WorldWideScience

Sample records for radial gate evaluation

  1. Modal Analysis of a Steel Radial Gate Exposed to Different Water Levels

    Science.gov (United States)

    Brusewicz, Krzysztof; Sterpejkowicz-Wersocki, Witold; Jankowski, Robert

    2017-06-01

    With the increase in water retention needs and planned river regulation, it might be important to investigate the dynamic resistance of vulnerable elements of hydroelectric power plants, including steelwater locks. The most frequent dynamic loads affecting hydroengineering structures in Poland include vibrations caused by heavy road and railway traffic, piling works and mining tremors. More destructive dynamic loads, including earthquakes, may also occur in our country, although their incidence is relatively low. However, given the unpredictable nature of such events, as well as serious consequences they might cause, the study of the seismic resistance of the steel water gate, as one of the most vulnerable elements of a hydroelectric power plant, seems to be important. In this study, a steel radial gate has been analyzed. As far as water gates are concerned, it is among the most popular solutions because of its relatively small weight, compared to plain gates. A modal analysis of the steel radial gate was conducted with the use of the FEM in the ABAQUS software. All structural members were modelled using shell elements with detailed geometry representing a real structure.Water was modelled as an added mass affecting the structure. Different water levels were used to determine the most vulnerable state of the working steel water gate. The results of the modal analysis allowed us to compare the frequencies and their eigenmodes in response to different loads, which is one of the first steps in researching the dynamic properties of steel water gates and their behaviour during extreme dynamic loads, including earthquakes.

  2. Feasibility of self-gated isotropic radial late-phase MR imaging of the liver

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Jakob; Taron, Jana; Othman, Ahmed E.; Kuendel, Matthias; Martirosian, Petros; Ruff, Christer; Schraml, Christina; Nikolaou, Konstantin; Notohamiprodjo, Mike [Eberhard Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Grimm, Robert [Siemens Healthcare MR, Erlangen (Germany)

    2017-03-15

    To evaluate feasibility of a 3D-isotropic self-gated radial volumetric interpolated breath-hold examination (VIBE) for late-phase MRI of the liver. 70 patients were included and underwent liver MRI at 1.5 T. Depending on the diagnosis, either Gd-EOB-DTPA (35 patients) or gadobutrol (35 patients) were administered. During late (gadobutrol) or hepatocyte-specific phase (Gd-EOB-DTPA), a radial prototype sequence was acquired and reconstructed using (1) self-gating with 40 % acceptance (rVIBE{sub 40}); (2) with 100 % acceptance of the data (rVIBE{sub 100}) and compared to Cartesian VIBE (cVIBE). Images were assessed qualitatively (image quality, lesion conspicuity, artefacts; 5-point Likert-scale: 5 = excellent; two independent readers) and quantitatively (coefficient-of-variation (CV); contrast-ratio) in axial and coronal reformations. In eight cases only rVIBE provided diagnostic image quality. Image quality of rVIBE{sub 40} was rated significantly superior (p < 0.05) in Gd-EOB-DTPA-enhanced and coronal reformatted examinations as compared to cVIBE. Lesion conspicuity was significantly improved (p < 0.05) in coronal reformatted Gd-EOB-DTPA-enhanced rVIBE{sub 40} in comparison to cVIBE. CV was higher in rVIBE{sub 40} as compared to rVIBE{sub 100}/cVIBE (p < 0.01). Gadobutrol-enhanced rVIBE{sub 40} and cVIBE showed higher contrast-ratios than rVIBE{sub 100} (p < 0.001), whereas no differences were found in Gd-EOB-DTPA-enhanced examinations. Self-gated 3D-isotropic rVIBE provides significantly superior image quality compared to cVIBE, especially in multiplanar reformatted and Gd-EOB-DTPA-enhanced examinations. (orig.)

  3. Feasibility of self-gated isotropic radial late-phase MR imaging of the liver

    International Nuclear Information System (INIS)

    Weiss, Jakob; Taron, Jana; Othman, Ahmed E.; Kuendel, Matthias; Martirosian, Petros; Ruff, Christer; Schraml, Christina; Nikolaou, Konstantin; Notohamiprodjo, Mike; Grimm, Robert

    2017-01-01

    To evaluate feasibility of a 3D-isotropic self-gated radial volumetric interpolated breath-hold examination (VIBE) for late-phase MRI of the liver. 70 patients were included and underwent liver MRI at 1.5 T. Depending on the diagnosis, either Gd-EOB-DTPA (35 patients) or gadobutrol (35 patients) were administered. During late (gadobutrol) or hepatocyte-specific phase (Gd-EOB-DTPA), a radial prototype sequence was acquired and reconstructed using (1) self-gating with 40 % acceptance (rVIBE_4_0); (2) with 100 % acceptance of the data (rVIBE_1_0_0) and compared to Cartesian VIBE (cVIBE). Images were assessed qualitatively (image quality, lesion conspicuity, artefacts; 5-point Likert-scale: 5 = excellent; two independent readers) and quantitatively (coefficient-of-variation (CV); contrast-ratio) in axial and coronal reformations. In eight cases only rVIBE provided diagnostic image quality. Image quality of rVIBE_4_0 was rated significantly superior (p < 0.05) in Gd-EOB-DTPA-enhanced and coronal reformatted examinations as compared to cVIBE. Lesion conspicuity was significantly improved (p < 0.05) in coronal reformatted Gd-EOB-DTPA-enhanced rVIBE_4_0 in comparison to cVIBE. CV was higher in rVIBE_4_0 as compared to rVIBE_1_0_0/cVIBE (p < 0.01). Gadobutrol-enhanced rVIBE_4_0 and cVIBE showed higher contrast-ratios than rVIBE_1_0_0 (p < 0.001), whereas no differences were found in Gd-EOB-DTPA-enhanced examinations. Self-gated 3D-isotropic rVIBE provides significantly superior image quality compared to cVIBE, especially in multiplanar reformatted and Gd-EOB-DTPA-enhanced examinations. (orig.)

  4. Evaluation of left ventricular ejection fraction from radial long-axis tomography. A new reconstruction algorithm for ECG-gated technetium-99m Sestamibi SPECT

    International Nuclear Information System (INIS)

    Tsujimura, Eiichiro; Kusuoka, Hideo; Uehara, Toshiisa

    1997-01-01

    Radial long-axis tomography can provide views similar to contrast left ventriculography (LVG) including the basal and apical areas of the left ventricle, not possible in routine short-axis tomography. We applied this method to ECG-gated Tc-99m Sestamibi (MIBI) myocardial SPECT images to estimate the left ventricular ejection fraction (LVEF). ECG-gated Tc-99m MIBI SPECT was performed with a temporal resolution of 10 frames per R-R interval. LVEF was calculated on the basis of left ventricular volume estimates at end diastole (ED) and end systole (ES) with using an ellipsoid body model. To validate this method, LVEF's derived from ECG-gated Tc-99m MIBI SPECT were compared with those from LVG in 11 patients with coronary artery disease. There was a close linear correlation between LVEF values calculated from Tc-99m MIBI SPECT and those from LVG (r=0.89, p<0.001), although the gated SPECT underestimated LVEF compared to LVG. The technique showed excellent reproducibility (intra-observer variability, r=0.96, p<0.001; inter-observer variability, r=0.71, p<0.005). The radial long-axis tomography technique gives a good estimate of LVEF, in agreement with estimates based on LVG. ECG-gated Tc-99m MIBI SPECT can, therefore, be applicable to assess myocardial perfusion and ventricular function at the same time. (author)

  5. Evaluation of left ventricular ejection fraction from radial long-axis tomography. A new reconstruction algorithm for ECG-gated technetium-99m Sestamibi SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Eiichiro; Kusuoka, Hideo; Uehara, Toshiisa [Osaka Univ. (Japan). Faculty of Medicine] [and others

    1997-08-01

    Radial long-axis tomography can provide views similar to contrast left ventriculography (LVG) including the basal and apical areas of the left ventricle, not possible in routine short-axis tomography. We applied this method to ECG-gated Tc-99m Sestamibi (MIBI) myocardial SPECT images to estimate the left ventricular ejection fraction (LVEF). ECG-gated Tc-99m MIBI SPECT was performed with a temporal resolution of 10 frames per R-R interval. LVEF was calculated on the basis of left ventricular volume estimates at end diastole (ED) and end systole (ES) with using an ellipsoid body model. To validate this method, LVEF`s derived from ECG-gated Tc-99m MIBI SPECT were compared with those from LVG in 11 patients with coronary artery disease. There was a close linear correlation between LVEF values calculated from Tc-99m MIBI SPECT and those from LVG (r=0.89, p<0.001), although the gated SPECT underestimated LVEF compared to LVG. The technique showed excellent reproducibility (intra-observer variability, r=0.96, p<0.001; inter-observer variability, r=0.71, p<0.005). The radial long-axis tomography technique gives a good estimate of LVEF, in agreement with estimates based on LVG. ECG-gated Tc-99m MIBI SPECT can, therefore, be applicable to assess myocardial perfusion and ventricular function at the same time. (author)

  6. A radial sampling strategy for uniform k-space coverage with retrospective respiratory gating in 3D ultrashort-echo-time lung imaging.

    Science.gov (United States)

    Park, Jinil; Shin, Taehoon; Yoon, Soon Ho; Goo, Jin Mo; Park, Jang-Yeon

    2016-05-01

    The purpose of this work was to develop a 3D radial-sampling strategy which maintains uniform k-space sample density after retrospective respiratory gating, and demonstrate its feasibility in free-breathing ultrashort-echo-time lung MRI. A multi-shot, interleaved 3D radial sampling function was designed by segmenting a single-shot trajectory of projection views such that each interleaf samples k-space in an incoherent fashion. An optimal segmentation factor for the interleaved acquisition was derived based on an approximate model of respiratory patterns such that radial interleaves are evenly accepted during the retrospective gating. The optimality of the proposed sampling scheme was tested by numerical simulations and phantom experiments using human respiratory waveforms. Retrospectively, respiratory-gated, free-breathing lung MRI with the proposed sampling strategy was performed in healthy subjects. The simulation yielded the most uniform k-space sample density with the optimal segmentation factor, as evidenced by the smallest standard deviation of the number of neighboring samples as well as minimal side-lobe energy in the point spread function. The optimality of the proposed scheme was also confirmed by minimal image artifacts in phantom images. Human lung images showed that the proposed sampling scheme significantly reduced streak and ring artifacts compared with the conventional retrospective respiratory gating while suppressing motion-related blurring compared with full sampling without respiratory gating. In conclusion, the proposed 3D radial-sampling scheme can effectively suppress the image artifacts due to non-uniform k-space sample density in retrospectively respiratory-gated lung MRI by uniformly distributing gated radial views across the k-space. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Non-gated vessel wall imaging of the internal carotid artery using radial scanning and fast spin echo sequence. Evaluation of vessel signal intensity by flow rate at 3.0 tesla

    International Nuclear Information System (INIS)

    Nakamura, Manami; Makabe, Takeshi; Ichikawa, Masaki; Hatakeyama, Ryohei; Sugimori, Hiroyuki; Sakata, Motomichi

    2013-01-01

    Vessel wall imaging using radial scanning does not use a blood flow suppression pulse with gated acquisition. It has been proposed that there may not be a flow void effect if the flow rate is slow; however, this has yet to be empirically tested. To clarify the relationship between the signal intensity of the vessel lumen and the blood flow rate in a flow phantom, we investigated the usefulness of vessel wall imaging at 3.0 tesla (T). We measured the signal intensity while changing the flow rate in the flow phantom. Radial scanning at 1.5 T showed sufficient flow voids at above medium flow rates. There was no significant difference in lumen signal intensity at the carotid artery flow rate. The signal intensity of the vessel lumen decreased sufficiently using the radial scan method at 3.0 T. We thus obtained sufficient flow void effects at the carotid artery flow rate. We conclude this technique to be useful for evaluating plaque if high contrast can be maintained for fixed tissue (such as plaque) and the vessel lumen. (author)

  8. Left ventricular volume measurements with free breathing respiratory self-gated 3-dimensional golden angle radial whole-heart cine imaging - Feasibility and reproducibility.

    Science.gov (United States)

    Holst, Karen; Ugander, Martin; Sigfridsson, Andreas

    2017-11-01

    To develop and evaluate a free breathing respiratory self-gated isotropic resolution technique for left ventricular (LV) volume measurements. A 3D radial trajectory with double golden-angle ordering was used for free-running data acquisition during free breathing in 9 healthy volunteers. A respiratory self-gating signal was extracted from the center of k-space and used with the electrocardiogram to bin all data into 3 respiratory and 25 cardiac phases. 3D image volumes were reconstructed and the LV endocardial border was segmented. LV volume measurements and reproducibility from 3D free breathing cine were compared to conventional 2D breath-held cine. No difference was found between 3D free breathing cine and 2D breath-held cine with regards to LV ejection fraction, stroke volume, end-systolic volume and end-diastolic volume (Pcine and 2D breath-held cine (Pcine and conventional 2D breath-held cine showed similar values and test-retest repeatability for LV volumes in healthy volunteers. 3D free breathing cine enabled retrospective sorting and arbitrary angulation of isotropic data, and could correctly measure LV volumes during free breathing acquisition. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Thermal Stress Cracking of Slide-Gate Plates in Steel Continuous Casting

    Science.gov (United States)

    Lee, Hyoung-Jun; Thomas, Brian G.; Kim, Seon-Hyo

    2016-04-01

    The slide-gate plates in a cassette assembly control the steel flow through the tundish nozzle, and may experience through-thickness cracks, caused by thermal expansion and/or mechanical constraint, leading to air aspiration and safety concerns. Different mechanisms for common and rare crack formation are investigated with the aid of a three-dimensional finite-element model of thermal mechanical behavior of the slide-gate plate assembly during bolt pretensioning, preheating, tundish filling, casting, and cooling stages. The model was validated with previous plant temperature measurements of a ladle plate during preheating and casting, and then applied to a typical tundish-nozzle slide-gate assembly. The formation mechanisms of different types of cracks in the slide-gate plates are investigated using the model and evaluated with actual slide-gate plates at POSCO. Common through-thickness radial cracks, found in every plate, are caused during casting by high tensile stress on the outside surfaces of the plates, due to internal thermal expansion. In the upper plate, these cracks may also arise during preheating or tundish filling. Excessive bolt tightening, combined with thermal expansion during casting may cause rare radial cracks in the upper and lower plates. Rare radial and transverse cracks in middle plate appear to be caused during tundish filling by impingement of molten steel on the middle of the middle plate that generates tensile stress in the surrounding refractory. The mechanical properties of the refractory, the bolt tightening conditions, and the cassette/plate design are all important to service life.

  10. A user's evaluation of radial flow HEPA filters

    International Nuclear Information System (INIS)

    Purcell, J.A.

    1992-07-01

    High efficiency particulate air (HEPA) filters of rectangular cross section have been used to remove particulates and the associated radioactivity from air ventilation streams since the advent of nuclear materials processing. Use of round axial flow HEPA filters is also longstanding. The advantages of radial flow filters in a circular configuration have been well demonstrated in UKAEA during the last 5--7 years. An evaluation of radial flow filters for fissile process gloveboxes reveals several substantial benefits in addition to the advantages claimed in UKAEA Facilities. The radial flow filter may be provided in a favorable geometry resulting in improved criticality safety. The filter configuration lends to in-place testing at the glovebox to exhaust duct interface. This will achieve compliance with DOE Order 6430.1A, Section 99.0.2. Preliminary testing at SRS for radial flow filters manufactured by Flanders Filters, Inc. revealed compliance in all the usual specifications for filtration efficiency, pressure differential and materials of construction. An evaluation, further detailed in this report, indicates that the radial flow HEPA filter should be considered for inclusion in new ventilation system designs

  11. Clinical evaluation of the Tl-201 ECG-gated myocardial SPECT

    International Nuclear Information System (INIS)

    Mochizuki, Teruhito

    1989-01-01

    In order to evaluate the clinical usefulness of the Tl-201 ECG-gated myocardial single photon emission computed tomography (SPECT), we compared the wall motion and the grade of the Tl-201 uptake of the ECG-gated myocardial SPECT with the wall motion of the ECG-gated blood pool SPECT. Materials were 87 patients of 50 old myocardial infarctions (OMIs), 19 hypertrophic cardiomyopathies (HCMs), 2 dilated cardiomyopathies (DCMs) and 16 others. After intravenous injection of 111-185 MBq (3-5 mCi) of Tl-201 at rest, the projection data were acquired using a rotating gamma-camera through 180deg, from RAO 45deg in 24 directions, each of which consisted of 80-100 beats. For the reconstruction of ED, ES and non-gated images, R-R interval was divided into about 20 (18-22) fractions. In 348 regions of interest (anterior, septal, lateral and inferior wall) in 87 cases, wall motion and the Tl-201 uptake were evaluated to three grades (normal, hypokinesis and akinesis; normal, low and defect, respectively), which were compared with the wall motion of the ECG-gated blood pool SPECT. The wall motion and the grade of the Tl-201 uptake of the ECG-gated myocardial SPECT correlated well with the wall motion of the ECG-gated blood pool SPECT (96.6% and 87.9%, respectively). In conclusion, the ECG-gated myocardial SPECT can provide clear perfusion images and is a very useful diagnostic strategy to evaluate the regional wall motion and perfusion simultaneously. (author)

  12. Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy

    International Nuclear Information System (INIS)

    Riley, Craig; Yang, Yong; Li, Tianfang; Zhang, Yongqian; Heron, Dwight E.; Huq, M. Saiful

    2014-01-01

    Purpose: Volumetric modulated arc therapy (VMAT) with gating capability has had increasing adoption in many clinics in the United States. In this new technique, dose rate, gantry rotation speed, and the leaf motion speed of multileaf collimators (MLCs) are modulated dynamically during gated beam delivery to achieve highly conformal dose coverage of the target and normal tissue sparing. Compared with the traditional gated intensity-modulated radiation therapy technique, this complicated beam delivery technique may result in larger dose errors due to the intrafraction tumor motion. The purpose of this work is to evaluate the dosimetric influence of the interplay effect for the respiration-gated VMAT technique (RapidArc, Varian Medical Systems, Palo Alto, CA). Our work consisted of two parts: (1) Investigate the interplay effect for different target residual errors during gated RapidArc delivery using a one-dimensional moving phantom capable of producing stable sinusoidal movement; (2) Evaluate the dosimetric influence in ten clinical patients’ treatment plans using a moving phantom driven with a patient-specific respiratory curve. Methods: For the first part of this study, four plans were created with a spherical target for varying residual motion of 0.25, 0.5, 0.75, and 1.0 cm. Appropriate gating windows were applied for each. The dosimetric effect was evaluated using EDR2 film by comparing the gated delivery with static delivery. For the second part of the project, ten gated lung stereotactic body radiotherapy cases were selected and reoptimized to be delivered by the gated RapidArc technique. These plans were delivered to a phantom, and again the gated treatments were compared to static deliveries by the same methods. Results: For regular sinusoidal motion, the dose delivered to the target was not substantially affected by the gating windows when evaluated with the gamma statistics, suggesting the interplay effect has a small role in respiratory-gated Rapid

  13. Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy.

    Science.gov (United States)

    Riley, Craig; Yang, Yong; Li, Tianfang; Zhang, Yongqian; Heron, Dwight E; Huq, M Saiful

    2014-01-01

    Volumetric modulated arc therapy (VMAT) with gating capability has had increasing adoption in many clinics in the United States. In this new technique, dose rate, gantry rotation speed, and the leaf motion speed of multileaf collimators (MLCs) are modulated dynamically during gated beam delivery to achieve highly conformal dose coverage of the target and normal tissue sparing. Compared with the traditional gated intensity-modulated radiation therapy technique, this complicated beam delivery technique may result in larger dose errors due to the intrafraction tumor motion. The purpose of this work is to evaluate the dosimetric influence of the interplay effect for the respiration-gated VMAT technique (RapidArc, Varian Medical Systems, Palo Alto, CA). Our work consisted of two parts: (1) Investigate the interplay effect for different target residual errors during gated RapidArc delivery using a one-dimensional moving phantom capable of producing stable sinusoidal movement; (2) Evaluate the dosimetric influence in ten clinical patients' treatment plans using a moving phantom driven with a patient-specific respiratory curve. For the first part of this study, four plans were created with a spherical target for varying residual motion of 0.25, 0.5, 0.75, and 1.0 cm. Appropriate gating windows were applied for each. The dosimetric effect was evaluated using EDR2 film by comparing the gated delivery with static delivery. For the second part of the project, ten gated lung stereotactic body radiotherapy cases were selected and reoptimized to be delivered by the gated RapidArc technique. These plans were delivered to a phantom, and again the gated treatments were compared to static deliveries by the same methods. For regular sinusoidal motion, the dose delivered to the target was not substantially affected by the gating windows when evaluated with the gamma statistics, suggesting the interplay effect has a small role in respiratory-gated RapidArc therapy. Varied results were

  14. Functional imaging of murine hearts using accelerated self-gated UTE cine MRI

    NARCIS (Netherlands)

    Motaal, Abdallah G.; Noorman, Nils; de Graaf, Wolter L.; Hoerr, Verena; Florack, Luc M. J.; Nicolay, Klaas; Strijkers, Gustav J.

    2015-01-01

    We introduce a fast protocol for ultra-short echo time (UTE) Cine magnetic resonance imaging (MRI) of the beating murine heart. The sequence involves a self-gated UTE with golden-angle radial acquisition and compressed sensing reconstruction. The self-gated acquisition is performed asynchronously

  15. Evaluation of Transient Motion During Gadoxetic Acid-Enhanced Multiphasic Liver Magnetic Resonance Imaging Using Free-Breathing Golden-Angle Radial Sparse Parallel Magnetic Resonance Imaging.

    Science.gov (United States)

    Yoon, Jeong Hee; Lee, Jeong Min; Yu, Mi Hye; Hur, Bo Yun; Grimm, Robert; Block, Kai Tobias; Chandarana, Hersh; Kiefer, Berthold; Son, Yohan

    2018-01-01

    The aims of this study were to observe the pattern of transient motion after gadoxetic acid administration including incidence, onset, and duration, and to evaluate the clinical feasibility of free-breathing gadoxetic acid-enhanced liver magnetic resonance imaging using golden-angle radial sparse parallel (GRASP) imaging with respiratory gating. In this institutional review board-approved prospective study, 59 patients who provided informed consents were analyzed. Free-breathing dynamic T1-weighted images (T1WIs) were obtained using GRASP at 3 T after a standard dose of gadoxetic acid (0.025 mmol/kg) administration at a rate of 1 mL/s, and development of transient motion was monitored, which is defined as a distinctive respiratory frequency alteration of the self-gating MR signals. Early arterial, late arterial, and portal venous phases retrospectively reconstructed with and without respiratory gating and with different temporal resolutions (nongated 13.3-second, gated 13.3-second, gated 6-second T1WI) were evaluated for image quality and motion artifacts. Diagnostic performance in detecting focal liver lesions was compared among the 3 data sets. Transient motion (mean duration, 21.5 ± 13.0 seconds) was observed in 40.0% (23/59) of patients, 73.9% (17/23) of which developed within 15 seconds after gadoxetic acid administration. On late arterial phase, motion artifacts were significantly reduced on gated 13.3-second and 6-second T1WI (3.64 ± 0.34, 3.61 ± 0.36, respectively), compared with nongated 13.3-second T1WI (3.12 ± 0.51, P < 0.0001). Overall, image quality was the highest on gated 13.3-second T1WI (3.76 ± 0.39) followed by gated 6-second and nongated 13.3-second T1WI (3.39 ± 0.55, 2.57 ± 0.57, P < 0.0001). Only gated 6-second T1WI showed significantly higher detection performance than nongated 13.3-second T1WI (figure of merit, 0.69 [0.63-0.76]) vs 0.60 [0.56-0.65], P = 0.004). Transient motion developed in 40% (23/59) of patients shortly after

  16. Utility of Electrocardiography (ECG)-Gated Computed Tomography (CT) for Preoperative Evaluations of Thymic Epithelial Tumors.

    Science.gov (United States)

    Ozawa, Yoshiyuki; Hara, Masaki; Nakagawa, Motoo; Shibamoto, Yuta

    2016-01-01

    Preoperative evaluation of invasion to the adjacent organs is important for the thymic epithelial tumors on CT. The purpose of our study was to evaluate the utility of electrocardiography (ECG)-gated CT for assessing thymic epithelial tumors with regard to the motion artifacts produced and the preoperative diagnostic accuracy of the technique. Forty thymic epithelial tumors (36 thymomas and 4 thymic carcinomas) were examined with ECG-gated contrast-enhanced CT using a dual source scanner. The scan delay after the contrast media injection was 30 s for the non-ECG-gated CT and 100 s for the ECG-gated CT. Two radiologists blindly evaluated both the non-ECG-gated and ECG-gated CT images for motion artifacts and determined whether the tumors had invaded adjacent structures (mediastinal fat, superior vena cava, brachiocephalic veins, aorta, pulmonary artery, pericardium, or lungs) on each image. Motion artifacts were evaluated using a 3-grade scale. Surgical and pathological findings were used as a reference standard for tumor invasion. Motion artifacts were significantly reduced for all structures by ECG gating ( p =0.0089 for the lungs and p ECG-gated CT and ECG-gated CT demonstrated 79% and 95% accuracy, respectively, during assessments of pericardial invasion ( p =0.03). ECG-gated CT reduced the severity of motion artifacts and might be useful for preoperative assessment whether thymic epithelial tumors have invaded adjacent structures.

  17. Evaluation of regional wall motion in myocardial infarction using animation ECG gated cardiac computed tomography

    International Nuclear Information System (INIS)

    Shimizu, Takahiko; Hyodo, Haruo; Hayashi, Terumi; Yamamoto, Hideo; Yagi, Shigeru

    1984-01-01

    Regional wall motion of the left ventricle was evaluated in 21 patients with myocardial infarction using an animation system of gated cardiac computed tomographic (CT) images (animation gated CCT). The results obtained were compared with data by two-dimensional echocardiography (2-DE). 1. Evaluation of the asynergic area by animation gated CCT and 2-DE: Animation gated CCT detected the following specific regions with asynergy established by 2-DE; 10/10 cases (100%) at the anterior wall of the left ventricle, 14/14 cases (100%) at the interventricular septum, and 9/11 cases (81.8%) at the infero-posterior wall. In addition, one false positive case and one negative case were observed at the lateral wall and the apex, respectively. Of 37 instances with asynergic areas established by 2-DE, 21 cases or 89.2% were detected by animation gated CCT; the sensitivity was 91.9%. 2. Evaluation of severity of asynergy by animation gated CCT and 2-DE: The degree of asynergy evaluated by both methods was compared with each other, and the agreement was as follows: 10/10 cases (100%) at the left-ventricular anterior wall, 13/13 cases (100%) at the interventricular septum, and 7/9 cases (77.8%) at the infero-posterior wall. 3. Evaluation of the asynergic area by nonanimation gated CCT and 2-DE: Nonanimation gated CCT detected asynergic areas ascertained by 2-DE at the following areas; 8/10 cases (80%) at the left-ventricular anterior wall, 12/14 cases (85.7%) at the interventricular septum, and 4/11 cases (36.4%) at the infero-posterior wall. The difference between animation and nonanimation gated CCT was statistically significant (p<0.05). The severity of asynergy could not be evaluated by nonanimation gated CCT. (J.P.N.)

  18. Motion compensated cine CMR of the fetal heart using radial undersampling and compressed sensing

    OpenAIRE

    Roy, Christopher W.; Seed, Mike; Kingdom, John C.; Macgowan, Christopher K.

    2017-01-01

    Background To develop and evaluate a reconstruction framework for high resolution time-resolved CMR of the fetal heart in the presence of motion. Methods Data were acquired using a golden angle radial trajectory in seven fetal subjects and reconstructed as real-time images to detect fetal movement. Data acquired during through-plane motion were discarded whereas in-plane motion was corrected. A fetal cardiac gating signal was extracted to sort the corrected data by cardiac phase, allowing rec...

  19. Dynamic gating window for compensation of baseline shift in respiratory-gated radiation therapy

    International Nuclear Information System (INIS)

    Pepin, Eric W.; Wu Huanmei; Shirato, Hiroki

    2011-01-01

    Purpose: To analyze and evaluate the necessity and use of dynamic gating techniques for compensation of baseline shift during respiratory-gated radiation therapy of lung tumors. Methods: Motion tracking data from 30 lung tumors over 592 treatment fractions were analyzed for baseline shift. The finite state model (FSM) was used to identify the end-of-exhale (EOE) breathing phase throughout each treatment fraction. Using duty cycle as an evaluation metric, several methods of end-of-exhale dynamic gating were compared: An a posteriori ideal gating window, a predictive trend-line-based gating window, and a predictive weighted point-based gating window. These methods were evaluated for each of several gating window types: Superior/inferior (SI) gating, anterior/posterior beam, lateral beam, and 3D gating. Results: In the absence of dynamic gating techniques, SI gating gave a 39.6% duty cycle. The ideal SI gating window yielded a 41.5% duty cycle. The weight-based method of dynamic SI gating yielded a duty cycle of 36.2%. The trend-line-based method yielded a duty cycle of 34.0%. Conclusions: Dynamic gating was not broadly beneficial due to a breakdown of the FSM's ability to identify the EOE phase. When the EOE phase was well defined, dynamic gating showed an improvement over static-window gating.

  20. Ultrasonographic Evaluation of the Radial Nerves in Patients with Unilateral Refractory Lateral Epicondylitis.

    Science.gov (United States)

    Gürçay, Eda; Karaahmet, Özgür Zeliha; Kara, Murat; Onat, Sule Sahin; Ata, Ayse Merve; Ünlü, Ece; Özçakar, Levent

    2017-03-01

    To evaluate the possible radial nerve entrapment of patients with unilateral refractory lateral epicondylitis (LE) by using ultrasound (US) and electroneuromyography. Cross-sectional study. Three physical medicine and rehabilitation departments. Consecutive 44 patients (15 M, 29 F) with unilateral refractory LE. All patients underwent detailed clinical, electrophysiological and ultrasonographic evaluations. Ultrasound imaging was used to evaluate thickness and presence of abnormal findings of the common extensor tendon (CET) and cross-sectional area (CSA) of the radial nerve (at spiral groove and before bifurcation) bilaterally. Unaffected sides of the patients were taken as controls. When compared with the unaffected sides, CET thickness and radial nerve CSAs (at both levels) were higher, and abnormal US findings regarding LE (47.7% vs. 6.8%) were more common on the affected sides than nonaffected sides (all P   0.05). When subgroup analyses were performed after taking into account the hand dominance, affected and dominant sides were found to be the same in 31 and different in 13 patients. In subgroups, CETs and radial nerve CSAs at both levels were higher on the affected sides (all P  < 0.01). Radial nerves and the CETs seem to be swollen on the affected sides, independent from the hand dominance of the patients with refractory LE. These results morphologically support the previous literature that attributes some of the chronic complaints of these patients actually to radial nerve entrapment. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  1. Clinical evaluation of left ventricular wall thickness by combined technique with gated planer 201Tl image and gated cardiac pool image

    International Nuclear Information System (INIS)

    Nakai, Kenji; Katsuragawa, Shigehiko; Takahashi, Tsuneo; Matsushita, Kazuo; Kawamura, Akiyoshi

    1983-01-01

    To evaluate the left ventricular (LV) wall thickness, combined technique with gated planer 201-Thallium image and gated cardiac pool image was applied to 6 patients with hypertrophic cardiomyopathy (HCM) and 4 patients with secondary hypertrophy due to hypertension (HHD) proven by electrocardiography and ultrasonic-echocardiography. Scintigraphic pattern of hypertrophy on reconstructed planer 201 Tl image showed diffuse or asymmetrical apical hypertrophy in HHD, asymmetrical septal hypertrophy in HCM. It was very interesting that abnormal perfusion was shown in 201 Tl image, despite symmetrical hypertrophy in echocardiography. This techniques provided useful information for evaluating the LV wall thickness and cardiac performance. (author)

  2. A New Approach to Spindle Radial Error Evaluation Using a Machine Vision System

    Directory of Open Access Journals (Sweden)

    Kavitha C.

    2017-03-01

    Full Text Available The spindle rotational accuracy is one of the important issues in a machine tool which affects the surface topography and dimensional accuracy of a workpiece. This paper presents a machine-vision-based approach to radial error measurement of a lathe spindle using a CMOS camera and a PC-based image processing system. In the present work, a precisely machined cylindrical master is mounted on the spindle as a datum surface and variations of its position are captured using the camera for evaluating runout of the spindle. The Circular Hough Transform (CHT is used to detect variations of the centre position of the master cylinder during spindle rotation at subpixel level from a sequence of images. Radial error values of the spindle are evaluated using the Fourier series analysis of the centre position of the master cylinder calculated with the least squares curve fitting technique. The experiments have been carried out on a lathe at different operating speeds and the spindle radial error estimation results are presented. The proposed method provides a simpler approach to on-machine estimation of the spindle radial error in machine tools.

  3. Evaluation of respiratory pattern during respiratory-gated radiotherapy

    International Nuclear Information System (INIS)

    Dobashi, Suguru; Mori, Shinichiro

    2014-01-01

    The respiratory cycle is not strictly regular, and generally varies in amplitude and period from one cycle to the next. We evaluated the characteristics of respiratory patterns acquired during respiratory gating treatment in more than 300 patients. A total 331 patients treated with respiratory-gated carbon-ion beam therapy were selected from a group of patients with thoracic and abdominal conditions. Respiratory data were acquired for a total of 3,171 fractions using an external respiratory sensing monitor and evaluated for respiratory cycle, duty cycle, magnitude of baseline drift, and intrafractional/interfractional peak inhalation/exhalation positional variation. Results for the treated anatomical sites and patient positioning were compared. Mean ± SD respiratory cycle averaged over all patients was 4.1 ± 1.3 s. Mean ± SD duty cycle averaged over all patients was 36.5 ± 7.3 %. Two types of baseline drift were seen, the first decremental and the second incremental. For respiratory peak variation, the mean intrafractional variation in peak-inhalation position relative to the amplitude in the first respiratory cycle (15.5 ± 9.3 %) was significantly larger than that in exhalation (7.5 ± 4.6 %). Interfractional variations in inhalation (17.2 ± 18.5 %) were also significantly greater than those in exhalation (9.4 ± 10.0 %). Statistically significant differences were observed between patients in the supine position and those in the prone position in mean respiratory cycle, duty cycle, and intra-/interfractional variations. We quantified the characteristics of the respiratory curve based on a large number of respiratory data obtained during treatment. These results might be useful in improving the accuracy of respiratory-gated treatment.

  4. Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging

    International Nuclear Information System (INIS)

    Ford, E.C.; Mageras, G.S.; Yorke, E.; Rosenzweig, K.E.; Wagman, R.; Ling, C.C.

    2002-01-01

    Purpose: To evaluate the effectiveness of a commercial system in reducing respiration-induced treatment uncertainty by gating the radiation delivery. Methods and Materials: The gating system considered here measures respiration from the position of a reflective marker on the patient's chest. Respiration-triggered planning CT scans were obtained for 8 patients (4 lung, 4 liver) at the intended phase of respiration (6 at end expiration and 2 at end inspiration). In addition, fluoroscopic movies were recorded simultaneously with the respiratory waveform. During the treatment sessions, gated localization films were used to measure the position of the diaphragm relative to the vertebral bodies, which was compared to the reference digitally reconstructed radiograph derived from the respiration-triggered planning CT. Variability was quantified by the standard deviation about the mean position. We also assessed the interfraction variability of soft tissue structures during gated treatment in 2 patients using an amorphous silicon electronic portal imaging device. Results: The gated localization films revealed an interfraction patient-averaged diaphragm variability of 2.8±1.0 mm (error bars indicate standard deviation in the patient population). The fluoroscopic data yielded a patient-averaged intrafraction diaphragm variability of 2.6±1.7 mm. With no gating, this intrafraction excursion became 6.9±2.1 mm. In gated localization films, the patient-averaged mean displacement of the diaphragm from the planning position was 0.0±3.9 mm. However, in 4 of the 8 patients, the mean (over localization films) displacement was >4 mm, indicating a systematic displacement in treatment position from the planned one. The position of soft tissue features observed in portal images during gated treatments over several fractions showed a mean variability between 2.6 and 5.7 mm. The intrafraction variability, however, was between 0.6 and 1.4 mm, indicating that most of the variability was

  5. Evaluation of segmental left ventricular wall motion by equilibrium gated radionuclide ventriculography.

    Science.gov (United States)

    Van Nostrand, D; Janowitz, W R; Holmes, D R; Cohen, H A

    1979-01-01

    The ability of equilibrium gated radionuclide ventriculography to detect segmental left ventricular (LV) wall motion abnormalities was determined in 26 patients undergoing cardiac catheterization. Multiple gated studies obtained in 30 degrees right anterior oblique and 45 degrees left anterior oblique projections, played back in a movie format, were compared to the corresponding LV ventriculograms. The LV wall in the two projections was divided into eight segments. Each segment was graded as normal, hypokinetic, akinetic, dyskinetic, or indeterminate. Thirteen percent of the segments in the gated images were indeterminate; 24 out of 27 of these were proximal or distal inferior wall segments. There was exact agreement in 86% of the remaining segments. The sensitivity of the radionuclide technique for detecting normal versus any abnormal wall motion was 71%, with a specificity of 99%. Equilibrium gated ventriculography is an excellent noninvasive technique for evaluating segmental LV wall motion. It is least reliable in assessing the proximal inferior wall and interventricular septum.

  6. The usefulness of treatment evaluation of severe heart failure by ECG-gated myocardial SPECT

    International Nuclear Information System (INIS)

    Ohkoshi, Nobuyuki; Watanabe, Shingo; Matsumoto, Tooru

    2011-01-01

    Our purpose of study was to investigate the usefulness of treatment evaluation of severe heart failure by Electrocardiogram (ECG)-gated myocardial single photon emission computed tomography (SPECT). We evaluated the cardiac function in the case of severe heart failure by gated SPECT and compared it with the cardiac function obtained by left ventriculography (LVG), echocardiography, cardiac MRI, and B-type natriuretic peptide (BNP) values. We investigated the correlation of ejection fraction (EF), time lag of wall motion between the septal and lateral walls of the left ventricle for cardiac resynchronization therapy (CRT) and wall thickening (WT). We classified the left ventricular (LV) into basal, middle and apical areas for comparison of WT. We investigated the effect of a perfusion defect score in these comparisons. The gated SPECT results were correlated with comparative subjects in EF. The results were correlated with MRI on the middle area of the LV in the comparison of WT. We thought it was possible that there was an effect from a perfusion defect score in a time lag comparison of wall motion. Treatment evaluation of severe heart failure by gated SPECT is useful, because it is able to obtain three-dimensional cardiac function analysis, and it offers objectivity and reproducible quantitative evaluation. At the same time, perfusion SPECT is helpful for CRT and LV-plasty. (author)

  7. Clinical evaluation of left ventricular wall thickness by combined technique with gated planer /sup 201/Tl image and gated cardiac pool image

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Kenji; Katsuragawa, Shigehiko; Takahashi, Tsuneo; Matsushita, Kazuo; Kawamura, Akiyoshi

    1983-11-01

    To evaluate the left ventricular (LV) wall thickness, a combined technique with gated planer 201-thallium image and gated cardiac pool image was applied to 6 patients with hypertrophic cardiomyopathy (HCM) and 4 patients with secondary hypertrophy due to hypertension (HHD) proven by electrocardiography and ultrasonic-echocardiography. Scintigraphic pattern of hypertrophy on reconstructed planer /sup 201/Tl image showed diffuse or asymmetrical apical hypertrophy in HHD, asymmetrical septal hypertrophy in HCM. It was very interesting that abnormal perfusion was shown in /sup 201/Tl image, despite symmetrical hypertrophy in echocardiography. This techniques provided useful information for evaluating the LV wall thickness and cardiac performance.

  8. Evaluation of diastolic phase by left ventricular volume curve using s2-gated equilibrium method among radioisotope angiography

    International Nuclear Information System (INIS)

    Watanabe, Yoshirou; Sakai, Akira; Inada, Mitsuo; Shiraishi, Tomokuni; Kobayashi, Akitoshi

    1982-01-01

    S2-gated (the second heart sound) method was designed by authors. In 6 normal subjects and 16 patients (old myocardial infarction 12 cases, hypertension 2 cases and aortic regurgitation 2 cases), radioisotope (RI) angiography using S2-gated equilibrium method was performed. In RI angiography, sup(99m)Tc-human serum albumin (HSA) 555MBq (15mCi) as tracer, PDP11/34 as minicomputer and PCG/ECG symchromizer (Metro Inst.) were used. Then left ventricular (LV) volume curve by S2-gated and electrocardiogram (ECG) R wave-gated method were obtained. Using LV volume curve, left ventricular ejection fraction (EF), mean ejection rate (mER, s -1 ), mean filling rate (mFR, -1 ) and rapid filling fraction (RFF) were calculated. mFR indicated mean filling rate during rapid filling phase. RFF was defined as the filling fraction during rapid filling phase among stroke volume. S2-gated method was reliable in evaluation of early diastolic phase, compared with ECG-gated method. There was the difference between RFF in normal group and myocardial infarction (MI) group (p < 0.005). RFF in 2 groups were correlated with EF (r = 0.82, p < 0.01). RFF was useful in evaluating MI cases who had normal EF values. The comparison with mER by ECG-gated and mFR by S2-gated was useful in evaluating MI cases who had normal mER values. mFR was remarkably lower than mER in MI group, but was equal to mER in normal group approximately. In conclusion, the evaluation using RFF and mFR by S2-gated method was useful in MI cases who had normal systolic phase indices. (author)

  9. An evaluation of gating window size, delivery method, and composite field dosimetry of respiratory-gated IMRT

    International Nuclear Information System (INIS)

    Hugo, Geoffrey D.; Agazaryan, Nzhde; Solberg, Timothy D.

    2002-01-01

    A respiratory gating system has been developed based on a commercial patient positioning system. The purpose of this study is to investigate the ability of the gating system to reproduce normal, nongated IMRT operation and to quantify the errors produced by delivering a nongated IMRT treatment onto a moving target. A moving phantom capable of simultaneous two-dimensional motion was built, and an analytical liver motion function was used to drive the phantom. Studies were performed to assess the effect of gating window size and choice of delivery method (segmented and dynamic multileaf collimation). Additionally, two multiple field IMRT cases were delivered to quantify the error in gated and nongated IMRT with motion. Dosimetric error between nonmoving and moving deliveries is related to gating window size. By reducing the window size, the error can be reduced. Delivery error can be reduced for both dynamic and segmented delivery with gating. For the implementation of dynamic IMRT delivery in this study, dynamic delivery was found to generate larger delivery errors than segmented delivery in most cases studied. For multiple field IMRT delivery, the largest errors were generated in regions where high field modulation was present parallel to the axis of motion. Gating was found to reduce these large errors to clinically acceptable levels

  10. Parallel Fixed Point Implementation of a Radial Basis Function Network in an FPGA

    Directory of Open Access Journals (Sweden)

    Alisson C. D. de Souza

    2014-09-01

    Full Text Available This paper proposes a parallel fixed point radial basis function (RBF artificial neural network (ANN, implemented in a field programmable gate array (FPGA trained online with a least mean square (LMS algorithm. The processing time and occupied area were analyzed for various fixed point formats. The problems of precision of the ANN response for nonlinear classification using the XOR gate and interpolation using the sine function were also analyzed in a hardware implementation. The entire project was developed using the System Generator platform (Xilinx, with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA.

  11. Evaluation of left ventricular ejection fraction using quantitative gated SPECT (QGS)

    International Nuclear Information System (INIS)

    Musa, M. A. A.

    2010-07-01

    Electrocardiographic ally gated myocardial perfusion SPECT (G SPECT) is a state-of the art technique for the combined evaluation of myocardial perfusion and left ventricular function within a single study. It is currently one of the most commonly performed cardiology procedures in a nuclear medicine department. Automation of the image processing and quantification has made this techniques highly reproducible, practical and user friendly in the clinical setting . In patients with coronary artery disease, gating enhances the diagnostic and prognostic capability of myocardial perfusion imaging provides incremental information over the the perfusion data, and has shown potentials for myocardial viability assessment and sequential follow-up after therapy. Evaluation of the left ventricular (L V) function is important in clinical cardiology. Quantifying the degree and extent of the L V functional abnormalities permits a systematic assessment of the disease process on the myocardial performance. The aim of this thesis is to evaluate left ventricular ejection fraction (LVEF) in patients with no evidence of ischemic response during the stress test. This investigation was carried out in view of the few reports concerning the findings ventricular function with gated SPECT in these situations in the normal population, which is relevant when considering the possibility of myocardial stunning. Method: We prospectively studied 30 selected patients, in difference age and gender. A one-day protocol was used, with injection 555 MBq - 1.11 MBq (15 - 30 mCi) of 99 mTc-M1 B1 at stress and rest. Gated perfusion SPECT was acquired 30 to 60 minutes after radiotracer injection in both condition and processed using QGSPECT software. Difference between stress and rest LVEF was calculated. Result and conclusion: rest LVEF was higher in the stress (exercise) group, A trend line was done in both groups and r-value was (0.9) and p=0.04 in acceptance value. Standard deviation of LVEF also was

  12. Evaluation of left ventricular function using electrocardiographically gated myocardial SPECT with (123)I-labeled fatty acid analog.

    Science.gov (United States)

    Nanasato, M; Ando, A; Isobe, S; Nonokawa, M; Hirayama, H; Tsuboi, N; Ito, T; Hirai, M; Yokota, M; Saito, H

    2001-12-01

    Electrocardiographically (ECG) gated myocardial SPECT with (99m)Tc-tetrofosmin has been used widely to assess left ventricular (LV) function. However, the accuracy of variables using ECG gated myocardial SPECT with beta-methyl-p-(123)I-iodophenylpentadecanoic acid (BMIPP) has not been well defined. Thirty-six patients (29 men, 7 women; mean age, 61.6 +/- 15.6 y) with ischemic heart disease underwent ECG gated myocardial SPECT with (123)I-BMIPP and with (99m)Tc-tetrofosmin and left ventriculography (LVG) within 1 wk. LV ejection fraction (LVEF), LV end-diastolic volume (LVEDV), and LV end-systolic volume (LVESV) were determined on gated SPECT using commercially available software for automatic data analysis. These volume-related items on LVG were calculated with an area-length method and were estimated by 2 independent observers to evaluate interobserver validity. The regional wall motion with these methods was assessed visually. LVEF was 41.1% +/- 12.5% on gated SPECT with (123)I-BMIPP, 44.5% +/- 13.1% on gated SPECT with (99m)Tc-tetrofosmin, and 46.0% +/- 12.7% on LVG. Global LV function and regional wall motion between both gated SPECT procedures had excellent correlation (LVEF, r = 0.943; LVEDV, r = 0.934; LVESV, r = 0.952; regional wall motion, kappa = 0.92). However, the correlations of global LV function and regional wall motion between each gated SPECT and LVG were significantly lower. Gated SPECT with (123)I-BMIPP showed the same interobserver validity as gated SPECT with (99m)Tc-tetrofosmin. Gated SPECT with (123)I-BMIPP provides high accuracy with regard to LV function and is sufficiently applicable for use in clinical SPECT. This technique can simultaneously reveal myocardial fatty acid metabolism and LV function, which may be useful to evaluate various cardiac diseases.

  13. Endoscopic versus open radial artery harvest and mammario-radial versus aorto-radial grafting in patients undergoing coronary artery bypass surgery

    DEFF Research Database (Denmark)

    Carranza, Christian L; Ballegaard, Martin; Werner, Mads U

    2014-01-01

    the postoperative complications will be registered, and we will evaluate muscular function, scar appearance, vascular supply to the hand, and the graft patency including the patency of the central radial artery anastomosis. A patency evaluation by multi-slice computer tomography will be done at one year...... to aorto-radial revascularisation techniques but this objective is exploratory. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT01848886.Danish Ethics committee number: H-3-2012-116.Danish Data Protection Agency: 2007-58-0015/jr.n:30-0838....

  14. [Comparison of chemical quality characteristics between radial striations and non-radial striations in tuberous root of Rehmannia glutinosa].

    Science.gov (United States)

    Xie, Cai-Xia; Zhang, Miao; Li, Ya-Jing; Geng, Xiao-Tong; Wang, Feng-Qing; Zhang, Zhong-Yi

    2017-11-01

    An HPLC method was established to determine the contents of catalpol, acteoside, rehmaionoside A, rehmaionoside D, leonuride in three part of Rehmanni glutinosa in Beijing No.1 variety R. glutinosa during the growth period, This method, in combination with its HPLC fingerprint was used to evaluate its overall quality characteristics.The results showed that:① the content of main components of R. glutinosa varied in different growth stages ;② there was a great difference of the content of main components between theradial striations and the non-radial striations; ③ the two sections almost have the same content distribution of catalpol, acteoside and rehmaionoside D; ④the content of rehmaionoside A in non-radial striations was higher than that in radial striations,while the content of leonuride in radial striations was higher than that in non-radial striations.; ⑤the HPLC fingerprint of radial striations, non-radial striations and whole root tuber were basically identical, except for the big difference in the content of chemical components. The result of clustering displayed that the radial striations, non-radial striations, and whole root were divided into two groups. In conclusion, there was a significant difference in the quality characteristics of radial striations and non-radial striations of R. glutinosa. This research provides a reference for quality evaluation and geoherbalism of R. glutinosa. Copyright© by the Chinese Pharmaceutical Association.

  15. Re-evaluation of the haptoglobin reference values with the radial immunodiffusion technique

    NARCIS (Netherlands)

    Rijn, H.J.M. van; Schreurs, W.H.P.; Schrijver, J.

    1984-01-01

    The reference values of the three main types of serum haptoglobin Hp 1-1, Hp 2-1, and Hp 2-2, as determined by radial immunodiffusion and with phenotype determination on polyacrylamide gel electrophoresis have been re-evaluated for both sexes. For that purpose about 500 serum samples were collected

  16. Analytical drain current formulation for gate dielectric engineered dual material gate-gate all around-tunneling field effect transistor

    Science.gov (United States)

    Madan, Jaya; Gupta, R. S.; Chaujar, Rishu

    2015-09-01

    In this work, an analytical drain current model for gate dielectric engineered (hetero dielectric)-dual material gate-gate all around tunnel field effect transistor (HD-DMG-GAA-TFET) has been developed. Parabolic approximation has been used to solve the two-dimensional (2D) Poisson equation with appropriate boundary conditions and continuity equations to evaluate analytical expressions for surface potential, electric field, tunneling barrier width and drain current. Further, the analog performance of the device is studied for three high-k dielectrics (Si3N4, HfO2, and ZrO2), and it has been investigated that the problem of lower ION, can be overcome by using the hetero-gate architecture. Moreover, the impact of scaling the gate oxide thickness and bias variations has also been studied. The HD-DMG-GAA-TFET shows an enhanced ION of the order of 10-4 A. The effectiveness of the proposed model is validated by comparing it with ATLAS device simulations.

  17. Evaluation of coronary artery disease by helical CT using retrospective ECG-gating

    International Nuclear Information System (INIS)

    Kawawa, Yoko

    2001-01-01

    The purpose of this study is to evaluate the usefulness of helical CT using retrospective ECG-gating for visualization of the coronary artery and detection of coronary artery disease. We performed a coronary artery phantom study and established this new application, with 1-mm collimation, 1-mm table increment, and 0.1-mm reconstruction (0.8 sec/rotation). Helical CT of 31 patients with 39 coronary artery diseases (34 coronary artery stenoses, 1 vasospastic angina, 1 coronary artery dissection, 1 coronary artery ectasia and 2 coronary artery aneurysms) was performed in a single breath hold and ECG-gating without and with intravenous injection of nonionic iodine contrast material. We selected the images which were not affected by cardiac motion from the reconstruction images, in order to visualize the coronary artery for detection of coronary artery disease. The coronary artery was well visualized in 32 out of 39 vessels (82%). A good visualization of the coronary artery was correlated with the heart rate. Further, in this well visualized group, coronary artery diseases were detected in 24 out of 31 cases (77%). One case of vasospastic angina was not included. It was difficult to detect coronary artery disease in cases of heavily calcified vessels or in the left circumflex artery. Helical CT using this retrospective ECG-gating is a useful noninvasive examination for evaluation of coronary artery disease. (author)

  18. Evaluation of irradiation position in respiratory-gated radiotherapy using a phantom system simulating patient respiration

    International Nuclear Information System (INIS)

    Oyama, Masaya; Ueda, Takashi; Kitoh, Satoshi; Tanaka, Takashi; Goka, Tomonori; Ogino, Takashi

    2006-01-01

    Respiratory-gated (RG) radiotherapy is useful for minimizing the irradiated volume of normal tissues resulting from the shifting of internal structures caused by respiratory movement. The present study was conducted to evaluate the treatment field in RG radiotherapy using a phantom system simulating patient respiration. A phantom system consisting of a 3-cm ball-shaped dummy tumor and film placed in a cork lung phantom was used (THK Co., Ltd.). RG radiotherapy was employed in the expiratory phase. The phantom movement distance was set to 2 cm, and the gating signals from a respiratory-gating system (AZ-733V, Anzai Medical) were varied. The settings used for irradiation were an X-ray energy of 6 MV (PRIMUS, Toshiba Medical Systems), treatment field of 5 cm x 7 cm, and X-ray dose of 100 MU. Images were acquired using an electric portal-imaging device (EPID, OPTIVUE 500), and the X-ray dose distribution was measured by the film method. In images acquired using the EPID, the tumor margins became less clear when the gating signals were increased, and the ITVs were determined to be 3.6 cm, 3.7 cm, 4.2 cm, and 5.1 cm at gating rates of 10%, 25%, 50%, and no gate, respectively. With regard to the X-ray dose distribution measured by the film method, the dose profile in the cephalocaudal direction was shifted toward the expiratory phase, and the degree of shift became greater when the gating signals were increased. In addition, the optimal treatment fields in the cephalocaudal direction were determined to be 5.2 cm, 5.2 cm, 5.6 cm, and 7.0 cm at gating rates of 10%, 25%, 50%, and no gating, respectively. Although RG radiotherapy is useful for improving the accuracy of radiotherapy, the characteristics of the RG radiotherapy technique and the radiotherapy system must be clearly understood when this method is to be employed in clinical practice. Image-guided radiotherapy (IGRT) is now assuming a central role in radiotherapy, and properly identifying internal margins is an

  19. Quantitative evaluation of orbital hybridization in carbon nanotubes under radial deformation using π-orbital axis vector

    Directory of Open Access Journals (Sweden)

    Masato Ohnishi

    2015-04-01

    Full Text Available When a radial strain is applied to a carbon nanotube (CNT, the increase in local curvature induces orbital hybridization. The effect of the curvature-induced orbital hybridization on the electronic properties of CNTs, however, has not been evaluated quantitatively. In this study, the strength of orbital hybridization in CNTs under homogeneous radial strain was evaluated quantitatively. Our analyses revealed the detailed procedure of the change in electronic structure of CNTs. In addition, the dihedral angle, the angle between π-orbital axis vectors of adjacent atoms, was found to effectively predict the strength of local orbital hybridization in deformed CNTs.

  20. Cardiac gated ventilation

    International Nuclear Information System (INIS)

    Hanson, C.W. III; Hoffman, E.A.

    1995-01-01

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. The authors evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50 msec scan aperture. Multi slice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. The authors observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a non-failing model of the heart

  1. CMOS gate array characterization procedures

    Science.gov (United States)

    Spratt, James P.

    1993-09-01

    Present procedures are inadequate for characterizing the radiation hardness of gate array product lines prior to personalization because the selection of circuits to be used, from among all those available in the manufacturer's circuit library, is usually uncontrolled. (Some circuits are fundamentally more radiation resistant than others.) In such cases, differences in hardness can result between different designs of the same logic function. Hardness also varies because many gate arrays feature large custom-designed megacells (e.g., microprocessors and random access memories-MicroP's and RAM's). As a result, different product lines cannot be compared equally. A characterization strategy is needed, along with standardized test vehicle(s), methodology, and conditions, so that users can make informed judgments on which gate arrays are best suited for their needs. The program described developed preferred procedures for the radiation characterization of gate arrays, including a gate array evaluation test vehicle, featuring a canary circuit, designed to define the speed versus hardness envelope of the gate array. A multiplier was chosen for this role, and a baseline multiplier architecture is suggested that could be incorporated into an existing standard evaluation circuit chip.

  2. Comparative evaluation of two commercial PET scanners, ECAT EXACT HR+ and Biograph 2, using GATE

    International Nuclear Information System (INIS)

    Karakatsanis, N.; Sakellios, N.; Tsantilas, N.X.; Dikaios, N.; Tsoumpas, C.; Lazaro, D.; Loudos, G.; Schmidtlein, C.R.; Louizi, K.; Valais, J.; Nikolopoulos, D.; Malamitsi, J.; Kandarakis, J.; Nikita, K.

    2006-01-01

    Geant4 application for tomographic emission (GATE) is a generic Monte Carlo simulation platform based on a general-purpose code GEANT4 and designed to simulate positron emission tomography (PET) and single photon emission tomography systems. Monte Carlo simulations are used in nuclear medicine to model imaging systems and develop and assess tomographic reconstruction algorithms and correction methods for improved image quantification. The purpose of this study is to validate two GATE models of the commercial available PET scanner HR+ and the PET/CT Biograph 2. The geometry of the system components has been described in GATE, including detector ring, crystal blocks, PMTs etc. The energy and spatial resolution of the scanners as given by the manufacturers have been taken into account. The GATE simulated results are compared directly to experimental data obtained using a number of NEMA NU-2-2001 performance protocols, including spatial resolution, sensitivity and scatter fraction. All the respective phantoms are precisely modeled. Furthermore, an approximate dead-time model both at the level of single and coincidence events was developed so that the simulated count rate curve can satisfactorily match the experimental count rate performance curve for each scanner In addition a software tool was developed to build the sinograms from the simulated data and import them into the software for tomographic image reconstruction where the reconstruction algorithm of FBP3DRP was applied. An agreement of less than 0.8 mm was obtained between the spatial resolution of the simulated system and the experimental results. Also the simulated scatter fraction for the NEMA NU 2-2001 scatter phantom matched the experimental results to within 3% of measured values. Finally the ratio of the simulated sensitivities with sources radially offset 0 and 10 cm from the central axis of each of the two scanners reaches an agreement of less than 1% between the simulated and experimental values. This

  3. Ultrasound evaluation of forearm arteries in patients undergoing percutaneous coronary intervention via radial artery access: results of one-year follow-up.

    Science.gov (United States)

    Peruga, Jan Przemysław; Peruga, Jan Zbigniew; Kasprzak, Jarosław D; Kręcki, Radosław; Jankowski, Łukasz; Zając, Piotr; Plewka, Michał

    2015-01-01

    A proven advantage of radial over femoral arterial access has led to an increase in the number of interventions performed via radial artery access in patients with acute coronary syndromes. Both assessment of the pulse volume and the Allen's test are subjective and subject to investigator bias. An ultrasound examination of the forearm arteries provides important information about the anatomy of the forearm vessels, and indirectly also about the efficiency of collateral blood supply to the hand. It also enables determination of the relevant vessel diameter before the planned intervention, and may be used to assess local complications. To assess the morphology of forearm blood vessels and measure the diameter of both radial and ulnar arteries at the cannulation site using ultrasound imaging. We also aimed to identify potential vascular anomalies and local complications associated with radial artery puncture. The study included 109 patients with cardiologic indications for coronary angiography or coronary angioplasty. An ultrasound evaluation of forearm arteries was performed prior to the intervention, and the vascular anatomy was later verified by angiography during the procedure. Ultrasound measurements of the vessel diameter were also performed and local complications of the cannulation were assessed. Measurements were performed immediately after the procedure and at 30 days and 12 months. Fifty-nine right and 50 left forearm arteries were evaluated. Women were 29% of the study population. The mean patient age was 59.2 ± 7.9 years. The mean diameter of the right radial artery was 2.17 ± 0.54 mm, and the mean diameter of the left radial artery was 2.25 ± 0.43 mm. The measurements revealed gender-related differences in forearm artery diameter (p = 0.003). Vascular anomalies of the radial artery were identified by ultrasound examination in 10% of subjects. A significant dilatation of the cannulated blood vessel was observed which lasted up to 12 months. An

  4. Gated single-photon emission tomography imaging protocol to evaluate myocardial stunning after exercise

    International Nuclear Information System (INIS)

    Hashimoto, Jun; Kubo, Atsushi; Iwasaki, Ryuichiro; Iwanaga, Shiro; Mitamura, Hideo; Ogawa, Satoshi; Kosuda, Shigeru

    1999-01-01

    This study was designed to apply ECG-gating to stress myocardial perfusion single-photon emission tomography (SPET) for the evaluation of myocardial stunning after exercise. Technetium-99m sestamibi was selected as the perfusion agent and a rest/exercise 1-day protocol was employed. Fourteen patients without coronary stenosis and 33 patients with coronary stenosis were enrolled in the study. We carried out three data acquisitions with ECG-gating: a 15-min data acquisition starting 30 min after the rest injection (AC1), a 5-min acquisition starting 5 min after the stress injection (AC2) and a 15-min acquisition starting 20 min after the stress injection (AC3). Calculation of left ventricular ejection fraction (LVEF) values was performed by means of automatic determination of the endocardial surface for all gating intervals in the cardiac cycle. Measured global EF values in 14 patients without coronary stenosis were 52.3%±7.6% (AC1), 60.6%±8.9% (AC2) and 55.6%±5.6% (AC3), and those in 11 patients with severe ischaemia were 53.6%±8.0% (AC1), 45.6%±12.1% (AC2) and 49.7%±10.7%. The magnitude of the depression of post-stress LVEF relative to the rest LVEF correlated with the severity of ischaemia (r=0.594, P=0.002), and segments manifesting post-stress functional depression were associated with ischaemic segments showing reversible perfusion defects. Stress myocardial perfusion SPET with ECG-gating is a feasible method for the evaluation of myocardial stunning as well as exercise-induced ischaemia. (orig.)

  5. AN EVALUATION OF POINT AND DENSITY FORECASTS FOR SELECTED EU FARM GATE MILK PRICES

    Directory of Open Access Journals (Sweden)

    Dennis Bergmann

    2018-01-01

    Full Text Available Fundamental changes to the common agricultural policy (CAP have led to greater market orientation which in turn has resulted in sharply increased variability of EU farm gate milk prices and thus farmers’ income. In this market environment reliable forecasts of farm gate milk prices are extremely important as farmers can make improved decisions with regards to cash flow management and budget preparation. In addition these forecasts may be used in setting fixed priced contracts between dairy farmers and processors thus providing certainty and reducing risk. In this study both point and density forecasts from various time series models for farm gate milk prices in Germany, Ireland and for an average EU price series are evaluated using a rolling window framework. Additionally forecasts of the individual models are combined using different combination schemes. The results of the out of sample evaluation show that ARIMA type models perform well on short forecast horizons (1 to 3 month while the structural time series approach performs well on longer forecast horizons (12 month. Finally combining individual forecasts of different models significantly improves the forecast performance for all forecast horizons.

  6. Image quality in non-gated versus gated reconstruction of tongue motion using magnetic resonance imaging: a comparison using automated image processing

    Energy Technology Data Exchange (ETDEWEB)

    Alvey, Christopher; Orphanidou, C.; Coleman, J.; McIntyre, A.; Golding, S.; Kochanski, G. [University of Oxford, Oxford (United Kingdom)

    2008-11-15

    The use of gated or ECG triggered MR is a well-established technique and developments in coil technology have enabled this approach to be applied to areas other than the heart. However, the image quality of gated (ECG or cine) versus non-gated or real-time has not been extensively evaluated in the mouth. We evaluate two image sequences by developing an automatic image processing technique which compares how well the image represents known anatomy. Four subjects practised experimental poly-syllabic sentences prior to MR scanning. Using a 1.5 T MR unit, we acquired comparable gated (using an artificial trigger) and non-gated sagittal images during speech. We then used an image processing algorithm to model the image grey along lines that cross the airway. Each line involved an eight parameter non-linear equation to model of proton densities, edges, and dimensions. Gated and non-gated images show similar spatial resolution, with non-gated images being slightly sharper (10% better resolution, less than 1 pixel). However, the gated sequences generated images of substantially lower inherent noise, and substantially better discrimination between air and tissue. Additionally, the gated sequences demonstrate a very much greater temporal resolution. Overall, image quality is better with gated imaging techniques, especially given their superior temporal resolution. Gated techniques are limited by the repeatability of the motions involved, and we have shown that speech to a metronome can be sufficiently repeatable to allow high-quality gated magnetic resonance imaging images. We suggest that gated sequences may be useful for evaluating other types of repetitive movement involving the joints and limb motions. (orig.)

