by working at a three-flavor mass-symmetric point. While the spinflavor symmetry in the large Nc limit of QCD is shared by the naïve constituent quark model, we find instances where quark model predictions are considerably favored over those emerging in the large Nc limit. We suggest further calculations that would shed light on the curious patterns of baryon magnetic moments.

  19. Electric Dipole Moment Results from lattice QCD

    Science.gov (United States)

    Dragos, Jack; Luu, Thomas; Shindler, Andrea; de Vries, Jordy

    2018-03-01

    We utilize the gradient flow to define and calculate electric dipole moments induced by the strong QCD θ-term and the dimension-6 Weinberg operator. The gradient flow is a promising tool to simplify the renormalization pattern of local operators. The results of the nucleon electric dipole moments are calculated on PACS-CS gauge fields (available from the ILDG) using Nf = 2+1, of discrete size 323×64 and spacing a ≃ 0.09 fm. These gauge fields use a renormalization-group improved gauge action and a nonperturbatively O(a) improved clover quark action at β = 1.90, with cSW = 1.715. The calculation is performed at pion masses of mπ ≃ 411, 701 MeV.

  20. Electric Dipole Moment Results from lattice QCD

    Directory of Open Access Journals (Sweden)

    Dragos Jack

    2018-01-01

    Full Text Available We utilize the gradient flow to define and calculate electric dipole moments induced by the strong QCD θ-term and the dimension-6 Weinberg operator. The gradient flow is a promising tool to simplify the renormalization pattern of local operators. The results of the nucleon electric dipole moments are calculated on PACS-CS gauge fields (available from the ILDG using Nf = 2+1, of discrete size 323×64 and spacing a ≃ 0.09 fm. These gauge fields use a renormalization-group improved gauge action and a nonperturbatively O(a improved clover quark action at β = 1.90, with cSW = 1.715. The calculation is performed at pion masses of mπ ≃ 411, 701 MeV.

  1. Extension of moment projection method to the fragmentation process

    International Nuclear Information System (INIS)

    Wu, Shaohua; Yapp, Edward K.Y.; Akroyd, Jethro; Mosbach, Sebastian; Xu, Rong; Yang, Wenming; Kraft, Markus

    2017-01-01

    The method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here the method is extended to include the fragmentation process. The performance of MPM is tested for 13 different test cases for different fragmentation kernels, fragment distribution functions and initial conditions. Comparisons are made with the quadrature method of moments (QMOM), hybrid method of moments (HMOM) and a high-precision stochastic solution calculated using the established direct simulation algorithm (DSA) and advantages of MPM are drawn.

  2. Extension of moment projection method to the fragmentation process

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shaohua [Department of Mechanical Engineering, National University of Singapore, Engineering Block EA, Engineering Drive 1, 117576 (Singapore); Yapp, Edward K.Y.; Akroyd, Jethro; Mosbach, Sebastian [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA (United Kingdom); Xu, Rong [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore); Yang, Wenming [Department of Mechanical Engineering, National University of Singapore, Engineering Block EA, Engineering Drive 1, 117576 (Singapore); Kraft, Markus, E-mail: mk306@cam.ac.uk [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA (United Kingdom); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)

    2017-04-15

    The method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here the method is extended to include the fragmentation process. The performance of MPM is tested for 13 different test cases for different fragmentation kernels, fragment distribution functions and initial conditions. Comparisons are made with the quadrature method of moments (QMOM), hybrid method of moments (HMOM) and a high-precision stochastic solution calculated using the established direct simulation algorithm (DSA) and advantages of MPM are drawn.

  3. Nuclear moment of inertia and spin distribution of nuclear levels

    International Nuclear Information System (INIS)

    Alhassid, Y.; Fang, L.; Liu, S.; Bertsch, G.F.

    2005-01-01

    We introduce a simple model to calculate the nuclear moment of inertia at finite temperature. This moment of inertia describes the spin distribution of nuclear levels in the framework of the spin-cutoff model. Our model is based on a deformed single-particle Hamiltonian with pairing interaction and takes into account fluctuations in the pairing gap. We derive a formula for the moment of inertia at finite temperature that generalizes the Belyaev formula for zero temperature. We show that a number-parity projection explains the strong odd-even effects observed in shell model Monte Carlo studies of the nuclear moment of inertia in the iron region

  4. Comparison of exit time moment spectra for extrinsic metric balls

    DEFF Research Database (Denmark)

    Hurtado, Ana; Markvorsen, Steen; Palmer, Vicente

    2012-01-01

    We prove explicit upper and lower bounds for the $L^1$-moment spectra for the Brownian motion exit time from extrinsic metric balls of submanifolds $P^m$ in ambient Riemannian spaces $N^n$. We assume that $P$ and $N$ both have controlled radial curvatures (mean curvature and sectional curvature...... obtain new intrinsic comparison results for the exit time spectra for metric balls in the ambient manifolds $N^n$ themselves....

  5. Response of trapped particles to a collapsing dipole moment.

    Science.gov (United States)

    Heckman, H. H.; Lindstrom, P. J.

    1972-01-01

    Particle motion in the secularly varying geomagnetic field is investigated in terms of a dipolar magnetic field with decreasing magnetic moment M. For dM/dt equal to the rate of decay of the earth's dipole component, we find there is drift in B-L space, resulting in an inward drift of particles accompanied with increased energy and unidirectional intensity. Secular variation of the geomagnetic field appears to be a dominant mechanism for radial drift in the inner radiation belt.

  6. Paul Callaghan luminous moments

    CERN Document Server

    Callaghan, Paul

    2013-01-01

    Acknowledged internationally for his ground-breaking scientific research in the field of magnetic resonance, Sir Paul Callaghan was a scientist and visionary with a rare gift for promoting science to a wide audience. He was named New Zealander of the Year in 2011. His death in early 2012 robbed New Zealand of an inspirational leader. Paul Callaghan: Luminous Moments brings together some of his most significant writing. Whether he describes his childhood in Wanganui, reflects on discovering the beauty of science, sets out New Zealand's future potential or discusses the experience of fa

  7. Calculated rotational and vibrational g factors of LiH X 1S+ and evaluation of parameters in radial functions from rotational and vibration-rotational spectra

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Paidarová, Ivana; Oddershede, Jens

    2011-01-01

    The vibrational g factor, that is, the nonadiabatic correction to the vibrational reduced mass, of LiH has been calculated for internuclear distances over a wide range. Based on multiconfigurational wave functions with a large complete active space and an extended set of gaussian type basis...

  8. Calculation method and influencing factors of the fragmental radial velocities of PELE after penetrating thin target%PELE贯穿薄靶后外壳破片径向速度计算方法与影响因素分析

    Institute of Scientific and Technical Information of China (English)

    樊自建; 冉宪文; 汤文辉; 于国栋; 陈为科; 任才清

    2017-01-01

    基于横向效应增强型弹丸(PELE)侵彻金属薄靶板过程分析,将弹体前端在撞击作用下的变形过程分解为轴向一维压缩和径向自由膨胀两个变形阶段;依据冲击波理论,给出了弹体前端的冲击波压缩势能,由功能转化原理,给出了PELE前端外壳在靶后形成破片的最大径向飞散速度计算公式.计算结果在多种工况下均与文献的实验结果较为一致.计算结果表明:PELE靶后外壳破片的最大径向飞散速度与外壳和内芯材料的体积模量和泊松比有关,且随二者的增大而增大;PELE外壳破片的最大径向飞散速度是壳体和内芯在冲击波压缩作用下共同径向膨胀的结果,且外壳膨胀能在弹体整体膨胀能中所占比例较大,计算中应当同时考虑弹体外壳和内芯材料的横向膨胀效应对弹体破片径向飞散速度的影响.%Based on an analysis of the PELE (penetrator with enhanced lateral efficiency) penetrating thin metal targets,the deformation process of the front-end projectile was divided into two distinct phases.one-dimensional decomposition in the axial direction and the free conversion in the radial direction,for experimental study.Based on the shock wave theory,we obtained the shock wave compression energy of the front end of the projectile and,on the basis of the conservation of energy and the assumption of two-stage deformation,presented a method for determining the scattered radial velocity of the PELE jacket fragments behind the target.The calculated results in a variety of conditions are fairly consistent with the experimental results.The theoretical analysis showed that the maximum radial velocity of the PELE jacket fragments depends on the radial expansion of both the jacket and the filling part under the shock compression,the former playing a major role in the overall expansion of the projectile whereas the maximum radial velocity of the PELE jacket fragments increasing with the bulk modulus

  9. Disturbance observer that uses radial basis function networks for the low speed control of a servo motor

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Bae, C.H.; Blaabjerg, Frede

    2005-01-01

    A scheme to estimate the moment of inertia in a servo motor drive system at very low speed is proposed. The typical speed estimation scheme used in most servo systems operated at low speed is highly sensitive to variations in the moment of inertia. An observer that uses a radial basis function...

  10. Lattice QCD evaluation of baryon magnetic moment sum rules

    International Nuclear Information System (INIS)

    Leinweber, D.B.

    1991-05-01

    Magnetic moment combinations and sum rules are evaluated using recent results for the magnetic moments of octet baryons determined in a numerical simulation of quenched QCD. The model-independent and parameter-free results of the lattice calculations remove some of the confusion and contradiction surrounding past magnetic moment sum rule analyses. The lattice results reveal the underlying quark dynamics investigated by magnetic moment sum rules and indicate the origin of magnetic moment quenching for the non-strange quarks in Σ. In contrast to previous sum rule analyses, the magnetic moments of nonstrange quarks in Ξ are seen to be enhanced in the lattice results. In most cases, the spin-dependent dynamics and center-of-mass effects giving rise to baryon dependence of the quark moments are seen to be sufficient to violate the sum rules in agreement with experimental measurements. In turn, the sum rules are used to further examine the results of the lattice simulation. The Sachs sum rule suggests that quark loop contributions not included in present lattice calculations may play a key role in removing the discrepancies between lattice and experimental ratios of magnetic moments. This is supported by other sum rules sensitive to quark loop contributions. A measure of the isospin symmetry breaking in the effective quark moments due to quark loop contributions is in agreement with model expectations. (Author) 16 refs., 2 figs., 2 tabs

  11. Moments in time

    Directory of Open Access Journals (Sweden)

    Marc eWittmann

    2011-10-01

    Full Text Available It has been suggested that perception and action can be understood as evolving in temporal epochs or sequential processing units. Successive events are fused into units forming a unitary experience or ‘psychological present’. Studies have identified several temporal integration levels on different time scales which are fundamental for our understanding of behaviour and subjective experience. In recent literature concerning the philosophy and neuroscience of consciousness these separate temporal processing levels are not always precisely distinguished. Therefore, empirical evidence from psychophysics and neuropsychology on these distinct temporal processing levels is presented and discussed within philosophical conceptualizations of time experience. On an elementary level, one can identify a functional moment, a basic temporal building block of perception in the range of milliseconds that defines simultaneity and succession. Below a certain threshold temporal order is not perceived, individual events are processed as co-temporal. On a second level, an experienced moment, which is based on temporal integration of up to a few seconds, has been reported in many qualitatively different experiments in perception and action. It has been suggested that this segmental processing mechanism creates temporal windows that provide a logistical basis for conscious representation and the experience of nowness. On a third level of integration, continuity of experience is enabled by working-memory in the range of multiple seconds allowing the maintenance of cognitive operations and emotional feelings, leading to mental presence, a temporal window of an individual’s experienced presence.

  12. CO2 flowrate calculator

    International Nuclear Information System (INIS)

    Carossi, Jean-Claude

    1969-02-01

    A CO 2 flowrate calculator has been designed for measuring and recording the gas flow in the loops of Pegase reactor. The analog calculator applies, at every moment, Bernoulli's formula to the values that characterize the carbon dioxide flow through a nozzle. The calculator electronics is described (it includes a sampling calculator and a two-variable function generator), with its amplifiers, triggers, interpolator, multiplier, etc. Calculator operation and setting are presented

  13. Radial flow heat exchanger

    Science.gov (United States)

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  14. Stability of radial swirl flows

    International Nuclear Information System (INIS)

    Dou, H S; Khoo, B C

    2012-01-01

    The energy gradient theory is used to examine the stability of radial swirl flows. It is found that the flow of free vortex is always stable, while the introduction of a radial flow will induce the flow to be unstable. It is also shown that the pure radial flow is stable. Thus, there is a flow angle between the pure circumferential flow and the pure radial flow at which the flow is most unstable. It is demonstrated that the magnitude of this flow angle is related to the Re number based on the radial flow rate, and it is near the pure circumferential flow. The result obtained in this study is useful for the design of vaneless diffusers of centrifugal compressors and pumps as well as other industrial devices.

  15. Kinetic transport properties of a bumpy torus with finite radial ambipolar field

    International Nuclear Information System (INIS)

    Spong, D.A.; Harris, E.G.; Hedrick, C.L.

    1978-04-01

    Bumpy torus neoclassical transport coefficients have been calculted including finite values of the radial ambipolar field. These are obtained by solving a bounce-averaged drift kinetic equation in a local approximation for perturbations in the distribution function (away from a stationary Maxwellian) caused by toroidicity and radial gradients in plasma density, temperature, and potential. Particle and energy fluxes along with the associated transport coefficients are then calculated by taking appropriate moments of the distribution function. Particle orbits are treated by breaking them up into a vertical drift component (due to toroidicity) and a theta precessional drift (as a result of Vector E x Vector B and drifts due to the bumpy toroidal field). The kinetic equation has been solved using both a functional expansion method and finite difference techniques [Alternating-Direction-Implicit (ADI)]. The resulting transport coefficients exhibit a strong dependence on the ambipolar electric field and plasma collisionality. In the large electric field limit, our results are in close agreement with the earlier work of Kovrizhnykh

  16. Research on Radial Vibration of a Circular Plate

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2016-01-01

    Full Text Available Radial vibration of the circular plate is presented using wave propagation approach and classical method containing Bessel solution and Hankel solution for calculating the natural frequency theoretically. In cylindrical coordinate system, in order to obtain natural frequency, propagation and reflection matrices are deduced at the boundaries of free-free, fixed-fixed, and fixed-free using wave propagation approach. Furthermore, radial phononic crystal is constructed by connecting two materials periodically for the analysis of band phenomenon. Also, Finite Element Simulation (FEM is adopted to verify the theoretical results. Finally, the radial and piezoelectric effects on the band are also discussed.

  17. Parity- and time-reversal-violating moments of light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Jordy de, E-mail: devries@kvi.nl [KVI, theory group (Netherlands)

    2013-03-15

    I present the calculation of parity- and time-reversal-violating moments of the nucleon and light nuclei, originating from the QCD {theta}-bar term and effective dimension-six operators. By applying chiral effective field theory these calculations are performed in a unified framework. I argue that measurements of a few light-nuclear electric dipole moments would shed light on the mechanism of parity and time-reversal violation.

  18. Development of a semi-analytical method for calculation of the radial dose profile for proton beams in the 0.5-1.0 MeV energy range

    International Nuclear Information System (INIS)

    Wiklund, Kristin

    2004-07-01

    There has been an increased interest in the application of protons for radiation therapy during the last decades. The main reason for this is the advantageous shape of the proton dose profile, which offers the possibility of improved treatment outcome. Proton beams and other light ions have because of this observed phenomenon a high efficiency to inflict lethal damage to tumor tissue while sparing normal tissue. Treatment with ions heavier than protons, have also been considered on the basis of radiological arguments. Recently scientists have discovered that not only high-energy electrons inflict severe damage to the DNA, but also low-energy electrons. Those electrons can be produced when protons with energy between 0.5-1 MeV interact with matter. High-accuracy calculations of dose distributions inside tumors and the surrounding tissue are essential for assessing the effectiveness of a given treatment in terms of probability of tumor control and of radiation-induced complications. The use of Monte Carlo methods to simulate radiation transport has become the most accurate means of predicting absorbed dose distributions and other quantities like numbers of track ends, track lengths and angular distributions. Today, there no accurate Monte-Carlo codes for proton transport, not even for low-energy electron transport. Much work is devoted to develop a Monte Carlo code for this purpose. However, for most practical cases in treatment planning, an advantageous solution has been found by combining the intrinsic accuracy of Monte Carlo methods with the swiftness of analytical techniques. In this work, a simple semi-analytical method is developed for fast dose distribution calculations for protons with energy range 0.5-1 MeV. The major part of the energy loss when protons traverse tissue, ends up in the ionizations of the target atoms. The double differential cross sections for this secondary electron production is calculated with Continuous distorted waves-eikonal initial

  19. Spectrum and static moments of /sup 187/Re

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, R; Sharma, S D; Sahota, H S; Sehgal, V K [Punjabi Univ., Patiala (India). Dept. of Physics

    1979-01-01

    The spectrum and static moments of /sup 187/Re are calculated using extension of Davydov-Filippov model. The Hamiltonian including the coriolis coupling term is used to calculate the effective moment of inertia for various bands. The kinking effect in the excited bands is studied by mixing the pair of bands such that both bands in single pair have same k value either k = 1/2 or 3/2. The effective moment of inertia under excitation is found to change with spin. The change is found in agreement with the theoretical prediction on the basis of this model.

  20. Approximating distributions from moments

    Science.gov (United States)

    Pawula, R. F.

    1987-11-01

    A method based upon Pearson-type approximations from statistics is developed for approximating a symmetric probability density function from its moments. The extended Fokker-Planck equation for non-Markov processes is shown to be the underlying foundation for the approximations. The approximation is shown to be exact for the beta probability density function. The applicability of the general method is illustrated by numerous pithy examples from linear and nonlinear filtering of both Markov and non-Markov dichotomous noise. New approximations are given for the probability density function in two cases in which exact solutions are unavailable, those of (i) the filter-limiter-filter problem and (ii) second-order Butterworth filtering of the random telegraph signal. The approximate results are compared with previously published Monte Carlo simulations in these two cases.

  1. Energy transfer moments in thermalization; Les moments dei transfert d'energie en thermalisation

    Energy Technology Data Exchange (ETDEWEB)

    Soule, J L; Pillard, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    For all moderators of the 'incoherent gaussian' type, it is possible to calculate, at any temperature, the energy transfer moments as a function of the incident energy without having to use the differential sections. Integral formulae are derived for the integral cross-section, the first and the second moment, which make it possible to tabulate directly these three functions in a few minutes calculation on IBM 7094, for the most part models proposed in the literature for the common moderators. (authors) [French] Pour tous les moderateurs de type 'incoherent gaussien' on peut calculer, a n'importe quelle temperature, les moments de transfert d'energie en fonction de l'energie incidente, sans passer par l'intermediaire des sections differentielles. On developpe des formules integrales pour la section efficace integrale, le premier et le second moment, qui permettent de tabuler directement ces trois fonctions en quelques minutes de calcul sur IBM 7094, pour la plupart des modeles proposes dans la litterature pour les moderateurs usuels. (auteurs)

  2. Exchange current contributions to isoscalar magnetic moments

    International Nuclear Information System (INIS)

    Arima, A.; Bentz, W.; Ichii, S.

    1986-01-01

    In this work the authors have investigated two recent suggestions which indicated appreciable exchange current contributions to isoscalar magnetic moments. On account of gauge invariance the authors found that in both treatments certain important terms seem to be omitted. The authors then performed explicit calculations using a one-boson exchange model for the exchange current operator. The authors found that the results are sensitive to the ratio of coupling constants g/sub σNN///g/sub ωNN/. Due to this fact it is difficult to draw quantitative conclusions. In the present model calculation the authors found that both g/sub s/(0) and g/sub 1//sup 0/ are enhanced by about 3% to 4%, resulting in non-negligible corrections to isoscalar magnetic moments

  3. Solar wind velocity and geomagnetic moment variations

    International Nuclear Information System (INIS)

    Kalinin, Yu.D.; Rozanova, T.S.

    1982-01-01

    The mean year values of the solar wind velocity have been calculated from the mean-year values of a geomagnetic activity index am according to the Svalgard equation of regression for the pe-- riod from 1930 to 1960. For the same years the values of the geomagnetic moment M and separately of its ''inner'' (causes of which'' are inside the Earth) and ''external'' (causes of which are outside the Earth) parts have been calculated from the mean year data of 12 magnetic observatories. The proof of the presence of the 11-year variation in the moment M has been obtained. It is concluded that the 11-year variations in M result from the variations of the solar wind velocity

  4. Radially global δf computation of neoclassical phenomena in a tokamak pedestal

    International Nuclear Information System (INIS)

    Landreman, Matt; Parra, Felix I; Catto, Peter J; Ernst, Darin R; Pusztai, Istvan

    2014-01-01

    Conventional radially-local neoclassical calculations become inadequate if the radial gradient scale lengths of the H-mode pedestal become as small as the poloidal ion gyroradius. Here, we describe a radially global δf continuum code that generalizes neoclassical calculations to allow for stronger gradients. As with conventional neoclassical calculations, the formulation is time-independent and requires only the solution of a single sparse linear system. We demonstrate precise agreement with an asymptotic analytic solution of the radially global kinetic equation in the appropriate limits of aspect ratio and collisionality. This agreement depends crucially on accurate treatment of finite orbit width effects. (paper)

  5. Moment invariants for particle beams

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Overley, M.S.

    1988-01-01

    The rms emittance is a certain function of second moments in 2-D phase space. It is preserved for linear uncoupled (1-D) motion. In this paper, the authors present new functions of moments that are invariants for coupled motion. These invariants were computed symbolically using a computer algebra system. Possible applications for these invariants are discussed. Also, approximate moment invariants for nonlinear motion are presented

  6. Radial retinotomy in the macula.

    Science.gov (United States)

    Bovino, J A; Marcus, D F

    1984-01-01

    Radial retinotomy is an operative procedure usually performed in the peripheral or equatorial retina. To facilitate retinal attachment, the authors used intraocular scissors to perform radial retinotomy in the macula of two patients during vitrectomy surgery. In the first patient, a retinal detachment complicated by periretinal proliferation and macula hole formation was successfully reoperated with the aid of three radial cuts in the retina at the edges of the macular hole. In the second patient, an intraoperative retinal tear in the macula during diabetic vitrectomy was also successfully repaired with the aid of radial retinotomy. In both patients, retinotomy in the macula was required because epiretinal membranes, which could not be easily delaminated, were hindering retinal reattachment.

  7. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.; Korneev, Svyatoslav

    2014-01-01

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations

  8. Dedicated radial ventriculography pigtail catheter

    Energy Technology Data Exchange (ETDEWEB)

    Vidovich, Mladen I., E-mail: miv@uic.edu

    2013-05-15

    A new dedicated cardiac ventriculography catheter was specifically designed for radial and upper arm arterial access approach. Two catheter configurations have been developed to facilitate retrograde crossing of the aortic valve and to conform to various subclavian, ascending aortic and left ventricular anatomies. The “short” dedicated radial ventriculography catheter is suited for horizontal ascending aortas, obese body habitus, short stature and small ventricular cavities. The “long” dedicated radial ventriculography catheter is suited for vertical ascending aortas, thin body habitus, tall stature and larger ventricular cavities. This new design allows for improved performance, faster and simpler insertion in the left ventricle which can reduce procedure time, radiation exposure and propensity for radial artery spasm due to excessive catheter manipulation. Two different catheter configurations allow for optimal catheter selection in a broad range of patient anatomies. The catheter is exceptionally stable during contrast power injection and provides equivalent cavity opacification to traditional femoral ventriculography catheter designs.

  9. Searches for the electron electric dipole moment and nuclear anapole moments in solids

    International Nuclear Information System (INIS)

    Mukhamedjanov, T.N.; Sushkov, O.P.; Cadogan, J.M.; Dzuba, V.A.

    2004-01-01

    Full text: We consider effects caused by the electron electric dipole moment (EDM) in gadolinium garnets. Our estimates show that the experimental studies of these effects could improve the current upper limit on the electron EDM by several orders of magnitude. We suggest a consistent theoretical model and perform calculations of observable effects in gadolinium gallium garnet and gadolinium iron garnet. It is also possible to probe for nuclear anapole moments in a solid state experiment. We suggest such NMR-type experiment and perform estimates of the expected results

  10. Combinatorial theory of the semiclassical evaluation of transport moments II: Algorithmic approach for moment generating functions

    Energy Technology Data Exchange (ETDEWEB)

    Berkolaiko, G. [Department of Mathematics, Texas A and M University, College Station, Texas 77843-3368 (United States); Kuipers, J. [Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg (Germany)

    2013-12-15

    Electronic transport through chaotic quantum dots exhibits universal behaviour which can be understood through the semiclassical approximation. Within the approximation, calculation of transport moments reduces to codifying classical correlations between scattering trajectories. These can be represented as ribbon graphs and we develop an algorithmic combinatorial method to generate all such graphs with a given genus. This provides an expansion of the linear transport moments for systems both with and without time reversal symmetry. The computational implementation is then able to progress several orders further than previous semiclassical formulae as well as those derived from an asymptotic expansion of random matrix results. The patterns observed also suggest a general form for the higher orders.

  11. Neutron Electric Dipole Moment on the Lattice

    Science.gov (United States)

    Yoon, Boram; Bhattacharya, Tanmoy; Gupta, Rajan

    2018-03-01

    For the neutron to have an electric dipole moment (EDM), the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.

  12. Neutron Electric Dipole Moment on the Lattice

    Directory of Open Access Journals (Sweden)

    Yoon Boram

    2018-01-01

    Full Text Available For the neutron to have an electric dipole moment (EDM, the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.

  13. Studies of nuclear second moments for pre-equilibrium nuclear reaction theories

    International Nuclear Information System (INIS)

    Sato, K.; Yoshida, S.

    1987-01-01

    The nuclear second moments, important inputs to pre-equilibrium reaction theories, are evaluated by assuming a simple model. The positive definite nature of the second moments is examined, and the nuclear level densities are calculated using positive definite second moments. (orig.)

  14. Effects of particle-number-projection on nuclear moment of intertia

    International Nuclear Information System (INIS)

    Rozmej, P.

    1976-01-01

    The formalism of the moment of inertia in cranking model and BCS theory has been extended for the partially particle-number-projected BCS wave functions. The ground state moments of inertia obtained by this method are a little greater than those calculated by BCS method. A smooth growth of the moments of inertia for diminishing pairing strength constant has been obtained. (author)

  15. Face recognition using Krawtchouk moment

    Indian Academy of Sciences (India)

    Zernike moment to enhance the discriminant nature (Pang et al 2006). ... was proposed which is partially invariant to changes in the local image samples, ... tigate the Krawtchouk discrete orthogonal moment-based feature ..... in scale have been achieved by changing the distance between the person and the video camera.

  16. Variational approach to magnetic moments

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E; Stringari, S; Traini, M [Dipartimento di Matematica e Fisica, Libera Universita di Trento, Italy

    1977-11-07

    Magnetic moments in nuclei with a spin unsaturated core plus or minus an extra nucleon have been studied using a restricted Hartree-Fock approach. The method yields simple explicit expressions for the deformed ground state and for magnetic moments. Different projection techniques of the HF scheme have been discussed and compared with perturbation theory.

  17. On fractional Fourier transform moments

    NARCIS (Netherlands)

    Alieva, T.; Bastiaans, M.J.

    2000-01-01

    Based on the relation between the ambiguity function represented in a quasi-polar coordinate system and the fractional power spectra, the fractional Fourier transform moments are introduced. Important equalities for the global second-order fractional Fourier transform moments are derived and their

  18. Neutron Electric Dipole Moment Experiments

    OpenAIRE

    Peng, Jen-Chieh

    2008-01-01

    The neutron electric dipole moment (EDM) provides unique information on CP violation and physics beyond the Standard Model. We first review the history of experimental searches for neutron electric dipole moment. The status of future neutron EDM experiments, including experiments using ultra-cold neutrons produced in superfluid helium, will then be presented.