  7. Image quality in non-gated versus gated reconstruction of tongue motion using magnetic resonance imaging: a comparison using automated image processing

    International Nuclear Information System (INIS)

    Alvey, Christopher; Orphanidou, C.; Coleman, J.; McIntyre, A.; Golding, S.; Kochanski, G.

    2008-01-01

    The use of gated or ECG triggered MR is a well-established technique and developments in coil technology have enabled this approach to be applied to areas other than the heart. However, the image quality of gated (ECG or cine) versus non-gated or real-time has not been extensively evaluated in the mouth. We evaluate two image sequences by developing an automatic image processing technique which compares how well the image represents known anatomy. Four subjects practised experimental poly-syllabic sentences prior to MR scanning. Using a 1.5 T MR unit, we acquired comparable gated (using an artificial trigger) and non-gated sagittal images during speech. We then used an image processing algorithm to model the image grey along lines that cross the airway. Each line involved an eight parameter non-linear equation to model of proton densities, edges, and dimensions. Gated and non-gated images show similar spatial resolution, with non-gated images being slightly sharper (10% better resolution, less than 1 pixel). However, the gated sequences generated images of substantially lower inherent noise, and substantially better discrimination between air and tissue. Additionally, the gated sequences demonstrate a very much greater temporal resolution. Overall, image quality is better with gated imaging techniques, especially given their superior temporal resolution. Gated techniques are limited by the repeatability of the motions involved, and we have shown that speech to a metronome can be sufficiently repeatable to allow high-quality gated magnetic resonance imaging images. We suggest that gated sequences may be useful for evaluating other types of repetitive movement involving the joints and limb motions. (orig.)

  8. Radial oil injection applied to main engine bearings: evaluation of injection control rules

    DEFF Research Database (Denmark)

    Estupiñan, EA; Santos, Ilmar

    2012-01-01

    , the dynamic behaviour of the main bearing of a medium-size engine is theoretically analysed when the engine operates with controllable radial oil injection and four different injection control rules. The theoretical investigation is based on a single-cylinder combustion engine model. The performance......The performance of main bearings in a combustion engine affects key functions such as durability, noise and vibration. Thus, with the aim of reducing friction losses and vibrations between the crankshaft and the bearings, the work reported here evaluates different strategies for applying...... controllable radial oil injection to main crankshaft journal bearings. In an actively lubricated bearing, conventional hydrodynamic lubrication is combined with controllable hydrostatic lubrication, where the oil injection pressures can be modified depending on the operational conditions. In this study...

  9. Self-gated fetal cardiac MRI with tiny golden angle iGRASP: A feasibility study.

    Science.gov (United States)

    Haris, Kostas; Hedström, Erik; Bidhult, Sebastian; Testud, Frederik; Maglaveras, Nicos; Heiberg, Einar; Hansson, Stefan R; Arheden, Håkan; Aletras, Anthony H

    2017-07-01

    To develop and assess a technique for self-gated fetal cardiac cine magnetic resonance imaging (MRI) using tiny golden angle radial sampling combined with iGRASP (iterative Golden-angle RAdial Sparse Parallel) for accelerated acquisition based on parallel imaging and compressed sensing. Fetal cardiac data were acquired from five volunteers in gestational week 29-37 at 1.5T using tiny golden angles for eddy currents reduction. The acquired multicoil radial projections were input to a principal component analysis-based compression stage. The cardiac self-gating (CSG) signal for cardiac gating was extracted from the acquired radial projections and the iGRASP reconstruction procedure was applied. In all acquisitions, a total of 4000 radial spokes were acquired within a breath-hold of less than 15 seconds using a balanced steady-state free precession pulse sequence. The images were qualitatively compared by two independent observers (on a scale of 1-4) to a single midventricular cine image from metric optimized gating (MOG) and real-time acquisitions. For iGRASP and MOG images, good overall image quality (2.8 ± 0.4 and 2.6 ± 1.3, respectively, for observer 1; 3.6 ± 0.5 and 3.4 ± 0.9, respectively, for observer 2) and cardiac diagnostic quality (3.8 ± 0.4 and 3.4 ± 0.9, respectively, for observer 1; 3.6 ± 0.5 and 3.6 ± 0.9, respectively, for observer 2) were obtained, with visualized myocardial thickening over the cardiac cycle and well-defined myocardial borders to ventricular lumen and liver/lung tissue. For iGRASP, MOG, and real time, left ventricular lumen diameter (14.1 ± 2.2 mm, 14.2 ± 1.9 mm, 14.7 ± 1.1 mm, respectively) and wall thickness (2.7 ± 0.3 mm, 2.6 ± 0.3 mm, 3.0 ± 0.4, respectively) showed agreement and no statistically significant difference was found (all P > 0.05). Images with iGRASP tended to have higher overall image quality scores compared with MOG and particularly

  10. Evaluation of ECG-gated [(11)C]acetate PET for measuring left ventricular volumes, mass, and myocardial external efficiency.

    Science.gov (United States)

    Hansson, Nils Henrik; Tolbod, Lars; Harms, Johannes; Wiggers, Henrik; Kim, Won Yong; Hansen, Esben; Zaremba, Tomas; Frøkiær, Jørgen; Jakobsen, Steen; Sørensen, Jens

    2016-08-01

    Noninvasive estimation of myocardial external efficiency (MEE) requires measurements of left ventricular (LV) oxygen consumption with [(11)C]acetate PET in addition to LV stroke volume and mass with cardiovascular magnetic resonance (CMR). Measuring LV geometry directly from ECG-gated [(11)C]acetate PET might enable MEE evaluation from a single PET scan. Therefore, we sought to establish the accuracy of measuring LV volumes, mass, and MEE directly from ECG-gated [(11)C]acetate PET. Thirty-five subjects with aortic valve stenosis underwent ECG-gated [(11)C]acetate PET and CMR. List mode PET data were rebinned into 16-bin ECG-gated uptake images before measuring LV volumes and mass using commercial software and compared to CMR. Dynamic datasets were used for calculation of mean LV oxygen consumption and MEE. LV mass, volumes, and ejection fraction measured by CMR and PET correlated strongly (r = 0.86-0.92, P PET (P PET-based MEE, corrected for bias, correlated fairly with PET/CMR-based MEE (r = 0.60, P PET-based MEE bias was strongly associated with LV wall thickness. Although analysis-related improvements in accuracy are recommended, LV geometry estimated from ECG-gated [(11)C]acetate PET correlate excellently with CMR and can indeed be used to evaluate MEE.

  11. A method for evaluating pressure locking and thermal binding of gate valves

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, T.

    1996-12-01

    A method is described to evaluate the susceptibility of gate valves to pressure locking and thermal binding. Binding of the valve disc in the closed position due to high pressure water trapped in the bonnet cavity (pressure locking) or differential thermal expansion of the disk in the seat (thermal binding) represents a potential mechanism that can prevent safety-related systems from functioning when called upon. The method described here provides a general equation that can be applied to a given gate valve design and set of operating conditions to determine the susceptibility of the valve to fail due to disc binding. The paper is organized into three parts. The first part discusses the physical mechanisms that cause disc binding. The second part describes the mathematical equations. The third part discusses the conclusions.

  12. Coronary endothelial function assessment using self-gated cardiac cine MRI and k-t sparse SENSE.

    Science.gov (United States)

    Yerly, Jérôme; Ginami, Giulia; Nordio, Giovanna; Coristine, Andrew J; Coppo, Simone; Monney, Pierre; Stuber, Matthias

    2016-11-01

    Electrocardiogram (ECG)-gated cine MRI, paired with isometric handgrip exercise, can be used to accurately, reproducibly, and noninvasively measure coronary endothelial function (CEF). Obtaining a reliable ECG signal at higher field strengths, however, can be challenging due to rapid gradient switching and an increased heart rate under stress. To address these limitations, we present a self-gated cardiac cine MRI framework for CEF measurements that operates without ECG signal. Cross-sectional slices of the right coronary artery (RCA) were acquired using a two-dimensional golden angle radial trajectory. This sampling approach, combined with the k-t sparse SENSE algorithm, allows for the reconstruction of both real-time images for self-gating signal calculations and retrospectively reordered self-gated cine images. CEF measurements were quantitatively compared using both the self-gated and the standard ECG-gated approach. Self-gated cine images with high-quality, temporal, and spatial resolution were reconstructed for 18 healthy volunteers. CEF as measured in self-gated images was in good agreement (R 2  = 0.60) with that measured by its standard ECG-gated counterpart. High spatial and temporal resolution cross-sectional cine images of the RCA can be obtained without ECG signal. The coronary vasomotor response to handgrip exercise compares favorably with that obtained with the standard ECG-gated method. Magn Reson Med 76:1443-1454, 2015. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  13. 76 FR 25723 - Proposed Information Collection for Growing America Through Entrepreneurship (GATE) II Evaluation...

    Science.gov (United States)

    2011-05-05

    ..., their experiences in jobs working for someone else, and their income and receipt of public assistance..., receipt of microenterprise services, and household income. GATE II will be evaluated using an experimental... program increase employment, earnings, and satisfaction with employment and reduce the receipt of...

  14. SU-F-T-514: Evaluation of the Accuracy of Free-Breathing and Deep Inspiration Breath-Hold Gated Beam Delivery Using An Elekta Linac

    International Nuclear Information System (INIS)

    Jermoumi, M; Cao, D; Housley, D; Shepard, D; Xie, R

    2016-01-01

    Purpose: In this study, we evaluated the performance of an Elekta linac in the delivery of gated radiotherapy. We examined whether the use of either a short gating window or a long beam hold impacts the accuracy of the delivery Methods: The performance of an Elekta linac in the delivery of gated radiotherapy was assessed using a 20cmX 20cm open field with the radiation delivered using a range of beam-on and beam-off time periods. Two SBRT plans were used to examine the accuracy of gated beam delivery for clinical treatment plans. For the SBRT cases, tests were performed for both free-breathing based gating and for gated delivery with a simulated breath-hold. A MatriXX 2D ion chamber array was used for data collection, and the gating accuracy was evaluated using gamma score. Results: For the 20cmX20cm open field, the gated beam delivery agreed closely with the non-gated delivery results. Discrepancies in the agreement, however, began to appear with a 5-to-1 ratio of the beam-off to beam-on. For these tight gating windows, each beam-on segment delivered a small number of monitor units. This finding was confirmed with dose distribution analysis from the delivery of the two VMAT plans where the gamma score(±1%,2%/1mm) showed passing rates in the range of 95% to 100% for gating windows of 25%, 38%, 50%, 63%, 75%, and 83%. Using a simulated sinusoidal breathing signal with a 4 second period, the gamma score of freebreathing gating and breath-hold gating deliveries were measured in the range of 95.7% to 100%. Conclusion: The results demonstrate that Elekta linacs can be used to accurately deliver respiratory gated treatments for both free-breathing and breath-hold patients. The accuracy of beams delivered in a gated delivery mode at low small MU proved higher than similar deliveries performed in a non-gated (manually interrupted) fashion.

  15. SU-F-T-514: Evaluation of the Accuracy of Free-Breathing and Deep Inspiration Breath-Hold Gated Beam Delivery Using An Elekta Linac

    Energy Technology Data Exchange (ETDEWEB)

    Jermoumi, M; Cao, D; Housley, D; Shepard, D [Department of Radiation Oncology, Swedish Cancer Institute, Seattle, WA (United States); Xie, R [Ironwood Cancer and Research Centers, Chandler, AZ (United States)

    2016-06-15

    Purpose: In this study, we evaluated the performance of an Elekta linac in the delivery of gated radiotherapy. We examined whether the use of either a short gating window or a long beam hold impacts the accuracy of the delivery Methods: The performance of an Elekta linac in the delivery of gated radiotherapy was assessed using a 20cmX 20cm open field with the radiation delivered using a range of beam-on and beam-off time periods. Two SBRT plans were used to examine the accuracy of gated beam delivery for clinical treatment plans. For the SBRT cases, tests were performed for both free-breathing based gating and for gated delivery with a simulated breath-hold. A MatriXX 2D ion chamber array was used for data collection, and the gating accuracy was evaluated using gamma score. Results: For the 20cmX20cm open field, the gated beam delivery agreed closely with the non-gated delivery results. Discrepancies in the agreement, however, began to appear with a 5-to-1 ratio of the beam-off to beam-on. For these tight gating windows, each beam-on segment delivered a small number of monitor units. This finding was confirmed with dose distribution analysis from the delivery of the two VMAT plans where the gamma score(±1%,2%/1mm) showed passing rates in the range of 95% to 100% for gating windows of 25%, 38%, 50%, 63%, 75%, and 83%. Using a simulated sinusoidal breathing signal with a 4 second period, the gamma score of freebreathing gating and breath-hold gating deliveries were measured in the range of 95.7% to 100%. Conclusion: The results demonstrate that Elekta linacs can be used to accurately deliver respiratory gated treatments for both free-breathing and breath-hold patients. The accuracy of beams delivered in a gated delivery mode at low small MU proved higher than similar deliveries performed in a non-gated (manually interrupted) fashion.

  16. Evaluation of the radial design of fuel cells in an operation cycle of a BWR reactor

    International Nuclear Information System (INIS)

    Gonzalez C, J.; Martin del Campo M, C.

    2003-01-01

    This work is continuation of one previous in the one that the application of the optimization technique called Tabu search to the radial design of fuel cells of boiling water reactors (BWR, Boiling Water Reactor) is presented. The objective function used in the optimization process only include neutron parameters (k-infinite and peak of radial power) considering the cell at infinite media. It was obtained to reduce the cell average enrichment completing the characteristics of reactivity of an original cell. The objective of the present work is to validate the objective function that was used for the radial design of the fuel cell (test cell), analyzing the operation of a one cycle of the reactor in which fuels have been fresh recharged that contain an axial area with the nuclear database of the cell designed instead of the original cell. For it is simulated it with Cm-Presto the cycle 10 of the reactor operation of the Unit 1 of the Nuclear Power station of Laguna Verde (U1-CNLV). For the cycle evaluation its were applied so much the simulation with the Haling strategy, as the simulation of the one cycle with control rod patterns and they were evaluated the energy generation and several power limits and reactivity that are used as design parameters in fuel reloads of BWR reactors. The results at level of an operation cycle of the reactor, show that the objective function used in the optimization and radial design of the cell is adequate and that it can induce to one good use of the fuel. (Author)

  17. Experimental evaluation of IGBT junction temperature measurement via peak gate current

    DEFF Research Database (Denmark)

    Baker, Nick; Munk-Nielsen, Stig; Iannuzzo, Francesco

    2015-01-01

    Temperature sensitive electrical parameters allow junction temperature measurements on power semiconductors without modification to module packaging. The peak gate current has recently been proposed for IGBT junction temperature measurement and relies on the temperature dependent resistance...... of the gate pad. Consequently, a consideration of chip geometry and location of the gate pad is required before interpreting temperature data from this method. Results are also compared with a traditional electrical temperature measurement method: the voltage drop under low current....

  18. Evaluation of the Gow-Gates and Vazirani-Akinosi techniques in patients with symptomatic irreversible pulpitis: a prospective randomized study.

    Science.gov (United States)

    Click, Vivian; Drum, Melissa; Reader, Al; Nusstein, John; Beck, Mike

    2015-01-01

    Few studies have evaluated the effectiveness of the Gow-Gates and Vazirani-Akinosi techniques in patients presenting with symptomatic irreversible pulpitis. Therefore, the purpose of this prospective, randomized study was to evaluate the anesthetic efficacy of the Gow-Gates and Vazirani-Akinosi techniques using 3.6 mL 2% lidocaine with 1:100,000 epinephrine in mandibular posterior teeth in patients presenting with symptomatic irreversible pulpitis. One hundred twenty-five emergency patients diagnosed with symptomatic irreversible pulpitis randomly received either a Gow-Gates or Vazirani-Akinosi injection using 3.6 mL 2% lidocaine with 1:100,000 epinephrine to block the inferior alveolar nerve before endodontic access. Subjective lip numbness was recorded. Pulpal anesthetic success of the injection was defined as no pain or mild pain upon endodontic access and instrumentation as measured on a visual analog scale. Subjective lip numbness was obtained 92% of the time with the Gow-Gates technique and 63% of the time with the Vazirani-Akinosi technique. The difference was statistically significant (P = .0001). For the patients achieving lip numbness, successful pulpal anesthesia was obtained 35% of the time with the Gow-Gates technique and 16% of the time with the Vazirani-Akinosi technique. The difference was statistically significant (P = .0381). We concluded that for patients who achieved lip numbness neither the Gow-Gates technique nor the Vazirani-Akinosi technique provided adequate pulpal anesthesia for mandibular posterior teeth in patients presenting with symptomatic irreversible pulpitis. Both injections would require supplemental anesthesia. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Evaluation and reduction of respiratory motion artifacts in small animal SPECT with GATE

    International Nuclear Information System (INIS)

    Lee, C.-L.; Park, S.-J.; Kim, H.-J.

    2015-01-01

    The degradation of image quality caused by respiration is a major impediment to accurate lesion detection in single photon emission computed tomography (SPECT) imaging. This study was performed to evaluate the effects of lung motion on image quantification. A small animal SPECT system with NaI(Tl) was modeled in the Geant4 application for tomographic emission (GATE) simulation for a lung lesion using a 4D mouse whole-body phantom. SPECT images were obtained using 120 projection views acquired from 0 o to 360 o with a 3 o step. Slices were reconstructed using ordered subsets expectation maximization (OS-EM) without attenuation correction with five iterations and four subsets. Image quality was compared between the static mode without respiratory motion, and dynamic mode with respiratory motion in terms of spatial resolution was measured by the full width at half maximum (FWHM), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). The FWHM of the non-gated image and the respiratory gated image were also compared. Spatial resolution improved as activity increased and lesion diameter decreased in the static and dynamic modes. The SNR and CNR increased significantly as lesion activity increased and lesion diameter decreased. Our results show that respiratory motion leads to reduced contrast and quantitative accuracy and that image quantification depends on both the amplitude and the pattern of the respiratory motion. We verified that respiratory motion can have a major effect on the accuracy of measurement of lung lesions and that respiratory gating can reduce activity smearing on SPECT images

  20. Visualization of neonatal coronary arteries on multidetector row CT: ECG-gated versus non-ECG-gated technique

    International Nuclear Information System (INIS)

    Tsai, I.C.; Lee, Tain; Chen, Min-Chi; Fu, Yun-Ching; Jan, Sheng-Lin; Wang, Chung-Chi; Chang, Yen

    2007-01-01

    Multidetector CT (MDCT) seems to be a promising tool for detection of neonatal coronary arteries, but whether the ECG-gated or non-ECG-gated technique should be used has not been established. To compare the detection rate and image quality of neonatal coronary arteries on MDCT using ECG-gated and non-ECG-gated techniques. Twelve neonates with complex congenital heart disease were included. The CT scan was acquired using an ECG-gated technique, and the most quiescent phase of the RR interval was selected to represent the ECG-gated images. The raw data were then reconstructed without the ECG signal to obtain non-ECG-gated images. The detection rate and image quality of nine coronary artery segments in the two sets of images were then compared. A two-tailed paired t test was used with P values <0.05 considered as statistically significant. In all coronary segments the ECG-gated technique had a better detection rate and produced images of better quality. The difference between the two techniques ranged from 25% in the left main coronary artery to 100% in the distal right coronary artery. For neonates referred for MDCT, if evaluation of coronary artery anatomy is important for the clinical management or surgical planning, the ECG-gated technique should be used because it can reliably detect the coronary arteries. (orig.)

  1. Three year results of the Prospective Evaluation of Radial Keratotomy (PERK study

    Directory of Open Access Journals (Sweden)

    Waring III George

    1990-01-01

    Full Text Available The Prospective Evaluation of Radial Keratotomy (PERK study is a nine-center clinical trial of a standardized technique of radial keratotomy in 435 patients who had simple myopia with a preoperative refractive error between -2.00 and -8.00 diopters (D. We report results for one eye of each patient. The surgical technique consisted of eight incisions using a diamond micrometer knife with the blade length determined by intraoperative ultrasonic pachymetry and the diameter of the central clear zone determined by the preoperative refractive error. At three years after surgery, 58% of eyes had refractive error within one diopter of emmetropia; 26% were undercorrected, and 16% were overcorrected by more than one diopter. Uncorrected visual acuity was 20/40 or better in 76% of eyes. The operation was more effective in eyes with a preoperative refractive error between -2.00 and -4.37 diopters. Between one and three years after surgery, the refractive error changed by 1.00 diopter or more in 12% of eyes, indicating a lack of stability in some eyes.

  2. Evaluation of Anisotropic Biaxial Stress Induced Around Trench Gate of Si Power Transistor Using Water-Immersion Raman Spectroscopy

    Science.gov (United States)

    Suzuki, Takahiro; Yokogawa, Ryo; Oasa, Kohei; Nishiwaki, Tatsuya; Hamamoto, Takeshi; Ogura, Atsushi

    2018-05-01

    The trench gate structure is one of the promising techniques to reduce on-state resistance (R on) for silicon power devices, such as insulated gate bipolar transistors and power metal-oxide-semiconductor field-effect transistors. In addition, it has been reported that stress is induced around the trench gate area, modifying the carrier mobilities. We evaluated the one-dimensional distribution and anisotropic biaxial stress by quasi-line excitation and water-immersion Raman spectroscopy, respectively. The results clearly confirmed anisotropic biaxial stress in state-of-the-art silicon power devices. It is theoretically possible to estimate carrier mobility using piezoresistance coefficients and anisotropic biaxial stress. The electron mobility was increased while the hole mobility was decreased or remained almost unchanged in the silicon (Si) power device. The stress significantly modifies the R on of silicon power transistors. Therefore, their performance can be improved using the stress around the trench gate.

  3. Evaluation of left ventricular function and volume in patients with dilated cardiomyopathy: Gated myocardial single-photon emission tomography (SPECT) versus echocardiography

    International Nuclear Information System (INIS)

    Berk, Fatma; Isgoren, S.; Demir, H.; Kozdag, G.; Ural, D.; Komsuoglu, B.

    2005-01-01

    Left ventricular function, volumes and regional wall motion provide valuable diagnostic information and are of long-term prognostic importance in patients with dilated cardiomyopathy (DCM). This study was designed to compare the effectiveness of 2D-echocardiography and gated single-photon emission tomography (SPECT) for evaluation of these parameters in patients with DCM. Gated SPECT and 2D-echocardiography were performed in 33 patients having DCM. Gated SPECT data, including left ventricular ejection fraction (LVEF), were processed using an automated algorithm. Standard technique was used for 2D-echocardiography. Regional wall motion was evaluated using both modalities and was scored by two independent observers using a 16-sement model with a 5-point scoring system. The overall agreement between the two imaging modalities for the assessment of regional wall motion was 56% (298/528 segments). With gated SPECT, LEVF, end-diastolic volume (EDV), and end-diastolic volume (EDV), and end-systolic volume (ESV) were 27+-9%, 217+-73mL, respectively, and 30.8%, 195+-58mL and, 137+-48 mL with echocardiography. The correlation between gated SPECT and 2-D-echocardiography was good (r=0.76, P<0.01) for the assessment of LVEF. The correlation for EDV and ESV were also good, but with wider limits of agreement (r=0.72, P<0.01 and r=0.73, P<0.01, respectively) and significantly higher values were obtained with gated SPECT (P<0.01). Gated SPECT and 2D-echocardiography correlate well for the assessment of LV function and LV volumes. Like 2D-echocardiography, gated SPECT provides reliable information about LV function and dimension with the additional advantage of perfusion data. (author)

  4. Gate errors in solid-state quantum-computer architectures

    International Nuclear Information System (INIS)

    Hu Xuedong; Das Sarma, S.

    2002-01-01

    We theoretically consider possible errors in solid-state quantum computation due to the interplay of the complex solid-state environment and gate imperfections. In particular, we study two examples of gate operations in the opposite ends of the gate speed spectrum, an adiabatic gate operation in electron-spin-based quantum dot quantum computation and a sudden gate operation in Cooper-pair-box superconducting quantum computation. We evaluate quantitatively the nonadiabatic operation of a two-qubit gate in a two-electron double quantum dot. We also analyze the nonsudden pulse gate in a Cooper-pair-box-based quantum-computer model. In both cases our numerical results show strong influences of the higher excited states of the system on the gate operation, clearly demonstrating the importance of a detailed understanding of the relevant Hilbert-space structure on the quantum-computer operations

  5. Evaluation of left ventricular function and volumes in patients with ischaemic cardiomyopathy: gated single-photon emission computed tomography versus two-dimensional echocardiography

    International Nuclear Information System (INIS)

    Vourvouri, E.C.; Poldermans, D.; Sianos, G.; Sozzi, F.B.; Schinkel, A.F.L.; Sutter, J. de; Roelandt, J.R.T.C.; Bax, J.J.; Parcharidis, G.; Valkema, R.

    2001-01-01

    The objective of this study was to perform a head-to-head comparison between two-dimensional (2D) echocardiography and gated single-photon emission computed tomography (SPET) for the evaluation of left ventricular (LV) function and volumes in patients with severe ischaemic LV dysfunction. Thirty-two patients with chronic ischaemic LV dysfunction [mean LV ejection fraction (EF) 25%±6%] were studied with gated SPET and 2D echocardiography. Regional wall motion was evaluated by both modalities and scored by two independent observers using a 16-segment model with a 5-point scoring system (1= normokinesia, 2= mild hypokinesia, 3= severe hypokinesia, 4= akinesia and 5= dyskinesia). LVEF and LV end-diastolic and end-systolic volumes were evaluated by 2D echocardiography using the Simpson's biplane discs method. The same parameters were calculated using quantitative gated SPET software (QGS, Cedars-Sinai Medical Center). The overall agreement between the two imaging modalities for assessment of regional wall motion was 69%. The correlations between gated SPET and 2D echocardiography for the assessment of end-diastolic and end-systolic volumes were excellent (r=0.94, P<0.01, and r=0.96, P<0.01, respectively). The correlation for LVEF was also good (r=0.83, P<0.01). In conclusion: in patients with ischaemic cardiomyopathy, close and significant relations between gated SPET and 2D echocardiography were observed for the assessment of regional and global LV function and LV volumes; gated SPET has the advantage that it provides information on both LV function/dimensions and perfusion. (orig.)

  6. SU-E-T-266: Development of Evaluation System of Optimal Synchrotron Controlling Parameter for Spot Scanning Proton Therapy with Multiple Gate Irradiations in One Operation Cycle

    International Nuclear Information System (INIS)

    Yamada, T; Fujii, Y; Miyamoto, N; Matsuura, T; Takao, S; Matsuzaki, Y; Koyano, H; Shirato, H; Nihongi, H; Umezawa, M; Matsuda, K; Umegaki, K

    2015-01-01

    Purpose: We have developed a gated spot scanning proton beam therapy system with real-time tumor-tracking. This system has the ability of multiple-gated irradiation in a single synchrotron operation cycle controlling the wait-time for consecutive gate signals during a flat-top phase so that the decrease in irradiation efficiency induced by irregular variation of gate signal is reduced. Our previous studies have shown that a 200 ms wait-time is appropriate to increase the average irradiation efficiency, but the optimal wait-time can vary patient by patient and day by day. In this research, we have developed an evaluation system of the optimal wait-time in each irradiation based on the log data of the real-time-image gated proton beam therapy (RGPT) system. Methods: The developed system consists of logger for operation of RGPT system and software for evaluation of optimal wait-time. The logger records timing of gate on/off, timing and the dose of delivered beam spots, beam energy and timing of X-ray irradiation. The evaluation software calculates irradiation time in the case of different wait-time by simulating the multiple-gated irradiation operation using several timing information. Actual data preserved in the log data are used for gate on and off time, spot irradiation time, and time moving to the next spot. Design values are used for the acceleration and deceleration times. We applied this system to a patient treated with the RGPT system. Results: The evaluation system found the optimal wait-time of 390 ms that reduced the irradiation time by about 10 %. The irradiation time with actual wait-time used in treatment was reproduced with accuracy of 0.2 ms. Conclusion: For spot scanning proton therapy system with multiple-gated irradiation in one synchrotron operation cycle, an evaluation system of the optimal wait-time in each irradiation based on log data has been developed. Funding Support: Japan Society for the Promotion of Science (JSPS) through the FIRST

  7. Radial k-t SPIRiT: autocalibrated parallel imaging for generalized phase-contrast MRI.

    Science.gov (United States)

    Santelli, Claudio; Schaeffter, Tobias; Kozerke, Sebastian

    2014-11-01

    To extend SPIRiT to additionally exploit temporal correlations for highly accelerated generalized phase-contrast MRI and to compare the performance of the proposed radial k-t SPIRiT method relative to frame-by-frame SPIRiT and radial k-t GRAPPA reconstruction for velocity and turbulence mapping in the aortic arch. Free-breathing navigator-gated two-dimensional radial cine imaging with three-directional multi-point velocity encoding was implemented and fully sampled data were obtained in the aortic arch of healthy volunteers. Velocities were encoded with three different first gradient moments per axis to permit quantification of mean velocity and turbulent kinetic energy. Velocity and turbulent kinetic energy maps from up to 14-fold undersampled data were compared for k-t SPIRiT, frame-by-frame SPIRiT, and k-t GRAPPA relative to the fully sampled reference. Using k-t SPIRiT, improvements in magnitude and velocity reconstruction accuracy were found. Temporally resolved magnitude profiles revealed a reduction in spatial blurring with k-t SPIRiT compared with frame-by-frame SPIRiT and k-t GRAPPA for all velocity encodings, leading to improved estimates of turbulent kinetic energy. k-t SPIRiT offers improved reconstruction accuracy at high radial undersampling factors and hence facilitates the use of generalized phase-contrast MRI for routine use. Copyright © 2013 Wiley Periodicals, Inc.

  8. Evaluation of stochastic differential equation approximation of ion channel gating models.

    Science.gov (United States)

    Bruce, Ian C

    2009-04-01

    Fox and Lu derived an algorithm based on stochastic differential equations for approximating the kinetics of ion channel gating that is simpler and faster than "exact" algorithms for simulating Markov process models of channel gating. However, the approximation may not be sufficiently accurate to predict statistics of action potential generation in some cases. The objective of this study was to develop a framework for analyzing the inaccuracies and determining their origin. Simulations of a patch of membrane with voltage-gated sodium and potassium channels were performed using an exact algorithm for the kinetics of channel gating and the approximate algorithm of Fox & Lu. The Fox & Lu algorithm assumes that channel gating particle dynamics have a stochastic term that is uncorrelated, zero-mean Gaussian noise, whereas the results of this study demonstrate that in many cases the stochastic term in the Fox & Lu algorithm should be correlated and non-Gaussian noise with a non-zero mean. The results indicate that: (i) the source of the inaccuracy is that the Fox & Lu algorithm does not adequately describe the combined behavior of the multiple activation particles in each sodium and potassium channel, and (ii) the accuracy does not improve with increasing numbers of channels.

  9. 100-nm gate lithography for double-gate transistors

    Science.gov (United States)

    Krasnoperova, Azalia A.; Zhang, Ying; Babich, Inna V.; Treichler, John; Yoon, Jung H.; Guarini, Kathryn; Solomon, Paul M.

    2001-09-01

    The double gate field effect transistor (FET) is an exploratory device that promises certain performance advantages compared to traditional CMOS FETs. It can be scaled down further than the traditional devices because of the greater electrostatic control by the gates on the channel (about twice as short a channel length for the same gate oxide thickness), has steeper sub-threshold slope and about double the current for the same width. This paper presents lithographic results for double gate FET's developed at IBM's T. J. Watson Research Center. The device is built on bonded wafers with top and bottom gates self-aligned to each other. The channel is sandwiched between the top and bottom polysilicon gates and the gate length is defined using DUV lithography. An alternating phase shift mask was used to pattern gates with critical dimensions of 75 nm, 100 nm and 125 nm in photoresist. 50 nm gates in photoresist have also been patterned by 20% over-exposure of nominal 100 nm lines. No trim mask was needed because of a specific way the device was laid out. UV110 photoresist from Shipley on AR-3 antireflective layer were used. Process windows, developed and etched patterns are presented.

  10. Dose verification for respiratory-gated volumetric modulated arc therapy

    Energy Technology Data Exchange (ETDEWEB)

    Qian Jianguo; Xing Lei; Liu Wu; Luxton, Gary, E-mail: gluxton@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305 (United States)

    2011-08-07

    A novel commercial medical linac system (TrueBeam(TM), Varian Medical Systems, Palo Alto, CA) allows respiratory-gated volumetric modulated arc therapy (VMAT), a new modality for treating moving tumors with high precision and improved accuracy by allowing for regular motion associated with a patient's breathing during VMAT delivery. The purpose of this work is to adapt a previously-developed dose reconstruction technique to evaluate the fidelity of VMAT treatment during gated delivery under clinic-relevant periodic motion related to patient breathing. A Varian TrueBeam system was used in this study. VMAT plans were created for three patients with lung or pancreas tumors. Conventional 6 and 15 MV beams with flattening filter and high-dose-rate 10 MV beams with no flattening filter were used in these plans. Each patient plan was delivered to a phantom first without gating and then with gating for three simulated respiratory periods (3, 4.5 and 6 s). Using the adapted log-file-based dose reconstruction procedure supplemented with ion chamber array (Seven29(TM), PTW, Freiburg, Germany) measurements, the delivered dose was used to evaluate the fidelity of gated VMAT delivery. Comparison of Seven29 measurements with and without gating showed good agreement with gamma-index passing rates above 99% for 1%/1 mm dose accuracy/distance-to-agreement criteria. With original plans as reference, gamma-index passing rates were 100% for the reconstituted plans (1%/1 mm criteria) and 93.5-100% for gated Seven29 measurements (3%/3 mm criteria). In the presence of leaf error deliberately introduced into the gated delivery of a pancreas patient plan, both dose reconstruction and Seven29 measurement consistently indicated substantial dosimetric differences from the original plan. In summary, a dose reconstruction procedure was demonstrated for evaluating the accuracy of respiratory-gated VMAT delivery. This technique showed that under clinical operation, the TrueBeam system

  11. Gating-ML: XML-based gating descriptions in flow cytometry.

    Science.gov (United States)

    Spidlen, Josef; Leif, Robert C; Moore, Wayne; Roederer, Mario; Brinkman, Ryan R

    2008-12-01

    The lack of software interoperability with respect to gating due to lack of a standardized mechanism for data exchange has traditionally been a bottleneck, preventing reproducibility of flow cytometry (FCM) data analysis and the usage of multiple analytical tools. To facilitate interoperability among FCM data analysis tools, members of the International Society for the Advancement of Cytometry (ISAC) Data Standards Task Force (DSTF) have developed an XML-based mechanism to formally describe gates (Gating-ML). Gating-ML, an open specification for encoding gating, data transformations and compensation, has been adopted by the ISAC DSTF as a Candidate Recommendation. Gating-ML can facilitate exchange of gating descriptions the same way that FCS facilitated for exchange of raw FCM data. Its adoption will open new collaborative opportunities as well as possibilities for advanced analyses and methods development. The ISAC DSTF is satisfied that the standard addresses the requirements for a gating exchange standard.

  12. Autorefraction versus subjective refraction in a radially asymmetric multifocal intraocular lens

    NARCIS (Netherlands)

    Linden, J.W.M. van der; Vrijman, V.; El-Saady, R.; Meulen, I.J. van der; Mourits, M.P.; Lapid-Gortzak, R.

    2014-01-01

    PURPOSE: To evaluate whether the automated refraction (AR) correlates with subjective manifest (MR) refraction in eyes implanted with radially asymmetric multifocal intraocular lens (IOLs). METHODS: This retrospective study evaluated 52 eyes (52 patients) implanted with a radially asymmetric

  13. The gated blood pool scan in the evaluation of coronary artery disease

    International Nuclear Information System (INIS)

    Anger, K.; Erbel, R.; Krebs, W.; Meyer, J.; Moeller, T.; Schweizer, P.; Yalkinoglu, O.; Technische Hochschule Aachen

    1983-01-01

    38 patients with clinically suspected coronary artery disease were studied by contrast ventriculography, 2-dimensional echocardiography and multiple gated blood pool imaging (MUGA) without stress. The results were compared with eath other and with the final diagnosis confirmed by coronary angiography. The left ventricular ejection fraction is evaluated nearly identically and with sufficient accuracy by both non-invasive methods, local motion abnormalities are on the other hand diagnosed in the best way by MUGA imaging in our own cases. (orig.) [de

  14. SU-F-J-151: Evaluation of a Magnetic Resonance Image Gated Radiotherapy System Using a Motion Phantom and Radiochromic Film

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, J; Ginn, J; O’Connell, D; Thomas, D; Agazaryan, N; Cao, M; Yang, Y; Low, D [UCLA, Los Angeles, CA (United States)

    2016-06-15

    Purpose: Magnetic resonance image (MRI) guided radiotherapy enables gating directly on target position for soft-tissue targets in the lung and abdomen. We present a dosimetric evaluation of a commercially-available FDA-approved MRI-guided radiotherapy system’s gating performance using a MRI-compatible respiratory motion phantom and radiochromic film. Methods: The MRI-compatible phantom was capable of one-dimensional motion. The phantom consisted of a target rod containing high-contrast target inserts which moved inside a body structure containing background contrast material. The target rod was equipped with a radiochromic film insert. Treatment plans were generated for a 3 cm diameter spherical target, and delivered to the phantom at rest and in motion with and without gating. Both sinusoidal and actual tumor trajectories (two free-breathing trajectories and one repeated-breath hold) were used. Gamma comparison at 5%/3mm was used to measure fidelity to the static target dose distribution. Results: Without gating, gamma pass rates were 24–47% depending on motion trajectory. Using our clinical standard of repeated breath holds and a gating window of 3 mm with 10% of the target allowed outside the gating boundary, the gamma pass rate was 99.6%. Relaxing the gating window to 5 mm resulted in gamma pass rate of 98.6% with repeated breath holds. For all motion trajectories gated with 3 mm margin and 10% allowed out, gamma pass rates were between 64–100% (mean:87.5%). For a 5 mm margin and 10% allowed out, gamma pass rates were between 57–98% (mean: 82.49%), significantly lower than for 3 mm by paired t-test (p=0.01). Conclusion: We validated the performance of respiratory gating based on real-time cine MRI images with the only FDA-approved MRI-guided radiotherapy system. Our results suggest that repeated breath hold gating should be used when possible for best accuracy. A 3 mm gating margin is statistically significantly more accurate than a 5 mm gating margin.

  15. Evaluation of an infrared camera and X-ray system using implanted fiducials in patients with lung tumors for gated radiation therapy

    International Nuclear Information System (INIS)

    Willoughby, Twyla R.; Forbes, Alan R.; Buchholz, Daniel; Langen, Katja M.; Wagner, Thomas H.; Zeidan, Omar A.; Kupelian, Patrick A.; Meeks, Sanford L.

    2006-01-01

    Purpose: To report on the initial clinical use of a commercially available system to deliver gated treatment using implanted fiducials, in-room kV X-rays, and an infrared camera tracking system. Methods and Materials: ExacTrac Adaptive Gating from BrainLab is a localization system using infrared cameras and X-rays. Gating signals are the patient's breathing pattern obtained from infrared reflectors on the patient. kV X-rays of an implanted fiducial are synchronized to the breathing pattern. After localization and shift of the patient to isocenter, the breathing pattern is used to gate Radiation. Feasibility tests included localization accuracy, radiation output constancy, and dose distributions with gating. Clinical experience is reported on treatment of patients with small lung lesions. Results: Localization accuracy of a moving target with gating was 1.7 mm. Dose constancy measurements showed insignificant change in output with gating. Improvements of dose distributions on moving targets improved with gating. Eleven patients with lung lesions were implanted with 20 mm x 0.7 mm gold coil (Visicoil). The implanted fiducial was used to localize and treat the patients with gating. Treatment planning and repeat computed tomographic scans showed that the change in center of gross target volume (GTV) to implanted marker averaged 2.47 mm due in part to asymmetric tumor shrinkage. Conclusion: ExacTrac Adaptive Gating has been used to treat lung lesions. Initial system evaluation verified its accuracy and usability. Implanted fiducials are visible in X-rays and did not migrate

  16. Dual-gated cardiac PET-clinical feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Teraes, Mika; Kokki, Tommi; Noponen, Tommi; Hoppela, Erika; Sipilae, Hannu T.; Knuuti, Juhani [Turku PET Centre, PO BOX 52, Turku (Finland); Durand-Schaefer, Nicolas [General Electric Medical Systems, Buc (France); Pietilae, Mikko [Turku University Hospital, Department of Internal Medicine, Turku (Finland); Kiss, Jan [Turku University Hospital, Department of Surgery, Turku (Finland)

    2010-03-15

    Both respiratory and cardiac motions reduce image quality in myocardial imaging. For accurate imaging of small structures such as vulnerable coronary plaques, simultaneous cardiac and respiratory gating is warranted. This study tests the feasibility of a recently developed robust method for cardiac-respiratory gating. List-mode data with triggers from respiratory and cardiac cycles are rearranged into dual-gated segments and reconstructed with standard algorithms of a commercial PET/CT scanner. Cardiac gates were defined as three fixed phases and one variable diastolic phase. Chest motion was measured with a respiratory gating device and post-processed to determine gates. Preservation of quantification in dual-gated images was tested with an IEC whole-body phantom. Minipig and human studies were performed to evaluate the feasibility of the method. In minipig studies, a coronary catheter with radioactive tip was guided in coronary artery for in vivo and ex vivo acquisitions. Dual gating in humans with suspected cardiac disorders was performed using 18-F-FDG as a tracer. The method was found feasible for in vivo imaging and the radioactive catheter tip was better resolved in gated images. In human studies, the dual gating was found feasible and easy for clinical routine. Maximal movement of myocardial surface in cranio-caudal direction was over 20 mm. The shape of myocardium was clearly different between the gates and papillary muscles become more visible in diastolic images. The first clinical experiences using robust cardiac-respiratory dual gating are encouraging. Further testing in larger clinical populations using tracers designed especially for plaque imaging is warranted. (orig.)

  17. Dual-gated cardiac PET-clinical feasibility study

    International Nuclear Information System (INIS)

    Teraes, Mika; Kokki, Tommi; Noponen, Tommi; Hoppela, Erika; Sipilae, Hannu T.; Knuuti, Juhani; Durand-Schaefer, Nicolas; Pietilae, Mikko; Kiss, Jan

    2010-01-01

    Both respiratory and cardiac motions reduce image quality in myocardial imaging. For accurate imaging of small structures such as vulnerable coronary plaques, simultaneous cardiac and respiratory gating is warranted. This study tests the feasibility of a recently developed robust method for cardiac-respiratory gating. List-mode data with triggers from respiratory and cardiac cycles are rearranged into dual-gated segments and reconstructed with standard algorithms of a commercial PET/CT scanner. Cardiac gates were defined as three fixed phases and one variable diastolic phase. Chest motion was measured with a respiratory gating device and post-processed to determine gates. Preservation of quantification in dual-gated images was tested with an IEC whole-body phantom. Minipig and human studies were performed to evaluate the feasibility of the method. In minipig studies, a coronary catheter with radioactive tip was guided in coronary artery for in vivo and ex vivo acquisitions. Dual gating in humans with suspected cardiac disorders was performed using 18-F-FDG as a tracer. The method was found feasible for in vivo imaging and the radioactive catheter tip was better resolved in gated images. In human studies, the dual gating was found feasible and easy for clinical routine. Maximal movement of myocardial surface in cranio-caudal direction was over 20 mm. The shape of myocardium was clearly different between the gates and papillary muscles become more visible in diastolic images. The first clinical experiences using robust cardiac-respiratory dual gating are encouraging. Further testing in larger clinical populations using tracers designed especially for plaque imaging is warranted. (orig.)

  18. Autorefraction versus subjective refraction in a radially asymmetric multifocal intraocular lens

    NARCIS (Netherlands)

    van der Linden, Jan Willem; Vrijman, Violette; Al-Saady, Rana; El-Saady, Rana; van der Meulen, Ivanka J.; Mourits, Maarten P.; Lapid-Gortzak, Ruth

    2014-01-01

    To evaluate whether the automated refraction (AR) correlates with subjective manifest (MR) refraction in eyes implanted with radially asymmetric multifocal intraocular lens (IOLs). This retrospective study evaluated 52 eyes (52 patients) implanted with a radially asymmetric multifocal IOL (LS-312

  19. Fully automated left ventricular contour detection for gated radionuclide angiography, (1)

    International Nuclear Information System (INIS)

    Hosoba, Minoru; Wani, Hidenobu; Hiroe, Michiaki; Kusakabe, Kiyoko.

    1984-01-01

    A fully automated practical method has been developed to detect the left ventricular (LV) contour from gated pool images. Ejection fraction and volume curve can be computed accurately without operater variance. The characteristics of the method are summarized as follows: 1. Optimal design of the filter that works on Fourier domain, can be achieved to improve the signal to noise ratio. 2. New algorithm which use the cosine and sine transform images has been developed for the separating ventricle from atrium and defining center of LV. 3. Contrast enhancement by optimized square filter. 4. Radial profiles are generated from the center of LV and smoothed by fourth order Fourier series approximation. The crossing point with local threshold value searched from the center of the LV is defined as edge. 5. LV contour is obtained by conecting all the edge points defined on radial profiles by fitting them to Fourier function. (author)

  20. On the Evaluation of Gate Dielectrics for 4H-SiC Based Power MOSFETs

    Directory of Open Access Journals (Sweden)

    Muhammad Nawaz

    2015-01-01

    Full Text Available This work deals with the assessment of gate dielectric for 4H-SiC MOSFETs using technology based two-dimensional numerical computer simulations. Results are studied for variety of gate dielectric candidates with varying thicknesses using well-known Fowler-Nordheim tunneling model. Compared to conventional SiO2 as a gate dielectric for 4H-SiC MOSFETs, high-k gate dielectric such as HfO2 reduces significantly the amount of electric field in the gate dielectric with equal gate dielectric thickness and hence the overall gate current density. High-k gate dielectric further reduces the shift in the threshold voltage with varying dielectric thicknesses, thus leading to better process margin and stable device operating behavior. For fixed dielectric thickness, a total shift in the threshold voltage of about 2.5 V has been observed with increasing dielectric constant from SiO2 (k=3.9 to HfO2 (k=25. This further results in higher transconductance of the device with the increase of the dielectric constant from SiO2 to HfO2. Furthermore, 4H-SiC MOSFETs are found to be more sensitive to the shift in the threshold voltage with conventional SiO2 as gate dielectric than high-k dielectric with the presence of interface state charge density that is typically observed at the interface of dielectric and 4H-SiC MOS surface.

  1. Evaluation of Spur Gear Pair on Tooth Root Bending Stress in Radial Misalignment Contact Condition

    Directory of Open Access Journals (Sweden)

    Lias M.R.

    2014-07-01

    Full Text Available This paper evaluates the effects of radial misalignment contact on the tooth root bending stress values of spur gear pair during the gear meshing cycle. Radial misalignment (H is denoted as the deviation of the pinion nominal position with respect to the gear tooth along the pinion axis to the gear which happened from manufacturing assembly errors (AE. A model based on involute 3D parametric CAD geometry, of spur gear design ISO 6336:2006 is analysed with allowable AE values from minimum 10μm to maximum 40μm with Finite-Element Method (FEM model based methodology using a dynamics module from ANSYS. Main parameters of interest are the Tooth root bending stress (TRBS in H condition with AE along the critical region with respect to face width of pinion-gear section. A comparison between standard High point single tooth contact models (HPSTC to this model showed a good agreement that H with AE had great influence on TRBS as the values’ increase. Radial misalignment influence factor (RMIF was introduced as indication of TRBS values in consideration of H due to AE shows and inverted patterns higher for pinion, give a good justification that the pinion is weaker compared to the gear.

  2. Radial nerve dysfunction

    Science.gov (United States)

    Neuropathy - radial nerve; Radial nerve palsy; Mononeuropathy ... Damage to one nerve group, such as the radial nerve, is called mononeuropathy . Mononeuropathy means there is damage to a single nerve. Both ...

  3. Impact of a new respiratory amplitude-based gating technique in evaluation of upper abdominal PET lesions

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Gucht, Axel, E-mail: axel.vandergucht@gmail.com [Department of Nuclear Medicine, Centre Hospitalier Princesse Grace, Monaco (Monaco); Serrano, Benjamin [Department of Medical Physics, Centre Hospitalier Princesse Grace, Monaco (Monaco); Hugonnet, Florent; Paulmier, Benoît [Department of Nuclear Medicine, Centre Hospitalier Princesse Grace, Monaco (Monaco); Garnier, Nicolas [Department of Medical Physics, Centre Hospitalier Princesse Grace, Monaco (Monaco); Faraggi, Marc [Department of Nuclear Medicine, Centre Hospitalier Princesse Grace, Monaco (Monaco)

    2014-03-15

    PET acquisition requires several minutes which can lead to respiratory motion blurring, to increase partial volume effect and SUV under-estimation. To avoid these artifacts, conventional 10-min phase-based respiratory gating (PBRG) can be performed but is time-consuming and difficult with a non-compliant patient. We evaluated an automatic amplitude-based gating method (AABG) which keeps 35% of the counts at the end of expiration to minimize respiratory motion. We estimated the impact of AABG on upper abdominal lesion detectability, quantification and patient management. Methods: We consecutively included 31 patients (82 hepatic and 25 perihepatic known lesions). Each patient underwent 3 acquisitions on a Siemens Biograph mCT (4 rings and time-of-flight): a standard free-breathing whole-body (SWB, 5–7 steps/2.5 min per step, 3.3 ± 0.4 MBq/kg of 18F-FDG), a 10-min PBRG with six bins and a 5-min AABG method. All gated acquisitions were performed with an ANZAI respiratory gating system. SUV{sub max} and target to background ratio (TBR, defined as the maximum SUV of the lesion divided by the mean SUV of a region of interest drawn in healthy liver) were compared. Results: All 94 lesions in SWB images were detected in the gated images. 10-min PBRG and 5-min AABG acquisitions respectively revealed 9 and 13 new lesions and relocated 7 and 8 lesions. Four lesions revealed by 5-min AABG were missed by 10-min PBRG in 3 non-compliant patients. Both gated methods failed to relocate 2 lesions seen on SWB acquisition. Compared to SWB, TBR increased significantly with 10-min PBRG and with 5-min AABG (respectively 41 ± 59%, p = 4.10–3 and 66 ± 75%, p = 6.10–5) whereas SUV{sub max} did not (respectively 14 ± 43%, p = 0.29 with 10-min PBRG, and 24 ± 46%, p = 0.11 with 5-min AABG). Conclusion: The AABG is a fast and a user-friendly respiratory gating method to increase detectability and quantification of upper abdominal lesions compared to the conventional PBRG procedure and

  4. Utility of QGS for 201Tl electrocardiogram-gated SPECT in cardiac function evaluations

    International Nuclear Information System (INIS)

    Shimazaki, Hiroshi; Oono, Ryuichi

    2001-01-01

    QGS (quantitative gated SPECT) was applied to 201 Tl SPECT, whose images are inferior to those of Tc SPECT, and its utility was evaluated. More specifically, the cardiac function index was calculated by QGS, and local wall motion was evaluated visually. Accuracy was assessed by comparison with left ventriculography. The subjects were 29 patients (21 males, 8 females; 6 with myocardial infarction, 18 with stenocardia, 2 with pericardial disease, 3 with other heart diseases) who had undergone myocardial scintigraphy and left ventriculography between February and May, 2000. 201 Tl (74 or 111 MBq) was administered to all patients. The resting image was obtained 10 minutes later, and the delayed image during loading was obtained 4 hours later. The conditions for acquiring the images were as follows. Two detectors were arranged at a 90-degree angle in the form of an L. The 180 degrees from 45 degrees right anterior oblique (RAO) to 45 degrees left posterior oblique (LPO) were divided into 30 sections at 6-degree intervals, and the image in each section was acquired for 60 seconds. The matrix was 64 x 64. As a cardiac function index, the left ventricular ejection function (LVEF) obtained by electrocardiogram-gated SPECT (QGS-EF) at the rest (14 cases) and the QGS-EF on the delayed images (15 cases) were compared with the LVEF determined by left ventriculography (LVG-EF). There was an excellent positive correlation between the data obtained by two methods, with a correlation coefficient of r=0.93 (y=1.04x-0.04). Most of the difference between the values fell within two standard deviations, and the error was in the clinically allowable range. There was no significant difference between the correlation coefficient at rest and during loading or between the cases that showed an obvious defect on the image and those that did not. The local wall motion of the left ventricle was visually evaluated in five stages in two directions (RAO, 30 degrees, and LAO, 60 degrees). The motion

  5. High-fidelity gates in quantum dot spin qubits.

    Science.gov (United States)

    Koh, Teck Seng; Coppersmith, S N; Friesen, Mark

    2013-12-03

    Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet-triplet and the semiconducting quantum dot hybrid qubit. We investigate three quantum gates that flip the qubit state: a DC pulsed gate, an AC gate based on logical qubit resonance, and a gate-like process known as stimulated Raman adiabatic passage. These gates are all mediated by an exchange interaction that is controlled experimentally using the interdot tunnel coupling g and the detuning [Symbol: see text], which sets the energy difference between the dots. Our procedure has two steps. First, we optimize the gate fidelity (f) for fixed g as a function of the other control parameters; this yields an f(opt)(g) that is universal for different types of gates. Next, we identify physical constraints on the control parameters; this yields an upper bound f(max) that is specific to the qubit-gate combination. We show that similar gate fidelities (~99:5%) should be attainable for singlet-triplet qubits in isotopically purified Si, and for hybrid qubits in natural Si. Considerably lower fidelities are obtained for GaAs devices, due to the fluctuating magnetic fields ΔB produced by nuclear spins.

  6. A high performance gate drive for large gate turn off thyristors

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, C.P.

    1993-01-01

    Past approaches to gate turn-off (GTO) gating are application oriented, inefficient and dissipate power even when inactive. They allow the gate to avalanch, and do not reduce GTO turn-on and turn-off losses. A new approach is proposed which will allow modular construction and adaptability to large GTOs in the 50 amp to 2000 amp range. The proposed gate driver can be used in large voltage source and current source inverters and other power converters. The approach consists of a power metal-oxide-silicon field effect transistor (MOSFET) technology gating unit, with associated logic and supervisory circuits and an isolated flyback converter as the dc power source for the gating unit. The gate driver formed by the gating unit and the flyback converter is designed for 4000 V isolation. Control and supervisory signals are exchanged between the gate driver and the remote control system via fiber optics. The gating unit has programmable front-porch current amplitude and pulse-width, programmable closed-loop controlled back-porch current, and a turn-off switch capable of supplying negative gate current at demand as a function of peak controllable forward anode current. The GTO turn-on, turn-off and gate avalanch losses are reduced to a minimum. The gate driver itself has minimum operating losses. Analysis, design and practical realization are reported. 19 refs., 54 figs., 1 tab.

  7. ECG-gating in non-cardiac digital subtraction angiography

    International Nuclear Information System (INIS)

    Gattoni, F.; Baldini, V.; Cairo, F.

    1987-01-01

    This paper reports the results of the ECG-gating in non-cardiac digital subtraction angiography (DSA). One hundred and fifteen patients underwent DSA (126 examinations); ECG-gating was applied in 66/126 examinations: images recorded at 70% of R wave were subtracted. Artifacts produced by vascular movements were evaluated in all patients: only 40 examinations, carried out whithout ECG-gating, showed vascular artifacts. The major advantage of the ECG-gated DSA is the more efficent subtraction because of the better images superimposition: therefore, ECG-gating can be clinically helpful. On the contrary, it could be a problem in arrhytmic or bradycardic patients. ECG-gating is helpful in DSA imaging of the thoracic and abdominal aorta and of the cervical and renal arteries. In the examinations of peripheral vessels of the limbs it is not so efficent as in the trunk or in the neck

  8. The Matlab Radial Basis Function Toolbox

    Directory of Open Access Journals (Sweden)

    Scott A. Sarra

    2017-03-01

    Full Text Available Radial Basis Function (RBF methods are important tools for scattered data interpolation and for the solution of Partial Differential Equations in complexly shaped domains. The most straight forward approach used to evaluate the methods involves solving a linear system which is typically poorly conditioned. The Matlab Radial Basis Function toolbox features a regularization method for the ill-conditioned system, extended precision floating point arithmetic, and symmetry exploitation for the purpose of reducing flop counts of the associated numerical linear algebra algorithms.

  9. Comparison of the effects of TripleGates and Gates-Glidden burs on cervical dentin thickness and root canal area by using cone beam computed tomography

    Directory of Open Access Journals (Sweden)

    Kássio SOUSA

    2015-04-01

    Full Text Available The search for new instruments to promote an appropriate cervical preparation has led to the development of new rotary instruments such as TripleGates. However, to the best of the authors' knowledge, there is no study evaluating TripleGates effect on the “risk zone” of mandibular molars. Objectives : The aim of this study was to evaluate the effects of a crown-down sequence of Gates-Glidden and TripleGates burs on the remaining cervical dentin thickness and the total amount of dentin removed from the root canals during the instrumentation by using cone beam computed tomography. The number of separated instruments was also evaluated. Material and Methods : Mesial roots of 40 mandibular first molars were divided into 2 equal groups: crown-down sequence of Gates-Glidden (#3, #2, #1 and TripleGates burs. Cervical dentin thickness and canal area were measured before and after instrumentation by using cone beam computed tomography and image analysis software. Student’s t-test was used to determine significant differences at p0.05 were observed between the instruments, regarding the root canal area and dentin wall thickness. Conclusion : Both tested instruments used for cervical preparation were safe to be used in the mesial root canal of mandibular molars.

  10. Radial head button holing: a cause of irreducible anterior radial head dislocation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Su-Mi; Chai, Jee Won; You, Ja Yeon; Park, Jina [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Bae, Kee Jeong [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Orthopedic Surgery, Seoul (Korea, Republic of)

    2016-10-15

    ''Buttonholing'' of the radial head through the anterior joint capsule is a known cause of irreducible anterior radial head dislocation associated with Monteggia injuries in pediatric patients. To the best of our knowledge, no report has described an injury consisting of buttonholing of the radial head through the annular ligament and a simultaneous radial head fracture in an adolescent. In the present case, the radiographic findings were a radial head fracture with anterior dislocation and lack of the anterior fat pad sign. Magnetic resonance imaging (MRI) clearly demonstrated anterior dislocation of the fractured radial head through the torn annular ligament. The anterior joint capsule and proximal portion of the annular ligament were interposed between the radial head and capitellum, preventing closed reduction of the radial head. Familiarity with this condition and imaging findings will aid clinicians to make a proper diagnosis and fast decision to perform an open reduction. (orig.)

  11. GATED SPECT TO EVALUATE LEFT VENTRICULAR MYOCARDIAL PERFUSION, FUNCTION AND DYSSYNCHRONY FOR RESYNCHRONIZATION THERAPY

    Directory of Open Access Journals (Sweden)

    E.N. Ostroumov

    2009-01-01

    Full Text Available The study included 15 consecutive patients with heart failure and substantial LV dyssynchrony undergoing CRT. Clinical and phase analysis of gated myocardial perfusion SPECT assessed at baseline, after 2–3 days and after 3–4 months of CRT. The results demonstrated inversely relationship between the response to CRT and the nonviable myocardium. Evaluation of myocardial viability is necessary to considered in the selection process for CRT.

  12. A novel optical gating method for laser gated imaging

    Science.gov (United States)

    Ginat, Ran; Schneider, Ron; Zohar, Eyal; Nesher, Ofer

    2013-06-01

    For the past 15 years, Elbit Systems is developing time-resolved active laser-gated imaging (LGI) systems for various applications. Traditional LGI systems are based on high sensitive gated sensors, synchronized to pulsed laser sources. Elbit propriety multi-pulse per frame method, which is being implemented in LGI systems, improves significantly the imaging quality. A significant characteristic of the LGI is its ability to penetrate a disturbing media, such as rain, haze and some fog types. Current LGI systems are based on image intensifier (II) sensors, limiting the system in spectral response, image quality, reliability and cost. A novel propriety optical gating module was developed in Elbit, untying the dependency of LGI system on II. The optical gating module is not bounded to the radiance wavelength and positioned between the system optics and the sensor. This optical gating method supports the use of conventional solid state sensors. By selecting the appropriate solid state sensor, the new LGI systems can operate at any desired wavelength. In this paper we present the new gating method characteristics, performance and its advantages over the II gating method. The use of the gated imaging systems is described in a variety of applications, including results from latest field experiments.

  13. Evaluation of Scientific Outputs of Kashan University of Medical Sciences in Scopus Citation Database based on Scopus, ResearchGate, and Mendeley Scientometric Measures.

    Science.gov (United States)

    Batooli, Zahra; Ravandi, Somaye Nadi; Bidgoli, Mohammad Sabahi

    2016-02-01

    It is essential to evaluate the impact of scientific publications through citation analysis in citation indexes. In addition, scientometric measures of social media also should be assessed. These measures include how many times the publications were read, viewed, and downloaded. The present study aimed to assess the scientific output of scholars at Kashan University of Medical Sciences by the end of March 2014 based on scientometric measures of Scopus, ResearchGate, and Mendeley. A survey method was used to study the articles published in Scopus journals by scholars at Kashan University of Medical Sciences by the end of March 2014. The required data were collected from Scopus, ResearchGate, and Mendeley. The data were analyzed with descriptive statistics. Also, the Spearman correlation was used between the number of views of articles in ResearchGate with citation number of the articles in Scopus and reading frequency of the articles in Mendeley with citation number in Scopus were examined using the Spearman correlation in SPSS 16. Five-hundred and thirty-three articles were indexed in the Scopus Citation Database by the end of March 2014. Collectively, those articles were cited 1,315 times. The articles were covered by ResearchGate (74%) more than Mendeley (44%). In addition, 98% of the articles indexed in ResearchGate and 92% of the articles indexed in Mendeley were viewed at least once. The results showed that there was a positive correlation between the number of views of the articles in ResearchGate and Mendeley and the number of citations of the articles in Scopus. Coverage and the number of visitors were higher in ResearchGate than in Mendeley. The increase in the number of views of articles in ResearchGate and Mendeley also increased the number of citations of the papers. Social networks, such as ResearchGate and Mendeley, also can be used as tools for the evaluation of academics and scholars based on the scientific research they have conducted.

  14. Evaluation of the radial design of fuel cells in an operation cycle of a BWR reactor; Evaluacion del diseno radial de celdas de combustible en un ciclo de operacion de un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez C, J.; Martin del Campo M, C. [Laboratorio de Analisis en Ingenieria de Reactores Nucleares, Facultad de Ingenieria, UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)]. e-mail: jgco@ver.megared.net.mx

    2003-07-01

    This work is continuation of one previous in the one that the application of the optimization technique called Tabu search to the radial design of fuel cells of boiling water reactors (BWR, Boiling Water Reactor) is presented. The objective function used in the optimization process only include neutron parameters (k-infinite and peak of radial power) considering the cell at infinite media. It was obtained to reduce the cell average enrichment completing the characteristics of reactivity of an original cell. The objective of the present work is to validate the objective function that was used for the radial design of the fuel cell (test cell), analyzing the operation of a one cycle of the reactor in which fuels have been fresh recharged that contain an axial area with the nuclear database of the cell designed instead of the original cell. For it is simulated it with Cm-Presto the cycle 10 of the reactor operation of the Unit 1 of the Nuclear Power station of Laguna Verde (U1-CNLV). For the cycle evaluation its were applied so much the simulation with the Haling strategy, as the simulation of the one cycle with control rod patterns and they were evaluated the energy generation and several power limits and reactivity that are used as design parameters in fuel reloads of BWR reactors. The results at level of an operation cycle of the reactor, show that the objective function used in the optimization and radial design of the cell is adequate and that it can induce to one good use of the fuel. (Author)

  15. Evaluation of the friction coefficient, the radial stress, and the damage work during needle insertions into agarose gels.

    Science.gov (United States)

    Urrea, Fabián A; Casanova, Fernando; Orozco, Gustavo A; García, José J

    2016-03-01

    Agarose hydrogels have been extensively used as a phantom material to mimic the mechanical behavior of soft biological tissues, e.g. in studies aimed to analyze needle insertions into the organs producing tissue damage. To better predict the radial stress and damage during needle insertions, this study was aimed to determine the friction coefficient between the material of commercial catheters and hydrogels. The friction coefficient, the tissue damage and the radial stress were evaluated at 0.2, 1.8, and 10mm/s velocities for 28, 30, and 32 gauge needles of outer diameters equal to 0.36, 0.31, and 0.23mm, respectively. Force measurements during needle insertions and retractions on agarose gel samples were used to analyze damage and radial stress. The static friction coefficient (0.295±0.056) was significantly higher than the dynamic (0.255±0.086). The static and dynamic friction coefficients were significantly smaller for the 0.2mm/s velocity compared to those for the other two velocities, and there was no significant difference between the friction coefficients for 1.8 and 10mm/s. Radial stress averages were 131.2±54.1, 248.3±64.2, and 804.9±164.3Pa for the insertion velocity of 0.2, 1.8, and 10mm/s, respectively. The radial stress presented a tendency to increase at higher insertion velocities and needle size, which is consistent with other studies. However, the damage work did not show to be a good predictor of tissue damage, which appears to be due to simplifications in the analytical model. Differently to other approaches, the method proposed here based on radial stress may be extended in future studies to quantity tissue damage in vivo along the entire needle track. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Stability of radial and non-radial pulsation modes of massive ZAMS models

    International Nuclear Information System (INIS)

    Odell, A.P.; Pausenwein, A.; Weiss, W.W.; Hajek, A.

    1987-01-01

    The authors have computed non-adiabatic eigenvalues for radial and non-radial pulsation modes of star models between 80 and 120 M solar with composition of chi=0.70 and Z=0.02. The radial fundamental mode is unstable in models with mass greater than 95 M solar , but the first overtone mode is always stable. The non-radial modes are all stable for all models, but the iota=2 f-mode is the closest to being driven. The non-radial modes are progressively more stable with higher iota and with higher n (for both rho- and g-modes). Thus, their results indicate that radial pulsation limits the upper mass of a star

  17. Evaluation of an exposed-radiation dose on a dual-source cardiac computed tomography examination with a prospective electrocardiogram-gated fast dual spiral scan

    International Nuclear Information System (INIS)

    Matsubara, Kosuke; Koshida, Kichiro; Koshida, Haruka; Sakuta, Keita; Hayashi, Hiroyuki; Takata, Tadanori; Horii, Junsei; Kawai, Keiichi; Yamamoto, Tomoyuki

    2012-01-01

    We evaluated exposed-radiation doses on dual-source cardiac computed tomography (CT) examinations with prospective electrocardiogram (ECG)-gated fast dual spiral scans. After placing dosimeters at locations corresponding to each of the thoracic organs, prospective ECG-gated fast dual spirals and retrospective ECG-gated dual spiral scans were performed to measure the absorbed dose of each organ. In the prospective ECG-gated fast dual spiral scans, the average absorbed doses were 5.03 mGy for the breast, 9.96 mGy for the heart, 6.60 mGy for the lung, 6.48 mGy for the bone marrow, 9.73 mGy for the thymus, and 4.58 mGy for the skin. These values were about 5% of the absorbed doses for the retrospective ECG-gated dual spiral scan. However, the absorbed dose differed greatly at each scan, especially in the external organs such as the breast. For effective and safe use of the prospective ECG-gated fast dual spiral scan, it is necessary to understand these characteristics sufficiently. (author)

  18. SU-E-T-403: Evaluation of the Beam Performance of a Varian TrueBeam Linear Accelerator Under External Device-Based Gated Delivery Conditions

    International Nuclear Information System (INIS)

    Kobulnicky, K; Pawlak, D; Purwar, A

    2015-01-01

    Purpose: To examine the beam performance of a Varian TrueBeam linear accelerator under external device-based gated delivery conditions. Methods: Six gating cycles were used to evaluate the gating performance of a standard production TrueBeam system that was not specially tuned in any way. The system was equipped with a factory installed external gating interface (EXGI). An in-house EXGI tester box was used to simulate the input gating signals. The gating cycles were selected based on long beam-on and short beam-off times, short beam-on and long beam-off times, or equal beam on and off times to check linac performance. The beam latencies were measured as the time difference between the logic high gating signal and the first or last target pulses with an oscilloscope. Tissue-Phantom Ratio, beam flatness, and dose distributions from 5 different plans were measured using the 6 different gating durations and the un-gated irradiation. A PTW 729 2-D array was used to compare 5 plans versus the un-gated delivery with a 1%/1mm gamma index passing criteria. Results: The beam latencies of the linac were based off of 20 samples for beam-on and beam-off, for each gating cycle. The average beam-on delays were measured to be between 57 and 66msec, with a maximum of 88 msec. The beam off latencies averaged between 19 and 26msec, with a maximum of 48 msec. TPR20,10 measurements showed beam energy stability within 0.5% of the un-gated delivery. Beam flatness was better than 2.5% for all gated cycles. All but two deliveries, the open field with 4 seconds on, 1 second off, and a five field IMRT plan with 0.5 seconds on, 2.5 seconds off, had >90% passing rate. Conclusion: TrueBeam demonstrates excellent beam stability with minimal beam latencies under external device-based gated operations. Dosimetric measurements show minimal variation in beam energy, flatness, and plan delivery. Authors are employees of Varian Medical Systems, Inc

  19. SU-E-T-403: Evaluation of the Beam Performance of a Varian TrueBeam Linear Accelerator Under External Device-Based Gated Delivery Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kobulnicky, K; Pawlak, D; Purwar, A [Varian Medical Systems, Inc., Palo Alto, CA (United States)

    2015-06-15

    Purpose: To examine the beam performance of a Varian TrueBeam linear accelerator under external device-based gated delivery conditions. Methods: Six gating cycles were used to evaluate the gating performance of a standard production TrueBeam system that was not specially tuned in any way. The system was equipped with a factory installed external gating interface (EXGI). An in-house EXGI tester box was used to simulate the input gating signals. The gating cycles were selected based on long beam-on and short beam-off times, short beam-on and long beam-off times, or equal beam on and off times to check linac performance. The beam latencies were measured as the time difference between the logic high gating signal and the first or last target pulses with an oscilloscope. Tissue-Phantom Ratio, beam flatness, and dose distributions from 5 different plans were measured using the 6 different gating durations and the un-gated irradiation. A PTW 729 2-D array was used to compare 5 plans versus the un-gated delivery with a 1%/1mm gamma index passing criteria. Results: The beam latencies of the linac were based off of 20 samples for beam-on and beam-off, for each gating cycle. The average beam-on delays were measured to be between 57 and 66msec, with a maximum of 88 msec. The beam off latencies averaged between 19 and 26msec, with a maximum of 48 msec. TPR20,10 measurements showed beam energy stability within 0.5% of the un-gated delivery. Beam flatness was better than 2.5% for all gated cycles. All but two deliveries, the open field with 4 seconds on, 1 second off, and a five field IMRT plan with 0.5 seconds on, 2.5 seconds off, had >90% passing rate. Conclusion: TrueBeam demonstrates excellent beam stability with minimal beam latencies under external device-based gated operations. Dosimetric measurements show minimal variation in beam energy, flatness, and plan delivery. Authors are employees of Varian Medical Systems, Inc.

  20. Pharmacologic stress-induced stunning: evaluation with quantitative gated SPECT

    International Nuclear Information System (INIS)

    Chun, K. A.; Cho, I. H.; Won, K. J.; Lee, H. W.

    2000-01-01

    The after-effect of pharmacologic stress (adenosine) on left ventricular (LV) function, end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (LVEF) were evaluated after pharmacologic stress with Tl-201 and 99m Tc-MIBI SPECT using an automated program in 153 subjects. The subjects were grouped as follows: 1) Tl-201 group (n=35, male 18, female 17, mean age: 58 years); normal scan (n=24), ischemia (n=8) and infarction (n=3). 2) 99m Tc-MIBI group (n=118, male 60, female 58, mean age: 62 years); normal scan (n=73), ischemia (n=20) and infarction (n=25) based on the interpretation of perfusion images. All patients were in sinus rhythm during the study. 1)Tl-201 group; In patients with ischemia (the mean time interval between injection and acquisition is 12.3 min), post-stress LVEF was significantly depressed after adenosine infusion (51.2 ± 6.3% vs 59.8± 8.2%, p 99m Tc-MIBI group; In patients with ischemia (the mean time interval between injection and acquisition is 80 min), post-stress LVEF was significantly depressed after adenosine infusion (p<0.001) and ΔLVEF was 5.1%. Eight patients (40%) showed an increase in LVEF greater than 5% from poststress to rest. Poststress ESV (37.1±17.3 ml) was significantly higher than ESV (31.3±15.5 ml, p<0.001) at rest, but no significant difference in EDV. These results showed that pharmacologic stress induced stunning is well noted in the early quantitative gated SPECT in ischemic patients and also observed in the delayed gated SPECT, even though the rate of stunning is less than the early SPECT

  1. Bubble gate for in-plane flow control.

    Science.gov (United States)

    Oskooei, Ali; Abolhasani, Milad; Günther, Axel

    2013-07-07

    We introduce a miniature gate valve as a readily implementable strategy for actively controlling the flow of liquids on-chip, within a footprint of less than one square millimetre. Bubble gates provide for simple, consistent and scalable control of liquid flow in microchannel networks, are compatible with different bulk microfabrication processes and substrate materials, and require neither electrodes nor moving parts. A bubble gate consists of two microchannel sections: a liquid-filled channel and a gas channel that intercepts the liquid channel to form a T-junction. The open or closed state of a bubble gate is determined by selecting between two distinct gas pressure levels: the lower level corresponds to the "open" state while the higher level corresponds to the "closed" state. During closure, a gas bubble penetrates from the gas channel into the liquid, flanked by a column of equidistantly spaced micropillars on each side, until the flow of liquid is completely obstructed. We fabricated bubble gates using single-layer soft lithographic and bulk silicon micromachining procedures and evaluated their performance with a combination of theory and experimentation. We assessed the dynamic behaviour during more than 300 open-and-close cycles and report the operating pressure envelope for different bubble gate configurations and for the working fluids: de-ionized water, ethanol and a biological buffer. We obtained excellent agreement between the experimentally determined bubble gate operational envelope and a theoretical prediction based on static wetting behaviour. We report case studies that serve to illustrate the utility of bubble gates for liquid sampling in single and multi-layer microfluidic devices. Scalability of our strategy was demonstrated by simultaneously addressing 128 bubble gates.

  2. Dual-gated volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Fahimian, Benjamin; Wu, Junqing; Wu, Huanmei; Geneser, Sarah; Xing, Lei

    2014-01-01

    Gated Volumetric Modulated Arc Therapy (VMAT) is an emerging radiation therapy modality for treatment of tumors affected by respiratory motion. However, gating significantly prolongs the treatment time, as delivery is only activated during a single respiratory phase. To enhance the efficiency of gated VMAT delivery, a novel dual-gated VMAT (DG-VMAT) technique, in which delivery is executed at both exhale and inhale phases in a given arc rotation, is developed and experimentally evaluated. Arc delivery at two phases is realized by sequentially interleaving control points consisting of MUs, MLC sequences, and angles of VMAT plans generated at the exhale and inhale phases. Dual-gated delivery is initiated when a respiration gating signal enters the exhale window; when the exhale delivery concludes, the beam turns off and the gantry rolls back to the starting position for the inhale window. The process is then repeated until both inhale and exhale arcs are fully delivered. DG-VMAT plan delivery accuracy was assessed using a pinpoint chamber and diode array phantom undergoing programmed motion. DG-VMAT delivery was experimentally implemented through custom XML scripting in Varian’s TrueBeam™ STx Developer Mode. Relative to single gated delivery at exhale, the treatment time was improved by 95.5% for a sinusoidal breathing pattern. The pinpoint chamber dose measurement agreed with the calculated dose within 0.7%. For the DG-VMAT delivery, 97.5% of the diode array measurements passed the 3%/3 mm gamma criterion. The feasibility of DG-VMAT delivery scheme has been experimentally demonstrated for the first time. By leveraging the stability and natural pauses that occur at end-inspiration and end-exhalation, DG-VMAT provides a practical method for enhancing gated delivery efficiency by up to a factor of two

  3. Methodology for Analysis, Modeling and Simulation of Airport Gate-waiting Delays

    Science.gov (United States)

    Wang, Jianfeng

    This dissertation presents methodologies to estimate gate-waiting delays from historical data, to identify gate-waiting-delay functional causes in major U.S. airports, and to evaluate the impact of gate operation disruptions and mitigation strategies on gate-waiting delay. Airport gates are a resource of congestion in the air transportation system. When an arriving flight cannot pull into its gate, the delay it experiences is called gate-waiting delay. Some possible reasons for gate-waiting delay are: the gate is occupied, gate staff or equipment is unavailable, the weather prevents the use of the gate (e.g. lightning), or the airline has a preferred gate assignment. Gate-waiting delays potentially stay with the aircraft throughout the day (unless they are absorbed), adding costs to passengers and the airlines. As the volume of flights increases, ensuring that airport gates do not become a choke point of the system is critical. The first part of the dissertation presents a methodology for estimating gate-waiting delays based on historical, publicly available sources. Analysis of gate-waiting delays at major U.S. airports in the summer of 2007 identifies the following. (i) Gate-waiting delay is not a significant problem on majority of days; however, the worst delay days (e.g. 4% of the days at LGA) are extreme outliers. (ii) The Atlanta International Airport (ATL), the John F. Kennedy International Airport (JFK), the Dallas/Fort Worth International Airport (DFW) and the Philadelphia International Airport (PHL) experience the highest gate-waiting delays among major U.S. airports. (iii) There is a significant gate-waiting-delay difference between airlines due to a disproportional gate allocation. (iv) Gate-waiting delay is sensitive to time of a day and schedule peaks. According to basic principles of queueing theory, gate-waiting delay can be attributed to over-scheduling, higher-than-scheduled arrival rate, longer-than-scheduled gate-occupancy time, and reduced gate

  4. Clinical evaluation of cardiovascular disease by gated-MRI (magnetic resonance imaging) in the operating field of 0.35 and 1.5 Tesla

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Naito, Hiroaki; Yamada, Yukinori; Kozuka, Takahiro

    1985-01-01

    To evaluate the clinical usefulness of magnetic resonance imaging (MRI) in the cardiovascular disease, 21 patients were examined using 0.35 and 1.5 Tesla superconductive type (Magnetom, Siemens). In our study, all patients were performed using ECG-gated MRI. Therefore, the cardiac chambers were discriminated clearly from the myocardial wall compared to non-gated MRI. Gated-MRI was performed in 6 normal persons in the operating field at 0.35 and 1.5 Tesla. The image of the latter showed superior than that of the former because of high S/N ratio. In myocardial infarction, infarct area was demonstrated as the wall thinning in 4 of 5 patients. Hypertrophic cardiomyopathy showed thickened left ventricle associated with its narrowed cavity in 7 patients. In the remaining such as congenital and valvular heart disease, global and regional cardiac morphology were assessed noninvasively by gated MRI. In addition, gated MRI was also applied to the diagnosis of peripheral vascular diseases. In dissecting aneurysm, double channels with an intimal flap in the aorta were clearly visualized. And in the aortitis syndrome, aortic dilatation and stenosis were also assessed noninvasively. In conclusion, gated MRI in diagnosing various abnormalities of cardiovascular disease was confirmed. (author)

  5. Coronary Artery Stent Evaluation Using a Vascular Model at 64-Detector Row CT: Comparison between Prospective and Retrospective ECG-Gated Axial Scans

    International Nuclear Information System (INIS)

    Suzuki, Shigeru; Furui, Shigeru; Kaminaga, Tatsuro; Miyazawa, Akiyoshi; Ueno, Yasunari; Konno, Kumiko; Kuwahara, Sadatoshi; Mehta, Dhruv

    2009-01-01

    We wanted to evaluate the performance of prospective electrocardiogram (ECG)-gated axial scans for assessing coronary stents as compared with retrospective ECG-gated helical scans. As for a vascular model of the coronary artery, a tube of approximately 2.5-mm inner diameter was adopted and as for stents, three (Bx-Velocity, Express2, and Micro Driver) different kinds of stents were inserted into the tube. Both patent and stenotic models of coronary artery were made by instillating different attenuation (396 vs. 79 Hounsfield unit [HU]) of contrast medium within the tube in tube model. The models were scanned with two types of scan methods with a simulated ECG of 60 beats per minute and using display field of views (FOVs) of 9 and 18 cm. We evaluated the in-stent stenosis visually, and we measured the attenuation values and the diameter of the patent stent lumen. The visualization of the stent lumen of the vascular models was improved with using the prospective ECG-gated axial scans and a 9-cm FOV. The inner diameters of the vascular models were underestimated with mean measurement errors of -1.10 to -1.36 mm. The measurement errors were smaller with using the prospective ECG-gated axial scans (Bx-Velocity and Express2, p < 0.0001; Micro Driver, p = 0.0004) and a 9-cm FOV (all stents: p < 0.0001), as compared with the other conditions, respectively. The luminal attenuation value was overestimated in each condition. For the luminal attenuation measurement, the use of prospective ECG-gated axial scans provided less measurement error compared with the retrospective ECG-gated helical scans (all stents: p < 0.0001), and the use of a 9-cm FOV tended to decrease the measurement error. The visualization of coronary stents is improved by the use of prospective ECG-gated axial scans and using a small FOV with reduced blooming artifacts and increased spatial resolution

  6. Variable stator radial turbine

    Science.gov (United States)

    Rogo, C.; Hajek, T.; Chen, A. G.

    1984-01-01

    A radial turbine stage with a variable area nozzle was investigated. A high work capacity turbine design with a known high performance base was modified to accept a fixed vane stagger angle moveable sidewall nozzle. The nozzle area was varied by moving the forward and rearward sidewalls. Diffusing and accelerating rotor inlet ramps were evaluated in combinations with hub and shroud rotor exit rings. Performance of contoured sidewalls and the location of the sidewall split line with respect to the rotor inlet was compared to the baseline. Performance and rotor exit survey data are presented for 31 different geometries. Detail survey data at the nozzle exit are given in contour plot format for five configurations. A data base is provided for a variable geometry concept that is a viable alternative to the more common pivoted vane variable geometry radial turbine.

  7. Respiratory gated lung CT using 320-row area detector CT

    International Nuclear Information System (INIS)

    Sakamoto, Ryo; Noma, Satoshi; Higashino, Takanori

    2010-01-01

    Three hundred and twenty-row Area Detector CT (ADCT) has made it possible to scan whole lung field with prospective respiratory gated wide volume scan. We evaluated whether the respiratory gated wide volume scan enables to reduce motion induced artifacts in the lung area. Helical scan and respiratory gated wide volume scan were performed in 5 patients and 10 healthy volunteers under spontaneous breathing. Significant reduction of motion artifact and superior image quality were obtained in respiratory gated scan in comparison with helical scan. Respiratory gated wide volume scan is an unique method using ADCT, and is able to reduce motion artifacts in lung CT scans of patients unable to suspend respiration in clinical scenes. (author)

  8. Implementation of respiratory-gated VMAT on a Versa HD linear accelerator.

    Science.gov (United States)

    Snyder, Jeffrey E; Flynn, Ryan T; Hyer, Daniel E

    2017-09-01

    The accurate delivery of respiratory-gated volumetric modulated arc therapy (VMAT) treatment plans presents a challenge since the gantry rotation and collimator leaves must be repeatedly stopped and set into motion during each breathing cycle. In this study, we present the commissioning process for an Anzai gating system (AZ-733VI) on an Elekta Versa HD linear accelerator and make recommendations for successful clinical implementation. The commissioning tests include central axis dose consistency, profile consistency, gating beam-on/off delay, and comparison of gated versus nongated gamma pass rates for patient-specific quality assurance using four clinically commissioned photon energies: 6 MV, 6 FFF, 10 MV, and 10 FFF. The central axis dose constancy between gated and nongated deliveries was within 0.6% for all energies and the analysis of open field profiles for gated and nongated deliveries showed an agreement of 97.8% or greater when evaluated with a percent difference criteria of 1%. The measurement of the beam-on/off delay was done by evaluating images of a moving ball-bearing phantom triggered by the gating system and average beam-on delays of 0.22-0.29 s were observed. No measurable beam-off delay was present. Measurements of gated VMAT dose distributions resulted in decrements as high as 9% in the gamma passing rate as compared to nongated deliveries when evaluated against the planned dose distribution at 3%/3 mm. By decreasing the dose rate, which decreases the gantry speed during gated delivery, the gamma passing rates of gated and nongated treatments can be made equivalent. We present an empirically derived formula to limit the maximum dose rate during VMAT deliveries and show that by implementing a reduced dose rate, a gamma passing rate of greater than 95% (3%/3 mm) was obtained for all plan measurements. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of

  9. The evaluation of cardiac tamponade risk in patients with pericardial effusion detected by non-gated chest CT.

    Science.gov (United States)

    Ohta, Yasutoshi; Miyoshi, Fuminori; Kaminou, Toshio; Kaetsu, Yasuhiro; Ogawa, Toshihide

    2016-05-01

    Although pericardial effusion is often identified using non-gated chest computed tomography (CT), findings predictive of cardiac tamponade have not been adequately established. To determine the findings predictive of clinical cardiac tamponade in patients with moderate to large pericardial effusion using non-gated chest CT. We performed a retrospective analysis of 134 patients with moderate to large pericardial effusion who were identified from among 4581 patients who underwent non-gated chest CT. Cardiac structural changes, including right ventricular outflow tract (RVOT), were qualitatively evaluated. The inferior vena cava ratio with hepatic (IVCupp) and renal portions (IVClow) and effusion size were measured. The diagnostic performance of each structural change was calculated, and multivariate analysis was used to determine the predictors of cardiac tamponade. Of the 134 patients (mean age, 70.3 years; 64 men), 37 (28%) had cardiac tamponade. The sensitivity and specificity were 76% and 74% for RVOT compression; 87% and 84% for an IVClow ratio ≥0.77; and 60% and 77% for an effusion size ≥25.5 mm, respectively. Multivariate logistic regression analysis demonstrated that RVOT compression, an IVClow ratio ≥0.77, and an effusion size ≥25.5 mm were independent predictors of cardiac tamponade. The combination of these three CT findings had a sensitivity, specificity, and accuracy of 81%, 95%, and 91%, respectively. In patients with moderate to large pericardial effusion, non-gated chest CT provides additional information for predicting cardiac tamponade. © The Foundation Acta Radiologica 2015.

  10. Formation of multipartite entanglement using random quantum gates

    International Nuclear Information System (INIS)

    Most, Yonatan; Shimoni, Yishai; Biham, Ofer

    2007-01-01

    The formation of multipartite quantum entanglement by repeated operation of one- and two-qubit gates is examined. The resulting entanglement is evaluated using two measures: the average bipartite entanglement and the Groverian measure. A comparison is made between two geometries of the quantum register: a one-dimensional chain in which two-qubit gates apply only locally between nearest neighbors and a nonlocal geometry in which such gates may apply between any pair of qubits. More specifically, we use a combination of random single-qubit rotations and a fixed two-qubit gate such as the controlled-phase gate. It is found that in the nonlocal geometry the entanglement is generated at a higher rate. In both geometries, the Groverian measure converges to its asymptotic value more slowly than the average bipartite entanglement. These results are expected to have implications on different proposed geometries of future quantum computers with local and nonlocal interactions between the qubits

  11. Evaluation of the geometric accuracy of surrogate-based gated VMAT using intrafraction kilovoltage x-ray images

    International Nuclear Information System (INIS)

    Li Ruijiang; Mok, Edward; Han, Bin; Koong, Albert; Xing Lei

    2012-01-01

    Purpose: To evaluate the geometric accuracy of beam targeting in external surrogate-based gated volumetric modulated arc therapy (VMAT) using kilovoltage (kV) x-ray images acquired during dose delivery. Methods: Gated VMAT treatments were delivered using a Varian TrueBeam STx Linac for both physical phantoms and patients. Multiple gold fiducial markers were implanted near the target. The reference position was created for each implanted marker, representing its correct position at the gating threshold. The gating signal was generated from the RPM system. During the treatment, kV images were acquired immediately before MV beam-on at every breathing cycle, using the on-board imaging system. All implanted markers were detected and their 3D positions were estimated using in-house developed software. The positioning error of a marker is defined as the distance of the marker from its reference position for each frame of the images. The overall error of the system is defined as the average over all markers. For the phantom study, both sinusoidal motion (1D and 3D) and real human respiratory motion was simulated for the target and surrogate. In the baseline case, the two motions were synchronized for the first treatment fraction. To assess the effects of surrogate-target correlation on the geometric accuracy, a phase shift of 5% and 10% between the two motions was introduced. For the patient study, intrafraction kV images of five stereotactic body radiotherapy (SBRT) patients were acquired for one or two fractions. Results: For the phantom study, a high geometric accuracy was achieved in the baseline case (average error: 0.8 mm in the superior-inferior or SI direction). However, the treatment delivery is prone to geometric errors if changes in the target-surrogate relation occur during the treatment: the average error was increased to 2.3 and 4.7 mm for the phase shift of 5% and 10%, respectively. Results obtained with real human respiratory curves show a similar trend

  12. Utility of the puncture of the radial artery in interventionist radiology

    International Nuclear Information System (INIS)

    Triana Rodriguez, Carlos Eduardo; Montes S, Mauricio; Barragan F, Jaime; Ucros Diaz Pablo; Ucros Diaz, Ignacio; Castillo, Luis Fernando

    1998-01-01

    We present the radial artery access, previous evaluation of collateral circulation with Allen's Test, as an alternative vascular access in patients with contraindications for femoral or axillary approaches. The radial artery puncture offers advantages, such as diminished bleeding and hematoma formation

  13. Imaging Three-Dimensional Myocardial Mechanics Using Navigator-gated Volumetric Spiral Cine DENSE MRI

    Science.gov (United States)

    Zhong, Xiaodong; Spottiswoode, Bruce S.; Meyer, Craig H.; Kramer, Christopher M.; Epstein, Frederick H.

    2010-01-01

    A navigator-gated 3D spiral cine displacement encoding with stimulated echoes (DENSE) pulse sequence for imaging 3D myocardial mechanics was developed. In addition, previously-described 2D post-processing algorithms including phase unwrapping, tissue tracking, and strain tensor calculation for the left ventricle (LV) were extended to 3D. These 3D methods were evaluated in 5 healthy volunteers, using 2D cine DENSE and historical 3D myocardial tagging as reference standards. With an average scan time of 20.5 ± 5.7 minutes, 3D data sets with a matrix size of 128 × 128 × 22, voxel size of 2.8 × 2.8 × 5.0 mm3, and temporal resolution of 32 ms were obtained with displacement encoding in three orthogonal directions. Mean values for end-systolic mid-ventricular mid-wall radial, circumferential, and longitudinal strain were 0.33 ± 0.10, −0.17 ± 0.02, and −0.16 ± 0.02, respectively. Transmural strain gradients were detected in the radial and circumferential directions, reflecting high spatial resolution. Good agreement by linear correlation and Bland-Altman analysis was achieved when comparing normal strains measured by 2D and 3D cine DENSE. Also, the 3D strains, twist, and torsion results obtained by 3D cine DENSE were in good agreement with historical values measured by 3D myocardial tagging. PMID:20574967

  14. Linear gate

    International Nuclear Information System (INIS)

    Suwono.

    1978-01-01

    A linear gate providing a variable gate duration from 0,40μsec to 4μsec was developed. The electronic circuity consists of a linear circuit and an enable circuit. The input signal can be either unipolar or bipolar. If the input signal is bipolar, the negative portion will be filtered. The operation of the linear gate is controlled by the application of a positive enable pulse. (author)

  15. Evaluation of accuracy about 2D vs 3D real-time position management system based on couch rotation when non-coplanar respiratory gated radiation therapy

    International Nuclear Information System (INIS)

    Kwon, Kyung Tae; Kim, Jung Soo; Sim, Hyun Sun; Min, Jung Whan; Son, Soon Yong; Han, Dong Kyoon

    2016-01-01

    Because of non-coplanar therapy with couch rotation in respiratory gated radiation therapy, the recognition of marker movement due to the change in the distance between the infrared camera and the marker due to the rotation of the couch is called RPM (Real-time The purpose of this paper is to evaluate the accuracy of motion reflections (baseline changes) of 2D gating configuration (two dot marker block) and 3D gating configuration (six dot marker block). The motion was measured by varying the couch angle in the clockwise and counterclockwise directions by 10° in the 2D gating configuration. In the 3D gating configuration, the couch angle was changed by 10° in the clockwise direction and compared with the baseline at the reference 0°. The reference amplitude was 1.173 to 1.165, the couch angle at 20° was 1.132, and the couch angle at 1.0° was 1.083. At 350° counterclockwise, the reference amplitude was 1.168 to 1.157, the couch angle at 340° was 1.124, and the couch angle at 330° was 1.079. In this study, the phantom is used to quantitatively evaluate the value of the amplitude according to couch change

  16. Evaluation of accuracy about 2D vs 3D real-time position management system based on couch rotation when non-coplanar respiratory gated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kyung Tae; Kim, Jung Soo [Dongnam Health University, Suwon (Korea, Republic of); Sim, Hyun Sun [College of Health Sciences, Korea University, Seoul (Korea, Republic of); Min, Jung Whan [Shingu University College, Sungnam (Korea, Republic of); Son, Soon Yong [Wonkwang Health Science University, Iksan (Korea, Republic of); Han, Dong Kyoon [College of Health Sciences, EulJi University, Daejeon (Korea, Republic of)

    2016-12-15

    Because of non-coplanar therapy with couch rotation in respiratory gated radiation therapy, the recognition of marker movement due to the change in the distance between the infrared camera and the marker due to the rotation of the couch is called RPM (Real-time The purpose of this paper is to evaluate the accuracy of motion reflections (baseline changes) of 2D gating configuration (two dot marker block) and 3D gating configuration (six dot marker block). The motion was measured by varying the couch angle in the clockwise and counterclockwise directions by 10° in the 2D gating configuration. In the 3D gating configuration, the couch angle was changed by 10° in the clockwise direction and compared with the baseline at the reference 0°. The reference amplitude was 1.173 to 1.165, the couch angle at 20° was 1.132, and the couch angle at 1.0° was 1.083. At 350° counterclockwise, the reference amplitude was 1.168 to 1.157, the couch angle at 340° was 1.124, and the couch angle at 330° was 1.079. In this study, the phantom is used to quantitatively evaluate the value of the amplitude according to couch change.

  17. Evaluation of respiratory and cardiac motion correction schemes in dual gated PET/CT cardiac imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lamare, F., E-mail: frederic.lamare@chu-bordeaux.fr; Fernandez, P. [Univ. Bordeaux, INCIA, UMR 5287, F-33400 Talence (France); CNRS, INCIA, UMR 5287, F-33400 Talence (France); Service de Médecine Nucléaire, Hôpital Pellegrin, CHU de Bordeaux, 33076 Bordeaux (France); Le Maitre, A.; Visvikis, D. [INSERM, UMR1101, LaTIM, Université de Bretagne Occidentale, 29609 Brest (France); Dawood, M.; Schäfers, K. P. [European Institute for Molecular Imaging, University of Münster, Mendelstr. 11, 48149 Münster (Germany); Rimoldi, O. E. [Vita-Salute University and Scientific Institute San Raffaele, Milan, Italy and CNR Istituto di Bioimmagini e Fisiologia Molecolare, Milan (Italy)

    2014-07-15

    Purpose: Cardiac imaging suffers from both respiratory and cardiac motion. One of the proposed solutions involves double gated acquisitions. Although such an approach may lead to both respiratory and cardiac motion compensation there are issues associated with (a) the combination of data from cardiac and respiratory motion bins, and (b) poor statistical quality images as a result of using only part of the acquired data. The main objective of this work was to evaluate different schemes of combining binned data in order to identify the best strategy to reconstruct motion free cardiac images from dual gated positron emission tomography (PET) acquisitions. Methods: A digital phantom study as well as seven human studies were used in this evaluation. PET data were acquired in list mode (LM). A real-time position management system and an electrocardiogram device were used to provide the respiratory and cardiac motion triggers registered within the LM file. Acquired data were subsequently binned considering four and six cardiac gates, or the diastole only in combination with eight respiratory amplitude gates. PET images were corrected for attenuation, but no randoms nor scatter corrections were included. Reconstructed images from each of the bins considered above were subsequently used in combination with an affine or an elastic registration algorithm to derive transformation parameters allowing the combination of all acquired data in a particular position in the cardiac and respiratory cycles. Images were assessed in terms of signal-to-noise ratio (SNR), contrast, image profile, coefficient-of-variation (COV), and relative difference of the recovered activity concentration. Results: Regardless of the considered motion compensation strategy, the nonrigid motion model performed better than the affine model, leading to higher SNR and contrast combined with a lower COV. Nevertheless, when compensating for respiration only, no statistically significant differences were

  18. SU-F-J-121: Dosimetric Evaluation of Active Breathing Coordinator-Response Gating System Linked to Linear Accelerator in Volumetric Modulated Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Zheng, Y; Albani, D; Colussi, V; Dorth, J; Sohn, J [Case Western University, Cleveland, OH (United States)

    2016-06-15

    Purpose: To reduce internal target volume (ITV), respiratory management is a must in imaging and treatment for lung, liver, and breast cancers. We investigated the dosimetric accuracy of VMAT treatment delivery with a Response™ gating system linked to linear accelerator. Methods: The Response™ gating module designed to directly control radiation beam by breath-holding with a ABC system (Elekta AB, Stockholm, Sweden) was tested for VMAT treatments. Seven VMAT plans including three conventional and four stereotactic body radiotherapy (SBRT) cases were evaluated. Each plan was composed of two or four arcs of 6MV radiation beam with prescribed dose ranged from 1.8 to 9 Gy per fraction. Each plan was delivered continuously without gating and delivered with multiple interruptions by the ResponseTM gating module with a 20 or 30 second breath-holding period. MapCheck2 and Gafchromic EBT3 films sandwiched in MapPHAN were used to measure the delivered dose with and without gating. Films were scanned on a flatbed color scanner, and red channel was extracted for film dosimetry. Gamma analysis was performed to analyze the dosimetrical accuracy of the radiation delivery with gating. Results: The measured doses with gating remarkably agree with the planned dose distributions in the results of gamma index passing rate (within 20% isodose; >98% for 3%/3mm and >92% for 2%/2mm in MapCheck2, and >91% for 3%/3mm criteria in EBT3 film except one case which was for large target and highly modulated). No significant difference (student t-test: p-value < 0.0005) was shown between the doses delivered with and without gating. There was no indication of radiation gap or overlapping during deliver interruption in film dosimetry. Conclusion: The Response™ gating system can be safely used during VMAT treatment. The accurate performance of the gating system linked to ABC can contribute to ITV reduction for SBRT using VMAT.

  19. Surface interpolation with radial basis functions for medical imaging

    International Nuclear Information System (INIS)

    Carr, J.C.; Beatson, R.K.; Fright, W.R.

    1997-01-01

    Radial basis functions are presented as a practical solution to the problem of interpolating incomplete surfaces derived from three-dimensional (3-D) medical graphics. The specific application considered is the design of cranial implants for the repair of defects, usually holes, in the skull. Radial basis functions impose few restrictions on the geometry of the interpolation centers and are suited to problems where interpolation centers do not form a regular grid. However, their high computational requirements have previously limited their use to problems where the number of interpolation centers is small (<300). Recently developed fast evaluation techniques have overcome these limitations and made radial basis interpolation a practical approach for larger data sets. In this paper radial basis functions are fitted to depth-maps of the skull's surface, obtained from X-ray computed tomography (CT) data using ray-tracing techniques. They are used to smoothly interpolate the surface of the skull across defect regions. The resulting mathematical description of the skull's surface can be evaluated at any desired resolution to be rendered on a graphics workstation or to generate instructions for operating a computer numerically controlled (CNC) mill

  20. Evaluation of MotionSim XY/4D for patient specific QA of respiratory gated treatment for lung cancer

    International Nuclear Information System (INIS)

    Wen, C.; Ackerly, T.; Lancaster, C.; Bailey, N.

    2011-01-01

    Full text: A commercial system-MotionSim XY/4D(TM) capable of simulating two-dimensional tumour motion and measuring planar dose with diode-matrix was evaluated at the Alfred Hospital, for establishing patient-specific QA programme of respiratory gated treatment of lung cancer. This study presents the investigation of accuracies, limitations and the practical aspects of that system. Planar doses generated on iPlan-TM by mapping clinical beams to a scanned-in water phantom were measured by MotionSim XY/4D-TM with 5 cm water equivalent build-up at normal incidence. The gated delivery using ExacTrac-TM through tracking infrared markers simulating external respiration surrogate was measured simultaneously with Gaf-ChromicR RTQA2 film and MapCHECK 2TM . Dose maps of both non-gated and gated beams with 30% duty cycle were compared with both film and diodes measurements. Differences in dose distribution were analysed with built-in tools in MapCHECK2 TM and the effect of residual motion within the beamenabled window was then assessed. Preliminary results indicate that difference between Gafchromic film and MapCHECK2 measurements of same beam was ignorable. Gated dose delivery to a target at 9 mm maximum motion was in good agreement with planned dose. Complement to measurements suggested in AAPM Report No.9 I I, this QA device can detect any random error and assess the magnitude of residual target motion through analysing differences between planned and delivered doses as gamma function. Although some user-friendliness aspects could be improved, it meets its specification and can be used for routine clinical QA purposes provided calibrations were performed and procedures were followed.

  1. MO-FG-CAMPUS-JeP2-01: 4D-MRI with 3D Radial Sampling and Self-Gating-Based K-Space Sorting: Image Quality Improvement by Slab-Selective Excitation

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z; Pang, J; Tuli, R; Fraass, B; Fan, Z [Cedars Sinai Medical Center, Los Angeles, CA (United States); Yang, W [Cedars-Sinai Medical Center, Los Angeles, CA (United States); Bi, X [Siemens Healthcare, Los Angeles, CA (United States); Hakimian, B [Cedars Sinai Medical Center, Los Angeles CA (United States); Li, D [Cedars Sinai Medical Center, Los Angeles, California (United States)

    2016-06-15

    Purpose: A recent 4D MRI technique based on 3D radial sampling and self-gating-based K-space sorting has shown promising results in characterizing respiratory motion. However due to continuous acquisition and potentially drastic k-space undersampling resultant images could suffer from low blood-to-tissue contrast and streaking artifacts. In this study 3D radial sampling with slab-selective excitation (SS) was proposed in attempt to enhance blood-to-tissue contrast by exploiting the in-flow effect and to suppress the excess signal from the peripheral structures particularly in the superior-inferior direction. The feasibility of improving image quality by using this approach was investigated through a comparison with the previously developed non-selective excitation (NS) approach. Methods: Two excitation approaches SS and NS were compared in 5 cancer patients (1 lung 1 liver 2 pancreas and 1 esophagus) at 3Tesla. Image artifact was assessed in all patients on a 4-point scale (0: poor; 3: excellent). Signal-tonoise ratio (SNR) of the blood vessel (aorta) at the center of field-of-view and its nearby tissue were measured in 3 of the 5 patients (1 liver 2 pancreas) and blood-to-tissue contrast-to-noise ratio (CNR) were then determined. Results: Compared with NS the image quality of SS was visually improved with overall higher signal in all patients (2.6±0.55 vs. 3.4±0.55). SS showed an approximately 2-fold increase of SNR in the blood (aorta: 16.39±1.95 vs. 32.19±7.93) and slight increase in the surrounding tissue (liver/pancreas: 16.91±1.82 vs. 22.31±3.03). As a result the blood-totissue CNR was dramatically higher in the SS method (1.20±1.20 vs. 9.87±6.67). Conclusion: The proposed 3D radial sampling with slabselective excitation allows for reduced image artifact and improved blood SNR and blood-to-tissue CNR. The success of this technique could potentially benefit patients with cancerous tumors that have invaded the surrounding blood vessels where radiation

  2. MO-FG-CAMPUS-JeP2-01: 4D-MRI with 3D Radial Sampling and Self-Gating-Based K-Space Sorting: Image Quality Improvement by Slab-Selective Excitation

    International Nuclear Information System (INIS)

    Deng, Z; Pang, J; Tuli, R; Fraass, B; Fan, Z; Yang, W; Bi, X; Hakimian, B; Li, D

    2016-01-01

    Purpose: A recent 4D MRI technique based on 3D radial sampling and self-gating-based K-space sorting has shown promising results in characterizing respiratory motion. However due to continuous acquisition and potentially drastic k-space undersampling resultant images could suffer from low blood-to-tissue contrast and streaking artifacts. In this study 3D radial sampling with slab-selective excitation (SS) was proposed in attempt to enhance blood-to-tissue contrast by exploiting the in-flow effect and to suppress the excess signal from the peripheral structures particularly in the superior-inferior direction. The feasibility of improving image quality by using this approach was investigated through a comparison with the previously developed non-selective excitation (NS) approach. Methods: Two excitation approaches SS and NS were compared in 5 cancer patients (1 lung 1 liver 2 pancreas and 1 esophagus) at 3Tesla. Image artifact was assessed in all patients on a 4-point scale (0: poor; 3: excellent). Signal-tonoise ratio (SNR) of the blood vessel (aorta) at the center of field-of-view and its nearby tissue were measured in 3 of the 5 patients (1 liver 2 pancreas) and blood-to-tissue contrast-to-noise ratio (CNR) were then determined. Results: Compared with NS the image quality of SS was visually improved with overall higher signal in all patients (2.6±0.55 vs. 3.4±0.55). SS showed an approximately 2-fold increase of SNR in the blood (aorta: 16.39±1.95 vs. 32.19±7.93) and slight increase in the surrounding tissue (liver/pancreas: 16.91±1.82 vs. 22.31±3.03). As a result the blood-totissue CNR was dramatically higher in the SS method (1.20±1.20 vs. 9.87±6.67). Conclusion: The proposed 3D radial sampling with slabselective excitation allows for reduced image artifact and improved blood SNR and blood-to-tissue CNR. The success of this technique could potentially benefit patients with cancerous tumors that have invaded the surrounding blood vessels where radiation

  3. The clinical implementation of respiratory-gated intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Keall, Paul; Vedam, Sastry; George, Rohini; Bartee, Chris; Siebers, Jeffrey; Lerma, Fritz; Weiss, Elisabeth; Chung, Theodore

    2006-01-01

    The clinical use of respiratory-gated radiotherapy and the application of intensity-modulated radiotherapy (IMRT) are 2 relatively new innovations to the treatment of lung cancer. Respiratory gating can reduce the deleterious effects of intrafraction motion, and IMRT can concurrently increase tumor dose homogeneity and reduce dose to critical structures including the lungs, spinal cord, esophagus, and heart. The aim of this work is to describe the clinical implementation of respiratory-gated IMRT for the treatment of non-small cell lung cancer. Documented clinical procedures were developed to include a tumor motion study, gated CT imaging, IMRT treatment planning, and gated IMRT delivery. Treatment planning procedures for respiratory-gated IMRT including beam arrangements and dose-volume constraints were developed. Quality assurance procedures were designed to quantify both the dosimetric and positional accuracy of respiratory-gated IMRT, including film dosimetry dose measurements and Monte Carlo dose calculations for verification and validation of individual patient treatments. Respiratory-gated IMRT is accepted by both treatment staff and patients. The dosimetric and positional quality assurance test results indicate that respiratory-gated IMRT can be delivered accurately. If carefully implemented, respiratory-gated IMRT is a practical alternative to conventional thoracic radiotherapy. For mobile tumors, respiratory-gated radiotherapy is used as the standard of care at our institution. Due to the increased workload, the choice of IMRT is taken on a case-by-case basis, with approximately half of the non-small cell lung cancer patients receiving respiratory-gated IMRT. We are currently evaluating whether superior tumor coverage and limited normal tissue dosing will lead to improvements in local control and survival in non-small cell lung cancer

  4. New gate opening hours

    CERN Multimedia

    GS Department

    2009-01-01

    Please note the new opening hours of the gates as well as the intersites tunnel from the 19 May 2009: GATE A 7h - 19h GATE B 24h/24 GATE C 7h - 9h\t17h - 19h GATE D 8h - 12h\t13h - 16h GATE E 7h - 9h\t17h - 19h Prévessin 24h/24 The intersites tunnel will be opened from 7h30 to 18h non stop. GS-SEM Group Infrastructure and General Services Department

  5. ISAC's Gating-ML 2.0 data exchange standard for gating description.

    Science.gov (United States)

    Spidlen, Josef; Moore, Wayne; Brinkman, Ryan R

    2015-07-01

    The lack of software interoperability with respect to gating has traditionally been a bottleneck preventing the use of multiple analytical tools and reproducibility of flow cytometry data analysis by independent parties. To address this issue, ISAC developed Gating-ML, a computer file format to encode and interchange gates. Gating-ML 1.5 was adopted and published as an ISAC Candidate Recommendation in 2008. Feedback during the probationary period from implementors, including major commercial software companies, instrument vendors, and the wider community, has led to a streamlined Gating-ML 2.0. Gating-ML has been significantly simplified and therefore easier to support by software tools. To aid developers, free, open source reference implementations, compliance tests, and detailed examples are provided to stimulate further commercial adoption. ISAC has approved Gating-ML as a standard ready for deployment in the public domain and encourages its support within the community as it is at a mature stage of development having undergone extensive review and testing, under both theoretical and practical conditions. © 2015 International Society for Advancement of Cytometry.

  6. Determination of prospective displacement-based gate threshold for respiratory-gated radiation delivery from retrospective phase-based gate threshold selected at 4D CT simulation

    International Nuclear Information System (INIS)

    Vedam, S.; Archambault, L.; Starkschall, G.; Mohan, R.; Beddar, S.

    2007-01-01

    Four-dimensional (4D) computed tomography (CT) imaging has found increasing importance in the localization of tumor and surrounding normal structures throughout the respiratory cycle. Based on such tumor motion information, it is possible to identify the appropriate phase interval for respiratory gated treatment planning and delivery. Such a gating phase interval is determined retrospectively based on tumor motion from internal tumor displacement. However, respiratory-gated treatment is delivered prospectively based on motion determined predominantly from an external monitor. Therefore, the simulation gate threshold determined from the retrospective phase interval selected for gating at 4D CT simulation may not correspond to the delivery gate threshold that is determined from the prospective external monitor displacement at treatment delivery. The purpose of the present work is to establish a relationship between the thresholds for respiratory gating determined at CT simulation and treatment delivery, respectively. One hundred fifty external respiratory motion traces, from 90 patients, with and without audio-visual biofeedback, are analyzed. Two respiratory phase intervals, 40%-60% and 30%-70%, are chosen for respiratory gating from the 4D CT-derived tumor motion trajectory. From residual tumor displacements within each such gating phase interval, a simulation gate threshold is defined based on (a) the average and (b) the maximum respiratory displacement within the phase interval. The duty cycle for prospective gated delivery is estimated from the proportion of external monitor displacement data points within both the selected phase interval and the simulation gate threshold. The delivery gate threshold is then determined iteratively to match the above determined duty cycle. The magnitude of the difference between such gate thresholds determined at simulation and treatment delivery is quantified in each case. Phantom motion tests yielded coincidence of simulation

  7. Evaluation of delivered monitor unit accuracy of gated step-and-shoot IMRT using a two-dimensional detector array

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Kwang-Ho; Kang, Sei-Kwon; Lee, MeYeon; Kim, Su SSan; Park, SoAh; Hwang, Tae-Jin; Kim, Kyoung Ju; Oh, Do Hoon; Bae, Hoonsik; Suh, Tae-Suk [Department of Radiation Oncology, Hallym University College of Medicine, Seoul, 431070 (Korea, Republic of) and Department of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul 137701 (Korea, Republic of); Department of Radiation Oncology, Hallym University College of Medicine, Seoul 431070 (Korea, Republic of); Department of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul 137701 (Korea, Republic of)

    2010-03-15

    Purpose: To overcome the problem of organ motion in intensity-modulated radiation therapy (IMRT), gated IMRT is often used for the treatment of lung cancer. In this study, the authors investigated the accuracy of the delivered monitor units (MUs) from each segment during gated IMRT using a two-dimensional detector array for user-specific verification purpose. Methods: The authors planned a 6 MV photon, seven-port step-and-shoot lung IMRT delivery. The respiration signals for gated IMRT delivery were obtained from the one-dimensional moving phantom using the real-time position management (RPM) system (Varian Medical Systems, Palo Alto, CA). The beams were delivered using a Clinac iX (Varian Medical Systems, Palo Alto, CA) with the Millennium 120 MLC. The MatriXX (IBA Dosimetry GmbH, Germany) was validated through consistency and reproducibility tests as well as comparison with measurements from a Farmer-type ion chamber. The authors delivered beams with varying dose rates and duty cycles and analyzed the MatriXX data to evaluate MU delivery accuracy. Results: There was quite good agreement between the planned segment MUs and the MUs computed from the MatriXX within {+-}2% error. The beam-on times computed from the MatriXX data were almost identical for all cases, and they matched well with the RPM beam-on and beam-off signals. A slight difference was observed between them, but it was less than 40 ms. The gated IMRT delivery demonstrated an MU delivery accuracy that was equivalent to ungated IMRT, and the delivered MUs with a gating signal agreed with the planned MUs within {+-}0.5 MU regardless of dose rate and duty cycle. Conclusions: The authors can conclude that gated IMRT is able to deliver an accurate dose to a patient during a procedure. The authors believe that the methodology and results can be transferred to other vendors' devices, particularly those that do not provide MLC log data for a verification purpose.

  8. Evaluación de hipertensos en base a registros de variación de diámetro arterial radial Evaluation of hypertensive patients by radial arterial diameter variation recording

    Directory of Open Access Journals (Sweden)

    Fernando M. Clara

    2006-12-01

    Full Text Available Se utilizó la técnica de análisis del registro incruento de las variaciones de diámetro de arteria radial para evaluar el deterioro arterial y el riesgo cardiovascular en pacientes hipertensos. El transductor utilizado consistió en un sensor de movimiento apoyado sobre la zona de palpación del pulso radial. Se efectuó la determinación del índice de aumentación radial, un parámetro que cuantifica la magnitud de las reflexiones de la onda de presión en la región aórtica, sobre un conjunto de 47 hipertensos, y se lo comparó con otro estudio similar efectuado sobre 81 normotensos sanos. Estos últimos presentaron menores valores de dicho índice, pero al avanzar la edad los valores de ambos grupos tendieron a coincidir. Esto fue confirmado al comparar morfológicamente los registros de ambos grupos, hallándose que los registros de ancianos normotensos sanos e hipertensos de edades similares resultaron visiblemente parecidos. Se halló también que determinados hipertensos jóvenes presentaron ciertas características morfológicas similares a las de normotensos de la misma edad, indicando que aún conservaban las características elásticas propias de su grupo etario. Los resultados fueron similares a los logrados sobre registros de presión arterial radial obtenidos mediante tonometría de aplanación, utilizándose una tecnología disponible en nuestro medio y de menor costo.A blood less analysis technique of the diameter variation signal at radial artery was used to evaluate the arterial disease and the cardiovascular risk in hypertensive patients. A movement transducer was used to record the wrist pulse. A radial augmentation index was proposed to quantify the magnitude of the pressure wave reflections in the aortic region. The experiment was carried out with a group of 47 hypertensive men and compared with a similar study performed on 81 normotensive healthy men. The last ones presented smaller values of this index, but as age

  9. Feasibility of epicardial adipose tissue quantification in non-ECG-gated low-radiation-dose CT: comparison with prospectively ECG-gated cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Simon-Yarza, Isabel; Viteri-Ramirez, Guillermo; Saiz-Mendiguren, Ramon; Slon-Roblero, Pedro J.; Paramo, Maria [Dept. of Radiology, Clinica Univ. de Navarra, Pamplona (Spain); Bastarrika, Gorka [Dept. of Radiology, Clinica Univ. de Navarra, Pamplona (Spain); Cardiac Imaging Unit, Clinica Univ. de Navarra, Pamplona (Spain)], e-mail: bastarrika@unav.es

    2012-06-15

    Background: Epicardial adipose tissue (EAT) is an important indicator of cardiovascular risk. This parameter is generally assessed on ECG-gated computed tomography (CT) images. Purpose: To evaluate feasibility and reliability of EAT quantification on non-gated thoracic low-radiation-dose CT examinations with respect to prospectively ECG-gated cardiac CT acquisition. Material and Methods: Sixty consecutive asymptomatic smokers (47 men; mean age 64 {+-} 9.8 years) underwent low-dose CT of the chest and prospectively ECG-gated cardiac CT acquisitions (64-slice dual-source CT). The two examinations were reconstructed with the same range, field of view, slice thickness, and convolution algorithm. Two independent observers blindly quantified EAT volume using commercially available software. Data were compared with paired sample Student t-test, concordance correlation coefficients (CCC), and Bland-Altman plots. Results: No statistically significant difference was observed for EAT volume quantification with low-dose-CT (141.7 {+-} 58.3 mL) with respect to ECG-gated CT (142.7 {+-} 57.9 mL). Estimation of CCC showed almost perfect concordance between the two techniques for EAT-volume assessment (CCC, 0.99; mean difference, 0.98 {+-} 5.1 mL). Inter-observer agreement for EAT volume estimation was CCC: 0.96 for low-dose-CT examinations and 0.95 for ECG-gated CT. Conclusion: Non-gated low-dose CT allows quantifying EAT with almost the same concordance and reliability as using dedicated prospectively ECG-gated cardiac CT acquisition protocols.

  10. Feasibility of epicardial adipose tissue quantification in non-ECG-gated low-radiation-dose CT: comparison with prospectively ECG-gated cardiac CT

    International Nuclear Information System (INIS)

    Simon-Yarza, Isabel; Viteri-Ramirez, Guillermo; Saiz-Mendiguren, Ramon; Slon-Roblero, Pedro J.; Paramo, Maria; Bastarrika, Gorka

    2012-01-01

    Background: Epicardial adipose tissue (EAT) is an important indicator of cardiovascular risk. This parameter is generally assessed on ECG-gated computed tomography (CT) images. Purpose: To evaluate feasibility and reliability of EAT quantification on non-gated thoracic low-radiation-dose CT examinations with respect to prospectively ECG-gated cardiac CT acquisition. Material and Methods: Sixty consecutive asymptomatic smokers (47 men; mean age 64 ± 9.8 years) underwent low-dose CT of the chest and prospectively ECG-gated cardiac CT acquisitions (64-slice dual-source CT). The two examinations were reconstructed with the same range, field of view, slice thickness, and convolution algorithm. Two independent observers blindly quantified EAT volume using commercially available software. Data were compared with paired sample Student t-test, concordance correlation coefficients (CCC), and Bland-Altman plots. Results: No statistically significant difference was observed for EAT volume quantification with low-dose-CT (141.7 ± 58.3 mL) with respect to ECG-gated CT (142.7 ± 57.9 mL). Estimation of CCC showed almost perfect concordance between the two techniques for EAT-volume assessment (CCC, 0.99; mean difference, 0.98 ± 5.1 mL). Inter-observer agreement for EAT volume estimation was CCC: 0.96 for low-dose-CT examinations and 0.95 for ECG-gated CT. Conclusion: Non-gated low-dose CT allows quantifying EAT with almost the same concordance and reliability as using dedicated prospectively ECG-gated cardiac CT acquisition protocols

  11. Measurement of ventricular function by ECG gating during atrial fibrillation

    International Nuclear Information System (INIS)

    Bacharach, S.L.; Green, M.V.; Bonow, R.O.; Findley, S.L.; Ostrow, H.G.; Johnston, G.S.

    1981-01-01

    The assumptions necessary to perform ECG-gated cardiac studies are seemingly not valid for patients in atrial fibrillation (AF). To evaluate the effect of AF on equilibrium gated scintigraphy, beat-by-beat measurements of left-ventricular function were made on seven subjects in AF (mean heart rate 64 bpm), using a high-efficiency nonimaging detector. The parameters evaluated were ejection fraction (EF), time to end-systole (TES), peak rates of ejection and filling (PER,PFR), and their times of occurrence (TPER, TPFR). By averaging together single-beat values of EF, PER, etc., it was possible to determine the true mean values of these parameters. The single-beam mean values were compared with the corresponding parameters calculated from one ECG-gated time-activity curve (TAC) obtained by superimposing all the single-beat TACs irrespective of their length. For this population with slow heart rates, we find that the values for EF, etc., produced from ECG-gated time-activity curves, are very similar to those obtained from the single-beat data. Thus use of ECG gating at low heart rates may allow reliable estimation of average cardiac function even in subjects with AF

  12. Accuracy and Consistency of Respiratory Gating in Abdominal Cancer Patients

    International Nuclear Information System (INIS)

    Ge, Jiajia; Santanam, Lakshmi; Yang, Deshan; Parikh, Parag J.

    2013-01-01

    Purpose: To evaluate respiratory gating accuracy and intrafractional consistency for abdominal cancer patients treated with respiratory gated treatment on a regular linear accelerator system. Methods and Materials: Twelve abdominal patients implanted with fiducials were treated with amplitude-based respiratory-gated radiation therapy. On the basis of daily orthogonal fluoroscopy, the operator readjusted the couch position and gating window such that the fiducial was within a setup margin (fiducial-planning target volume [f-PTV]) when RPM indicated “beam-ON.” Fifty-five pre- and post-treatment fluoroscopic movie pairs with synchronized respiratory gating signal were recorded. Fiducial motion traces were extracted from the fluoroscopic movies using a template matching algorithm and correlated with f-PTV by registering the digitally reconstructed radiographs with the fluoroscopic movies. Treatment was determined to be “accurate” if 50% of the fiducial area stayed within f-PTV while beam-ON. For movie pairs that lost gating accuracy, a MATLAB program was used to assess whether the gating window was optimized, the external-internal correlation (EIC) changed, or the patient moved between movies. A series of safety margins from 0.5 mm to 3 mm was added to f-PTV for reassessing gating accuracy. Results: A decrease in gating accuracy was observed in 44% of movie pairs from daily fluoroscopic movies of 12 abdominal patients. Three main causes for inaccurate gating were identified as change of global EIC over time (∼43%), suboptimal gating setup (∼37%), and imperfect EIC within movie (∼13%). Conclusions: Inconsistent respiratory gating accuracy may occur within 1 treatment session even with a daily adjusted gating window. To improve or maintain gating accuracy during treatment, we suggest using at least a 2.5-mm safety margin to account for gating and setup uncertainties

  13. Clinical Outcomes following median to radial nerve transfers

    Science.gov (United States)

    Ray, Wilson Z.; Mackinnon, Susan E.

    2010-01-01

    Purpose In this study the authors evaluate the clinical outcomes in patients with radial nerve palsy who underwent nerve transfers utilizing redundant fascicles of median nerve (innervating the flexor digitorum superficialis and flexor carpi radialis muscles) to the posterior interosseous nerve and the nerve to the extensor carpi radialis brevis. Methods A retrospective review of the clinical records of 19 patients with radial nerve injuries who underwent nerve transfer procedures using the median nerve as a donor nerve were included. All patients were evaluated using the Medical Research Council (MRC) grading system. Results The mean age of patients was 41 years (range 17 – 78 years). All patients received at least 12 months of follow-up (20.3 ± 5.8 months). Surgery was performed at a mean of 5.7 ± 1.9 months post-injury. Post-operative functional evaluation was graded according to the following scale: grades MRC 0/5 - MRC 2/5 were considered poor outcomes, while MRC of 3/5 was a fair result, MRC grade 4/5 was a good result, and grade 4+/5 was considered an excellent outcome. Seventeen patients (89%) had a complete radial nerve palsy while two patients (11%) had intact wrist extension but no finger or thumb extension. Post-operatively all patients except one had good to excellent recovery of wrist extension. Twelve patients recovered good to excellent finger and thumb extension, two patients had fair recovery, five patients had a poor recovery. Conclusions The radial nerve is a commonly injured nerve, causing significant morbidity in affected patients. The median nerve provides a reliable source of donor nerve fascicles for radial nerve reinnervation. This transfer was first performed in 1999 and evolved over the subsequent decade. The important nuances of both surgical technique and motor re-education critical for to the success of this transfer have been identified and are discussed. PMID:21168979

  14. Fault diagnosis and performance evaluation for high current LIA based on radial basis function neural network

    International Nuclear Information System (INIS)

    Yang Xinglin; Wang Huacen; Chen Nan; Dai Wenhua; Li Jin

    2006-01-01

    High current linear induction accelerator (LIA) is a complicated experimental physics device. It is difficult to evaluate and predict its performance. this paper presents a method which combines wavelet packet transform and radial basis function (RBF) neural network to build fault diagnosis and performance evaluation in order to improve reliability of high current LIA. The signal characteristics vectors which are extracted based on energy parameters of wavelet packet transform can well present the temporal and steady features of pulsed power signal, and reduce data dimensions effectively. The fault diagnosis system for accelerating cell and the trend classification system for the beam current based on RBF networks can perform fault diagnosis and evaluation, and provide predictive information for precise maintenance of high current LIA. (authors)

  15. Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction

    Directory of Open Access Journals (Sweden)

    Merboldt Klaus-Dietmar

    2010-07-01

    Full Text Available Abstract Background Functional assessments of the heart by dynamic cardiovascular magnetic resonance (CMR commonly rely on (i electrocardiographic (ECG gating yielding pseudo real-time cine representations, (ii balanced gradient-echo sequences referred to as steady-state free precession (SSFP, and (iii breath holding or respiratory gating. Problems may therefore be due to the need for a robust ECG signal, the occurrence of arrhythmia and beat to beat variations, technical instabilities (e.g., SSFP "banding" artefacts, and limited patient compliance and comfort. Here we describe a new approach providing true real-time CMR with image acquisition times as short as 20 to 30 ms or rates of 30 to 50 frames per second. Methods The approach relies on a previously developed real-time MR method, which combines a strongly undersampled radial FLASH CMR sequence with image reconstruction by regularized nonlinear inversion. While iterative reconstructions are currently performed offline due to limited computer speed, online monitoring during scanning is accomplished using gridding reconstructions with a sliding window at the same frame rate but with lower image quality. Results Scans of healthy young subjects were performed at 3 T without ECG gating and during free breathing. The resulting images yield T1 contrast (depending on flip angle with an opposed-phase or in-phase condition for water and fat signals (depending on echo time. They completely avoid (i susceptibility-induced artefacts due to the very short echo times, (ii radiofrequency power limitations due to excitations with flip angles of 10° or less, and (iii the risk of peripheral nerve stimulation due to the use of normal gradient switching modes. For a section thickness of 8 mm, real-time images offer a spatial resolution and total acquisition time of 1.5 mm at 30 ms and 2.0 mm at 22 ms, respectively. Conclusions Though awaiting thorough clinical evaluation, this work describes a robust and

  16. Real-time cardiovascular magnetic resonance at high temporal resolution: radial FLASH with nonlinear inverse reconstruction.