  19. Local electric dipole moments: A generalized approach.

    Science.gov (United States)

    Groß, Lynn; Herrmann, Carmen

    2016-09-30

    We present an approach for calculating local electric dipole moments for fragments of molecular or supramolecular systems. This is important for understanding chemical gating and solvent effects in nanoelectronics, atomic force microscopy, and intensities in infrared spectroscopy. Owing to the nonzero partial charge of most fragments, "naively" defined local dipole moments are origin-dependent. Inspired by previous work based on Bader's atoms-in-molecules (AIM) partitioning, we derive a definition of fragment dipole moments which achieves origin-independence by relying on internal reference points. Instead of bond critical points (BCPs) as in existing approaches, we use as few reference points as possible, which are located between the fragment and the remainder(s) of the system and may be chosen based on chemical intuition. This allows our approach to be used with AIM implementations that circumvent the calculation of critical points for reasons of computational efficiency, for cases where no BCPs are found due to large interfragment distances, and with local partitioning schemes other than AIM which do not provide BCPs. It is applicable to both covalently and noncovalently bound systems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Analysis on origin of oscillation of H moment in high-energy hh collision

    International Nuclear Information System (INIS)

    Wu Tao; Zhou Daicui

    2000-01-01

    Multiplicity distributions of negative binomial distribution (NBD) and modified (NBD are obtained from a birth process model with an immigration. The ratio of factorial cumulant moment to factorial moment, i.e., H moment is calculated from different multiplicity distributions of NBD, modified NBD and the three fireball model, which shows an oscillatory behavior when there is a truncation of multiplicity. The oscillation of H moment is related to the common character of the truncated multiplicity distributions

  1. Kappa distributions in Saturn's magnetosphere: energetic ion moments using Cassini/MIMI measurements

    Science.gov (United States)

    Dialynas, K.; Roussos, E.; Regoli, L.; Paranicas, C.; Krimigis, S. M.; Kane, M.; Mitchell, D. G.; Hamilton, D. C.

    2017-12-01

    Moments of the charged particle distribution function are a compact way of characterizing some of the properties of different magnetospheric regions. Following our previous analyses (Dialynas et al. 2009) and the techniques described in Dialynas et al. (2017), in the present study we use κ-Distribution fits to combine CHEMS (3 to 236 keV/e), LEMMS (0.024 220 keV) H+ and O+ energetic ion spectra covering measurements made in 2004-2016 to calculate the >20 keV energetic ion moments inside Saturn's magnetosphere. We use the Khurana et al. [2007] magnetic field model to map the ion measurements to the equatorial plane and produce the equatorial distributions of all ion integral moments, focusing on partial density (n), integral intensity (In), partial pressure (P), integral energy intensity (IE); as well as the characteristic energy (Ec=Ie/In), Temperature and κ-index of these ions as a function of Local Time (00:00 to 24:00 hrs) and L-Shell (5-20 Rs). The Roelof and Skinner [2000] model is then utilized to retrieve the equatorial H+ and O+ P, n and T in both local time and L-shell. We find that a) although the PH+ and PO+ are nearly comparable, H+ have higher IE and In at all radial distances (L>5) and local times; b) the 12Η+, ΓΟ+), are consistent with the Arridge et al. [2009] results. Dialynas K. et al. 2009, JGR, 114, A01212 Dialynas K. et al. 2017, Elsevier, ISBN: 9780128046388 Khurana K. K. et al. 2007, AGU, abstract #P44A-01 Roelof E. & A. Skinner 2000, SSR, 91, 437-459 Arridge C. S. et al. 2009, PSS, 57, 2032-2047

  2. Transport profiles induced by radially localized modes in tokamak

    International Nuclear Information System (INIS)

    Beklemishev, A.D.; Horton, W.

    1991-04-01

    We describe a new approach to the calculation of turbulent transport coefficients for radially localized modes. The theory takes into account the nonuniformity of the distribution of rational (resonant) magnetic surfaces in minor radius. This distribution function is proportional to the density of available states of excitation. The resulting density of state correction qualitatively changes the radial profile of the transport coefficients, as compared to the usual local diffusivity formulae. The correction factor calculated for the η i -mode transport allows a much better agreement of χ i with the experimental data than previously achieved. 8 refs., 3 figs

  3. The Analytical Evaluation Of Three-Center Magnetic Multipole Moment Integrals By Using Slater Type Orbitals

    International Nuclear Information System (INIS)

    Oztekin, E.

    2010-01-01

    In this study, magnetic multipole moment integrals are calculated by using Slater type orbitals (STOs), Fourier transform and translation formulas. Firstly, multipole moment operators which appear in the three-center magnetic multipole moment integrals are translated to b-center from 0-center. So, three-center magnetic multipole moment integrals have been reduced to the two-center. Then, the obtained analytical expressions have been written in terms of overlap integrals. When the magnetic multipole moment integrals calculated, matrix representations for x-, y- and z-components of multipole moments was composed and every component was separately calculated to analytically. Consequently, magnetic multipole moment integrals are also given in terms of the same and different screening parameters.

  4. Higher Mellin moments for charged current DIS

    International Nuclear Information System (INIS)

    Rogal, M.; Moch, S.

    2007-06-01

    We report on our recent results for deep-inelastic neutrino(ν)-proton(P) scattering. We have computed the perturbative QCD corrections to three loops for the charged current structure functions F 2 , F L and F 3 for the combination νP- anti νP. In leading twist approximation we have calculated the first six odd-integer Mellin moments in the case of F 2 and F L and the first six even-integer moments in the case of F 3 . As a new result we have obtained the coefficient functions to O(α 3 s ) and we have found the corresponding anomalous dimensions to agree with known results in the literature. (orig.)

  5. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  6. Lower limb joint moment during walking in water.

    Science.gov (United States)

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-Ichiro; Nakazawa, Kimitaka; Akai, Masami

    2003-11-04

    Walking in water is a widely used rehabilitation method for patients with orthopedic disorders or arthritis, based on the belief that the reduction of weight in water makes it a safer medium and prevents secondary injuries of the lower-limb joints. To our knowledge, however, no experimental data on lower-limb joint moment during walking in water is available. The aim of this study was to quantify the joint moments of the ankle, knee, and hip during walking in water in comparison with those on land. Eight healthy volunteers walked on land and in water at a speed comfortable for them. A video-motion analysis system and waterproof force platform were used to obtain kinematic data and to calculate the joint moments. The hip joint moment was shown to be an extension moment almost throughout the stance phase during walking in water, while it changed from an extension- to flexion-direction during walking on land. The knee joint moment had two extension peaks during walking on land, whereas it had only one extension peak, a late one, during walking in water. The ankle joint moment during walking in water was considerably reduced but in the same direction, plantarflexion, as that during walking on land. The joint moments of the hip, knee, and ankle were not merely reduced during walking in water; rather, inter-joint coordination was totally changed.

  7. A New Shape Description Method Using Angular Radial Transform

    Science.gov (United States)

    Lee, Jong-Min; Kim, Whoi-Yul

    Shape is one of the primary low-level image features in content-based image retrieval. In this paper we propose a new shape description method that consists of a rotationally invariant angular radial transform descriptor (IARTD). The IARTD is a feature vector that combines the magnitude and aligned phases of the angular radial transform (ART) coefficients. A phase correction scheme is employed to produce the aligned phase so that the IARTD is invariant to rotation. The distance between two IARTDs is defined by combining differences in the magnitudes and aligned phases. In an experiment using the MPEG-7 shape dataset, the proposed method outperforms existing methods; the average BEP of the proposed method is 57.69%, while the average BEPs of the invariant Zernike moments descriptor and the traditional ART are 41.64% and 36.51%, respectively.

  8. Dipole moments of molecules solvated in helium nanodroplets

    International Nuclear Information System (INIS)

    Stiles, Paul L.; Nauta, Klaas; Miller, Roger E.

    2003-01-01

    Stark spectra are reported for hydrogen cyanide and cyanoacetylene solvated in helium nanodroplets. The goal of this study is to understand the influence of the helium solvent on measurements of the permanent electric dipole moment of a molecule. We find that the dipole moments of the helium solvated molecules, calculated assuming the electric field is the same as in vacuum, are slightly smaller than the well-known gas-phase dipole moments of HCN and HCCCN. A simple elliptical cavity model quantitatively accounts for this difference, which arises from the dipole-induced polarization of the helium

  9. Rapid Moment Magnitude Estimation Using Strong Motion Derived Static Displacements

    OpenAIRE

    Muzli, Muzli; Asch, Guenter; Saul, Joachim; Murjaya, Jaya

    2015-01-01

    The static surface deformation can be recovered from strong motion records. Compared to satellite-based measurements such as GPS or InSAR, the advantage of strong motion records is that they have the potential to provide real-time coseismic static displacements. The use of these valuable data was optimized for the moment magnitude estimation. A centroid grid search method was introduced to calculate the moment magnitude by using1 model. The method to data sets was applied of the 2011...

  10. Pairing field and moments of inertia of superdeformed nuclei

    International Nuclear Information System (INIS)

    Chen Yongjing; Chen Yongshou; Xu Fuxin

    2002-01-01

    The authors have systematically analysed the dynamic moments of inertia of the experimental superdeformed (SD) bands observed in the A = 190, 150 and 60-80 mass regions as functions of rotational frequency. By combining the different mass regions, the dramatic features of the dynamic moments of inertia were found and explained based on the calculations of the pairing fields of SD nuclei with the anisotropic harmonic oscillator quadrupole pairing Hartree-Fock-Bogoliubov model

  11. Self-consistent radial sheath

    International Nuclear Information System (INIS)

    Hazeltine, R.D.

    1988-12-01

    The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig

  12. Moment of Inertia of a Ping-Pong Ball

    Science.gov (United States)

    Cao, Xian-Sheng

    2012-01-01

    This note describes how to theoretically calculate and experimentally measure the moment of inertia of a Ping-Pong[R] ball. The theoretical calculation results are in good agreement with the experimental measurements that can be reproduced in an introductory physics laboratory.

  13. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.

    2014-11-07

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.

  14. The radial shapes of intermediate energy microscopic optical potentials

    International Nuclear Information System (INIS)

    Shen Qingbiao; Wang Chang; Tian Ye; Zhuo Yizhong

    1984-01-01

    The radial shapes of intermediate energy proton microscopic optical potentials of 40 Ca are calculated with nuclear matter approach by Skyrme interactions. The calculated results show that the real central potential in central region of nucleus changes from attractive to repulsive when the energy of incident nucleon is above 150 MeV and appears apparently a 'wine-bottle-bottom' shape in the transition energy region (from 150 MeV to 300 MeV). This tendency is consistent with empirical optical potential obtained through fitting experiments and microscopic optical potential calculated with relativistic mean field theory as well as with the BHF theory. The calculated imaginary part of the microscopic optical potential changes from the dominant surface absorption into the volume absorption and its absolute value become larger as energy increases. The effects of Skyrme force parameters to the radial shape of the calculated microscopic optical potential are analysed in detail

  15. Superfluid quenching of the moment of inertia in a strongly interacting Fermi gas

    Science.gov (United States)

    Riedl, S.; Sánchez Guajardo, E. R.; Kohstall, C.; Hecker Denschlag, J.; Grimm, R.

    2011-03-01

    We report on the observation of a quenched moment of inertia resulting from superfluidity in a strongly interacting Fermi gas. Our method is based on setting the hydrodynamic gas in slow rotation and determining its angular momentum by detecting the precession of a radial quadrupole excitation. The measurements distinguish between the superfluid and collisional origins of hydrodynamic behavior, and show the phase transition.

  16. Improvements in practical applicability of NSHEX: nodal transport calculation code for three-dimensional hexagonal-Z geometry

    International Nuclear Information System (INIS)

    Sugino, Kazuteru

    1998-07-01

    As a tool to perform a fast reactor core calculations with high accuracy, NSHEX the nodal transport calculation code for three-dimensional hexagonal-Z geometry is under development. To improve the practical applicability of NSHEX, for instance, in its application to safety analysis and commercial reactor core design studies, we investigated the basic theory used in it, improved the program performance, and evaluated its applicability to the analysis of commercial reactor cores. The current studies show the following: (1) An improvement in the treatment of radial leakage in the radial nodal coupling equation bettered calculational convergence for safety analysis calculation, so the applicability of NSHEX to safety analysis was improved. (2) As a result of comparison of results from NSHEX and the standard core calculation code, it was confirmed that there was consistency between them. (3) According to the evaluation of the effect due to the difference of calculational condition, it was found that the calculation under appropriate nodal expansion orders and Sn orders correspond to the one under most detailed condition. However further investigation is required to reduce the uncertainty in calculational results due to the treatment of high order flux moments. (4) A whole core version of NSHEX enabling calculation for any FBR core geometry has been developed, this improved general applicability of NSHEX. (5) An investigation of the applicability of the rebalance method to acceleration clarified that this improved calculational convergence and it was effective. (J.P.N.)

  17. Channeling of protons through radial deformed carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Borka Jovanović, V., E-mail: vborka@vinca.rs [Atomic Physics Laboratory (040), Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Borka, D. [Atomic Physics Laboratory (040), Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Galijaš, S.M.D. [Faculty of Physics, University of Belgrade, P.O. Box 368, 11001 Belgrade (Serbia)

    2017-05-18

    Highlights: • For the first time we presented theoretically obtained distributions of channeled protons with radially deformed SWNT. • Our findings indicate that influence of the radial deformation is very strong and it should not be omitted in simulations. • We show that the spatial and angular distributions depend strongly of level of radial deformation of nanotube. • Our obtained results can be compared with measured distributions to reveal the presence of various types of defects in SWNT. - Abstract: In this paper we have presented a theoretical investigation of the channeling of 1 GeV protons with the radial deformed (10, 0) single-wall carbon nanotubes (SWNTs). We have calculated channeling potential within the deformed nanotubes. For the first time we presented theoretically obtained spatial and angular distributions of channeled protons with radially deformed SWNT. We used a Monte Carlo (MC) simulation technique. We show that the spatial and angular distributions depend strongly of level of radial deformation of nanotube. These results may be useful for nanotube characterization and production and guiding of nanosized ion beams.

  18. Fast computation of Krawtchouk moments

    Czech Academy of Sciences Publication Activity Database

    Honarvar Shakibaei Asli, B.; Flusser, Jan

    2014-01-01

    Roč. 288, č. 1 (2014), s. 73-86 ISSN 0020-0255 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Krawtchouk polynomial * Krawtchouk moment * Geometric moment * Impulse response * Fast computation * Digital filter Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.038, year: 2014 http://library.utia.cas.cz/separaty/2014/ZOI/flusser-0432452.pdf

  19. Computing moment to moment BOLD activation for real-time neurofeedback

    Science.gov (United States)

    Hinds, Oliver; Ghosh, Satrajit; Thompson, Todd W.; Yoo, Julie J.; Whitfield-Gabrieli, Susan; Triantafyllou, Christina; Gabrieli, John D.E.

    2013-01-01

    Estimating moment to moment changes in blood oxygenation level dependent (BOLD) activation levels from functional magnetic resonance imaging (fMRI) data has applications for learned regulation of regional activation, brain state monitoring, and brain-machine interfaces. In each of these contexts, accurate estimation of the BOLD signal in as little time as possible is desired. This is a challenging problem due to the low signal-to-noise ratio of fMRI data. Previous methods for real-time fMRI analysis have either sacrificed the ability to compute moment to moment activation changes by averaging several acquisitions into a single activation estimate or have sacrificed accuracy by failing to account for prominent sources of noise in the fMRI signal. Here we present a new method for computing the amount of activation present in a single fMRI acquisition that separates moment to moment changes in the fMRI signal intensity attributable to neural sources from those due to noise, resulting in a feedback signal more reflective of neural activation. This method computes an incremental general linear model fit to the fMRI timeseries, which is used to calculate the expected signal intensity at each new acquisition. The difference between the measured intensity and the expected intensity is scaled by the variance of the estimator in order to transform this residual difference into a statistic. Both synthetic and real data were used to validate this method and compare it to the only other published real-time fMRI method. PMID:20682350

  20. Vortex Whistle in Radial Intake

    National Research Council Canada - National Science Library

    Tse, Man-Chun

    2004-01-01

    In a radial-to-axial intake with inlet guide vanes (IGV) at the entry, a strong flow circulation Gamma can be generated from the tangential flow components created by the IGVs when their setting exceed about halfclosing (approx. 45 deg...

  1. Bending Moment Decrease of Reinforced Concrete Beam Supported by Additional CFRP

    Directory of Open Access Journals (Sweden)

    Mykolas Daugevičius

    2011-04-01

    Full Text Available The calculation method of reinforced concrete beam with additional CFRP composite is proposed in this article. This method estimates tangential angular concrete deformations in tensioned beam layers between steel and bonded carbon fiber reinforced polymer. The horizontal slip of CFRP composite reduce beam bending moment capacity. An additional coefficient to reduce CFRP resultant force is necessary for better precision of bending moment capacity. Also, various calculation methods of bending moment capacity are considered. Article in Lithuanian

  2. Elastic stresses at reinforced nozzles in spherical shells with pressure and moment loading

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.; Gwaltney, R.D.

    1976-01-01

    Calculated elastic stresses at reinforced nozzles in spherical shells with pressure and moment loading are presented. The models used in the calculations represent a wide variety of reinforced shapes; all meeting Code requirements. The results show Code stress indices for pressure loading for nozzles with local reinforcement are acceptable with some modification in coverage. Simple equations for stress indices for moment loading are developed. Potential application of the moment-loading stress indices is discussed. Several recommendations for Code changes are included

  3. Moments of inertia of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Greif, Svenja Kim; Hebeler, Kai; Schwenk, Achim [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2016-07-01

    Neutron stars are unique laboratories for matter at extreme conditions. While nuclear forces provide systematic constraints on properties of neutron-rich matter up to around nuclear saturation density, the composition of matter at high densities is still unknown. Recent precise observations of 2 M {sub CircleDot} neutron stars made it possible to derive systematic constraints on the equation of state at high densities and also neutron star radii. Further improvements of these constraints require the observation of even heavier neutron stars or a simultaneous measurement of mass and radius of a single neutron star. Since the precise measurement of neutron star radii is an inherently difficult problem, the observation of moment of inertia of neutron stars provides a promising alternative, since they can be measured by pulsar timing experiments. We present a theoretical framework that allows to calculate moments of inertia microscopically, we show results based on state of the art equations of state and illustrate how future measurements of moments of inertia allow to constrain the equation of state and other properties of neutron stars.

  4. Radial oscillations of neutron stars in strong magnetic fields

    Indian Academy of Sciences (India)

    The eigen frequencies of radial pulsations of neutron stars are calculated in a strong magnetic field. At low densities we use the magnetic BPS equation of state (EOS) similar to that obtained by Lai and Shapiro while at high densities the EOS obtained from the relativistic nuclear mean field theory is taken and extended to ...

  5. Radial mode structure of curvature-driven instabilities in EBT

    International Nuclear Information System (INIS)

    Spong, D.A.

    1983-01-01

    Viewgraphs describe the theoretical treatment of the radial mode structure of plasma instabilities in the Elmo Bumpy Torus. The calculation retains nonlocal structure of the modes, connects inner and outer ring regions together, uses a self-consistent finite β, includes the relativistic effects for the hot electron ring, and examines a wide range of parameters

  6. Magnetic moments and the Skyrme interaction

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E; Stringari, S; Traini, M [Trento Univ. (Italy). Dipartmento di Matematica e Fisica

    1977-12-12

    The magnetic properties of the Skyrme interaction have been studied by performing a restricted Hartree-Fock calculation in order to evaluate the magnetic polarizability and the corrections to the Schmidt moments in nuclei with closed jj shells plus or minus one nucleon. Different corrections to the Schmidt values have been evaluated and discussed: the M1 core polarization and the renormalization of the gyromagnetic factors due to exchange and spin-orbit forces. Several variants of the Skyrme interaction have been studied and discussed in detail.

  7. Monte Carlo Volcano Seismic Moment Tensors

    Science.gov (United States)

    Waite, G. P.; Brill, K. A.; Lanza, F.

    2015-12-01

    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  8. Radial head dislocation during proximal radial shaft osteotomy.

    Science.gov (United States)

    Hazel, Antony; Bindra, Randy R

    2014-03-01

    The following case report describes a 48-year-old female patient with a longstanding both-bone forearm malunion, who underwent osteotomies of both the radius and ulna to improve symptoms of pain and lack of rotation at the wrist. The osteotomies were templated preoperatively. During surgery, after performing the planned radial shaft osteotomy, the authors recognized that the radial head was subluxated. The osteotomy was then revised from an opening wedge to a closing wedge with improvement of alignment and rotation. The case report discusses the details of the operation, as well as ways in which to avoid similar shortcomings in the future. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  9. Short chain molecular junctions: Charge transport versus dipole moment

    International Nuclear Information System (INIS)

    Ikram, I. Mohamed; Rabinal, M.K.

    2015-01-01

    Graphical abstract: - Highlights: • The role of dipole moment of organic molecules on molecular junctions has been studied. • Molecular junctions constituted using propargyl molecules of different dipole moments. • The electronic properties of the molecules were calculated using Gaussian software. • Junctions show varying rectification due to their varying dipole moment and orientation. - Abstract: The investigation of the influence of dipole moment of short chain organic molecules having three carbon atoms varying in end group on silicon surface was carried on. Here, we use three different molecules of propargyl series varying in dipole moment and its orientation to constitute molecular junctions. The charge transport mechanism in metal–molecules–semiconductor (MMS) junction obtained from current–voltage (I–V) characteristics shows the rectification behavior for two junctions whereas the other junction shows a weak rectification. The electronic properties of the molecules were calculated using Gaussian software package. The observed rectification behavior of these junctions is examined and found to be accounted to the orientation of dipole moment and electron cloud density distribution inside the molecules

  10. Shell model estimate of electric dipole moments in medium and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Teruya Eri

    2015-01-01

    Full Text Available Existence of the electric dipole moment (EDM is deeply related with time-reversal invariance. The EDMof a diamagnetic atom is mainly induced by the nuclear Schiff moment. After carrying out the shell model calculations to obtain wavefunctions for Xe isotopes, we evaluate nuclear Schiff moments for Xe isotopes to estimate their atomic EDMs. We estimate the contribution from each single particle orbital for the Schiff moment. It is found that the contribution on the Schiff moment is very different from orbital to orbital.

  11. Electric moments in molecule interferometry

    International Nuclear Information System (INIS)

    Eibenberger, Sandra; Gerlich, Stefan; Arndt, Markus; Tuexen, Jens; Mayor, Marcel

    2011-01-01

    We investigate the influence of different electric moments on the shift and dephasing of molecules in a matter wave interferometer. Firstly, we provide a quantitative comparison of two molecules that are non-polar yet polarizable in their thermal ground state and that differ in their stiffness and response to thermal excitations. While C 25 H 20 is rather rigid, its larger derivative C 49 H 16 F 52 is additionally equipped with floppy side chains and vibrationally activated dipole moment variations. Secondly, we elucidate the role of a permanent electric dipole momentby contrasting the quantum interference pattern of a (nearly) non-polar and a polar porphyrin derivative. We find that a high molecular polarizability and even sizeable dipole moment fluctuations are still well compatible with high-contrast quantum interference fringes. The presence of permanent electric dipole moments, however, can lead to a dephasing and rapid degradation of the quantum fringe pattern already at moderate electric fields. This finding is of high relevance for coherence experiments with large organic molecules, which are generally equipped with strong electric moments.

  12. Recurrent formulas and some exact relations for radial integrals with Dirac and Schroedinger wave functions

    International Nuclear Information System (INIS)

    Shabaev, V.M.

    1984-01-01

    Some exact relations are derived for radial integrals with Dirac wave functions. These relations are used for calculating radial integrals in the case of the Coulomb field. The threedimensional harmonic oscillator is also considered and exact formulae for the dipole transition probabilities are obtained using general relations between matrix elements

  13. Stochastic Generalized Method of Moments

    KAUST Repository

    Yin, Guosheng; Ma, Yanyuan; Liang, Faming; Yuan, Ying

    2011-01-01

    The generalized method of moments (GMM) is a very popular estimation and inference procedure based on moment conditions. When likelihood-based methods are difficult to implement, one can often derive various moment conditions and construct the GMM objective function. However, minimization of the objective function in the GMM may be challenging, especially over a large parameter space. Due to the special structure of the GMM, we propose a new sampling-based algorithm, the stochastic GMM sampler, which replaces the multivariate minimization problem by a series of conditional sampling procedures. We develop the theoretical properties of the proposed iterative Monte Carlo method, and demonstrate its superior performance over other GMM estimation procedures in simulation studies. As an illustration, we apply the stochastic GMM sampler to a Medfly life longevity study. Supplemental materials for the article are available online. © 2011 American Statistical Association.

  14. Stochastic Generalized Method of Moments

    KAUST Repository

    Yin, Guosheng

    2011-08-16

    The generalized method of moments (GMM) is a very popular estimation and inference procedure based on moment conditions. When likelihood-based methods are difficult to implement, one can often derive various moment conditions and construct the GMM objective function. However, minimization of the objective function in the GMM may be challenging, especially over a large parameter space. Due to the special structure of the GMM, we propose a new sampling-based algorithm, the stochastic GMM sampler, which replaces the multivariate minimization problem by a series of conditional sampling procedures. We develop the theoretical properties of the proposed iterative Monte Carlo method, and demonstrate its superior performance over other GMM estimation procedures in simulation studies. As an illustration, we apply the stochastic GMM sampler to a Medfly life longevity study. Supplemental materials for the article are available online. © 2011 American Statistical Association.

  15. RADIAL STABILITY IN STRATIFIED STARS

    International Nuclear Information System (INIS)

    Pereira, Jonas P.; Rueda, Jorge A.

    2015-01-01

    We formulate within a generalized distributional approach the treatment of the stability against radial perturbations for both neutral and charged stratified stars in Newtonian and Einstein's gravity. We obtain from this approach the boundary conditions connecting any two phases within a star and underline its relevance for realistic models of compact stars with phase transitions, owing to the modification of the star's set of eigenmodes with respect to the continuous case

  16. Velocidades radiales en Collinder 121

    Science.gov (United States)

    Arnal, M.; Morrell, N.

    Se han llevado a cabo observaciones espectroscópicas de unas treinta estrellas que son posibles miembros del cúmulo abierto Collinder 121. Las mismas fueron realizadas con el telescopio de 2.15m del Complejo Astronómico El Leoncito (CASLEO). El análisis de las velocidades radiales derivadas del material obtenido, confirma la realidad de Collinder 121, al menos desde el punto de vista cinemático. La velocidad radial baricentral (LSR) del cúmulo es de +17 ± 3 km.s-1. Esta velocidad coincide, dentro de los errores, con la velocidad radial (LSR) de la nebulosa anillo S308, la cual es de ~20 ± 10 km.s-1. Como S308 se encuentra físicamente asociada a la estrella Wolf-Rayet HD~50896, es muy probable que esta última sea un miembro de Collinder 121. Desde un punto de vista cinemático, la supergigante roja HD~50877 (K3Iab) también pertenecería a Collinder 121. Basándonos en la pertenencia de HD~50896 a Collinder 121, y en la interacción encontrada entre el viento de esta estrella y el medio interestelar circundante a la misma, se estima para este cúmulo una distancia del orden de 1 kpc.

  17. Method of moments in electromagnetics

    CERN Document Server

    Gibson, Walton C

    2007-01-01

    Responding to the need for a clear, up-to-date introduction to the field, The Method of Moments in Electromagnetics explores surface integral equations in electromagnetics and presents their numerical solution using the method of moments (MOM) technique. It provides the numerical implementation aspects at a nuts-and-bolts level while discussing integral equations and electromagnetic theory at a higher level. The author covers a range of topics in this area, from the initial underpinnings of the MOM to its current applications. He first reviews the frequency-domain electromagnetic theory and t

  18. Neutron star moments of inertia

    Science.gov (United States)

    Ravenhall, D. G.; Pethick, C. J.

    1994-01-01

    An approximation for the moment of inertia of a neutron star in terms of only its mass and radius is presented, and insight into it is obtained by examining the behavior of the relativistic structural equations. The approximation is accurate to approximately 10% for a variety of nuclear equations of state, for all except very low mass stars. It is combined with information about the neutron-star crust to obtain a simple expression (again in terms only of mass and radius) for the fractional moment of inertia of the crust.

  19. Meson-exchange-current corrections to magnetic moments in quantum hadrodynamics

    International Nuclear Information System (INIS)

    Morse, T.M.