    Science.gov (United States)

    Zhang, Shuo; Uecker, Martin; Voit, Dirk; Merboldt, Klaus-Dietmar; Frahm, Jens

    2010-07-08

    Functional assessments of the heart by dynamic cardiovascular magnetic resonance (CMR) commonly rely on (i) electrocardiographic (ECG) gating yielding pseudo real-time cine representations, (ii) balanced gradient-echo sequences referred to as steady-state free precession (SSFP), and (iii) breath holding or respiratory gating. Problems may therefore be due to the need for a robust ECG signal, the occurrence of arrhythmia and beat to beat variations, technical instabilities (e.g., SSFP "banding" artefacts), and limited patient compliance and comfort. Here we describe a new approach providing true real-time CMR with image acquisition times as short as 20 to 30 ms or rates of 30 to 50 frames per second. The approach relies on a previously developed real-time MR method, which combines a strongly undersampled radial FLASH CMR sequence with image reconstruction by regularized nonlinear inversion. While iterative reconstructions are currently performed offline due to limited computer speed, online monitoring during scanning is accomplished using gridding reconstructions with a sliding window at the same frame rate but with lower image quality. Scans of healthy young subjects were performed at 3 T without ECG gating and during free breathing. The resulting images yield T1 contrast (depending on flip angle) with an opposed-phase or in-phase condition for water and fat signals (depending on echo time). They completely avoid (i) susceptibility-induced artefacts due to the very short echo times, (ii) radiofrequency power limitations due to excitations with flip angles of 10 degrees or less, and (iii) the risk of peripheral nerve stimulation due to the use of normal gradient switching modes. For a section thickness of 8 mm, real-time images offer a spatial resolution and total acquisition time of 1.5 mm at 30 ms and 2.0 mm at 22 ms, respectively. Though awaiting thorough clinical evaluation, this work describes a robust and flexible acquisition and reconstruction technique for

  17. An automatic respiratory gating method for the improvement of microcirculation evaluation: application to contrast-enhanced ultrasound studies of focal liver lesions

    Energy Technology Data Exchange (ETDEWEB)

    Mule, S; Kachenoura, N; Lucidarme, O; De Oliveira, A; Pellot-Barakat, C; Herment, A; Frouin, F, E-mail: Sebastien.Mule@gmail.com [INSERM UMR-S 678, 75634 Paris Cedex 13 (France)

    2011-08-21

    Contrast-enhanced ultrasound (CEUS), with the recent development of both contrast-specific imaging modalities and microbubble-based contrast agents, allows noninvasive quantification of microcirculation in vivo. Nevertheless, functional parameters obtained by modeling contrast uptake kinetics could be impaired by respiratory motion. Accordingly, we developed an automatic respiratory gating method and tested it on 35 CEUS hepatic datasets with focal lesions. Each dataset included fundamental mode and cadence contrast pulse sequencing (CPS) mode sequences acquired simultaneously. The developed method consisted in (1) the estimation of the respiratory kinetics as a linear combination of the first components provided by a principal components analysis constrained by a prior knowledge on the respiratory rate in the frequency domain, (2) the automated generation of two respiratory-gated subsequences from the CPS mode sequence by detecting end-of-inspiration and end-of-expiration phases from the respiratory kinetics. The fundamental mode enabled a more reliable estimation of the respiratory kinetics than the CPS mode. The k-means algorithm was applied on both the original CPS mode sequences and the respiratory-gated subsequences resulting in clustering maps and associated mean kinetics. Our respiratory gating process allowed better superimposition of manually drawn lesion contours on k-means clustering maps as well as substantial improvement of the quality of contrast uptake kinetics. While the quality of maps and kinetics was satisfactory in only 11/35 datasets before gating, it was satisfactory in 34/35 datasets after gating. Moreover, noise amplitude estimated within the delineated lesions was reduced from 62 {+-} 21 to 40 {+-} 10 (p < 0.01) after gating. These findings were supported by the low residual horizontal (0.44 {+-} 0.29 mm) and vertical (0.15 {+-} 0.16 mm) shifts found during manual motion correction of each respiratory-gated subsequence. The developed

  18. Respiratory gated radiotherapy: current techniques and potential benefits

    International Nuclear Information System (INIS)

    Giraud, P.; Campana, F.; Rosenwald, J.C.; Cosset, J.M.; Reboul, F.; Garcia, R.; Clippe, S.; Carrie, C.; Dubray, B.

    2003-01-01

    Respiration-gated radiotherapy offers a significant potential for improvement in the irradiation of tumor sites affected by respiratory motion such as lung, breast and liver tumors. An increased conformality of irradiation fields leading to decreased complications rates of organs at risk (lung, heart...) is expected. Respiratory gating is in line with the need for improved precision required by radiotherapy techniques such as 3D conformal radiotherapy or intensity modulated radiotherapy. Reduction of respiratory motion can be achieved by using either breath hold techniques or respiration synchronized gating techniques. Breath-hold techniques can be achieved with active, in which airflow of the patient is temporarily blocked by a valve, or passive techniques, in which the patient voluntarily breath-hold. Synchronized gating techniques use external devices to predict the phase of the respiration cycle while the patient breaths freely. These techniques presently investigated in several medical centers worldwide. Although promising, the first results obtained in lung and liver cancer patients require confirmation. Physical, technical and physiological questions still remain to be answered. This paper describes the most frequently used gated techniques and the main published clinical reports on the use of respiration-gated radiotherapy in order to evaluate the impact of these techniques. (author)

  19. Gate current for p+-poly PMOS devices under gate injection conditions

    NARCIS (Netherlands)

    Hof, A.J.; Holleman, J.; Woerlee, P.H.

    2001-01-01

    In current CMOS processing both n+-poly and p+-poly gates are used. The I-V –relationship and reliability of n+-poly devices are widely studied and well understood. Gate currents and reliability for p+-poly PMOS devices under gate injection conditions are not well understood. In this paper, the

  20. Role of respiratory-gated PET/CT for pancreatic tumors: A preliminary result

    International Nuclear Information System (INIS)

    Kasuya, Takeo; Tateishi, Ukihide; Suzuki, Kazufumi; Daisaki, Hiromitsu; Nishiyama, Yuji; Hata, Masaharu; Inoue, Tomio

    2013-01-01

    Purpose: The aim of this study is to ascertain role of respiratory-gated PET/CT for accurate diagnosis of pancreatic tumors. Materials and methods: Prior to clinical study, the phantom study was performed to evaluate the impact of respiratory motion on lesion quantification. Twenty-two patients (mean age 65 years) with pancreatic tumors were enrolled. Pathological diagnoses by surgical specimens consisted of pancreatic cancer (n = 15) and benign intraductal papillary mucinous neoplasm (IPMN, n = 7). Whole-body scan of non-respiratory-gated PET/CT was performed at first, and subsequent respiratory-gated PET/CT for one bed position was performed. All PET/CT studies were performed prior to surgery. The SUV max obtained by non-respiratory-gated PET/CT and respiratory-gated PET/CT, and percent difference in SUVmax (%SUVmax) were compared. Results: The profile curve of 5 respiratory bin image was most similar to that of static image. The third bin of 5 respiratory bin image showed highest FWHM (24.0 mm) and FWTM (32.7 mm). The mean SUVmax of pancreatic cancer was similar to that of benign IPMN on non-respiratory-gated PET/CT (p = 0.05), whereas significant difference was found between two groups on respiratory-gated PET/CT (p = 0.016). The mean %SUV of pancreatic cancer was greater than that of benign IPMN (p < 0.0001). Identification of the primary tumor in pancreatic head (n = 13, 59%) was improved by using respiratory-gated PET/CT because of minimal affection of physiological accumulation in duodenum. Conclusion: Respiratory-gated PET/CT is a feasible technique for evaluation of pancreatic tumors and allows more accurate identification of pancreatic tumors compared with non-respiratory-gated PET/CT

  1. Clinical application of MRI-respiratory gating technology in the evaluation of children with obstructive sleep apnea hypopnea syndrome.

    Science.gov (United States)

    Zeng, Guohui; Teng, Yaoshu; Zhu, Jin; Zhu, Darong; Yang, Bin; Hu, Linping; Chen, Manman; Fu, Xiao

    2018-01-01

    The objective of the present study was to investigate the clinical application of magnetic resonance imaging (MRI)-respiratory gating technology for assessing illness severity in children with obstructive sleep apnea hypopnea syndrome (OSAHS).MRI-respiratory gating technology was used to scan the nasopharyngeal cavities of 51 children diagnosed with OSAHS during 6 respiratory phases. Correlations between the ratio of the area of the adenoid to the area of the nasopalatine pharyngeal cavity (Sa/Snp), with the main indexes of polysomnography (PSG), were analyzed. Receiver operator characteristic (ROC) curve and Kappa analysis were used to determine the diagnostic accuracy of Sa/Snp in pediatric OSAHS.The Sa/Snp was positively correlated with the apnea hypopnea index (AHI) (P children. Consistency analysis with the AHI showed a diagnosis accordance rate of 96.0% in severe pediatric OSAHS and 96.2% in slight-moderate pediatric OSAHS (Kappa = 0.922, P children with adenoidal hypertrophy was greatest at the end-expiration phase during sleep. The end-expiratory Sa/Snp obtained by a combination of MRI and respiratory gating technology has potential as an important imaging index for diagnosing and evaluating severity in pediatric OSAHS.

  2. Multiple Independent Gate FETs: How Many Gates Do We Need?

    OpenAIRE

    Amarù, Luca; Hills, Gage; Gaillardon, Pierre-Emmanuel; Mitra, Subhasish; De Micheli, Giovanni

    2015-01-01

    Multiple Independent Gate Field Effect Transistors (MIGFETs) are expected to push FET technology further into the semiconductor roadmap. In a MIGFET, supplementary gates either provide (i) enhanced conduction properties or (ii) more intelligent switching functions. In general, each additional gate also introduces a side implementation cost. To enable more efficient digital systems, MIGFETs must leverage their expressive power to realize complex logic circuits with few physical resources. Rese...

  3. Transparently wrap-gated semiconductor nanowire arrays for studies of gate-controlled photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, Gustav; Storm, Kristian; Torstensson, Henrik; Wallentin, Jesper; Borgström, Magnus T.; Hessman, Dan; Samuelson, Lars [Solid State Physics, Nanometer Structure Consortium, Lund University, Box 118, S-221 00 Lund (Sweden)

    2013-12-04

    We present a technique to measure gate-controlled photoluminescence (PL) on arrays of semiconductor nanowire (NW) capacitors using a transparent film of Indium-Tin-Oxide (ITO) wrapping around the nanowires as the gate electrode. By tuning the wrap-gate voltage, it is possible to increase the PL peak intensity of an array of undoped InP NWs by more than an order of magnitude. The fine structure of the PL spectrum reveals three subpeaks whose relative peak intensities change with gate voltage. We interpret this as gate-controlled state-filling of luminescing quantum dot segments formed by zincblende stacking faults in the mainly wurtzite NW crystal structure.

  4. Dual-Gate p-GaN Gate High Electron Mobility Transistors for Steep Subthreshold Slope.

    Science.gov (United States)

    Bae, Jong-Ho; Lee, Jong-Ho

    2016-05-01

    A steep subthreshold slope characteristic is achieved through p-GaN gate HEMT with dual-gate structure. Obtained subthreshold slope is less than 120 μV/dec. Based on the measured and simulated data obtained from single-gate device, breakdown of parasitic floating-base bipolar transistor and floating gate charged with holes are responsible to increase abruptly in drain current. In the dual-gate device, on-current degrades with high temperature but subthreshold slope is not changed. To observe the switching speed of dual-gate device and transient response of drain current are measured. According to the transient responses of drain current, switching speed of the dual-gate device is about 10(-5) sec.

  5. Dual-gate polysilicon nanoribbon biosensors enable high sensitivity detection of proteins

    International Nuclear Information System (INIS)

    Zeimpekis, I; Sun, K; Hu, C; Ditshego, N M J; De Planque, M R R; Chong, H M H; Morgan, H; Ashburn, P; Thomas, O

    2016-01-01

    We demonstrate the advantages of dual-gate polysilicon nanoribbon biosensors with a comprehensive evaluation of different measurement schemes for pH and protein sensing. In particular, we compare the detection of voltage and current changes when top- and bottom-gate bias is applied. Measurements of pH show that a large voltage shift of 491 mV pH"−"1 is obtained in the subthreshold region when the top-gate is kept at a fixed potential and the bottom-gate is varied (voltage sweep). This is an improvement of 16 times over the 30 mV pH"−"1 measured using a top-gate sweep with the bottom-gate at a fixed potential. A similar large voltage shift of 175 mV is obtained when the protein avidin is sensed using a bottom-gate sweep. This is an improvement of 20 times compared with the 8.8 mV achieved from a top-gate sweep. Current measurements using bottom-gate sweeps do not deliver the same signal amplification as when using bottom-gate sweeps to measure voltage shifts. Thus, for detecting a small signal change on protein binding, it is advantageous to employ a double-gate transistor and to measure a voltage shift using a bottom-gate sweep. For top-gate sweeps, the use of a dual-gate transistor enables the current sensitivity to be enhanced by applying a negative bias to the bottom-gate to reduce the carrier concentration in the nanoribbon. For pH measurements, the current sensitivity increases from 65% to 149% and for avidin sensing it increases from 1.4% to 2.5%. (paper)

  6. Evaluating the pacemaker effect with the pump parameter of gated blood-pool imaging

    International Nuclear Information System (INIS)

    Cheng Muhua

    1995-01-01

    13 normal controls and 27 patients with ventricular pacemaker had undergone planar gated blood-pool imaging in different conditions. Result shows: (1) Pump parameters can successfully reflect therapeutic effect of pacemaker among them EMP is the most valuable parameter for evaluating the cardiac pumping effect. (2) After implantation of the ventricular pacemaker, the LVEF did not increase, but the CO and EMP was significantly increased. (3) Compared with right ventricular demand pacemaker, the rate-responsive ventricular pacemaker give better hemodynamic benefit at exercise condition. (4) Through restrained cardiac pacemaker the functional change was analyzed on or off pace, and monitoring the cardiac function itself after the pacemaker was implanted

  7. Top-gate pentacene-based organic field-effect transistor with amorphous rubrene gate insulator

    Science.gov (United States)

    Hiroki, Mizuha; Maeda, Yasutaka; Ohmi, Shun-ichiro

    2018-02-01

    The scaling of organic field-effect transistors (OFETs) is necessary for high-density integration and for this, OFETs with a top-gate configuration are required. There have been several reports of damageless lithography processes for organic semiconductor or insulator layers. However, it is still difficult to fabricate scaled OFETs with a top-gate configuration. In this study, the lift-off process and the device characteristics of the OFETs with a top-gate configuration utilizing an amorphous (α) rubrene gate insulator were investigated. We have confirmed that α-rubrene shows an insulating property, and its extracted linear mobility was 2.5 × 10-2 cm2/(V·s). The gate length and width were 10 and 60 µm, respectively. From these results, the OFET with a top-gate configuration utilizing an α-rubrene gate insulator is promising for the high-density integration of scaled OFETs.

  8. Integrating respiratory-gated PET-based target volume delineation in liver SBRT planning, a pilot study

    International Nuclear Information System (INIS)

    Riou, Olivier; Thariat, Juliette; Serrano, Benjamin; Azria, David; Paulmier, Benoit; Villeneuve, Remy; Fenoglietto, Pascal; Artenie, Antonella; Ortholan, Cécile; Faraggi, Marc

    2014-01-01

    To assess the feasibility and benefit of integrating four-dimensional (4D) Positron Emission Tomography (PET) – computed tomography (CT) for liver stereotactic body radiation therapy (SBRT) planning. 8 patients with 14 metastases were accrued in the study. They all underwent a non-gated PET and a 4D PET centered on the liver. The same CT scan was used for attenuation correction, registration, and considered the planning CT for SBRT planning. Six PET phases were reconstructed for each 4D PET. By applying an individualized threshold to the 4D PET, a Biological Internal Target Volume (BITV) was generated for each lesion. A gated Planning Target Volume (PTVg) was created by adding 3 mm to account for set-up margins. This volume was compared to a manual Planning Target Volume (PTV) delineated with the help of a semi-automatic Biological Target Volume (BTV) obtained from the non-gated exam. A 5 mm radial and a 10 mm craniocaudal margins were applied to account for tumor motion and set-up margins to create the PTV. One undiagnosed liver metastasis was discovered thanks to the 4D PET. The semi-automatic BTV were significantly smaller than the BITV (p = 0.0031). However, after applying adapted margins, 4D PET allowed a statistically significant decrease in the PTVg as compared to the PTV (p = 0.0052). In comparison to non-gated PET, 4D PET may better define the respiratory movements of liver targets and improve SBRT planning for liver metastases. Furthermore, non respiratory-gated PET exams can both misdiagnose liver metastases and underestimate the real internal target volumes

  9. Evaluation of global and regional left ventricular function obtained by quantitative gated SPECT using {sup 99m}Tc-tetrofosmin for left ventricular dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Kazunobu; Nakajima, Tohru; Iseki, Harukazu; Abe, Sumihisa; Handa, Shunnosuke; Suzuki, Yutaka [Tokai Univ., Isehara, Kanagawa (Japan). School of Medicine

    2000-08-01

    The quantitative gated SPECT (QGS) software is able to calculate LV volumes and visualize LV wall motion and perfusion throughout the cardiac cycle using an automatic edge detection algorithm of the left ventricle. We evaluated the reliability of global and regional LV function assessment derived from QGS by comparing it with the results from left ventriculo-cineangiography (LVG). In 20 patients with left ventricular dysfunction who underwent ECG gated {sup 99m}Tc-tetrofosmin SPECT, the end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (LVEF) were calculated. The QGS-assessed regional wall motion was determined using the cinematic display. QGS-derived EDV, ESV and LVEF correlated well with those by LVG (p<0.001 for each). There was a good correlation between wall motion score (WMS) derived from the QGS and the LVG (r=0.40, p<0.05). In some patients with extensive myocardial infarction, there was a discrepancy in the regional wall motion results between QGS and LVG. The ECG-gated SPECT using QGS is useful to evaluate global and regional LV functions in left ventricular dysfunction. (author)

  10. Eye tracking and gating system for proton therapy of orbital tumors

    International Nuclear Information System (INIS)

    Shin, Dongho; Yoo, Seung Hoon; Moon, Sung Ho; Yoon, Myonggeun; Lee, Se Byeong; Park, Sung Yong

    2012-01-01

    Purpose: A new motion-based gated proton therapy for the treatment of orbital tumors using real-time eye-tracking system was designed and evaluated. Methods: We developed our system by image-pattern matching, using a normalized cross-correlation technique with LabVIEW 8.6 and Vision Assistant 8.6 (National Instruments, Austin, TX). To measure the pixel spacing of an image consistently, four different calibration modes such as the point-detection, the edge-detection, the line-measurement, and the manual measurement mode were suggested and used. After these methods were applied to proton therapy, gating was performed, and radiation dose distributions were evaluated. Results: Moving phantom verification measurements resulted in errors of less than 0.1 mm for given ranges of translation. Dosimetric evaluation of the beam-gating system versus nongated treatment delivery with a moving phantom shows that while there was only 0.83 mm growth in lateral penumbra for gated radiotherapy, there was 4.95 mm growth in lateral penumbra in case of nongated exposure. The analysis from clinical results suggests that the average of eye movements depends distinctively on each patient by showing 0.44 mm, 0.45 mm, and 0.86 mm for three patients, respectively. Conclusions: The developed automatic eye-tracking based beam-gating system enabled us to perform high-precision proton radiotherapy of orbital tumors.

  11. Evaluation of multi-gated myocardial perfusion imaging in various heart diseases

    International Nuclear Information System (INIS)

    Nishimura, Tsunehiko; Uehara, Toshitake; Kozuka, Takahiro

    1980-01-01

    Multi-gated myocardial perfusion imaging were studied in a hundred cases of various heart diseases. In normal cases, ED ES images showed thinning and thickening of wall motion respectively to compare with static images. In the myocardial infarction cases, the dynamic changes of wall motion was decreased at infarcted areas in all cases. In congestive cardiomyopathy, the change of wall motion is smaller than normal cases in all cases, while in hypertrophic cardiomyopathy, the change is not so hyperdynamic to compare with normal cases and by multi-gated images, asymmetric hypertrophy was clearly detected in HCM than static images. In conclusion, these methods were useful to detect the myocardial contraction stage in various heart diseases. (author)

  12. Radial reflection diffraction tomography

    Science.gov (United States)

    Lehman, Sean K.

    2012-12-18

    A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.

  13. Design of a spin-wave majority gate employing mode selection

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, S., E-mail: klingler@physik.uni-kl.de; Pirro, P.; Brächer, T.; Leven, B.; Hillebrands, B.; Chumak, A. V. [Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern (Germany)

    2014-10-13

    The design of a microstructured, fully functional spin-wave majority gate is presented and studied using micromagnetic simulations. This all-magnon logic gate consists of three-input waveguides, a spin-wave combiner, and an output waveguide. In order to ensure the functionality of the device, the output waveguide is designed to perform spin-wave mode selection. We demonstrate that the gate evaluates the majority of the input signals coded into the spin-wave phase. Moreover, the all-magnon data processing device is used to perform logic AND-, OR-, NAND-, and NOR- operations.

  14. Hybrid ECG-gated versus non-gated 512-slice CT angiography of the aorta and coronary artery: image quality and effect of a motion correction algorithm.

    Science.gov (United States)

    Lee, Ji Won; Kim, Chang Won; Lee, Geewon; Lee, Han Cheol; Kim, Sang-Pil; Choi, Bum Sung; Jeong, Yeon Joo

    2018-02-01

    Background Using the hybrid electrocardiogram (ECG)-gated computed tomography (CT) technique, assessment of entire aorta, coronary arteries, and aortic valve can be possible using single-bolus contrast administration within a single acquisition. Purpose To compare the image quality of hybrid ECG-gated and non-gated CT angiography of the aorta and evaluate the effect of a motion correction algorithm (MCA) on coronary artery image quality in a hybrid ECG-gated aorta CT group. Material and Methods In total, 104 patients (76 men; mean age = 65.8 years) prospectively randomized into two groups (Group 1 = hybrid ECG-gated CT; Group 2 = non-gated CT) underwent wide-detector array aorta CT. Image quality, assessed using a four-point scale, was compared between the groups. Coronary artery image quality was compared between the conventional reconstruction and motion correction reconstruction subgroups in Group 1. Results Group 1 showed significant advantages over Group 2 in aortic wall, cardiac chamber, aortic valve, coronary ostia, and main coronary arteries image quality (all P ECG-gated CT significantly improved the heart and aortic wall image quality and the MCA can further improve the image quality and interpretability of coronary arteries.

  15. Radial Structure Scaffolds Convolution Patterns of Developing Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Mir Jalil Razavi

    2017-08-01

    Full Text Available Commonly-preserved radial convolution is a prominent characteristic of the mammalian cerebral cortex. Endeavors from multiple disciplines have been devoted for decades to explore the causes for this enigmatic structure. However, the underlying mechanisms that lead to consistent cortical convolution patterns still remain poorly understood. In this work, inspired by prior studies, we propose and evaluate a plausible theory that radial convolution during the early development of the brain is sculptured by radial structures consisting of radial glial cells (RGCs and maturing axons. Specifically, the regionally heterogeneous development and distribution of RGCs controlled by Trnp1 regulate the convex and concave convolution patterns (gyri and sulci in the radial direction, while the interplay of RGCs' effects on convolution and axons regulates the convex (gyral convolution patterns. This theory is assessed by observations and measurements in literature from multiple disciplines such as neurobiology, genetics, biomechanics, etc., at multiple scales to date. Particularly, this theory is further validated by multimodal imaging data analysis and computational simulations in this study. We offer a versatile and descriptive study model that can provide reasonable explanations of observations, experiments, and simulations of the characteristic mammalian cortical folding.

  16. Respiratory gating in positron emission tomography: A quantitative comparison of different gating schemes

    International Nuclear Information System (INIS)

    Dawood, Mohammad; Buether, Florian; Lang, Norbert; Schober, Otmar; Schaefers, Klaus P

    2007-01-01

    Respiratory gating is used for reducing the effects of breathing motion in a wide range of applications from radiotherapy treatment to diagnostical imaging. Different methods are feasible for respiratory gating. In this study seven gating methods were developed and tested on positron emission tomography (PET) listmode data. The results of seven patient studies were compared quantitatively with respect to motion and noise. (1) Equal and (2) variable time-based gating methods use only the time information of the breathing cycle to define respiratory gates. (3) Equal and (4) variable amplitude-based gating approaches utilize the amplitude of the respiratory signal. (5) Cycle-based amplitude gating is a combination of time and amplitude-based techniques. A baseline correction was applied to methods (3) and (4) resulting in two new approaches: Baseline corrected (6) equal and (7) variable amplitude-based gating. Listmode PET data from seven patients were acquired together with a respiratory signal. Images were reconstructed applying the seven gating methods. Two parameters were used to quantify the results: Motion was measured as the displacement of the heart due to respiration and noise was defined as the standard deviation of pixel intensities in a background region. The amplitude-based approaches (3) and (4) were superior to the time-based methods (1) and (2). The improvement in capturing the motion was more than 30% (up to 130%) in all subjects. The variable time (2) and amplitude (4) methods had a more uniform noise distribution among all respiratory gates compared to equal time (1) and amplitude (3) methods. Baseline correction did not improve the results. Out of seven different respiratory gating approaches, the variable amplitude method (4) captures the respiratory motion best while keeping a constant noise level among all respiratory phases

  17. A gate drive circuit for gate-turn-off (GTO) devices in series stack

    International Nuclear Information System (INIS)

    Despe, O.

    1999-01-01

    A gate-turn-off (GTO) switch is under development at the Advanced Photon Source as a replacement for a thyratron switch in high power pulsed application. The high voltage in the application requires multiple GTOs connected in series. One component that is critical to the success of GTO operation is the gate drive circuit. The gate drive circuit has to provide fast high-current pulses to the GTO gate for fast turn-on and turn-off. It also has to be able to operate while floating at high voltage. This paper describes a gate drive circuit that meets these requirements

  18. Low-power DRAM-compatible Replacement Gate High-k/Metal Gate Stacks

    Science.gov (United States)

    Ritzenthaler, R.; Schram, T.; Bury, E.; Spessot, A.; Caillat, C.; Srividya, V.; Sebaai, F.; Mitard, J.; Ragnarsson, L.-Å.; Groeseneken, G.; Horiguchi, N.; Fazan, P.; Thean, A.

    2013-06-01

    In this work, the possibility of integration of High-k/Metal Gate (HKMG), Replacement Metal Gate (RMG) gate stacks for low power DRAM compatible transistors is studied. First, it is shown that RMG gate stacks used for Logic applications need to be seriously reconsidered, because of the additional anneal(s) needed in a DRAM process. New solutions are therefore developed. A PMOS stack HfO2/TiN with TiN deposited in three times combined with Work Function metal oxidations is demonstrated, featuring a very good Work Function of 4.95 eV. On the other hand, the NMOS side is shown to be a thornier problem to solve: a new solution based on the use of oxidized Ta as a diffusion barrier is proposed, and a HfO2/TiN/TaOX/TiAl/TiN/TiN gate stack featuring an aggressive Work Function of 4.35 eV (allowing a Work Function separation of 600 mV between NMOS and PMOS) is demonstrated. This work paves the way toward the integration of gate-last options for DRAM periphery transistors.

  19. Management of post-traumatic elbow instability after failed radial head excision: A case report

    Directory of Open Access Journals (Sweden)

    Georgios Touloupakis

    2017-02-01

    Full Text Available Radial head excision has always been a safe commonly used surgical procedure with a satisfactory clinical outcome for isolated comminuted radial head fractures. However, diagnosis of elbow instability is still very challenging and often underestimated in routine orthopaedic evaluation. We present the case of a 21-years old female treated with excision after radial head fracture, resulting in elbow instability. The patient underwent revision surgery after four weeks. We believe that ligament reconstruction without radial head substitution is a safe alternative choice for Mason III radial head fractures accompanied by complex ligament lesions.

  20. Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits

    Science.gov (United States)

    Zeuner, Jonas; Sharma, Aditya N.; Tillmann, Max; Heilmann, René; Gräfe, Markus; Moqanaki, Amir; Szameit, Alexander; Walther, Philip

    2018-03-01

    Recent progress in integrated-optics technology has made photonics a promising platform for quantum networks and quantum computation protocols. Integrated optical circuits are characterized by small device footprints and unrivalled intrinsic interferometric stability. Here, we take advantage of femtosecond-laser-written waveguides' ability to process polarization-encoded qubits and present an implementation of a heralded controlled-NOT gate on chip. We evaluate the gate performance in the computational basis and a superposition basis, showing that the gate can create polarization entanglement between two photons. Transmission through the integrated device is optimized using thermally expanded core fibers and adiabatically reduced mode-field diameters at the waveguide facets. This demonstration underlines the feasibility of integrated quantum gates for all-optical quantum networks and quantum repeaters.

  1. Acquisition and automated 3-D segmentation of respiratory/cardiac-gated PET transmission images

    International Nuclear Information System (INIS)

    Reutter, B.W.; Klein, G.J.; Brennan, K.M.; Huesman, R.H.

    1996-01-01

    To evaluate the impact of respiratory motion on attenuation correction of cardiac PET data, we acquired and automatically segmented gated transmission data for a dog breathing on its own under gas anesthesia. Data were acquired for 20 min on a CTI/Siemens ECAT EXACT HR (47-slice) scanner configured for 12 gates in a static study, Two respiratory gates were obtained using data from a pneumatic bellows placed around the dog's chest, in conjunction with 6 cardiac gates from standard EKG gating. Both signals were directed to a LabVIEW-controlled Macintosh, which translated them into one of 12 gate addresses. The respiratory gating threshold was placed near end-expiration to acquire 6 cardiac-gated datasets at end-expiration and 6 cardiac-gated datasets during breaths. Breaths occurred about once every 10 sec and lasted about 1-1.5 sec. For each respiratory gate, data were summed over cardiac gates and torso and lung surfaces were segmented automatically using a differential 3-D edge detection algorithm. Three-dimensional visualizations showed that lung surfaces adjacent to the heart translated 9 mm inferiorly during breaths. Our results suggest that respiration-compensated attenuation correction is feasible with a modest amount of gated transmission data and is necessary for accurate quantitation of high-resolution gated cardiac PET data

  2. Development of anti-biofouling methods for gate facilities

    International Nuclear Information System (INIS)

    Fukuoka, Mari; Akamine, Kenichi; Iai, Yuuichi; Takatoo, Norihiro; Fukushima, Noriaki

    2016-01-01

    In the maintenance and management of gate facilities, a large sum of money and labor are required to remove and clean organisms that attach themselves to the facilities. That is why we developed two anti-biofouling systems, one that uses a weak electric current and another that uses ultrasonic waves. We carried out basic examinations and actual environment examinations to verify the effects of these methods. As a result, it has been confirmed that these methods effectively anti-foul the parts they are applied to, and that they can be used on gate facilities. In the future, we will evaluate their adaptability to aqueducts, such as those used in thermal and nuclear power plants, and marine structures, such as floating breakwaters, in addition to gate facilities. (author)

  3. CMOS integration of high-k/metal gate transistors in diffusion and gate replacement (D&GR) scheme for dynamic random access memory peripheral circuits

    Science.gov (United States)

    Dentoni Litta, Eugenio; Ritzenthaler, Romain; Schram, Tom; Spessot, Alessio; O’Sullivan, Barry; Machkaoutsan, Vladimir; Fazan, Pierre; Ji, Yunhyuck; Mannaert, Geert; Lorant, Christophe; Sebaai, Farid; Thiam, Arame; Ercken, Monique; Demuynck, Steven; Horiguchi, Naoto

    2018-04-01

    Integration of high-k/metal gate stacks in peripheral transistors is a major candidate to ensure continued scaling of dynamic random access memory (DRAM) technology. In this paper, the CMOS integration of diffusion and gate replacement (D&GR) high-k/metal gate stacks is investigated, evaluating four different approaches for the critical patterning step of removing the N-type field effect transistor (NFET) effective work function (eWF) shifter stack from the P-type field effect transistor (PFET) area. The effect of plasma exposure during the patterning step is investigated in detail and found to have a strong impact on threshold voltage tunability. A CMOS integration scheme based on an experimental wet-compatible photoresist is developed and the fulfillment of the main device metrics [equivalent oxide thickness (EOT), eWF, gate leakage current density, on/off currents, short channel control] is demonstrated.

  4. Fully automated intrinsic respiratory and cardiac gating for small animal CT

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, J; Baeuerle, T; Semmler, W; Bartling, S H [Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg (Germany); Dinkel, J [Department of Radiology, German Cancer Research Center, Heidelberg (Germany); Zwick, S [Department of Diagnostic Radiology, Medical Physics, Freiburg University (Germany); Grasruck, M [Siemens Healthcare, Forchheim (Germany); Kiessling, F [Chair of Experimental Molecular Imaging, RWTH-Aachen University, Medical Faculty, Aachen (Germany); Gupta, R [Department of Radiology, Massachusetts General Hospital, Boston, MA (United States)], E-mail: j.kuntz@dkfz.de

    2010-04-07

    A fully automated, intrinsic gating algorithm for small animal cone-beam CT is described and evaluated. A parameter representing the organ motion, derived from the raw projection images, is used for both cardiac and respiratory gating. The proposed algorithm makes it possible to reconstruct motion-corrected still images as well as to generate four-dimensional (4D) datasets representing the cardiac and pulmonary anatomy of free-breathing animals without the use of electrocardiogram (ECG) or respiratory sensors. Variation analysis of projections from several rotations is used to place a region of interest (ROI) on the diaphragm. The ROI is cranially extended to include the heart. The centre of mass (COM) variation within this ROI, the filtered frequency response and the local maxima are used to derive a binary motion-gating parameter for phase-sensitive gated reconstruction. This algorithm was implemented on a flat-panel-based cone-beam CT scanner and evaluated using a moving phantom and animal scans (seven rats and eight mice). Volumes were determined using a semiautomatic segmentation. In all cases robust gating signals could be obtained. The maximum volume error in phantom studies was less than 6%. By utilizing extrinsic gating via externally placed cardiac and respiratory sensors, the functional parameters (e.g. cardiac ejection fraction) and image quality were equivalent to this current gold standard. This algorithm obviates the necessity of both gating hardware and user interaction. The simplicity of the proposed algorithm enables adoption in a wide range of small animal cone-beam CT scanners.

  5. Altered carotid plaque signal among different repetition times on T1-weighted magnetic resonance plaque imaging with self-navigated radial-scan technique

    Energy Technology Data Exchange (ETDEWEB)

    Narumi, Shinsuke; Ohba, Hideki; Mori, Kiyofumi; Ohura, Kazumasa; Ono, Ayumi; Terayama, Yasuo [Iwate Medical University, Department of Neurology and Gerontology, Morioka (Japan); Sasaki, Makoto [Iwate Medical University, Advanced Medical Research Center, Morioka (Japan); Ogasawara, Kuniaki [Iwate Medical University, Department of Neurosurgery, Morioka (Japan); Hitomi, Jiro [Iwate Medical University, Department of Anatomy, Morioka (Japan)

    2010-04-15

    Magnetic resonance (MR) plaque imaging for carotid arteries is usually performed by using an electrocardiograph (ECG)-gating technique to eliminate pulsation-related artifacts, which can affect the plaque signals because of varied repetition time (TR) among patients. Hence, we investigated whether differences in TR causes signal alterations of the carotid plaque by using a non-gated plaque imaging technique. We prospectively examined 19 patients with carotid stenosis by using a T1-weighted self-navigated radial-scan technique with TRs of 500, 700, and 900 ms. The signal intensity of the carotid plaque was measured, and the contrast ratio (CR) relative to the adjacent muscle was calculated. CRs of the carotid plaques were 1.39 {+-} 0.39, 1.29 {+-} 0.29, and 1.23 {+-} 0.24 with TRs of 500, 700, and 900 ms, respectively, and were significantly different. Among the plaques, those with a hyperintensity signal (CR > 1.5) and moderate-intensity signal (CR 1.2-1.5) at 500 ms showed a TR-dependent signal decrease (hyperintensity plaques, 1.82 {+-} 0.26; 1.61 {+-} 0.19; and 1.48 {+-} 0.17; moderate-intensity plaques, 1.33 {+-} 0.08; 1.26 {+-} 0.08; and 1.19 {+-} 0.07), while those with an isointensity signal (CR < 1.2) remained unchanged regardless of TR (0.96 {+-} 0.12, 0.96 {+-} 0.11, and 0.97 {+-} 0.13). The signal intensity of the carotid plaque on T1-weighted imaging significantly varies among different TRs and tends to decrease with longer TR. MR plaque imaging with short and constant TR settings that the ECG-gating method cannot realize would be preferable for evaluating plaque characteristics. (orig.)

  6. Teleportation-based Toffoli gate on cluster states via the Bell state analysis

    International Nuclear Information System (INIS)

    Guo Ying; Huang Dazu; Lee, Moon Ho

    2013-01-01

    An optical Toffoli gate is demonstrated via teleportations on the six-qubit entangling cluster state generated from single-qubit photons. It is implemented on the basis of entanglement swapping of the combined quantum system with three independent Bell state measurements. The output of this gate is then restored by suitable local operations and classical communications. We evaluate the implementing performance of the Toffoli gate fidelity for the operation process in different computational bases. (paper)

  7. The mechanism of fast-gate opening in ClC-0.

    Science.gov (United States)

    Engh, Anita M; Faraldo-Gómez, José D; Maduke, Merritt

    2007-10-01

    ClC-0 is a chloride channel whose gating is sensitive to both voltage and chloride. Based on analysis of gating kinetics using single-channel recordings, a five-state model was proposed to describe the dependence of ClC-0 fast-gate opening on voltage and external chloride (Chen, T.-Y., and C. Miller. 1996. J. Gen. Physiol. 108:237-250). We aimed to use this five-state model as a starting point for understanding the structural changes that occur during gating. Using macroscopic patch recordings, we were able to reproduce the effects of voltage and chloride that were reported by Chen and Miller and to fit our opening rate constant data to the five-state model. Upon further analysis of both our data and those of Chen and Miller, we learned that in contrast to their conclusions, (a) the features in the data are not adequate to rule out a simpler four-state model, and (b) the chloride-binding step is voltage dependent. In order to be able to evaluate the effects of mutants on gating (described in the companion paper, see Engh et al. on p. 351 of this issue), we developed a method for determining the error on gating model parameters, and evaluated the sources of this error. To begin to mesh the kinetic model(s) with the known CLC structures, a model of ClC-0 was generated computationally based on the X-ray crystal structure of the prokaryotic homolog ClC-ec1. Analysis of pore electrostatics in this homology model suggests that at least two of the conclusions derived from the gating kinetics analysis are consistent with the known CLC structures: (1) chloride binding is necessary for channel opening, and (2) chloride binding to any of the three known chloride-binding sites must be voltage dependent.

  8. Evaluating Sensor Technologies for Gate-Based Object Counting in an Internet of Things Set-up

    Directory of Open Access Journals (Sweden)

    Kostas Anagnostopoulos

    2015-02-01

    Full Text Available The increased computational power of modern embedded devices with the widespread development of Internet infrastructure has brought the Internet of Things (IoT era closest than ever. Recent market researches indicate that IoT product and relevant service suppliers will generate revenue exceeding $300 billion and the interconnected devices will grow to 26 billion [1, 2]. One field that can be benefited from the common advantages of IoT systems, (real time monitoring, large scale deployment etc. is the Logistics area. In this paper we investigate a common problem in the logistics which is the automating object counting. We concentrate on uniform, disposable products stored on a pile, queue or a stack (e.g., a shelf and examine a number of different technologies for sensing input and output through a gate to the storage area and how we can integrate them in an IoT environment. We define a set of comparison criteria with practical flavor in order to examine and evaluate twelve different types of sensors 3. The intention for our study is to form a baseline for anyone needing to implement gate-based input/output control.

  9. Evaluation of the effects of the radial constant-head boundary in slug tests

    Science.gov (United States)

    Dai, Yunfeng; Zhou, Zhifang; Zhao, Yanrong; Cui, Ziteng

    2015-03-01

    A semianalytical model of slug tests, conducted in a completely penetrating well within a radial constant-head boundary, was derived. The model, based on the Cooper et al. (1967) model, estimates the hydraulic conductivity and storage coefficient through the matching of type curves. Type curves of the semianalytical solution were plotted, and the effect of the distance of the radial constant-head boundary is discussed. For different storage coefficients, the critical distances of the effect of the constant-head boundary were determined. The effect of the storage coefficient on the response of the water head in slug tests with a radial constant-head boundary of a certain distance is also shown. To verify the model, laboratory slug-test experiments were carried out using a cylindrical test platform, in which an artificial confined coarse-sand aquifer was built. Pumping tests were also executed using the test platform. The Cooper et al. (1967) model and new semianalytical model were used to analyze measurements; the hydraulic conductivity and storage coefficient determined using the two methods were compared to demonstrate the importance of the radial constant-head boundary. A model considering the inertial effect was also used to analyze the slug-test measurements, and although the water head response did not oscillate greatly, the inertial effect affected the slug-test calculation result. The laboratory experiments indicate that the proposed semianalytical model is reasonable and reliable. Cooper HH, Bredehoeft JD, Papadopulos IS (1967) Response of a finite-diameter well to an instantaneous charge of water, Water Resour Res 3(1):263-269.

  10. Evaluation of the MEMS based portable respiratory training system with a tactile sensor for respiratory-gated radiotherapy

    Science.gov (United States)

    Moon, Sun Young; Yoon, Myonggeun; Chung, Mijoo; Chung, Weon Kuu; Kim, Dong Wook

    2017-10-01

    In respiratory-gated radiotherapy, it is important to maintain the regular respiratory cycles of patients. If patients undergo respiration training, their regular breathing pattern is affected. Therefore, we developed a respiratory training system based on a micro electromechanical system (MEMS) and evaluated the feasibility of the MEMS in radiotherapy. By comparing the measured signal before and after radiation exposure, we confirmed the effects of radiation. By evaluating the period of the electric signal emitted by a tactile sensor and its constancy, the performance of the tactile sensor was confirmed. Moreover, by comparing the delay between the motion of the MEMS and the electric signal from the tactile sensor, we confirmed the reaction time of the tactile sensor. The results showed that a baseline shift occurred for an accumulated dose of 400 Gy in the sensor, and both the amplitude and period changed. The period of the signal released by the tactile sensor was 5.39 and its standard deviation was 0.06. Considering the errors from the motion phantom, a standard deviation of 0.06 was desirable. The delay time was within 0.5 s and not distinguishable by a patient. We confirmed the performance of the MEMS and concluded that MEMS could be applied to patients for respiratory-gated radiotherapy.

  11. Antiproton compression and radial measurements

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jorgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile, and its relation to that of the electron plasma. We also measure the outer radial profile by ejecting antiprotons to the trap wall using an octupole magnet.

  12. Numerical Simulation of Hydraulic Fracture Propagation Guided by Single Radial Boreholes

    Directory of Open Access Journals (Sweden)

    Tiankui Guo

    2017-10-01

    Full Text Available Conventional hydraulic fracturing is not effective in target oil development zones with available wellbores located in the azimuth of the non-maximum horizontal in-situ stress. To some extent, we think that the radial hydraulic jet drilling has the function of guiding hydraulic fracture propagation direction and promoting deep penetration, but this notion currently lacks an effective theoretical support for fracture propagation. In order to verify the technology, a 3D extended finite element numerical model of hydraulic fracturing promoted by the single radial borehole was established, and the influences of nine factors on propagation of hydraulic fracture guided by the single radial borehole were comprehensively analyzed. Moreover, the term ‘Guidance factor (Gf’ was introduced for the first time to effectively quantify the radial borehole guidance. The guidance of nine factors was evaluated through gray correlation analysis. The experimental results were consistent with the numerical simulation results to a certain extent. The study provides theoretical evidence for the artificial control technology of directional propagation of hydraulic fracture promoted by the single radial borehole, and it predicts the guidance effect of a single radial borehole on hydraulic fracture to a certain extent, which is helpful for planning well-completion and fracturing operation parameters in radial borehole-promoted hydraulic fracturing technology.

  13. Evaluating the effect placement capacitor and distributed photovoltaic generation for power system losses minimization in radial distribution system

    Science.gov (United States)

    Rahman, Yuli Asmi; Manjang, Salama; Yusran, Ilham, Amil Ahmad

    2018-03-01

    Power loss minimization have many advantagess to the distribution system radial among others reduction of power flow in feeder lines, freeing stress on feeder loading, deterrence of power procurement from the grid and also the cost of loss compensating instruments. This paper, presents capacitor and photovoltaic (PV) placement as alternative means to decrease power system losses. The paper aims to evaluate the best alternative for decreasing power system losses and improving voltage profile in the radial distribution system. To achieve the objectives of paper, they are used three cases tested by Electric Transient and Analysis Program (ETAP) simulation. Firstly, it performs simulation of placement capacitor. Secondly, simulated placement of PV. Lastly, it runs simulation of placement capacitor and PV simultaneously. The simulations were validated using the IEEE 34-bus test system. As a result, they proved that the installation of capacitor and PV integration simultaneously leading to voltage profile correction and power losses minimization significantly.

  14. On the applicability of the standard approaches for evaluating a neoclassical radial electric field in a tokamak edge region

    Energy Technology Data Exchange (ETDEWEB)

    Dorf, M. A.; Cohen, R. H.; Joseph, I. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Simakov, A. N. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    2013-08-15

    The use of the standard approaches for evaluating a neoclassical radial electric field E{sub r}, i.e., the Ampere (or gyro-Poisson) equation, requires accurate calculation of the difference between the gyroaveraged electron and ion particle fluxes (or densities). In the core of a tokamak, the nontrivial difference appears only in high-order corrections to a local Maxwellian distribution due to the intrinsic ambipolarity of particle transport. The evaluation of such high-order corrections may be inconsistent with the accuracy of the standard long wavelength gyrokinetic equation (GKE), thus imposing limitations on the applicability of the standard approaches. However, in the edge of a tokamak, charge-exchange collisions with neutrals and prompt ion orbit losses can drive non-intrinsically ambipolar particle fluxes for which a nontrivial (E{sub r}-dependent) difference between the electron and ion fluxes appears already in a low order and can be accurately predicted by the long wavelength GKE. The parameter regimes, where the radial electric field dynamics in the tokamak edge region is dominated by the non-intrinsically ambipolar processes, thus allowing for the use of the standard approaches, are discussed.

  15. Tricuspid insufficiency detected by equilibrium gated radionuclide study

    International Nuclear Information System (INIS)

    Handler, B.; Pavel, D.G.; Lam, W.; Byrom, E.; Swiryn, S.; Pietras, R.; Rosen, K.M.

    1981-01-01

    The results of a gated radionuclide cardiac study are reported in a patient with biventricular failure and tricuspid insufficiency demonstrated by clinical evaluation, M-mode and 2-D sector echocardiography, and cardia catheterization. The processed gated radionuclide cardiac study showed a left ventricular/right ventricular stroke volume ratio of 0.5; expansion of the hepatic blood pool demonstrated by hepatic time activity curve and calculation of an '''expansion fraction''; and synchronous changes of count rate of the atrial and hepatic regions detected by phase analysis

  16. Quantitative evaluations of left ventricular function obtained by electrocardiographically-gated magnetic resonance imaging

    International Nuclear Information System (INIS)

    Takeda, Tohru; Iida, Kaname; Sugishita, Yasuro; Anno, Izumi; Akisada, Masayoshi; Matsuda, Mitsuo; Akatsuka, Takao; Koseki, Susumu.

    1989-01-01

    Using electrocardiographically-gated magnetic resonance imaging, regional cardiac function was evaluated in 12 normal volunteers and in 10 cases of old myocardial infarction. The optimal short axis of the left ventricle was selected at the chordae tendineae level. The left ventricle was divided into 12 segments using a computer-aided system, and percentile shortening fraction (%SF) and percentile wall thickening (%WT) were calculated in each segment by the fixed coordinate method. In the normal volunteers, heterogeneity of both %FS and %WT was observed, ranging from 25±13% and 37±13%, respectively in the septal segment, to 49±13% and 60±21%, respectively in the posterior segment. In the cases of myocardial infarction, decreased %FS and %WT were detected at the affected regions. The abnormal regions revealed by %WT tended to be narrower than those revealed by %FS. Thus the MR technique at the optimal axis may be useful for quantitative evaluations of regional cardiac function. (author)

  17. Expert Oracle GoldenGate

    CERN Document Server

    Prusinski, Ben; Chung, Richard

    2011-01-01

    Expert Oracle GoldenGate is a hands-on guide to creating and managing complex data replication environments using the latest in database replication technology from Oracle. GoldenGate is the future in replication technology from Oracle, and aims to be best-of-breed. GoldenGate supports homogeneous replication between Oracle databases. It supports heterogeneous replication involving other brands such as Microsoft SQL Server and IBM DB2 Universal Server. GoldenGate is high-speed, bidirectional, highly-parallelized, and makes only a light impact on the performance of databases involved in replica

  18. Fringing field effects in negative capacitance field-effect transistors with a ferroelectric gate insulator

    Science.gov (United States)

    Hattori, Junichi; Fukuda, Koichi; Ikegami, Tsutomu; Ota, Hiroyuki; Migita, Shinji; Asai, Hidehiro; Toriumi, Akira

    2018-04-01

    We study the effects of fringing electric fields on the behavior of negative-capacitance (NC) field-effect transistors (FETs) with a silicon-on-insulator body and a gate stack consisting of an oxide film, an internal metal film, a ferroelectric film, and a gate electrode using our own device simulator that can properly handle the complicated relationship between the polarization and the electric field in ferroelectric materials. The behaviors of such NC FETs and the corresponding metal-oxide-semiconductor (MOS) FETs are simulated and compared with each other to evaluate the effects of the NC of the ferroelectric film. Then, the fringing field effects are evaluated by comparing the NC effects in NC FETs with and without gate spacers. The fringing field between the gate stack, especially the internal metal film, and the source/drain region induces more charges at the interface of the film with the ferroelectric film. Accordingly, the function of the NC to modulate the gate voltage and the resulting function to improve the subthreshold swing are enhanced. We also investigate the relationships of these fringing field effects to the drain voltage and four design parameters of NC FETs, i.e., gate length, gate spacer permittivity, internal metal film thickness, and oxide film thickness.

  19. Stability of radial swirl flows

    International Nuclear Information System (INIS)

    Dou, H S; Khoo, B C

    2012-01-01

    The energy gradient theory is used to examine the stability of radial swirl flows. It is found that the flow of free vortex is always stable, while the introduction of a radial flow will induce the flow to be unstable. It is also shown that the pure radial flow is stable. Thus, there is a flow angle between the pure circumferential flow and the pure radial flow at which the flow is most unstable. It is demonstrated that the magnitude of this flow angle is related to the Re number based on the radial flow rate, and it is near the pure circumferential flow. The result obtained in this study is useful for the design of vaneless diffusers of centrifugal compressors and pumps as well as other industrial devices.

  20. Study on effective MOSFET channel length extracted from gate capacitance

    Science.gov (United States)

    Tsuji, Katsuhiro; Terada, Kazuo; Fujisaka, Hisato

    2018-01-01

    The effective channel length (L GCM) of metal-oxide-semiconductor field-effect transistors (MOSFETs) is extracted from the gate capacitances of actual-size MOSFETs, which are measured by charge-injection-induced-error-free charge-based capacitance measurement (CIEF CBCM). To accurately evaluate the capacitances between the gate and the channel of test MOSFETs, the parasitic capacitances are removed by using test MOSFETs having various channel sizes and a source/drain reference device. A strong linear relationship between the gate-channel capacitance and the design channel length is obtained, from which L GCM is extracted. It is found that L GCM is slightly less than the effective channel length (L CRM) extracted from the measured MOSFET drain current. The reason for this is discussed, and it is found that the capacitance between the gate electrode and the source and drain regions affects this extraction.

  1. Evaluation of the Positional Uncertainty of a Liver Tumor using 4-Dimensional Computed Tomography and Gated Orthogonal Kilovolt Setup Images

    International Nuclear Information System (INIS)

    Ju, Sang Gyu; Hong, Chae Seon; Park, Hee Chul; Ahn, Jong Ho; Shin, Eun Hyuk; Shin, Jung Suk; Kim, Jin Sung; Han, Young Yih; Lim, Do Hoon; Choi, Doo Ho

    2010-01-01

    In order to evaluate the positional uncertainty of internal organs during radiation therapy for treatment of liver cancer, we measured differences in inter- and intra-fractional variation of the tumor position and tidal amplitude using 4-dimensional computed radiograph (DCT) images and gated orthogonal setup kilovolt (KV) images taken on every treatment using the on board imaging (OBI) and real time position management (RPM) system. Twenty consecutive patients who underwent 3-dimensional (3D) conformal radiation therapy for treatment of liver cancer participated in this study. All patients received a 4DCT simulation with an RT16 scanner and an RPM system. Lipiodol, which was updated near the target volume after transarterial chemoembolization or diaphragm was chosen as a surrogate for the evaluation of the position difference of internal organs. Two reference orthogonal (anterior and lateral) digital reconstructed radiograph (DRR) images were generated using CT image sets of 0% and 50% into the respiratory phases. The maximum tidal amplitude of the surrogate was measured from 3D conformal treatment planning. After setting the patient up with laser markings on the skin, orthogonal gated setup images at 50% into the respiratory phase were acquired at each treatment session with OBI and registered on reference DRR images by setting each beam center. Online inter-fractional variation was determined with the surrogate. After adjusting the patient setup error, orthogonal setup images at 0% and 50% into the respiratory phases were obtained and tidal amplitude of the surrogate was measured. Measured tidal amplitude was compared with data from 4DCT. For evaluation of intra-fractional variation, an orthogonal gated setup image at 50% into the respiratory phase was promptly acquired after treatment and compared with the same image taken just before treatment. In addition, a statistical analysis for the quantitative evaluation was performed. Medians of inter

  2. Leakage Account for Radial Face Contact Seal in Aircraft Engine Support

    Science.gov (United States)

    Vinogradov, A. S.; Sergeeva, T. V.

    2018-01-01

    The article is dedicated to the development of a methodology for the radial face contact seal design taking into consideration the supporting elements deformations in different aircraft engine operating modes. Radial face contact seals are popular in the aircraft engines bearing support. However, there are no published leakage calculation methodologies of these seals. Radial face contact seal leakage is determined by the gap clearance in the carbon seal ring split. In turn, the size gap clearance depends on the deformation of the seal assembly parts and from the engine operation. The article shows the leakage detection sequence in the intershaft radial face contact seal of the compressor support for take-off and cruising modes. Evaluated calculated leakage values (2.4 g/s at takeoff and 0.75 g/s at cruising) go with experience in designing seals.

  3. Evaluating the level of physical transformation of houses in gated ...

    African Journals Online (AJOL)

    The upsurge of real estate housing within Accra has resulted in all manner of gated communities springing up across the city scape. These seek to provide housing services to the desperate urban dweller. The quality of their services has however been brought to question due to lack of a proper regulatory body to oversee ...

  4. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jan, S; Becheva, E [DSV/I2BM/SHFJ, Commissariat a l' Energie Atomique, Orsay (France); Benoit, D; Rehfeld, N; Stute, S; Buvat, I [IMNC-UMR 8165 CNRS-Paris 7 and Paris 11 Universities, 15 rue Georges Clemenceau, 91406 Orsay Cedex (France); Carlier, T [INSERM U892-Cancer Research Center, University of Nantes, Nantes (France); Cassol, F; Morel, C [Centre de physique des particules de Marseille, CNRS-IN2P3 and Universite de la Mediterranee, Aix-Marseille II, 163, avenue de Luminy, 13288 Marseille Cedex 09 (France); Descourt, P; Visvikis, D [INSERM, U650, Laboratoire du Traitement de l' Information Medicale (LaTIM), CHU Morvan, Brest (France); Frisson, T; Grevillot, L; Guigues, L; Sarrut, D; Zahra, N [Universite de Lyon, CREATIS, CNRS UMR5220, Inserm U630, INSA-Lyon, Universite Lyon 1, Centre Leon Berard (France); Maigne, L; Perrot, Y [Laboratoire de Physique Corpusculaire, 24 Avenue des Landais, 63177 Aubiere Cedex (France); Schaart, D R [Delft University of Technology, Radiation Detection and Medical Imaging, Mekelweg 15, 2629 JB Delft (Netherlands); Pietrzyk, U, E-mail: buvat@imnc.in2p3.fr [Reseach Center Juelich, Institute of Neurosciences and Medicine and Department of Physics, University of Wuppertal (Germany)

    2011-02-21

    GATE (Geant4 Application for Emission Tomography) is a Monte Carlo simulation platform developed by the OpenGATE collaboration since 2001 and first publicly released in 2004. Dedicated to the modelling of planar scintigraphy, single photon emission computed tomography (SPECT) and positron emission tomography (PET) acquisitions, this platform is widely used to assist PET and SPECT research. A recent extension of this platform, released by the OpenGATE collaboration as GATE V6, now also enables modelling of x-ray computed tomography and radiation therapy experiments. This paper presents an overview of the main additions and improvements implemented in GATE since the publication of the initial GATE paper (Jan et al 2004 Phys. Med. Biol. 49 4543-61). This includes new models available in GATE to simulate optical and hadronic processes, novelties in modelling tracer, organ or detector motion, new options for speeding up GATE simulations, examples illustrating the use of GATE V6 in radiotherapy applications and CT simulations, and preliminary results regarding the validation of GATE V6 for radiation therapy applications. Upon completion of extensive validation studies, GATE is expected to become a valuable tool for simulations involving both radiotherapy and imaging.

  5. Novel Quantum Dot Gate FETs and Nonvolatile Memories Using Lattice-Matched II-VI Gate Insulators

    Science.gov (United States)

    Jain, F. C.; Suarez, E.; Gogna, M.; Alamoody, F.; Butkiewicus, D.; Hohner, R.; Liaskas, T.; Karmakar, S.; Chan, P.-Y.; Miller, B.; Chandy, J.; Heller, E.

    2009-08-01

    This paper presents the successful use of ZnS/ZnMgS and other II-VI layers (lattice-matched or pseudomorphic) as high- k gate dielectrics in the fabrication of quantum dot (QD) gate Si field-effect transistors (FETs) and nonvolatile memory structures. Quantum dot gate FETs and nonvolatile memories have been fabricated in two basic configurations: (1) monodispersed cladded Ge nanocrystals (e.g., GeO x -cladded-Ge quantum dots) site-specifically self-assembled over the lattice-matched ZnMgS gate insulator in the channel region, and (2) ZnTe-ZnMgTe quantum dots formed by self-organization, using metalorganic chemical vapor-phase deposition (MOCVD), on ZnS-ZnMgS gate insulator layers grown epitaxially on Si substrates. Self-assembled GeO x -cladded Ge QD gate FETs, exhibiting three-state behavior, are also described. Preliminary results on InGaAs-on-InP FETs, using ZnMgSeTe/ZnSe gate insulator layers, are presented.

  6. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    Science.gov (United States)

    Shrestha, Suman K.

    Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was

  7. MaGate Simulator: A Simulation Environment for a Decentralized Grid Scheduler

    Science.gov (United States)

    Huang, Ye; Brocco, Amos; Courant, Michele; Hirsbrunner, Beat; Kuonen, Pierre

    This paper presents a simulator for of a decentralized modular grid scheduler named MaGate. MaGate’s design emphasizes scheduler interoperability by providing intelligent scheduling serving the grid community as a whole. Each MaGate scheduler instance is able to deal with dynamic scheduling conditions, with continuously arriving grid jobs. Received jobs are either allocated on local resources, or delegated to other MaGates for remote execution. The proposed MaGate simulator is based on GridSim toolkit and Alea simulator, and abstracts the features and behaviors of complex fundamental grid elements, such as grid jobs, grid resources, and grid users. Simulation of scheduling tasks is supported by a grid network overlay simulator executing distributed ant-based swarm intelligence algorithms to provide services such as group communication and resource discovery. For evaluation, a comparison of behaviors of different collaborative policies among a community of MaGates is provided. Results support the use of the proposed approach as a functional ready grid scheduler simulator.

  8. Management of post-traumatic elbow instability after failed radial head excision: A case report

    OpenAIRE

    Touloupakis, Georgios; Theodorakis, Emmanouil; Favetti, Fabio; Nannerini, Massimiliano

    2017-01-01

    Radial head excision has always been a safe commonly used surgical procedure with a satisfactory clinical outcome for isolated comminuted radial head fractures. However, diagnosis of elbow instability is still very challenging and often underestimated in routine orthopaedic evaluation. We present the case of a 21-years old female treated with excision after radial head fracture, resulting in elbow instability. The patient underwent revision surgery after four weeks. We believe that ligament r...

  9. Numerical simulation of radial compressor stage

    Science.gov (United States)

    Syka, T.; Luňáček, O.

    2013-04-01

    Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.

  10. Numerical simulation of radial compressor stage

    OpenAIRE

    Luňáček O.; Syka T.

    2013-01-01

    Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.

  11. Physical mechanism determining the radial electric field and its radial structure in a toroidal plasma

    International Nuclear Information System (INIS)

    Ida, Katsumi; Miura, Yukitoshi; Itoh, Sanae

    1994-10-01

    Radial structures of plasma rotation and radial electric field are experimentally studied in tokamak, heliotron/torsatron and stellarator devices. The perpendicular and parallel viscosities are measured. The parallel viscosity, which is dominant in determining the toroidal velocity in heliotron/torsatron and stellarator devices, is found to be neoclassical. On the other hand, the perpendicular viscosity, which is dominant in dictating the toroidal rotation in tokamaks, is anomalous. Even without external momentum input, both a plasma rotation and a radial electric field exist in tokamaks and heliotrons/torsatrons. The observed profiles of the radial electric field do not agree with the theoretical prediction based on neoclassical transport. This is mainly due to the existence of anomalous perpendicular viscosity. The shear of the radial electric field improves particle and heat transport both in bulk and edge plasma regimes of tokamaks. (author) 95 refs

  12. New opening hours of the gates

    CERN Multimedia

    GS Department

    2009-01-01

    Please note the new opening hours of the gates as well as the intersites tunnel from the 19 May 2009: GATE A 7h - 19h GATE B 24h/24 GATE C 7h - 9h\t17h - 19h GATE D 8h - 12h\t13h - 16h GATE E 7h - 9h\t17h - 19h Prévessin 24h/24 The intersites tunnel will be opened from 7h30 to 18h non stop. GS-SEM Group Infrastructure and General Services Department

  13. Management of post-traumatic elbow instability after failed radial head excision: A case report.

    Science.gov (United States)

    Touloupakis, Georgios; Theodorakis, Emmanouil; Favetti, Fabio; Nannerini, Massimiliano

    2017-02-01

    Radial head excision has always been a safe commonly used surgical procedure with a satisfactory clinical outcome for isolated comminuted radial head fractures. However, diagnosis of elbow instability is still very challenging and often underestimated in routine orthopaedic evaluation. We present the case of a 21-years old female treated with excision after radial head fracture, resulting in elbow instability. The patient underwent revision surgery after four weeks. We believe that ligament reconstruction without radial head substitution is a safe alternative choice for Mason III radial head fractures accompanied by complex ligament lesions. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  14. Comparative evaluation of respiratory-gated and ungated FDG-PET for target volume definition in radiotherapy treatment planning for pancreatic cancer.

    Science.gov (United States)

    Kishi, Takahiro; Matsuo, Yukinori; Nakamura, Akira; Nakamoto, Yuji; Itasaka, Satoshi; Mizowaki, Takashi; Togashi, Kaori; Hiraoka, Masahiro

    2016-08-01

    The purpose of this study was to evaluate the usefulness of respiratory-gated positron emission tomography (4D-PET) in pancreatic cancer radiotherapy treatment planning (RTTP). Fourteen patients with 18F-fluorodeoxyglucose (FDG)-avid pancreatic tumours were evaluated between December 2013 and March 2015. Two sets of volumes were contoured for the pancreatic tumour of each patient. The biological target volume in three-dimensional RTTP (BTV3D) was contoured using conventional respiratory un-gated PET. The BTV3D was then expanded using population-based margins to generate a series of internal target volume 3D (ITV3D) values. The ITV 4D (ITV4D) was contoured using 4D-PET. Each of the five phases of 4D-PET was used for 4D contouring, and the ITV4D was constructed by summing the volumes defined on the five individual 4D-PET images. The relative volumes and normalized volumetric overlap were computed between ITV3D and ITV4D. On average, the FDG-avid tumour volumes were 1.6 (range: 0.8-2.3) fold greater in the ITV4D than in the BTV3D. On average, the ITV3D values were 2.0 (range: 1.1-3.4) fold larger than the corresponding ITV4D values. The ITV generated from 4D-PET can be used to improve the accuracy or reduce normal tissue irradiation compared with conventional un-gated PET-based ITV. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT

    Science.gov (United States)

    Lee, Taek-Soo; Frey, Eric C.; Tsui, Benjamin M. W.

    2015-04-01

    performance of human observers in detecting regional motion defects in 4D gated MP SPECT images. The result supports the use of the observer model in the optimization and evaluation of 4D image reconstruction and compensation methods for improving the detection of motion abnormalities in 4D gated MP SPECT images.

  16. Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT

    International Nuclear Information System (INIS)

    Lee, Taek-Soo; Frey, Eric C; Tsui, Benjamin M W

    2015-01-01

    performance of human observers in detecting regional motion defects in 4D gated MP SPECT images. The result supports the use of the observer model in the optimization and evaluation of 4D image reconstruction and compensation methods for improving the detection of motion abnormalities in 4D gated MP SPECT images. (paper)

  17. Optical XOR gate

    Science.gov (United States)

    Vawter, G. Allen

    2013-11-12

    An optical XOR gate is formed as a photonic integrated circuit (PIC) from two sets of optical waveguide devices on a substrate, with each set of the optical waveguide devices including an electroabsorption modulator electrically connected in series with a waveguide photodetector. The optical XOR gate utilizes two digital optical inputs to generate an XOR function digital optical output. The optical XOR gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  18. Intrinsic respiratory gating in small-animal CT

    International Nuclear Information System (INIS)

    Bartling, Soenke H.; Dinkel, Julien; Kauczor, Hans-Ulrich; Stiller, Wolfram; Semmler, Wolfhard; Grasruck, Michael; Madisch, Ijad; Gupta, Rajiv; Kiessling, Fabian

    2008-01-01

    Gating in small-animal CT imaging can compensate artefacts caused by physiological motion during scanning. However, all published gating approaches for small animals rely on additional hardware to derive the gating signals. In contrast, in this study a novel method of intrinsic respiratory gating of rodents was developed and tested for mice (n=5), rats (n=5) and rabbits (n=2) in a flat-panel cone-beam CT system. In a consensus read image quality was compared with that of non-gated and retrospective extrinsically gated scans performed using a pneumatic cushion. In comparison to non-gated images, image quality improved significantly using intrinsic and extrinsic gating. Delineation of diaphragm and lung structure improved in all animals. Image quality of intrinsically gated CT was judged to be equivalent to extrinsically gated ones. Additionally 4D datasets were calculated using both gating methods. Values for expiratory, inspiratory and tidal lung volumes determined with the two gating methods were comparable and correlated well with values known from the literature. We could show that intrinsic respiratory gating in rodents makes additional gating hardware and preparatory efforts superfluous. This method improves image quality and allows derivation of functional data. Therefore it bears the potential to find wide applications in small-animal CT imaging. (orig.)

  19. Experimental determination of contraction coefficient and velocity ...

    Indian Academy of Sciences (India)

    Jailakshmi Menon

    2018-04-16

    Apr 16, 2018 ... Radial gates are widely used to control the flow in irrigation channels and spillways. Radial gates ... upstream water depth for a vertical sluice gate assuming hydrostatic ... energy loss on the discharge characteristics of vertical.

  20. Funnel-and-gate remediation systems augmented with passive filter wells.

    Science.gov (United States)

    Hudak, Paul F

    2010-09-01

    The objective of this study was to evaluate the ability of funnel-and-gate structures augmented with passive wells containing filter cartridges to capture contaminated groundwater in hypothetical, homogeneous and heterogeneous, unconfined aquifers. Perpendicular to groundwater flow, linear structures were 15 m wide, 1 m thick, and keyed into the base of the aquifer. Gates occupied 4 m of the total width of each simulated structure; one gate was 5 m from a contaminant plume's leading tip, while others occupied cross-gradient margins of the plume. Results suggest a modest reduction in remediation timeframes, up to 425 d per well added in these simulations; however, incremental benefits are highly variable and case specific.

  1. Radial transport of poloidal momentum in ASDEX Upgrade in L-mode and H-mode

    DEFF Research Database (Denmark)

    Schrittwieser, R.; Mehlmann, F.; Naulin, Volker

    2012-01-01

    A reciprocating probe was used for localized measurements of the radial transport of poloidal momentum in the scrape-off layer (SOL) of ASDEX Upgrade (AUG). The probe measured poloidal and radial electric field components and density. We concentrate on three components of the momentum transport: ......: Reynolds stress, convective momentum flux and triple product of the fluctuating components of density, radial and poloidal electric field. For the evaluation we draw mainly on the probability density functions (PDFs)....

  2. Signatures of Mechanosensitive Gating.

    Science.gov (United States)

    Morris, Richard G

    2017-01-10

    The question of how mechanically gated membrane channels open and close is notoriously difficult to address, especially if the protein structure is not available. This perspective highlights the relevance of micropipette-aspirated single-particle tracking-used to obtain a channel's diffusion coefficient, D, as a function of applied membrane tension, σ-as an indirect assay for determining functional behavior in mechanosensitive channels. While ensuring that the protein remains integral to the membrane, such methods can be used to identify not only the gating mechanism of a protein, but also associated physical moduli, such as torsional and dilational rigidity, which correspond to the protein's effective shape change. As an example, three distinct D-versus-σ "signatures" are calculated, corresponding to gating by dilation, gating by tilt, and gating by a combination of both dilation and tilt. Both advantages and disadvantages of the approach are discussed. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Quantum gate decomposition algorithms.

    Energy Technology Data Exchange (ETDEWEB)

    Slepoy, Alexander

    2006-07-01

    Quantum computing algorithms can be conveniently expressed in a format of a quantum logical circuits. Such circuits consist of sequential coupled operations, termed ''quantum gates'', or quantum analogs of bits called qubits. We review a recently proposed method [1] for constructing general ''quantum gates'' operating on an qubits, as composed of a sequence of generic elementary ''gates''.

  4. The role of radial particle pinches in ELM suppression by resonant magnetic perturbations

    International Nuclear Information System (INIS)

    Stacey, W.M.; Evans, T.E.

    2011-01-01

    The force balance in the plasma edge in a matched pair of DIII-D (Luxon 2002 Nucl. Fusion 42 6149) tokamak discharges with and without resonant magnetic perturbations (RMPs) is evaluated in order to investigate the effects on particle transport of RMP applied for the purpose of suppressing edge-localized modes (ELMs). Experimental data are used to evaluate the radial and toroidal force balances, which may be written as a pinch-diffusion relation for the radial ion flux to facilitate investigation of transport effects. The radial electric field in the H-mode plasma had a sharp negative dip in the steep gradient region of the edge pedestal, associated with which was a large inward pinch velocity. The main effect of RMP was to make the edge electric field less negative or more positive, reducing this strong negative dip in the radial electric field (even reversing it from negative to positive over some regions), thereby reducing the strong inward particle pinch in the edge of an H-mode discharge, thus causing a reduction in edge density below the ELM threshold.

  5. Radial retinotomy in the macula.

    Science.gov (United States)

    Bovino, J A; Marcus, D F

    1984-01-01

    Radial retinotomy is an operative procedure usually performed in the peripheral or equatorial retina. To facilitate retinal attachment, the authors used intraocular scissors to perform radial retinotomy in the macula of two patients during vitrectomy surgery. In the first patient, a retinal detachment complicated by periretinal proliferation and macula hole formation was successfully reoperated with the aid of three radial cuts in the retina at the edges of the macular hole. In the second patient, an intraoperative retinal tear in the macula during diabetic vitrectomy was also successfully repaired with the aid of radial retinotomy. In both patients, retinotomy in the macula was required because epiretinal membranes, which could not be easily delaminated, were hindering retinal reattachment.

  6. The Effectiveness of Using a Multiple Gating Approach to Discriminate among ADHD Subtypes

    Science.gov (United States)

    Simonsen, Brandi M.; Bullis, Michael D.

    2007-01-01

    This study explored the ability of Systematically Progressive Assessment (SPA), a multiple gating approach for assessing students with attention-deficit/hyperactivity disorder (ADHD), to discriminate between subtypes of ADHD. A total of 48 students with ADHD (ages 6-11) were evaluated with three "gates" of assessment. Logistic regression analysis…

  7. Radial head dislocation during proximal radial shaft osteotomy.

    Science.gov (United States)

    Hazel, Antony; Bindra, Randy R

    2014-03-01

    The following case report describes a 48-year-old female patient with a longstanding both-bone forearm malunion, who underwent osteotomies of both the radius and ulna to improve symptoms of pain and lack of rotation at the wrist. The osteotomies were templated preoperatively. During surgery, after performing the planned radial shaft osteotomy, the authors recognized that the radial head was subluxated. The osteotomy was then revised from an opening wedge to a closing wedge with improvement of alignment and rotation. The case report discusses the details of the operation, as well as ways in which to avoid similar shortcomings in the future. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  8. Self-gated fat-suppressed cardiac cine MRI.

    Science.gov (United States)

    Ingle, R Reeve; Santos, Juan M; Overall, William R; McConnell, Michael V; Hu, Bob S; Nishimura, Dwight G

    2015-05-01

    To develop a self-gated alternating repetition time balanced steady-state free precession (ATR-SSFP) pulse sequence for fat-suppressed cardiac cine imaging. Cardiac gating is computed retrospectively using acquired magnetic resonance self-gating data, enabling cine imaging without the need for electrocardiogram (ECG) gating. Modification of the slice-select rephasing gradients of an ATR-SSFP sequence enables the acquisition of a one-dimensional self-gating readout during the unused short repetition time (TR). Self-gating readouts are acquired during every TR of segmented, breath-held cardiac scans. A template-matching algorithm is designed to compute cardiac trigger points from the self-gating signals, and these trigger points are used for retrospective cine reconstruction. The proposed approach is compared with ECG-gated ATR-SSFP and balanced steady-state free precession in 10 volunteers and five patients. The difference of ECG and self-gating trigger times has a variability of 13 ± 11 ms (mean ± SD). Qualitative reviewer scoring and ranking indicate no statistically significant differences (P > 0.05) between self-gated and ECG-gated ATR-SSFP images. Quantitative blood-myocardial border sharpness is not significantly different among self-gated ATR-SSFP ( 0.61±0.15 mm -1), ECG-gated ATR-SSFP ( 0.61±0.15 mm -1), or conventional ECG-gated balanced steady-state free precession cine MRI ( 0.59±0.15 mm -1). The proposed self-gated ATR-SSFP sequence enables fat-suppressed cardiac cine imaging at 1.5 T without the need for ECG gating and without decreasing the imaging efficiency of ATR-SSFP. © 2014 Wiley Periodicals, Inc.

  9. Numerical simulation of radial compressor stage

    Directory of Open Access Journals (Sweden)

    Luňáček O.

    2013-04-01

    Full Text Available Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.

  10. Evaluation of the Leon3 soft-core processor within a Xilinx radiation-hardened field-programmable gate array.

    Energy Technology Data Exchange (ETDEWEB)

    Learn, Mark Walter

    2012-01-01

    The purpose of this document is to summarize the work done to evaluate the performance of the Leon3 soft-core processor in a radiation environment while instantiated in a radiation-hardened static random-access memory based field-programmable gate array. This evaluation will look at the differences between two soft-core processors: the open-source Leon3 core and the fault-tolerant Leon3 core. Radiation testing of these two cores was conducted at the Texas A&M University Cyclotron facility and Lawrence Berkeley National Laboratory. The results of these tests are included within the report along with designs intended to improve the mitigation of the open-source Leon3. The test setup used for evaluating both versions of the Leon3 is also included within this document.

  11. Right Ventricular Ejection Fraction using ECG-Gated First Pass Cardioangiography

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Young Hee; Lee, Hae Giu; Lee, Sung Yong; Park, Suk Min; Chung, Soo Kyo; Yim, Jeong Ik; Bahk, Yong Whee; Shinn, Kyung Sub; Kim, Young Gyun; Kwon, Soon Seog [Catholic University College of Medicine, Seoul (Korea, Republic of)

    1993-03-15

    Radionuclide cardioangiography has been widely applied and has played major roles in moninvasive assessment of cardiac function. Three techniques, first-pass gated first and gated equilibrium methods have commonly been used to evaluate right ventricular ejection fraction which usually abnormal in the patients with cardiopulmonary disease. It has been known that the gated first pass method is most accurate method among the three techniques in assessment of fight ventricular ejection fraction. The radionuclide right ventricular ejection fraction values were determined in 13 normal subjects and in 15 patients with chronic obstructive pulmonary disease by the gated first pass method and compared with those of the first pass method because there has been no published data of fight ejection fraction by the gated first pass method were compared with the defects from the pulmonary function test performed in the patients with chronic obstructive pulmomary disease. The results were as follows; 1) The values of fight ventricular ejection fraction by the gated first pass method were 50.1 +- 6.1% in normal subjects and 38.5 +- 8.5 in the patients with chronic obstructive pulmonary disease. There was statistically significant difference between the right ventricular ejection fraction of each of the two groups (p<0.05) 2) The right ventricular ejection fraction by the gated first pass method was not linearly correlated ith FEV{sub 1}, VC. DLCO. and FVC as well as P{sub a}O2 and P{sub a}CO2 of the patients with chronic obstructive pulmonary disease. We concluded that right ventricular ejection fraction by the gated first pass method using radionuclide cardioangiography may be useful in clinical assessment of the right ventricular function.

  12. Radial cracks and fracture mechanism of radially oriented ring 2:17 type SmCo magnets

    International Nuclear Information System (INIS)

    Tian Jianjun; Pan Dean; Zhou Hao; Yin Fuzheng; Tao Siwu; Zhang Shengen; Qu Xuanhui

    2009-01-01

    Radially oriented ring 2:17 type SmCo magnets have different microstructure in the radial direction (easy magnetization) and axial direction (hard magnetization). The structure of the cross-section in radial direction is close-packed atomic plane, which shows cellular microstructure. The microstructure of the cross-section in axial direction consists of a mixture of rhombic microstructure and parallel lamella phases. So the magnets have obvious anisotropy of thermal expansion in different directions. The difference of the thermal expansion coefficients reaches the maximum value at 830-860 deg. C, which leads to radial cracks during quenching. The magnets have high brittlement because there are fewer slip systems in crystal structure. The fracture is brittle cleavage fracture.

  13. Low band-to-band tunnelling and gate tunnelling current in novel nanoscale double-gate architecture: simulations and investigation

    International Nuclear Information System (INIS)

    Datta, Deepanjan; Ganguly, Samiran; Dasgupta, S

    2007-01-01

    Large band-to-band tunnelling (BTBT) and gate leakage current can limit scalability of nanoscale devices. In this paper, we have proposed a novel nanoscale parallel connected heteromaterial double gate (PCHEM-DG) architecture with triple metal gate which significantly suppress BTBT leakage, making it efficient for low power design in the sub-10 nm regime. We have also proposed a triple gate device with p + poly-n + poly-p + poly gate which has substantially low gate leakage over symmetric DG MOSFET. Simulations are performed using a 2D Poisson-Schroedinger simulator and verified with a 2D device simulator ATLAS. We conclude that, due to intrinsic body doping, negligible gate leakage, suppressed BTBT over symmetric DG devices, metal gate (MG) PCHEM-DG MOSFET is efficient for low power circuit design in the nanometre regime

  14. Functional imaging of murine hearts using accelerated self-gated UTE cine MRI.

    Science.gov (United States)

    Motaal, Abdallah G; Noorman, Nils; de Graaf, Wolter L; Hoerr, Verena; Florack, Luc M J; Nicolay, Klaas; Strijkers, Gustav J

    2015-01-01

    We introduce a fast protocol for ultra-short echo time (UTE) Cine magnetic resonance imaging (MRI) of the beating murine heart. The sequence involves a self-gated UTE with golden-angle radial acquisition and compressed sensing reconstruction. The self-gated acquisition is performed asynchronously with the heartbeat, resulting in a randomly undersampled kt-space that facilitates compressed sensing reconstruction. The sequence was tested in 4 healthy rats and 4 rats with chronic myocardial infarction, approximately 2 months after surgery. As a control, a non-accelerated self-gated multi-slice FLASH sequence with an echo time (TE) of 2.76 ms, 4.5 signal averages, a matrix of 192 × 192, and an acquisition time of 2 min 34 s per slice was used to obtain Cine MRI with 15 frames per heartbeat. Non-accelerated UTE MRI was performed with TE = 0.29 ms, a reconstruction matrix of 192 × 192, and an acquisition time of 3 min 47 s per slice for 3.5 averages. Accelerated imaging with 2×, 4× and 5× undersampled kt-space data was performed with 1 min, 30 and 15 s acquisitions, respectively. UTE Cine images up to 5× undersampled kt-space data could be successfully reconstructed using a compressed sensing algorithm. In contrast to the FLASH Cine images, flow artifacts in the UTE images were nearly absent due to the short echo time, simplifying segmentation of the left ventricular (LV) lumen. LV functional parameters derived from the control and the accelerated Cine movies were statistically identical.

  15. In Vivo Respiratory-Gated Micro-CT Imaging in Small-Animal Oncology Models

    Directory of Open Access Journals (Sweden)

    Dawn Cavanaugh

    2004-01-01

    Full Text Available Micro-computed tomography (micro-CT is becoming an accepted research tool for the noninvasive examination of laboratory animals such as mice and rats, but to date, in vivo scanning has largely been limited to the evaluation of skeletal tissues. We use a commercially available micro-CT device to perform respiratory gated in vivo acquisitions suitable for thoracic imaging. The instrument is described, along with the scan protocol and animal preparation techniques. Preliminary results confirm that lung tumors as small as 1 mm in diameter are visible in vivo with these methods. Radiation dose was evaluated using several approaches, and was found to be approximately 0.15 Gy for this respiratory-gated micro-CT imaging protocol. The combination of high-resolution CT imaging and respiratory-gated acquisitions appears well-suited to serial in vivo scanning.

  16. Low band-to-band tunnelling and gate tunnelling current in novel nanoscale double-gate architecture: simulations and investigation

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Deepanjan [Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906 (United States); Ganguly, Samiran [Department of Electronics Engineering, Indian School of Mines, Dhanbad-826004 (India); Dasgupta, S [Department of Electronics and Computer Engineering, Indian Institute of Technology, Roorkee-247667 (India)

    2007-05-30

    Large band-to-band tunnelling (BTBT) and gate leakage current can limit scalability of nanoscale devices. In this paper, we have proposed a novel nanoscale parallel connected heteromaterial double gate (PCHEM-DG) architecture with triple metal gate which significantly suppress BTBT leakage, making it efficient for low power design in the sub-10 nm regime. We have also proposed a triple gate device with p{sup +} poly-n{sup +} poly-p{sup +} poly gate which has substantially low gate leakage over symmetric DG MOSFET. Simulations are performed using a 2D Poisson-Schroedinger simulator and verified with a 2D device simulator ATLAS. We conclude that, due to intrinsic body doping, negligible gate leakage, suppressed BTBT over symmetric DG devices, metal gate (MG) PCHEM-DG MOSFET is efficient for low power circuit design in the nanometre regime.

  17. Sliding-gate valve for use with abrasive materials

    Science.gov (United States)

    Ayers, Jr., William J.; Carter, Charles R.; Griffith, Richard A.; Loomis, Richard B.; Notestein, John E.

    1985-01-01

    The invention is a flow and pressure-sealing valve for use with abrasive solids. The valve embodies special features which provide for long, reliable operating lifetimes in solids-handling service. The valve includes upper and lower transversely slidable gates, contained in separate chambers. The upper gate provides a solids-flow control function, whereas the lower gate provides a pressure-sealing function. The lower gate is supported by means for (a) lifting that gate into sealing engagement with its seat when the gate is in its open and closed positions and (b) lowering the gate out of contact with its seat to permit abrasion-free transit of the gate between its open and closed positions. When closed, the upper gate isolates the lower gate from the solids. Because of this shielding action, the sealing surface of the lower gate is not exposed to solids during transit or when it is being lifted or lowered. The chamber containing the lower gate normally is pressurized slightly, and a sweep gas is directed inwardly across the lower-gate sealing surface during the vertical translation of the gate.

  18. Photon-gated spin transistor

    OpenAIRE

    Li, Fan; Song, Cheng; Cui, Bin; Peng, Jingjing; Gu, Youdi; Wang, Guangyue; Pan, Feng

    2017-01-01

    Spin-polarized field-effect transistor (spin-FET), where a dielectric layer is generally employed for the electrical gating as the traditional FET, stands out as a seminal spintronic device under the miniaturization trend of electronics. It would be fundamentally transformative if optical gating was used for spin-FET. We report a new type of spin-polarized field-effect transistor (spin-FET) with optical gating, which is fabricated by partial exposure of the (La,Sr)MnO3 channel to light-emitti...

  19. Connexin domains relevant to the chemical gating of gap junction channels

    Directory of Open Access Journals (Sweden)

    C. Peracchia

    1997-05-01

    Full Text Available Most cells exchange ions and small metabolites via gap junction channels. These channels are made of two hemichannels (connexons, each formed by the radial arrangement of six connexin (Cx proteins. Connexins span the bilayer four times (M1-M4 and have both amino- and carboxy-termini (NT, CT at the cytoplasmic side of the membrane, forming two extracellular loops (E1, E2 and one inner (IL loop. The channels are regulated by gates that close with cytosolic acidification (e.g., CO2 treatment or increased calcium concentration, possibly via calmodulin activation. Although gap junction regulation is still unclear, connexin domains involved in gating are being defined. We have recently focused on the CO2 gating sensitivity of Cx32, Cx38 and various mutants and chimeras expressed in Xenopus oocytes and studied by double voltage clamp. Cx32 is weakly sensitive to CO2, whereas Cx38 is highly sensitive. A Cx32 chimera containing the second half of the inner loop (IL2 of Cx38 was as sensitive to CO2 as Cx38, indicating that this domain plays an important role. Deletion of CT by 84% did not affect CO2 sensitivity, but replacement of 5 arginines (R with sparagines (N at the beginning of CT (C1 greatly enhanced the CO2 sensitivity of Cx32. This suggests that whereas most of CT is irrelevant, positive charges of C1 maintain the CO2 sensitivity of Cx32 low. As a hypothesis we have proposed a model that involves charge interaction between negative residues of the beginning of IL1 and positive residues of either C1 or IL2. Open and closed channels would result from IL1-C1 and IL1-IL2 interactions, respectively

  20. On photonic controlled phase gates

    International Nuclear Information System (INIS)

    Kieling, K; Eisert, J; O'Brien, J L

    2010-01-01

    As primitives for entanglement generation, controlled phase gates have a central role in quantum computing. Especially in ideas realizing instances of quantum computation in linear optical gate arrays, a closer look can be rewarding. In such architectures, all effective nonlinearities are induced by measurements. Hence the probability of success is a crucial parameter of such quantum gates. In this paper, we discuss this question for controlled phase gates that implement an arbitrary phase with one and two control qubits. Within the class of post-selected gates in dual-rail encoding with vacuum ancillas, we identify the optimal success probabilities. We construct networks that allow for implementation using current experimental capabilities in detail. The methods employed here appear specifically useful with the advent of integrated linear optical circuits, providing stable interferometers on monolithic structures.

  1. Reversible logic gates on Physarum Polycephalum

    International Nuclear Information System (INIS)

    Schumann, Andrew

    2015-01-01

    In this paper, we consider possibilities how to implement asynchronous sequential logic gates and quantum-style reversible logic gates on Physarum polycephalum motions. We show that in asynchronous sequential logic gates we can erase information because of uncertainty in the direction of plasmodium propagation. Therefore quantum-style reversible logic gates are more preferable for designing logic circuits on Physarum polycephalum

  2. Scanning gate microscopy of quantum rings: effects of an external magnetic field and of charged defects.

    Science.gov (United States)

    Pala, M G; Baltazar, S; Martins, F; Hackens, B; Sellier, H; Ouisse, T; Bayot, V; Huant, S

    2009-07-01

    We study scanning gate microscopy (SGM) in open quantum rings obtained from buried semiconductor InGaAs/InAlAs heterostructures. By performing a theoretical analysis based on the Keldysh-Green function approach we interpret the radial fringes observed in experiments as the effect of randomly distributed charged defects. We associate SGM conductance images with the local density of states (LDOS) of the system. We show that such an association cannot be made with the current density distribution. By varying an external magnetic field we are able to reproduce recursive quasi-classical orbits in LDOS and conductance images, which bear the same periodicity as the Aharonov-Bohm effect.

  3. Probability of primordial black hole formation and its dependence on the radial profile of initial configurations

    International Nuclear Information System (INIS)

    Hidalgo, J. C.; Polnarev, A. G.

    2009-01-01

    In this paper we derive the probability of the radial profiles of spherically symmetric inhomogeneities in order to provide an improved estimation of the number density of primordial black holes (PBHs). We demonstrate that the probability of PBH formation depends sensitively on the radial profile of the initial configuration. We do this by characterizing this profile with two parameters chosen heuristically: the amplitude of the inhomogeneity and the second radial derivative, both evaluated at the center of the configuration. We calculate the joint probability of initial cosmological inhomogeneities as a function of these two parameters and then find a correspondence between these parameters and those used in numerical computations of PBH formation. Finally, we extend our heuristic study to evaluate the probability of PBH formation taking into account for the first time the radial profile of curvature inhomogeneities.

  4. Gating based on internal/external signals with dynamic correlation updates

    International Nuclear Information System (INIS)

    Wu Huanmei; Zhao Qingya; Berbeco, Ross I; Nishioka, Seiko; Shirato, Hiroki; Jiang, Steve B

    2008-01-01

    Precise localization of mobile tumor positions in real time is critical to the success of gated radiotherapy. Tumor positions are usually derived from either internal or external surrogates. Fluoroscopic gating based on internal surrogates, such as implanted fiducial markers, is accurate however requiring a large amount of imaging dose. Gating based on external surrogates, such as patient abdominal surface motion, is non-invasive however less accurate due to the uncertainty in the correlation between tumor location and external surrogates. To address these complications, we propose to investigate an approach based on hybrid gating with dynamic internal/external correlation updates. In this approach, the external signal is acquired at high frequency (such as 30 Hz) while the internal signal is sparsely acquired (such as 0.5 Hz or less). The internal signal is used to validate and update the internal/external correlation during treatment. Tumor positions are derived from the external signal based on the newly updated correlation. Two dynamic correlation updating algorithms are introduced. One is based on the motion amplitude and the other is based on the motion phase. Nine patients with synchronized internal/external motion signals are simulated retrospectively to evaluate the effectiveness of hybrid gating. The influences of different clinical conditions on hybrid gating, such as the size of gating windows, the optimal timing for internal signal acquisition and the acquisition frequency are investigated. The results demonstrate that dynamically updating the internal/external correlation in or around the gating window will reduce false positive with relatively diminished treatment efficiency. This improvement will benefit patients with mobile tumors, especially greater for early stage lung cancers, for which the tumors are less attached or freely floating in the lung.

  5. Gating based on internal/external signals with dynamic correlation updates

    Energy Technology Data Exchange (ETDEWEB)

    Wu Huanmei [Purdue School of Engineering and Technology, Indiana University School of Informatics, IUPUI, Indianapolis, IN (United States); Zhao Qingya [School of Health Sciences, Purdue University, West Lafayette, IN (United States); Berbeco, Ross I [Department of Radiation Oncology, Dana-Farber/Brigham and Womens Cancer Center and Harvard Medical School, Boston, MA (United States); Nishioka, Seiko [NTT East-Japan Sapporo Hospital, Sapporo (Japan); Shirato, Hiroki [Hokkaido University Graduate School of Medicine, Sapporo (Japan); Jiang, Steve B [Department of Radiation Oncology, School of Medicine, University of California, San Diego, CA (United States)], E-mail: hw9@iupui.edu, E-mail: sbjiang@ucsd.edu

    2008-12-21

    Precise localization of mobile tumor positions in real time is critical to the success of gated radiotherapy. Tumor positions are usually derived from either internal or external surrogates. Fluoroscopic gating based on internal surrogates, such as implanted fiducial markers, is accurate however requiring a large amount of imaging dose. Gating based on external surrogates, such as patient abdominal surface motion, is non-invasive however less accurate due to the uncertainty in the correlation between tumor location and external surrogates. To address these complications, we propose to investigate an approach based on hybrid gating with dynamic internal/external correlation updates. In this approach, the external signal is acquired at high frequency (such as 30 Hz) while the internal signal is sparsely acquired (such as 0.5 Hz or less). The internal signal is used to validate and update the internal/external correlation during treatment. Tumor positions are derived from the external signal based on the newly updated correlation. Two dynamic correlation updating algorithms are introduced. One is based on the motion amplitude and the other is based on the motion phase. Nine patients with synchronized internal/external motion signals are simulated retrospectively to evaluate the effectiveness of hybrid gating. The influences of different clinical conditions on hybrid gating, such as the size of gating windows, the optimal timing for internal signal acquisition and the acquisition frequency are investigated. The results demonstrate that dynamically updating the internal/external correlation in or around the gating window will reduce false positive with relatively diminished treatment efficiency. This improvement will benefit patients with mobile tumors, especially greater for early stage lung cancers, for which the tumors are less attached or freely floating in the lung.

  6. ECG gated NMR-CT for cardiovascular diseases

    International Nuclear Information System (INIS)

    Nishikawa, J.; Machida, K.; Iio, M.; Yoshimoto, N.; Sugimoto, T.; Kawaguchi, H.; Mano, H.

    1984-01-01

    The authors applied NMR-CT to cardiac study with ECG gated technique to evaluate the left ventricular (LV) function and compared it with cardiovascular nuclear medicine study (NM). The NMR-CT machine has resistive air-core magnet with 0.15 Tesla. The saturation recovery image or inversion recovery image were obtained as 256 x 256 matrix and 15 mm in thickness. The study population was ten patients who were evaluated both by NMR image and by NM performed within one week interval. The heart muscle was able to be visualized without any contrast material nor radioisotopes in inversion recovery images, whereas saturation recovery images failed to separate heart muscle from blood pool. The wall motions of LV in both methods were well correlated except for inferior wall. The values of ejection fraction in NMR image were moderately low, but two modalities showed satisfactory correlation (r=0.85). The region of myocardial infarction was revealed as wall thinning and/or wall motion abnormality. It is still preliminary to draw a conclusion, however, it can be said that in the evaluation of LV function, method by NMR might be of equal value to those of NM. It can be certain that eventually gated NMR-CT will become more effective method for various aspects of cardiovascular evaluation

  7. MRI of radial displacement of the meniscus in the knee

    International Nuclear Information System (INIS)

    Chen Jian; Lv Houshan; Lao Shan; Guan Zhenpeng; Hong Nan; Liang Hao

    2006-01-01

    Objective: To describe the phenomenon of radial displacement of the meniscus of the knees in the study population with MR imaging, and to establish MRI diagnostic criteria for radial displacement of the meniscus and displacement index. Methods: MR signs of radial displacement of the meniscus were evaluated retrospectively in 398 patients with knee symptoms who were examined with non- weight bearing MR images from Jan. 2000 to Feb. 2004. The patients younger than 18 years old, with joint effusion or serious arthropathy were excluded and 312 patients were eligible to be enrolled in this study. The criterion for radial displacement of the meniscus was defined as the location of the edge of meniscal body beyond the femoral and tibial outer border line. A displacement index, defined as the ratio of meniscal overhang to meniscal width, was used to quantify meniscal displacement. Results: The prevalence of radial displacement of the meniscus was 16.7% (52/312) and 13.9% (21/151) in right knee and 19.3% (31/161 )in left knee, respectively. There was no significant difference between left and right knee (χ 2 =1.60, P>0.05) and the ratio between medial and lateral meniscus was 7.8:1. The average displacement index was 0.54±0.24. The displacement indices were significant higher in older group (F=3.63, P<0.05). The incidence and indices of radial displacement of the meniscus for patients under or above 50 year older were 12.0%(17/142), 0.46±0.22 and 20.6% (35/170), 0.64±0.20, respectively. Difference was highly significant (t=0.84, P<0.01). Conclusion: It was concluded that radial displacement of the meniscus in knees was not a rare finding with MR imaging in patients with knee symptoms. The incidence increased in older age group. Further investigations were recommended to understand the etiology and clinical significance of the phenomenon of radial displacement of the meniscus. (authors)

  8. A technique of using gated-CT images to determine internal target volume (ITV) for fractionated stereotactic lung radiotherapy

    International Nuclear Information System (INIS)

    Jin Jianyue; Ajlouni, Munther; Chen Qing; Yin, Fang-Fang; Movsas, Benjamin

    2006-01-01

    Background and purpose: To develop and evaluate a technique and procedure of using gated-CT images in combination with PET image to determine the internal target volume (ITV), which could reduce the planning target volume (PTV) with adequate target coverage. Patients and methods: A skin marker-based gating system connected to a regular single slice CT scanner was used for this study. A motion phantom with adjustable motion amplitude was used to evaluate the CT gating system. Specifically, objects of various sizes/shapes, considered as virtual tumors, were placed on the phantom to evaluate the number of phases of gated images required to determine the ITV while taking into account tumor size, shape and motion. A procedure of using gated-CT and PET images to define ITV for patients was developed and was tested in patients enrolled in an IRB approved protocol. Results: The CT gating system was capable of removing motion artifacts for target motion as large as 3-cm when it was gated at optimal phases. A phantom study showed that two gated-CT scans at the end of expiration and the end of inspiration would be sufficient to determine the ITV for tumor motion less than 1-cm, and another mid-phase scan would be required for tumors with 2-cm motion, especially for small tumors. For patients, the ITV encompassing visible tumors in all sets of gated-CT and regular spiral CT images seemed to be consistent with the target volume determined from PET images. PTV expanded from the ITV with a setup uncertainty margin had less volume than PTVs from spiral CT images with a 10-mm generalized margin or an individualized margin determined at fluoroscopy. Conclusions: A technique of determining the ITV using gated-CT images was developed and was clinically implemented successfully for fractionated stereotactic lung radiotherapy

  9. Stanford, Duke, Rice,... and Gates?

    Science.gov (United States)

    Carey, Kevin

    2009-01-01

    This article presents an open letter to Bill Gates. In his letter, the author suggests that Bill Gates should build a brand-new university, a great 21st-century institution of higher learning. This university will be unlike anything the world has ever seen. He asks Bill Gates not to stop helping existing colleges create the higher-education system…

  10. Perceived radial translation during centrifugation

    NARCIS (Netherlands)

    Bos, J.E.; Correia Grácio, B.J.

    2015-01-01

    BACKGROUND: Linear acceleration generally gives rise to translation perception. Centripetal acceleration during centrifugation, however, has never been reported giving rise to a radial, inward translation perception. OBJECTIVE: To study whether centrifugation can induce a radial translation

  11. CT evaluation of extensor tendon entrapment as a complication of a distal radial fracture in a child

    International Nuclear Information System (INIS)

    Frawley, Kieran J.; Anton, Christopher G.; Zbojniewicz, Andrew M.; Cornwall, Roger

    2011-01-01

    Extensor indicis proprius (EIP) entrapment is a rare complication of a distal radial fracture. We report an 11-year-old with limited flexion of her index finger 1 year after a distal radial fracture. The utility of cross-sectional imaging in the diagnosis and preoperative planning of this complication is presented. (orig.)

  12. Benchmarking gate-based quantum computers

    Science.gov (United States)

    Michielsen, Kristel; Nocon, Madita; Willsch, Dennis; Jin, Fengping; Lippert, Thomas; De Raedt, Hans

    2017-11-01

    With the advent of public access to small gate-based quantum processors, it becomes necessary to develop a benchmarking methodology such that independent researchers can validate the operation of these processors. We explore the usefulness of a number of simple quantum circuits as benchmarks for gate-based quantum computing devices and show that circuits performing identity operations are very simple, scalable and sensitive to gate errors and are therefore very well suited for this task. We illustrate the procedure by presenting benchmark results for the IBM Quantum Experience, a cloud-based platform for gate-based quantum computing.

  13. Self-consistent radial sheath

    International Nuclear Information System (INIS)

    Hazeltine, R.D.

    1988-12-01

    The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig

  14. Gate Engineering in SOI LDMOS for Device Reliability

    Directory of Open Access Journals (Sweden)

    Aanand

    2016-01-01

    Full Text Available A linearly graded doping drift region with step gate structure, used for improvement of reduced surface field (RESURF SOI LDMOS transistor performance has been simulated with 0.35µm technology in this paper. The proposed device has one poly gate and double metal gate arranged in a stepped manner, from channel to drift region. The first gate uses n+ poly (near source where as other two gates of aluminium. The first gate with thin gate oxide has good control over the channel charge. The third gate with thick gate oxide at drift region reduce gate to drain capacitance. The arrangement of second and third gates in a stepped manner in drift region spreads the electric field uniformly. Using two dimensional device simulations, the proposed SOI LDMOS is compared with conventional structure and the extended metal structure. We demonstrate that the proposed device exhibits significant enhancement in linearity, breakdown voltage, on-resistance and HCI. Double metal gate reduces the impact ionization area which helps to improve the Hot Carrier Injection effect..

  15. Effect of top gate potential on bias-stress for dual gate amorphous indium-gallium-zinc-oxide thin film transistor

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Minkyu; Um, Jae Gwang; Park, Min Sang; Chowdhury, Md Delwar Hossain; Jang, Jin, E-mail: jjang@khu.ac.kr [Advanced Display Research Center and Department of Information Display, Kyung Hee University, Seoul 02447 (Korea, Republic of)

    2016-07-15

    We report the abnormal behavior of the threshold voltage (V{sub TH}) shift under positive bias Temperature stress (PBTS) and negative bias temperature stress (NBTS) at top/bottom gate in dual gate amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs). It is found that the PBTS at top gate shows negative transfer shift and NBTS shows positive transfer shift for both top and bottom gate sweep. The shift of bottom/top gate sweep is dominated by top gate bias (V{sub TG}), while bottom gate bias (V{sub BG}) is less effect than V{sub TG}. The X-ray photoelectron spectroscopy (XPS) depth profile provides the evidence of In metal diffusion to the top SiO{sub 2}/a-IGZO and also the existence of large amount of In{sup +} under positive top gate bias around top interfaces, thus negative transfer shift is observed. On the other hand, the formation of OH{sup −} at top interfaces under the stress of negative top gate bias shows negative transfer shift. The domination of V{sub TG} both on bottom/top gate sweep after PBTS/NBTS is obviously occurred due to thin active layer.

  16. GATE: Improving the computational efficiency

    International Nuclear Information System (INIS)

    Staelens, S.; De Beenhouwer, J.; Kruecker, D.; Maigne, L.; Rannou, F.; Ferrer, L.; D'Asseler, Y.; Buvat, I.; Lemahieu, I.

    2006-01-01

    GATE is a software dedicated to Monte Carlo simulations in Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET). An important disadvantage of those simulations is the fundamental burden of computation time. This manuscript describes three different techniques in order to improve the efficiency of those simulations. Firstly, the implementation of variance reduction techniques (VRTs), more specifically the incorporation of geometrical importance sampling, is discussed. After this, the newly designed cluster version of the GATE software is described. The experiments have shown that GATE simulations scale very well on a cluster of homogeneous computers. Finally, an elaboration on the deployment of GATE on the Enabling Grids for E-Science in Europe (EGEE) grid will conclude the description of efficiency enhancement efforts. The three aforementioned methods improve the efficiency of GATE to a large extent and make realistic patient-specific overnight Monte Carlo simulations achievable

  17. Acesso radial em intervenções coronarianas percutâneas: panorama atual brasileiro Acceso radial en intervenciones coronarias percutáneas: panorama actual brasileño Radial approach in percutaneous coronary interventions: current status in Brazil

    Directory of Open Access Journals (Sweden)

    Pedro Beraldo de Andrade

    2011-04-01

    fue comparado al femoral (2,5% versus 3,6%, p BACKGROUND: Although the radial approach offers an unquestionable result in terms of reduction of vascular complications and occurrence of severe bleeding in comparison to the femoral approach, so far it has only been used in few centers which elected it as the preferential access. OBJECTIVE: To evaluate the current status of percutaneous coronary interventions in Brazil, as regards the use of the radial approach. METHODS: Analysis of data spontaneously recorded in Central Nacional de Intervenções Cardiovasculares - CENIC (National Center for Cardiovascular Interventions from 2005 to 2008, in a total of 83,376 procedures. RESULTS: The radial approach was used in 12.6% of the procedures performed, and the femoral approach, in 84.3%. The remaining 3.1% corresponded to brachial artery dissection or puncture. With a success rate of 97.5%, the choice of the radial approach was associated with a significant reduction of vascular complications in comparison to the femoral approach (2.5% versus 3.6 %, p < 0.0001. CONCLUSION: The radial approach remains uncommonly used in Brazil, and this is possibly explained by the lack of training programs, uncertainties regarding the learning curve, and the lack of large-scale studies corroborating the benefits demonstrated to date.

  18. Video-coaching as biofeedback tool to improve gated treatments. Possibilities and limitations

    International Nuclear Information System (INIS)

    Cossmann, Peter H.

    2012-01-01

    For respiratory gated radiotherapy the manufacturers of linear accelerators offer dedicated gating technologies. The video-based Varian RPM Gating system (Varian Medical Systems, Palo Alto/CA, USA) includes in a standard configuration a support tool for regular breathing called audiocoaching. As this approach has limitations regarding direct control of the patient's breathing due to a missing feedback, we designed an additional tool offering videocoaching. In order to evaluate the impact of this additional functionality, we measured parameters defining the image quality of 4D-CT data as well as the treatment duration which is mainly influenced by the patient's limited ability to achieve a stable breathing pattern. (orig.)

  19. Demonstration of a Quantum Nondemolition Sum Gate

    DEFF Research Database (Denmark)

    Yoshikawa, J.; Miwa, Y.; Huck, Alexander

    2008-01-01

    The sum gate is the canonical two-mode gate for universal quantum computation based on continuous quantum variables. It represents the natural analogue to a qubit C-NOT gate. In addition, the continuous-variable gate describes a quantum nondemolition (QND) interaction between the quadrature...

  20. Radial pseudoaneurysm following diagnostic coronary angiography

    Directory of Open Access Journals (Sweden)

    Shankar Laudari

    2015-06-01

    Full Text Available The radial artery access has gained popularity as a method of diagnostic coronary catheterization compared to femoral artery puncture in terms of vascular complications and early ambulation. However, very rare complication like radial artery pseudoaneurysm may occur following cardiac catheterization which may give rise to serious consequences. Here, we report a patient with radial pseudoaneurysm following diagnostic coronary angiography. Adequate and correct methodology of compression of radial artery following puncture for maintaining hemostasis is the key to prevention.DOI: http://dx.doi.org/10.3126/jcmsn.v10i3.12776 Journal of College of Medical Sciences-Nepal, 2014, Vol-10, No-3, 48-50

  1. Selection and evaluation of an ultra high vacuum gate valve for Isabelle beam line vacuum system

    International Nuclear Information System (INIS)

    Foerster, C.L.; McCafferty, D.

    1980-01-01

    A minimum of eighty-four (84) Ultra High Vacuum Gate Valves will be utilized in ISABELLE to protect proton beam lines from catastrophic vacuum failure and to provide sector isolation for maintenance requirements. The valve to be selected must function at less than 1 x 10 -11 Torr pressure and be bakeable to 300 0 C in its open or closed position. In the open position, the valve must have an RF shield to make the beam line walls appear continuous. Several proposed designs were built and evaluated. The evaluation consisted mainly of leak testing, life tests, thermal cycling, mass spectrometer analysis, and 10 -12 Torr operation. Problems with initial design and fabrication were resolved. Special requirements for design and construction were developed. This paper describes the tests on two final prototypes which appear to be the best candidates for ISABELLE operation

  2. Assessment of left ventricular function using 201Tl electrocardiogram-gated myocardial single photon emission computed tomography

    International Nuclear Information System (INIS)

    Nishikubo, Naotsugu; Tamai, Hiroyuki

    2013-01-01

    Advances in computed tomography (CT) technology make it possible to obtain left ventricular wall motion using 3D reconstruction. In this study, we compared the images obtained from CT and 201 Tl electrocardiogram (ECG) gated single photon emission computed tomography (SPECT). In 20 patients with ischemic heart disease, we performed 201 Tl ECG gated SPECT (GE Healthcare Millennium VG) and ECG gated CT (Philips Medical Systems Brilliance iCT) to evaluate of left ventricular wall motion during the resting phase. In SPECT, left ventricular images were reconstructed using quantitative gated SPECT (QGS) software. In CT, the images were reconstructed using Virtual Place (AZE Software). The left ventricle was classified into five regions (anterior, lateral, inferior, septal, and apical). The amplitude of the wall motion was classified into five grades according to AHA classification. The values of the wall motion were separately checked by two radiographers. Assessment of left ventricular function myocardial wall movement using the three-dimensional movie display with ECG gated myocardial SPECT data was in agreement with the evaluation by cardiac CT inspection, and corresponded with wall motion in 88 of all 100 segments. SPECT analysis has the same quantity as that of obtained from CT for evaluation of left ventricular wall motion. (author)

  3. Declining Radial Growth Response of Coastal Forests to Hurricanes and Nor'easters

    Science.gov (United States)

    Fernandes, Arnold; Rollinson, Christine R.; Kearney, William S.; Dietze, Michael C.; Fagherazzi, Sergio

    2018-03-01

    The Mid-Atlantic coastal forests in Virginia are stressed by episodic disturbance from hurricanes and nor'easters. Using annual tree ring data, we adopt a dendroclimatic and statistical modeling approach to understand the response and resilience of a coastal pine forest to extreme storm events, over the past few decades. Results indicate that radial growth of trees in the study area is influenced by age, regional climate trends, and individual tree effects but dominated periodically by growth disturbance due to storms. We evaluated seven local extreme storm events to understand the effect of nor'easters and hurricanes on radial growth. A general decline in radial growth was observed in the year of the extreme storm and 3 years following it, after which the radial growth started recovering. The decline in radial growth showed a statistically significant correlation with the magnitude of the extreme storm (storm surge height and wind speed). This study contributes to understanding declining tree growth response and resilience of coastal forests to past disturbances. Given the potential increase in hurricanes and storm surge severity in the region, this can help predict vegetation response patterns to similar disturbances in the future.

  4. Simplified Analytical Methods to Analyze Lock Gates Submitted to Ship Collisions and Earthquakes

    Directory of Open Access Journals (Sweden)

    Buldgen Loic

    2015-09-01

    Full Text Available This paper presents two simplified analytical methods to analyze lock gates submitted to two different accidental loads. The case of an impact involving a vessel is first investigated. In this situation, the resistance of the struck gate is evaluated by assuming a local and a global deforming mode. The super-element method is used in the first case, while an equivalent beam model is simultaneously introduced to capture the overall bending motion of the structure. The second accidental load considered in this paper is the seismic action, for which an analytical method is presented to evaluate the total hydrodynamic pressure applied on a lock gate during an earthquake, due account being taken of the fluid-structure interaction. For each of these two actions, numerical validations are presented and the analytical results are compared to finite-element solutions.

  5. Gate valve and motor-operator research findings

    International Nuclear Information System (INIS)

    Steele, R. Jr.; DeWall, K.G.; Watkins, J.C.; Russell, M.J.; Bramwell, D.

    1995-09-01

    This report provides an update on the valve research being sponsored by the US Nuclear Regulatory Commission (NRC) and conducted at the Idaho National Engineering Laboratory (INEL). The research addresses the need to provide assurance that motor-operated valves can perform their intended safety function, usually to open or close against specified (design basis) flow and pressure loads. This report describes several important developments: Two methods for estimating or bounding the design basis stem factor (in rising-stem valves), using data from tests less severe than design basis tests; a new correlation for evaluating the opening responses of gate valves and for predicting opening requirements; an extrapolation method that uses the results of a best effort flow test to estimate the design basis closing requirements of a gate valve that exhibits atypical responses (peak force occurs before flow isolation); and the extension of the original INEL closing correlation to include low- flow and low-pressure loads. The report also includes a general approach, presented in step-by-step format, for determining operating margins for rising-stem valves (gate valves and globe valves) as well as quarter-turn valves (ball valves and butterfly valves)

  6. Multi-gated field emitters for a micro-column

    International Nuclear Information System (INIS)

    Mimura, Hidenori; Kioke, Akifumi; Aoki, Toru; Neo, Yoichiro; Yoshida, Tomoya; Nagao, Masayoshi

    2011-01-01

    We have developed a multi-gated field emitter (FE) such as a quadruple-gated FE with a three-stacked electrode lens and a quintuple-gated FE with a four-stacked electrode lens. Both the FEs can focus the electron beam. However, the quintuple-gated FE has a stronger electron convergence than the quadruple-gated FE, and a beam crossover is clearly observed for the quintuple-gated FE.

  7. Numerical simulation of liquid-metal-flows in radial-toroidal-radial bends

    International Nuclear Information System (INIS)

    Molokov, S.; Buehler, L.

    1993-09-01

    Magnetohydrodynamic flows in a U-bend and right-angle bend are considered with reference to the radial-toroidal-radial concept of a self-cooled liquid-metal blanket. The ducts composing bends have rectangular cross-section. The applied magnetic field is aligned with the toroidal duct and perpendicular to the radial ones. At high Hartmann number the flow region is divided into cores and boundary layers of different types. The magnetohydrodynamic equations are reduced to a system of partial differential equations governing wall electric potentials and the core pressure. The system is solved numerically by two different methods. The first method is iterative with iteration between wall potential and the core pressure. The second method is a general one for the solution of the core flow equations in curvilinear coordinates generated by channel geometry and magnetic field orientation. Results obtained are in good agreement. They show, that the 3D-pressure drop of MHD flows in a U-bend is not a critical issue for blanket applications. (orig./HP) [de

  8. Systolically gated 3D phase contrast MRA of mesenteric arteries in suspected mesenteric ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Wasser, M.N.; Schultze Kool, L.J.; Roos, A. de [Leiden Univ. Hospital (Netherlands)] [and others

    1996-03-01

    Our goal was to assess the value of MRA for detecting stenoses in the celiac (CA) and superior mesenteric (SMA) arteries in patients suspected of having chronic mesenteric ischemia, using an optimized systolically gated 3D phase contrast technique. In an initial study in 24 patients who underwent conventional angiography of the abdominal vessels for different clinical indications, a 3D phase contrast MRA technique (3D-PCA) was evaluated and optimized to image the CAs and SMAs. Subsequently, a prospective study was performed to assess the value of systolically gated 3D-PCA in evaluation of the mesenteric arteries in 10 patients with signs and symptoms of chronic mesenteric ischemia. Intraarterial digital subtraction angiography and surgical findings were used as the reference standard. In the initial study, systolic gating appeared to be essential in imaging the SMA on 3D-PCA. In 10 patients suspected of mesenteric ischemia, systolically gated 3D-PCA identified significant proximal disease in the two mesenteric vessels in 4 patients. These patients underwent successful reconstruction of their stenotic vessels. Cardiac-gated MRA may become a useful tool in selection of patients suspected of having mesenteric ischemia who may benefit from surgery. 16 refs., 6 figs., 4 tabs.

  9. Radial optimization of a BWR fuel cell using genetic algorithms; Optimizacion radial de una celda de combustible BWR usando algoritmos geneticos

    Energy Technology Data Exchange (ETDEWEB)

    Martin del Campo M, C.; Carmona H, R.; Oropeza C, I.P. [UNAM, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: cmcm@fi-b.unam.mx

    2006-07-01

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U{sup 235} and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix

  10. Step-and-shoot prospectively ECG-gated vs. retrospectively ECG-gated with tube current modulation coronary CT angiography using 128-slice MDCT patients with chest pain: diagnostic performance and radiation dose

    International Nuclear Information System (INIS)

    Kim, Jeong Su; Choo, Ki Seok; Jeong, Dong Wook

    2011-01-01

    Background With increasing awareness for radiation exposure, the study of diagnostic accuracy of coronary CT angiography (CCTA) with low radiation dose techniques is mandatory to both radiologist and clinician. Purpose To compare diagnostic performance and effective radiation dose between step-and-shoot prospectively ECG-gated and retrospectively ECG-gated with tube current modulation (TCM) CCTA using 128-slice multidetector computed tomography (MDCT). Material and Methods We retrospectively evaluated 60 patients who underwent CCTA with either of two different low-dose techniques using 128-slice MDCT (23 patients for step-and shoot-prospectively ECG-gated and 37 patients for retrospectively ECG-gated with TCM CCTA) followed by conventional coronary angiography. All coronary arteries and all segments thereof, except anatomical variants or small size (< 1.5 mm) ones, were included in analysis. Results In per-segment analysis, sensitivity, specificity, positive predictive value, and negative predictive value were 91/96%, 95/94%, 75/73%, and 98/99% for step-and-shoot prospectively ECG-gated and retrospectively ECG gated with TCM CCTA, respectively, relative to conventional coronary angiography. Effective radiation dose were 1.75 ± 0.83 mSv, 4.91 ± 1.71 mSv in the step-and-shoot prospectively ECG-gated and retrospectively ECG-gated with TCM CCTA groups, respectively. Conclusion The two low-radiation dose CCTA techniques using 128-slice MDCT yields comparable diagnostic performance for coronary artery disease in symptomatic patients with low heart rates

  11. Open TG-GATEs: a large-scale toxicogenomics database

    Science.gov (United States)

    Igarashi, Yoshinobu; Nakatsu, Noriyuki; Yamashita, Tomoya; Ono, Atsushi; Ohno, Yasuo; Urushidani, Tetsuro; Yamada, Hiroshi

    2015-01-01

    Toxicogenomics focuses on assessing the safety of compounds using gene expression profiles. Gene expression signatures from large toxicogenomics databases are expected to perform better than small databases in identifying biomarkers for the prediction and evaluation of drug safety based on a compound's toxicological mechanisms in animal target organs. Over the past 10 years, the Japanese Toxicogenomics Project consortium (TGP) has been developing a large-scale toxicogenomics database consisting of data from 170 compounds (mostly drugs) with the aim of improving and enhancing drug safety assessment. Most of the data generated by the project (e.g. gene expression, pathology, lot number) are freely available to the public via Open TG-GATEs (Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System). Here, we provide a comprehensive overview of the database, including both gene expression data and metadata, with a description of experimental conditions and procedures used to generate the database. Open TG-GATEs is available from http://toxico.nibio.go.jp/english/index.html. PMID:25313160

  12. Dedicated radial ventriculography pigtail catheter

    Energy Technology Data Exchange (ETDEWEB)

    Vidovich, Mladen I., E-mail: miv@uic.edu

    2013-05-15

    A new dedicated cardiac ventriculography catheter was specifically designed for radial and upper arm arterial access approach. Two catheter configurations have been developed to facilitate retrograde crossing of the aortic valve and to conform to various subclavian, ascending aortic and left ventricular anatomies. The “short” dedicated radial ventriculography catheter is suited for horizontal ascending aortas, obese body habitus, short stature and small ventricular cavities. The “long” dedicated radial ventriculography catheter is suited for vertical ascending aortas, thin body habitus, tall stature and larger ventricular cavities. This new design allows for improved performance, faster and simpler insertion in the left ventricle which can reduce procedure time, radiation exposure and propensity for radial artery spasm due to excessive catheter manipulation. Two different catheter configurations allow for optimal catheter selection in a broad range of patient anatomies. The catheter is exceptionally stable during contrast power injection and provides equivalent cavity opacification to traditional femoral ventriculography catheter designs.

  13. Fat-suppressed volume isotropic turbo spin echo acquisition (VISTA) MR imaging in evaluating radial and root tears of the meniscus: Focusing on reader-defined axial reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Daekeon; Lee, Young Han; Kim, Sungjun; Song, Ho-Taek; Suh, Jin-Suck, E-mail: jss@yuhs.ac

    2013-12-01

    Objective: To assess the diagnostic value of fat-suppressed (FS) three-dimensional (3D) volume isotropic turbo spin echo acquisition (VISTA) imaging in detecting radial and root tears of the meniscus, including the reader-defined reformatted axial (RDA) plane. Materials and methods: Twenty-three patients with arthroscopically confirmed radial or root tears of the meniscus underwent magnetic resonance imaging (MRI) with 2D and FS 3D VISTA sequences. MRIs were reviewed independently by two musculoskeletal radiologists blinded to the arthroscopic findings. Sensitivity, specificity, accuracy, and interobserver agreement were calculated for radial and root tears. Both radiologists reported confidence scale for the presence of meniscal tears in 2D axial imaging, 3D axial imaging, and RDA imaging, based on a five-point scale. Wilcoxon's signed rank test was used to compare confidence scale. Results: The sensitivity, specificity, and accuracy of FS 3D VISTA MR imaging versus 2D MR imaging were as follows: 96%, 96%, and 96% versus 91%, 91%, and 91%, respectively in reader 1, and 96%, 96%, and 96% versus 83%, 91%, and 87%, respectively, in reader 2. Interobserver agreement for detecting meniscal tears was excellent (κ = 1) with FS 3D VISTA. The confidence scale was significantly higher for 3D axial images than 2D imaging (p = 0.03) and significantly higher in RDA images than 3D axial image in detecting radial and root tears. Conclusions: FS 3D VISTA had a better diagnostic performance in evaluating radial and root tears of the meniscus. The reader-defined reformatted axial plane obtained from FS 3D VISTA MR imaging is useful in detecting radial and root tears of the meniscus.

  14. Determination of the radial distribution function with the tomographic atom probe

    International Nuclear Information System (INIS)

    Heinrich, A.; Al-Kassab, T.

    2004-01-01

    Full text: An algorithm for the determination of the radial distribution function (RDF) and the partial radial distribution function from tomographic atom probe data is introduced and some examples for its application are discussed. Homogeneous distribution of atoms can easily be determined from measured data. Using our algorithm, the lattice of simple cubic structures may be estimated solely from TAP data. The results for bcc and fcc alloys and metals will be presented. By evaluating the vicinity of each atom, information about order phenomena in multi component alloy can be retrieved including short range order. The advantage of determining the (partial) radial distribution functions for any sample with our algorithm is that all data can be derived by one single experiment whereas all other methods of determining a pRDF require one experiment for each pRDF. (author)

  15. Effects of Radial Reflector Composition on Core Reactivity and Peak Power

    International Nuclear Information System (INIS)

    Park, Sang Yoon; Lee, Kyung Hoon; Song, Jae Seung

    2007-10-01

    The effects of radial SA-240 alloy shroud on core reactivity and peak power are evaluated. The existence of radial SA-240 alloy shroud makes reflector water volume decrease, so the thermal absorption cross section of radial reflector is lower than without SA-240 alloy shroud case. Finally, the cycle length is increased from 788 EFPD to 845 EFPD and the peak power is decreased from 1.66 to 1.49. In the case of without SA-240 alloy shroud, a new core loading pattern search has been performed. For the guarantee of the same equivalent cycle length of with SA-240 alloy shroud case, the enrichment of U-235 should be increased from 4.22 w/o to 4.68 w/o. The nuclear key safety parameters of new core loading pattern have been calculated and recorded for the future

  16. Effects of Radial Reflector Composition on Core Reactivity and Peak Power

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Lee, Kyung Hoon; Song, Jae Seung

    2007-10-15

    The effects of radial SA-240 alloy shroud on core reactivity and peak power are evaluated. The existence of radial SA-240 alloy shroud makes reflector water volume decrease, so the thermal absorption cross section of radial reflector is lower than without SA-240 alloy shroud case. Finally, the cycle length is increased from 788 EFPD to 845 EFPD and the peak power is decreased from 1.66 to 1.49. In the case of without SA-240 alloy shroud, a new core loading pattern search has been performed. For the guarantee of the same equivalent cycle length of with SA-240 alloy shroud case, the enrichment of U-235 should be increased from 4.22 w/o to 4.68 w/o. The nuclear key safety parameters of new core loading pattern have been calculated and recorded for the future.

  17. Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves.

    Science.gov (United States)

    Torrent, Daniel; Sánchez-Dehesa, José

    2009-08-07

    We demonstrate that metamaterials with anisotropic properties can be used to develop a new class of periodic structures that has been named radial wave crystals. They can be sonic or photonic, and wave propagation along the radial directions is obtained through Bloch states like in usual sonic or photonic crystals. The band structure of the proposed structures can be tailored in a large amount to get exciting novel wave phenomena. For example, it is shown that acoustical cavities based on radial sonic crystals can be employed as passive devices for beam forming or dynamically orientated antennas for sound localization.

  18. Usefulness of electrocardiography-gated dual-source computed tomography for evaluating morphological features of the ventricles in children with complex congenital heart defects

    International Nuclear Information System (INIS)

    Nakagawa, Motoo; Hara, Masaki; Sakurai, Keita; Asano, Miki; Shibamoto, Yuta; Ohashi, Kazuya

    2011-01-01

    Improved time resolution using dual-source computed tomography (DSCT) enabled adaptation of electrocardiography (ECG)-gated cardiac CT for children with a high heart rate. In this study, we evaluated the ability of ECG-gated DSCT (ECG-DSCT) to depict the morphological ventricular features in patients with congenital heart disease (CHD). Between August 2006 and March 2010, a total of 66 patients with CHD (aged 1 day to 9 years, median 11 months) were analyzed using ECG-DSCT. The type of anomaly was ventricular septal defect (VSD) in 32 (malaligned type in 20, perimembranous type in 7, supracristal type in 3, muscular type in 2), single ventricle (SV) in 11, and corrected transposition of the great arteries (cTGA) in 3. All patients underwent ECG-DSCT and ultrasonography (US). We evaluated the accuracy of diagnosing the type of VSD. For the cases with SV and cTGA, we evaluated the ability to depict anatomical ventricular features. In all 32 cases of VSD, DSCT could confirm the VSD defects, and the findings were identical to those obtained by US. Anatomical configurations of the SV and cTGA were correctly diagnosed, similar to that on US. Our study suggests that ECG-DSCT can clearly depict the configuration of ventricles. (author)

  19. Double optical gating

    Science.gov (United States)

    Gilbertson, Steve

    The observation and control of dynamics in atomic and molecular targets requires the use of laser pulses with duration less than the characteristic timescale of the process which is to be manipulated. For electron dynamics, this time scale is on the order of attoseconds where 1 attosecond = 10 -18 seconds. In order to generate pulses on this time scale, different gating methods have been proposed. The idea is to extract or "gate" a single pulse from an attosecond pulse train and switch off all the other pulses. While previous methods have had some success, they are very difficult to implement and so far very few labs have access to these unique light sources. The purpose of this work is to introduce a new method, called double optical gating (DOG), and to demonstrate its effectiveness at generating high contrast single isolated attosecond pulses from multi-cycle lasers. First, the method is described in detail and is investigated in the spectral domain. The resulting attosecond pulses produced are then temporally characterized through attosecond streaking. A second method of gating, called generalized double optical gating (GDOG), is also introduced. This method allows attosecond pulse generation directly from a carrier-envelope phase un-stabilized laser system for the first time. Next the methods of DOG and GDOG are implemented in attosecond applications like high flux pulses and extreme broadband spectrum generation. Finally, the attosecond pulses themselves are used in experiments. First, an attosecond/femtosecond cross correlation is used for characterization of spatial and temporal properties of femtosecond pulses. Then, an attosecond pump, femtosecond probe experiment is conducted to observe and control electron dynamics in helium for the first time.

  20. Aneurisma idiopático de artéria radial: relato de caso Idiopathic radial artery aneurysm: case report

    Directory of Open Access Journals (Sweden)

    Luiz Ernani Meira Jr.

    2011-12-01

    Full Text Available Os aneurismas da artéria radial são extremamente raros. Em sua maioria, consistem de pseudoaneurismas pós-traumáticos. Os aneurismas da artéria radial verdadeiros podem ser idiopáticos, congênitos, pós-estenóticos ou associados a patologias, tais como vasculites e doenças do tecido conjuntivo. Foi relatado um caso de aneurisma idiopático de artéria radial em uma criança de três anos, que, após completa investigação diagnóstica complementar, foi submetida à ressecção cirúrgica.Radial artery aneurysms are extremely rare. Post-traumatic pseudoaneurysms are the vast majority. True radial artery aneurysms can be idiopathic, congenital, poststenotic, or associated with some pathologies, such as vasculitis and conjunctive tissue diseases. We report a case of an idiopathic aneurysm of the radial artery in a three-year-old child who was submitted to surgical resection after a complete diagnostic approach.

  1. Multi detector computed tomography (MDCT) of the aortic root; ECG-gated verses non-ECG-gated examinations

    International Nuclear Information System (INIS)

    Kristiansen, Joanna; Guenther, Anne; Aalokken, Trond Mogens; Andersen, Rune

    2011-01-01

    Purpose: Motion artifacts may degrade a conventional CT examination of the ascending aorta and hinder accurate diagnosis. We quantitatively compared retrospectively electrocardiographic (ECG) -gated multi detector computed tomography (MDCT) with non-ECG-gated MDCT in order to demonstrate whether or not one of the methods should be preferred. Method: The study included seventeen patients with surgically reconstructed aortic root and reimplanted coronary arteries. All patients had undergone both non-gated MDCT and retrospectively ECG-gated MDCT employing a stringently modulated tube current with single phase image reconstruction. The incidence of motion artifacts in the left main coronary artery (LM), proximal right coronary artery (RCA), and aortic root and ascending aorta were rated using a four point scale. The effective dose for each scan was calculated and normalized to a 15 cm scan length. Statistical analysis of motion artifacts and radiation dose was performed using Wilcoxon matched pairs signed rank sum test. Results: A significant reduction in motion artifacts was found in all three vessels in images from the retrospectively ECG-gated scans (LM: P = 0.005, RCA: P = 0.015, aorta: P = 0.003). The mean normalized effective radiation dose was 3.69 mSv (±1.03) for the non-ECG-gated scans and 16.37 mSv (±2.53) for the ECG-gated scans. Conclusion: Retrospective ECG-gating with single phase reconstruction significantly reduces the incidence of motion artifacts in the aortic root and the proximal portion of the coronary arteries but at the expense of a fourfold increase in radiation dose.