    1990-01-01

    Corrections to the magnetic moments of the non-relativistic shell model (Schmidt lines) have a long history. In the early fifties calculations of pion exchange and core polarization contributions to nuclear magnetic moments were initiated. These calculations matured by the early eighties to include other mesons and the delta isobar. Relativistic nuclear shell model calculations are relatively recent. Meson exchange and the delta isobar current contributions to the magnetic moments of the relativistic shell model have remained largely unexplored. The disagreement between the valence values of spherical relativistic mean-field models and experiment was a major problem with early (1975-1985) quantum hydrodynamics (QHD) calculations of magnetic moments. Core polarization calculations (1986-1988) have been found to resolve the large discrepancy, predicting isoscalar magnetic moments to within typically five percent of experiment. The isovector magnetic moments, however, are about twice as far from experiment with an average discrepancy of about ten percent. The pion, being the lightest of the mesons, has historically been expected to dominate isovector corrections. Because this has been found to be true in non-relativistic calculations, the author calculated the pion corrections in the framework of QHD. The seagull and in-flight pion exchange current diagram corrections to the magnetic moments of eight finite nuclei (plus or minus one valence nucleon from the magic A = 16 and A = 40 doubly closed shell systems) are calculated in the framework of QHD, and compared with earlier non-relativistic calculations and experiment

  20. Analytical Solutions of Electromagnetic Fields from Current Dipole Moment on Spherical Conductor in a Low-Frequency Approximation

    International Nuclear Information System (INIS)

    Okita, Taishi; Takagi, Toshiyuki

    2010-01-01

    We analytically derive the solutions for electromagnetic fields of electric current dipole moment, which is placed in the exterior of the spherical homogeneous conductor, and is pointed along the radial direction. The dipole moment is driven in the low frequency f = 1 kHz and high frequency f = 1 GHz regimes. The electrical properties of the conductor are appropriately chosen in each frequency. Electromagnetic fields are rigorously formulated at an arbitrary point in a spherical geometry, in which the magnetic vector potential is straightforwardly given by the Biot-Savart formula, and the scalar potential is expanded with the Legendre polynomials, taking into account the appropriate boundary conditions at the spherical surface of the conductor. The induced electric fields are numerically calculated along the several paths in the low and high frequency excitation. The self-consistent solutions obtained in this work will be of much importance in a wide region of electromagnetic induction problems. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Low-lying electronic states of the OH radical: potential energy curves, dipole moment functions, and transition probabilities

    Energy Technology Data Exchange (ETDEWEB)

    Qin, X.; Zhang, S. D. [Qufu Normal University, Qufu (China)

    2014-12-15

    The six doublet and the two quartet electronic states ({sup 2}Σ{sup +}(2), {sup 2}Σ{sup -}, {sup 2}Π(2), {sup 2}Δ, {sup 4}Σ{sup -}, and {sup 4}Π) of the OH radical have been studied using the multi-reference configuration interaction (MRCI) method where the Davidson correction, core-valence interaction and relativistic effect are considered with large basis sets of aug-cc-pv5z, aug-cc-pcv5z, and cc-pv5z-DK, respectively. Potential energy curves (PECs) and dipole moment functions are also calculated for these states for internuclear distances ranging from 0.05 nm to 0.80 nm. All possible vibrational levels and rotational constants for the bound state X{sup 2}Π and A{sup 2}Σ{sup +} of OH are predicted by numerical solving the radial Schroedinger equation through the Level program, and spectroscopic parameters, which are in good agreements with experimental results, are obtained. Transition dipole moments between the ground state X{sup 2}Π and other excited states are also computed using MRCI, and the transition probability, lifetime, and Franck-Condon factors for the A{sup 2}Σ{sup +} - X{sup 2}Π transition are discussed and compared with existing experimental values.

  2. Quiet Moment around the Campfire

    Centers for Disease Control (CDC) Podcasts

    2014-06-18

    Byron Breedlove reads his essay, "Quiet Moment around the Campfire," about the art of Frederic Remington and the transmission of pathogens as frontiers expand.  Created: 6/18/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 6/19/2014.

  3. Particle electric dipole-moments

    Energy Technology Data Exchange (ETDEWEB)

    Pendlebury, J M [Sussex Univ., Brighton (United Kingdom)

    1997-04-01

    The incentive to detect particle electric dipole-moments, as a window on time-reversal violation, remains undiminished. Efforts to improve the measurements for the neutron, the electron and some nuclei are still making rapid progress as more powerful experimental methods are brought to bear. A new measurement for the neutron at ILL is presented. (author). 7 refs.

  4. Unteachable Moments and Pedagogical Relationships

    Science.gov (United States)

    Wang, Hongyu

    2016-01-01

    This paper discusses how Julia Kristeva's theory can inform our understanding of unteachable moments. It proposes a pedagogical relationship that can contain breakdowns of meanings and work toward breakthroughs to new awareness, particularly related to social justice pedagogy in teacher education. First, one example from the author's own teaching…

  5. Moment Distributions of Phase Type

    DEFF Research Database (Denmark)

    Bladt, Mogens; Nielsen, Bo Friis

    2011-01-01

    Moment distributions of phase-type and matrix-exponential distributions are shown to remain within their respective classes. We provide a probabilistic phase-type representation for the former case and an alternative representation, with an analytically appealing form, for the latter. First order...

  6. Empirical models of Jupiter's interior from Juno data. Moment of inertia and tidal Love number k2

    Science.gov (United States)

    Ni, Dongdong

    2018-05-01

    Context. The Juno spacecraft has significantly improved the accuracy of gravitational harmonic coefficients J4, J6 and J8 during its first two perijoves. However, there are still differences in the interior model predictions of core mass and envelope metallicity because of the uncertainties in the hydrogen-helium equations of state. New theoretical approaches or observational data are hence required in order to further constrain the interior models of Jupiter. A well constrained interior model of Jupiter is helpful for understanding not only the dynamic flows in the interior, but also the formation history of giant planets. Aims: We present the radial density profiles of Jupiter fitted to the Juno gravity field observations. Also, we aim to investigate our ability to constrain the core properties of Jupiter using its moment of inertia and tidal Love number k2 which could be accessible by the Juno spacecraft. Methods: In this work, the radial density profile was constrained by the Juno gravity field data within the empirical two-layer model in which the equations of state are not needed as an input model parameter. Different two-layer models are constructed in terms of core properties. The dependence of the calculated moment of inertia and tidal Love number k2 on the core properties was investigated in order to discern their abilities to further constrain the internal structure of Jupiter. Results: The calculated normalized moment of inertia (NMOI) ranges from 0.2749 to 0.2762, in reasonable agreement with the other predictions. There is a good correlation between the NMOI value and the core properties including masses and radii. Therefore, measurements of NMOI by Juno can be used to constrain both the core mass and size of Jupiter's two-layer interior models. For the tidal Love number k2, the degeneracy of k2 is found and analyzed within the two-layer interior model. In spite of this, measurements of k2 can still be used to further constrain the core mass and size

  7. Forces and moments on a slender, cavitating body

    Energy Technology Data Exchange (ETDEWEB)

    Hailey, C.E.; Clark, E.L.; Buffington, R.J.

    1988-01-01

    Recently a numerical code has been developed at Sandia National Laboratories to predict the pitching moment, normal force, and axial force of a slender, supercavitating shape. The potential flow about the body and cavity is calculated using an axial distribution of source/sink elements. The cavity surface is assumed to be a constant pressure streamline, extending beyond the base of the model. Slender body approximation is used to model the crossflow for small angles of attack. A significant extension of previous work in cavitation flow is the inclusion of laminar and turbulent boundary layer solutions on the body. Predictions with this code, for axial force at zero angle of attack, show good agreement with experiments. There are virtually no published data availble with which to benchmark the pitching moment and normal force predictions. An experiment was designed to measure forces and moments on a supercavitation shape. The primary reason for the test was to obtain much needed data to benchmark the hydrodynamic force and moment predictions. Since the numerical prediction is for super cavitating shapes at very small cavitation numbers, the experiment was designed to be a ventilated cavity test. This paper describes the experimental procedure used to measure the pitching moment, axial and normal forces, and base pressure on a slender body with a ventilated cavity. Limited results are presented for pitching moment and normal force. 5 refs., 7 figs.

  8. Exceptional circles of radial potentials

    International Nuclear Information System (INIS)

    Music, M; Perry, P; Siltanen, S

    2013-01-01

    A nonlinear scattering transform is studied for the two-dimensional Schrödinger equation at zero energy with a radial potential. Explicit examples are presented, both theoretically and computationally, of potentials with nontrivial singularities in the scattering transform. The singularities arise from non-uniqueness of the complex geometric optics solutions that define the scattering transform. The values of the complex spectral parameter at which the singularities appear are called exceptional points. The singularity formation is closely related to the fact that potentials of conductivity type are ‘critical’ in the sense of Murata. (paper)

  9. Magnetic moments of octet baryons in a chiral potential model

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N; Das, M

    1986-12-01

    Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon self-couplings, is chosen with equally mixed scalar and vector parts in a power-law form. The results are in reasonable agreement with experiment. 32 refs., 2 tables.

  10. Magnetic moments of octet baryons in a chiral potential model

    International Nuclear Information System (INIS)

    Barik, N.

    1986-01-01

    Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon self-couplings, is chosen with equally mixed scalar and vector parts in a power-law form. The results are in reasonable agreement with experiment. (author)

  11. Satellite Orbital Precessions Caused by the Octupolar Mass Moment ...

    Indian Academy of Sciences (India)

    Abstract. I consider a satellite moving around a non-spherical body of mass M and equatorial radius R, and calculate its orbital precessions caused by the body's octupolar mass moment J4. I consider only the effects averaged over one orbital period T of the satellite. I give exact for- mulas, not restricted to any special values ...

  12. Moment based model predictive control for systems with additive uncertainty

    NARCIS (Netherlands)

    Saltik, M.B.; Ozkan, L.; Weiland, S.; Ludlage, J.H.A.

    2017-01-01

    In this paper, we present a model predictive control (MPC) strategy based on the moments of the state variables and the cost functional. The statistical properties of the state predictions are calculated through the open loop iteration of dynamics and used in the formulation of MPC cost function. We

  13. Moments of Inertia of Disks and Spheres without Integration

    Science.gov (United States)

    Hong, Seok-Cheol; Hong, Seok-In

    2013-01-01

    Calculation of moments of inertia is often challenging for introductory-level physics students due to the use of integration, especially in non-Cartesian coordinates. Methods that do not employ calculus have been described for finding the rotational inertia of thin rods and other simple bodies. In this paper we use the parallel axis theorem and…

  14. Quadrupole moments of low-lying baryons with spin

    Indian Academy of Sciences (India)

    The chiral constituent quark model ( CQM) with general parametrization (GP) method has been formulated to calculate the quadrupole moments of the spin − 3 2 + decuplet baryons and spin − 3 2 + → 1 2 + transitions. The implications of such a model have been investigated in detail for the effects of symmetry breaking ...

  15. Calculation of the hyperfine interaction using an effective-operator form of many-body theory

    International Nuclear Information System (INIS)

    Garpman, S.; Lindgren, I.; Lindgren, J.; Morrison, J.

    1975-01-01

    The effective-operator form of many-body theory is reviewed and applied to the calculation of the hyperfine structure. Numerical results are given for the 2p, 3p, and 4p excited states of Li and the 3p state of Na. This is the first complete calculation of the hyperfine structure using an effective-operator form of perturbation theory. As in the Brueckner-Goldstone form of many-body theory, the various terms in the perturbation expansion are represented by Feynman diagrams which correspond to basic physical processes. The angular part of the perturbation diagrams are evaluated by taking advantage of the formal analogy between the Feynman diagrams and the angular-momentum diagrams, introduced by Jucys et al. The radial part of the diagrams is calculated by solving one- and two-particle equations for the particular linear combination of excited states that contribute to the Feynman diagrams. In this way all second- and third-order effects are accurately evaluated without explicitly constructing the excited orbitals. For the 2p state of Li our results are in agreement with the calculations of Nesbet and of Hameed and Foley. However, our quadrupole calculation disagrees with the work of Das and co-workers. The many-body results for Li and Na are compared with semiempirical methods for evaluating the quadrupole moment from the hyperfine interaction, and a new quadrupole moment of 23 Na is given

  16. SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos

    Energy Technology Data Exchange (ETDEWEB)

    Ahlfeld, R., E-mail: r.ahlfeld14@imperial.ac.uk; Belkouchi, B.; Montomoli, F.

    2016-09-01

    A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5

  17. SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos

    International Nuclear Information System (INIS)

    Ahlfeld, R.; Belkouchi, B.; Montomoli, F.

    2016-01-01

    A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10

  18. Analysis of dynamical corrections to baryon magnetic moments

    International Nuclear Information System (INIS)

    Ha, Phuoc; Durand, Loyal

    2003-01-01

    We present and analyze QCD corrections to the baryon magnetic moments in terms of the one-, two-, and three-body operators which appear in the effective field theory developed in our recent papers. The main corrections are extended Thomas-type corrections associated with the confining interactions in the baryon. We investigate the contributions of low-lying angular excitations to the baryon magnetic moments quantitatively and show that they are completely negligible. When the QCD corrections are combined with the nonquark model contributions of the meson loops, we obtain a model which describes the baryon magnetic moments within a mean deviation of 0.04 μ N . The nontrivial interplay of the two types of corrections to the quark-model magnetic moments is analyzed in detail, and explains why the quark model is so successful. In the course of these calculations, we parametrize the general spin structure of the j=(1/2) + baryon wave functions in a form which clearly displays the symmetry properties and the internal angular momentum content of the wave functions, and allows us to use spin-trace methods to calculate the many spin matrix elements which appear in the expressions for the baryon magnetic moments. This representation may be useful elsewhere

  19. Some aspects of an induced electric dipole moment in rotating and non-rotating frames.

    Science.gov (United States)

    Oliveira, Abinael B; Bakke, Knut

    2017-06-01

    Quantum effects on a neutral particle (atom or molecule) with an induced electric dipole moment are investigated when it is subject to the Kratzer potential and a scalar potential proportional to the radial distance. In addition, this neutral is placed in a region with electric and magnetic fields. This system is analysed in both non-rotating and rotating reference frames. Then, it is shown that bound state solutions to the Schrödinger equation can be achieved and, in the search for polynomial solutions to the radial wave function, a restriction on the values of the cyclotron frequency is analysed in both reference frames.

  20. Static spacetimes with prescribed multipole moments: a proof of a conjecture by Geroch

    International Nuclear Information System (INIS)

    Herberthson, Magnus

    2009-01-01

    In this paper we give sufficient conditions on a sequence of multipole moments for a static spacetime to exist with precisely these moments. The proof is constructive in the sense that a metric having prescribed multipole moments up to a given order can be calculated. Since these sufficient conditions agree with already known necessary conditions, this completes the proof of a long standing conjecture due to Geroch.

  1. Multifractal moments in heavy ion Pb-Pb collisions at 158 A GeV

    Energy Technology Data Exchange (ETDEWEB)

    Dutt, Sunil [Department of Physics, Govt. College for Women GandhiNagar, Jammu - J& K (India)

    2016-05-06

    In present work, we use the method of scaled factorial moments to search for intermittent behavior in Pb-Pb interactions at 158 A GeV. The analysis is done on photon distributions obtained using preshower photon multiplicity detector. Scaled factorial moments are used to study short range fluctuations in pseudorapidity distributions of photons. Scaled factorial moments are calculated using horizontal corrected and vertical analysis. The results are compared with simulation analysis using VENUS event generator.

  2. AMIC: an expandable integrated analog front-end for light distribution moments analysis

    OpenAIRE

    SPAGGIARI, MICHELE; Herrero Bosch, Vicente; Lerche, Christoph Werner; Aliaga Varea, Ramón José; Monzó Ferrer, José María; Gadea Gironés, Rafael

    2011-01-01

    In this article we introduce AMIC (Analog Moments Integrated Circuit), a novel analog Application Specific Integrated Circuit (ASIC) front-end for Positron Emission Tomography (PET) applications. Its working principle is based on mathematical analysis of light distribution through moments calculation. Each moment provides useful information about light distribution, such as energy, position, depth of interaction, skewness (deformation due to border effect) etc. A current buffer delivers a cop...

  3. Higgs-Boson Two-Loop Contributions to Electric Dipole Moments in the MSSM

    CERN Document Server

    Pilaftsis, Apostolos

    1999-01-01

    The complete set of Higgs-boson two-loop contributions to electric dipole moments of the electron and neutron is calculated in the minimal supersymmetric standard model. The electric dipole moments are induced by CP-violating trilinear couplings of the `CP-odd' and charged Higgs bosons to the scalar top and bottom quarks. Numerical estimates of the individual two-loop contributions to electric dipole moments are given.

  4. Radial core expansion reactivity feedback in advanced LMRs: uncertainties and their effects on inherent safety

    International Nuclear Information System (INIS)

    Wigeland, R.A.; Moran, T.J.

    1988-01-01

    An analytical model for calculating radial core expansion, based on the thermal and elastic bowing of a single subassembly at the core periphery, is used to quantify the effect of uncertainties on this reactivity feedback mechanism. This model has been verified and validated with experimental and numerical results. The impact of these uncertainties on the safety margins in unprotected transients is investigated with SASSYS/SAS4A, which includes this model for calculating the reactivity feedback from radial core expansion. The magnitudes of these uncertainties are not sufficient to preclude the use of radial core expansion reactivity feedback in transient analysis

  5. Nucleon magnetic moments and magnetic properties of vacuum in QCD

    International Nuclear Information System (INIS)

    Ioffe, B.L.; Smilga, A.V.

    1983-01-01

    Magnetic moments of a proton and a neutron are calculated in the QCD sum rule approach. The substantial role of the external electromagnetic field induced vacuum expectation values, the most important of which is connected with quark condensate magnetic susceptibility, is demonstrated. The results are μsub(p)=3.0, μsub(n)=2.0(+-10%) that is in a perfect agreement with experiment. The invariant amplitudes of Δ→pγ transition are also calculated

  6. Electric dipole moment of diatomic molecules by configuration interaction. IV.

    Science.gov (United States)

    Green, S.

    1972-01-01

    The theory of basis set dependence in configuration interaction calculations is discussed, taking into account a perturbation model which is valid for small changes in the self-consistent field orbitals. It is found that basis set corrections are essentially additive through first order. It is shown that an error found in a previously published dipole moment calculation by Green (1972) for the metastable first excited state of CO was indeed due to an inadequate basis set as claimed.

  7. The Critical Moment of Transition

    DEFF Research Database (Denmark)

    Svalgaard, Lotte

    2018-01-01

    By providing a holding environment to acknowledge sensitivities and address emotions, leadership programs prove to be powerful spaces for increasing self- and social awareness. However, the challenge is for one to maintain the newly gained self- and social awareness after leaving the holding...... environment and entering a context characterized by activity and performance. This is a frequently debated challenge for both academics and providers of management learning. Yet, critical moments in this transition remain under-exposed and under-researched. The contribution of this article is a research study......—within the context of an international MBA program—of MBA students applying their knowledge from a Leadership Stream in an international consultancy project. This article contributes to the theory and practice of management learning by providing a lens through which subjective experience of critical moments...

  8. Moment of truth for CMS

    CERN Multimedia

    2006-01-01

    One of the first events reconstructed in the Muon Drift Tubes, the Hadron Calorimeter and elements of the Silicon Tracker (TK) at 3 Tesla. The atmosphere in the CMS control rooms was electric. Everbody was at the helm for the first full-scale testing of the experiment. This was a crunch moment for the entire collaboration. On Tuesday, 22 August the magnet attained almost its nominal power of 4 Tesla! At the same moment, in a tiny improvised control room, the physicists were keyed up to test the entire detector system for the first time. The first cosmic ray tracks appeared on their screens in the week of 15 August. The tests are set to continue for several weeks more until the first CMS components are lowered into their final positions in the cavern.

  9. Quadrupole moments measured by nuclear orientation

    International Nuclear Information System (INIS)

    Bouchta, H.

    1985-01-01

    Quadrupole interactions between the nuclei and solids have been studied with the low temperature nuclear orientation technique. The first series of measurements have been effected on the orientation of 195H g m and 197 Hg m , long lived daughter states in the 195 Au and 197 Au decay. The lifetimes of these states are of the same order as the spin-lattice relaxation time. The reorientation of the intermediate states has been taken into account extending the dipole relaxation mechanism to non-equidistant relaxing substates. The experimental nuclear quadrupole moments, thus deduced are slightly different from theoretical estimations. A new high precision method accessible to levels with 100 ns to 1 m lifetimes, the level mixing resonance on oriented nuclei (LMR/ON) has been elaborated in collaboration with LEUVEN university (Belgium). In this technique the nucleus is subject to a non colinear electric plus magnetic combined interaction. The quadrupole interaction of Ag[7/2, = 40 s] isomer with the electric field gradient in zinc has been established to better than 1% observing its level mixing resonances; and also the ratio of electric field gradients of silver in zinc to cadmium. The electric quadrupole moments of 106 Ag m , 107 Ag m and 109 Ag m have been established combining the level mixing resonances with classical low temperature quadrupole alignment measurements. The experimental values are in good agreement with theoretical calculations based on a semi-microscopical model using Yukawa potential [fr

  10. Unstable magnetic moments in Ce compounds

    International Nuclear Information System (INIS)

    Aarts, J.

    1984-01-01

    The problems which are connected with the appearance or disappearance of local moments in metals are well reflected in the magnetic behaviour of Ce intermetallic compounds. This work describes experiments on two Ce compounds which are typical examples of unstable moment systems. The first of these is CeAl 2 which at low temperatures, shows coexistence of antiferromagnetic order and the Kondo effect. Measurements are presented of the magnetization and the susceptibility in different magnetic field and temperature regions. An analysis of these measurements, using a model for the crystal field effects, shows the agreement between the measurements and the calculations to be reasonably good for CeAl 2 , but this agreement becomes worse upon decreasing Ce concentration. A phenomenological description of the observations is given. The second compound reported on is CeCu 2 Si 2 , the first 'heavy-fermion' superconductor to be investigated. The superconducting state is possibly formed by the quasi-particles of a non-magnetic many body singlet state, and not simply by the (sd) conduction electrons. This being a novel phenomenon, a number of experiments were performed to test this picture and to obtain a detailed description of the behaviour of CeCu 2 Si 2 . Measurements of the Meissner volume, confirmed the superconductivity to be intrinsic. (Auth.)

  11. Statistical moments of the Strehl ratio

    Science.gov (United States)

    Yaitskova, Natalia; Esselborn, Michael; Gladysz, Szymon

    2012-07-01

    Knowledge of the statistical characteristics of the Strehl ratio is essential for the performance assessment of the existing and future adaptive optics systems. For full assessment not only the mean value of the Strehl ratio but also higher statistical moments are important. Variance is related to the stability of an image and skewness reflects the chance to have in a set of short exposure images more or less images with the quality exceeding the mean. Skewness is a central parameter in the domain of lucky imaging. We present a rigorous theory for the calculation of the mean value, the variance and the skewness of the Strehl ratio. In our approach we represent the residual wavefront as being formed by independent cells. The level of the adaptive optics correction defines the number of the cells and the variance of the cells, which are the two main parameters of our theory. The deliverables are the values of the three moments as the functions of the correction level. We make no further assumptions except for the statistical independence of the cells.

  12. Moment Distributions of Phase Type

    DEFF Research Database (Denmark)

    Bladt, Mogens; Nielsen, Bo Friis

    In this paper we prove that the class of distributions on the positive reals with a rational Laplace transform, also known as matrix-exponential distributions, is closed under formation of moment distributions. In particular, the results are hence valid for the well known class of phase-type dist...... alternative representation in terms of sub{intensity matrices. Finally we are able to nd explicit expressions for both the Lorenz curve and the Gini index....

  13. Electric Dipole Moments of Hadrons

    OpenAIRE

    Wirzba, Andreas

    2016-01-01

    A nonzero electric dipole moment (EDM) of the neutron, proton, deuteron, helion or any finite system necessarily involves the breaking of a symmetry, either by the presence of external fields (leading to the case of induced EDMs) or explicitly by the breaking of the discrete parity and time-reflection symmetries in the case of permanent EDMs. Recent - and in the case of the deuteron even unpublished - results for the relevant matrix elements of nuclear EDM operators are presented and the rel...

  14. Lepton electric dipole moments, supersymmetric seesaw, and leptogenesis phase

    International Nuclear Information System (INIS)

    Dutta, Bhaskar; Mohapatra, R.N.

    2003-01-01

    We calculate the lepton electric dipole moments in a class of supersymmetric seesaw models and explore the possibility that they may provide a way to probe some of the CP violating phases responsible for the origin of matter via leptogenesis. We show that in models where the right handed neutrino masses M R arise from the breaking of local B-L by a Higgs field with B-L=2, some of the leptogenesis phases can lead to enhancement of the lepton dipole moments compared to the prediction of models where M R is either directly put in by hand or is a consequence of a higher dimensional operator

  15. Crustal fraction of moment of inertia in pulsars

    International Nuclear Information System (INIS)

    Atta, Debasis; Mukhopadhyay, Somnath; Basu, D.N.

    2015-01-01

    In the present work, stability of the β-equilibrated dense nuclear matter is analyzed with respect to the thermodynamic stability conditions. Based on the density dependent M3Y (DDM3Y) effective nucleon-nucleon (NN) interaction, the location of the inner edge of neutron star crusts and core-crust transition density and pressure are calculated and crustal fraction of moment of inertia is determined. These results for pressure and density at core-crust transition together with the observed minimum crustal fraction of the total moment of inertia provide a new limit for the radius of the Vela pulsar

  16. Radial electrical field effects in TJ-II. (Preliminary study)

    International Nuclear Information System (INIS)

    Guasp, J.

    1996-01-01

    The influence of the radial electric field upon the neoclassical transport coefficients of TJ-II helical axis Stellarator has been calculated as well on the microwave heating stage (ECRH) as on the neutral injection one (NBI). The influence of the solutions for the self-consistent ambipolar field on confinement times and temperatures has been studied by means of a zero-dimensional energy balance. The simultaneous presence of two roots, the electronic and the ionic one, is observed for the ECRH phase, while for NBI only the ionic root appears, although with a strong field intensity that could produce a favourable effect on confinement. The interest and need of the extension of these calculations to include radial profile effects by using spatial dependent transport codes in stressed

  17. Calculation of atomic integrals using commutation relations

    International Nuclear Information System (INIS)

    Zamastil, J.; Vinette, F.; Simanek, M.

    2007-01-01

    In this paper, a numerically stable method of calculating atomic integrals is suggested. The commutation relations among the components of the angular momentum and the Runge-Lenz vector are used to deduce recurrence relations for the Sturmian radial functions. The radial part of the one- and two-electron integrals is evaluated by means of these recurrence relations. The product of two radial functions is written as a linear combination of the radial functions. This enables us to write the integrals over four radial functions as a linear combination of the integrals over two radial functions. The recurrence relations for the functions are used to derive the recursion relations for the coefficients of the linear combination and for the integrals over two functions

  18. Radial smoothing and closed orbit

    International Nuclear Information System (INIS)

    Burnod, L.; Cornacchia, M.; Wilson, E.

    1983-11-01

    A complete simulation leading to a description of one of the error curves must involve four phases: (1) random drawing of the six set-up points within a normal population having a standard deviation of 1.3 mm; (b) random drawing of the six vertices of the curve in the sextant mode within a normal population having a standard deviation of 1.2 mm. These vertices are to be set with respect to the axis of the error lunes, while this axis has as its origins the positions defined by the preceding drawing; (c) mathematical definition of six parabolic curves and their junctions. These latter may be curves with very slight curvatures, or segments of a straight line passing through the set-up point and having lengths no longer than one LSS. Thus one gets a mean curve for the absolute errors; (d) plotting of the actually observed radial positions with respect to the mean curve (results of smoothing)

  19. Waves on radial film flows

    Science.gov (United States)

    Cholemari, Murali R.; Arakeri, Jaywant H.