  2. An integrated bioimpedance—ECG gating technique for respiratory and cardiac motion compensation in cardiac PET

    International Nuclear Information System (INIS)

    Koivumäki, Tuomas; Nekolla, Stephan G; Fürst, Sebastian; Loher, Simone; Schwaiger, Markus; Vauhkonen, Marko; Hakulinen, Mikko A

    2014-01-01

    Respiratory motion may degrade image quality in cardiac PET imaging. Since cardiac PET studies often involve cardiac gating by ECG, a separate respiratory monitoring system is required increasing the logistic complexity of the examination, in case respiratory gating is also needed. Thus, we investigated the simultaneous acquisition of both respiratory and cardiac gating signals using II limb lead mimicking electrode configuration during cardiac PET scans of 11 patients. In addition to conventional static and ECG-gated images, bioimpedance technique was utilized to generate respiratory- and dual-gated images. The ability of the bioimpedance technique to monitor intrathoracic respiratory motion was assessed estimating cardiac displacement between end-inspiration and -expiration. The relevance of dual gating was evaluated in left ventricular volume and myocardial wall thickness measurements. An average 7.6  ±  3.3 mm respiratory motion was observed in the study population. Dual gating showed a small but significant increase (4 ml, p = 0.042) in left ventricular myocardial volume compared to plain cardiac gating. In addition, a thinner myocardial wall was observed in dual-gated images (9.3  ±  1.3 mm) compared to cardiac-gated images (11.3  ±  1.3 mm, p = 0.003). This study shows the feasibility of bioimpedance measurements for dual gating in a clinical setting. The method enables simultaneous acquisition of respiratory and cardiac gating signals using a single device with standard ECG electrodes. (paper)

  3. Ulnar nerve entrapment complicating radial head excision

    Directory of Open Access Journals (Sweden)

    Kevin Parfait Bienvenu Bouhelo-Pam

    Full Text Available Introduction: Several mechanisms are involved in ischemia or mechanical compression of ulnar nerve at the elbow. Presentation of case: We hereby present the case of a road accident victim, who received a radial head excision for an isolated fracture of the radial head and complicated by onset of cubital tunnel syndrome. This outcome could be the consequence of an iatrogenic valgus of the elbow due to excision of the radial head. Hitherto the surgical treatment of choice it is gradually been abandoned due to development of radial head implant arthroplasty. However, this management option is still being performed in some rural centers with low resources. Discussion: The radial head plays an important role in the stability of the elbow and his iatrogenic deformity can be complicated by cubital tunnel syndrome. Conclusion: An ulnar nerve release was performed with favorable outcome. Keywords: Cubital tunnel syndrome, Peripheral nerve palsy, Radial head excision, Elbow valgus

  4. Clinical application of ECG-gated 256-slice CT angiography for diagnosis of congenital heart disease

    International Nuclear Information System (INIS)

    Tian Xinhua; Liu Jianhua; Gong Tingting; Geng Lili; Sun Yong

    2011-01-01

    Objective: To investigate the clinical application of ECG-gated 256-slice CT angiography for diagnosis of congenital heart disease, and to evaluate the relationship of the image quality and radiation dose between prospective ECG-gated and retrospective ECG-gated cardiac CT angiography (CTA). Methods: Sixty patients who doubt congenital heart disease underwent cardiac CTA, and they were randomly divided into two groups. Thirty patients in group A underwent prospective ECG-gated cardiac CTA, and thirty patients in group B underwent retrospective ECG-gated cardiac CTA. Then the homogeneous enhancement of vascular structures, stair-step artifact, overall image quality and radiation dose were evaluated. Results: The homogeneous enhancement of vascular structures were 2.8±0.3 and 2.7±0.6, respectively, in two groups; and there was no statistical significance (P>0.05). The stair-step artifact were 3.0±0.9 and 3.1±0.9, respectively, in two groups; and there was also no statistical significance (P>0.05). The overall image quality were 3.0±0.8 and 3.1±0.9, respectively, in two group; and there was statistical significance (P>0.05). However, the effective dose were (5.24±0.52) mSv and (16.68±1.49) mSv, respectively, in two groups; and there was statistical significance (P<0.001). Conclusion: Compared with retrospective ECG-gated cardiac CTA, prospective ECG-gated cardiac CTA can reduce radiation dose about 68.6% , while maintaining the image quality which could be made diagnosis. (authors)

  5. Comparison of myocardial function between post-menopausal and pre-menopausal women: evaluation by gated myocardial SPECT

    International Nuclear Information System (INIS)

    Hwang, K. H.; Choa, Won Sick; Yoon, Min Ki

    2005-01-01

    In addition to inhibiting coronary atherosclerosis, estrogen is expected to have protective effects on cardiac myocytes. We investigated the difference in myocardial functional parameters evaluated by gated myocardial SPECT after adenosine-stress between post-menopausal and pre-menopausal healthy women. This study included 22 healthy post-menopausal women (mean age: 53.0 yr) and 20 pre-menopausal women (mean age: 43.0 yr) who performed Tc-99m tetrofosmin gated myocardial SPECT after adenosine-stress. Measured hemodynamic parameters, EDV, ESV, stroke volume, EF, cardiac output and cardiac index were compared between the two groups. For comparison, similar-aged two male groups with matched numbers were also studied. There was no significant difference in hemodynamic parameters. EDV, ESV, stroke volume, EF, or cardiac output between the post-menopausal and pre-menopausal women. However, post-menopausal women have a smaller cardiac index (mean: 1.95 L/min/m2 vs 2.20 L/min/m2; p=0.045) and adenosine-induced HR increase (mean : 80.5/min vs 89.7/min ; p=0.03), compared to the pre-menopausal women. On the contrary, the two male groups of the same age range and numbers with the women groups showed no significant difference in any myocardial parameters. These results suggest that menopause may be correlated with reduced increase in cardiac index and HR increase after adenosine-stress

  6. Comparison of myocardial function between post-menopausal and pre-menopausal women: evaluation by gated myocardial SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, K. H.; Choa, Won Sick; Yoon, Min Ki [Gachon Medical School, Gil Hospital, Incheon (Korea, Republic of)

    2005-07-01

    In addition to inhibiting coronary atherosclerosis, estrogen is expected to have protective effects on cardiac myocytes. We investigated the difference in myocardial functional parameters evaluated by gated myocardial SPECT after adenosine-stress between post-menopausal and pre-menopausal healthy women. This study included 22 healthy post-menopausal women (mean age: 53.0 yr) and 20 pre-menopausal women (mean age: 43.0 yr) who performed Tc-99m tetrofosmin gated myocardial SPECT after adenosine-stress. Measured hemodynamic parameters, EDV, ESV, stroke volume, EF, cardiac output and cardiac index were compared between the two groups. For comparison, similar-aged two male groups with matched numbers were also studied. There was no significant difference in hemodynamic parameters. EDV, ESV, stroke volume, EF, or cardiac output between the post-menopausal and pre-menopausal women. However, post-menopausal women have a smaller cardiac index (mean: 1.95 L/min/m2 vs 2.20 L/min/m2; p=0.045) and adenosine-induced HR increase (mean : 80.5/min vs 89.7/min ; p=0.03), compared to the pre-menopausal women. On the contrary, the two male groups of the same age range and numbers with the women groups showed no significant difference in any myocardial parameters. These results suggest that menopause may be correlated with reduced increase in cardiac index and HR increase after adenosine-stress.

  7. Orthogonal bases of radial functions for charge density refinements

    International Nuclear Information System (INIS)

    Restori, R.

    1990-01-01

    Charge density determination from X-ray measurements necessitates the evaluation of the Fourier-Bessel transforms of the radial functions used to expand the charge density. Analytical expressions are given here for four sets of orthogonal functions which can substitute for the 'traditional exponential functions' set in least-squares refinements. (orig.)

  8. Estimation of the radial force using a disturbance force observer for a magnetically levitated centrifugal blood pump.

    Science.gov (United States)

    Pai, C N; Shinshi, T; Shimokohbe, A

    2010-01-01

    Evaluation of the hydraulic forces in a magnetically levitated (maglev) centrifugal blood pump is important from the point of view of the magnetic bearing design. Direct measurement is difficult due to the absence of a rotor shaft, and computational fluid dynamic analysis demands considerable computational resource and time. To solve this problem, disturbance force observers were developed, using the radial controlled magnetic bearing of a centrifugal blood pump, to estimate the radial forces on the maglev impeller. In order to design the disturbance observer, the radial dynamic characteristics of a maglev impeller were evaluated under different working conditions. It was observed that the working fluid affects the additional mass and damping, while the rotational speed affects the damping and stiffness of the maglev system. Based on these results, disturbance force observers were designed and implemented. The designed disturbance force observers present a bandwidth of 45 Hz. In non-pulsatile conditions, the magnitude of the estimated radial thrust increases in proportion to the flowrate, and the rotational speed has little effect on the force direction. At 5 l/min against 100 mmHg, the estimated radial thrust is 0.95 N. In pulsatile conditions, this method was capable of estimating the pulsatile radial thrust with good response.

  9. Video-coaching as biofeedback tool to improve gated treatments. Possibilities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Cossmann, Peter H. [Medtech Consulting Cossmann, Wettingen (Switzerland); Private Univ. im Fuerstentum Liechtenstein, Triesen (Liechtenstein)

    2012-11-01

    For respiratory gated radiotherapy the manufacturers of linear accelerators offer dedicated gating technologies. The video-based Varian RPM Gating system (Varian Medical Systems, Palo Alto/CA, USA) includes in a standard configuration a support tool for regular breathing called audiocoaching. As this approach has limitations regarding direct control of the patient's breathing due to a missing feedback, we designed an additional tool offering videocoaching. In order to evaluate the impact of this additional functionality, we measured parameters defining the image quality of 4D-CT data as well as the treatment duration which is mainly influenced by the patient's limited ability to achieve a stable breathing pattern. (orig.)

  10. Double-gated spectral snapshots for biomolecular fluorescence

    International Nuclear Information System (INIS)

    Nakamura, Ryosuke; Hamada, Norio; Ichida, Hideki; Tokunaga, Fumio; Kanematsu, Yasuo

    2007-01-01

    A versatile method to take femtosecond spectral snapshots of fluorescence has been developed based on a double gating technique in the combination of an optical Kerr gate and an image intensifier as an electrically driven gate set in front of a charge-coupled device detector. The application of a conventional optical-Kerr-gate method is limited to molecules with the short fluorescence lifetime up to a few hundred picoseconds, because long-lifetime fluorescence itself behaves as a source of the background signal due to insufficiency of the extinction ratio of polarizers employed for the Kerr gate. By using the image intensifier with the gate time of 200 ps, we have successfully suppressed the background signal and overcome the application limit of optical-Kerr-gate method. The system performance has been demonstrated by measuring time-resolved fluorescence spectra for laser dye solution and the riboflavin solution as a typical sample of biomolecule

  11. Self-gated golden-angle spiral 4D flow MRI.

    Science.gov (United States)

    Bastkowski, Rene; Weiss, Kilian; Maintz, David; Giese, Daniel

    2018-01-17

    The acquisition of 4D flow magnetic resonance imaging (MRI) in cardiovascular applications has recently made large progress toward clinical feasibility. The need for simultaneous compensation of cardiac and breathing motion still poses a challenge for widespread clinical use. Especially, breathing motion, addressed by gating approaches, can lead to unpredictable and long scan times. The current work proposes a time-efficient self-gated 4D flow sequence that exploits up to 100% of the acquired data and operates at a predictable scan time. A self-gated golden-angle spiral 4D flow sequence was implemented and tested in 10 volunteers. Data were retrospectively binned into respiratory and cardiac states and reconstructed using a conjugate-gradient sensitivity encoding reconstruction. Net flow curves, stroke volumes, and peak flow in the aorta were evaluated and compared to a conventional Cartesian 4D flow sequence. Additionally, flow quantities reconstructed from 50% to 100% of the self-gated 4D flow data were compared. Self-gating signals for respiratory and cardiac motion were extracted for all volunteers. Flow quantities were in agreement with the standard Cartesian scan. Mean differences in stroke volumes and peak flow of 7.6 ± 11.5 and 4.0 ± 79.9 mL/s were obtained, respectively. By retrospectively increasing breathing navigator efficiency while decreasing acquisition times (15:06-07:33 minutes), 50% of the acquired data were sufficient to measure stroke volumes with errors under 9.6 mL. The feasibility to acquire respiratory and cardiac self-gated 4D flow data at a predictable scan time was demonstrated. Magn Reson Med, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  12. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  13. SU-E-T-350: Verification of Gating Performance of a New Elekta Gating Solution: Response Kit and Catalyst System

    Energy Technology Data Exchange (ETDEWEB)

    Xie, X; Cao, D; Housley, D; Mehta, V; Shepard, D [Swedish Cancer Institute, Seattle, WA (United States)

    2014-06-01

    Purpose: In this work, we have tested the performance of new respiratory gating solutions for Elekta linacs. These solutions include the Response gating and the C-RAD Catalyst surface mapping system.Verification measurements have been performed for a series of clinical cases. We also examined the beam on latency of the system and its impact on delivery efficiency. Methods: To verify the benefits of tighter gating windows, a Quasar Respiratory Motion Platform was used. Its vertical-motion plate acted as a respiration surrogate and was tracked by the Catalyst system to generate gating signals. A MatriXX ion-chamber array was mounted on its longitudinal-moving platform. Clinical plans are delivered to a stationary and moving Matrix array at 100%, 50% and 30% gating windows and gamma scores were calculated comparing moving delivery results to the stationary result. It is important to note that as one moves to tighter gating windows, the delivery efficiency will be impacted by the linac's beam-on latency. Using a specialized software package, we generated beam-on signals of lengths of 1000ms, 600ms, 450ms, 400ms, 350ms and 300ms. As the gating windows get tighter, one can expect to reach a point where the dose rate will fall to nearly zero, indicating that the gating window is close to beam-on latency. A clinically useful gating window needs to be significantly longer than the latency for the linac. Results: As expected, the use of tighter gating windows improved delivery accuracy. However, a lower limit of the gating window, largely defined by linac beam-on latency, exists at around 300ms. Conclusion: The Response gating kit, combined with the C-RAD Catalyst, provides an effective solution for respiratorygated treatment delivery. Careful patient selection, gating window design, even visual/audio coaching may be necessary to ensure both delivery quality and efficiency. This research project is funded by Elekta.

  14. Influence of Aripiprazole, Risperidone, and Amisulpride on Sensory and Sensorimotor Gating in Healthy ‘Low and High Gating' Humans and Relation to Psychometry

    Science.gov (United States)

    Csomor, Philipp A; Preller, Katrin H; Geyer, Mark A; Studerus, Erich; Huber, Theodor; Vollenweider, Franz X

    2014-01-01

    Despite advances in the treatment of schizophrenia spectrum disorders with atypical antipsychotics (AAPs), there is still need for compounds with improved efficacy/side-effect ratios. Evidence from challenge studies suggests that the assessment of gating functions in humans and rodents with naturally low-gating levels might be a useful model to screen for novel compounds with antipsychotic properties. To further evaluate and extend this translational approach, three AAPs were examined. Compounds without antipsychotic properties served as negative control treatments. In a placebo-controlled, within-subject design, healthy males received either single doses of aripiprazole and risperidone (n=28), amisulpride and lorazepam (n=30), or modafinil and valproate (n=30), and placebo. Prepulse inhibiton (PPI) and P50 suppression were assessed. Clinically associated symptoms were evaluated using the SCL-90-R. Aripiprazole, risperidone, and amisulpride increased P50 suppression in low P50 gaters. Lorazepam, modafinil, and valproate did not influence P50 suppression in low gaters. Furthermore, low P50 gaters scored significantly higher on the SCL-90-R than high P50 gaters. Aripiprazole increased PPI in low PPI gaters, whereas modafinil and lorazepam attenuated PPI in both groups. Risperidone, amisulpride, and valproate did not influence PPI. P50 suppression in low gaters appears to be an antipsychotic-sensitive neurophysiologic marker. This conclusion is supported by the association of low P50 suppression and higher clinically associated scores. Furthermore, PPI might be sensitive for atypical mechanisms of antipsychotic medication. The translational model investigating differential effects of AAPs on gating in healthy subjects with naturally low gating can be beneficial for phase II/III development plans by providing additional information for critical decision making. PMID:24801767

  15. Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating

    Science.gov (United States)

    Kim, Dorothy M.; Nimigean, Crina M.

    2016-01-01

    Voltage-gated potassium channels play a fundamental role in the generation and propagation of the action potential. The discovery of these channels began with predictions made by early pioneers, and has culminated in their extensive functional and structural characterization by electrophysiological, spectroscopic, and crystallographic studies. With the aid of a variety of crystal structures of these channels, a highly detailed picture emerges of how the voltage-sensing domain reports changes in the membrane electric field and couples this to conformational changes in the activation gate. In addition, high-resolution structural and functional studies of K+ channel pores, such as KcsA and MthK, offer a comprehensive picture on how selectivity is achieved in K+ channels. Here, we illustrate the remarkable features of voltage-gated potassium channels and explain the mechanisms used by these machines with experimental data. PMID:27141052

  16. Audio-visual biofeedback for respiratory-gated radiotherapy: Impact of audio instruction and audio-visual biofeedback on respiratory-gated radiotherapy

    International Nuclear Information System (INIS)

    George, Rohini; Chung, Theodore D.; Vedam, Sastry S.; Ramakrishnan, Viswanathan; Mohan, Radhe; Weiss, Elisabeth; Keall, Paul J.

    2006-01-01

    Purpose: Respiratory gating is a commercially available technology for reducing the deleterious effects of motion during imaging and treatment. The efficacy of gating is dependent on the reproducibility within and between respiratory cycles during imaging and treatment. The aim of this study was to determine whether audio-visual biofeedback can improve respiratory reproducibility by decreasing residual motion and therefore increasing the accuracy of gated radiotherapy. Methods and Materials: A total of 331 respiratory traces were collected from 24 lung cancer patients. The protocol consisted of five breathing training sessions spaced about a week apart. Within each session the patients initially breathed without any instruction (free breathing), with audio instructions and with audio-visual biofeedback. Residual motion was quantified by the standard deviation of the respiratory signal within the gating window. Results: Audio-visual biofeedback significantly reduced residual motion compared with free breathing and audio instruction. Displacement-based gating has lower residual motion than phase-based gating. Little reduction in residual motion was found for duty cycles less than 30%; for duty cycles above 50% there was a sharp increase in residual motion. Conclusions: The efficiency and reproducibility of gating can be improved by: incorporating audio-visual biofeedback, using a 30-50% duty cycle, gating during exhalation, and using displacement-based gating

  17. Simulation of 1.5-mm-thick and 15-cm-diameter gated silicon drift X-ray detector operated with a single high-voltage source

    Science.gov (United States)

    Matsuura, Hideharu

    2015-04-01

    High-resolution silicon X-ray detectors with a large active area are required for effectively detecting traces of hazardous elements in food and soil through the measurement of the energies and counts of X-ray fluorescence photons radially emitted from these elements. The thicknesses and areas of commercial silicon drift detectors (SDDs) are up to 0.5 mm and 1.5 cm2, respectively. We describe 1.5-mm-thick gated SDDs (GSDDs) that can detect photons with energies up to 50 keV. We simulated the electric potential distributions in GSDDs with a Si thickness of 1.5 mm and areas from 0.18 to 168 cm2 at a single high reverse bias. The area of a GSDD could be enlarged simply by increasing all the gate widths by the same multiple, and the capacitance of the GSDD remained small and its X-ray count rate remained high.

  18. Anomalies of radial and ulnar arteries

    Directory of Open Access Journals (Sweden)

    Rajani Singh

    Full Text Available Abstract During dissection conducted in an anatomy department of the right upper limb of the cadaver of a 70-year-old male, both origin and course of the radial and ulnar arteries were found to be anomalous. After descending 5.5 cm from the lower border of the teres major, the brachial artery anomalously bifurcated into a radial artery medially and an ulnar artery laterally. In the arm, the ulnar artery lay lateral to the median nerve. It followed a normal course in the forearm. The radial artery was medial to the median nerve in the arm and then, at the level of the medial epicondyle, it crossed from the medial to the lateral side of the forearm, superficial to the flexor muscles. The course of the radial artery was superficial and tortuous throughout the arm and forearm. The variations of radial and ulnar arteries described above were associated with anomalous formation and course of the median nerve in the arm. Knowledge of neurovascular anomalies are important for vascular surgeons and radiologists.

  19. Variations in the usage and composition of a radial cocktail during radial access coronary angiography procedures.

    LENUS (Irish Health Repository)

    Pate, G

    2011-10-01

    A survey was conducted of medication administered during radial artery cannulation for coronary angiography in 2009 in Ireland; responses were obtained for 15 of 20 centres, in 5 of which no radial access procedures were undertaken. All 10 (100%) centres which provided data used heparin and one or more anti-spasmodics; verapamil in 9 (90%), nitrate in 1 (10%), both in 2 (20%). There were significant variations in the doses used. Further work needs to be done to determine the optimum cocktail to prevent radial artery injury following coronary angiography.

  20. Patient training in respiratory-gated radiotherapy

    International Nuclear Information System (INIS)

    Kini, Vijay R.; Vedam, Subrahmanya S.; Keall, Paul J.; Patil, Sumukh; Chen, Clayton; Mohan, Radhe

    2003-01-01

    Respiratory gating is used to counter the effects of organ motion during radiotherapy for chest tumors. The effects of variations in patient breathing patterns during a single treatment and from day to day are unknown. We evaluated the feasibility of using patient training tools and their effect on the breathing cycle regularity and reproducibility during respiratory-gated radiotherapy. To monitor respiratory patterns, we used a component of a commercially available respiratory-gated radiotherapy system (Real Time Position Management (RPM) System, Varian Oncology Systems, Palo Alto, CA 94304). This passive marker video tracking system consists of reflective markers placed on the patient's chest or abdomen, which are detected by a wall-mounted video camera. Software installed on a PC interfaced to this camera detects the marker motion digitally and records it. The marker position as a function of time serves as the motion signal that may be used to trigger imaging or treatment. The training tools used were audio prompting and visual feedback, with free breathing as a control. The audio prompting method used instructions to 'breathe in' or 'breathe out' at periodic intervals deduced from patients' own breathing patterns. In the visual feedback method, patients were shown a real-time trace of their abdominal wall motion due to breathing. Using this, they were asked to maintain a constant amplitude of motion. Motion traces of the abdominal wall were recorded for each patient for various maneuvers. Free breathing showed a variable amplitude and frequency. Audio prompting resulted in a reproducible frequency; however, the variability and the magnitude of amplitude increased. Visual feedback gave a better control over the amplitude but showed minor variations in frequency. We concluded that training improves the reproducibility of amplitude and frequency of patient breathing cycles. This may increase the accuracy of respiratory-gated radiation therapy

  1. Design of radial reinforcement for prestressed concrete containments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shen, E-mail: swang@bechtel.com [Bechtel Power Corporation, 5275 Westview Drive, BP2-2C3, Frederick, MD 21703 (United States); Munshi, Javeed A., E-mail: jamunshi@bechtel.com [Bechtel Power Corporation, 5275 Westview Drive, BP2-2C3, Frederick, MD 21703 (United States)

    2013-02-15

    Highlights: ► A rigorous formulae is proposed to calculate radial stress within prestressed concrete containments. ► The proposed method is validated by finite element analysis in an illustrative practical example. ► A partially prestressed condition is more critical than a fully prestressed condition for radial tension. ► Practical design consideration is provided for detailing of radial reinforcement. -- Abstract: Nuclear containments are critical components for safety of nuclear power plants. Failure can result in catastrophic safety consequences as a result of leakage of radiation. Prestressed concrete containments have been used in large nuclear power plants with significant design internal pressure. These containments are generally reinforced with prestressing tendons in the circumferential (hoop) and meridional (vertical) directions. The curvature effect of the tendons introduces radial tensile stresses in the concrete shell which are generally neglected in the design of such structures. It is assumed that such tensile radial stresses are small as such no radial reinforcement is provided for this purpose. But recent instances of significant delaminations in Crystal River Unit 3 in Florida have elevated the need for reevaluation of the radial tension issue in prestressed containment. Note that currently there are no well accepted industry standards for design and detailing of radial reinforcement. This paper discusses the issue of radial tension in prestressed cylindrical and dome shaped structures and proposes formulae to calculate radial stresses. A practical example is presented to illustrate the use of the proposed method which is then verified by using state of art finite element analysis. This paper also provides some practical design consideration for detailing of radial reinforcement in prestressed containments.

  2. Methods and apparatus for radially compliant component mounting

    Science.gov (United States)

    Bulman, David Edward [Cincinnati, OH; Darkins, Jr., Toby George; Stumpf, James Anthony [Columbus, IN; Schroder, Mark S [Greenville, SC; Lipinski, John Joseph [Simpsonville, SC

    2012-03-27

    Methods and apparatus for a mounting assembly for a liner of a gas turbine engine combustor are provided. The combustor includes a combustor liner and a radially outer annular flow sleeve. The mounting assembly includes an inner ring surrounding a radially outer surface of the liner and including a plurality of axially extending fingers. The mounting assembly also includes a radially outer ring coupled to the inner ring through a plurality of spacers that extend radially from a radially outer surface of the inner ring to the outer ring.

  3. SU-E-J-169: The Dosimetric and Temporal Effects of Respiratory-Gated Radiation Therapy in Lung Cancer Patients

    International Nuclear Information System (INIS)

    Rouabhi, O; Gross, B; Xia, J; Bayouth, J

    2015-01-01

    Purpose: To evaluate the dosimetric and temporal effects of high dose rate treatment mode for respiratory-gated radiation therapy in lung cancer patients. Methods: Treatment plans from five lung cancer patients (3 nongated (Group 1), 2 gated at 80EX-80IN (Group 2)) were retrospectively evaluated. The maximum tumor motions range from 6–12 mm. Using the same planning criteria, four new treatment plans, corresponding to four gating windows (20EX–20IN, 40EX–40IN, 60EX–60IN, and 80EX–80IN), were generated for each patient. Mean tumor dose (MTD), mean lung dose (MLD), and lung V20 were used to assess the dosimetric effects. A MATLAB algorithm was developed to compute treatment time by considering gantry rotation time, time to position collimator leaves, dose delivery time (scaled relative to the gating window), and communication overhead. Treatment delivery time for each plan was estimated using a 500 MU/min dose rate for the original plans and a 1500 MU/min dose rate for the gated plans. Results: Differences in MTD were less than 1Gy across plans for all five patients. MLD and lung V20 were on average reduced between −16.1% to −6.0% and −20.0% to −7.2%, respectively for non-gated plans when compared with the corresponding gated plans, and between − 5.8% to −4.2% and −7.0% to −5.4%, respectively for plans originally gated at 80EX–80IN when compared with the corresponding 20EX-20IN to 60EX– 60IN gated plans. Treatment delivery times of gated plans using high dose rate were reduced on average between −19.7% (−1.9min) to −27.2% (−2.7min) for originally non-gated plans and −15.6% (−0.9min) to −20.3% (−1.2min) for originally 80EX-80IN gated plans. Conclusion: Respiratory-gated radiation therapy in lung cancer patients can reduce lung toxicity, while maintaining tumor dose. Using a gated high-dose-rate treatment, delivery time comparable to non-gated normal-dose-rate treatment can be achieved. This research is supported by Siemens

  4. Rapid gated Thallium-201 perfusion SPECT - clinically feasible?

    International Nuclear Information System (INIS)

    Wadhwa, S.S.; Mansberg, R.; Fernandes, V.B.; Wilkinson, D.; Abatti, D.

    1998-01-01

    Full text: Standard dose energy window optimised Thallium-201 (Tl-201) SPECT has about half the counts of a standard dose from Technetium-99m Sestamibi (Tc99m-Mibi) gated perfusion SPECT. This study investigates the clinical feasibility of rapid energy window optimised Tl-201 gated perfusion SPECT (gated-TI) and compares quantitative left ventricular ejection fraction (LVEF) and visually assessed image quality for wall motion and thickening to analogous values obtained from Tc99m-Mibi gated perfusion SPECT (gated - mibi). Methods: We studied 60 patients with a rest gated Tl-201 SPECT (100 MBq, 77KeV peak, 34% window, 20 sec/projection) followed by a post stress gated Sestamibi SPECT (1GBq, 140KeV, 20% window, 20 sec/projection) separate dual isotope protocol. LVEF quantitation was performed using commercially available software (SPECTEF, General Electric). Visual grading of image quality for wall thickening and motion was performed using a three-point scale (excellent, good and poor). Results: LVEF for gated Tl-201 SPECT was 59.6 ± 12.0% (Mean ± SD). LVEF for gated Sestamibi SPECT was 60.4 ±11.4% (Mean ± SD). These were not significantly different (P=0.27, T-Test). There was good correlation (r=0.9) between gated-TI and gated-mibi LVEF values. The quality of gated-Tl images was ranked as excellent, good and poor in 12, 50 and 38% of the patients respectively. Image quality was better in gated-mibi SPECT, with ratings of 12, 62 and 26% respectively. Conclusion: Rapid gated Thallium-201 acquisition with energy window optimisation can be effectively performed on majority of patients and offers the opportunity to assess not only myocardial perfusion and function, as with Technetium based agents, but also viability using a single day one isotope protocol

  5. The highlighting of an internal combustion engine piston ring radial oscillations

    Directory of Open Access Journals (Sweden)

    Djallel ZEBBAR

    2016-06-01

    Full Text Available This paper deals with the definition of the lube-oil film thickness in the piston ring cylinder liner junction of an internal combustion engine. At first, a mathematical model for the estimation of the film thickness is established. It is used to point out the oscillating motion of the piston ring normal to the cylinder wall. For the first time, has been highlighted and analytically evaluated the oscillating behavior of the piston ring in its housing in the radial direction. Furthermore, it is demonstrated that the radial oscillations frequency is a function of piston ring stiffness, material and geometry.

  6. Retrospectively ECG-gated multi-detector row CT of the chest: does ECG-gating improve three-dimensional visualization of the bronchial tree?

    International Nuclear Information System (INIS)

    Schertler, T.; Wildermuth, S.; Willmann, J.K.; Crook, D.W.; Marincek, B.; Boehm, T.

    2004-01-01

    Purpose: To determine the impact of retrospectively ECG-gated multi-detector row CT (MDCT) on three-dimensional (3D) visualization of the bronchial tree and virtual bronchoscopy (VB) as compared to non-ECG-gated data acquisition. Materials and Methods: Contrast-enhanced retrospectively ECG-gated and non-ECG-gated MDCT of the chest was performed in 25 consecutive patients referred for assessment of coronary artery bypass grafts and pathology of the ascending aorta. ECG-gated MDCT data were reconstructed in diastole using an absolute reverse delay of -400 msec in all patients. In 10 patients additional reconstructions at -200 msec, -300 msec, and -500 msec prior to the R-wave were performed. Shaded surface display (SSD) and virtual bronchoscopy (VB) for visualization of the bronchial segments was performed with ECG-gated and non-ECG-gated MDCT data. The visualization of the bronchial tree underwent blinded scoring. Effective radiation dose and signal-to-noise ratio (SNR) for both techniques were compared. Results: There was no significant difference in visualizing single bronchial segments using ECG-gated compared to non-ECG-gated MDCT data. However, the total sum of scores for all bronchial segments visualized with non-ECG-gated MDCT was significantly higher compared to ECG-gated MDCT (P [de

  7. Assessment of sistemic ventricle function in corrected transposition of great arteries with Gated SPECT: comparison with radionuclide ventriculography

    International Nuclear Information System (INIS)

    Alexanderson, E.; Espinola, N.; Duenas, D.; Fermon, S.; Acevedo, C.; Martinez, C.

    2002-01-01

    Corrected trasposition of great arteries is a uncommon congenital heart disease where the right ventricle works as the sistemic one. QGS Gated SPECT program was designed to recognize the contours of left ventricle being a good method to evaluate left ventricle ejection fraction. The purpose of this study was to evaluate the right ventricle ejection fraction (RVEF) by gated SPECT using Tc-99mSestaMIBI in comparison with radionuclide ventriculography (RVG) in patients with corrected trasposition of great arteries. Methods: We performed gated SPECT and radionuclide ventriculography within 15 days of each other in 7 adults consecutive patients with the diagnosis of corrected trasposition of great arteries (5 men, 2 women; mean age 47 y). Gated tomographic data, including ventricular volumes and ejection fraction, were processed using QGS automatic algorithm, whereas equilibrium radionuclide ventriculography used standard techniques. Results: We found a good correlation between right ventricle ejection fraction obtained with Gated SPECT compared with equilibrium radionuclide ventriculography. The mean of the RVEF with Gated SPECT was 41.2% compared with 44.2% of RVEF with equilibrium radionuclide ventriculography. Both methods recognized abnormal RVEF in 5 patients ( 50%) with Gated SPECT and abnormal with RVG meanwhile another patient had normal RVEF with RVG and abnormal with Gated SPECT. Conclusion: Quantitative gated tomography, using Tc 99mSestaMIBI, has a good correlation with radionuclide ventriculography for the assessment of right ventricle ejection fraction in patients with corrected trasposition of great arteries. These results support the clinical use of this technique among these patients

  8. Edge-on gating effect in molecular wires.

    Science.gov (United States)

    Lo, Wai-Yip; Bi, Wuguo; Li, Lianwei; Jung, In Hwan; Yu, Luping

    2015-02-11

    This work demonstrates edge-on chemical gating effect in molecular wires utilizing the pyridinoparacyclophane (PC) moiety as the gate. Different substituents with varied electronic demands are attached to the gate to simulate the effect of varying gating voltages similar to that in field-effect transistor (FET). It was observed that the orbital energy level and charge carrier's tunneling barriers can be tuned by changing the gating group from strong electron acceptors to strong electron donors. The single molecule conductance and current-voltage characteristics of this molecular system are truly similar to those expected for an actual single molecular transistor.

  9. Comparison of gate dielectric plasma damage from plasma-enhanced atomic layer deposited and magnetron sputtered TiN metal gates

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Christopher J.; Neumann, Christopher M.; Vitale, Steven A., E-mail: steven.vitale@ll.mit.edu [Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 (United States)

    2015-07-28

    Fully depleted silicon-on-insulator transistors were fabricated using two different metal gate deposition mechanisms to compare plasma damage effects on gate oxide quality. Devices fabricated with both plasma-enhanced atomic-layer-deposited (PE-ALD) TiN gates and magnetron plasma sputtered TiN gates showed very good electrostatics and short-channel characteristics. However, the gate oxide quality was markedly better for PE-ALD TiN. A significant reduction in interface state density was inferred from capacitance-voltage measurements as well as a 1200× reduction in gate leakage current. A high-power magnetron plasma source produces a much higher energetic ion and vacuum ultra-violet (VUV) photon flux to the wafer compared to a low-power inductively coupled PE-ALD source. The ion and VUV photons produce defect states in the bulk of the gate oxide as well as at the oxide-silicon interface, causing higher leakage and potential reliability degradation.

  10. Computer model analysis of the radial artery pressure waveform.

    Science.gov (United States)

    Schwid, H A; Taylor, L A; Smith, N T

    1987-10-01

    Simultaneous measurements of aortic and radial artery pressures are reviewed, and a model of the cardiovascular system is presented. The model is based on resonant networks for the aorta and axillo-brachial-radial arterial system. The model chosen is a simple one, in order to make interpretation of the observed relationships clear. Despite its simplicity, the model produces realistic aortic and radial artery pressure waveforms. It demonstrates that the resonant properties of the arterial wall significantly alter the pressure waveform as it is propagated from the aorta to the radial artery. Although the mean and end-diastolic radial pressures are usually accurate estimates of the corresponding aortic pressures, the systolic pressure at the radial artery is often much higher than that of the aorta due to overshoot caused by the resonant behavior of the radial artery. The radial artery dicrotic notch is predominantly dependent on the axillo-brachial-radial arterial wall properties, rather than on the aortic valve or peripheral resistance. Hence the use of the radial artery dicrotic notch as an estimate of end systole is unreliable. The rate of systolic upstroke, dP/dt, of the radial artery waveform is a function of many factors, making it difficult to interpret. The radial artery waveform usually provides accurate estimates for mean and diastolic aortic pressures; for all other measurements it is an inadequate substitute for the aortic pressure waveform. In the presence of low forearm peripheral resistance the mean radial artery pressure may significantly underestimate the mean aortic pressure, as explained by a voltage divider model.

  11. Opening of the New Gate E - Final Closure of Gate C - New azur «B» type cern access card

    CERN Multimedia

    Relations with the Host States Service

    2004-01-01

    Gate E ("Charles de Gaulle Gate") to the Meyrin Site will be open, for those entitled to use it, from 1 November 2004. The opening of this Gate should contribute to relieving congestion not only on the Prévessin - RN84 and Meyrin Route border crossings but also at Gates A and B. As a result, Gate C will be closed indefinitely from 1 November 2004. Providing a direct link between the Meyrin Site and the French territory beyond the fenced part of the CERN site, Gate E is the subject of international agreements between CERN, Switzerland and France, on the basis of which the Director-General has issued the "Rules for the Use of Gate E", (document CERN/DSU-RH/12222 of 27 October 2004; see also the latest news in "publications" at http://www.cern.ch/relations/). The main provisions of these Rules are as follows: Gate E is open from Monday to Friday, except on official CERN holidays, from 7.30 a.m. to 9.30 a.m. for access into the site, and from 4.30 p.m. to 6.30 p.m. for passage out of the site. Persons are aut...

  12. Gate length variation effect on performance of gate-first self-aligned In₀.₅₃Ga₀.₄₇As MOSFET.

    Science.gov (United States)

    Mohd Razip Wee, Mohd F; Dehzangi, Arash; Bollaert, Sylvain; Wichmann, Nicolas; Majlis, Burhanuddin Y

    2013-01-01

    A multi-gate n-type In₀.₅₃Ga₀.₄₇As MOSFET is fabricated using gate-first self-aligned method and air-bridge technology. The devices with different gate lengths were fabricated with the Al2O3 oxide layer with the thickness of 8 nm. In this letter, impact of gate length variation on device parameter such as threshold voltage, high and low voltage transconductance, subthreshold swing and off current are investigated at room temperature. Scaling the gate length revealed good enhancement in all investigated parameters but the negative shift in threshold voltage was observed for shorter gate lengths. The high drain current of 1.13 A/mm and maximum extrinsic transconductance of 678 mS/mm with the field effect mobility of 364 cm(2)/Vs are achieved for the gate length and width of 0.2 µm and 30 µm, respectively. The source/drain overlap length for the device is approximately extracted about 51 nm with the leakage current in order of 10(-8) A. The results of RF measurement for cut-off and maximum oscillation frequency for devices with different gate lengths are compared.

  13. Gate Length Variation Effect on Performance of Gate-First Self-Aligned In0.53Ga0.47As MOSFET

    Science.gov (United States)

    Mohd Razip Wee, Mohd F.; Dehzangi, Arash; Bollaert, Sylvain; Wichmann, Nicolas; Majlis, Burhanuddin Y.

    2013-01-01

    A multi-gate n-type In0.53Ga0.47As MOSFET is fabricated using gate-first self-aligned method and air-bridge technology. The devices with different gate lengths were fabricated with the Al2O3 oxide layer with the thickness of 8 nm. In this letter, impact of gate length variation on device parameter such as threshold voltage, high and low voltage transconductance, subthreshold swing and off current are investigated at room temperature. Scaling the gate length revealed good enhancement in all investigated parameters but the negative shift in threshold voltage was observed for shorter gate lengths. The high drain current of 1.13 A/mm and maximum extrinsic transconductance of 678 mS/mm with the field effect mobility of 364 cm2/Vs are achieved for the gate length and width of 0.2 µm and 30µm, respectively. The source/drain overlap length for the device is approximately extracted about 51 nm with the leakage current in order of 10−8 A. The results of RF measurement for cut-off and maximum oscillation frequency for devices with different gate lengths are compared. PMID:24367548

  14. Gate-first integration of tunable work function metal gates of different thicknesses into high-k metal gates CMOS FinFETs for multi- VTh engineering

    KAUST Repository

    Hussain, Muhammad Mustafa; Smith, Casey Eben; Harris, Harlan Rusty; Young, Chadwin; Tseng, Hsinghuang; Jammy, Rajarao

    2010-01-01

    Gate-first integration of tunable work function metal gates of different thicknesses (320 nm) into high-k/metal gates CMOS FinFETs was demonstrated to achieve multiple threshold voltages (VTh) for 32-nm technology and beyond logic, memory, input/output, and system-on-a-chip applications. The fabricated devices showed excellent short-channel effect immunity (drain-induced barrier lowering ∼ 40 mV/V), nearly symmetric VTh, low T inv(∼ 1.4 nm), and high Ion(∼780μAμm) for N/PMOS without any intentional strain enhancement. © 2006 IEEE.

  15. Gate-first integration of tunable work function metal gates of different thicknesses into high-k metal gates CMOS FinFETs for multi- VTh engineering

    KAUST Repository

    Hussain, Muhammad Mustafa

    2010-03-01

    Gate-first integration of tunable work function metal gates of different thicknesses (320 nm) into high-k/metal gates CMOS FinFETs was demonstrated to achieve multiple threshold voltages (VTh) for 32-nm technology and beyond logic, memory, input/output, and system-on-a-chip applications. The fabricated devices showed excellent short-channel effect immunity (drain-induced barrier lowering ∼ 40 mV/V), nearly symmetric VTh, low T inv(∼ 1.4 nm), and high Ion(∼780μAμm) for N/PMOS without any intentional strain enhancement. © 2006 IEEE.

  16. Value of CSF gating for T2-weighted images of the temporal lobes and brain stem

    International Nuclear Information System (INIS)

    Enzmann, D.R.; O'Donohue, J.; Griffin, C.; Rubin, J.B.; Drace, J.; Wright, A.

    1987-01-01

    Ungated and CSF-gated long TR, long TE MR images of the temporal lobes, basal ganglia, and brain stem in health and disease were quantitatively compared. Twenty-five pair of images were evaluated for the following three parameters: signal-to-noise ratio (S/N), object contrast, and resolving power. Ungated sequences were performed in the same fashion as gated sequences for TR (TR = 2,000 msec, TE = 80 msec for ungated sequences; TR = 1,500-1,800 msec, TE = 80 msec for CSF-gated sequences). In both normal and pathologic brain tissue, the CSF-gated image was superior to the ungated image in object contrast and resolving power and equivalent in S/N. The major benefit of CSF gating was elimination of phase shift images arising from the basal cisterns and the third ventricle

  17. Motion management during IMAT treatment of mobile lung tumors-A comparison of MLC tracking and gated delivery

    DEFF Research Database (Denmark)

    Falk, Marianne; Pommer, Tobias; Keall, Paul

    2014-01-01

    Purpose:To compare real-time dynamic multileaf collimator (MLC) tracking, respiratory amplitude and phase gating, and no compensation for intrafraction motion management during intensity modulated arc therapy (IMAT). Methods: Motion management with MLC tracking and gating was evaluated for four...... tracking reduced the effects of the target movements, although the gated delivery showed a better dosimetric accuracy and enabled a larger reduction of the margins in some cases. MLC tracking did not prolong the treatment time compared to delivery with no motion compensation while gating had a considerably...... of the dosimetric error contributions showed that the gated delivery mainly had errors in target localization, while MLC tracking also had contributions from MLC leaf fitting and leaf adjustment. The average treatment time was about three times longer with gating compared to delivery with MLC tracking (that did...

  18. Respiratory and cardiac motion correction in dual gated PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fayad, Hadi; Monnier, Florian [LaTIM, INSERM, UMR 1101, Brest (France); Odille, Freedy; Felblinger, Jacques [INSERM U947, University of Nancy, Nancy (France); Lamare, Frederic [INCIA, UMR5287, CNRS, CHU Bordeaux, Bordeaux (France); Visvikis, Dimitris [LaTIM, INSERM, UMR 1101, Brest (France)

    2015-05-18

    Respiratory and cardiac motion in PET/MR imaging leads to reduced quantitative and qualitative image accuracy. Correction methodologies involve the use of double gated acquisitions which lead to low signal-to-noise ratio (SNR) and to issues concerning the combination of cardiac and respiratory frames. The objective of this work is to use a generalized reconstruction by inversion of coupled systems (GRICS) approach, previously used for PET/MR respiratory motion correction, combined with a cardiac phase signal and a reconstruction incorporated PET motion correction approach in order to reconstruct motion free images from dual gated PET acquisitions. The GRICS method consists of formulating parallel MRI in the presence of patient motion as a coupled inverse problem. Its resolution, using a fixed-point method, allows the reconstructed image to be improved using a motion model constructed from the raw MR data and two respiratory belts. GRICS obtained respiratory displacements are interpolated using the cardiac phase derived from an ECG to model simultaneous cardiac and respiratory motion. Three different volunteer datasets (4DMR acquisitions) were used for evaluation. GATE was used to simulate 4DPET datasets corresponding to the acquired 4DMR images. Simulated data were subsequently binned using 16 cardiac phases (M1) vs diastole only (M2), in combination with 8 respiratory amplitude gates. Respiratory and cardiac motion corrected PET images using either M1 or M2 were compared to respiratory only corrected images and evaluated in terms of SNR and contrast improvement. Significant visual improvements were obtained when correcting simultaneously for respiratory and cardiac motion (using 16 cardiac phase or diastole only) compared to respiratory motion only compensation. Results were confirmed by an associated increased SNR and contrast. Results indicate that using GRICS is an efficient tool for respiratory and cardiac motion correction in dual gated PET/MR imaging.

  19. Protected gates for topological quantum field theories

    International Nuclear Information System (INIS)

    Beverland, Michael E.; Pastawski, Fernando; Preskill, John; Buerschaper, Oliver; Koenig, Robert; Sijher, Sumit

    2016-01-01

    We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators — for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons, in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group

  20. Latest design of gate valves

    Energy Technology Data Exchange (ETDEWEB)

    Kurzhofer, U.; Stolte, J.; Weyand, M.

    1996-12-01

    Babcock Sempell, one of the most important valve manufacturers in Europe, has delivered valves for the nuclear power industry since the beginning of the peaceful application of nuclear power in the 1960s. The latest innovation by Babcock Sempell is a gate valve that meets all recent technical requirements of the nuclear power technology. At the moment in the United States, Germany, Sweden, and many other countries, motor-operated gate and globe valves are judged very critically. Besides the absolute control of the so-called {open_quotes}trip failure,{close_quotes} the integrity of all valve parts submitted to operational forces must be maintained. In case of failure of the limit and torque switches, all valve designs have been tested with respect to the quality of guidance of the gate. The guidances (i.e., guides) shall avoid a tilting of the gate during the closing procedure. The gate valve newly designed by Babcock Sempell fulfills all these characteristic criteria. In addition, the valve has cobalt-free seat hardfacing, the suitability of which has been proven by friction tests as well as full-scale blowdown tests at the GAP of Siemens in Karlstein, West Germany. Babcock Sempell was to deliver more than 30 gate valves of this type for 5 Swedish nuclear power stations by autumn 1995. In the presentation, the author will report on the testing performed, qualifications, and sizing criteria which led to the new technical design.

  1. Self-gating MR imaging of the fetal heart: comparison with real cardiac triggering

    International Nuclear Information System (INIS)

    Yamamura, Jin; Frisch, Michael; Ecker, Hannes; Adam, Gerhard; Wedegaertner, Ulrike; Graessner, Joachim; Hecher, Kurt

    2011-01-01

    To investigate the self-gating technique for MR imaging of the fetal heart in a sheep model. MR images of 6 fetal sheep heart were obtained at 1.5T. For self-gating MRI of the fetal heart a cine SSFP in short axis, two and four chamber view was used. Self-gated images were compared with real cardiac triggered MR images (pulse-wave triggering). MRI of the fetal heart was performed using both techniques simultaneously. Image quality was assessed and the left ventricular volume and function were measured and compared. Compared with pulse-wave triggering, the self-gating technique produced slightly inferior images with artifacts. Especially the atrial septum could not be so clearly depicted. The contraction of the fetal heart was shown in cine sequences in both techniques. The average blood volumes could be measured with both techniques with no significant difference: at end-systole 3.1 ml (SD± 0.2), at end-diastole 4.9 ml (±0.2), with ejection fractions at 38.6%, respectively 39%. Both self-gating and pulse-wave triggered cardiac MRI of the fetal heart allowed the evaluation of anatomical structures and functional information. Images obtained by self-gating technique were slightly inferior than the pulse-wave triggered MRI. (orig.)

  2. High-Fidelity Single-Shot Toffoli Gate via Quantum Control.

    Science.gov (United States)

    Zahedinejad, Ehsan; Ghosh, Joydip; Sanders, Barry C

    2015-05-22

    A single-shot Toffoli, or controlled-controlled-not, gate is desirable for classical and quantum information processing. The Toffoli gate alone is universal for reversible computing and, accompanied by the Hadamard gate, forms a universal gate set for quantum computing. The Toffoli gate is also a key ingredient for (nontopological) quantum error correction. Currently Toffoli gates are achieved by decomposing into sequentially implemented single- and two-qubit gates, which require much longer times and yields lower overall fidelities compared to a single-shot implementation. We develop a quantum-control procedure to construct a single-shot Toffoli gate for three nearest-neighbor-coupled superconducting transmon systems such that the fidelity is 99.9% and is as fast as an entangling two-qubit gate under the same realistic conditions. The gate is achieved by a nongreedy quantum control procedure using our enhanced version of the differential evolution algorithm.

  3. Tunable pulse-shaping with gated graphene nanoribbons

    DEFF Research Database (Denmark)

    Prokopeva, Ludmila; Emani, Naresh K.; Boltasseva, Alexandra

    2014-01-01

    We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed.......We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed....

  4. Structured-gate organic field-effect transistors

    International Nuclear Information System (INIS)

    Aljada, Muhsen; Pandey, Ajay K; Velusamy, Marappan; Burn, Paul L; Meredith, Paul; Namdas, Ebinazar B

    2012-01-01

    We report the fabrication and electrical characteristics of structured-gate organic field-effect transistors consisting of a gate electrode patterned with three-dimensional pillars. The pillar gate electrode was over-coated with a gate dielectric (SiO 2 ) and solution processed organic semiconductors producing both unipolar p-type and bipolar behaviour. We show that this new structured-gate architecture delivers higher source-drain currents, higher gate capacitance per unit equivalent linear channel area, and enhanced charge injection (electrons and/or holes) versus the conventional planar structure in all modes of operation. For the bipolar field-effect transistor (FET) the maximum source-drain current enhancements in p- and n-channel mode were >600% and 28%, respectively, leading to p and n charge mobilities with the same order of magnitude. Thus, we have demonstrated that it is possible to use the FET architecture to manipulate and match carrier mobilities of material combinations where one charge carrier is normally dominant. Mobility matching is advantageous for creating organic logic circuit elements such as inverters and amplifiers. Hence, the method represents a facile and generic strategy for improving the performance of standard organic semiconductors as well as new materials and blends. (paper)

  5. Structured-gate organic field-effect transistors

    Science.gov (United States)

    Aljada, Muhsen; Pandey, Ajay K.; Velusamy, Marappan; Burn, Paul L.; Meredith, Paul; Namdas, Ebinazar B.

    2012-06-01

    We report the fabrication and electrical characteristics of structured-gate organic field-effect transistors consisting of a gate electrode patterned with three-dimensional pillars. The pillar gate electrode was over-coated with a gate dielectric (SiO2) and solution processed organic semiconductors producing both unipolar p-type and bipolar behaviour. We show that this new structured-gate architecture delivers higher source-drain currents, higher gate capacitance per unit equivalent linear channel area, and enhanced charge injection (electrons and/or holes) versus the conventional planar structure in all modes of operation. For the bipolar field-effect transistor (FET) the maximum source-drain current enhancements in p- and n-channel mode were >600% and 28%, respectively, leading to p and n charge mobilities with the same order of magnitude. Thus, we have demonstrated that it is possible to use the FET architecture to manipulate and match carrier mobilities of material combinations where one charge carrier is normally dominant. Mobility matching is advantageous for creating organic logic circuit elements such as inverters and amplifiers. Hence, the method represents a facile and generic strategy for improving the performance of standard organic semiconductors as well as new materials and blends.

  6. Quality assurance for respiratory-gated stereotactic body radiation therapy in lung using real-time position management system

    International Nuclear Information System (INIS)

    Nakaguchi, Yuji; Maruyama, Masato; Araki, Fujio; Kouno, Tomohiro

    2012-01-01

    In this study, we investigated comprehensive quality assurance (QA) for respiratory-gated stereotactic body radiation therapy (SBRT) in the lungs using a real-time position management system (RPM). By using the phantom study, we evaluated dose liberality and reproducibility, and dose distributions for low monitor unite (MU), and also checked the absorbed dose at isocenter and dose profiles for the respiratory-gated exposure using RPM. Furthermore, we evaluated isocenter dose and dose distributions for respiratory-gated SBRT plans in the lungs using RPM. The maximum errors for the dose liberality were 4% for 2 MU, 1% for 4-10 MU, and 0.5% for 15 MU and 20 MU. The dose reproducibility was 2% for 1 MU and within 0.1% for 5 MU or greater. The accuracy for dose distributions was within 2% for 2 MU or greater. The dose error along a central axis for respiratory cycles of 2, 4, and 6 sec was within 1%. As for geometric accuracy, 90% and 50% isodose areas for the respiratory-gated exposure became almost 1 mm and 2 mm larger than without gating, respectively. For clinical lung-SBRT plans, the point dose at isocenter agreed within 2.1% with treatment planning system (TPS). And the pass rates of all plans for TPS were more than 96% in the gamma analysis (3 mm/3%). The geometrical accuracy and the dose accuracy of TPS calculation algorithm are more important for the dose evaluation at penumbra region for respiratory-gated SBRT in lung using RPM. (author)

  7. MR accuracy and arthroscopic incidence of meniscal radial tears

    Energy Technology Data Exchange (ETDEWEB)

    Magee, Thomas; Shapiro, Marc; Williams, David [Department of Radiology, Neuroimaging Institute, 27 East Hibiscus Blvd., Melbourne, FL 32901 (United States)

    2002-12-01

    A meniscal radial tear is a vertical tear that involves the inner meniscal margin. The tear is most frequent in the middle third of the lateral meniscus and may extend outward in any direction. We report (1) the arthroscopic incidence of radial tears, (2) MR signs that aid in the detection of radial tears and (3) our prospective accuracy in detection of radial tears. Design and patients. Three musculoskeletal radiologists prospectively read 200 consecutive MR examinations of the knee that went on to arthroscopy by one orthopedic surgeon. MR images were assessed for location and MR characteristics of radial tears. MR criteria used for diagnosis of a radial tear were those outlined by Tuckman et al.: truncation, abnormal morphology and/or lack of continuity or absence of the meniscus on one or more MR images. An additional criterion used was abnormal increased signal in that area on fat-saturated proton density or T2-weighted coronal and sagittal images. Prospective MR readings were correlated with the arthroscopic findings.Results. Of the 200 consecutive knee arthroscopies, 28 patients had radial tears reported arthroscopically (14% incidence). MR readings prospectively demonstrated 19 of the 28 radial tears (68% sensitivity) when the criteria for diagnosis of a radial tear were truncation or abnormal morphology of the meniscus. With the use of the additional criterion of increased signal in the area of abnormal morphology on fat-saturated T2-weighted or proton density weighted sequences, the prospective sensitivity was 25 of 28 radial tears (89% sensitivity). There were no radial tears described in MR reports that were not demonstrated on arthroscopy (i.e., there were no false positive MR readings of radial tears in these 200 patients). Radial tears are commonly seen at arthroscopy. There was a 14% incidence in this series of 200 patients who underwent arthroscopy. Prospective detection of radial tears was 68% as compared with arthroscopy when the criteria as

  8. MR accuracy and arthroscopic incidence of meniscal radial tears

    International Nuclear Information System (INIS)

    Magee, Thomas; Shapiro, Marc; Williams, David

    2002-01-01

    A meniscal radial tear is a vertical tear that involves the inner meniscal margin. The tear is most frequent in the middle third of the lateral meniscus and may extend outward in any direction. We report (1) the arthroscopic incidence of radial tears, (2) MR signs that aid in the detection of radial tears and (3) our prospective accuracy in detection of radial tears. Design and patients. Three musculoskeletal radiologists prospectively read 200 consecutive MR examinations of the knee that went on to arthroscopy by one orthopedic surgeon. MR images were assessed for location and MR characteristics of radial tears. MR criteria used for diagnosis of a radial tear were those outlined by Tuckman et al.: truncation, abnormal morphology and/or lack of continuity or absence of the meniscus on one or more MR images. An additional criterion used was abnormal increased signal in that area on fat-saturated proton density or T2-weighted coronal and sagittal images. Prospective MR readings were correlated with the arthroscopic findings.Results. Of the 200 consecutive knee arthroscopies, 28 patients had radial tears reported arthroscopically (14% incidence). MR readings prospectively demonstrated 19 of the 28 radial tears (68% sensitivity) when the criteria for diagnosis of a radial tear were truncation or abnormal morphology of the meniscus. With the use of the additional criterion of increased signal in the area of abnormal morphology on fat-saturated T2-weighted or proton density weighted sequences, the prospective sensitivity was 25 of 28 radial tears (89% sensitivity). There were no radial tears described in MR reports that were not demonstrated on arthroscopy (i.e., there were no false positive MR readings of radial tears in these 200 patients). Radial tears are commonly seen at arthroscopy. There was a 14% incidence in this series of 200 patients who underwent arthroscopy. Prospective detection of radial tears was 68% as compared with arthroscopy when the criteria as

  9. Investigation of the organic Rankine cycle (ORC) system and the radial-inflow turbine design

    International Nuclear Information System (INIS)

    Li, Yan; Ren, Xiao-dong

    2016-01-01

    Highlights: • The thermodynamic analysis of an ORC system is introduced. • A radial turbine design method has been proposed based on the real gas model. • A radial turbine with R123 is designed and numerically analyzed. - Abstract: Energy and environment issue set utilizing low-grade heat noticed. Organic Rankine Cycle (ORC) has been demonstrated to be a promising technology to recover waste heat. As a critical component of ORC system, the turbine selection has an enormous influence on the system performance. This paper carries out a study on the thermodynamic analysis of ORC system and the aerodynamic design of an organic radial turbine. The system performance is evaluated with various working fluids. The aerodynamic design of the organic radial-inflow turbine is focused due to the high molecule weight and the low sound speed of the organic working fluid. An aerodynamic and profile design system is developed. A radial-inflow turbine with R123 as the working fluid is designed and the numerical analysis is conducted. The simulation results indicate that the shock wave caused by the high expansion ratio in the nozzle is well controlled. Compared with the one-dimensional design results, the performance of the radial-inflow turbine in this paper reaches the design requirements.

  10. Amplifying genetic logic gates.

    Science.gov (United States)

    Bonnet, Jerome; Yin, Peter; Ortiz, Monica E; Subsoontorn, Pakpoom; Endy, Drew

    2013-05-03

    Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.

  11. Physical Modeling of Gate-Controlled Schottky Barrier Lowering of Metal-Graphene Contacts in Top-Gated Graphene Field-Effect Transistors

    Science.gov (United States)

    Mao, Ling-Feng; Ning, Huansheng; Huo, Zong-Liang; Wang, Jin-Yan

    2015-12-01

    A new physical model of the gate controlled Schottky barrier height (SBH) lowering in top-gated graphene field-effect transistors (GFETs) under saturation bias condition is proposed based on the energy conservation equation with the balance assumption. The theoretical prediction of the SBH lowering agrees well with the experimental data reported in literatures. The reduction of the SBH increases with the increasing of gate voltage and relative dielectric constant of the gate oxide, while it decreases with the increasing of oxide thickness, channel length and acceptor density. The magnitude of the reduction is slightly enhanced under high drain voltage. Moreover, it is found that the gate oxide materials with large relative dielectric constant (>20) have a significant effect on the gate controlled SBH lowering, implying that the energy relaxation of channel electrons should be taken into account for modeling SBH in GFETs.

  12. Physical Modeling of Gate-Controlled Schottky Barrier Lowering of Metal-Graphene Contacts in Top-Gated Graphene Field-Effect Transistors.

    Science.gov (United States)

    Mao, Ling-Feng; Ning, Huansheng; Huo, Zong-Liang; Wang, Jin-Yan

    2015-12-17

    A new physical model of the gate controlled Schottky barrier height (SBH) lowering in top-gated graphene field-effect transistors (GFETs) under saturation bias condition is proposed based on the energy conservation equation with the balance assumption. The theoretical prediction of the SBH lowering agrees well with the experimental data reported in literatures. The reduction of the SBH increases with the increasing of gate voltage and relative dielectric constant of the gate oxide, while it decreases with the increasing of oxide thickness, channel length and acceptor density. The magnitude of the reduction is slightly enhanced under high drain voltage. Moreover, it is found that the gate oxide materials with large relative dielectric constant (>20) have a significant effect on the gate controlled SBH lowering, implying that the energy relaxation of channel electrons should be taken into account for modeling SBH in GFETs.

  13. Compartmentation of sucrose during radial transfer in mature sorghum culm

    Directory of Open Access Journals (Sweden)

    Vietor Donald M

    2007-06-01

    Full Text Available Abstract Background The sucrose that accumulates in the culm of sorghum (Sorghum bicolor (L. Moench and other large tropical andropogonoid grasses can be of commercial value, and can buffer assimilate supply during development. Previous study conducted with intact plants showed that sucrose can be radially transferred to the intracellular compartment of mature ripening sorghum internode without being hydrolysed. In this study, culm-infused radiolabelled sucrose was traced between cellular compartments and among related metabolites to determine if the compartmental path of sucrose during radial transfer in culm tissue was symplasmic or included an apoplasmic step. This transfer path was evaluated for elongating and ripening culm tissue of intact plants of two semidwarf grain sorghums. The metabolic path in elongating internode tissue was also evaluated. Results On the day after culm infusion of the tracer sucrose, the specific radioactivity of sucrose recovered from the intracellular compartment of growing axillary-branch tissue was greater (nearly twice than that in the free space, indicating that sucrose was preferentially transferred through symplasmic routes. In contrast, the sucrose specific radioactivity in the intracellular compartment of the mature (ripening culm tissue was probably less (about 3/4's than that in free space indicating that sucrose was preferentially transferred through routes that included an apoplasmic step. In growing internodes of the axillary branch of sorghum, the tritium label initially provided in the fructose moiety of sucrose molecules was largely (81% recovered in the fructose moiety, indicating that a large portion of sucrose molecules is not hydrolysed and resynthesized during radial transfer. Conclusion During radial transfer of sucrose in ripening internodes of intact sorghum plants, much of the sucrose is transferred intact (without hydrolysis and resynthesis and primarily through a path that includes an

  14. Use of an Eight-arm Radial Water Maze to Assess Working and Reference Memory Following Neonatal Brain Injury

    OpenAIRE

    Penley, Stephanie C.; Gaudet, Cynthia M.; Threlkeld, Steven W.

    2013-01-01

    Working and reference memory are commonly assessed using the land based radial arm maze. However, this paradigm requires pretraining, food deprivation, and may introduce scent cue confounds. The eight-arm radial water maze is designed to evaluate reference and working memory performance simultaneously by requiring subjects to use extra-maze cues to locate escape platforms and remedies the limitations observed in land based radial arm maze designs. Specifically, subjects are required to avoid ...

  15. The method for objective evaluation of the intensity of radial bone lesions in rheumatoid arthritis using digital image analysis

    International Nuclear Information System (INIS)

    Zielinski, K.W.; Krekora, K.