    2005-08-01

    We study the stability of surface waves on the radial film flow created by a vertical cylindrical water jet striking a horizontal plate. In such flows, surface waves have been found to be unstable and can cause transition to turbulence. This surface-wave-induced transition is different from the well-known Tollmien-Schlichting wave-induced transition. The present study aims at understanding the instability and the transition process. We do a temporal stability analysis by assuming the flow to be locally two-dimensional but including spatial variations to first order in the basic flow. The waves are found to be dispersive, mostly unstable, and faster than the mean flow. Spatial variation is the major destabilizing factor. Experiments are done to test the results of the linear stability analysis and to document the wave breakup and transition. Comparison between theory and experiments is fairly good and indicates the adequacy of the model.

  20. Radial flow gas dynamic laser

    International Nuclear Information System (INIS)

    Damm, F.C.

    1975-01-01

    The unique gas dynamic laser provides outward radial supersonic flow from a toroidal shaped stacked array of a plurality of nozzles, through a diffuser having ring shaped and/or linear shaped vanes, and through a cavity which is cylindrical and concentric with the stacked array, with the resultant laser beam passing through the housing parallel to the central axis of the diffuser which is coincident with the axis of the gas dynamic laser. Therefore, greater beam extraction flexibility is attainable, because of fewer flow shock disturbances, as compared to the conventional unidirectional flow gas dynamic laser in which unidirectional supersonic flow sweeps through a rectangular cavity and is exhausted through a two-dimensional diffuser. (auth)

  1. Monte Carlo based radial shield design of typical PWR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gul, Anas; Khan, Rustam; Qureshi, M. Ayub; Azeem, Muhammad Waqar; Raza, S.A. [Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan). Dept. of Nuclear Engineering; Stummer, Thomas [Technische Univ. Wien (Austria). Atominst.

    2017-04-15

    This paper presents the radiation shielding model of a typical PWR (CNPP-II) at Chashma, Pakistan. The model was developed using Monte Carlo N Particle code [2], equipped with ENDF/B-VI continuous energy cross section libraries. This model was applied to calculate the neutron and gamma flux and dose rates in the radial direction at core mid plane. The simulated results were compared with the reference results of Shanghai Nuclear Engineering Research and Design Institute (SNERDI).

  2. On-line learning in radial basis functions networks

    OpenAIRE

    Freeman, Jason; Saad, David

    1997-01-01

    An analytic investigation of the average case learning and generalization properties of Radial Basis Function Networks (RBFs) is presented, utilising on-line gradient descent as the learning rule. The analytic method employed allows both the calculation of generalization error and the examination of the internal dynamics of the network. The generalization error and internal dynamics are then used to examine the role of the learning rate and the specialization of the hidden units, which gives ...

  3. Moment Closure for the Stochastic Logistic Model

    National Research Council Canada - National Science Library

    Singh, Abhyudai; Hespanha, Joao P

    2006-01-01

    ..., which we refer to as the moment closure function. In this paper, a systematic procedure for constructing moment closure functions of arbitrary order is presented for the stochastic logistic model...

  4. Raw and Central Moments of Binomial Random Variables via Stirling Numbers

    Science.gov (United States)

    Griffiths, Martin

    2013-01-01

    We consider here the problem of calculating the moments of binomial random variables. It is shown how formulae for both the raw and the central moments of such random variables may be obtained in a recursive manner utilizing Stirling numbers of the first kind. Suggestions are also provided as to how students might be encouraged to explore this…

  5. Ulnar nerve entrapment complicating radial head excision

    Directory of Open Access Journals (Sweden)

    Kevin Parfait Bienvenu Bouhelo-Pam

    Full Text Available Introduction: Several mechanisms are involved in ischemia or mechanical compression of ulnar nerve at the elbow. Presentation of case: We hereby present the case of a road accident victim, who received a radial head excision for an isolated fracture of the radial head and complicated by onset of cubital tunnel syndrome. This outcome could be the consequence of an iatrogenic valgus of the elbow due to excision of the radial head. Hitherto the surgical treatment of choice it is gradually been abandoned due to development of radial head implant arthroplasty. However, this management option is still being performed in some rural centers with low resources. Discussion: The radial head plays an important role in the stability of the elbow and his iatrogenic deformity can be complicated by cubital tunnel syndrome. Conclusion: An ulnar nerve release was performed with favorable outcome. Keywords: Cubital tunnel syndrome, Peripheral nerve palsy, Radial head excision, Elbow valgus

  6. Stirling Engine With Radial Flow Heat Exchangers

    Science.gov (United States)

    Vitale, N.; Yarr, George

    1993-01-01

    Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.

  7. Higher order statistical moment application for solar PV potential analysis

    Science.gov (United States)

    Basri, Mohd Juhari Mat; Abdullah, Samizee; Azrulhisham, Engku Ahmad; Harun, Khairulezuan

    2016-10-01

    Solar photovoltaic energy could be as alternative energy to fossil fuel, which is depleting and posing a global warming problem. However, this renewable energy is so variable and intermittent to be relied on. Therefore the knowledge of energy potential is very important for any site to build this solar photovoltaic power generation system. Here, the application of higher order statistical moment model is being analyzed using data collected from 5MW grid-connected photovoltaic system. Due to the dynamic changes of skewness and kurtosis of AC power and solar irradiance distributions of the solar farm, Pearson system where the probability distribution is calculated by matching their theoretical moments with that of the empirical moments of a distribution could be suitable for this purpose. On the advantage of the Pearson system in MATLAB, a software programming has been developed to help in data processing for distribution fitting and potential analysis for future projection of amount of AC power and solar irradiance availability.

  8. Reduction of nuclear moment of inertia due to pairing interaction

    International Nuclear Information System (INIS)

    Zeng, J.Y.; Jin, T.H.; Zhao, Z.J.

    1994-01-01

    The BCS theoretical values of the moments of inertia of even-even nuclei are systematically smaller than the experimental ones by a factor of 10--40%. This long-standing discrepancy disappears in the particle-number-conserving treatment for the cranked shell model, in which the blocking effects are taken into account exactly. The calculated moments of inertia satisfactorily reproduce the experimental data covering a large number of rare-earth even-even nuclei, whose deformations and single-particle states are well characterized (Lund systematics). The pairing interaction strength G is unambiguously determined by the even-odd mass difference. The reduction of the moment of inertia due to the antialignment effect of pairing interaction is discussed and no systematic excessive reduction is found

  9. Particle number fluctuations in the moment of inertia

    International Nuclear Information System (INIS)

    Allal, N.H.; Fellah, M.

    1991-01-01

    The nonphysical effects due to the false components introduced by the nonconservation of the particle number in the BCS states are eliminated in the theoretical values of the moment of inertia calculated by the microscopic cranking model. The states of the system are obtained by successive projections of the BCS states in the occupation number space. The moment of inertia appears then as a limit of a rapidly convergent sequence. The errors due to this false component have been numerically estimated and appear to be important both in the BCS states and in the matrix elements of the angular momentum. The predicted values of the moment of inertia satisfactorily reproduce the experimental data over a large number of nuclei within rare-earth and actinide regions with discrepancies ranging from 0.1% to 8%

  10. Novel theory of the HD dipole moment. II. Computations

    International Nuclear Information System (INIS)

    Thorson, W.R.; Choi, J.H.; Knudson, S.K.

    1985-01-01

    In the preceding paper we derived a new theory of the dipole moments of homopolar but isotopically asymmetric molecules (such as HD, HT, and DT) in which the electrical asymmetry appears directly in the electronic Hamiltonian (in an appropriate Born-Oppenheimer separation) and the dipole moment may be computed as a purely electronic property. In the present paper we describe variation-perturbation calculations and convergence studies on the dipole moment for HD, which is found to have the value 8.51 x 10 -4 debye at 1.40 a.u. Using the two alternative formulations of the electronic problem, we can provide a test of basis-set adequacy and convergence of the results, and such convergence studies are reported here. We have also computed vibration-rotation transition matrix elements and these are compared with experimental and other theoretical results

  11. Radially localized measurements of superthermal electrons using oblique electron cyclotron emission

    International Nuclear Information System (INIS)

    Preische, S.; Efthimion, P.C.; Kaye, S.M.

    1996-05-01

    It is shown that radial localization of optically tin Electron Cyclotron Emission from superthermal electrons can be imposed by observation of emission upshifted from the thermal cyclotron resonance in the horizontal midplane of a tokamak. A new and unique diagnostic has been proposed and operated to make radially localized measurements of superthermal electrons during Lower Hybrid Current Drive on the PBX-M tokamak. The superthermal electron density profile as well as moments of the electron energy distribution as a function of radius are measured during Lower Hybrid Current Drive. The time evolution of these measurements after the Lower Hybrid power is turned off are given and the observed behavior reflects the collisional isotropization of the energy distribution and radial diffusion of the spatial profile

  12. Nuclear quadrupole moment of the 99Tc ground state

    International Nuclear Information System (INIS)

    Errico, Leonardo; Darriba, German; Renteria, Mario; Tang Zhengning; Emmerich, Heike; Cottenier, Stefaan

    2008-01-01

    By combining first-principles calculations and existing nuclear magnetic resonance (NMR) experiments, we determine the quadrupole moment of the 9/2 + ground state of 99 Tc to be (-)0.14(3)b. This confirms the value of -0.129(20)b, which is currently believed to be the most reliable experimental determination, and disagrees with two earlier experimental values. We supply ab initio calculated electric-field gradients for Tc in YTc 2 and ZrTc 2 . If this calculated information would be combined with yet to be performed Tc-NMR experiments in these compounds, the error bar on the 99 Tc ground state quadrupole moment could be further reduced

  13. The effect of moment redistribution on the stability of reinforced concrete moment resisting frame buildings under the ground motion

    Directory of Open Access Journals (Sweden)

    Mahdi Golpayegani

    2017-08-01

    Full Text Available In recent years some studies have been done on the moment rredistribution in buildings and new methods offered for calculating of redistribution. Observations demonstrated that the combination of moment and shear force is important in analysis of reinforced concrete structures. But little research is done about the effect of redistribution by using moding in software. In order to study the effect of moment redistribution on the stability of RC moment resisting frame structures, four buildings with 4, 7, 10 and 13 story have been considered. In these models, the nonlinear behavior of elements (beam and column is considered by the use of interaction PMM hinges. The average plastic rotation was calculated by performing pushover analysis and storing stiffness matrix for 5 points and then the buckling coefficients were obtained by conducting buckling analysis. By the use of modal analysis natural frequency was calculated and it was attempted to be related the average plastic rotation with the buckling coefficients and the natural frequency.   It could be concluded that increase in the plastic rotation reduce the buckling coefficients to about 96% which this amount of reduction is related to the average plastic rotation. Moreover, the buildings experience instability state when the average plastic rotation reached to 0.006 radian.

  14. On the interpretation of the support moment

    NARCIS (Netherlands)

    Hof, AL

    2000-01-01

    It has been suggested by Winter (J. Biomech. 13 (1980) 923-927) that the 'support moment', the sum of the sagittal extension moments, shows less variability in walking than any of the joint moments separately. A simple model is put forward to explain this finding. It is proposed to reformulate the

  15. Extented second moment algebra as an efficient tool in structural reliability

    International Nuclear Information System (INIS)

    Ditlevsen, O.

    1982-01-01

    During the seventies, second moment structural reliability analysis was extensively discussed with respect to philosophy and method. One recent clarification into a consistent formalism is represented by the extended second moment reliability theory with the generalized reliability index as its measure of safety. Its methods of formal failure probability calculations are useful independent of the opinion that one may adopt about the philosophy of the second moment reliability formalism. After an introduction of the historical development of the philosphy the paper gives a short introductory review of the extended second moment structural reliability theory. (orig.)

  16. Determination of anisotropic dipole moments in self-assembled quantum dots using Rabi oscillations

    Science.gov (United States)

    Muller, Andreas; Wang, Qu-Quan; Bianucci, Pablo; Xue, Qi-Kun; Shih, Chih-Kang

    2004-03-01

    By investigating the polarization-dependent Rabi oscillations using photoluminescence spectroscopy, we determined the respective transition dipole moments of the two excited excitonic states |Ex> and |Ey> of a single self-assembled quantum dot that are nondegenerate due to shape anisotropy. We find that the ratio of the two dipole moments is close to the physical elongation ratio of the quantum dot. We also measured the ground state radiative lifetimes of several quantum dots. The dipole moments calculated from the latter are in reasonable agreement with the dipole moments determined from the periodicity of the Rabi oscillations.

  17. Radial electron beam laser excitation: the REBLE report

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Prestwich, K.R.

    1978-10-01

    The results of an investigation of techniques to generate high-power radially converging electron beams and the application of these beams to gas lasers is discussed. The design and performance of the REBLE accelerator that was developed for this program is presented. Reliable operation of the radial diode has been obtained at levels up to 1 MV, 200 kA, and 20 ns. It has been demonstrated that the anode current density can be made uniform to better than 15% over 1000 cm 2 areas with 100 to 250 A/cm 2 intensities. The measured total and spatially resolved energy deposition of this radial electron beam in various gases is compared with Monte Carlo calculations. In most cases, these codes give an accurate description of the beam transport and energy deposition. With the electron beam pumping xenon gas, the amplitude of xenon excimer radiation (1720 A 0 ) was radially uniform to within the experimental uncertainty. The efficiency of converting deposited electron beam energy to xenon excimer radiation was 20%

  18. Relativistic two-fermion equations with form factors and anomalous magnetic moment interactions

    International Nuclear Information System (INIS)

    Ahmed, S.

    1977-04-01

    Relativistic equations for two-fermion systems are derived from quantum field theory taking into account the form factors of the particles. When the q 2 dependence of the form factors is disregarded, in the static approximation, the two-fermion equations with Coulomb and anomalous magnetic moment interactions are obtained. Separating the angular variables, a sixteen-component relativistic radial equation are finally given

  19. Electric and Magnetic Dipole Moments

    CERN Document Server

    CERN. Geneva

    2005-01-01

    The stringent limit on the electric dipole moment of the neutron forced the issue on the strong CP-problem. The most elegant solution of which is the axion field proposed by Peccei and Quinn. The current limit on the QCD parameter theta coming from the limit on the neutron EDM is of order 10-10. I am going to describe the present status on the neutron EDM searches and further prospects on getting down to theta_qcd sensitivity of 10-13 with the new deuteron EDM in storage rings proposal. For completeness the current status and prospects of the muon g-2 experiment will also be given.

  20. The Muon Electric Dipole Moment

    OpenAIRE

    Barger, Vernon; Kao, Chung; Das, Ashok

    1997-01-01

    The electric dipole moment of the muon ($d_\\mu$) is evaluated in a two Higgs doublet model with a softly broken discrete symmetry. For $\\tan\\beta \\equiv |v_2|/|v_1| \\sim 1$, contributions from two loop diagrams involving the $t$ quark and the $W$ boson dominate; while for $\\tan\\beta \\gsim 10$, contributions from two loop diagrams involving the $b$ quark and the $\\tau$ lepton are dominant. For $8 \\gsim \\tan\\beta \\gsim 4$, significant cancellation occurs among the contributions from two loop di...

  1. Dynamic interaction between localized magnetic moments in carbon nanotubes

    International Nuclear Information System (INIS)

    Costa, A T; Muniz, R B; Ferreira, M S

    2008-01-01

    Magnetic moments dilutely dispersed in a metallic host tend to be coupled through the conduction electrons of the metal. This indirect exchange coupling (IEC), known to occur for a variety of magnetic materials embedded in several different metallic structures, is of rather long range, especially for low-dimensional structures like carbon nanotubes. Motivated by recent claims that the indirect coupling between magnetic moments in precessional motion has a much longer range than its static counterpart, we consider here how magnetic atoms adsorbed to the walls of a metallic nanotube respond to a time-dependent perturbation that induces their magnetic moments to precess. By calculating the frequency-dependent spin susceptibility, we are able to identify resonant peaks whose respective widths provide information about the dynamic aspect of the IEC. We show that by departing from a purely static representation to another in which the moments are allowed to precess, we change from what is already considered a long-range interaction to another whose range is far superior. In other words, localized magnetic moments embedded in a metallic structure can feel each other's presence more easily when they are set in precessional motion. We argue that such an effect can have useful applications leading to large-scale spintronics devices

  2. Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere.

    Science.gov (United States)

    Zhou, Guoquan

    2011-11-21

    A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail. © 2011 Optical Society of America

  3. Experimental and theoretical dipole moments of purines in their ground and lowest excited singlet states

    Science.gov (United States)

    Aaron, Jean-Jacques; Diabou Gaye, Mame; Párkányi, Cyril; Cho, Nam Sook; Von Szentpály, László

    1987-01-01

    The ground-state dipole moments of seven biologically important purines (purine, 6-chloropurine, 6-mercaptopurine, hypoxanthine, theobromine, theophylline and caffeine) were determined at 25°C in acetic acid (all the above compounds with the exception of purine) and in ethyl acetate (purine, theophylline and caffeine). Because of its low solubility, it was not possible to measure the dipole moment of uric acid. The first excited singlet-state dipole moments were obtained on the basis of the Bakhshiev and Chamma—Viallet equations using the variation of the Stokes shift with the solvent dielectric constant-refractive index term. The theoretical dipole moments for all the purines listed above and including uric acid were calculated by combining the use of the PPP (π-LCI-SCF-MO) method for the π-contribution to the overall dipole moment with the σ-contribution obtained as a vector sum of the σbond moments and group moments. The experimental and theoretical values were compared with the data available in the literature for some of the purines under study. For several purines, the calculations were carried out for different tautomeric forms. Excited singlet-state dipole moments are smaller than the ground-state values by 0.8 to 2.2 Debye units for all purines under study with the exception of 6-chloropurine. The effects of the structure upon the ground- and excited-state dipole moments of the purines are discussed.

  4. Quadrupole moments as measures of electron correlation in two-electron atoms

    International Nuclear Information System (INIS)

    Ceraulo, S.C.; Berry, R.S.

    1991-01-01

    We have calculated quadrupole moments, Q zz , of helium in several of its doubly excited states and in two of its singly excited Rydberg states, and of the alkaline-earth atoms Be, Mg, Ca, Sr, and Ba in their ground and low-lying excited states. The calculations use well-converged, frozen-core configuration-interaction (CI) wave functions and, for interpretive purposes, Hartree-Fock (HF) atomic wave functions and single-term, optimized, molecular rotor-vibrator (RV) wave functions. The quadrupole moments calculated using RV wave functions serve as a test of the validity of the correlated, moleculelike model, which has been used to describe the effects of electron correlation in these two-electron and pseudo-two-electron atoms. Likewise, the quadrupole moments calculated with HF wave functions test the validity of the independent-particle model. In addition to their predictive use and their application to testing simple models, the quadrupole moments calculated with CI wave functions reveal previously unavailable information about the electronic structure of these atoms. Experimental methods by which these quadrupole moments might be measured are also discussed. The quadrupole moments computed from CI wave functions are presented as predictions; measurements of Q zz have been made for only two singly excited Rydberg states of He, and a value of Q zz has been computed previously for only one of the states reported here. We present these results in the hope of stimulating others to measure some of these quadrupole moments

  5. Radial head button holing: a cause of irreducible anterior radial head dislocation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Su-Mi; Chai, Jee Won; You, Ja Yeon; Park, Jina [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Bae, Kee Jeong [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Orthopedic Surgery, Seoul (Korea, Republic of)

    2016-10-15

    ''Buttonholing'' of the radial head through the anterior joint capsule is a known cause of irreducible anterior radial head dislocation associated with Monteggia injuries in pediatric patients. To the best of our knowledge, no report has described an injury consisting of buttonholing of the radial head through the annular ligament and a simultaneous radial head fracture in an adolescent. In the present case, the radiographic findings were a radial head fracture with anterior dislocation and lack of the anterior fat pad sign. Magnetic resonance imaging (MRI) clearly demonstrated anterior dislocation of the fractured radial head through the torn annular ligament. The anterior joint capsule and proximal portion of the annular ligament were interposed between the radial head and capitellum, preventing closed reduction of the radial head. Familiarity with this condition and imaging findings will aid clinicians to make a proper diagnosis and fast decision to perform an open reduction. (orig.)

  6. A moment projection method for population balance dynamics with a shrinkage term

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shaohua [Department of Mechanical Engineering, National University of Singapore, Engineering Block EA, Engineering Drive 1, 117576 (Singapore); Yapp, Edward K.Y.; Akroyd, Jethro; Mosbach, Sebastian [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA (United Kingdom); Xu, Rong [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore); Yang, Wenming [Department of Mechanical Engineering, National University of Singapore, Engineering Block EA, Engineering Drive 1, 117576 (Singapore); Kraft, Markus, E-mail: mk306@cam.ac.uk [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA (United Kingdom); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)

    2017-02-01

    A new method of moments for solving the population balance equation is developed and presented. The moment projection method (MPM) is numerically simple and easy to implement and attempts to address the challenge of particle shrinkage due to processes such as oxidation, evaporation or dissolution. It directly solves the moment transport equation for the moments and tracks the number of the smallest particles using the algorithm by Blumstein and Wheeler (1973) . The performance of the new method is measured against the method of moments (MOM) and the hybrid method of moments (HMOM). The results suggest that MPM performs much better than MOM and HMOM where shrinkage is dominant. The new method predicts mean quantities which are almost as accurate as a high-precision stochastic method calculated using the established direct simulation algorithm (DSA).

  7. Reconstruction of convex bodies from moments

    DEFF Research Database (Denmark)

    Hörrmann, Julia; Kousholt, Astrid

    We investigate how much information about a convex body can be retrieved from a finite number of its geometric moments. We give a sufficient condition for a convex body to be uniquely determined by a finite number of its geometric moments, and we show that among all convex bodies, those which......- rithm that approximates a convex body using a finite number of its Legendre moments. The consistency of the algorithm is established using the stabil- ity result for Legendre moments. When only noisy measurements of Legendre moments are available, the consistency of the algorithm is established under...

  8. On the origin of the giant magnetic moment of the Al-Mn quasicrystals

    Directory of Open Access Journals (Sweden)

    Bocharov P.V.

    2011-05-01

    Full Text Available Ab initio calculations of magnetic moments for icosahedral clusters contained in crystal structures Al10Mn3, Al5Co2, Al17Mn4 (Al13Cr4Si4-type fulfilled in the framework of Density Functional Theory. The AlMn cluster having the trigonal D3h symmetry with the triangle of Mn ions in the interior has the moment being equal to three magnetic moments of a single manganese ion (4.4 μB, the moment of the tetrahedral Td cluster with the Mn tetrahedron in the interior is equal approximately to twelve magnetic moments of the single manganese ion (15.5 μB. The magnetic moment of icosahedral Al-Co clusters having the same configuration is equal to zero. The magnetic moments of the rod assembled from the icosahedral clusters with the sequence Td D3h - Td was found to be 20.5 μB. This value permits to explain the giant magnetic moment of icosahedral and decagonal Al-Mn quasicrystals and gives the indirect evidence to the hierarchical model of the quasicrystals structure proposed by the authors recently. An arrangement of magnetic moment carriers in the interior of the aluminum shell of icosahedral clusters permits to suggest the interaction between contacting manganese ions as the main origin of the giant magnetic moment of the Al-Mn quasicrystals.

  9. Neoclassical transport and radial electric fields in TJ-K

    International Nuclear Information System (INIS)

    Rahbarnia, K.; Greiner, F.; Ramisch, M.; Stroth, U.; Greiner, F.

    2003-01-01

    The neoclassical transport is investigated in the torsatron TJ-K, which is operated with a low-temperature plasma. In the low-collisionality regime neoclassical losses are not intrinsically ambipolar, leading to the formation of a radial electric field which acts on both neoclassical and turbulent transport. This electric field is measured with a combination of Langmuir and emissive probes. The data are compared with the ambipolar electric field calculated with an analytic model. The experimental fields are positive and larger than the calculated ones. Direct losses of the fast electrons might explain this discrepancy. (orig.)

  10. Vibrationally averaged dipole moments of methane and benzene isotopologues

    Energy Technology Data Exchange (ETDEWEB)

    Arapiraca, A. F. C. [Laboratório de Átomos e Moléculas Especiais, Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P. O. Box 702, 30123-970 Belo Horizonte, MG (Brazil); Centro Federal de Educação Tecnológica de Minas Gerais, Coordenação de Ciências, CEFET-MG, Campus I, 30.421-169 Belo Horizonte, MG (Brazil); Mohallem, J. R., E-mail: rachid@fisica.ufmg.br [Laboratório de Átomos e Moléculas Especiais, Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P. O. Box 702, 30123-970 Belo Horizonte, MG (Brazil)

    2016-04-14

    DFT-B3LYP post-Born-Oppenheimer (finite-nuclear-mass-correction (FNMC)) calculations of vibrationally averaged isotopic dipole moments of methane and benzene, which compare well with experimental values, are reported. For methane, in addition to the principal vibrational contribution to the molecular asymmetry, FNMC accounts for the surprisingly large Born-Oppenheimer error of about 34% to the dipole moments. This unexpected result is explained in terms of concurrent electronic and vibrational contributions. The calculated dipole moment of C{sub 6}H{sub 3}D{sub 3} is about twice as large as the measured dipole moment of C{sub 6}H{sub 5}D. Computational progress is advanced concerning applications to larger systems and the choice of appropriate basis sets. The simpler procedure of performing vibrational averaging on the Born-Oppenheimer level and then adding the FNMC contribution evaluated at the equilibrium distance is shown to be appropriate. Also, the basis set choice is made by heuristic analysis of the physical behavior of the systems, instead of by comparison with experiments.

  11. Moment-to-moment dynamics of ADHD behaviour

    Directory of Open Access Journals (Sweden)

    Aase Heidi

    2005-08-01

    learning long behavioural sequences may ultimately lead to deficient development of verbally governed behaviour and self control. The study represents a new approach to analyzing the moment-to-moment dynamics of behaviour, and provides support for the theory that reinforcement processes are altered in ADHD.

  12. Photoelectric Radial Velocities, Paper XIX Additional Spectroscopic ...

    Indian Academy of Sciences (India)

    ian velocity curve that does justice to the measurements, but it cannot be expected to have much predictive power. Key words. Stars: late-type—stars: radial velocities—spectroscopic binaries—orbits. 0. Preamble. The 'Redman K stars' are a lot of seventh-magnitude K stars whose radial velocities were first observed by ...

  13. Radial velocities of RR Lyrae stars

    International Nuclear Information System (INIS)

    Hawley, S.L.; Barnes, T.G. III

    1985-01-01

    283 spectra of 57 RR Lyrae stars have been obtained using the 2.1-m telescope at McDonald Observatory. Radial velocities were determined using a software cross-correlation technique. New mean radial velocities were determined for 46 of the stars. 11 references

  14. Concepts of radial and angular kinetic energies

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Schleich, W.P.

    2002-01-01

    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...

  15. Electric dipole moment of magnetoexciton in concentric quantum rings

    Science.gov (United States)

    García, L. F.; Mikhailov, I. D.; Revinova, S. Yu

    2017-12-01

    We study properties of exciton in a weakly coupled concentric quantum rings, penetrated by an axially directed magnetic flux and subjected to an electric field in the ring’s plane. To this end, we adopt a simple model of quasi-one-dimensional rotator, for which the wave functions and the corresponding energies we found by using the double Fourier series expansion method. Revealed multiple intersections of the energy levels provide conditions for abrupt changes of the radial and the angular quantum numbers, making possible the tunnelling of carriers between rings and allowing the formation of a permanent large dipole moment. We show that the electric and magnetic polarizability of concentric quantum rings with a trapped exciton are very sensible to external electric and magnetic fields.

  16. A sensitive search for a muon electric dipole moment

    International Nuclear Information System (INIS)

    Semertzidis, Yannis K.; Carey, R.M.; Miller, J.P.; Rind, O.; Roberts, B.L.; Sulak, L.R.; Brown, H.; Danby, G.T.; Jackson, J.W.; Larsen, R.; Lazarus, D.M.; Meng, W.; Morse, W.M.; Ozben, C.S.; Prigl, R.; Semertzidis, Y.K.; Balakin, V.; Bazhan, A.; Dudnikov, A.; Khazin, B. I.

    2001-01-01

    We are proposing a new method to carry out a dedicated search for a permanent electric dipole moment (EDM) of the muon with a sensitivity at a level of 10 -24 e·cm. The experiment will be sensitive to non-standard physics like SUSY. The experimental design exploits the strong motional electric field sensed by relativistic particles in a magnetic storage ring. As a key feature, a novel technique has been invented in which the g-2 precession is compensated with a radial electric field. The EDM signature will be an out of plane muon spin precession as a function of time. The rate of this precession will be proportional to the EDM amplitude of the muon

  17. On the moment of inertia and surface redshift of neutron star

    International Nuclear Information System (INIS)

    Li Wenfei; Zhang Fengshou; Chen Liewen

    2001-01-01

    Using temperature, density and isospin dependent nuclear equation of state, the authors calculated the moment of inertia and surface redshift of neutron star by resolving Tolman-Oppenheimer-Volkoff equation. It is found that the moment of inertia and surface redshift strongly depend on the nuclear equation of state. The equation of state with high value of un-compressibility and symmetry energy strength coefficient provides a big moment of inertia, while effective mass of nucleon has almost no effect on moment of inertia. Meanwhile, the equation of state with high value of un-compressibility and effective mass of nucleon provides a big surface redshift, while the symmetry energy strength coefficient has almost no effect on surface redshift of neutron star. The relationship between moment of inertia and mass is also given. By comparing the calculated results with the one obtained semi-empirically from astronomy, the authors find that a softer equation of state can provide a more reasonable result

  18. Nonlinear radial propagation of drift wave turbulence

    International Nuclear Information System (INIS)

    Prakash, M.

    1985-01-01

    We study the linear and the nonlinear radial propagation of drift wave energy in an inhomogeneous plasma. The drift mode excited in such a plasma is dispersive in nature. The drift wave energy spreads out symmetrically along the direction of inhomogeneity with a finite group velocity. To study the effect of the nonlinear coupling on the propagation of energy in a collision free plasma, we solve the Hasegawa-Mima equation as a mixed initial boundary-value problem. The solutions of the linearized equation are used to check the reliability of our numerical calculations. Additional checks are also performed on the invariants of the system. Our results reveal that a pulse gets distorted as it propagates through the medium. The peak of the pulse propagates with a finite velocity that depends on the amplitude of the initial pulse. The polarity of propagation depends on the initial parameters of the pulse. We have also studied drift wave propagation in a resistive plasma. The Hasegawa-Wakatani equations are used to investigate this problem

  19. Meson exchange current corrections to magnetic moments in quantum hadro-dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Morse, T M; Price, C E; Shepard, J R [Colorado Univ., Boulder (USA). Dept. of Physics

    1990-11-15

    We have calculated pion exchange current corrections to the magnetic moments of closed shell {plus minus}1 particle nuclei near A=16 and 40 within the framework of quantum hadro-dynamics (QHD). We find that the correction is significant and that, in general, the agreement of the QHD isovector moments with experiment is worsened. Comparisons to previous non-relativistic calculations are also made. (orig.).

  20. Phase analysis of NK-bar scattering and Λ-hyperon magnetic moment

    International Nuclear Information System (INIS)

    Nikitiu, F.

    1987-01-01

    The NK-bar-scattering S matrix is suggested to have the P 01 -channel pole which corresponds to Λ-hyperon. The Λ-hyperon magnetic moment is calculated. Its value ''arises'' only due to nucleon magnetic moments and N and K-bar nontrivial relativistic coupling in the P 01 -channel. This is one more method to the quark model methods. The calculations are in agreement with the experimental value of μΛ

  1. Dynamic radial distribution function from inelastic neutron scattering

    International Nuclear Information System (INIS)

    McQueeney, R.J.

    1998-01-01

    A real-space, local dynamic structure function g(r,ω) is defined from the dynamic structure function S(Q,ω), which can be measured using inelastic neutron scattering. At any particular frequency ω, S(Q,ω) contains Q-dependent intensity oscillations which reflect the spatial distribution and relative displacement directions for the atoms vibrating at that frequency. Information about local and dynamic atomic correlations is obtained from the Fourier transform of these oscillations g(r,ω) at the particular frequency. g(r,ω) can be formulated such that the elastic and frequency-summed limits correspond to the average and instantaneous radial distribution function, respectively, and is thus called the dynamic radial distribution function. As an example, the dynamic radial distribution function is calculated for fcc nickel in a model which considers only the harmonic atomic displacements due to phonons. The results of these calculations demonstrate that the magnitude of the atomic correlations can be quantified and g(r,ω) is a well-defined correlation function. This leads to a simple prescription for investigating local lattice dynamics. copyright 1998 The American Physical Society

  2. Leakage Account for Radial Face Contact Seal in Aircraft Engine Support

    Science.gov (United States)

    Vinogradov, A. S.; Sergeeva, T. V.

    2018-01-01

    The article is dedicated to the development of a methodology for the radial face contact seal design taking into consideration the supporting elements deformations in different aircraft engine operating modes. Radial face contact seals are popular in the aircraft engines bearing support. However, there are no published leakage calculation methodologies of these seals. Radial face contact seal leakage is determined by the gap clearance in the carbon seal ring split. In turn, the size gap clearance depends on the deformation of the seal assembly parts and from the engine operation. The article shows the leakage detection sequence in the intershaft radial face contact seal of the compressor support for take-off and cruising modes. Evaluated calculated leakage values (2.4 g/s at takeoff and 0.75 g/s at cruising) go with experience in designing seals.

  3. The Critical Moment of Transition

    DEFF Research Database (Denmark)

    Svalgaard, Lotte

    2018-01-01

    By providing a holding environment to acknowledge sensitivities and address emotions, leadership programmes prove to be powerful spaces for increasing self- and social awareness. However, the challenge is for one to maintain the newly gained self- and social awareness after leaving the holding...... – within the context of an international MBA program – of MBA students applying their knowledge from a Leadership Stream in an International Consultancy Project. This paper contributes to the theory and practice of management learning by providing lenses to understand subjective experiences of critical...... moments of transition, developing the notion of “mindful avoidance,” and pointing out a major and neglected potential space in the design of management education....

  4. Nuclear spins, magnetic moments and quadrupole moments of Cu isotopes from N = 28 to N = 46: probes for core polarization effects

    CERN Document Server

    Vingerhoets, P; Avgoulea, M; Billowes, J; Bissell, M L; Blaum, K; Brown, B A; Cheal, B; De Rydt, M; Forest, D H; Geppert, Ch; Honma, M; Kowalska, M; Kramer, J; Krieger, A; Mane, E; Neugart, R; Neyens, G; Nortershauser, W; Otsuka, T; Schug, M; Stroke, H H; Tungate, G; Yordanov, D T

    2010-01-01

    Measurements of the ground-state nuclear spins, magnetic and quadrupole moments of the copper isotopes from 61Cu up to 75Cu are reported. The experiments were performed at the ISOLDE facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the N=28 and N=50 shell closures is reasonably reproduced by large-scale shell-model calculations starting from a 56Ni core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is however strongly reduced at N=40 due to the parity change between the $pf$ and $g$ orbits. No enhanced core polarization is seen beyond N=40. Deviations between measured and calculated moments are attributed to the softness of the 56Ni core and weakening of the Z=28 and N=28 shell gaps.

  5. Gate-dependent orbital magnetic moments in carbon nanotubes

    DEFF Research Database (Denmark)

    Jespersen, Thomas Sand; Grove-Rasmussen, Kasper; Flensberg, Karsten

    2011-01-01

    We investigate how the orbital magnetic moments of electron and hole states in a carbon nanotube quantum dot depend on the number of carriers on the dot. Low temperature transport measurements are carried out in a setup where the device can be rotated in an applied magnetic field, thus enabling...... accurate alignment with the nanotube axis. The field dependence of the level structure is measured by excited state spectroscopy and excellent correspondence with a single-particle calculation is found. In agreement with band structure calculations we find a decrease of the orbital magnetic moment...... with increasing electron or hole occupation of the dot, with a scale given by the band gap of the nanotube....

  6. Anomalous superconductivity in the tJ model; moment approach

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Rodriguez-Nunez, J.J.

    1997-01-01

    By extending the moment approach of Nolting (Z, Phys, 225 (1972) 25) in the superconducting phase, we have constructed the one-particle spectral functions (diagonal and off-diagonal) for the tJ model in any dimensions. We propose that both the diagonal and the off-diagonal spectral functions...... Hartree shift which in the end result enlarges the bandwidth of the free carriers allowing us to take relative high values of J/t and allowing superconductivity to live in the T-c-rho phase diagram, in agreement with numerical calculations in a cluster, We have calculated the static spin susceptibility......, chi(T), and the specific heat, C-v(T), within the moment approach. We find that all the relevant physical quantities show the signature of superconductivity at T-c in the form of kinks (anomalous behavior) or jumps, for low density, in agreement with recent published literature, showing a generic...

  7. QCD description of high order factorial moments and Hq moments in quark and gluon jets and in e+e- annihilation

    International Nuclear Information System (INIS)

    Lupia, S.

    1999-01-01

    The complete QCD evolution equation for factorial moments in quark and gluon jets is numerically solved with absolute normalization at threshold. Within the picture of Local Parton Hadron Duality, perturbative QCD predictions are compared with existing experimental data for the factorial cumulants, the factorial moments and their ratio both in quark and gluon jets and in e + e - annihilation. The main differences with previous approximate calculations are also pointed out. (author)

  8. QCD description of high order factorial moments and H(q) moments in quark and gluon jets and in e+e- annihilation

    International Nuclear Information System (INIS)

    Lupia, S.

    1998-01-01

    The complete QCD evolution equation for factorial moments in quark and gluon jets is numerically solved with absolute normalization at threshold. Within the picture of Local Parton Hadron Duality, perturbative QCD predictions are compared with existing experimental data for the factorial cumulants, the factorial moments and their ratio both in quark and gluon jets and in e + e - annihilation. The main differences with previous approximate calculations are also pointed out. (author)

  9. Finite moments approach to the time-dependent neutron transport equation

    International Nuclear Information System (INIS)

    Kim, Sang Hyun

    1994-02-01

    Currently, nodal techniques are widely used in solving the multidimensional diffusion equation because of savings in computing time and storage. Thanks to the development of computer technology, one can now solve the transport equation instead of the diffusion equation to obtain more accurate solution. The finite moments method, one of the nodal methods, attempts to represent the fluxes in the cell and on cell surfaces more rigorously by retaining additional spatial moments. Generally, there are two finite moments schemes to solve the time-dependent transport equation. In one, the time variable is treated implicitly with finite moments method in space variable (implicit finite moments method), the other method uses finite moments method in both space and time (space-time finite moments method). In this study, these two schemes are applied to two types of time-dependent neutron transport problems. One is a fixed source problem, the other a heterogeneous fast reactor problem with delayed neutrons. From the results, it is observed that the two finite moments methods give almost the same solutions in both benchmark problems. However, the space-time finite moments method requires a little longer computing time than that of the implicit finite moments method. In order to reduce the longer computing time in the space-time finite moments method, a new iteration strategy is exploited, where a few time-stepwise calculation, in which original time steps are grouped into several coarse time divisions, is performed sequentially instead of performing iterations over the entire time steps. This strategy results in significant reduction of the computing time and we observe that 2-or 3-stepwise calculation is preferable. In addition, we propose a new finite moments method which is called mixed finite moments method in this thesis. Asymptotic analysis for the finite moments method shows that accuracy of the solution in a heterogeneous problem mainly depends on the accuracy of the

  10. Precise Calculation of Complex Radioactive Decay Chains

    National Research Council Canada - National Science Library

    Harr, Logan J

    2007-01-01

    ...). An application of the exponential moments function is used with a transmutation matrix in the calculation of complex radioactive decay chains to achieve greater precision than can be attained through current methods...

  11. Radial lip seals, thermal aspects

    NARCIS (Netherlands)

    Stakenborg, M.J.L.; van Ostaijen, R.A.J.; Dowson, D.

    1989-01-01

    In this paper the influence of temperature on tne seal-snarc contact is studied, using coupled temperature-stress FEH analysis. A thermal network model is used to calculate the seal-shaft contact temperature for steady-state and transient conditions. Contact temperatures were measured under the seal

  12. Restrictions on the neutrino magnetic dipole moment

    International Nuclear Information System (INIS)

    Duncan, M.J.; Sankar, S.U.; Grifols, J.A.; Mendez, A.

    1987-01-01

    We examine mechanisms for producing neutrino magnetic moments from a wide class of particle theories which are extensions of the standard model. We show that it is difficult to naturally obtain a moment greater than ≅ 10 -2 electron Bohr magnetons. Thus models of phenomena requiring moments of order ≅ 10 -10 magnetons, such as those proposed as a resolution to the solar neutrino puzzle, are in conflict with current perceptions in particle physics. (orig.)

  13. Radial electric fields for improved tokamak performance

    International Nuclear Information System (INIS)

    Downum, W.B.

    1981-01-01

    The influence of externally-imposed radial electric fields on the fusion energy output, energy multiplication, and alpha-particle ash build-up in a TFTR-sized, fusing tokamak plasma is explored. In an idealized tokamak plasma, an externally-imposed radial electric field leads to plasma rotation, but no charge current flows across the magnetic fields. However, a realistically-low neutral density profile generates a non-zero cross-field conductivity and the species dependence of this conductivity allows the electric field to selectively alter radial particle transport

  14. Radial MR images of the knee

    International Nuclear Information System (INIS)

    Hewes, R.C.; Miller, T.R.

    1988-01-01

    To profile optimally each portion of the meniscus, the authors use the multiangle, multisection feature of a General Electric SIGNA 1.5-T imager to produce radial images centered on each meniscus. A total of 12-15 sections are imaged at 10 0 -15 0 intervals of each meniscus, yielding perpendicular images of the entire meniscus, comparable with the arthrographic tangential views. The authors review their technique and demonstrate correlation cases between the radial gradient recalled acquisition in a steady state sequences, sagittal and coronal MR images, and arthrograms. Radial images should be a routine part of knee MR imaging

  15. Measurement of seismic moments at the RSTN station RSSD for NTS explosions

    International Nuclear Information System (INIS)

    Taylor, S.R.; Patton, H.J.

    1983-01-01

    We have estimated the seismic moment for two Nevada Test Site (NTS) explosions (Nebbiolo, 6/24/82; Atrisco, 8/5/82) at the Regional Seismic Test Network (RSTN) station in South Dakota (RSSD; distance from NTS approx. 1280 km). The moments are calculated from the vertical component mid-period channel for the Rayleigh waves and the merged mid- and short-period band for the P waves. The moment estimates from surface waves give values of 1.0 x 10 23 and 2.0 x 10 23 dyn-cm for Nebbiolo and Atrisco, respectively. The body-wave moments obtained at 0.5 Hz are approximately five times greater than those from surface waves and give values of 4.8 x 10 23 and 1.0 x 10 24 dyn-cm for Nebbiolo and Atrisco, respectively. The apparent discrepancy between the body and surface-wave moments can be resolved if there is overshoot (of 5:1) in the explosion source spectrum. As a check on the absolute value of the surface-wave moments, we compared them to moment values predicted from empirical moment-yield relationships for different emplacement media at NTS (Patton, 1983). We found that the agreement between observed and predicted values is satisfactory, within the measurement error on the moments at the one sigma level

  16. Generation of the pitch moment during the controlled flight after takeoff of fruitflies.

    Directory of Open Access Journals (Sweden)

    Mao Wei Chen

    Full Text Available In the present paper, the controlled flight of fruitflies after voluntary takeoff is studied. Wing and body kinematics of the insects after takeoff are measured using high-speed video techniques, and the aerodynamic force and moment are calculated by the computational fluid dynamics method based on the measured data. How the control moments are generated is analyzed by correlating the computed moments with the wing kinematics. A fruit-fly has a large pitch-up angular velocity owing to the takeoff jump and the fly controls its body attitude by producing pitching moments. It is found that the pitching moment is produced by changes in both the aerodynamic force and the moment arm. The change in the aerodynamic force is mainly due to the change in angle of attack. The change in the moment arm is mainly due to the change in the mean stroke angle and deviation angle, and the deviation angle plays a more important role than the mean stroke angle in changing the moment arm (note that change in deviation angle implies variation in the position of the aerodynamic stroke plane with respect to the anatomical stroke plane. This is unlike the case of fruitflies correcting pitch perturbations in steady free flight, where they produce pitching moment mainly by changes in mean stroke angle.

  17. Generation of the pitch moment during the controlled flight after takeoff of fruitflies.

    Science.gov (United States)

    Chen, Mao Wei; Wu, Jiang Hao; Sun, Mao

    2017-01-01

    In the present paper, the controlled flight of fruitflies after voluntary takeoff is studied. Wing and body kinematics of the insects after takeoff are measured using high-speed video techniques, and the aerodynamic force and moment are calculated by the computational fluid dynamics method based on the measured data. How the control moments are generated is analyzed by correlating the computed moments with the wing kinematics. A fruit-fly has a large pitch-up angular velocity owing to the takeoff jump and the fly controls its body attitude by producing pitching moments. It is found that the pitching moment is produced by changes in both the aerodynamic force and the moment arm. The change in the aerodynamic force is mainly due to the change in angle of attack. The change in the moment arm is mainly due to the change in the mean stroke angle and deviation angle, and the deviation angle plays a more important role than the mean stroke angle in changing the moment arm (note that change in deviation angle implies variation in the position of the aerodynamic stroke plane with respect to the anatomical stroke plane). This is unlike the case of fruitflies correcting pitch perturbations in steady free flight, where they produce pitching moment mainly by changes in mean stroke angle.

  18. Some higher moments of deep inelastic structure functions at next-to-next-to-leading order of perturbative QCD

    International Nuclear Information System (INIS)

    Retey, A.; Vermaseren, J.A.M.

    2001-01-01

    We present the analytic next-to-next-to-leading QCD calculation of some higher moments of deep inelastic structure functions in the leading twist approximation. We give results for the moments N=1,3,5,7,9,11,13 of the structure function F 3 . Similarly we present the moments N=10,12 for the flavour singlet and N=12,14 for the non-singlet structure functions F 2 and F L . We have calculated both the three-loop anomalous dimensions of the corresponding operators and the three-loop coefficient functions of the moments of these structure functions

  19. How to introduce the magnetic dipole moment

    International Nuclear Information System (INIS)

    Bezerra, M; Kort-Kamp, W J M; Cougo-Pinto, M V; Farina, C

    2012-01-01

    We show how the concept of the magnetic dipole moment can be introduced in the same way as the concept of the electric dipole moment in introductory courses on electromagnetism. Considering a localized steady current distribution, we make a Taylor expansion directly in the Biot-Savart law to obtain, explicitly, the dominant contribution of the magnetic field at distant points, identifying the magnetic dipole moment of the distribution. We also present a simple but general demonstration of the torque exerted by a uniform magnetic field on a current loop of general form, not necessarily planar. For pedagogical reasons we start by reviewing briefly the concept of the electric dipole moment. (paper)

  20. Gross shell structure of moments of inertia

    International Nuclear Information System (INIS)

    Deleplanque, M.A.; Frauendorf, S.; Pashkevich, V.V.; Chu, S.Y.; Unzhakova, A.

    2002-01-01

    Average yrast moments of inertia at high spins, where the pairing correlations are expected to be largely absent, were found to deviate from the rigid-body values. This indicates that shell effects contribute to the moment of inertia. We discuss the gross dependence of moments of inertia and shell energies on the neutron number in terms of the semiclassical periodic orbit theory. We show that the ground-state shell energies, nuclear deformations and deviations from rigid-body moments of inertia are all due to the same periodic orbits

  1. Influence of a diffuse distribution of nucleon density on the effective moments of inertia of fissioning nuclei

    International Nuclear Information System (INIS)

    Adeev, G.; Trunova, T.

    1982-01-01

    The effective moments of inertia of pre-actinide nuclei with 73< or =Z< or =85 are calculated in the droplet model. In contrast to studies carried out previously, the influence of the diffuseness of the nuclear surface and the nonuniformity of the distribution of nucleon density was taken into account both in calculation of the saddle-point configurations and directly in calculation of the effective moments of inertia of the fissioning nuclei. The results are compared with the moments of inertia calculated in the liquid-drop model and with experimental data

  2. Large Contrast Between the Moment Magnitude of Tremor and the Moment Magnitude of Slip in ETS Events

    Science.gov (United States)

    Kao, H.; Wang, K.; Dragert, H.; Rogers, G. C.; Kao, J. Y.

    2009-12-01

    We have developed an algorithm to estimate the moment magnitudes (Mw) of seismic tremors that are recorded during episodic tremor and slip (ETS) events beneath the northern Cascadia margin. The tremor “cloud” during an ETS episode consists of numerous individual tremor bursts. For each tremor burst, the hypocenter is first determined by the Source-Scanning Algorithm [Kao and Shan, 2004]. From the derived source location, we calculate a set of synthetic seismograms for each station based on a fixed seismic moment but different focal mechanisms. The maximum tremor amplitude observed at each station is then compared to that of the synthetics to give an estimate of the corresponding seismic moment of the tremor burst. The seismic moment averaged over all stations is used to calculate the final tremor burst Mw. We have applied this method to local earthquakes for calibration and the results are very consistent with the magnitudes listed in the catalogue. For each of the 8 northern Cascadia ETS episodes whose GPS coverage is sufficient for slip distribution inversion, the cumulative tremor Mw for the entire tremor cloud, determined from the combined moments of all individual tremor bursts in the ETS episode, is ~3 orders less than the corresponding slip Mw in the same episode (e.g., 3.7 vs. 6.7). This result suggests that aseismic slip is the predominant mode of deformation during ETS. The majority of individual tremor bursts in northern Cascadia have Mw ranging between 1.0 and 1.7 with the mean of 1.34. Only 5% of all tremors are larger than 2.0 with the largest being ~2.5.

  3. Electric dipole moments of nanosolvated acid molecules in water clusters.

    Science.gov (United States)

    Guggemos, Nicholas; Slavíček, Petr; Kresin, Vitaly V

    2015-01-30

    The electric dipole moments of (H2O)nDCl (n=3-9) clusters have been measured by the beam-deflection method. Reflecting the (dynamical) charge distribution within the system, the dipole moment contributes information about the microscopic structure of nanoscale solvation. The addition of a DCl molecule to a water cluster results in a strongly enhanced susceptibility. There is evidence for a noticeable rise in the dipole moment occurring at n≈5-6. This size is consistent with predictions for the onset of ionic dissociation. Additionally, a molecular-dynamics model suggests that even with a nominally bound impurity an enhanced dipole moment can arise due to the thermal and zero-point motion of the proton and the water molecules. The experimental measurements and the calculations draw attention to the importance of fluctuations in defining the polarity of water-based nanoclusters and generally to the essential role played by motional effects in determining the response of fluxional nanoscale systems under realistic conditions.

  4. A new formulation of the relativistic many-body theory of electric dipole moments of closed shell atoms

    International Nuclear Information System (INIS)

    Latha, K V P; Angom, Dilip; Chaudhuri, Rajat K; Das, B P; Mukherjee, Debashis

    2007-01-01

    The electric dipole moments of closed-shell atoms are sensitive to the parity and time-reversal violating phenomena in the nucleus. The nuclear Schiff moment is one such property, it arises from the parity and time reversal violating quark-quark interactions and the quark-chromo electric dipole moments. We calculate the electric dipole moment of atomic 199 Hg arising from the nuclear Schiff moment using the relativistic coupled-cluster theory. This is the most accurate calculation of the quantity to date. Our calculations in combination with the experiment data provide important insights to the P and T violating coupling constants at the elementary particle level. In addition, a new limit on the tensor-pseudo tensor induced atomic EDM, calculated using the relativistic coupled-cluster theory is also presented

  5. Radial pseudoaneurysm following diagnostic coronary angiography

    Directory of Open Access Journals (Sweden)

    Shankar Laudari

    2015-06-01

    Full Text Available The radial artery access has gained popularity as a method of diagnostic coronary catheterization compared to femoral artery puncture in terms of vascular complications and early ambulation. However, very rare complication like radial artery pseudoaneurysm may occur following cardiac catheterization which may give rise to serious consequences. Here, we report a patient with radial pseudoaneurysm following diagnostic coronary angiography. Adequate and correct methodology of compression of radial artery following puncture for maintaining hemostasis is the key to prevention.DOI: http://dx.doi.org/10.3126/jcmsn.v10i3.12776 Journal of College of Medical Sciences-Nepal, 2014, Vol-10, No-3, 48-50

  6. The neutron electric dipole moment

    International Nuclear Information System (INIS)

    He, X.G.; McKellar, B.H.J.; Pakvasa, S.

    1989-01-01

    A systematic study was made of the electric dipole moment (EDM) of neutron D n in various models of CP violation. It was found that in the standard KM model with 3 families the neutron EDM is in the range 1.4x10 -33 ≤ D n ≤ 1.6x10 -31 ecm; that the two Higgs doublet model has approximately the same value of D n as the standard model; that D n in the Weinberg model is predicted to satisfy D n > 10 -25 ecm; that in a class of left-right symmetric models D n is of the order of 10 -26-11 ecm; that in supersymmetric models D n is of the order 10 -22 φ ecm with φ being the possible phase difference of the phases of gluino mass and the gluino-quark-smark mixing matrix and that the strong CP parameter θ is found to be θ -9 , using the present experimental limit that D n -25 ecm with 90% confidence. 65 refs., 10 figs

  7. Kant’s Machiavellian Moment

    Directory of Open Access Journals (Sweden)

    Jay Foster

    2015-11-01

    Full Text Available At least two recent collections of essays – Postmodernism and the Enlightenment (2001 and What’s Left of Enlightenment?: A Postmodern Question (2001 – have responded to postmodern critiques of Enlightenment by arguing that Enlightenment philosophes themselves embraced a number of post-modern themes. This essay situates Kant’s essay Was ist Aufklärung (1784 in the context of this recent literature about the appropriate characterization of modernity and the Enlightenment. Adopting an internalist reading of Kant’s Aufklärung essay, this paper observes that Kant is surprisingly ambivalent about who might be Enlightened and unspecific about when Enlightenment might be achieved. The paper argues that this is because Kant is concerned less with elucidating his concept of Enlightenment and more with characterizing a political condition that might provide the conditions for the possibility of Enlightenment. This paper calls this political condition modernity and it is achieved when civil order can be maintained alongside fractious and possibly insoluble public disagreement about matters of conscience, including the nature and possibility of Enlightenment. Thus, the audience for the Aufklärung essay is not the tax collector, soldier or clergyman, but rather the sovereign. Kant enjoins and advises the prince that discord and debate about matters of conscience need not entail any political unrest or upheaval. It is in this restricted (Pocockian sense that the Enlightenment essay is Kant’s Machiavellian moment.

  8. Stereo Correspondence Using Moment Invariants

    Science.gov (United States)

    Premaratne, Prashan; Safaei, Farzad

    Autonomous navigation is seen as a vital tool in harnessing the enormous potential of Unmanned Aerial Vehicles (UAV) and small robotic vehicles for both military and civilian use. Even though, laser based scanning solutions for Simultaneous Location And Mapping (SLAM) is considered as the most reliable for depth estimation, they are not feasible for use in UAV and land-based small vehicles due to their physical size and weight. Stereovision is considered as the best approach for any autonomous navigation solution as stereo rigs are considered to be lightweight and inexpensive. However, stereoscopy which estimates the depth information through pairs of stereo images can still be computationally expensive and unreliable. This is mainly due to some of the algorithms used in successful stereovision solutions require high computational requirements that cannot be met by small robotic vehicles. In our research, we implement a feature-based stereovision solution using moment invariants as a metric to find corresponding regions in image pairs that will reduce the computational complexity and improve the accuracy of the disparity measures that will be significant for the use in UAVs and in small robotic vehicles.

  9. Lattice results for low moments of light meson distribution amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, R.; Boyle, P.A. [Edinburgh Univ. (United Kingdom). SUPA, School of Physics; Broemmel, D.; Flynn, J.M.; Rae, T.D.; Sachrajda, C.T.C. [Southampton Univ. (United Kingdom). School of Physics and Astronomy; Donnellan, M.A. [NIC/DESY Zeuthen (Germany); Juettner, A. [CERN, Geneva (Switzerland). Physics Dept.