    2004-01-01

    The semiquantitative methods used in everyday diagnostic practice for scoring the intensity of bone lesions in rheumatoid arthritis are susceptible to a subjective error. The paper describes the original algorithm for an image analysis as a method for quantitative and objective evaluation of the intensity of radiological lesions in rheumatoid arthritis. 75 plain radiograms of the hand of patients diagnosed with rheumatoid arthritis, in various stages of bone pathology, were evaluated. The analysis focused on the signs of pathological rebuilding of the affected bone, especially in the distal epiphysis of the radial bone. The plain radiograms of the hand were digitally analysed based on the modified method, formerly used for quantitative assessment of bone trabeculation. The method allowed us to objectively verify various scoring systems of radiograms widely used in rheumatological diagnosis. (author)

  16. Radiation-hardened gate-around n-MOSFET structure for radiation-tolerant application-specific integrated circuits

    International Nuclear Information System (INIS)

    Lee, Min Su; Lee, Hee Chul

    2012-01-01

    To overcome the total ionizing dose effect on an n-type metal-oxide-semiconductor field-effect transistor (n-MOSFET), we designed a radiation-hardened gate-around n-MOSFET structure and evaluated it through a radiation-exposure experiment. Each test device was fabricated in a commercial 0.35-micron complementary metal-oxide-semiconductor (CMOS) process. The fabricated devices were evaluated under a total dose of 1 Mrad (Si) at a dose rate of 250 krad/h to obtain very high reliability for space electronics. The experimental results showed that the gate-around n-MOSFET structure had very good performance against 1 Mrad (Si) of gamma radiation, while the conventional n-MOSFET experienced a considerable amount of radiation-induced leakage current. Furthermore, a source follower designed with the gate-around transistor worked properly at 1 Mrad (Si) of gamma radiation while a source follower designed with the conventional n-MOSFET lost its functionality.

  17. A bistable electromagnetically actuated rotary gate microvalve

    International Nuclear Information System (INIS)

    Luharuka, Rajesh; Hesketh, Peter J

    2008-01-01

    Two types of rotary gate microvalves are developed for flow modulation in microfluidic systems. These microvalves have been tested for an open flow rate of up to 100 sccm and operate under a differential pressure of 6 psig with flow modulation of up to 100. The microvalve consists of a suspended gate that rotates in the plane of the chip to regulate flow through the orifice. The gate is suspended by a novel fully compliant in-plane rotary bistable micromechanism (IPRBM) that advantageously constrains the gate in all degrees of freedom except for in-plane rotational motion. Multiple inlet/outlet orifices provide flexibility of operating the microvalve in three different flow configurations. The rotary gate microvalve is switched with an external electromagnetic actuator. The suspended gate is made of a soft magnetic material and its electromagnetic actuation is based on the operating principle of a variable-reluctance stepper motor

  18. High-Resolution DCE-MRI of the Pituitary Gland Using Radial k-Space Acquisition with Compressed Sensing Reconstruction.

    Science.gov (United States)

    Rossi Espagnet, M C; Bangiyev, L; Haber, M; Block, K T; Babb, J; Ruggiero, V; Boada, F; Gonen, O; Fatterpekar, G M

    2015-08-01

    The pituitary gland is located outside of the blood-brain barrier. Dynamic T1 weighted contrast enhanced sequence is considered to be the gold standard to evaluate this region. However, it does not allow assessment of intrinsic permeability properties of the gland. Our aim was to demonstrate the utility of radial volumetric interpolated brain examination with the golden-angle radial sparse parallel technique to evaluate permeability characteristics of the individual components (anterior and posterior gland and the median eminence) of the pituitary gland and areas of differential enhancement and to optimize the study acquisition time. A retrospective study was performed in 52 patients (group 1, 25 patients with normal pituitary glands; and group 2, 27 patients with a known diagnosis of microadenoma). Radial volumetric interpolated brain examination sequences with golden-angle radial sparse parallel technique were evaluated with an ROI-based method to obtain signal-time curves and permeability measures of individual normal structures within the pituitary gland and areas of differential enhancement. Statistical analyses were performed to assess differences in the permeability parameters of these individual regions and optimize the study acquisition time. Signal-time curves from the posterior pituitary gland and median eminence demonstrated a faster wash-in and time of maximum enhancement with a lower peak of enhancement compared with the anterior pituitary gland (P pituitary gland evaluation. In the absence of a clinical history, differences in the signal-time curves allow easy distinction between a simple cyst and a microadenoma. This retrospective study confirms the ability of the golden-angle radial sparse parallel technique to evaluate the permeability characteristics of the pituitary gland and establishes 120 seconds as the ideal acquisition time for dynamic pituitary gland imaging. © 2015 by American Journal of Neuroradiology.

  19. Time-gated ballistic imaging using a large aperture switching beam.

    Science.gov (United States)

    Mathieu, Florian; Reddemann, Manuel A; Palmer, Johannes; Kneer, Reinhold

    2014-03-24

    Ballistic imaging commonly denotes the formation of line-of-sight shadowgraphs through turbid media by suppression of multiply scattered photons. The technique relies on a femtosecond laser acting as light source for the images and as switch for an optical Kerr gate that separates ballistic photons from multiply scattered ones. The achievable image resolution is one major limitation for the investigation of small objects. In this study, practical influences on the optical Kerr gate and image quality are discussed theoretically and experimentally applying a switching beam with large aperture (D = 19 mm). It is shown how switching pulse energy and synchronization of switching and imaging pulse in the Kerr cell influence the gate's transmission. Image quality of ballistic imaging and standard shadowgraphy is evaluated and compared, showing that the present ballistic imaging setup is advantageous for optical densities in the range of 8 ballistic imaging setup into a schlieren-type system with an optical schlieren edge.

  20. Radial velocities of RR Lyrae stars

    International Nuclear Information System (INIS)

    Hawley, S.L.; Barnes, T.G. III

    1985-01-01

    283 spectra of 57 RR Lyrae stars have been obtained using the 2.1-m telescope at McDonald Observatory. Radial velocities were determined using a software cross-correlation technique. New mean radial velocities were determined for 46 of the stars. 11 references

  1. Piezoconductivity of gated suspended graphene

    NARCIS (Netherlands)

    Medvedyeva, M.V.; Blanter, Y.M.

    2011-01-01

    We investigate the conductivity of graphene sheet deformed over a gate. The effect of the deformation on the conductivity is twofold: The lattice distortion can be represented as pseudovector potential in the Dirac equation formalism, whereas the gate causes inhomogeneous density redistribution. We

  2. Restless Tuneup of High-Fidelity Qubit Gates

    Science.gov (United States)

    Rol, M. A.; Bultink, C. C.; O'Brien, T. E.; de Jong, S. R.; Theis, L. S.; Fu, X.; Luthi, F.; Vermeulen, R. F. L.; de Sterke, J. C.; Bruno, A.; Deurloo, D.; Schouten, R. N.; Wilhelm, F. K.; DiCarlo, L.

    2017-04-01

    We present a tuneup protocol for qubit gates with tenfold speedup over traditional methods reliant on qubit initialization by energy relaxation. This speedup is achieved by constructing a cost function for Nelder-Mead optimization from real-time correlation of nondemolition measurements interleaving gate operations without pause. Applying the protocol on a transmon qubit achieves 0.999 average Clifford fidelity in one minute, as independently verified using randomized benchmarking and gate-set tomography. The adjustable sensitivity of the cost function allows the detection of fractional changes in the gate error with a nearly constant signal-to-noise ratio. The restless concept demonstrated can be readily extended to the tuneup of two-qubit gates and measurement operations.

  3. Development of patient-controlled respiratory gating system based on visual guidance for magnetic-resonance image-guided radiation therapy.

    Science.gov (United States)

    Kim, Jung-In; Lee, Hanyoung; Wu, Hong-Gyun; Chie, Eui Kyu; Kang, Hyun-Cheol; Park, Jong Min

    2017-09-01

    The aim of this study is to develop a visual guidance patient-controlled (VG-PC) respiratory gating system for respiratory-gated magnetic-resonance image-guided radiation therapy (MR-IGRT) and to evaluate the performance of the developed system. The near-real-time cine planar MR image of a patient acquired during treatment was transmitted to a beam projector in the treatment room through an optical fiber cable. The beam projector projected the cine MR images inside the bore of the ViewRay system in order to be visible to a patient during treatment. With this visual information, patients voluntarily controlled their respiration to put the target volume into the gating boundary (gating window). The effect of the presence of the beam projector in the treatment room on the image quality of the MRI was investigated by evaluating the signal-to-noise ratio (SNR), uniformity, low-contrast detectability, high-contrast spatial resolution, and spatial integrity with the VG-PC gating system. To evaluate the performance of the developed system, we applied the VG-PC gating system to a total of seven patients; six patients received stereotactic ablative radiotherapy (SABR) and one patient received conventional fractionated radiation therapy. The projected cine MR images were visible even when the room light was on. No image data loss or additional time delay during delivery of image data were observed. Every indicator representing MRI quality, including SNR, uniformity, low-contrast detectability, high-contrast spatial resolution, and spatial integrity exhibited values higher than the tolerance levels of the manufacturer with the VG-PC gating system; therefore, the presence of the VG-PC gating system in the treatment room did not degrade the MR image quality. The average beam-off times due to respiratory gating with and without the VG-PC gating system were 830.3 ± 278.2 s and 1264.2 ± 302.1 s respectively (P = 0.005). Consequently, the total treatment times excluding

  4. Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatric abdominopelvic MRI

    Energy Technology Data Exchange (ETDEWEB)

    Chandarana, Hersh; Block, Kai T.; Winfeld, Matthew J.; Lala, Shailee V.; Mazori, Daniel; Giuffrida, Emalyn; Babb, James S.; Milla, Sarah S. [New York University Langone Medical Center, Department of Radiology, New York, NY (United States)

    2014-02-15

    To compare the image quality of contrast-enhanced abdominopelvic 3D fat-suppressed T1-weighted gradient-echo imaging with radial and conventional Cartesian k-space acquisition schemes in paediatric patients. Seventy-three consecutive paediatric patients were imaged at 1.5 T with sequential contrast-enhanced T1-weighted Cartesian (VIBE) and radial gradient echo (GRE) acquisition schemes with matching parameters when possible. Cartesian VIBE was acquired as a breath-hold or as free breathing in patients who could not suspend respiration, followed by free-breathing radial GRE in all patients. Two paediatric radiologists blinded to the acquisition schemes evaluated multiple parameters of image quality on a five-point scale, with higher score indicating a more optimal examination. Lesion presence or absence, conspicuity and edge sharpness were also evaluated. Mixed-model analysis of variance was performed to compare radial GRE and Cartesian VIBE. Radial GRE had significantly (all P < 0.001) higher scores for overall image quality, hepatic edge sharpness, hepatic vessel clarity and respiratory motion robustness than Cartesian VIBE. More lesions were detected on radial GRE by both readers than on Cartesian VIBE, with significantly higher scores for lesion conspicuity and edge sharpness (all P < 0.001). Radial GRE has better image quality and lesion conspicuity than conventional Cartesian VIBE in paediatric patients undergoing contrast-enhanced abdominopelvic MRI. (orig.)

  5. Light-effect transistor (LET with multiple independent gating controls for optical logic gates and optical amplification

    Directory of Open Access Journals (Sweden)

    Jason eMarmon

    2016-03-01

    Full Text Available Modern electronics are developing electronic-optical integrated circuits, while their electronic backbone, e.g. field-effect transistors (FETs, remains the same. However, further FET down scaling is facing physical and technical challenges. A light-effect transistor (LET offers electronic-optical hybridization at the component level, which can continue Moore’s law to quantum region without requiring a FET’s fabrication complexity, e.g. physical gate and doping, by employing optical gating and photoconductivity. Multiple independent gates are therefore readily realized to achieve unique functionalities without increasing chip space. Here we report LET device characteristics and novel digital and analog applications, such as optical logic gates and optical amplification. Prototype CdSe-nanowire-based LETs show output and transfer characteristics resembling advanced FETs, e.g. on/off ratios up to ~1.0x106 with a source-drain voltage of ~1.43 V, gate-power of ~260 nW, and subthreshold swing of ~0.3 nW/decade (excluding losses. Our work offers new electronic-optical integration strategies and electronic and optical computing approaches.

  6. Implementation of a two-qubit controlled-rotation gate based on unconventional geometric phase with a constant gating time

    International Nuclear Information System (INIS)

    Yabu-uti, B.F.C.; Roversi, J.A.

    2011-01-01

    We propose an alternative scheme to implement a two-qubit controlled-R (rotation) gate in the hybrid atom-CCA (coupled cavities array) system. Our scheme results in a constant gating time and, with an adjustable qubit-bus coupling (atom-resonator), one can specify a particular rotation R on the target qubit. We believe that this proposal may open promising perspectives for networking quantum information processors and implementing distributed and scalable quantum computation. -- Highlights: → We propose an alternative two-qubit controlled-rotation gate implementation. → Our gate is realized in a constant gating time for any rotation. → A particular rotation on the target qubit can be specified by an adjustable qubit-bus coupling. → Our proposal may open promising perspectives for implementing distributed and scalable quantum computation.

  7. Radiation exposure and patient experience during percutaneous coronary intervention using radial and femoral artery access

    International Nuclear Information System (INIS)

    Geijer, Haakan; Persliden, Jan

    2004-01-01

    The aim of this study was to evaluate radiation dose and patient discomfort/pain in radial artery access vs femoral artery access in percutaneous coronary intervention (PCI). Dose-area product (DAP) was measured non-randomised for 114 procedures using femoral access and for 55 using radial access. The patients also responded to a questionnaire concerning discomfort and pain during and after the procedure. The mean DAP was 69.8 Gy cm 2 using femoral access and 70.5 Gy cm 2 using radial access. Separating the access site from confounding factors with a multiple regression, there was a 13% reduction in DAP when using radial access (p=0.038). Procedure times did not differ (p=0.81). Bed confinement was much longer in the femoral access group (448 vs 76 min, p=0.000). With femoral access, there was a significantly higher patient grading for chest (p=0.001) and back pain (p=0.003) during the procedure and for access site (p=0.000) and back pain (p=0.000) after the procedure. Thirty-two femoral access patients (28%) were given morphine-type analgesics in the post-procedure period compared to three radial access patients (5%, p=0.001). DAP does not increase when using radial instead of femoral access and the patients grade discomfort and pain much lower when using radial access. Radial access is thus beneficial to use. (orig.)

  8. Radial MR images of the knee

    International Nuclear Information System (INIS)

    Hewes, R.C.; Miller, T.R.

    1988-01-01

    To profile optimally each portion of the meniscus, the authors use the multiangle, multisection feature of a General Electric SIGNA 1.5-T imager to produce radial images centered on each meniscus. A total of 12-15 sections are imaged at 10 0 -15 0 intervals of each meniscus, yielding perpendicular images of the entire meniscus, comparable with the arthrographic tangential views. The authors review their technique and demonstrate correlation cases between the radial gradient recalled acquisition in a steady state sequences, sagittal and coronal MR images, and arthrograms. Radial images should be a routine part of knee MR imaging

  9. Sleep extension normalizes ERP of waking auditory sensory gating in healthy habitually short sleeping individuals.

    Science.gov (United States)

    Gumenyuk, Valentina; Korzyukov, Oleg; Roth, Thomas; Bowyer, Susan M; Drake, Christopher L

    2013-01-01

    Chronic sleep loss has been associated with increased daytime sleepiness, as well as impairments in memory and attentional processes. In the present study, we evaluated the neuronal changes of a pre-attentive process of wake auditory sensory gating, measured by brain event-related potential (ERP)--P50 in eight normal sleepers (NS) (habitual total sleep time (TST) 7 h 32 m) vs. eight chronic short sleeping individuals (SS) (habitual TST ≤6 h). To evaluate the effect of sleep extension on sensory gating, the extended sleep condition was performed in chronic short sleeping individuals. Thus, one week of time in bed (6 h 11 m) corresponding to habitual short sleep (hSS), and one week of extended time (∼ 8 h 25 m) in bed corresponding to extended sleep (eSS), were counterbalanced in the SS group. The gating ERP assessment was performed on the last day after each sleep condition week (normal sleep and habitual short and extended sleep), and was separated by one week with habitual total sleep time and monitored by a sleep diary. We found that amplitude of gating was lower in SS group compared to that in NS group (0.3 µV vs. 1.2 µV, at Cz electrode respectively). The results of the group × laterality interaction showed that the reduction of gating amplitude in the SS group was due to lower amplitude over the left hemisphere and central-midline sites relative to that in the NS group. After sleep extension the amplitude of gating increased in chronic short sleeping individuals relative to their habitual short sleep condition. The sleep condition × frontality interaction analysis confirmed that sleep extension significantly increased the amplitude of gating over frontal and central brain areas compared to parietal brain areas.

  10. Sleep extension normalizes ERP of waking auditory sensory gating in healthy habitually short sleeping individuals.

    Directory of Open Access Journals (Sweden)

    Valentina Gumenyuk

    Full Text Available Chronic sleep loss has been associated with increased daytime sleepiness, as well as impairments in memory and attentional processes. In the present study, we evaluated the neuronal changes of a pre-attentive process of wake auditory sensory gating, measured by brain event-related potential (ERP--P50 in eight normal sleepers (NS (habitual total sleep time (TST 7 h 32 m vs. eight chronic short sleeping individuals (SS (habitual TST ≤6 h. To evaluate the effect of sleep extension on sensory gating, the extended sleep condition was performed in chronic short sleeping individuals. Thus, one week of time in bed (6 h 11 m corresponding to habitual short sleep (hSS, and one week of extended time (∼ 8 h 25 m in bed corresponding to extended sleep (eSS, were counterbalanced in the SS group. The gating ERP assessment was performed on the last day after each sleep condition week (normal sleep and habitual short and extended sleep, and was separated by one week with habitual total sleep time and monitored by a sleep diary. We found that amplitude of gating was lower in SS group compared to that in NS group (0.3 µV vs. 1.2 µV, at Cz electrode respectively. The results of the group × laterality interaction showed that the reduction of gating amplitude in the SS group was due to lower amplitude over the left hemisphere and central-midline sites relative to that in the NS group. After sleep extension the amplitude of gating increased in chronic short sleeping individuals relative to their habitual short sleep condition. The sleep condition × frontality interaction analysis confirmed that sleep extension significantly increased the amplitude of gating over frontal and central brain areas compared to parietal brain areas.

  11. Cognitive mechanisms associated with auditory sensory gating

    Science.gov (United States)

    Jones, L.A.; Hills, P.J.; Dick, K.M.; Jones, S.P.; Bright, P.

    2016-01-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891

  12. Experimental superposition of orders of quantum gates

    Science.gov (United States)

    Procopio, Lorenzo M.; Moqanaki, Amir; Araújo, Mateus; Costa, Fabio; Alonso Calafell, Irati; Dowd, Emma G.; Hamel, Deny R.; Rozema, Lee A.; Brukner, Časlav; Walther, Philip

    2015-01-01

    Quantum computers achieve a speed-up by placing quantum bits (qubits) in superpositions of different states. However, it has recently been appreciated that quantum mechanics also allows one to ‘superimpose different operations'. Furthermore, it has been shown that using a qubit to coherently control the gate order allows one to accomplish a task—determining if two gates commute or anti-commute—with fewer gate uses than any known quantum algorithm. Here we experimentally demonstrate this advantage, in a photonic context, using a second qubit to control the order in which two gates are applied to a first qubit. We create the required superposition of gate orders by using additional degrees of freedom of the photons encoding our qubits. The new resource we exploit can be interpreted as a superposition of causal orders, and could allow quantum algorithms to be implemented with an efficiency unlikely to be achieved on a fixed-gate-order quantum computer. PMID:26250107

  13. Getting started with FortiGate

    CERN Document Server

    Fabbri, Rosato

    2013-01-01

    This book is a step-by-step tutorial that will teach you everything you need to know about the deployment and management of FortiGate, including high availability, complex routing, various kinds of VPN working, user authentication, security rules and controls on applications, and mail and Internet access.This book is intended for network administrators, security managers, and IT pros. It is a great starting point if you have to administer or configure a FortiGate unit, especially if you have no previous experience. For people that have never managed a FortiGate unit, the book helpfully walks t

  14. 21 CFR 866.4800 - Radial immunodiffusion plate.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4800 Radial immunodiffusion plate. (a) Identification. A radial immunodiffusion plate for clinical use...

  15. Radial oxygen gradients over rat cortex arterioles

    OpenAIRE

    Galler, Michael

    2011-01-01

    Purpose: We present the results of the visualisation of radial oxygen gradients in rats’ cortices and their use in neurocritical management. Methods: PO2 maps of the cortex of 10 wistar rats were obtained with a camera (SensiMOD, PCO, Kehlheim, Germany). Those pictures were analyzed and edited by a custom-made software. We chose a vessel for examination. A matrix, designed to evaluate the cortical O2 partial pressure, was placed vertically to the artery and afterwards multiple regio...

  16. Versatility of radial forearm free flap for intraoral reconstruction

    Directory of Open Access Journals (Sweden)

    Jeremić Jelena V.

    2015-01-01

    Full Text Available Introduction. The radial forearm free flap has an important role in reconstruction of the oncologic defects in the region of head and neck. Objective. The aim was to present and evaluate clinical experience and results in the radial forearm free transfer for intraoral reconstructions after resections due to malignancies. Methods. This article illustrates the versatility and reliability of forearm single donor site in 21 patients with a variety of intraoral oncologic defects who underwent immediate (19 patients, 90.5% or delayed (2 patients, 9.5% reconstruction using free flaps from the radial forearm. Fascio-cutaneous flaps were used in patients with floor of the mouth (6 cases, buccal mucosa (5 cases, lip (1 case and a retromolar triangle (2 cases defects, or after hemiglossectomy (7 cases. In addition, the palmaris longus tendon was included with the flap in 2 patients that required oral sphincter reconstruction. Results. An overall success rate was 90.5%. Flap failures were detected in two (9.5% patients, in one patient due to late ischemic necrosis, which appeared one week after the surgery, and in another patient due to venous congestion, which could not be salvaged after immediate re-exploration. Two patients required re-exploration due to vein thrombosis. The donor site healed uneventfully in all patients, except one, who had partial loss of skin graft. Conclusion. The radial forearm free flap is, due to multiple advantages, an acceptable method for reconstructions after resection of intraoral malignancies. [Projekat Ministarstva nauke Republike Srbije, br. 41006

  17. Statistical analysis of target motion in gated lung stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Zhao Bo; Yang Yong; Li Tianfang; Li Xiang; Heron, Dwight E; Huq, M Saiful

    2011-01-01

    An external surrogate-based respiratory gating technique is a useful method to reduce target margins for the treatment of a moving lung tumor. The success of this technique relies on a good correlation between the motion of the external markers and the internal tumor as well as the repeatability of the respiratory motion. In gated lung stereotactic body radiation therapy (SBRT), the treatment time for each fraction could exceed 30 min due to large fractional dose. Tumor motion may experience pattern changes such as baseline shift during such extended treatment time. The purpose of this study is to analyze tumor motion traces in actual treatment situations and to evaluate the effect of the target baseline shift in gated lung SBRT treatment. Real-time motion data for both the external markers and tumors from 51 lung SBRT treatments with Cyberknife Synchrony technology were analyzed in this study. The treatment time is typically greater than 30 min. The baseline shift was calculated with a rolling average window equivalent to ∼20 s and subtracted from that at the beginning. The magnitude of the baseline shift and its relationship with treatment time were investigated. Phase gating simulation was retrospectively performed on 12 carefully selected treatments with respiratory amplitude larger than 5 mm and regular phases. A customized gating window was defined for each individual treatment. It was found that the baseline shifts are specific to each patient and each fraction. Statistical analysis revealed that more than 69% treatments exhibited increased baseline shifts with the lapse of treatment time. The magnitude of the baseline shift could reach 5.3 mm during a 30 min treatment. Gating simulation showed that tumor excursion was caused mainly by the uncertainties in phase gating simulation and baseline shift, the latter being the primary factor. With a 5 mm gating window, 2 out of 12 treatments in the study group showed significant tumor excursion. Baseline shifts

  18. Role of 99MTc-DTPA renal scintigraphy using gates protocol with extended acquisition time in evaluation of the function of pre-operative donor kidneys and post-operative remaining kidney

    International Nuclear Information System (INIS)

    Trinh Thi Minh Chau; Nguyen Xuan Canlh; Le Huu tam; Truong Quang Xuan

    2004-01-01

    Introduction: Radionuclide Methods have been extensively used in kidney transplantation. This non-invasive technique provides quantitative analysis of total and individual renal function as well as assessment of urinary outflow tract. Aim of this study was to evaluate renal function of potential kidney-donors and follow up post-nephrectomy kidney-donors by 99mTc-DTPA renal scintigraphy using Gates protocol with extended acquisition. MATERIALS AND Methods: This study included 72 living kidney donors. In addition to routine laboratory and radiological evaluations, a 99mTc-DTPA dynamic renal scintigraphy was acquired 15 second per frame for 30 minutes. Glomerular filtration rate (GFR) was calculated based on Gates protocol. Urinary outflow tract was assayed by renogram generated and consecutive dynamic renal images of up to 30 minute. Renal scintigraphy was also performed in follow-up of 37 post-nephrectomy kidney donors. Results 6 of 72 (8.3%) living related donors were excluded from nephrectomy due to reduced GFR of either total or individual kidney. One of 6 excluded donors had one non-functional kidney. No donors have shown urinary tract obstruction. In 66 kidney donors who were indicated nephrectomy, pre-nephrectomy mean total GFR, calculated by Gates method, was 108 mi/minute that was significantly higher than GFR result of 94 mi/minute by Cockcroft and Gault prediction equation (p 0.05). These results are not significant, indicative of functional compensation occuring after unilateral nephrectomy. Conclusion: Tc-99m DTPA dynamic renal scintigraphy using Gates protocol with extended acquisition time is a valuable simple radionuclide technique which is able to assess total and individual renal function and urinary outflow tract. This technique should be used as an integral part of the pre-operative evaluation contributing to the choice of nephrectomy side in potential kidney donors and as follow-up of post-operative remaining kidney. (authors)

  19. Respiratory gating during stereotactic body radiotherapy for lung cancer reduces tumor position variability.

    Science.gov (United States)

    Saito, Tetsuo; Matsuyama, Tomohiko; Toya, Ryo; Fukugawa, Yoshiyuki; Toyofuku, Takamasa; Semba, Akiko; Oya, Natsuo

    2014-01-01

    We evaluated the effects of respiratory gating on treatment accuracy in lung cancer patients undergoing lung stereotactic body radiotherapy by using electronic portal imaging device (EPID) images. Our study population consisted of 30 lung cancer patients treated with stereotactic body radiotherapy (48 Gy/4 fractions/4 to 9 days). Of these, 14 were treated with- (group A) and 16 without gating (group B); typically the patients whose tumors showed three-dimensional respiratory motion ≧5 mm were selected for gating. Tumor respiratory motion was estimated using four-dimensional computed tomography images acquired during treatment simulation. Tumor position variability during all treatment sessions was assessed by measuring the standard deviation (SD) and range of tumor displacement on EPID images. The two groups were compared for tumor respiratory motion and position variability using the Mann-Whitney U test. The median three-dimensional tumor motion during simulation was greater in group A than group B (9 mm, range 3-30 mm vs. 2 mm, range 0-4 mm; psimulation, tumor position variability in the EPID images was low and comparable to patients treated without gating. This demonstrates the benefit of respiratory gating.

  20. Gate tunneling current and quantum capacitance in metal-oxide-semiconductor devices with graphene gate electrodes

    Science.gov (United States)

    An, Yanbin; Shekhawat, Aniruddh; Behnam, Ashkan; Pop, Eric; Ural, Ant

    2016-11-01

    Metal-oxide-semiconductor (MOS) devices with graphene as the metal gate electrode, silicon dioxide with thicknesses ranging from 5 to 20 nm as the dielectric, and p-type silicon as the semiconductor are fabricated and characterized. It is found that Fowler-Nordheim (F-N) tunneling dominates the gate tunneling current in these devices for oxide thicknesses of 10 nm and larger, whereas for devices with 5 nm oxide, direct tunneling starts to play a role in determining the total gate current. Furthermore, the temperature dependences of the F-N tunneling current for the 10 nm devices are characterized in the temperature range 77-300 K. The F-N coefficients and the effective tunneling barrier height are extracted as a function of temperature. It is found that the effective barrier height decreases with increasing temperature, which is in agreement with the results previously reported for conventional MOS devices with polysilicon or metal gate electrodes. In addition, high frequency capacitance-voltage measurements of these MOS devices are performed, which depict a local capacitance minimum under accumulation for thin oxides. By analyzing the data using numerical calculations based on the modified density of states of graphene in the presence of charged impurities, it is shown that this local minimum is due to the contribution of the quantum capacitance of graphene. Finally, the workfunction of the graphene gate electrode is extracted by determining the flat-band voltage as a function of oxide thickness. These results show that graphene is a promising candidate as the gate electrode in metal-oxide-semiconductor devices.

  1. Precise linear gating circuit on integrated microcircuits

    Energy Technology Data Exchange (ETDEWEB)

    Butskii, V.V.; Vetokhin, S.S.; Reznikov, I.V.

    Precise linear gating circuit on four microcircuits is described. A basic flowsheet of the gating circuit is given. The gating circuit consists of two input differential cascades total load of which is two current followers possessing low input and high output resistances. Follower outlets are connected to high ohmic dynamic load formed with a current source which permits to get high amplification (>1000) at one cascade. Nonlinearity amounts to <0.1% in the range of input signal amplitudes of -10-+10 V. Front duration for an output signal with 10 V amplitude amounts to 100 ns. Attenuation of input signal with a closed gating circuit is 60 db. The gating circuits described is used in the device intended for processing of scintillation sensor signals.

  2. High speed gated x-ray imagers

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Bell, P.; Hanks, R.; Power, G.; Turner, R.E.; Wiedwald, J.

    1988-01-01

    Single and multi-frame gated x-ray images with time-resolution as fast as 150 psec are described. These systems are based on the gating of microchannel plates in a stripline configuration. The gating voltage comes from the avalanche breakdown of reverse biased p-n junction producing high power voltage pulses as short as 70 psec. Results from single and four frame x-ray cameras used on Nova are described. 8 refs., 9 figs

  3. Respiratory gating and multi field technique radiotherapy for esophageal cancer

    International Nuclear Information System (INIS)

    Ohta, Atsushi; Kaidu, Motoki; Tanabe, Satoshi

    2017-01-01

    To investigate the effects of a respiratory gating and multi field technique on the dose-volume histogram (DVH) in radiotherapy for esophageal cancer. Twenty patients who underwent four-dimensional computed tomography for esophageal cancer were included. We retrospectively created the four treatment plans for each patient, with or without the respiratory gating and multi field technique: No gating-2-field, No gating-4-field, Gating-2-field, and Gating-4-field plans. We compared the DVH parameters of the lung and heart in the No gating-2-field plan with the other three plans.Result In the comparison of the parameters in the No gating-2-field plan, there are significant differences in the Lung V 5Gy , V 20Gy , mean dose with all three plans and the Heart V 25Gy -V 40Gy with Gating-2-field plan, V 35Gy , V 40Gy , mean dose with No Gating-4-field plan and V 30Gy -V 40Gy , and mean dose with Gating-4-field plan. The lung parameters were smaller in the Gating-2-field plan and larger in the No gating-4-field and Gating-4-field plans. The heart parameters were all larger in the No gating-2-field plan. The lung parameters were reduced by the respiratory gating technique and increased by the multi field technique. The heart parameters were reduced by both techniques. It is important to select the optimal technique according to the risk of complications. (author)

  4. Stirling Engine With Radial Flow Heat Exchangers

    Science.gov (United States)

    Vitale, N.; Yarr, George

    1993-01-01

    Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.

  5. Model validation for radial electric field excitation during L-H transition in JFT-2M tokamak

    Science.gov (United States)

    Kobayashi, T.; Itoh, K.; Ido, T.; Kamiya, K.; Itoh, S.-I.; Miura, Y.; Nagashima, Y.; Fujisawa, A.; Inagaki, S.; Ida, K.; Hoshino, K.

    2017-07-01

    In this paper, we elaborate the electric field excitation mechanism during the L-H transition in the JFT-2M tokamak. Using time derivative of the Poisson’s equation, models of the radial electric field excitation is examined. The sum of the loss-cone loss current and the neoclassical bulk viscosity current is found to behave as the experimentally evaluated radial current that excites the radial electric field. The turbulent Reynolds stress only plays a minor role. The wave convection current that produces a negative current at the edge can be important to explain the ambipolar condition in the L-mode.

  6. Air-gating and chemical-gating in transistors and sensing devices made from hollow TiO2 semiconductor nanotubes

    Science.gov (United States)

    Alivov, Yahya; Funke, Hans; Nagpal, Prashant

    2015-07-01

    Rapid miniaturization of electronic devices down to the nanoscale, according to Moore’s law, has led to some undesirable effects like high leakage current in transistors, which can offset additional benefits from scaling down. Development of three-dimensional transistors, by spatial extension in the third dimension, has allowed higher contact area with a gate electrode and better control over conductivity in the semiconductor channel. However, these devices do not utilize the large surface area and interfaces for new electronic functionality. Here, we demonstrate air gating and chemical gating in hollow semiconductor nanotube devices and highlight the potential for development of novel transistors that can be modulated using channel bias, gate voltage, chemical composition, and concentration. Using chemical gating, we reversibly altered the conductivity of nanoscaled semiconductor nanotubes (10-500 nm TiO2 nanotubes) by six orders of magnitude, with a tunable rectification factor (ON/OFF ratio) ranging from 1-106. While demonstrated air- and chemical-gating speeds were slow here (˜seconds) due to the mechanical-evacuation rate and size of our chamber, the small nanoscale volume of these hollow semiconductors can enable much higher switching speeds, limited by the rate of adsorption/desorption of molecules at semiconductor interfaces. These chemical-gating effects are completely reversible, additive between different chemical compositions, and can enable semiconductor nanoelectronic devices for ‘chemical transistors’, ‘chemical diodes’, and very high-efficiency sensing applications.

  7. Pre-ejection period by radial artery tonometry supplements echo doppler findings during biventricular pacemaker optimization

    Directory of Open Access Journals (Sweden)

    Qamruddin Salima

    2011-07-01

    Full Text Available Abstract Background Biventricular (Biv pacemaker echo optimization has been shown to improve cardiac output however is not routinely used due to its complexity. We investigated the role of a simple method involving computerized pre-ejection time (PEP assessment by radial artery tonometry in guiding Biv pacemaker optimization. Methods Blinded echo and radial artery tonometry were performed simultaneously in 37 patients, age 69.1 ± 12.8 years, left ventricular (LV ejection fraction (EF 33 ± 10%, during Biv pacemaker optimization. Effect of optimization on echo derived velocity time integral (VTI, ejection time (ET, myocardial performance index (MPI, radial artery tonometry derived PEP and echo-radial artery tonometry derived PEP/VTI and PEP/ET indices was evaluated. Results Significant improvement post optimization was achieved in LV ET (286.9 ± 37.3 to 299 ± 34.6 ms, p Conclusion An acute shortening of PEP by radial artery tonometry occurs post Biv pacemaker optimization and correlates with improvement in hemodynamics by echo Doppler and may provide a cost-efficient approach to assist with Biv pacemaker echo optimization.

  8. Tire-rim interface pressure of a commercial vehicle wheel under radial loads: theory and experiment

    Science.gov (United States)

    Wan, Xiaofei; Shan, Yingchun; Liu, Xiandong; He, Tian; Wang, Jiegong

    2017-11-01

    The simulation of the radial fatigue test of a wheel has been a necessary tool to improve the design of the wheel and calculate its fatigue life. The simulation model, including the strong nonlinearity of the tire structure and material, may produce accurate results, but often leads to a divergence in calculation. Thus, a simplified simulation model in which the complicated tire model is replaced with a tire-wheel contact pressure model is used extensively in the industry. In this paper, a simplified tire-rim interface pressure model of a wheel under a radial load is established, and the pressure of the wheel under different radial loads is tested. The tire-rim contact behavior affected by the radial load is studied and analyzed according to the test result, and the tire-rim interface pressure extracted from the test result is used to evaluate the simplified pressure model and the traditional cosine function model. The results show that the proposed model may provide a more accurate prediction of the wheel radial fatigue life than the traditional cosine function model.

  9. Gate replacement at the Upper Lake Falls development

    International Nuclear Information System (INIS)

    Chen, C.T.; Locke, A.E.; Brown, E.R.

    1998-01-01

    Nova Scotia Power's integrated approach to dam safety was discussed. One of the two intake gates at Unit 1 of the Upper Falls Power Plant on the Mersey River was replaced in 1997 as part of the Utility's upgrading program. In the event of governor failure or turbine runaway, the new roller gate will allow operators to close the original sliding gate first under a more-or-less balanced head condition, and then to close the new roller gate under a full-flow condition. The planning, design and construction of the new roller gate is described. One of the two head gates of Unit 2 at the same station will be replaced in a similar fashion in the fall of 1998. 4 refs., 7 figs

  10. Radial wedge flange clamp

    Science.gov (United States)

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  11. Comparison of gating methods for the real-time analysis of left ventricular function in nonimaging blood pool studies.

    Science.gov (United States)

    Beard, B B; Stewart, J R; Shiavi, R G; Lorenz, C H

    1995-01-01

    Gating methods developed for electrocardiographic-triggered radionuclide ventriculography are being used with nonimaging detectors. These methods have not been compared on the basis of their real-time performance or suitability for determination of load-independent indexes of left ventricular function. This work evaluated the relative merits of different gating methods for nonimaging radionuclude ventriculographic studies, with particular emphasis on their suitability for real-time measurements and the determination of pressure-volume loops. A computer model was used to investigate the relative accuracy of forward gating, backward gating, and phase-mode gating. The durations of simulated left ventricular time-activity curves were randomly varied. Three acquisition parameters were considered: frame rate, acceptance window, and sample size. Twenty-five studies were performed for each combination of acquisition parameters. Hemodynamic and shape parameters from each study were compared with reference parameters derived directly from the random time-activity curves. Backward gating produced the largest errors under all conditions. For both forward gating and phase-mode gating, ejection fraction was underestimated and time to end systole and normalized peak ejection rate were overestimated. For the hemodynamic parameters, forward gating was marginally superior to phase-mode gating. The mean difference in errors between forward and phase-mode gating was 1.47% (SD 2.78%). However, for root mean square shape error, forward gating was several times worse in every case and seven times worse than phase-mode gating on average. Both forward and phase-mode gating are suitable for real-time hemodynamic measurements by nonimaging techniques. The small statistical difference between the methods is not clinically significant. The true shape of the time-activity curve is maintained most accurately by phase-mode gating.

  12. Effect of radial electric field inhomogeneity on anomalous cross field plasma flux in Heliotron/Torsatron

    International Nuclear Information System (INIS)

    Yamagishi, Tomejiro; Sanuki, Heiji.

    1996-01-01

    Anomalous cross field plasma fluxes induced by the electric field fluctuations has been evaluated in a rotating plasma with shear flow in a helical system. The anomalous ion flux is evaluated by the contribution from ion curvature drift resonance continuum in the test particle model. The radial electric field induces the Doppler frequency shift which disappears in the frequency integrated anomalous flux. The inhomogeneity of the electric field (shear flow effect), however, induces a new force term in the flux. The curvature drift resonance also induces a new force term '/ which, however, did not make large influence in the ion flux in the CHS configuration. The shear flow term in the flux combined with the electric field in neoclassical flux reduces to a first order differential equation which governs the radial profile of the electric field. Numerical results indicate that the shear flow effect is important for the anomalous cross field flux and for determination of the radial electric field particularly in the peripheral region. (author)

  13. Accurate evaluation of viscoelasticity of radial artery wall during flow-mediated dilation in ultrasound measurement

    Science.gov (United States)

    Sakai, Yasumasa; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    In our previous study, the viscoelasticity of the radial artery wall was estimated to diagnose endothelial dysfunction using a high-frequency (22 MHz) ultrasound device. In the present study, we employed a commercial ultrasound device (7.5 MHz) and estimated the viscoelasticity using arterial pressure and diameter, both of which were measured at the same position. In a phantom experiment, the proposed method successfully estimated the elasticity and viscosity of the phantom with errors of 1.8 and 30.3%, respectively. In an in vivo measurement, the transient change in the viscoelasticity was measured for three healthy subjects during flow-mediated dilation (FMD). The proposed method revealed the softening of the arterial wall originating from the FMD reaction within 100 s after avascularization. These results indicate the high performance of the proposed method in evaluating vascular endothelial function just after avascularization, where the function is difficult to be estimated by a conventional FMD measurement.

  14. Radial pattern of nuclear decay processes

    International Nuclear Information System (INIS)

    Iskra, W.; Mueller, M.; Rotter, I.; Technische Univ. Dresden

    1994-05-01

    At high level density of nuclear states, a separation of different time scales is observed (trapping effect). We calculate the radial profile of partial widths in the framework of the continuum shell model for some 1 - resonances with 2p-2h nuclear structure in 16 O as a function of the coupling strength to the continuum. A correlation between the lifetime of a nuclear state and the radial profile of the corresponding decay process is observed. We conclude from our numerical results that the trapping effect creates structures in space and time characterized by a small radial extension and a short lifetime. (orig.)

  15. Markerless gating for lung cancer radiotherapy based on machine learning techniques

    International Nuclear Information System (INIS)

    Lin Tong; Li Ruijiang; Tang Xiaoli; Jiang, Steve B; Dy, Jennifer G

    2009-01-01

    In lung cancer radiotherapy, radiation to a mobile target can be delivered by respiratory gating, for which we need to know whether the target is inside or outside a predefined gating window at any time point during the treatment. This can be achieved by tracking one or more fiducial markers implanted inside or near the target, either fluoroscopically or electromagnetically. However, the clinical implementation of marker tracking is limited for lung cancer radiotherapy mainly due to the risk of pneumothorax. Therefore, gating without implanted fiducial markers is a promising clinical direction. We have developed several template-matching methods for fluoroscopic marker-less gating. Recently, we have modeled the gating problem as a binary pattern classification problem, in which principal component analysis (PCA) and support vector machine (SVM) are combined to perform the classification task. Following the same framework, we investigated different combinations of dimensionality reduction techniques (PCA and four nonlinear manifold learning methods) and two machine learning classification methods (artificial neural networks-ANN and SVM). Performance was evaluated on ten fluoroscopic image sequences of nine lung cancer patients. We found that among all combinations of dimensionality reduction techniques and classification methods, PCA combined with either ANN or SVM achieved a better performance than the other nonlinear manifold learning methods. ANN when combined with PCA achieves a better performance than SVM in terms of classification accuracy and recall rate, although the target coverage is similar for the two classification methods. Furthermore, the running time for both ANN and SVM with PCA is within tolerance for real-time applications. Overall, ANN combined with PCA is a better candidate than other combinations we investigated in this work for real-time gated radiotherapy.

  16. Gate valve performance prediction

    International Nuclear Information System (INIS)

    Harrison, D.H.; Damerell, P.S.; Wang, J.K.; Kalsi, M.S.; Wolfe, K.J.

    1994-01-01

    The Electric Power Research Institute is carrying out a program to improve the performance prediction methods for motor-operated valves. As part of this program, an analytical method to predict the stem thrust required to stroke a gate valve has been developed and has been assessed against data from gate valve tests. The method accounts for the loads applied to the disc by fluid flow and for the detailed mechanical interaction of the stem, disc, guides, and seats. To support development of the method, two separate-effects test programs were carried out. One test program determined friction coefficients for contacts between gate valve parts by using material specimens in controlled environments. The other test program investigated the interaction of the stem, disc, guides, and seat using a special fixture with full-sized gate valve parts. The method has been assessed against flow-loop and in-plant test data. These tests include valve sizes from 3 to 18 in. and cover a considerable range of flow, temperature, and differential pressure. Stem thrust predictions for the method bound measured results. In some cases, the bounding predictions are substantially higher than the stem loads required for valve operation, as a result of the bounding nature of the friction coefficients in the method

  17. Double-disc gate valve

    International Nuclear Information System (INIS)

    Wheatley, S.J.

    1979-01-01

    The invention relates to an improvement in a conventional double-disc gate valve having a vertically movable gate assembly including a wedge, spreaders slidably engaged therewith, a valve disc carried by the spreaders. When the gate assembly is lowered to a selected point in the valve casing, the valve discs are moved transversely outward to close inlet and outlet ports in the casing. The valve includes hold-down means for guiding the disc-and-spreader assemblies as they are moved transversely outward and inward. If such valves are operated at relatively high differential pressures, they sometimes jam during opening. Such jamming has been a problem for many years in gate valves used in gaseous diffusion plants for the separation of uranium isotopes. The invention is based on the finding that the above-mentioned jamming results when the outlet disc tilts about its horizontal axis in a certain way during opening of the valve. In accordance with the invention, tilting of the outlet disc is maintained at a tolerable value by providing the disc with a rigid downwardly extending member and by providing the casing with a stop for limiting inward arcuate movement of the member to a preselected value during opening of the valve

  18. Impeller radial force evolution in a large double-suction centrifugal pump during startup at the shut-off condition

    International Nuclear Information System (INIS)

    Zou, Zhichao; Wang, Fujun; Yao, Zhifeng; Tao, Ran; Xiao, Ruofu; Li, Huaicheng

    2016-01-01

    Highlights: • Conclude the characteristics of transient radial force in the startup process for a large double-suction centrifugal pump. • The overall direction of the radial force during startup process is also confirmed. • A formula used to calculate the transient radial force during startup process is proposed. • A relationship between radial force variation and axial vortex development in blade channel during the startup process is established. The mechanism of the radial force evolution is revealed. - Abstract: Double-suction centrifugal pumps play an important role in the main feedwater systems of nuclear power plant. The impeller radial force in a centrifugal pump varies dramatically during startup at the shut-off condition. In this study, the startup process of a large double-suction centrifugal pump is investigated using CFD. During testing, the impeller speed is accelerated from zero to its rated speed in 1.0 s (marked as t_0) and is then maintained at the rated speed. The results show that the radial force increase lags behind the impeller speed increase. At 0–0.4t_0, the radial force is small (approaching zero). At 0.4–1.4t_0, the radial force increases rapidly. After 1.4t_0, the average radial force stabilizes and reaches its maximum value of 55,619 N. The observed maximum radial force value during startup is approximately nine times as high as the radial force under rated condition. During startup, the overall radial force direction is proximate to the radial line located 25° from the volute tongue along circumferential direction. A transient radial force formula is proposed to evaluate the changes in radial force during startup. The streamline distribution in impeller passages and the impeller outlet pressure profile varying over time are produced. The relationship between radial force evolution and the varying axial-to-spiral vortex structure is analyzed. The radial force change mechanism is revealed. This research provides a scientific

  19. Impeller radial force evolution in a large double-suction centrifugal pump during startup at the shut-off condition

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhichao [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China); Wang, Fujun, E-mail: wangfj@cau.edu.cn [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China); Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, China Agricultural University, Beijing 100083 (China); Yao, Zhifeng [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China); Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, China Agricultural University, Beijing 100083 (China); Tao, Ran [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China); Xiao, Ruofu [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China); Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, China Agricultural University, Beijing 100083 (China); Li, Huaicheng [Shanghai Liancheng (Group) Co., Ltd., Shanghai 201812 (China)

    2016-12-15

    Highlights: • Conclude the characteristics of transient radial force in the startup process for a large double-suction centrifugal pump. • The overall direction of the radial force during startup process is also confirmed. • A formula used to calculate the transient radial force during startup process is proposed. • A relationship between radial force variation and axial vortex development in blade channel during the startup process is established. The mechanism of the radial force evolution is revealed. - Abstract: Double-suction centrifugal pumps play an important role in the main feedwater systems of nuclear power plant. The impeller radial force in a centrifugal pump varies dramatically during startup at the shut-off condition. In this study, the startup process of a large double-suction centrifugal pump is investigated using CFD. During testing, the impeller speed is accelerated from zero to its rated speed in 1.0 s (marked as t{sub 0}) and is then maintained at the rated speed. The results show that the radial force increase lags behind the impeller speed increase. At 0–0.4t{sub 0}, the radial force is small (approaching zero). At 0.4–1.4t{sub 0}, the radial force increases rapidly. After 1.4t{sub 0}, the average radial force stabilizes and reaches its maximum value of 55,619 N. The observed maximum radial force value during startup is approximately nine times as high as the radial force under rated condition. During startup, the overall radial force direction is proximate to the radial line located 25° from the volute tongue along circumferential direction. A transient radial force formula is proposed to evaluate the changes in radial force during startup. The streamline distribution in impeller passages and the impeller outlet pressure profile varying over time are produced. The relationship between radial force evolution and the varying axial-to-spiral vortex structure is analyzed. The radial force change mechanism is revealed. This research

  20. Moment methods with effective nuclear Hamiltonians; calculations of radial moments

    International Nuclear Information System (INIS)

    Belehrad, R.H.

    1981-02-01

    A truncated orthogonal polynomial expansion is used to evaluate the expectation value of the radial moments of the one-body density of nuclei. The expansion contains the configuration moments, , , and 2 >, where R/sup (k)/ is the operator for the k-th power of the radial coordinate r, and H is the effective nuclear Hamiltonian which is the sum of the relative kinetic energy operator and the Bruckner G matrix. Configuration moments are calculated using trace reduction formulae where the proton and neutron orbitals are treated separately in order to find expectation values of good total isospin. The operator averages are taken over many-body shell model states in the harmonic oscillator basis where all particles are active and single-particle orbitals through six major shells are included. The radial moment expectation values are calculated for the nuclei 16 O, 40 Ca, and 58 Ni and find that is usually the largest term in the expansion giving a large model space dependence to the results. For each of the 3 nuclei, a model space is found which gives the desired rms radius and then we find that the other 5 lowest moments compare favorably with other theoretical predictions. Finally, we use a method of Gordon (5) to employ the lowest 6 radial moment expectation values in the calculation of elastic electron scattering from these nuclei. For low to moderate momentum transfer, the results compare favorably with the experimental data

  1. Consideration of the accuracy by variation of respiration in real-time position management respiratory gating system

    International Nuclear Information System (INIS)

    Na, Jun Young; Kang, Tae Young; Beak, Geum Mun; Kwon, Gyeong Tae

    2013-01-01

    Respiratory Gated Radiation Therapy (RGRT) has been carried out using RPM (Real-time Position Management) Respiratory Gating System (version 1.7.5, varian, USA) in Asan Medical Center. This study was to analyze and evaluate the accuracy of Respiratory Gated Radiation Therapy (RGRT) according to variation of respiration. Making variation of respiration using Motion Phantom:QUASAR Programmable Respiratory Motion Phantom (Moudus Medical Device Inc. CANADA) able to adjust respiration pattern randomly was varying period, amplitude and baseline by analyze 50 patient's respiration of lung and liver cancer. One of the variations of respiration is baseline shift gradually downward per 0.01 cm, 0.03 cm, 0.05 cm. The other variation of respiration is baseline shift accidently downward per 0.2 cm, 0.4 cm, 0.6 cm, 0.8 cm. Experiments were performed in the same way that is used RPM Respiratory Gating System (phase gating, usually 30-70% gating) in Asan Medical Center. It was all exposed radiation under one of the conditions of baseline shift gradually downward per 0.01 cm, 0.03 cm, 0.05 cm. Under the other condition of baseline shift accidently downward per 0.2 cm, 0.4 cm, 0.6 cm, 0.8 cm equally radiation was exposed. The variations of baseline shifts didn't accurately reflect on phase gating in RPM Respiratory Gating System. This inexactitude makes serious uncertainty in Respiratory Gated Radiation Therapy. So, Must be stabilized breathing of patient before conducting Respiratory Gated Radiation Therapy. also must be monitored breathing of patient in the middle of treatment. If you observe considerable changes of breathing when conducting Respiratory Gated Radiation Therapy. Stopping treatment immediately and then must be need to recheck treatment site using fluoroscopy. If patient's respiration rechecked using fluoroscopy restabilize, it is possible to restart Respiratory Gated Radiation Therapy

  2. Rapidly reconfigurable all-optical universal logic gate

    Science.gov (United States)

    Goddard, Lynford L.; Bond, Tiziana C.; Kallman, Jeffrey S.

    2010-09-07

    A new reconfigurable cascadable all-optical on-chip device is presented. The gate operates by combining the Vernier effect with a novel effect, the gain-index lever, to help shift the dominant lasing mode from a mode where the laser light is output at one facet to a mode where it is output at the other facet. Since the laser remains above threshold, the speed of the gate for logic operations as well as for reprogramming the function of the gate is primarily limited to the small signal optical modulation speed of the laser, which can be on the order of up to about tens of GHz. The gate can be rapidly and repeatedly reprogrammed to perform any of the basic digital logic operations by using an appropriate analog optical or electrical signal at the gate selection port. Other all-optical functionality includes wavelength conversion, signal duplication, threshold switching, analog to digital conversion, digital to analog conversion, signal routing, and environment sensing. Since each gate can perform different operations, the functionality of such a cascaded circuit grows exponentially.

  3. Experimental study on x-rays dose enhancement effects for floating gate ROMs

    CERN Document Server

    Guo Hong Xia; Chen Yu Sheng; Han Fu Bin; He Chao Hui; Zhao Hui

    2002-01-01

    Experimental results of x-ray dose enhancement effects are given for floating gate read-only memory (ROMs) irradiated in the Beijing Synchrotron Radiation Facility. The wrong byte numbers vs. total irradiation dose have been tested and the equivalent relation of total dose damage is provided compared the response of devices irradiated with sup 6 sup 0 Co gamma-ray source. The x-ray dose enhancement factors for floating gate ROMs are obtained firstly in China. These results can be an effective evaluation data for x-rays radiation hardening technology

  4. Radial artery spasm occurred in transradial coronary intervention for coronary heart disease: its occurrence and predictors

    International Nuclear Information System (INIS)

    Zhong Jiming; Li Lang; Lu Yongguang; Zeng Shuyi

    2011-01-01

    Objective: To discuss the incidence and clinical predictors of radial artery spasm occurred in performing transradial coronary intervention for coronary heart disease. Methods: A total of 1020 patients, who underwent transradial coronary procedures for coronary heart disease during the period of May 2007 Jan 2010 in authors' hospital, were enrolled in this study. All clinical information and medication were recorded in detail. Arteriography via radial artery was performed in all patients. The diameter of the radial artery as well as the arterial anatomy, including arterial variations, were determined and observed, which was follow by coronary angiography or percutaneous coronary intervention. Multivariate Logistic regression analysis was adopted to evaluate the variables, such as clinical parameters, angiographic characteristics of the radial artery and procedure-related factors, in predicting the occurrence of radial artery spasm. Results: Radial artery spasm occurred in 209 (20.5%) patients. Multivariate Logistic regression analysis showed that the following eight factors were independently associated with the occurrence of radial artery spasm. These factors were as follows: female gender (OR=2.8, 95% CI 2.5-5.8; P=0.001), age (OR=0.68, 95% CI 0.60-0.92; P=0.003), smoking (OR=2.3, 95% CI 1.8-4.1; P=0.026), moderate-to-severe pain of forearm during radial artery cannulation (OR=3.0, 95% CI 2.3-4.8; P=0.006), radial artery anatomical abnormalities (OR=4.7, 95% CI 3.6-7.2; P=0.002), the ratio of radial artery diameter to patient's height (RAH) (OR=5.2, 95% CI 3.7-8.1; P=0.012), the ratio of radial artery diameter to outer diameter of the sheath (RAOD) (OR=5.8, 95% CI 4.2-6.9; P=0.006) and the number of catheter exchange (OR=2.3, 95% CI 1.4-4.3; P=0.038). Conclusion: Radial artery spasm occurred in performing transradial coronary intervention for coronary heart disease is frequently seen in clinical practice. Female gender, younger age, smoking, forearm pain during

  5. Intraluminal milrinone for dilation of the radial artery graft.

    Science.gov (United States)

    García-Rinaldi, R; Soltero, E R; Carballido, J; Mojica, J

    1999-01-01

    There is renewed interest in the use of the radial artery as a conduit for coronary artery bypass surgery. The radial artery is, however, a very muscular artery, prone to vasospasm. Milrinone, a potent vasodilator, has demonstrated vasodilatory properties superior to those of papaverine. In this report, we describe our technique of radial artery harvesting and the adjunctive use of intraluminal milrinone as a vasodilator in the preparation of this conduit for coronary artery bypass grafting. We have used these techniques in 25 patients who have undergone coronary artery bypass grafting using the radial artery. No hand ischemic complications have been observed in this group. Intraluminal milrinone appears to dilate and relax the radial artery, rendering this large conduit spasm free and very easy to use. We recommend the skeletonization technique for radial artery harvesting and the use of intraluminal milrinone as a radial artery vasodilator in routine myocardial revascularization. PMID:10524740

  6. VKCDB: Voltage-gated potassium channel database

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2004-01-01

    Full Text Available Abstract Background The family of voltage-gated potassium channels comprises a functionally diverse group of membrane proteins. They help maintain and regulate the potassium ion-based component of the membrane potential and are thus central to many critical physiological processes. VKCDB (Voltage-gated potassium [K] Channel DataBase is a database of structural and functional data on these channels. It is designed as a resource for research on the molecular basis of voltage-gated potassium channel function. Description Voltage-gated potassium channel sequences were identified by using BLASTP to search GENBANK and SWISSPROT. Annotations for all voltage-gated potassium channels were selectively parsed and integrated into VKCDB. Electrophysiological and pharmacological data for the channels were collected from published journal articles. Transmembrane domain predictions by TMHMM and PHD are included for each VKCDB entry. Multiple sequence alignments of conserved domains of channels of the four Kv families and the KCNQ family are also included. Currently VKCDB contains 346 channel entries. It can be browsed and searched using a set of functionally relevant categories. Protein sequences can also be searched using a local BLAST engine. Conclusions VKCDB is a resource for comparative studies of voltage-gated potassium channels. The methods used to construct VKCDB are general; they can be used to create specialized databases for other protein families. VKCDB is accessible at http://vkcdb.biology.ualberta.ca.

  7. Donor-site morbidity of the radial forearm free flap versus the ulnar forearm free flap.

    Science.gov (United States)

    Hekner, Dominique D; Abbink, Jan H; van Es, Robert J; Rosenberg, Antoine; Koole, Ronald; Van Cann, Ellen M

    2013-08-01

    Donor-site morbidity following harvest of the radial forearm free flap was compared with that following harvest of the ulnar forearm free flap. Twenty-eight radial forearm and 27 ulnar forearm flaps were harvested in 55 patients with head and neck defects. Pressure perception was measured with Semmes-Weinstein monofilaments. Cold perception was tested with chloroethyl. Donor-site healing was evaluated. Patients were interviewed about grip and pinch strength and donor-site appearance. In the radial forearm free flap group, pressure perception and cold perception were reduced in the donor hand, whereas in the ulnar group, no differences were observed between the donor and unoperated hands. In the radial forearm group, 15 percent of patients experienced reduced strength in the donor hand, whereas in the ulnar forearm group, none of the patients reported reduced strength in the donor hand. In the radial forearm group, 14 percent had partial or complete loss of the skin graft, whereas in the ulnar forearm group, 4 percent had partial loss of the skin graft. In the radial forearm group, 18 percent of patients were dissatisfied with the appearance of the donor site, and no complaints were reported in the ulnar forearm group. The authors' study shows less donor site-morbidity following harvest of the ulnar forearm free flap than following harvest of the radial forearm free flap. These results emphasize that the ulnar forearm free flap should be considered as an alternative for the radial forearm free flap for reconstruction of soft-tissue defects. Therapeutic, III.

  8. Toward Efficient Design of Reversible Logic Gates in Quantum-Dot Cellular Automata with Power Dissipation Analysis

    Science.gov (United States)

    Sasamal, Trailokya Nath; Singh, Ashutosh Kumar; Ghanekar, Umesh

    2018-04-01

    Nanotechnologies, remarkably Quantum-dot Cellular Automata (QCA), offer an attractive perspective for future computing technologies. In this paper, QCA is investigated as an implementation method for designing area and power efficient reversible logic gates. The proposed designs achieve superior performance by incorporating a compact 2-input XOR gate. The proposed design for Feynman, Toffoli, and Fredkin gates demonstrates 28.12, 24.4, and 7% reduction in cell count and utilizes 46, 24.4, and 7.6% less area, respectively over previous best designs. Regarding the cell count (area cover) that of the proposed Peres gate and Double Feynman gate are 44.32% (21.5%) and 12% (25%), respectively less than the most compact previous designs. Further, the delay of Fredkin and Toffoli gates is 0.75 clock cycles, which is equal to the delay of the previous best designs. While the Feynman and Double Feynman gates achieve a delay of 0.5 clock cycles, equal to the least delay previous one. Energy analysis confirms that the average energy dissipation of the developed Feynman, Toffoli, and Fredkin gates is 30.80, 18.08, and 4.3% (for 1.0 E k energy level), respectively less compared to best reported designs. This emphasizes the beneficial role of using proposed reversible gates to design complex and power efficient QCA circuits. The QCADesigner tool is used to validate the layout of the proposed designs, and the QCAPro tool is used to evaluate the energy dissipation.

  9. Accuracy and effectiveness of self-gating signals in free-breathing three-dimensional cardiac cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Li Shuo; Gao Song; Wang Lei; Zhu Yan-Chun; Yang Jie; Xie Yao-Qin; Fu Nan; Wang Yi

    2016-01-01

    Conventional multiple breath-hold two-dimensional (2D) balanced steady-state free precession (SSFP) presents many difficulties in cardiac cine magnetic resonance imaging (MRI). Recently, a self-gated free-breathing three-dimensional (3D) SSFP technique has been proposed as an alternative in many studies. However, the accuracy and effectiveness of self-gating signals have been barely studied before. Since self-gating signals are crucially important in image reconstruction, a systematic study of self-gating signals and comparison with external monitored signals are needed.Previously developed self-gated free-breathing 3D SSFP techniques are used on twenty-eight healthy volunteers. Both electrocardiographic (ECG) and respiratory bellow signals are also acquired during the scan as external signals. Self-gating signal and external signal are compared by trigger and gating window. Gating window is proposed to evaluate the accuracy and effectiveness of respiratory self-gating signal. Relative deviation of the trigger and root-mean-square-deviation of the cycle duration are calculated. A two-tailed paired t-test is used to identify the difference between self-gating and external signals. A Wilcoxon signed rank test is used to identify the difference between peak and valley self-gating triggers.The results demonstrate an excellent correlation ( P = 0, R > 0.99) between self-gating and external triggers. Wilcoxon signed rank test shows that there is no significant difference between peak and valley self-gating triggers for both cardiac ( H = 0, P > 0.10) and respiratory ( H = 0, P > 0.44) motions. The difference between self-gating and externally monitored signals is not significant (two-tailed paired-sample t-test: H = 0, P > 0.90).The self-gating signals could demonstrate cardiac and respiratory motion accurately and effectively as ECG and respiratory bellow. The difference between the two methods is not significant and can be explained. Furthermore, few ECG trigger errors

  10. Channeling of protons through radial deformed carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Borka Jovanović, V., E-mail: vborka@vinca.rs [Atomic Physics Laboratory (040), Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Borka, D. [Atomic Physics Laboratory (040), Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Galijaš, S.M.D. [Faculty of Physics, University of Belgrade, P.O. Box 368, 11001 Belgrade (Serbia)

    2017-05-18

    Highlights: • For the first time we presented theoretically obtained distributions of channeled protons with radially deformed SWNT. • Our findings indicate that influence of the radial deformation is very strong and it should not be omitted in simulations. • We show that the spatial and angular distributions depend strongly of level of radial deformation of nanotube. • Our obtained results can be compared with measured distributions to reveal the presence of various types of defects in SWNT. - Abstract: In this paper we have presented a theoretical investigation of the channeling of 1 GeV protons with the radial deformed (10, 0) single-wall carbon nanotubes (SWNTs). We have calculated channeling potential within the deformed nanotubes. For the first time we presented theoretically obtained spatial and angular distributions of channeled protons with radially deformed SWNT. We used a Monte Carlo (MC) simulation technique. We show that the spatial and angular distributions depend strongly of level of radial deformation of nanotube. These results may be useful for nanotube characterization and production and guiding of nanosized ion beams.

  11. Penn State DOE GATE Program

    Energy Technology Data Exchange (ETDEWEB)

    Anstrom, Joel

    2012-08-31

    The Graduate Automotive Technology Education (GATE) Program at The Pennsylvania State University (Penn State) was established in October 1998 pursuant to an award from the U.S. Department of Energy (U.S. DOE). The focus area of the Penn State GATE Program is advanced energy storage systems for electric and hybrid vehicles.

  12. Systematic errors in respiratory gating due to intrafraction deformations of the liver

    International Nuclear Information System (INIS)

    Siebenthal, Martin von; Szekely, Gabor; Lomax, Antony J.; Cattin, Philippe C.