    2010-12-15

    As part of the UKQCD and RBC collaborations' N{sub f} = 2+1 domain-wall fermion phenomenology programme, we calculate the first two moments of the light-cone distribution amplitudes of the pseudoscalar mesons {pi} and K and the (longitudinally-polarised) vector mesons {rho}, K{sup *} and {phi}. We obtain the desired quantities with good precision and are able to discern the expected quark-mass dependence of SU(3)-flavour breaking effects. An important ingredient of the calculation is the nonperturbative renormalisation of lattice operators using the RI{sup '}/MOM technique. (orig.)

  10. Lattice Results for Low Moments of Light Meson Distribution Amplitudes

    CERN Document Server

    Arthur, R; Brommel, D; Donnellan, M A; Flynn, J M; Juttner, A; Rae, T D; Sachrajda, C T.C

    2011-01-01

    As part of the UKQCD and RBC collaborations' N_f=2+1 domain-wall fermion phenomenology programme, we calculate the first two moments of the light-cone distribution amplitudes of the pseudoscalar mesons pion and kaon and the (longitudinally-polarised) vector mesons rho, K-star and phi. We obtain the desired quantities with good precision and are able to discern the expected quark-mass dependence of SU(3)-flavour breaking effects. An important ingredient of the calculation is the nonperturbative renormalisation of lattice operators using the RI'/MOM technique.

  11. Gamma-decay and static moments, ch. 2

    International Nuclear Information System (INIS)

    Koops, J.E.

    1978-01-01

    Electromagnetic properties of low-lying states in the Ni and Cu isotopes with A = 57-67 have been calculated with shell-model wave functions obtained from a schematic interaction (MSDI) and an empirical interaction (ASDI). Effective M1 and E2 operators have been extracted from experimental transition rates and static moments. An extensive compilation of experimental lifetimes, branching and mixing ratios is presented. The adopted values are compared with the calculated results. The properties of yrast levels are generally well reproduced. It is found that the ASDI wave functions are not superior to the MSDI wave functions

  12. Lattice results for low moments of light meson distribution amplitudes

    International Nuclear Information System (INIS)

    Arthur, R.; Boyle, P.A.; Juettner, A.

    2010-12-01

    As part of the UKQCD and RBC collaborations' N f = 2+1 domain-wall fermion phenomenology programme, we calculate the first two moments of the light-cone distribution amplitudes of the pseudoscalar mesons π and K and the (longitudinally-polarised) vector mesons ρ, K * and φ. We obtain the desired quantities with good precision and are able to discern the expected quark-mass dependence of SU(3)-flavour breaking effects. An important ingredient of the calculation is the nonperturbative renormalisation of lattice operators using the RI ' /MOM technique. (orig.)

  13. Moments Method for Shell-Model Level Density

    International Nuclear Information System (INIS)

    Zelevinsky, V; Horoi, M; Sen'kov, R A

    2016-01-01

    The modern form of the Moments Method applied to the calculation of the nuclear shell-model level density is explained and examples of the method at work are given. The calculated level density practically exactly coincides with the result of full diagonalization when the latter is feasible. The method provides the pure level density for given spin and parity with spurious center-of-mass excitations subtracted. The presence and interplay of all correlations leads to the results different from those obtained by the mean-field combinatorics. (paper)

  14. Scaling laws for radial foil bearings

    Science.gov (United States)

    Honavara Prasad, Srikanth

    The effects of fluid pressurization, structural deformation of the compliant members and heat generation in foil bearings make the design and analysis of foil bearings very complicated. The complex fluid-structural-thermal interactions in foil bearings also make modeling efforts challenging because these phenomena are governed by highly non-linear partial differential equations. Consequently, comparison of various bearing designs require detailed calculation of the flow fields (velocities, pressures), bump deflections (structural compliance) and heat transfer phenomena (viscous dissipation in the fluid, frictional heating, temperature profile etc.,) resulting in extensive computational effort (time/hardware). To obviate rigorous computations and aid in feasibility assessments of foil bearings of various sizes, NASA developed the "rule of thumb" design guidelines for estimation of journal bearing load capacity. The guidelines are based on extensive experimental data. The goal of the current work is the development of scaling laws for radial foil bearings to establish an analytical "rule of thumb" for bearing clearance and bump stiffness. The use of scale invariant Reynolds equation and experimentally observed NASA "rule of thumb" yield scale factors which can be deduced from first principles. Power-law relationships between: a. Bearing clearance and bearing radius, and b. bump stiffness and bearing radius, are obtained. The clearance and bump stiffness values obtained from scaling laws are used as inputs for Orbit simulation to study various cases. As the clearance of the bearing reaches the dimensions of the material surface roughness, asperity contact breaks the fluid film which results in wear. Similarly, as the rotor diameter increases (requiring larger bearing diameters), the load capacity of the fluid film should increase to prevent dry rubbing. This imposes limits on the size of the rotor diameter and consequently bearing diameter. Therefore, this thesis aims

  15. Stability of radial and non-radial pulsation modes of massive ZAMS models

    International Nuclear Information System (INIS)

    Odell, A.P.; Pausenwein, A.; Weiss, W.W.; Hajek, A.

    1987-01-01

    The authors have computed non-adiabatic eigenvalues for radial and non-radial pulsation modes of star models between 80 and 120 M solar with composition of chi=0.70 and Z=0.02. The radial fundamental mode is unstable in models with mass greater than 95 M solar , but the first overtone mode is always stable. The non-radial modes are all stable for all models, but the iota=2 f-mode is the closest to being driven. The non-radial modes are progressively more stable with higher iota and with higher n (for both rho- and g-modes). Thus, their results indicate that radial pulsation limits the upper mass of a star

  16. Electric dipole moment of 13C

    Science.gov (United States)

    Yamanaka, Nodoka; Yamada, Taiichi; Hiyama, Emiko; Funaki, Yasuro

    2017-06-01

    We calculate for the first time the electric dipole moment (EDM) of 13C generated by the isovector charge conjugation-parity (CP)-odd pion exchange nuclear force in the α -cluster model, which describes well the structures of low-lying states of the 13C nucleus. The linear dependence of the EDM of 13C on the neutron EDM and the isovector CP-odd nuclear coupling is found to be d13C=-0.33 dn-0.0020 G¯π(1 ) . The linear enhancement factor of the CP-odd nuclear coupling is smaller than that of the deuteron, due to the difference of the structure between the 1 /21- state and the opposite-parity (1 /2+ ) states. We clarify the role of the structure played in the enhancement of the EDM. This result provides good guiding principles to search for other nuclei with large enhancement factor. We also mention the role of the EDM of 13C in determining the new physics beyond the standard model.

  17. Electric Dipole Moments in the MSSM Reloaded

    CERN Document Server

    Ellis, Jonathan Richard; Pilaftsis, Apostolos

    2008-01-01

    We present a detailed study of the Thallium, neutron, Mercury and deuteron electric dipole moments (EDMs) in the CP-violating Minimal Supersymmetric extension of the Standard Model (MSSM). We take into account the complete set of one-loop graphs, the dominant Higgs-mediated two-loop diagrams, the complete CP-odd dimension-six Weinberg operator and the Higgs-mediated four-fermion operators. We improve upon earlier calculations by including the resummation effects due to CP-violating Higgs-boson mixing and to threshold corrections to the Yukawa couplings of all up- and down-type quarks and charged leptons. As an application of our study, we analyse the EDM constraints on the CPX, trimixing and Maximally CP- and Minimally Flavour-Violating (MCPMFV) scenarios. Cancellations may occur among the CP-violating contributions to the three measured EDMs arising from the 6 CP-violating phases in the MCPMFV scenario, leaving open the possibility of relatively large contributions to other CP-violating observables. The anal...

  18. 21 CFR 866.4800 - Radial immunodiffusion plate.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4800 Radial immunodiffusion plate. (a) Identification. A radial immunodiffusion plate for clinical use...

  19. Relation between second-order moment radius of focal spot and near field distribution of laser beam

    International Nuclear Information System (INIS)

    Gao Xueyan; Su Yi; Ye Yidong; Guan Youguang

    2011-01-01

    In order to analyze the effect of aberration of amplitude and phase of laser beam on second-order moment radius of focal spot, based on the Fraunhofer formula for light wave scalar diffraction theory and the definition of second-order moment radius, the general expression for focal spot second-order moment radius depending on the complex amplitude of near field is derived. The second-order moment radius of the focal spot depending on intensity distribution and phase distribution of near field is derived, and its clear physical meaning is described. The second-order moment radius and the divergence angle of focal spot may be easily calculated with the second-order moment radius expression of focal spot. At last, the divergence angles of focal spots of several kinds of Gaussian laser beams are calculated directly, and the results are in accordance with those in the related references. (authors)

  20. Neck Muscle Moment Arms Obtained In-Vivo from MRI: Effect of Curved and Straight Modeled Paths.

    Science.gov (United States)

    Suderman, Bethany L; Vasavada, Anita N

    2017-08-01

    Musculoskeletal models of the cervical spine commonly represent neck muscles with straight paths. However, straight lines do not best represent the natural curvature of muscle paths in the neck, because the paths are constrained by bone and soft tissue. The purpose of this study was to estimate moment arms of curved and straight neck muscle paths using different moment arm calculation methods: tendon excursion, geometric, and effective torque. Curved and straight muscle paths were defined for two subject-specific cervical spine models derived from in vivo magnetic resonance images (MRI). Modeling neck muscle paths with curvature provides significantly different moment arm estimates than straight paths for 10 of 15 neck muscles (p straight lines to model muscle paths can lead to overestimating neck extension moment. However, moment arm methods for curved paths should be investigated further, as different methods of calculating moment arm can provide different estimates.

  1. Closed forms and multi-moment maps

    DEFF Research Database (Denmark)

    Madsen, Thomas Bruun; Swann, Andrew Francis

    2013-01-01

    We extend the notion of multi-moment map to geometries defined by closed forms of arbitrary degree. We give fundamental existence and uniqueness results and discuss a number of essential examples, including geometries related to special holonomy. For forms of degree four, multi-moment maps are gu...

  2. Magnetic moment of single layer graphene rings

    Science.gov (United States)

    Margulis, V. A.; Karpunin, V. V.; Mironova, K. I.

    2018-01-01

    Magnetic moment of single layer graphene rings is investigated. An analytical expression for the magnetic moment as a function of the magnetic field flux through the one-dimensional quantum rings is obtained. This expression has the oscillation character. The oscillation period is equal to one flux quanta.

  3. Polarization electric dipole moment in nonaxial nuclei

    International Nuclear Information System (INIS)

    Denisov, V.Yu.; Davidovskaya, O.I.

    1996-01-01

    An expression for the macroscopic polarization electric dipole moment is obtained for nonaxial nuclei whose radii of the proton and neutron surfaces are related by a linear equation. Dipole transitions associated with the polarization electric dipole moment are analyzed for static and dynamical multipole deformations

  4. Droplet-model electric dipole moments

    International Nuclear Information System (INIS)

    Myers, W.D.; Swiatecki, W.J.

    1991-01-01

    Denisov's recent criticism of the droplet-model formula for the dipole moment of a deformed nucleus as derived by Dorso et al., it shown to be invalid. This helps to clarify the relation of theory to the measured dipole moments, as discussed in the review article by Aberg et al. (orig.)

  5. Teachable Moment: Google Earth Takes Us There

    Science.gov (United States)

    Williams, Ann; Davinroy, Thomas C.

    2015-01-01

    In the current educational climate, where clearly articulated learning objectives are required, it is clear that the spontaneous teachable moment still has its place. Authors Ann Williams and Thomas Davinroy think that instructors from almost any discipline can employ Google Earth as a tool to take advantage of teachable moments through the…

  6. Impeller radial force evolution in a large double-suction centrifugal pump during startup at the shut-off condition

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhichao [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China); Wang, Fujun, E-mail: wangfj@cau.edu.cn [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China); Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, China Agricultural University, Beijing 100083 (China); Yao, Zhifeng [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China); Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, China Agricultural University, Beijing 100083 (China); Tao, Ran [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China); Xiao, Ruofu [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China); Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, China Agricultural University, Beijing 100083 (China); Li, Huaicheng [Shanghai Liancheng (Group) Co., Ltd., Shanghai 201812 (China)

    2016-12-15

    Highlights: • Conclude the characteristics of transient radial force in the startup process for a large double-suction centrifugal pump. • The overall direction of the radial force during startup process is also confirmed. • A formula used to calculate the transient radial force during startup process is proposed. • A relationship between radial force variation and axial vortex development in blade channel during the startup process is established. The mechanism of the radial force evolution is revealed. - Abstract: Double-suction centrifugal pumps play an important role in the main feedwater systems of nuclear power plant. The impeller radial force in a centrifugal pump varies dramatically during startup at the shut-off condition. In this study, the startup process of a large double-suction centrifugal pump is investigated using CFD. During testing, the impeller speed is accelerated from zero to its rated speed in 1.0 s (marked as t{sub 0}) and is then maintained at the rated speed. The results show that the radial force increase lags behind the impeller speed increase. At 0–0.4t{sub 0}, the radial force is small (approaching zero). At 0.4–1.4t{sub 0}, the radial force increases rapidly. After 1.4t{sub 0}, the average radial force stabilizes and reaches its maximum value of 55,619 N. The observed maximum radial force value during startup is approximately nine times as high as the radial force under rated condition. During startup, the overall radial force direction is proximate to the radial line located 25° from the volute tongue along circumferential direction. A transient radial force formula is proposed to evaluate the changes in radial force during startup. The streamline distribution in impeller passages and the impeller outlet pressure profile varying over time are produced. The relationship between radial force evolution and the varying axial-to-spiral vortex structure is analyzed. The radial force change mechanism is revealed. This research

  7. Impeller radial force evolution in a large double-suction centrifugal pump during startup at the shut-off condition

    International Nuclear Information System (INIS)

    Zou, Zhichao; Wang, Fujun; Yao, Zhifeng; Tao, Ran; Xiao, Ruofu; Li, Huaicheng

    2016-01-01

    Highlights: • Conclude the characteristics of transient radial force in the startup process for a large double-suction centrifugal pump. • The overall direction of the radial force during startup process is also confirmed. • A formula used to calculate the transient radial force during startup process is proposed. • A relationship between radial force variation and axial vortex development in blade channel during the startup process is established. The mechanism of the radial force evolution is revealed. - Abstract: Double-suction centrifugal pumps play an important role in the main feedwater systems of nuclear power plant. The impeller radial force in a centrifugal pump varies dramatically during startup at the shut-off condition. In this study, the startup process of a large double-suction centrifugal pump is investigated using CFD. During testing, the impeller speed is accelerated from zero to its rated speed in 1.0 s (marked as t_0) and is then maintained at the rated speed. The results show that the radial force increase lags behind the impeller speed increase. At 0–0.4t_0, the radial force is small (approaching zero). At 0.4–1.4t_0, the radial force increases rapidly. After 1.4t_0, the average radial force stabilizes and reaches its maximum value of 55,619 N. The observed maximum radial force value during startup is approximately nine times as high as the radial force under rated condition. During startup, the overall radial force direction is proximate to the radial line located 25° from the volute tongue along circumferential direction. A transient radial force formula is proposed to evaluate the changes in radial force during startup. The streamline distribution in impeller passages and the impeller outlet pressure profile varying over time are produced. The relationship between radial force evolution and the varying axial-to-spiral vortex structure is analyzed. The radial force change mechanism is revealed. This research provides a scientific

  8. On the Higher Moments of Particle Multiplicity, Chemical Freeze-Out, and QCD Critical Endpoint

    Directory of Open Access Journals (Sweden)

    A. Tawfik

    2013-01-01

    Full Text Available We calculate the first six nonnormalized moments of particle multiplicity within the framework of the hadron resonance gas model. In terms of the lower order moments and corresponding correlation functions, general expressions of higher order moments are derived. Thermal evolution of the first four normalized moments and their products (ratios are studied at different chemical potentials, so that it is possible to evaluate them at chemical freeze-out curve. It is found that a nonmonotonic behaviour reflecting the dynamical fluctuation and strong correlation of particles starts to appear from the normalized third order moment. We introduce novel conditions for describing the chemical freeze-out curve. Although the hadron resonance gas model does not contain any information on the criticality related to the chiral dynamics and singularity in the physical observables, we are able to find out the location of the QCD critical endpoint at μ ~ 350  MeV and temperature T ~ 162  MeV.

  9. Explanations pertaining to the Hip Joint Flexor Moment During the Stance Phase of Human Walking

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Cappelen, Katrine L; Skorini, Ragnhild

    2012-01-01

    A hip joint flexor moment in the last half of the stance phase during walking has repeatedly been reported. However, the purpose of this moment remains uncertain and it is unknown how it is generated. Nine male subjects were instructed to walk at 4.5 km/h with their upper body in three different...... positions: normal, inclined and reclined. Net joint moments were calculated about the hip, knee and ankle joint. The peak hip joint flexor moment during late stance was significantly lower during inclined walking than in the two other conditions. During normal walking the iliacus muscle showed no or very...... weak activity and first at the transition from stance to swing. When walking reclined, a clear but rather low activity level of the iliacus muscle was seen in the first half of the stance phase, which could contribute to the hip moment. In the inclined condition the iliacus showed much increased...

  10. Measurement of the Magnetic Moment of the Negative Muon Bound in Different Atoms

    CERN Document Server

    Mamedov, T N; Gritsaj, K I; Kormann, O; Major, J V; Stoikov, A V; Zimmermann, U

    2001-01-01

    Theoretical calculations show that the magnetic moment of the electron and the negative muon in a bound state in an atom should be different from the magnetic moment of the free particle due to their relativistic motion. There are also additional radiative corrections to the magnetic moment of a bound electron (muon) due to the presence of the strong Coulomb field of the atomic nucleus. The results of the measurements of the magnetic moment of the negative muon in carbon, oxygen, magnesium, silicon, sulfur, and zinc are presented. The accuracy of the measurements makes it possible to prove the dependence of the relativistic correction to the magnetic moment of a bound muon on Z of the atom.

  11. Local electric dipole moments for periodic systems via density functional theory embedding.

    Science.gov (United States)

    Luber, Sandra

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange-correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  12. Local electric dipole moments for periodic systems via density functional theory embedding

    Energy Technology Data Exchange (ETDEWEB)

    Luber, Sandra, E-mail: sandra.luber@chem.uzh.ch [Institut für Chemie, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland)

    2014-12-21

    We describe a novel approach for the calculation of local electric dipole moments for periodic systems. Since the position operator is ill-defined in periodic systems, maximally localized Wannier functions based on the Berry-phase approach are usually employed for the evaluation of local contributions to the total electric dipole moment of the system. We propose an alternative approach: within a subsystem-density functional theory based embedding scheme, subset electric dipole moments are derived without any additional localization procedure, both for hybrid and non-hybrid exchange–correlation functionals. This opens the way to a computationally efficient evaluation of local electric dipole moments in (molecular) periodic systems as well as their rigorous splitting into atomic electric dipole moments. As examples, Infrared spectra of liquid ethylene carbonate and dimethyl carbonate are presented, which are commonly employed as solvents in Lithium ion batteries.

  13. Effects of the radial electric field in a quasisymmetric stellarator

    International Nuclear Information System (INIS)

    Landreman, Matt; Catto, Peter J

    2011-01-01

    Recent calculations have shown that a radial electric field can significantly alter the neoclassical ion heat flux, ion flow, bootstrap current and residual zonal flow in a tokamak, even when the E x B drift is much smaller than the ion thermal speed. Here we show the novel analytical methods used in these calculations can be adapted to a quasisymmetric stellarator. The methods are based on using the conserved helical momentum ψ * instead of the poloidal or toroidal flux as a radial coordinate in the kinetic equation. The banana-regime calculations also employ a model collision operator that keeps only the velocity-space derivatives normal to the trapped-passing boundary, even as this boundary is shifted and deformed by the E x B drift. We prove the isomorphism between quasisymmetric stellarators and tokamaks extends to the finite-E x B generalizations of both banana-regime and plateau-regime neoclassical theory and the residual zonal flow. The plateau-regime results may be relevant to the HSX stellarator, and both the plateau- and banana-regime results can be used to validate stellarator transport codes.

  14. Effects of radial electrical field on neoclassical transport in tokamaks

    International Nuclear Information System (INIS)

    Wang Zhongtian; Le Clair, G.

    1996-07-01

    Neoclassical transport theory for tokamaks in presence of a radial electrical field with shear is developed using Hamiltonian formalism. Diffusion coefficients are derived in both plateau regime including a large electric field and banana regime including the squeezing factor which can greatly affect diffusion at the plasma edge. The scaling on squeezing factor is different from the one given by Shaing and Hazeltine. Rotation speeds are calculated in the scrape-off region. They are in good agreement with measurements on TdeV Tokamak. (2 figs.)

  15. Transport modelling including radial electric field and plasma rotation

    International Nuclear Information System (INIS)

    Fukuyama, A.; Fuji, Y.; Itoh, S.-I.

    1994-01-01

    Using a simple turbulent transport model with a constant diffusion coefficient and a fixed temperature profile, the density profile in a steady state and the transient behaviour during the co and counter neutral beam injection are studied. More consistent analysis has been initiated with a turbulent transport model based on the current diffusive high-n ballooning mode. The enhancement of the radial electric field due to ion orbit losses and the reduction of the transport due to the poloidal rotation shear are demonstrated. The preliminary calculation indicates a sensitive temperature dependence of the density profile. (author)

  16. Application of a proposed overcurrent relay in radial distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Conde, A.; Vazquez, E. [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, A.P. 36-F, CU, CP 66450, San Nicolas de los Garza, Nuevo Leon (Mexico)

    2011-02-15

    This paper contains the application criteria and coordination process for a proposed overcurrent relay in a radial power system with feed from one or multiple sources. This relay uses independent functions to detect faults and to calculate the operation time. Also this relay uses a time element function that allows it to reduce the time relay operation, enhancing the backup protection. Some of the proposed approaches improve the sensitivity of the relay. The selection of the best approach in the proposed relay is defined by the needs of the application. The proposed protection can be considered as an additional function protection to conventional overcurrent relays. (author)

  17. The introduction of radial streaming into Galanin's method

    International Nuclear Information System (INIS)

    Leslie, D.C.

    1963-08-01

    In his original formulation of small-source theory, Galanin allowed only simple source/sinks at the lattice points. The effect of streaming across air gaps can be allowed for by including dipoles as well as simple sources at these points. The calculation is carried through and a formula is deduced for the radial streaming factor. This study was carried out during 1960, and was not published because it was to some extent superseded by other work. Galanin and Kuchorov have now published an analysis of this problem by a different method, and it seems that an account of the earlier study might now be of some interest. (author)

  18. Transport analysis of radial electric field in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2004-01-01

    A set of transport equations is analyzed which induces the radial transition of the electric field. A temperature profile which is related with the transport barrier is obtained by use of the theoretical model for the anomalous transport diffusivities. A dependence on the different initial condition is found even if the same values of the control parameters are used in calculations. A study of the temporal evolution of E r is done. We examine the test of the adopted theoretical model for the anomalous transport diffusivities compared with the experimental result in Large Helical Device (LHD). (authors)

  19. Radial and tangential friction in heavy ion strongly damped collisions

    International Nuclear Information System (INIS)

    Jain, A.K.; Sarma, N.

    1979-01-01

    Deeply inelastic heavy ion collisions have been successfully described in terms of a nucleon exchange mechanism between two nucleon clouds. This model has also predicted the large angular momentum that is induced in the colliding nuclei. However computations were simplified in the earlier work by assuming that the friction was perturbation on the elastic scattering trajectory. Results of a more rigorous calculation are reported and the effect of modification of the trajectory on the energy transfer, the angular momentum induced and on the ratio of the radial to the tangential friction coefficients is reported. (auth.)

  20. Filtering algorithm for radial displacement measurements of a dented pipe

    International Nuclear Information System (INIS)

    Hojjati, M.H.; Lukasiewicz, S.A.

    2008-01-01

    Experimental measurements are always affected by some noise and errors caused by inherent inaccuracies and deficiencies of the experimental techniques and measuring devices used. In some fields, such as strain calculations in a dented pipe, the results are very sensitive to the errors. This paper presents a filtering algorithm to remove noise and errors from experimental measurements of radial displacements of a dented pipe. The proposed filter eliminates the errors without harming the measured data. The filtered data can then be used to estimate membrane and bending strains. The method is very effective and easy to use and provides a helpful practical measure for inspection purposes

  1. Radial heat conduction in a power reactor fuel element

    International Nuclear Information System (INIS)

    Ventura, M.A.

    1998-01-01

    Two radial conduction models, one for steady state and another for unsteady state, in a nuclear power reactor fuel element are developed. The objective is to obtain the temperatures in the fuel pellet and the cladding. The lumped-parameter hypothesis are adopted to represent the system. Both models are verified and their results are compared with similar ones. A method to calculate the conductance in the gap between the UO 2 pellet and the clad and its associated uncertainty is included in the steady state model. (author) [es

  2. THREE-MOMENT BASED APPROXIMATION OF PROBABILITY DISTRIBUTIONS IN QUEUEING SYSTEMS

    Directory of Open Access Journals (Sweden)

    T. I. Aliev

    2014-03-01

    Full Text Available The paper deals with the problem of approximation of probability distributions of random variables defined in positive area of real numbers with coefficient of variation different from unity. While using queueing systems as models for computer networks, calculation of characteristics is usually performed at the level of expectation and variance. At the same time, one of the main characteristics of multimedia data transmission quality in computer networks is delay jitter. For jitter calculation the function of packets time delay distribution should be known. It is shown that changing the third moment of distribution of packets delay leads to jitter calculation difference in tens or hundreds of percent, with the same values of the first two moments – expectation value and delay variation coefficient. This means that delay distribution approximation for the calculation of jitter should be performed in accordance with the third moment of delay distribution. For random variables with coefficients of variation greater than unity, iterative approximation algorithm with hyper-exponential two-phase distribution based on three moments of approximated distribution is offered. It is shown that for random variables with coefficients of variation less than unity, the impact of the third moment of distribution becomes negligible, and for approximation of such distributions Erlang distribution with two first moments should be used. This approach gives the possibility to obtain upper bounds for relevant characteristics, particularly, the upper bound of delay jitter.

  3. Impurity profiles and radial transport in the EXTRAP-T2 reversed field pinch

    International Nuclear Information System (INIS)

    Sallander, J.

    1999-01-01

    Radially resolved spectroscopy has been used to measure the radial distribution of impurity ions (O III-O V and C III-CVI) in the EXTRAP-T2 reversed field pinch (RFP). The radial profile of the emission is reconstructed from line emission measured along five lines of sight. The ion density profile is the fitted quantity in the reconstruction of the brightness profile and is thus obtained directly in this process. These measurements are then used to adjust the parameters in transport calculations in order to obtain consistency with the observed ion density profiles. Comparison between model and measurements show that a radial dependence in the diffusion is needed to explain the measured ion densities. (author)

  4. Impurity profiles and radial transport in the EXTRAP-T2 reversed field pinch

    Science.gov (United States)

    Sallander, J.

    1999-05-01

    Radially resolved spectroscopy has been used to measure the radial distribution of impurity ions (O III-O V and C III-CVI) in the EXTRAP-T2 reversed field pinch (RFP). The radial profile of the emission is reconstructed from line emission measured along five lines of sight. The ion density profile is the fitted quantity in the reconstruction of the brightness profile and is thus obtained directly in this process. These measurements are then used to adjust the parameters in transport calculations in order to obtain consistency with the observed ion density profiles. Comparison between model and measurements show that a radial dependence in the diffusion is needed to explain the measured ion densities.

  5. Probability of primordial black hole formation and its dependence on the radial profile of initial configurations

    International Nuclear Information System (INIS)

    Hidalgo, J. C.; Polnarev, A. G.

    2009-01-01

    In this paper we derive the probability of the radial profiles of spherically symmetric inhomogeneities in order to provide an improved estimation of the number density of primordial black holes (PBHs). We demonstrate that the probability of PBH formation depends sensitively on the radial profile of the initial configuration. We do this by characterizing this profile with two parameters chosen heuristically: the amplitude of the inhomogeneity and the second radial derivative, both evaluated at the center of the configuration. We calculate the joint probability of initial cosmological inhomogeneities as a function of these two parameters and then find a correspondence between these parameters and those used in numerical computations of PBH formation. Finally, we extend our heuristic study to evaluate the probability of PBH formation taking into account for the first time the radial profile of curvature inhomogeneities.

  6. Permanent electric dipole moments of PtX (X = H, F, Cl, Br, and I) by the composite approach

    Science.gov (United States)

    Deng, Dan; Lian, Yongqin; Zou, Wenli

    2017-11-01

    Using the FPD composite approach of Peterson et. al. we calculate the permanent electric dipole moments of PtX (X = H, F, Cl, Br, and I) at the equilibrium geometries of their ground states. The dipole moment of PtF is estimated to be 3.421 Debye, being very close to the experimental value of 3.42(6) Debye. This research also suggests the ordering of dipole moments of PtX being proportional to the electronegativity of X.

  7. Molecular multipole moments of water molecules in ice Ih

    International Nuclear Information System (INIS)

    Batista, E.R.; Xantheas, S.S.; Jonsson, H.

    1998-01-01

    We have used an induction model including dipole, dipole endash quadrupole, quadrupole endash quadrupole polarizability and first hyperpolarizability as well as fixed octopole and hexadecapole moments to study the electric field in ice. The self-consistent induction calculations gave an average total dipole moment of 3.09 D, a 67% increase over the dipole moment of an isolated water molecule. A previous, more approximate induction model study by Coulson and Eisenberg [Proc. R. Soc. Lond. A 291, 445 (1966)] suggested a significantly smaller average value of 2.6 D. This value has been used extensively in recent years as a reference point in the development of various polarizable interaction potentials for water as well as for assessment of the convergence of water cluster properties to those of bulk. The reason for this difference is not due to approximations made in the computational scheme of Coulson and Eisenberg but rather due to the use of less accurate values for the molecular multipoles in these earlier calculations. copyright 1998 American Institute of Physics

  8. Magnetic dipole moments of deformed odd-A nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Garg, V P; Sharma, S D; Mahesh, P S [Punjabi Univ., Patiala (India). Dept. of Physics

    1976-12-01

    Using an extended version of A S Davydov and G F Filippov's model (1958), B E Chi and J P Davidson have calculated magnetic moments of odd-A nuclei in 2s-ld shell, diagonalizing the state matrices for a set of parameters giving the best fit for nuclear spectra (1966). To study the failure of this model in case of nuclear moments, instead of diagonalizing an attempt has been made to simplify the expression for magnetic dipole moment for single nucleonic states without configuration mixing. The model takes care of the proper sign of spin projections. On replacing the total angular momentum j of odd particle (proton or neutron) by its projection ..cap omega.., the expression reduces to that of Mottelson and Nilsson for spin-up nuclei. The Coriolis coupling calculations also have been performed for those odd-A nuclei with K = 1/2. The results are found in better agreement with experimental report in comparison with those of other models.

  9. Calculation of Rydberg interaction potentials

    DEFF Research Database (Denmark)

    Weber, Sebastian; Tresp, Christoph; Menke, Henri

    2017-01-01

    for calculating the required electric multipole moments and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up...... to higher multipole orders on a desktop computer. Finally, we present example calculations showing the relevance of the full interaction calculation to current experiments. Our software for calculating Rydberg potentials including all features discussed in this tutorial is available as open source....

  10. On improved confinement in mirror plasmas by a radial electric field

    Science.gov (United States)

    Ågren, O.; Moiseenko, V. E.

    2017-11-01

    A weak radial electric field can suppress radial excursions of a guiding center from its mean magnetic surface. The physical origin of this effect is the smearing action by a poloidal E × B rotation, which tend to cancel out the inward and outward radial drifts. A use of this phenomenon may provide larger margins for magnetic field shaping with radial confinement of particles maintained in the collision free idealization. Mirror fields, stabilized by a quadrupolar field component, are of particular interest for their MHD stability and the possibility to control the quasi neutral radial electric field by biased potential plates outside the confinement region. Flux surface footprints on the end tank wall have to be traced to avoid short-circuiting between biased plates. Assuming a robust biasing procedure, moderate voltage demands for the biased plates seems adequate to cure even the radial excursions of Yushmanov ions which could be locally trapped near the mirrors. Analytical expressions are obtained for a magnetic quadrupolar mirror configuration which possesses minimal radial magnetic drifts in the central confinement region. By adding a weak controlled radial quasi-neutral electric field, the majority of gyro centers are predicted to be forced to move even closer to their respective mean magnetic surface. The gyro center radial coordinate is in such a case an accurate approximation for a constant of motion. By using this constant of motion, the analysis is in a Vlasov description extended to finite β. A correspondence between that Vlasov system and a fluid description with a scalar pressure and an electric potential is verified. The minimum B criterion is considered and implications for flute mode stability in the considered magnetic field is analyzed. By carrying out a long-thin expansion to a higher order, the validity of the calculations are extended to shorter and more compact device designs.

  11. Weighted radial dimension: an improved fractal measurement for highway transportation networks distribution

    Science.gov (United States)

    Feng, Yongjiu; Liu, Miaolong; Tong, Xiaohua

    2007-06-01

    An improved fractal measurement, the weighted radial dimension, is put forward for highway transportation networks distribution. The radial dimension (DL), originated from subway investigation in Stuttgart, is a fractal measurement for transportation systems under ideal assumption considering all the network lines to be homogeneous curves, ignoring the difference on spatial structure, quality and level, especially the highway networks. Considering these defects of radial dimension, an improved fractal measurement called weighted radial dimension (D WL) is introduced and the transportation system in Guangdong province is studied in detail using this novel method. Weighted radial dimensions are measured and calculated, and the spatial structure, intensity and connectivity of transportation networks are discussed in Guangdong province and the four sub-areas: the Pearl River Delta area, the East Costal area, the West Costal area and the Northern Guangdong area. In Guangdong province, the fractal spatial pattern characteristics of transportation system vary remarkably: it is the highest in the Pearl River Delta area, moderate in Costal area and lowest in the Northern Guangdong area. With the Pearl River Delta area as the centre, the weighted radial dimensions decrease with the distance increasing, while the decline level is smaller in the costal area and greater in the Northern Guangdong province. By analysis of the conic of highway density, it is recognized that the density decrease with the distance increasing from the calculation centre (Guangzhou), demonstrating the same trend as weighted radial dimensions shown. Evidently, the improved fractal measurement, weighted radial dimension, is an indictor describing the characteristics of highway transportation system more effectively and accurately.

  12. Magnetic moment and beta decay of RaE

    International Nuclear Information System (INIS)

    Morita, Masato; Ohtsubo, Hisao; Arita, Kozo.

    1976-01-01

    Asymmetry of the beta-ray angular distribution in polarized RaE is evaluated with the numerical values of nuclear matrix elements, i∫r, ∫α and ∫sigma x r, which are derived by the method of the least chi-square fit to the experimental data on the spectral shape, longitudinal polarization and ft value. The magnetic moment of RaE is known to have a negative sign from this calculation, the measured asymmetry in Tokyo and the knowledge about the internal magnetic field at decaying nucleus. A consistent explanation of i∫r, ∫sigma x r and the magnetic moment of RaE is obtained in a shell model, where the tensor forces in the residual interaction and the core polarization are properly taken into account. (auth.)

  13. Quadrupole moments of wobbling excitations in 163Lu

    International Nuclear Information System (INIS)

    Goergen, A.; Clark, R.M.; Cromaz, M.; Fallon, P.; Lee, I.Y.; Macchiavelli, A.O.; Ward, D.; Hagemann, G.B.; Sletten, G.; Huebel, H.; Bengtsson, R.

    2004-01-01

    Lifetimes of states in the triaxial strongly deformed bands of 163 Lu have been measured with the Gammasphere spectrometer using the Doppler-shift attenuation method. The bands have been interpreted as wobbling-phonon excitations from the characteristic electromagnetic properties of the transitions connecting the bands. Quadrupole moments are extracted for the zero-phonon yrast band and, for the first time, for the one-phonon wobbling band. The very similar results found for the two bands suggest a similar intrinsic structure and support the wobbling interpretation. While the in-band quadrupole moments for the bands show a decreasing trend towards higher spin, the ratio of the interband to the in-band transition strengths remains constant. Both features can be understood by a small increase in triaxiality towards higher spin. Such a change in triaxiality is also found in cranking calculations, to which the experimental results are compared

  14. Measurement of nuclear moments and radii by collinear laser spectroscopy

    CERN Multimedia

    Geithner, W R; Lievens, P; Kotrotsios, G; Silverans, R; Kappertz, S

    2002-01-01

    %IS304 %title\\\\ \\\\Collinear laser spectroscopy on a fast beam has proven to be a widely applicable and very efficient tool for measurements of changes in mean square nuclear charge radii, nuclear spins, magnetic dipole and electric quadrupole moments. Recent developments of extremely sensitive non-optical detection schemes enabled for some elements the extension of the measurements towards the very short-lived isotopes in the far wings of the ISOLDE production curves. The gain in sensitivity opens up new perspectives, particularly for measurements on lighter nuclei whose ground-state properties can be interpreted by large scale microscopic calculations instead of the more phenomenologic models used for heavier nuclei.\\\\ \\\\ For the sequence of argon isotopes $^{32-40}$Ar and $^{46}$Ar isotope shifts and nuclear moments were measured by optical pumping followed by state selective collisional ionization and detection of the $\\beta$-decay. Similarly, the low-background $\\alpha$-detection was used to extend earlie...

  15. Mercury monohalides: suitability for electron electric dipole moment searches.

    Science.gov (United States)

    Prasannaa, V S; Vutha, A C; Abe, M; Das, B P

    2015-05-08

    Heavy polar diatomic molecules are the primary tools for searching for the T-violating permanent electric dipole moment of the electron (eEDM). Valence electrons in some molecules experience extremely large effective electric fields due to relativistic interactions. These large effective electric fields are crucial to the success of polar-molecule-based eEDM search experiments. Here we report on the results of relativistic ab initio calculations of the effective electric fields in a series of molecules that are highly sensitive to an eEDM, the mercury monohalides (HgF, HgCl, HgBr, and HgI). We study the influence of the halide anions on E_{eff}, and identify HgBr and HgI as attractive candidates for future electric dipole moment search experiments.

  16. Theory of nuclear magnetic moments - LT-35

    Energy Technology Data Exchange (ETDEWEB)

    Kerman, A. K.

    1952-09-15

    The purpose of these notes is to give an account of some attempts at interpreting the observed values of nuclear magnetic moments. There is no attempt at a complete summary of the field as that would take much more space than is used here. In many cases the arguments are only outlined and references are given for those interested in further details. A discussion of the theory of nuclear magnetic moments necessitates many excursions into the details of the nuclear models because the magnetic moments have a direct bearing on the validity of these models. However the main emphasis here is on those features which tend to explain the magnetic moments and other evidence is not discussed unless it has a direct bearing on the problem. In the first part of the discussion the Shell Model of the nucleus is used, as this model seems to correlate a large body of data relating to the heavier nuclei. Included here are the modifications proposed to explain the fact that the experimental magnetic moments do not fit quantitatively with the exact predictions of the Shell Model. The next sections deal with some of the more drastic modifications introduced to explain the large nuclear quadrupole moments and the effect of these modifications on the magnetic moments. Finally we turn to more detailed investigations of the light nuclei, in particular the - Conjugate nuclei. (author)

  17. Magnitude, direction and location of the resultant dipole moment of the pig heart.

    Science.gov (United States)

    Hodgkin, B C; Nelson, C V; Angelakos, E T

    1976-04-01

    Vectorcardiograms were obtained from 50 young domestic pigs using the Nelson lead system. Compensation for body size and shape is achieved and the resultant dipole moment magnitude reflects heart size. A strong relationship was found between heart size and maximum magnitude. Dipole moment magnitude increased as four pigs increased from five to ten weeks of age. The dipole moment during QRS is considered in light of known pig heart excitation pattern. Dipole locations during QRS, calculated by computer solution of the Gabor-Nelson equations, were in agreement with heart location and excitation data.

  18. Electric dipole moment of the top quark in Higgs-boson-exchange models of CP nonconservation

    International Nuclear Information System (INIS)

    Soni, A.; Xu, R.M.

    1992-01-01

    The leading contribution to the electric and the chromoelectric dipole moments of the top quark is calculated in Higgs-boson-exchange models of CP nonconservation. The dipole moments are typically of the order of 10 -20 e cm and 10 -20 g cm, respectively and arise at one-loop order through neutral-Higgs-boson exchange. Several two-loop contributions are estimated to be smaller by about 2 orders of magnitude for the electric case and about 1 order of magnitude smaller for the chromoelectric case. The q 2 dependence of the dipole moment form factor is given for possible application to experimental searches

  19. Origin of the net magnetic moment in LaCoO3

    Science.gov (United States)

    Kaminsky, G. M.; Belanger, D. P.; Ye, F.; Fernandez-Baca, J. A.; Wang, J.; Matsuda, M.; Yan, J.-Q.

    2018-01-01

    We use polarized neutron scattering to characterize the Bragg scattering intensity below TC=89.5 K at the (1,0,0) pseudocubic nuclear Bragg point of LaCoO3. Upon cooling in a field (FC), a net magnetic moment is apparent in Bragg scattering intensity, just as it was in previous magnetization measurements. Critical behavior associated with the net moment near TC upon cooling in small applied fields rapidly rounds with increasing field strength. We show, using a mean-field calculation, that this net moment can develop in a metastable state that forms upon FC, even when all the interactions in the system are antiferromagnetic.

  20. Anomalies of radial and ulnar arteries

    Directory of Open Access Journals (Sweden)

    Rajani Singh

    Full Text Available Abstract During dissection conducted in an anatomy department of the right upper limb of the cadaver of a 70-year-old male, both origin and course of the radial and ulnar arteries were found to be anomalous. After descending 5.5 cm from the lower border of the teres major, the brachial artery anomalously bifurcated into a radial artery medially and an ulnar artery laterally. In the arm, the ulnar artery lay lateral to the median nerve. It followed a normal course in the forearm. The radial artery was medial to the median nerve in the arm and then, at the level of the medial epicondyle, it crossed from the medial to the lateral side of the forearm, superficial to the flexor muscles. The course of the radial artery was superficial and tortuous throughout the arm and forearm. The variations of radial and ulnar arteries described above were associated with anomalous formation and course of the median nerve in the arm. Knowledge of neurovascular anomalies are important for vascular surgeons and radiologists.

  1. Lattice QCD results for the HVP contribution to the anomalous magnetic moments of leptons

    Directory of Open Access Journals (Sweden)

    Borsanyi Szabolcs

    2018-01-01

    Full Text Available We present lattice QCD results by the Budapest-Marseille-Wuppertal (BMW Collaboration for the leading-order contribution of the hadron vacuum polarization (LOHVP to the anomalous magnetic moments of all charged leptons. Calculations are performed with u, d, s and c quarks at their physical masses, in volumes of linear extent larger than 6 fm, and at six values of the lattice spacing, allowing for controlled continuum extrapolations. All connected and disconnected contributions are calculated for not only the muon but also the electron and tau anomalous magnetic moments. Systematic uncertainties are thoroughly discussed and comparisons with other calculations and phenomenological estimates are made.

  2. Lattice QCD results for the HVP contribution to the anomalous magnetic moments of leptons

    Science.gov (United States)

    2018-03-01

    We present lattice QCD results by the Budapest-Marseille-Wuppertal (BMW) Collaboration for the leading-order contribution of the hadron vacuum polarization (LOHVP) to the anomalous magnetic moments of all charged leptons. Calculations are performed with u, d, s and c quarks at their physical masses, in volumes of linear extent larger than 6 fm, and at six values of the lattice spacing, allowing for controlled continuum extrapolations. All connected and disconnected contributions are calculated for not only the muon but also the electron and tau anomalous magnetic moments. Systematic uncertainties are thoroughly discussed and comparisons with other calculations and phenomenological estimates are made.

  3. Radial k-t SPIRiT: autocalibrated parallel imaging for generalized phase-contrast MRI.

    Science.gov (United States)

    Santelli, Claudio; Schaeffter, Tobias; Kozerke, Sebastian

    2014-11-01

    To extend SPIRiT to additionally exploit temporal correlations for highly accelerated generalized phase-contrast MRI and to compare the performance of the proposed radial k-t SPIRiT method relative to frame-by-frame SPIRiT and radial k-t GRAPPA reconstruction for velocity and turbulence mapping in the aortic arch. Free-breathing navigator-gated two-dimensional radial cine imaging with three-directional multi-point velocity encoding was implemented and fully sampled data were obtained in the aortic arch of healthy volunteers. Velocities were encoded with three different first gradient moments per axis to permit quantification of mean velocity and turbulent kinetic energy. Velocity and turbulent kinetic energy maps from up to 14-fold undersampled data were compared for k-t SPIRiT, frame-by-frame SPIRiT, and k-t GRAPPA relative to the fully sampled reference. Using k-t SPIRiT, improvements in magnitude and velocity reconstruction accuracy were found. Temporally resolved magnitude profiles revealed a reduction in spatial blurring with k-t SPIRiT compared with frame-by-frame SPIRiT and k-t GRAPPA for all velocity encodings, leading to improved estimates of turbulent kinetic energy. k-t SPIRiT offers improved reconstruction accuracy at high radial undersampling factors and hence facilitates the use of generalized phase-contrast MRI for routine use. Copyright © 2013 Wiley Periodicals, Inc.

  4. Moment-based method for computing the two-dimensional discrete Hartley transform

    Science.gov (United States)

    Dong, Zhifang; Wu, Jiasong; Shu, Huazhong

    2009-10-01

    In this paper, we present a fast algorithm for computing the two-dimensional (2-D) discrete Hartley transform (DHT). By using kernel transform and Taylor expansion, the 2-D DHT is approximated by a linear sum of 2-D geometric moments. This enables us to use the fast algorithms developed for computing the 2-D moments to efficiently calculate the 2-D DHT. The proposed method achieves a simple computational structure and is suitable to deal with any sequence lengths.

  5. Extended Moment Formation in Monolayer WS2 Doped with 3d Transition-Metals

    KAUST Repository

    Singh, Nirpendra

    2016-08-30

    First-principles calculations with onsite Coulomb interaction and spin-orbit coupling are used to investigate the electronic structure of monolayer WS2 doped substitutionally with 3d transition-metals. While neither W vacancies nor strain induce spin polarization, we demonstrate an unprecedented tendency to extended moment formation under doping. The extended magnetic moments are characterized by dopant-specific spin density patterns with rich structural features involving the nearest neighbor W and S atoms.

  6. Shell effects on the E1 moments of Ra-Th nuclei

    International Nuclear Information System (INIS)

    Leander, G.A.

    1984-01-01

    Large systematic shell effects on intrinsic E1 moments are found, which should modulate any E1 moment induced by β 3 deformation. The calculated shell effects can explain an emerging trend for E1 data in Ra-Th nuclei, if and only if the gross β 3 -induced polarization of finite nuclear matter goes in the same direction as the lightning rod effect. 16 references

  7. Effect on the variation of the moment of inertia in band K=1/2

    International Nuclear Information System (INIS)

    Liu Yanxin; Yu Shaoying; Inner Mongolia Univ. for Nationalities, Tongliao; Chinese Academy of Sciences, Beijing

    2004-01-01

    The effect on the variation of the moment of inertia in band 171 Yb[521]1/2 is investigated using the particle number conserving (PNC) method for treating the cranked shell model with monopole and Y 20 quadrupole pairing interactions. The experimental moments of inertia of 171 Yb[521]1/2 (signature α=±1/2) and the blocking effect of proton are reproduced well by the PNC calculation, in which no free parameter is involved. (authors)

  8. The moment magnitude Mw and the energy magnitude Me: common roots and differences

    OpenAIRE

    2010-01-01

    Abstract Starting from the classical empirical magnitude-energy relationships, in this article, the derivation of the modern scales for moment magnitude Mw and energy magnitude Me is outlined and critically discussed. The formulas for Mw and Me calculation are presented in a way that reveals, besides the contributions of the physically defined measurement parameters seismic moment M0 and radiated seismic energy ES, the role of the constants in the classical Gutenberg?Richter magnit...

  9. Spin alignment and collective moment of inertia of the basic rotational band in the cranking model

    International Nuclear Information System (INIS)

    Tanaka, Yoshihide

    1982-01-01

    By making an attempt to separate the intrinsic particle and collective rotational motions in the cranking model, the spin alignment and the collective moment of inertia characterizing the basic rotational bands are defined, and are investigated by using a simple i sub(13/2) shell model. The result of the calculation indicates that the collective moment of inertia decreases under the presence of the quasiparticles which are responsible for the increase of the spin alignment of the band. (author)

  10. Core radial electric field and transport in Wendelstein 7-X plasmas

    Science.gov (United States)

    Pablant, N. A.; Langenberg, A.; Alonso, A.; Beidler, C. D.; Bitter, M.; Bozhenkov, S.; Burhenn, R.; Beurskens, M.; Delgado-Aparicio, L.; Dinklage, A.; Fuchert, G.; Gates, D.; Geiger, J.; Hill, K. W.; Höfel, U.; Hirsch, M.; Knauer, J.; Krämer-Flecken, A.; Landreman, M.; Lazerson, S.; Maaßberg, H.; Marchuk, O.; Massidda, S.; Neilson, G. H.; Pasch, E.; Satake, S.; Svennson, J.; Traverso, P.; Turkin, Y.; Valson, P.; Velasco, J. L.; Weir, G.; Windisch, T.; Wolf, R. C.; Yokoyama, M.; Zhang, D.; W7-X Team

    2018-02-01

    The results from the investigation of neoclassical core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Investigation of the radial electric field is important in understanding neoclassical transport and in validation of neoclassical calculations. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity, which can be measured using the x-ray imaging crystal spectrometer and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥˜ 5 km/s (ΔEr ˜ 12 kV/m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW. These experiments are examined in detail to explore the relationship between heating power temperature, and density profiles and the radial electric field. Finally, the inferred Er profiles are compared to initial neoclassical calculations based on measured plasma profiles. The results from several neoclassical codes, sfincs, fortec-3d, and dkes, are compared both with each other and the measurements. These comparisons show good agreement, giving confidence in the applicability of the neoclassical calculations to the W7-X configuration.

  11. Moments analysis of concurrent Poisson processes

    International Nuclear Information System (INIS)

    McBeth, G.W.; Cross, P.

    1975-01-01

    A moments analysis of concurrent Poisson processes has been carried out. Equations are given which relate combinations of distribution moments to sums of products involving the number of counts associated with the processes and the mean rate of the processes. Elimination of background is discussed and equations suitable for processing random radiation, parent-daughter pairs in the presence of background, and triple and double correlations in the presence of background are given. The theory of identification of the four principle radioactive series by moments analysis is discussed. (Auth.)

  12. Moment analysis of hadronic vacuum polarization

    Directory of Open Access Journals (Sweden)

    Eduardo de Rafael

    2014-09-01

    Full Text Available I suggest a new approach to the determination of the hadronic vacuum polarization (HVP contribution to the anomalous magnetic moment of the muon aμHVP in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how aμHVP is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.

  13. Moment analysis of hadronic vacuum polarization

    International Nuclear Information System (INIS)

    Rafael, Eduardo de

    2014-01-01

    I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon a μ HVP in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how a μ HVP is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data

  14. Moment analysis of hadronic vacuum polarization

    Energy Technology Data Exchange (ETDEWEB)

    Rafael, Eduardo de

    2014-09-07

    I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon a{sub μ}{sup HVP} in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how a{sub μ}{sup HVP} is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.

  15. Moment approach to charged particle beam dynamics

    International Nuclear Information System (INIS)

    Channell, P.J.

    1983-01-01

    We have derived the hierarchy of moment equations that describes the dynamics of charged-particle beams in linear accelerators and can truncate the hierarchy at any level either by discarding higher moments or by a cumulant expansion discarding only correlation functions. We have developed a procedure for relating the density expansion linearly to the moments to any order. The relation of space-charge fields to the density has been derived; and an accurate, systematic, and computationally convenient expansion of the resultant integrals has been developed

  16. Continuum extrapolation of moments of nucleon quark distributions in full QCD

    International Nuclear Information System (INIS)

    Dreher, P.; Brower, R.; Capitani, S.; Dolgov, D.; Edwards, R.; Eicker, N.; Heller, U.M.; Lippert, Th.; Negele, J.W.; Pochinsky, A.; Renner, D.B.; Schilling, K.

    2003-01-01

    Moments of light cone quark density, helicity, and transversity distributions are calculated in unquenched lattice QCD at β = 5.5 and β = 5.3 using Wilson fermions on 163 x 32 lattices. These results are combined with earlier calculations at β = 5.6 using SESAM configurations to study the continuum limit

  17. The neutron–proton pairing and the moments of inertia of the rare ...

    Indian Academy of Sciences (India)

    In this study, the possible effect of the neutron–proton pairing interaction in the heavy nuclei has been investigated in the framework of the BCS model by making a simple approximation. This effect has been searched realistically by calculating the moments of inertia of deformed even–even nuclei. Calculations show that the ...

  18. Potentially large contributions to the muon anomalous magnetic moment from weak-isosinglet squarks in E6 superstring models

    International Nuclear Information System (INIS)

    Morris, D.A.

    1988-01-01

    We examine contributions to the anomalous magnetic moment of the muon from weak-isosinglet squarks found in E 6 superstring models. We find that such contributions are up to 2 orders of magnitude larger than those previously calculated and correspondingly require smaller Yukawa couplings in order to maintain agreement with the measured muon anomalous magnetic moment

  19. Physical mechanism determining the radial electric field and its radial structure in a toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi; Miura, Yukitoshi; Itoh, Sanae

    1994-10-01

    Radial structures of plasma rotation and radial electric field are experimentally studied in tokamak, heliotron/torsatron and stellarator devices. The perpendicular and parallel viscosities are measured. The parallel viscosity, which is dominant in determining the toroidal velocity in heliotron/torsatron and stellarator devices, is found to be neoclassical. On the other hand, the perpendicular viscosity, which is dominant in dictating the toroidal rotation in tokamaks, is anomalous. Even without external momentum input, both a plasma rotation and a radial electric field exist in tokamaks and heliotrons/torsatrons. The observed profiles of the radial electric field do not agree with the theoretical prediction based on neoclassical transport. This is mainly due to the existence of anomalous perpendicular viscosity. The shear of the radial electric field improves particle and heat transport both in bulk and edge plasma regimes of tokamaks. (author) 95 refs

  20. Manufacturing of Precision Forgings by Radial Forging

    International Nuclear Information System (INIS)

    Wallner, S.; Harrer, O.; Buchmayr, B.; Hofer, F.

    2011-01-01

    Radial forging is a multi purpose incremental forging process using four tools on the same plane. It is widely used for the forming of tool steels, super alloys as well as titanium- and refractory metals. The range of application goes from reducing the diameters of shafts, tubes, stepped shafts and axels, as well as for creating internal profiles for tubes in Near-Net-Shape and Net-Shape quality. Based on actual development of a weight optimized transmission input shaft, the specific features of radial forging technology is demonstrated. Also a Finite Element Model for the simulation of the process is shown which leads to reduced pre-processing effort and reduced computing time compared to other published simulation methods for radial forging. The finite element model can be applied to quantify the effects of different forging strategies.

  1. Expected number of real roots for random linear combinations of orthogonal polynomials associated with radial weights

    OpenAIRE

    Bayraktar, Turgay

    2017-01-01

    In this note, we obtain asymptotic expected number of real zeros for random polynomials of the form $$f_n(z)=\\sum_{j=0}^na^n_jc^n_jz^j$$ where $a^n_j$ are independent and identically distributed real random variables with bounded $(2+\\delta)$th absolute moment and the deterministic numbers $c^n_j$ are normalizing constants for the monomials $z^j$ within a weighted $L^2$-space induced by a radial weight function satisfying suitable smoothness and growth conditions.

  2. Electric dipole moments of the fluorescent probes Prodan and Laurdan: experimental and theoretical evaluations.

    Science.gov (United States)

    Vequi-Suplicy, Cíntia C; Coutinho, Kaline; Lamy, M Teresa

    2014-03-01

    Several experimental and theoretical approaches can be used for a comprehensive understanding of solvent effects on the electronic structure of solutes. In this review, we revisit the influence of solvents on the electronic structure of the fluorescent probes Prodan and Laurdan, focusing on their electric dipole moments. These biologically used probes were synthesized to be sensitive to the environment polarity. However, their solvent-dependent electronic structures are still a matter of discussion in the literature. The absorption and emission spectra of Prodan and Laurdan in different solvents indicate that the two probes have very similar electronic structures in both the ground and excited states. Theoretical calculations confirm that their electronic ground states are very much alike. In this review, we discuss the electric dipole moments of the ground and excited states calculated using the widely applied Lippert-Mataga equation, using both spherical and spheroid prolate cavities for the solute. The dimensions of the cavity were found to be crucial for the calculated dipole moments. These values are compared to those obtained by quantum mechanics calculations, considering Prodan in vacuum, in a polarizable continuum solvent, and using a hybrid quantum mechanics-molecular mechanics methodology. Based on the theoretical approaches it is evident that the Prodan dipole moment can change even in the absence of solute-solvent-specific interactions, which is not taken into consideration with the experimental Lippert-Mataga method. Moreover, in water, for electric dipole moment calculations, it is fundamental to consider hydrogen-bonded molecules.

  3. The influence of finite Larmor radius effects on the radial interchange motions of plasma filaments

    DEFF Research Database (Denmark)

    Madsen, Jens; Garcia, Odd E.; Larsen, Jeppe Stærk

    2011-01-01

    The influence of finite Larmor radius (FLR) effects on the perpendicular convection of isolated particle density filaments driven by interchange motions in magnetized plasmas is investigated using a two-moment gyrofluid model. By means of numerical simulations on a two-dimensional, bi-periodic do......The influence of finite Larmor radius (FLR) effects on the perpendicular convection of isolated particle density filaments driven by interchange motions in magnetized plasmas is investigated using a two-moment gyrofluid model. By means of numerical simulations on a two-dimensional, bi......-periodic domain perpendicular to the magnetic field, it is demonstrated that the radial velocities of the blob-like filaments are roughly described by the inertial scaling, which prescribes a velocity proportional to the square root of the summed electron and ion pressures times the square root of the blob width...

  4. Sampling theorem for geometric moment determination and its application to a laser beam position detector.

    Science.gov (United States)

    Loce, R P; Jodoin, R E

    1990-09-10

    Using the tools of Fourier analysis, a sampling requirement is derived that assures that sufficient information is contained within the samples of a distribution to calculate accurately geometric moments of that distribution. The derivation follows the standard textbook derivation of the Whittaker-Shannon sampling theorem, which is used for reconstruction, but further insight leads to a coarser minimum sampling interval for moment determination. The need for fewer samples to determine moments agrees with intuition since less information should be required to determine a characteristic of a distribution compared with that required to construct the distribution. A formula for calculation of the moments from these samples is also derived. A numerical analysis is performed to quantify the accuracy of the calculated first moment for practical nonideal sampling conditions. The theory is applied to a high speed laser beam position detector, which uses the normalized first moment to measure raster line positional accuracy in a laser printer. The effects of the laser irradiance profile, sampling aperture, number of samples acquired, quantization, and noise are taken into account.

  5. Ray transference of a system with radial gradi- ent index

    Directory of Open Access Journals (Sweden)

    W. F. Harris

    2012-12-01

    Full Text Available The ray transference is central to the understanding of the first-order optical character of an optical system including the visual optical system of the eye.  It can be calculated for dioptric and catadioptric systems from a knowledge of curvatures, tilts and spacing of surfaces in the system provided the material between successive surfaces has a uniform index of refraction.  However the index of the natural lens of the eye is not uniform but varies with position.  There is a need, therefore, for a method of calculating the transference of systems containing such gradient-index elements.  As a first step this paper shows that the transference of elements in which the index varies radially can be obtained directly from published formulae.  The transferences of radial-gradient systems are examined.  Expressions are derived for several properties including the power, the front- and back-surface powers and the locations of the cardinal points.  Equations are obtained for rays through such systems and for the locations of images of object points through them.  Numerical examples are presented in the appen-dix. (S Afr Optom 2012 71(2 57-63

  6. The Matlab Radial Basis Function Toolbox

    Directory of Open Access Journals (Sweden)

    Scott A. Sarra

    2017-03-01

    Full Text Available Radial Basis Function (RBF methods are important tools for scattered data interpolation and for the solution of Partial Differential Equations in complexly shaped domains. The most straight forward approach used to evaluate the methods involves solving a linear system which is typically poorly conditioned. The Matlab Radial Basis Function toolbox features a regularization method for the ill-conditioned system, extended precision floating point arithmetic, and symmetry exploitation for the purpose of reducing flop counts of the associated numerical linear algebra algorithms.

  7. Radial velocity observations of VB10

    Science.gov (United States)

    Deshpande, R.; Martin, E.; Zapatero Osorio, M. R.; Del Burgo, C.; Rodler, F.; Montgomery, M. M.

    2011-07-01

    VB 10 is the smallest star known to harbor a planet according to the recent astrometric study of Pravdo & Shaklan [1]. Here we present near-infrared (J-band) radial velocity of VB 10 performed from high resolution (R~20,000) spectroscopy (NIRSPEC/KECK II). Our results [2] suggest radial velocity variability with amplitude of ~1 km/s, a result that is consistent with the presence of a massive planet companion around VB10 as found via long-term astrometric monitoring of the star by Pravdo & Shaklan. Employing an entirely different technique we verify the results of Pravdo & Shaklan.

  8. Plasma Signatures of Radial Field Power Dropouts

    International Nuclear Information System (INIS)

    Lucek, E.A.; Horbury, T.S.; Balogh, A.; McComas, D.J.

    1998-01-01

    A class of small scale structures, with a near-radial magnetic field and a drop in magnetic field fluctuation power, have recently been identified in the polar solar wind. An earlier study of 24 events, each lasting for 6 hours or more, identified no clear plasma signature. In an extension of that work, radial intervals lasting for 4 hours or more (89 in total), have been used to search for a statistically significant plasma signature. It was found that, despite considerable variations between intervals, there was a small but significant drop, on average, in plasma temperature, density and β during these events

  9. Reble, a radially converging electron beam accelerator

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Prestwich, K.R.

    1976-01-01

    The Reble accelerator at Sandia Laboratories is described. This accelerator was developed to provide an experimental source for studying the relevant diode physics, beam propagation, beam energy deposition in a gas using a radially converging e-beam. The nominal parameters for Reble are 1 MV, 200 kA, 20 ns e-beam pulse. The anode and cathode are concentric cylinders with the anode as the inner cylinder. The radial beam can be propagated through the thin foil anode into the laser gas volume. The design and performance of the various components of the accelerator are presented

  10. Analysis of levitation characteristics of radial-type superconducting magnetic bearings; Rajiarugata chodendojikijikuju no fujotokusei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, H.; Takizawa, T. [NSK Ltd., Kanagawa (Japan)

    1999-11-25

    In the design of a large-scale flywheel. load capacity and bearing constants (i.e. spring and damping constants) should be accurately calculated. In this report, a newly developed analysis method for radial-type superconducting magnetic bearings (SMBs) composed of several couples of magnet rings and magnetic material spacers is described. The analysis based both on electromagnetic FEM of the magnetic field and the 2-dimensional Bean model for analysis of the magnetization of type-2 superconductors. To obtain accurate magnetization hysteresis that reflects the complex magnetic fields, a superconductor is meshed into cells and then the electromagnetic force between the magnetic fields of magnetics and the magnetization of the superconductor are calculated. Recently, computer programs which can calculate the axial load capacity of radial-type SMBs have been developed. Furthermore, programs which can calculate bearing constants are close to being completed. Calculated results on axial load capacity showed good agreement with the experimental results. (author)

  11. Anomalous magnetic moment with heavy virtual leptons

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Alexander [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Liu, Tao; Steinhauser, Matthias [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-11-15

    We compute the contributions to the electron and muon anomalous magnetic moment induced by heavy leptons up to four-loop order. Asymptotic expansion is applied to obtain three analytic expansion terms which show rapid convergence.

  12. Transverse and radial flow in intermediate energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Vestfall, D. Gary

    1997-01-01

    We have studied transverse and radial flow in nucleus-nucleus collisions ranging in energy from 15 to 155 MeV/nucleon. We have measured the impact parameter dependence of the balance energy for Ar + Sc and compared the results with Quantum Molecular Dynamics calculations with and without momentum dependence. We have shown that transverse flow and the balance energy dependence on the isospin of the system using the systems 58 Fe + 58 Fe, 58 Ni + 58 Ni, and 58 Mn + 58 Fe. These results are compared with Boltzmann-Uehling-Uehlenbeck calculations incorporating isospin-dependence. We have measured radial flow for Ar + Sc and find that about 50% of the observed energy is related to radial flow. (author)

  13. Numerical model for radial transport in the ELMO Bumpy Torus

    International Nuclear Information System (INIS)

    Jaeger, E.F.; Hedrick, C.L.

    1977-11-01

    Neutral and charged particle densities and temperatures are calculated as functions of radius for the toroidal plasma in the ELMO Bumpy Torus (EBT) experiment. Energy dependent ionization and charge-exchange rates, ambipolar diffusion, and self-consistent radial electric field profiles are included. Variation in magnetic field due to finite plasma pressure, effects of energetic electron rings, and transport due to drift waves and magnetic field errors are neglected. Diffusion is assumed to be neoclassical with enhanced losses at low collisionalities. The model reproduces many of the observed features of EBT operation in the quiescent toroidal (T) mode. The self-consistently calculated electric field is everywhere positive (not as in experiments) unless enhanced electron collisionality is included. Solutions for advanced EBT's are obtained and confinement parameters predicted

  14. Relativistic properties of spherical diodes with a radial electron flux

    International Nuclear Information System (INIS)

    Chetvertkov, V.I.

    1987-01-01

    Forward and backward electron diodes with concentric spherical electrodes (inner cathode, outer anode or vice versa) are considered under the assumption that the emission is limited by the space charge and the guiding magnetic field is predominantly radial within a region of solid angle α f < 4π bounding the electron flux. The Poisson equations for the relativistic factor γ are solved for generalized model dependences. Ultrarelativistic and new nonrelativistic solutions are found, and analytic approximations to the solution near the cathode are used to carry out numerical calculations. The characteristics of forward and backward diodes turn out to be related to the exact solutions for a planar diode. Accurate approximations are found for calculating the diode parameters in a wide range of voltages; they can also be used to check the validity of the 3/2 laws and the ultrarelativistic solutions

  15. Radial dose distribution from carbon ion incident on liquid water

    International Nuclear Information System (INIS)

    Scifoni, E.; Surdutovich, E.; Solov'yov, A.V.; Surdutovich, E.

    2010-01-01

    We report calculations of the radial dose deposited along carbon-ion tracks in liquid water using different techniques depending on the energy range of secondary electrons. The models are developed in relation with the experimental data on electron penetration lengths. For electrons with energies higher than 45 eV, we use the Katz model. However, the main focus is on the low-energy electrons, which are largely responsible for DNA damage within 10 nm from the tracks. For these electrons, the dose calculation is based on their random walk behaviour. The results of this combined approach are compared to experimental measurements. Contributions to the deposited energy by electrons of different ranges of energy are discussed. (authors)

  16. Moments of the very high multiplicity distributions

    International Nuclear Information System (INIS)

    Nechitailo, V.A.

    2004-01-01

    In experiment, the multiplicity distributions of inelastic processes are truncated due to finite energy, insufficient statistics, or special choice of events. It is shown that the moments of such truncated multiplicity distributions possess some typical features. In particular, the oscillations of cumulant moments at high ranks and their negative values at the second rank can be considered as ones most indicative of the specifics of these distributions. They allow one to distinguish between distributions of different type

  17. Theoretical status of baryon magnetic moments

    Science.gov (United States)

    Franklin, Jerrold

    1989-05-01

    This talk given at the Eighth International Symposium on High-Energy Spin Physics in Minneapolis, Minnesota (September 12-17, 1988), is a short summary of theoretical results for baryon magnetic moments. Results from the static bag model and pion exchange effects are summarized and compared with experimental data. A list of references for various models and properties effecting the baryon magnetic moments is given at the end of the article. (AIP)

  18. Theoretical status of baryon magnetic moments

    International Nuclear Information System (INIS)

    Franklin, J.

    1989-01-01

    This talk given at the Eighth International Symposium on High-Energy Spin Physics in Minneapolis, Minnesota (September 12--17, 1988), is a short summary of theoretical results for baryon magnetic moments. Results from the static bag model and pion exchange effects are summarized and compared with experimental data. A list of references for various models and properties effecting the baryon magnetic moments is given at the end of the article

  19. Estimation of Uncertainties of Full Moment Tensors

    Science.gov (United States)

    2017-10-06

    For our moment tensor inversions, we use the ‘cut-and-paste’ ( CAP ) code of Zhu and Helmberger (1996) and Zhu and Ben-Zion (2013), with some...modifications. For the misfit function we use an L1 norm Silwal and Tape (2016), and we incorporate the number of misfitting polarities into the waveform... norm of the eigenvalue triple provides the magnitude of the moment tensor, leaving two free parameters to define the source type. In the same year

  20. Moments expansion densities for quantifying financial risk

    OpenAIRE

    Ñíguez, T.M.; Perote, J.

    2017-01-01

    We propose a novel semi-nonparametric distribution that is feasibly parameterized to represent the non-Gaussianities of the asset return distributions. Our Moments Expansion (ME) density presents gains in simplicity attributable to its innovative polynomials, which are defined by the difference between the nth power of the random variable and the nth moment of the density used as the basis. We show that the Gram-Charlier distribution is a particular case of the ME-type of densities. The latte...

  1. Application of the stabilization method to the molecular states of LiHe3+: Energies and radial couplings

    International Nuclear Information System (INIS)

    Macias, A.; Mendizabal, R.; Pelayo, F.; Riera, A.; Yaez, M.

    1986-01-01

    We have used the stabilization method to perform calculations on autoionizing states of the LiHe 3+ system which are involved in Li 3+ +He collisions. The molecular energies and radial couplings are calculated with use of programs developed at our laboratory. For both short and large internuclear distances, the stabilization treatment is complemented by block-diagonalization techniques. Our calculations allow us to draw conclusions on the conditions under which these methods can be used to calculate energy positions and radial couplings for states that lie in an ionization continuum

  2. Application of the stabilization method to the molecular states of LiHeT : Energies and radial couplings

    Energy Technology Data Exchange (ETDEWEB)

    Macias, A.; Mendizabal, R.; Pelayo, F.; Riera, A.; Yaez, M.

    1986-01-01

    We have used the stabilization method to perform calculations on autoionizing states of the LiHeT system which are involved in LiT +He collisions. The molecular energies and radial couplings are calculated with use of programs developed at our laboratory. For both short and large internuclear distances, the stabilization treatment is complemented by block-diagonalization techniques. Our calculations allow us to draw conclusions on the conditions under which these methods can be used to calculate energy positions and radial couplings for states that lie in an ionization continuum.

  3. Turbulence in tokamak plasmas. Effect of a radial electric field shear; Turbulence dans les plasmas de tokamaks. Effet d`un cisaillement de champ electrique radial

    Energy Technology Data Exchange (ETDEWEB)

    Payan, J

    1994-05-01

    After a review of turbulence and transport phenomena in tokamak plasmas and the radial electric field shear effect in various tokamaks, experimental measurements obtained at Tore Supra by the means of the ALTAIR plasma diagnostic technique, are presented. Electronic drift waves destabilization mechanisms, which are the main features that could describe the experimentally observed microturbulence, are then examined. The effect of a radial electric field shear on electronic drift waves is then introduced, and results with ohmic heating are studied together with relations between turbulence and transport. The possible existence of ionic waves is rejected, and a spectral frequency modelization is presented, based on the existence of an electric field sheared radial profile. The position of the inversion point of this field is calculated for different values of the mean density and the plasma current, and the modelization is applied to the TEXT tokamak. The radial electric field at Tore Supra is then estimated. The effect of the ergodic divertor on turbulence and abnormal transport is then described and the density fluctuation radial profile in presence of the ergodic divertor is modelled. 80 figs., 120 refs.

  4. Exact collisional moments for plasma fluid theories

    Science.gov (United States)

    Pfefferle, David; Hirvijoki, Eero; Lingam, Manasvi

    2017-10-01

    The velocity-space moments of the often troublesome nonlinear Landau collision operator are expressed exactly in terms of multi-index Hermite-polynomial moments of the distribution functions. The collisional moments are shown to be generated by derivatives of two well-known functions, namely the Rosenbluth-MacDonald-Judd-Trubnikov potentials for a Gaussian distribution. The resulting formula has a nonlinear dependency on the relative mean flow of the colliding species normalised to the root-mean-square of the corresponding thermal velocities, and a bilinear dependency on densities and higher-order velocity moments of the distribution functions, with no restriction on temperature, flow or mass ratio of the species. The result can be applied to both the classic transport theory of plasmas, that relies on the Chapman-Enskog method, as well as to deriving collisional fluid equations that follow Grad's moment approach. As an illustrative example, we provide the collisional ten-moment equations with exact conservation laws for momentum- and energy-transfer rate.

  5. Performance Evaluation of Moment Connections of Moment Resisting Frames Against Progressive Collapse

    Directory of Open Access Journals (Sweden)

    M. Mahmoudi

    2017-02-01

    Full Text Available When a primary structural element fails due to sudden load such as explosion, the building undergoes progressive collapse. The method for design of moment connections during progressive collapse is different to seismic design of moment connections. Because in this case, the axial force on the connections makes it behave differently. The purpose of this paper is to evaluate the performance of a variety of moment connections in preventing progressive collapse in steel moment frames. To achieve this goal, three prequalified moment connections (BSEEP, BFP and WUP-W were designed according seismic codes. These moment connections were analyzed numerically using ABAQUS software for progressive collapse. The results show that the BFP connection (bolted flange plate has capacity much more than other connections because of the use of plates at the junction of beam-column.

  6. Variational-moment method for computing magnetohydrodynamic equilibria

    International Nuclear Information System (INIS)

    Lao, L.L.

    1983-08-01

    A fast yet accurate method to compute magnetohydrodynamic equilibria is provided by the variational-moment method, which is similar to the classical Rayleigh-Ritz-Galerkin approximation. The equilibrium solution sought is decomposed into a spectral representation. The partial differential equations describing the equilibrium are then recast into their equivalent variational form and systematically reduced to an optimum finite set of coupled ordinary differential equations. An appropriate spectral decomposition can make the series representing the solution coverge rapidly and hence substantially reduces the amount of computational time involved. The moment method was developed first to compute fixed-boundary inverse equilibria in axisymmetric toroidal geometry, and was demonstrated to be both efficient and accurate. The method since has been generalized to calculate free-boundary axisymmetric equilibria, to include toroidal plasma rotation and pressure anisotropy, and to treat three-dimensional toroidal geometry. In all these formulations, the flux surfaces are assumed to be smooth and nested so that the solutions can be decomposed in Fourier series in inverse coordinates. These recent developments and the advantages and limitations of the moment method are reviewed. The use of alternate coordinates for decomposition is discussed

  7. Parallax adjustment algorithm based on Susan-Zernike moments

    Science.gov (United States)

    Deng, Yan; Zhang, Kun; Shen, Xiaoqin; Zhang, Huiyun

    2018-02-01

    Precise parallax detection through definition evaluation and the adjustment of the assembly position of the objective lens or the reticle are important means of eliminating the parallax of the telescope system, so that the imaging screen and the reticle are clearly focused at the same time. An adaptive definition evaluation function based on Susan-Zernike moments is proposed. First, the image is preprocessed by the Susan operator to find the potential boundary edge. Then, the Zernike moments operator is used to determine the exact region of the reticle line with sub-pixel accuracy. The image definition is evaluated only in this related area. The evaluation function consists of the gradient difference calculated by the Zernike moments operator. By adjusting the assembly position of the objective lens, the imaging screen and the reticle will be simultaneously in the state of maximum definition, so the parallax can be eliminated. The experimental results show that the definition evaluation function proposed in this paper has the advantages of good focusing performance, strong anti-interference ability compared with the other commonly used definition evaluation functions.

  8. On a Neutral Particle with a Magnetic Quadrupole Moment in a Uniform Effective Magnetic Field

    International Nuclear Information System (INIS)

    Fonseca, I. C.; Bakke, K.

    2016-01-01

    Quantum effects on a Landau-type system associated with a moving atom with a magnetic quadrupole moment subject to confining potentials are analysed. It is shown that the spectrum of energy of the Landau-type system can be modified, where the degeneracy of the energy levels can be broken. In three particular cases, it is shown that the analogue of the cyclotron frequency is modified, and the possible values of this angular frequency of the system are determined by the quantum numbers associated with the radial modes and the angular momentum and by the parameters associated with confining potentials in order that bound states solutions can be achieved.

  9. Toeplitz Operators, Pseudo-Homogeneous Symbols, and Moment Maps on the Complex Projective Space

    Directory of Open Access Journals (Sweden)

    Miguel Antonio Morales-Ramos

    2017-01-01

    Full Text Available Following previous works for the unit ball due to Nikolai Vasilevski, we define quasi-radial pseudo-homogeneous symbols on the projective space and obtain the corresponding commutativity results for Toeplitz operators. A geometric interpretation of these symbols in terms of moment maps is developed. This leads us to the introduction of a new family of symbols, extended pseudo-homogeneous, that provide larger commutative Banach algebras generated by Toeplitz operators. This family of symbols provides new commutative Banach algebras generated by Toeplitz operators on the unit ball.

  10. On helicon wave induced radial plasma transport

    International Nuclear Information System (INIS)

    Petrzilka, V.

    1993-04-01

    Estimates of helicon wave induced radial plasma transport are presented. The wave induced transport grows or decreases in dependence on the sign of the azimuthal wave number; these changes in transport may play an important role in helicon wave plasma sources. (author) 5 figs., 18 refs

  11. Revealing the radial modes in vortex beams

    CSIR Research Space (South Africa)

    Sephton, Bereneice C

    2016-10-01

    Full Text Available Light beams that carry orbital angular momentum are often approximated by modulating an initial beam, usually Gaussian, with an azimuthal phase variation to create a vortex beam. Such vortex beams are well defined azimuthally, but the radial profile...

  12. Radial interchange motions of plasma filaments

    DEFF Research Database (Denmark)

    Garcia, O.E.; Bian, N.H.; Fundamenski, W.

    2006-01-01

    on a biperiodic domain perpendicular to the magnetic field. It is demonstrated that a blob-like plasma structure develops dipolar vorticity and electrostatic potential fields, resulting in rapid radial acceleration and formation of a steep front and a trailing wake. While the dynamical evolution strongly depends...

  13. Radial transfer effects for poloidal rotation

    Science.gov (United States)

    Hallatschek, Klaus

    2010-11-01

    Radial transfer of energy or momentum is the principal agent responsible for radial structures of Geodesic Acoustic Modes (GAMs) or stationary Zonal Flows (ZF) generated by the turbulence. For the GAM, following a physical approach, it is possible to find useful expressions for the individual components of the Poynting flux or radial group velocity allowing predictions where a mathematical full analysis is unfeasible. Striking differences between up-down symmetric flux surfaces and asymmetric ones have been found. For divertor geometries, e.g., the direction of the propagation depends on the sign of the ion grad-B drift with respect to the X-point, reminiscent of a sensitive determinant of the H-mode threshold. In nonlocal turbulence computations it becomes obvious that the linear energy transfer terms can be completely overwhelmed by the action of the turbulence. In contrast, stationary ZFs are governed by the turbulent radial transfer of momentum. For sufficiently large systems, the Reynolds stress becomes a deterministic functional of the flows, which can be empirically determined from the stress response in computational turbulence studies. The functional allows predictions even on flow/turbulence states not readily obtainable from small amplitude noise, such as certain transport bifurcations or meta-stable states.

  14. Spectral problem for the radial Schroedinger equation

    International Nuclear Information System (INIS)

    Vshivtsev, A.S.; Tatarintsev, A.V.; Prokopov, A.V.; Sorokin, V. N.

    1998-01-01

    For the first time, a procedure for determining spectra on the basis of generalized integral transformations is implemented for a wide class of radial Schroedinger equations. It is shown that this procedure works well for known types of potentials. Concurrently, this method makes it possible to obtain new analytic results for the Cornell potential. This may prove important for hadron physics

  15. Computing modal dispersion characteristics of radially Asymmetric ...

    African Journals Online (AJOL)

    We developed a matrix theory that applies to with non-circular/circular but concentric layers fibers. And we compute the dispersion characteristics of radially unconventional fiber, known as Asymmetric Bragg fiber. An attempt has been made to determine how the modal characteristics change as circular Bragg fiber is ...

  16. A parametric model of muscle moment arm as a function of joint angle: application to the dorsiflexor muscle group in mice.

    Science.gov (United States)

    Miller, S W; Dennis, R G

    1996-12-01

    A parametric model was developed to describe the relationship between muscle moment arm and joint angle. The model was applied to the dorsiflexor muscle group in mice, for which the moment arm was determined as a function of ankle angle. The moment arm was calculated from the torque measured about the ankle upon application of a known force along the line of action of the dorsiflexor muscle group. The dependence of the dorsiflexor moment arm on ankle angle was modeled as r = R sin(a + delta), where r is the moment arm calculated from the measured torque and a is the joint angle. A least-squares curve fit yielded values for R, the maximum moment arm, and delta, the angle at which the maximum moment arm occurs as offset from 90 degrees. Parametric models were developed for two strains of mice, and no differences were found between the moment arms determined for each strain. Values for the maximum moment arm, R, for the two different strains were 0.99 and 1.14 mm, in agreement with the limited data available from the literature. While in some cases moment arm data may be better fitted by a polynomial, use of the parametric model provides a moment arm relationship with meaningful anatomical constants, allowing for the direct comparison of moment arm characteristics between different strains and species.

  17. Declination Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...

  18. Methods for calculating anisotropic transfer cross sections

    International Nuclear Information System (INIS)

    Cai, Shaohui; Zhang, Yixin.

    1985-01-01

    The Legendre moments of the group transfer cross section, which are widely used in the numerical solution of the transport calculation can be efficiently and accurately constructed from low-order (K = 1--2) successive partial range moments. This is convenient for the generation of group constants. In addition, a technique to obtain group-angle correlation transfer cross section without Legendre expansion is presented. (author)

  19. Magnetic moment of extremely proton-rich nucleus 23Al

    International Nuclear Information System (INIS)

    Nagatomo, T; Matsuta, K; Ozawa, A; Nakashima, Y; Matsumiya, R; Mihara, M; Yasuno, T; Chiba, A; Yamada, K; Momota; Ohtsubo, T; Ohta, M; Shinojima, D; Izumikawa, T; Tanaka, H; Yamaguchi, T; Nakajima, S; Maemura, H; Muranaka, K; Kumashiro, S; Fujiwara, H; Yoshida, K; Sumikama, T; Tanaka, K; Ogura, M; Minamisono, K; Fukuda, M; Minamisono, T; Nojiri, Y; Suzuki, T; Tanihata, I; Alonso, J R; Krebs, G F; Symons, T J M

    2005-01-01

    The g-factor of the extremely proton-rich nucleus 23 Al (T 1/2 = 0.47 s) has been measured by means of the β-NMR method for the first time. The g-factor were determined as |g| = 1.557(88) from the obtained NMR spectra. From the comparison between the experimental value and the shell model calculation, the spin parity of the ground state of 23 Al was determined as I π = 5/2 + . Thus, the magnetic moment of 23 Al was determined as vertical bar μvertical bar = 3.89(22)μ N

  20. Energy-weighted moments in the problems of fragmentation

    International Nuclear Information System (INIS)

    Kuz'min, V.A.

    1986-01-01

    The problem of fragmentation of simple nuclear states on the complex ones is reduced to real symmetrical matrix eigenvectors and eigenvalue problem. Based on spectral decomposition of this matrix the simple and economical from computing point of view algorithm to calculate energetically-weighted strength function moments is obtained. This permitted one to investigate the sensitivity of solving the fragmentation problem to reducing the basis of complex states. It is shown that the full width of strength function is determined only by the complex states connected directly with the simple ones