    2007-01-01

    This article shows the limitations of respiratory gating due to intrafraction deformations of the right liver lobe. The variability of organ shape and motion over tens of minutes was taken into account for this evaluation, which closes the gap between short-term analysis of a few regular cycles, as it is possible with 4DCT, and long-term analysis of interfraction motion. Time resolved MR volumes (4D MR sequences) were reconstructed for 12 volunteers and subsequent non-rigid registration provided estimates of the 3D trajectories of points within the liver over time. The full motion during free breathing and its distribution over the liver were quantified and respiratory gating was simulated to determine the gating accuracy for different gating signals, duty cycles, and different intervals between patient setup and treatment. Gating effectively compensated for the respiratory motion within short sequences (3 min), but deformations, mainly in the anterior inferior part (Couinaud segments IVb and V), led to systematic deviations from the setup position of more than 5 mm in 7 of 12 subjects after 20 min. We conclude that measurements over a few breathing cycles should not be used as a proof of accurate reproducibility of motion, not even within the same fraction, if it is longer than a few minutes. Although the diaphragm shows the largest magnitude of motion, it should not be used to assess the gating accuracy over the entire liver because the reproducibility is typically much more limited in inferior parts. Simple gating signals, such as the trajectory of skin motion, can detect the exhalation phase, but do not allow for an absolute localization of the complete liver over longer periods because the drift of these signals does not necessarily correlate with the internal drift

  13. Implementation of a funnel-and-gate remediation system

    International Nuclear Information System (INIS)

    O'Brien, K.; Keyes, G.; Sherman, N.

    1997-01-01

    A funnel-and-gate trademark system incorporating activated carbon was deemed the most attractive remediation method for an active lumber mill in the western United States. Petroleum hydrocarbons, chlorinated solvents, pentachlorophenol, and tetrachlorophenol were detected in on-site groundwater samples. The shallow aquifer consists of a heterogeneous mixture of marine deposits and artificial fill, underlain by low-permeability siltstones and mudstone. In the funnel-and-gate trademark system, a low-permeability cutoff wall was installed to funnel groundwater flow to a smaller area (a open-quotes gateclose quotes) where a passive below-grade treatment system treats the plume as it flows through the gate. Groundwater flow modeling focused on the inhomogeneities of the aquifer and the spatial relationship between gate(s) and barrier walls. The gate design incorporates several factors, including contaminant concentration, flow rate, and time between carbon changeouts. To minimize back pressure and maximize residence time, each gate was designed using 1.25-meter (4-foot) diameter corrugated metal pipe filled with a 1.25-meter (4-foot) thick bed of activated carbon. The configuration will allow water to flow through the treatment gates without pumps. The installed system is 190 meters (625 feet) long and treats approximately 76 L/min (20 gpm) during the winter months

  14. Universal Fault-Tolerant Gates on Concatenated Stabilizer Codes

    Directory of Open Access Journals (Sweden)

    Theodore J. Yoder

    2016-09-01

    Full Text Available It is an oft-cited fact that no quantum code can support a set of fault-tolerant logical gates that is both universal and transversal. This no-go theorem is generally responsible for the interest in alternative universality constructions including magic state distillation. Widely overlooked, however, is the possibility of nontransversal, yet still fault-tolerant, gates that work directly on small quantum codes. Here, we demonstrate precisely the existence of such gates. In particular, we show how the limits of nontransversality can be overcome by performing rounds of intermediate error correction to create logical gates on stabilizer codes that use no ancillas other than those required for syndrome measurement. Moreover, the logical gates we construct, the most prominent examples being Toffoli and controlled-controlled-Z, often complete universal gate sets on their codes. We detail such universal constructions for the smallest quantum codes, the 5-qubit and 7-qubit codes, and then proceed to generalize the approach. One remarkable result of this generalization is that any nondegenerate stabilizer code with a complete set of fault-tolerant single-qubit Clifford gates has a universal set of fault-tolerant gates. Another is the interaction of logical qubits across different stabilizer codes, which, for instance, implies a broadly applicable method of code switching.

  15. Nanoscale gadolinium oxide capping layers on compositionally variant gate dielectrics

    KAUST Repository

    Alshareef, Husam N.

    2010-11-19

    Metal gate work function enhancement using nanoscale (1.0 nm) Gd2O3 interfacial layers has been evaluated as a function of silicon oxide content in the HfxSiyOz gate dielectric and process thermal budget. It is found that the effective work function tuning by the Gd2O3 capping layer varied by nearly 400 mV as the composition of the underlying dielectric changed from 0% to 100% SiO2, and by nearly 300 mV as the maximum process temperature increased from ambient to 1000 °C. A qualitative model is proposed to explain these results, expanding the existing models for the lanthanide capping layer effect.

  16. Nanoscale gadolinium oxide capping layers on compositionally variant gate dielectrics

    KAUST Repository

    Alshareef, Husam N.; Caraveo-Frescas, J. A.; Cha, D. K.

    2010-01-01

    Metal gate work function enhancement using nanoscale (1.0 nm) Gd2O3 interfacial layers has been evaluated as a function of silicon oxide content in the HfxSiyOz gate dielectric and process thermal budget. It is found that the effective work function tuning by the Gd2O3 capping layer varied by nearly 400 mV as the composition of the underlying dielectric changed from 0% to 100% SiO2, and by nearly 300 mV as the maximum process temperature increased from ambient to 1000 °C. A qualitative model is proposed to explain these results, expanding the existing models for the lanthanide capping layer effect.

  17. Motion management within two respiratory-gating windows: feasibility study of dual quasi-breath-hold technique in gated medical procedures

    International Nuclear Information System (INIS)

    Kim, Taeho; Kim, Siyong; Youn, Kaylin K; Park, Yang-Kyun; Keall, Paul; Lee, Rena

    2014-01-01

    A dual quasi-breath-hold (DQBH) technique is proposed for respiratory motion management (a hybrid technique combining breathing-guidance with breath-hold task in the middle). The aim of this study is to test a hypothesis that the DQBH biofeedback system improves both the capability of motion management and delivery efficiency. Fifteen healthy human subjects were recruited for two respiratory motion measurements (free breathing and DQBH biofeedback breathing for 15 min). In this study, the DQBH biofeedback system utilized the abdominal position obtained using an real-time position management (RPM) system (Varian Medical Systems, Palo Alto, USA) to audio-visually guide a human subject for 4 s breath-hold at EOI and 90% EOE (EOE 90% ) to improve delivery efficiency. We investigated the residual respiratory motion and the delivery efficiency (duty-cycle) of abdominal displacement within the gating window. The improvement of the abdominal motion reproducibility was evaluated in terms of cycle-to-cycle displacement variability, respiratory period and baseline drift. The DQBH biofeedback system improved the abdominal motion management capability compared to that with free breathing. With a phase based gating (mean ± std: 55  ±  5%), the averaged root mean square error (RMSE) of the abdominal displacement in the dual-gating windows decreased from 2.26 mm of free breathing to 1.16 mm of DQBH biofeedback (p-value = 0.007). The averaged RMSE of abdominal displacement over the entire respiratory cycles reduced from 2.23 mm of free breathing to 1.39 mm of DQBH biofeedback breathing in the dual-gating windows (p-value = 0.028). The averaged baseline drift dropped from 0.9 mm min −1 with free breathing to 0.09 mm min −1 with DQBH biofeedback (p-value = 0.048). The averaged duty-cycle with an 1 mm width of displacement bound increased from 15% of free breathing to 26% of DQBH biofeedback (p-value = 0.003). The study demonstrated that the DQBH

  18. Cardiac pathologies incidentally detected with non-gated chest CT; Inzidentelle Pathologien des Herzens im Thorax-CT

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Axel; Kroepil, P.; Lanzman, R.S.; Moedder, U. [Inst. fuer Radiologie, Universitaetsklinikum Duesseldorf, Heinrich-Heine-Univ. (Germany); Choy, G.; Abbara, S. [Cardiovascular Imaging Section, Massachusetts General Hospital, Harvard Medical School (United States)

    2009-12-15

    Cardiac imaging using electrocardiogram-gated multi-detector computed tomography (MDCT) permits noninvasive diagnosis of congenital and acquired cardiac pathologies and has thus become increasingly important in the last years. Several studies investigated the incidence and relevance of incidental extracardiac structures within the lungs, mediastinum, chest wall, and abdomen with gated coronary CT. This resulted in the general acceptance of the review of extracardiac structures as a routine component of coronary CT interpretation. On the other hand radiologists tend to neglect pericardial and cardiac pathologies in non-gated chest CT, which is primarily performed for the evaluation of the respiratory system or for tumor staging. Since the introduction of multi-detector spiral CT technology, the incidental detection of cardiac and pericardial findings has become possible using non-gated chest CT. This article reviews the imaging appearances and differential diagnostic considerations of incidental cardiac entities that may be encountered in non-gated chest CT. (orig.)

  19. Radial optimization of a BWR fuel cell using genetic algorithms

    International Nuclear Information System (INIS)

    Martin del Campo M, C.; Carmona H, R.; Oropeza C, I.P.

    2006-01-01

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U 235 and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix the placement of

  20. Cleaning Challenges of High-κ/Metal Gate Structures

    KAUST Repository

    Hussain, Muhammad Mustafa; Shamiryan, Denis G.; Paraschiv, Vasile; Sano, Kenichi; Reinhardt, Karen A.

    2010-01-01

    High-κ/metal gates are used as transistors for advanced logic applications to improve speed and eliminate electrical issues associated with polySi and SiO2 gates. Various integration schemes are possible and will be discussed, such as dual gate, gate-first, and gate-last, both of which require specialized cleaning and etching steps. Specific areas of discussion will include cleaning and conditioning of the silicon surface, forming a high-quality chemical oxide, removal of the high-κ dielectric with selectivity to the SiO2 layer, cleaning and residue removal after etching, and prevention of galvanic corrosion during cleaning. © 2011 Scrivener Publishing LLC. All rights reserved.

  1. Cleaning Challenges of High-κ/Metal Gate Structures

    KAUST Repository

    Hussain, Muhammad Mustafa

    2010-12-20

    High-κ/metal gates are used as transistors for advanced logic applications to improve speed and eliminate electrical issues associated with polySi and SiO2 gates. Various integration schemes are possible and will be discussed, such as dual gate, gate-first, and gate-last, both of which require specialized cleaning and etching steps. Specific areas of discussion will include cleaning and conditioning of the silicon surface, forming a high-quality chemical oxide, removal of the high-κ dielectric with selectivity to the SiO2 layer, cleaning and residue removal after etching, and prevention of galvanic corrosion during cleaning. © 2011 Scrivener Publishing LLC. All rights reserved.

  2. Stochastic Evaluation of Maximum Wind Installation in a Radial Distribution Network

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Bak-Jensen, Birgitte; Chen, Zhe

    2011-01-01

    This paper proposes an optimization algorithm to find the maximum wind installation in a radial distribution network. The algorithm imposes a limit on the amount of wind energy that can be curtailed annually. The algorithm implements the wind turbine reactive power control and wind energy...... curtailment using sensitivity factors. The optimization is integrated with Monte Carlo simulation to account for the stochastic behavior of load demand and wind power generation. The proposed algorithm is tested on a real 20 kV Danish distribution system in Støvring. It is demonstrated that the algorithm...... executes reactive compensation and energy curtailment sequentially in an effective and efficient manner....

  3. Assessment of left ventricular function by 201Tl FCG-gated myocardial SPECT

    International Nuclear Information System (INIS)

    Toba, Masahiro; Ishida, Yoshio; Fukuchi, Kazuki; Fukushima, Kazuhito; Katafuchi, Tetsurou; Hayashida, Kohei; Oka, Hisashi; Takamiya, Makoto

    1999-01-01

    We applied the QGS program for LV function analysis (described by Germano, 1995) to a 201 Tl SPECT study at rest, and estimated its accuracy. We performed 201 Tl ECG-gated myocardial SPECT in 25 patients with ischemic heart disease under an acquisition time used in the routine 99m Tc ECG-gated SPECT study. The quality of the gated images was visually assessed with a 4-point grading system. LVEDV, LVESV, LVEF determined by the QGS program were compared with those by Simpson's method on biplane LVG in 25 patients. Regional wall motion scores in 7 myocardial segments were assessed on the three-dimensional display created by the QGS program and the cine display of biplane LVG with a 5-point grading system. Wall motion scores obtained by the QGS program were compared with those by LVG. Although 72.0% of 201 Tl ECG-gated SPECT images were fair or poor in image quality, there were good correlations between the values obtained by the QGS program and LVG (LVEDV: r=0.82, LVESV: r=0.88, LVEF: r=0.89). In addition, wall motion scores by the QGS program were correspondent to those by LVG in 77.1% of all 175 myocardial segments. We conclude that the QGS program provides high accuracy in evaluating left ventricular function even from 201 Tl ECG-gated myocardial SPECT data. (author)

  4. MO-FG-BRA-05: Dosimetric and Radiobiological Validation of Respiratory Gating in Conventional and Hypofractionated Radiotherapy of the Lung: Effect of Dose, Dose Rate, Gating Window and Breathing Pattern

    Energy Technology Data Exchange (ETDEWEB)

    Cervino, L; Soultan, D; Pettersson, N; Yock, A; Cornell, M; Aguilera, J; Murphy, J; Advani, S; Moiseenko, V [University of California, San Diego, La Jolla, CA (United States); Gill, B [British Columbia Cancer Agency, Vancouver, BC (Canada)

    2016-06-15

    Purpose: to evaluate the dosimetric and radiobiological consequences from having different gating windows, dose rates, and breathing patterns in gated VMAT lung radiotherapy. Methods: A novel 3D-printed moving phantom with central high and peripheral low tracer uptake regions was 4D FDG-PET/CT-scanned using ideal, patient-specific regular, and irregular breathing patterns. A scan of the stationary phantom was obtained as a reference. Target volumes corresponding to different uptake regions were delineated. Simultaneous integrated boost (SIB) 6 MV VMAT plans were produced for conventional and hypofractionated radiotherapy, using 30–70 and 100% cycle gating scenarios. Prescribed doses were 200 cGy with SIB to 240 cGy to high uptake volume for conventional, and 800 with SIB to 900 cGy for hypofractionated plans. Dose rates of 600 MU/min (conventional and hypofractionated) and flattening filter free 1400 MU/min (hypofractionated) were used. Ion chamber measurements were performed to verify delivered doses. Vials with A549 cells placed in locations matching ion chamber measurements were irradiated using the same plans to measure clonogenic survival. Differences in survival for the different doses, dose rates, gating windows, and breathing patterns were analyzed. Results: Ion chamber measurements agreed within 3% of the planned dose, for all locations, breathing patterns and gating windows. Cell survival depended on dose alone, and not on gating window, breathing pattern, MU rate, or delivery time. The surviving fraction varied from approximately 40% at 2Gy to 1% for 9 Gy and was within statistical uncertainty relative to that observed for the stationary phantom. Conclusions: Use of gated VMAT in PET-driven SIB radiotherapy was validated using ion chamber measurements and cell survival assays for conventional and hypofractionated radiotherapy.

  5. Radial electric fields for improved tokamak performance

    International Nuclear Information System (INIS)

    Downum, W.B.

    1981-01-01

    The influence of externally-imposed radial electric fields on the fusion energy output, energy multiplication, and alpha-particle ash build-up in a TFTR-sized, fusing tokamak plasma is explored. In an idealized tokamak plasma, an externally-imposed radial electric field leads to plasma rotation, but no charge current flows across the magnetic fields. However, a realistically-low neutral density profile generates a non-zero cross-field conductivity and the species dependence of this conductivity allows the electric field to selectively alter radial particle transport

  6. High frequency MOSFET gate drivers technologies and applications

    CERN Document Server

    Zhang, Zhiliang

    2017-01-01

    This book describes high frequency power MOSFET gate driver technologies, including gate drivers for GaN HEMTs, which have great potential in the next generation of switching power converters. Gate drivers serve as a critical role between control and power devices.

  7. Insights into operation of planar tri-gate tunnel field effect transistor for dynamic memory application

    Science.gov (United States)

    Navlakha, Nupur; Kranti, Abhinav

    2017-07-01

    Insights into device physics and operation through the control of energy barriers are presented for a planar tri-gate Tunnel Field Effect Transistor (TFET) based dynamic memory. The architecture consists of a double gate (G1) at the source side and a single gate (G2) at the drain end of the silicon film. Dual gates (G1) effectively enhance the tunneling based read mechanism through the enhanced coupling and improved electrostatic control over the channel. The single gate (G2) controls the holes in the potential barrier induced through the proper selection of bias and workfunction. The results indicate that the planar tri-gate achieves optimum performance evaluated in terms of two composite metrics (M1 and M2), namely, product of (i) Sense Margin (SM) and Retention Time (RT) i.e., M1 = SM × RT and (ii) Sense Margin and Current Ratio (CR) i.e., M2 = SM × CR. The regulation of barriers created by the gates (G1 and G2) through the optimal use of device parameters leads to better performance metrics, with significant improvement at scaled lengths as compared to other tunneling based dynamic memory architectures. The investigation shows that lengths of G1, G2 and lateral spacing can be scaled down to 25 nm, 50 nm, and 30 nm, respectively, while achieving reasonable values for (M1, M2). The work demonstrates a systematic approach to showcase the advancement in TFET based Dynamic Random Access Memory (DRAM) through the use of planar tri-gate topology at a lower bias value. The concept, design, and operation of planar tri-gate architecture provide valuable viewpoints for TFET based DRAM.

  8. Interactions between Radial Electric Field, Transport and Structure in Helical Plasmas

    International Nuclear Information System (INIS)

    Ida, Katsumi and others

    2006-01-01

    Control of the radial electric field is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. Particle and heat transport, that determines the radial structure of density and electron profiles, sensitive to the structure of radial electric field. On the other hand, the radial electric field itself is determined by the plasma parameters. In general, the sign of the radial electric field is determined by the plasma collisionality, while the magnitude of the radial electric field is determined by the temperature and/or density gradients. Therefore the structure of radial electric field and temperature and density are strongly coupled through the particle and heat transport and formation mechanism of radial electric field. Interactions between radial electric field, transport and structure in helical plasmas is discussed based on the experiments on Large Helical Device

  9. Anomalous Medial Branch of Radial Artery: A Rare Variant

    Directory of Open Access Journals (Sweden)

    Surbhi Wadhwa

    2016-10-01

    Full Text Available Radial artery is an important consistent vessel of the upper limb. It is a useful vascular access site for coronary procedures and its reliable anatomy has resulted in an elevation of radial forearm flaps for reconstructive surgeries of head and neck. Technical failures, in both the procedures, are mainly due to anatomical variations, such as radial loops, ectopic radial arteries or tortuosity in the vessel. We present a rare and a unique anomalous medial branch of the radial artery spiraling around the flexor carpi radialis muscle in the forearm with a high rising superficial palmar branch of radial artery. Developmentally it probably is a remanent of the normal pattern of capillary vessel maintenance and regression. Such a case is of importance for reconstructive surgeons and coronary interventionists, especially in view of its unique medial and deep course.

  10. Fuel radial design using Path Relinking; Diseno radial de combustible usando Path Relinking

    Energy Technology Data Exchange (ETDEWEB)

    Campos S, Y. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    The present work shows the obtained results when implementing the combinatory optimization technique well-known as Path Re linking (Re-linkage of Trajectories), to the problem of the radial design of nuclear fuel assemblies, for boiling water reactors (BWR Boiling Water Reactor by its initials in English), this type of reactors is those that are used in the Laguna Verde Nucleo electric Central, Veracruz. As in any other electric power generation plant of that make use of some fuel to produce heat and that it needs each certain time (from 12 to 14 months) to make a supply of the same one, because this it wears away or it burns, in the nucleolectric plants to this activity is denominated fuel reload. In this reload different activities intervene, among those which its highlight the radial and axial designs of fuel assemblies, the patterns of control rods and the multi cycles study, each one of these stages with their own complexity. This work was limited to study in independent form the radial design, without considering the other activities. These phases are basic for the fuel reload design and of reactor operation strategies. (Author)

  11. Evaluation of the new respiratory gating system

    Science.gov (United States)

    Shi, Chengyu; Tang, Xiaoli; Chan, Maria

    2018-01-01

    Objective The newly released Respiratory Gating for Scanners (RGSC; Varian Medical Systems, Palo Alto, CA, USA) system has limited existing quality assurance (QA) protocols and pertinent publications. Herein, we report our experiences of the RGSC system acceptance and QA. Methods The RGSC system integration was tested with peripheral equipment, spatial reproducibility, and dynamic localization accuracy for regular and irregular breathing patterns, respectively. A QUASAR Respiratory Motion Phantom and a mathematical fitting method were used for data acquisition and analysis. Results The results showed that the RGSC system could accurately measure regular motion periods of 3–10 s. For irregular breathing patterns, differences from the existing Real-time Position Management (RPM; Varian Medical Systems, Palo Alto, CA) system were observed. For dynamic localization measurements, the RGSC system showed 76% agreement with the programmed test data within ±5% tolerance in terms of fitting period. As s comparison, the RPM system showed 66% agreement within ±5% tolerance, and 65% for the RGSC versus RPM measurements. Conclusions New functions and positioning accuracy improve the RGSC system’s ability to achieve higher dynamic treatment precision. A 4D phantom is helpful for the QA tests. Further investigation is required for the whole RGSC system performance QA. PMID:29722356

  12. Light-effect transistor (LET) with multiple independent gating controls for optical logic gates and optical amplification

    Science.gov (United States)

    Marmon, Jason; Rai, Satish; Wang, Kai; Zhou, Weilie; Zhang, Yong

    The pathway for CMOS technology beyond the 5-nm technology node remains unclear for both physical and technological reasons. A new transistor paradigm is required. A LET (Marmon et. al., Front. Phys. 2016, 4, No. 8) offers electronic-optical hybridization at the component level, and is capable of continuing Moore's law to the quantum scale. A LET overcomes a FET's fabrication complexity, e.g., physical gate and doping, by employing optical gating and photoconductivity, while multiple independent, optical gates readily realize unique functionalities. We report LET device characteristics and novel digital and analog applications, such as optical logic gates and optical amplification. Prototype CdSe-nanowire-based LETs, incorporating an M-S-M structure, show output and transfer characteristics resembling advanced FETs, e.g., on/off ratios up to 106 with a source-drain voltage of 1.43V, gate-power of 260nW, and a subthreshold swing of 0.3nW/decade (excluding losses). A LET has potential for high-switching (THz) speeds and extremely low-switching energies (aJ) in the ballistic transport region. Our work offers new electronic-optical integration strategies for high speed and low energy computing approaches, which could potentially be extended to other materials and devices.

  13. Breathing adapted radiotherapy for breast cancer: comparison of free breathing gating with the breath-hold technique

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia; Pedersen, Anders N; Nøttrup, Trine Jakobi

    2005-01-01

    BACKGROUND AND PURPOSE: Adjuvant radiotherapy after breast-conserving surgery for breast cancer implies a risk of late cardiac and pulmonary toxicity. This is the first study to evaluate cardiopulmonary dose sparing of breathing adapted radiotherapy (BART) using free breathing gating......, and to compare this respiratory technique with voluntary breath-hold. PATIENTS AND METHODS: 17 patients were CT-scanned during non-coached breathing manoeuvre including free breathing (FB), end-inspiration gating (IG), end-expiration gating (EG), deep inspiration breath-hold (DIBH) and end-expiration breath......-hold (EBH). The Varian Real-time Position Management system (RPM) was used to monitor respiratory movement and to gate the scanner. For each breathing phase, a population based internal margin (IM) was estimated based on average chest wall excursion, and incorporated into an individually optimised three...

  14. Silicon photonic crystal all-optical logic gates

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yulan [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong, E-mail: xiaoyonghu@pku.edu.cn [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Gong, Qihuang, E-mail: qhgong@pku.edu.cn [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China)

    2013-01-03

    All-optical logic gates, including OR, XOR, NOT, XNOR, and NAND gates, are realized theoretically in a two-dimensional silicon photonic crystal using the light beam interference effect. The ingenious photonic crystal waveguide component design, the precisely controlled optical path difference, and the elaborate device configuration ensure the simultaneous realization of five types of logic gate with low-power and a contrast ratio between the logic states of “1” and “0” as high as 20 dB. High power is not necessary for operation of these logic gate devices. This offers a simple and effective approach for the realization of integrated all-optical logic devices.

  15. Electrocardiographic gating in positron emission computed tomography

    International Nuclear Information System (INIS)

    Hoffman, E.J.; Phelps, M.E.; Wisenberg, G.; Schelbert, H.R.; Kuhl, D.E.

    1979-01-01

    Electrocardiographic (ECG) synchronized multiple gated data acquisition was employed with positron emission computed tomography (ECT) to obtain images of myocardial blood pool and myocardium. The feasibility and requirements of multiple gated data acquisition in positron ECT were investigated for 13NH3, ( 18 F)-2-fluoro-2-D-deoxyglucose, and ( 11 C)-carboxyhemoglobin. Examples are shown in which image detail is enhanced and image interpretation is facilitated when ECG gating is employed in the data collection. Analysis of count rate data from a series of volunteers indicates that multiple, statistically adequate images can be obtained under a multiple gated data collection format without an increase in administered dose

  16. Enhanced transconductance in a double-gate graphene field-effect transistor

    Science.gov (United States)

    Hwang, Byeong-Woon; Yeom, Hye-In; Kim, Daewon; Kim, Choong-Ki; Lee, Dongil; Choi, Yang-Kyu

    2018-03-01

    Multi-gate transistors, such as double-gate, tri-gate and gate-all-around transistors are the most advanced Si transistor structure today. Here, a genuine double-gate transistor with a graphene channel is experimentally demonstrated. The top and bottom gates of the double-gate graphene field-effect transistor (DG GFET) are electrically connected so that the conductivity of the graphene channel can be modulated simultaneously by both the top and bottom gate. A single-gate graphene field-effect transistor (SG GFET) with only the top gate is also fabricated as a control device. For systematical analysis, the transfer characteristics of both GFETs were measured and compared. Whereas the maximum transconductance of the SG GFET was 17.1 μS/μm, that of the DG GFET was 25.7 μS/μm, which is approximately a 50% enhancement. The enhancement of the transconductance was reproduced and comprehensively explained by a physics-based compact model for GFETs. The investigation of the enhanced transfer characteristics of the DG GFET in this work shows the possibility of a multi-gate architecture for high-performance graphene transistor technology.

  17. Emergency Gate Vibration of the Pipe-Turbine Model

    Directory of Open Access Journals (Sweden)

    Andrej Predin

    2000-01-01

    Full Text Available The vibration behavior of an emergency gate situated on a horizontal-shaft Kaplan turbine is studied. The analysis and transfer of the dynamic movements of the gate are quite complex. In particular the behavior is examined of the emergency gate for the case when the power unit is disconnected from the system or there is a breakdown of the guide vane system at the moment when the maximal head and capacity are achieved. Experimental-numerical methods both in the time domain and in the frequency domain are employed. Natural vibrations characterize a first zone, corresponding to relatively small gate openings. As the gate opening increases, the vibration behavior of the gate becomes increasingly dependent on the swirl pulsations in the draft tube of the turbine. Finally, the data transfer from the model to the prototype by use of the dynamic similitude law is discussed.

  18. Analysis of gate underlap channel double gate MOS transistor for electrical detection of bio-molecules

    Science.gov (United States)

    Ajay; Narang, Rakhi; Saxena, Manoj; Gupta, Mridula

    2015-12-01

    In this paper, an analytical model for gate drain underlap channel Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (DG-MOSFET) for label free electrical detection of biomolecules has been proposed. The conformal mapping technique has been used to derive the expressions for surface potential, lateral electric field, energy bands (i.e. conduction and valence band) and threshold voltage (Vth). Subsequently a full drain current model to analyze the sensitivity of the biosensor has been developed. The shift in the threshold voltage and drain current (after the biomolecules interaction with the gate underlap channel region of the MOS transistor) has been used as a sensing metric. All the characteristic trends have been verified through ATLAS (SILVACO) device simulation results.

  19. Gate A: changes to opening hours

    CERN Multimedia

    2015-01-01

    Due to maintenance work, the opening hours of Gate A (near Reception) will be modified between Monday, 13 and Friday, 17 April 2015.   During this period, the gate will be open to vehicles between 7 a.m. and 9.30 a.m., then between 4.30 p.m. and 7 p.m. It will be completely closed to traffic between 9.30 a.m. and 4.30 p.m. Pedestrians and cyclists may continue to use the gate. We apologise for any inconvenience and thank you for your understanding.

  20. Clinical and Radiographic Outcomes of Unipolar and Bipolar Radial Head Prosthesis in Patients with Radial Head Fracture: A Systemic Review and Meta-Analysis.

    Science.gov (United States)

    Chen, Hongwei; Wang, Ziyang; Shang, Yongjun

    2018-06-01

    To compare clinical outcomes of unipolar and bipolar radial head prosthesis in the treatment of patients with radial head fracture. Medline, Cochrane, EMBASE, Google Scholar databases were searched until April 18, 2016 using the following search terms: radial head fracture, elbow fracture, radial head arthroplasty, implants, prosthesis, unipolar, bipolar, cemented, and press-fit. Randomized controlled trials, retrospective, and cohort studies were included. The Mayo elbow performance score (MEPS), disabilities of the arm, shoulder, and hand (DASH) score, radiologic assessment, ROM, and grip strength following elbow replacement were similar between prosthetic devices. The pooled mean excellent/good ranking of MEPS was 0.78 for unipolar and 0.73 for bipolar radial head arthroplasty, and the pooled mean MEPS was 86.9 and 79.9, respectively. DASH scores for unipolar and bipolar prosthesis were 19.0 and 16.3, respectively. Range of motion outcomes were similar between groups, with both groups have comparable risk of flexion arc, flexion, extension deficit, rotation arc, pronation, and supination (p values bipolar prosthesis). However, bipolar radial head prosthesis was associated with an increased chance of heterotopic ossification and lucency (p values ≤0.049) while unipolar prosthesis was not (p values ≥0.088). Both groups had risk for development of capitellar osteopenia or erosion/wear (p values ≤0.039). Unipolar and bipolar radial head prostheses were similar with respect to clinical outcomes. Additional comparative studies are necessary to further compare different radial head prostheses used to treat radial head fracture.

  1. Synthesis of multivalued quantum logic circuits by elementary gates

    Science.gov (United States)

    Di, Yao-Min; Wei, Hai-Rui

    2013-01-01

    We propose the generalized controlled X (gcx) gate as the two-qudit elementary gate, and based on Cartan decomposition, we also give the one-qudit elementary gates. Then we discuss the physical implementation of these elementary gates and show that it is feasible with current technology. With these elementary gates many important qudit quantum gates can be synthesized conveniently. We provide efficient methods for the synthesis of various kinds of controlled qudit gates and greatly simplify the synthesis of existing generic multi-valued quantum circuits. Moreover, we generalize the quantum Shannon decomposition (QSD), the most powerful technique for the synthesis of generic qubit circuits, to the qudit case. A comparison of ququart (d=4) circuits and qubit circuits reveals that using ququart circuits may have an advantage over the qubit circuits in the synthesis of quantum circuits.

  2. SO-limited mobility in a germanium inversion channel with non-ideal metal gate

    International Nuclear Information System (INIS)

    Shah, Raheel; De Souza, M.M.

    2008-01-01

    Germanium is an attractive candidate for ultra fast CMOS technology due to its potential for doubling electron mobility and quadrupling hole mobility in comparison to silicon. To maintain the requirements of the International Technology Roadmap for Semiconductors (ITRS), high-κ insulators and metal gates will be required in conjunction with Ge technology. Key issues which will have to be addressed in achieving Ge technology are: trap free insulators, assessment of appropriate crystallographic orientations and the selection of gate metals for the best mobility. In this work mobilities are evaluated for Ge-nMOSFET with two metal gates (Al and TiN) and high-κ (HfO 2 ) insulator. Scattering with bulk phonons, surface roughness and high-κ phonons are taken into account. It is predicted that Al as the gate material on Ge {100} substrate performs 50% better than Ge {111} orientation at a sheet concentration of 1 x 10 13 cm -2 . Surface roughness is likely to be the most damaging mobility degradation mechanism at high fields for Ge {111}

  3. A priori motion models for four-dimensional reconstruction in gated cardiac SPECT

    International Nuclear Information System (INIS)

    Lalush, D.S.; Tsui, B.M.W.; Cui, Lin

    1996-01-01

    We investigate the benefit of incorporating a priori assumptions about cardiac motion in a fully four-dimensional (4D) reconstruction algorithm for gated cardiac SPECT. Previous work has shown that non-motion-specific 4D Gibbs priors enforcing smoothing in time and space can control noise while preserving resolution. In this paper, we evaluate methods for incorporating known heart motion in the Gibbs prior model. The new model is derived by assigning motion vectors to each 4D voxel, defining the movement of that volume of activity into the neighboring time frames. Weights for the Gibbs cliques are computed based on these open-quotes most likelyclose quotes motion vectors. To evaluate, we employ the mathematical cardiac-torso (MCAT) phantom with a new dynamic heart model that simulates the beating and twisting motion of the heart. Sixteen realistically-simulated gated datasets were generated, with noise simulated to emulate a real Tl-201 gated SPECT study. Reconstructions were performed using several different reconstruction algorithms, all modeling nonuniform attenuation and three-dimensional detector response. These include ML-EM with 4D filtering, 4D MAP-EM without prior motion assumption, and 4D MAP-EM with prior motion assumptions. The prior motion assumptions included both the correct motion model and incorrect models. Results show that reconstructions using the 4D prior model can smooth noise and preserve time-domain resolution more effectively than 4D linear filters. We conclude that modeling of motion in 4D reconstruction algorithms can be a powerful tool for smoothing noise and preserving temporal resolution in gated cardiac studies

  4. GATE Monte Carlo simulation of dose distribution using MapReduce in a cloud computing environment.

    Science.gov (United States)

    Liu, Yangchuan; Tang, Yuguo; Gao, Xin

    2017-12-01

    The GATE Monte Carlo simulation platform has good application prospects of treatment planning and quality assurance. However, accurate dose calculation using GATE is time consuming. The purpose of this study is to implement a novel cloud computing method for accurate GATE Monte Carlo simulation of dose distribution using MapReduce. An Amazon Machine Image installed with Hadoop and GATE is created to set up Hadoop clusters on Amazon Elastic Compute Cloud (EC2). Macros, the input files for GATE, are split into a number of self-contained sub-macros. Through Hadoop Streaming, the sub-macros are executed by GATE in Map tasks and the sub-results are aggregated into final outputs in Reduce tasks. As an evaluation, GATE simulations were performed in a cubical water phantom for X-ray photons of 6 and 18 MeV. The parallel simulation on the cloud computing platform is as accurate as the single-threaded simulation on a local server and the simulation correctness is not affected by the failure of some worker nodes. The cloud-based simulation time is approximately inversely proportional to the number of worker nodes. For the simulation of 10 million photons on a cluster with 64 worker nodes, time decreases of 41× and 32× were achieved compared to the single worker node case and the single-threaded case, respectively. The test of Hadoop's fault tolerance showed that the simulation correctness was not affected by the failure of some worker nodes. The results verify that the proposed method provides a feasible cloud computing solution for GATE.

  5. Vitreous veils and radial lattice in Marshall syndrome.

    Science.gov (United States)

    Brubaker, Jacob W; Mohney, Brian G; Pulido, Jose S; Babovic-Vuksanovic, Dusica

    2008-12-01

    To report the findings of membranous vitreous veils and radial lattice in a child with Marshall syndrome. Observational case report. Retrospective review of medical records and fundus photograph of a 6-year-old boy with Marshall syndrome. Vitreoretinal findings were significant for bilateral membranous vitreous veils and radial lattice degeneration. This case demonstrates the occurrence of vitreous veils and radial lattice degeneration in patients with Marshall syndrome.

  6. Long-Term Follow-up of Modular Metallic Radial Head Replacement: Commentary on an article by Jonathan P. Marsh, MD, FRCSC, et al.: "Radial Head Fractures Treated with Modular Metallic Radial Head Replacement: Outcomes at a Mean Follow-up of Eight Years".

    OpenAIRE

    Mansat, Pierre

    2016-01-01

    Radial head arthroplasty is used to stabilize the joint after a complex acute radial head fracture that is not amenable for fixation or to treat sequelae of radial head fractures. Most of the currently used radial head prostheses are metallic monoblock implants that are not consistently adaptable and raise technical challenges since their implantation requires lateral elbow subluxation. Metallic modular radial head arthroplasty implants available in various head and stem sizes have been devel...

  7. High performance top-gated indium–zinc–oxide thin film transistors with in-situ formed HfO{sub 2} gate insulator

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang, E-mail: yang_song@brown.edu [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Zaslavsky, A. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); School of Engineering, Brown University, 184 Hope Street, Providence, RI 02912 (United States); Paine, D.C. [School of Engineering, Brown University, 184 Hope Street, Providence, RI 02912 (United States)

    2016-09-01

    We report on top-gated indium–zinc–oxide (IZO) thin film transistors (TFTs) with an in-situ formed HfO{sub 2} gate dielectric insulator. Building on our previous demonstration of high-performance IZO TFTs with Al{sub 2}O{sub 3}/HfO{sub 2} gate dielectric, we now report on a one-step process, in which Hf is evaporated onto the 20 nm thick IZO channel, forming a partially oxidized HfO{sub x} layer, without any additional insulator in-between. After annealing in air at 300 °C, the in-situ reaction between partially oxidized Hf and IZO forms a high quality HfO{sub 2} gate insulator with a low interface trapped charge density N{sub TC} ~ 2.3 × 10{sup 11} cm{sup −2} and acceptably low gate leakage < 3 × 10{sup −7} A/cm{sup 2} at gate voltage V{sub G} = 1 V. The annealed TFTs with gate length L{sub G} = 50 μm have high mobility ~ 95 cm{sup 2}/V ∙ s (determined via the Y-function technique), high on/off ratio ~ 10{sup 7}, near-zero threshold voltage V{sub T} = − 0.02 V, and a subthreshold swing of 0.062 V/decade, near the theoretical limit. The on-current of our proof-of-concept TFTs is relatively low, but can be improved by reducing L{sub G}, indicating that high-performance top-gated HfO{sub 2}-isolated IZO TFTs can be fabricated using a single-step in-situ dielectric formation approach. - Highlights: • High-performance indium–zinc–oxide (IZO) thin film transistors (TFTs). • Single-step in-situ dielectric formation approach simplifies fabrication process. • During anneal, reaction between HfO{sub x} and IZO channel forms a high quality HfO{sub 2} layer. • Gate insulator HfO{sub 2} shows low interface trapped charge and small gate leakage. • TFTs have high mobility, near-zero threshold voltage, and a low subthreshold swing.

  8. Detection of respiratory tumour motion using intrinsic list mode-driven gating in positron emission tomography.

    Science.gov (United States)

    Büther, Florian; Ernst, Iris; Dawood, Mohammad; Kraxner, Peter; Schäfers, Michael; Schober, Otmar; Schäfers, Klaus P

    2010-12-01

    Respiratory motion of organs during PET scans is known to degrade PET image quality, potentially resulting in blurred images, attenuation artefacts and erroneous tracer quantification. List mode-based gating has been shown to reduce these pitfalls in cardiac PET. This study evaluates these intrinsic gating methods for tumour PET scans. A total of 34 patients with liver or lung tumours (14 liver tumours and 27 lung tumours in all) underwent a 15-min single-bed list mode PET scan of the tumour region. Of these, 15 patients (8 liver and 11 lung tumours in total) were monitored by a video camera registering a marker on the patient's abdomen, thus capturing the respiratory motion for PET gating (video method). Further gating information was deduced by dividing the list mode stream into 200-ms frames, determining the number of coincidences (sensitivity method) and computing the axial centre of mass of the measured count rates in the same frames (centre of mass method). Additionally, these list mode-based methods were evaluated using only coincidences originating from the tumour region by segmenting the tumour in sinogram space (segmented sensitivity/centre of mass method). Measured displacement of the tumours between end-expiration and end-inspiration and the increase in apparent uptake in the gated images served as a measure for the exactness of gating. To estimate the accuracy, a thorax phantom study with moved activity sources simulating small tumours was also performed. All methods resolved the respiratory motion with varying success. The best results were seen in the segmented centre of mass method, on average leading to larger displacements and uptake values than the other methods. The simple centre of mass method performed worse in terms of displacements due to activities moving into the field of view during the respiratory cycle. Both sensitivity- and video-based methods lead to similar results. List mode-driven PET gating, especially the segmented centre of mass

  9. A quantum Fredkin gate.

    Science.gov (United States)

    Patel, Raj B; Ho, Joseph; Ferreyrol, Franck; Ralph, Timothy C; Pryde, Geoff J

    2016-03-01

    Minimizing the resources required to build logic gates into useful processing circuits is key to realizing quantum computers. Although the salient features of a quantum computer have been shown in proof-of-principle experiments, difficulties in scaling quantum systems have made more complex operations intractable. This is exemplified in the classical Fredkin (controlled-SWAP) gate for which, despite theoretical proposals, no quantum analog has been realized. By adding control to the SWAP unitary, we use photonic qubit logic to demonstrate the first quantum Fredkin gate, which promises many applications in quantum information and measurement. We implement example algorithms and generate the highest-fidelity three-photon Greenberger-Horne-Zeilinger states to date. The technique we use allows one to add a control operation to a black-box unitary, something that is impossible in the standard circuit model. Our experiment represents the first use of this technique to control a two-qubit operation and paves the way for larger controlled circuits to be realized efficiently.

  10. A quantum Fredkin gate

    Science.gov (United States)

    Patel, Raj B.; Ho, Joseph; Ferreyrol, Franck; Ralph, Timothy C.; Pryde, Geoff J.

    2016-01-01

    Minimizing the resources required to build logic gates into useful processing circuits is key to realizing quantum computers. Although the salient features of a quantum computer have been shown in proof-of-principle experiments, difficulties in scaling quantum systems have made more complex operations intractable. This is exemplified in the classical Fredkin (controlled-SWAP) gate for which, despite theoretical proposals, no quantum analog has been realized. By adding control to the SWAP unitary, we use photonic qubit logic to demonstrate the first quantum Fredkin gate, which promises many applications in quantum information and measurement. We implement example algorithms and generate the highest-fidelity three-photon Greenberger-Horne-Zeilinger states to date. The technique we use allows one to add a control operation to a black-box unitary, something that is impossible in the standard circuit model. Our experiment represents the first use of this technique to control a two-qubit operation and paves the way for larger controlled circuits to be realized efficiently. PMID:27051868

  11. 26 x 6.6 radial-belted aircraft tire performance

    Science.gov (United States)

    Davis, Pamela A.; Martinson, Veloria J.; Yager, Thomas J.; Stubbs, Sandy M.

    1991-01-01

    Preliminary results from testing of 26 x 6.6 radial-belted and bias-ply aircraft tires at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are reviewed. The 26 x 6.6 tire size evaluation includes cornering performance tests throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Static test results to define 26 x 6.6 tire vertical stiffness properties are also presented and discussed.

  12. Characterization of a Common-Gate Amplifier Using Ferroelectric Transistors

    Science.gov (United States)

    Hunt, Mitchell; Sayyah, Rana; MacLeod, Todd C.; Ho, Fat D.

    2011-01-01

    In this paper, the empirical data collected through experiments performed using a FeFET in the common-gate amplifier circuit is presented. The FeFET common-gate amplifier was characterized by varying all parameters in the circuit, such as load resistance, biasing of the transistor, and input voltages. Due to the polarization of the ferroelectric layer, the particular behavior of the FeFET common-gate amplifier presents interesting results. Furthermore, the differences between a FeFET common-gate amplifier and a MOSFET common-gate amplifier are examined.

  13. Data logger database - Physical and biological effects of fish-friendly tide gates

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this one-time stand-alone study is to evaluate how effective "fish-friendly" or self-regulating tide gates (SRTs) are at increasing connectivity for...

  14. Bill Gates vil redde Folkeskolen

    DEFF Research Database (Denmark)

    Fejerskov, Adam Moe

    2014-01-01

    Det amerikanske uddannelsessystem bliver for tiden udsat for hård kritik, ledt an af Microsoft stifteren Bill Gates. Gates har indtil videre brugt 3 mia. kroner på at skabe opbakning til tiltag som præstationslønning af lærere og strømlining af pensum på tværs af alle skoler i landet...

  15. Multi-Valued Logic Gates, Continuous Sensitivity, Reversibility, and Threshold Functions

    OpenAIRE

    İlhan, Aslı Güçlükan; Ünlü, Özgün

    2016-01-01

    We define an invariant of a multi-valued logic gate by considering the number of certain threshold functions associated with the gate. We call this invariant the continuous sensitivity of the gate. We discuss a method for analysing continuous sensitivity of a multi-valued logic gate by using experimental data about the gate. In particular, we will show that this invariant provides a lower bound for the sensitivity of a boolean function considered as a multi-valued logic gate. We also discuss ...

  16. Normal p50 gating in unmedicated schizophrenia outpatients

    DEFF Research Database (Denmark)

    Arnfred, Sidse M; Chen, Andrew C.N.; Glenthøj, Birte Y

    2003-01-01

    The hypothesis of a sensory gating defect in schizophrenia has been supported by studies demonstrating deficient auditory P50 gating in patients. P50 gating is the relative attenuation of P50 amplitude in the auditory evoked potential following the second auditory stimulus of a stimulus pair....

  17. Online junction temperature measurement using peak gate current

    DEFF Research Database (Denmark)

    Baker, Nick; Munk-Nielsen, Stig; Iannuzzo, Francesco

    2015-01-01

    A new method for junction temperature measurement of MOS-gated power semiconductor switches is presented. The measurement method involves detecting the peak voltage over the external gate resistor of an IGBT or MOSFET during turn-on. This voltage is directly proportional to the peak gate current...

  18. Cardiac MRI: evaluation of phonocardiogram-gated cine imaging for the assessment of global und regional left ventricular function in clinical routine

    International Nuclear Information System (INIS)

    Nassenstein, Kai; Schlosser, Thomas; Orzada, Stephan; Haering, Lars; Czylwik, Andreas; Zenge, Michael; Mueller, Edgar; Eberle, Holger; Bruder, Oliver; Ladd, Mark E.; Maderwald, Stefan

    2012-01-01

    To validate a phonocardiogram (PCG)-gated cine imaging approach for the assessment of left ventricular (LV) function. In this prospective study, cine MR imaging of the LV was performed twice in 79 patients by using retrospectively PCG- and retrospectively ECG-gated cine SSFP sequences at 1.5 T. End-diastolic volumes (EDV), end-systolic volumes (ESV), stroke volumes (SV), ejection fraction (EF), muscle mass (MM), as well as regional wall motion were assessed. Subgroup analyses were performed for patients with valvular defects and for patients with dysrhythmia. PCG-gated imaging was feasible in 75 (95%) patients, ECG-gating in all patients. Excellent correlations were observed for all volumetric parameters (r > 0.98 for all variables analysed). No significant differences were observed for EDV (-0.24 ± 3.14 mL, P = 0.5133), ESV (-0.04 ± 2.36 mL, P = 0.8951), SV (-0.20 ± 3.41 mL, P = 0.6083), EF (-0.16 ± 1.98%, P = 0.4910), or MM (0.31 ± 4.2 g, P = 0.7067) for the entire study cohort, nor for either of the subgroups. PCG- and ECG-gated cine imaging revealed similar results for regional wall motion analyses (115 vs. 119 segments with wall motion abnormalities, P = 0.3652). The present study demonstrates that PCG-gated cine imaging enables accurate assessment of global and regional LV function in the vast majority of patients in clinical routine. (orig.)

  19. Cytoplasmic Domains and Voltage-Dependent Potassium Channel Gating

    Science.gov (United States)

    Barros, Francisco; Domínguez, Pedro; de la Peña, Pilar

    2012-01-01

    The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered. PMID:22470342

  20. Automatically closing swing gate closure assembly

    Science.gov (United States)

    Chang, Shih-Chih; Schuck, William J.; Gilmore, Richard F.

    1988-01-01

    A swing gate closure assembly for nuclear reactor tipoff assembly wherein the swing gate is cammed open by a fuel element or spacer but is reliably closed at a desired closing rate primarily by hydraulic forces in the absence of a fuel charge.

  1. Radial head fracture associated with posterior interosseous nerve injury

    Directory of Open Access Journals (Sweden)

    Bernardo Barcellos Terra

    Full Text Available ABSTRACT Fractures of the radial head and radial neck correspond to 1.7-5.4% of all fractures and approximately 30% may present associated injuries. In the literature, there are few reports of radial head fracture with posterior interosseous nerve injury. This study aimed to report a case of radial head fracture associated with posterior interosseous nerve injury. CASE REPORT: A male patient, aged 42 years, sought medical care after falling from a skateboard. The patient related pain and limitation of movement in the right elbow and difficulty to extend the fingers of the right hand. During physical examination, thumb and fingers extension deficit was observed. The wrist extension showed a slight radial deviation. After imaging, it became evident that the patient had a fracture of the radial head that was classified as grade III in the Mason classification. The patient underwent fracture fixation; at the first postoperative day, thumb and fingers extension was observed. Although rare, posterior interosseous nerve branch injury may be associated with radial head fractures. In the present case, the authors believe that neuropraxia occurred as a result of the fracture hematoma and edema.

  2. Synthesizing biomolecule-based Boolean logic gates.

    Science.gov (United States)

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2013-02-15

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, and hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications.

  3. Synthesizing Biomolecule-based Boolean Logic Gates

    Science.gov (United States)

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2012-01-01

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications. PMID:23526588

  4. Radial Field Piezoelectric Diaphragms

    Science.gov (United States)

    Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.

    2002-01-01

    A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.

  5. Exchange gate on the qudit space and Fock space

    International Nuclear Information System (INIS)

    Fujii, Kazuyuki

    2003-01-01

    We construct an exchange gate with small elementary gates on the space of qudits, which consist of three controlled shift gates and three 'reverse' gates. This is a natural extension of the qubit case. We also consider a similar situation in Fock space, but in this case we find some differences. However, we can construct the exchange gate by making use of a generalized coherent operator based on the Lie algebra su(2), which is a well-known method in quantum optics. We also make a brief comment on 'imperfect clones'

  6. Dry dock gate stability modelling

    Science.gov (United States)

    Oktoberty; Widiyanto; Sasono, E. J.; Pramono, S.; Wandono, A. T.

    2018-03-01

    The development of marine transportation needs in Indonesia increasingly opens national shipyard business opportunities to provide shipbuilding services to the shipbuilding vessels. That emphasizes the stability of prime. The ship's decking door becomes an integral part of the efficient place and the specification of the use of the asset of its operational ease. This study aims to test the stability of Dry Dock gate with the length of 35.4 meters using Maxsurf and Hydromax in analyzing the calculation were in its assessment using interval per 500 mm length so that it can get detail data toward longitudinal and transverse such as studying Ship planning in general. The test result shows dry dock gate meets IMO standard with ballast construction containing 54% and 68% and using fix ballast can produce GMt 1,924 m, tide height 11,357m. The GMt value indicates dry dick gate can be stable and firmly erect at the base of the mouth dry dock. When empty ballast produces GMt 0.996 which means dry dock date is stable, but can easily be torn down. The condition can be used during dry dock gate treatment.

  7. Radial displacement of clinical target volume in node negative head and neck cancer

    International Nuclear Information System (INIS)

    Jeon, Wan; Wu, Hong Gyun; Song, Sang Hyuk; Kim, Jung In

    2012-01-01

    To evaluate the radial displacement of clinical target volume in the patients with node negative head and neck (H and N) cancer and to quantify the relative positional changes compared to that of normal healthy volunteers. Three node-negative H and N cancer patients and fi ve healthy volunteers were enrolled in this study. For setup accuracy, neck thermoplastic masks and laser alignment were used in each of the acquired computed tomography (CT) images. Both groups had total three sequential CT images in every two weeks. The lymph node (LN) level of the neck was delineated based on the Radiation Therapy Oncology Group (RTOG) consensus guideline by one physician. We use the second cervical vertebra body as a reference point to match each CT image set. Each of the sequential CT images and delineated neck LN levels were fused with the primary image, then maximal radial displacement was measured at 1.5 cm intervals from skull base (SB) to caudal margin of LN level V, and the volume differences at each node level were quantified. The mean radial displacements were 2.26 (±1.03) mm in the control group and 3.05 (±1.97) in the H and N cancer patients. There was a statistically significant difference between the groups in terms of the mean radial displacement (p = 0.03). In addition, the mean radial displacement increased with the distance from SB. As for the mean volume differences, there was no statistical significance between the two groups. This study suggests that a more generous radial margin should be applied to the lower part of the neck LN for better clinical target coverage and dose delivery.

  8. An “ohmic-first” self-terminating gate-recess technique for normally-off Al2O3/GaN MOSFET

    Science.gov (United States)

    Wang, Hongyue; Wang, Jinyan; Li, Mengjun; He, Yandong; Wang, Maojun; Yu, Min; Wu, Wengang; Zhou, Yang; Dai, Gang

    2018-04-01

    In this article, an ohmic-first AlGaN/GaN self-terminating gate-recess etching technique was demonstrated where ohmic contact formation is ahead of gate-recess-etching/gate-dielectric-deposition (GRE/GDD) process. The ohmic contact exhibits few degradations after the self-terminating gate-recess process. Besides, when comparing with that using the conventional fabrication process, the fabricated device using the ohmic-first fabrication process shows a better gate dielectric quality in terms of more than 3 orders lower forward gate leakage current, more than twice higher reverse breakdown voltage as well as better stability. Based on this proposed technique, the normally-off Al2O3/GaN MOSFET exhibits a threshold voltage (V th) of ˜1.8 V, a maximum drain current of ˜328 mA/mm, a forward gate leakage current of ˜10-6 A/mm and an off-state breakdown voltage of 218 V at room temperature. Meanwhile, high temperature characteristics of the device was also evaluated and small variations (˜7.6%) of the threshold voltage was confirmed up to 300 °C.

  9. ECG-gated computed tomography: a new role for patients with suspected aortic prosthetic valve endocarditis

    Energy Technology Data Exchange (ETDEWEB)

    Fagman, Erika; Flinck, Agneta; Lamm, Carl [Sahlgrenska University Hospital, Department of Radiology, Gothenburg (Sweden); Perrotta, Sossio [Sahlgrenska University Hospital, Department of Cardiovascular Surgery and Anaesthesia, Gothenburg (Sweden); Bech-Hanssen, Odd [Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg (Sweden); Sahlgrenska University Hospital, Department of Cardiology, Gothenburg (Sweden); Olaison, Lars [Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg (Sweden); Svensson, Gunnar [Sahlgrenska University Hospital, Department of Cardiovascular Surgery and Anaesthesia, Gothenburg (Sweden); The Sahlgrenska Academy at the University of Gothenburg, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg (Sweden)

    2012-11-15

    The aim of this prospective study was to investigate the agreement in findings between ECG-gated CT and transoesophageal echocardiography (TEE) in patients with aortic prosthetic valve endocarditis (PVE). Twenty-seven consecutive patients with PVE underwent 64-slice ECG-gated CT and TEE and the results were compared. Imaging was compared with surgical findings (surgery was performed in 16 patients). TEE suggested the presence of PVE in all patients [thickened aortic wall (n = 17), vegetation (n = 13), abscess (n = 16), valvular dehiscence (n = 10)]. ECG-gated CT was positive in 25 patients (93 %) [thickened aortic wall (n = 19), vegetation (n = 7), abscess (n = 18), valvular dehiscence (n = 7)]. The strength of agreement [kappa (95 % CI)] between ECG-gated CT and TEE was very good for thickened wall [0.83 (0.62-1.0)], good for abscess [0.68 (0.40-0.97)] and dehiscence [0.75 (0.48-1.0)], and moderate for vegetation [0.55 (0.26-0.88)]. The agreement was good between surgical findings (abscess, vegetation and dehiscence) and imaging for ECG-gated CT [0.66 (0.49-0.87)] and TEE [0.79 (0.62-0.96)] and very good for the combination of ECG-gated CT and TEE [0.88 (0.74-1.0)]. Our results indicate that ECG-gated CT has comparable diagnostic performance to TEE and may be a valuable complement in the preoperative evaluation of patients with aortic PVE. (orig.)

  10. ECG-gated computed tomography: a new role for patients with suspected aortic prosthetic valve endocarditis

    International Nuclear Information System (INIS)

    Fagman, Erika; Flinck, Agneta; Lamm, Carl; Perrotta, Sossio; Bech-Hanssen, Odd; Olaison, Lars; Svensson, Gunnar

    2012-01-01

    The aim of this prospective study was to investigate the agreement in findings between ECG-gated CT and transoesophageal echocardiography (TEE) in patients with aortic prosthetic valve endocarditis (PVE). Twenty-seven consecutive patients with PVE underwent 64-slice ECG-gated CT and TEE and the results were compared. Imaging was compared with surgical findings (surgery was performed in 16 patients). TEE suggested the presence of PVE in all patients [thickened aortic wall (n = 17), vegetation (n = 13), abscess (n = 16), valvular dehiscence (n = 10)]. ECG-gated CT was positive in 25 patients (93 %) [thickened aortic wall (n = 19), vegetation (n = 7), abscess (n = 18), valvular dehiscence (n = 7)]. The strength of agreement [kappa (95 % CI)] between ECG-gated CT and TEE was very good for thickened wall [0.83 (0.62-1.0)], good for abscess [0.68 (0.40-0.97)] and dehiscence [0.75 (0.48-1.0)], and moderate for vegetation [0.55 (0.26-0.88)]. The agreement was good between surgical findings (abscess, vegetation and dehiscence) and imaging for ECG-gated CT [0.66 (0.49-0.87)] and TEE [0.79 (0.62-0.96)] and very good for the combination of ECG-gated CT and TEE [0.88 (0.74-1.0)]. Our results indicate that ECG-gated CT has comparable diagnostic performance to TEE and may be a valuable complement in the preoperative evaluation of patients with aortic PVE. (orig.)

  11. Radial transport with perturbed magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hazeltine, R. D. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-05-15

    It is pointed out that the viscosity coefficient describing radial transport of toroidal angular momentum is proportional to the second power of the gyro-radius—like the corresponding coefficients for particle and heat transport—regardless of any geometrical symmetry. The observation is widely appreciated, but worth emphasizing because some literature gives the misleading impression that asymmetry can allow radial moment transport in first-order.

  12. Radial transport with perturbed magnetic field

    International Nuclear Information System (INIS)

    Hazeltine, R. D.

    2015-01-01

    It is pointed out that the viscosity coefficient describing radial transport of toroidal angular momentum is proportional to the second power of the gyro-radius—like the corresponding coefficients for particle and heat transport—regardless of any geometrical symmetry. The observation is widely appreciated, but worth emphasizing because some literature gives the misleading impression that asymmetry can allow radial moment transport in first-order

  13. Robust Deterministic Controlled Phase-Flip Gate and Controlled-Not Gate Based on Atomic Ensembles Embedded in Double-Sided Optical Cavities

    Science.gov (United States)

    Liu, A.-Peng; Cheng, Liu-Yong; Guo, Qi; Zhang, Shou

    2018-02-01

    We first propose a scheme for controlled phase-flip gate between a flying photon qubit and the collective spin wave (magnon) of an atomic ensemble assisted by double-sided cavity quantum systems. Then we propose a deterministic controlled-not gate on magnon qubits with parity-check building blocks. Both the gates can be accomplished with 100% success probability in principle. Atomic ensemble is employed so that light-matter coupling is remarkably improved by collective enhancement. We assess the performance of the gates and the results show that they can be faithfully constituted with current experimental techniques.

  14. Respiratory gated beam delivery cannot facilitate margin reduction, unless combined with respiratory correlated image guidance

    International Nuclear Information System (INIS)

    Korreman, Stine S.; Juhler-Nottrup, Trine; Boyer, Arthur L.

    2008-01-01

    Purpose/objective: In radiotherapy of targets moving with respiration, beam gating is offered as a means of reducing the target motion. The purpose of this study is to evaluate the safe magnitude of margin reduction for respiratory gated beam delivery. Materials/methods: The study is based on data for 17 lung cancer patients in separate protocols at Rigshospitalet and Stanford Cancer Center. Respiratory curves for external optical markers and implanted fiducials were collected using equipment based on the RPM system (Varian Medical Systems). A total of 861 respiratory curves represented external measurements over 30 fraction treatment courses for 10 patients, and synchronous external/internal measurements in single sessions for seven patients. Variations in respiratory amplitude (simulated coaching) and external/internal phase shifts were simulated by perturbation with realistic values. Variations were described by medians and standard deviations (SDs) of position distributions of the markers. Gating windows (35% duty cycle) were retrospectively applied to the respiratory data for each session, mimicking the use of commercially available gating systems. Medians and SDs of gated data were compared to those of ungated data, to assess potential margin reductions. Results: External respiratory data collected over entire treatment courses showed SDs from 1.6 to 8.1 mm, the major part arising from baseline variations. The gated data had SDs from 1.5 to 7.7 mm, with a mean reduction of 0.3 mm (6%). Gated distributions were more skewed than ungated, and in a few cases a marginal miss of gated respiration would be found even if no margin reduction was applied. Regularization of breathing amplitude to simulate coaching did not alter these results significantly. Simulation of varying phase shifts between internal and external respiratory signals showed that the SDs of gated distributions were the same as for the ungated or smaller, but the median values were markedly shifted

  15. Radiation exposure and contrast agent use related to radial versus femoral arterial access during percutaneous coronary intervention (PCI)—Results of the FERARI study

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Tobias, E-mail: Tobias.Becher@umm.de [First Department of Medicine, University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Behnes, Michael; Ünsal, Melike; Baumann, Stefan; El-Battrawy, Ibrahim; Fastner, Christian; Kuschyk, Jürgen; Papavassiliu, Theano; Hoffmann, Ursula [First Department of Medicine, University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); Mashayekhi, Kambis [Division of Cardiology and Angiology II, University Heart Center Freiburg Bad Krozingen, Bad Krozingen (Germany); Borggrefe, Martin; Akin, Ibrahim [First Department of Medicine, University Medical Centre Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany); DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim (Germany)

    2016-12-15

    Summary: Background: Data regarding radiation exposure related to radial versus femoral arterial access in patients undergoing percutaneous coronary intervention (PCI) remain controversial. This study aims to evaluate patients enrolled in the FERARI study regarding radiation exposure, fluoroscopy time and contrast agent use. Methods: The Femoral Closure versus Radial Compression Devices Related to Percutaneous Coronary Interventions (FERARI) study evaluated prospectively 400 patients between February 2014 and May 2015 undergoing PCI either using the radial or femoral access. In these 400 patients, baseline characteristics, procedural data such as procedural duration, fluoroscopy time, dose–area product (DAP) as well as the amount of contrast agent used were documented and analyzed. Results: Median fluoroscopy time was not significantly different in patients undergoing radial versus femoral access (12.2 vs. 9.8 min, p = 0.507). Furthermore, median DAP (54.5 vs. 52.0 Gycm2, p = 0.826), procedural duration (46.0 vs. 45.0 min, p = 0.363) and contrast agent use (185.5 vs. 199.5 ml, p = 0.742) were also similar in radial and femoral PCI. Conclusion: There was no difference regarding median fluoroscopy time, procedural duration, radiation dose or contrast agent use between radial versus femoral arterial access in PCI. - Highlights: • Data comparing radiation exposure in radial versus femoral PCI remain controversial. • 400 enrolled in the FERARI study were prospectively evaluated. • There was no difference regarding radiation exposure in radial versus femoral access. • Furthermore, there was no significant difference regarding contrast agent use.

  16. Radiation exposure and contrast agent use related to radial versus femoral arterial access during percutaneous coronary intervention (PCI)—Results of the FERARI study

    International Nuclear Information System (INIS)

    Becher, Tobias; Behnes, Michael; Ünsal, Melike; Baumann, Stefan; El-Battrawy, Ibrahim; Fastner, Christian; Kuschyk, Jürgen; Papavassiliu, Theano; Hoffmann, Ursula; Mashayekhi, Kambis; Borggrefe, Martin; Akin, Ibrahim

    2016-01-01

    Summary: Background: Data regarding radiation exposure related to radial versus femoral arterial access in patients undergoing percutaneous coronary intervention (PCI) remain controversial. This study aims to evaluate patients enrolled in the FERARI study regarding radiation exposure, fluoroscopy time and contrast agent use. Methods: The Femoral Closure versus Radial Compression Devices Related to Percutaneous Coronary Interventions (FERARI) study evaluated prospectively 400 patients between February 2014 and May 2015 undergoing PCI either using the radial or femoral access. In these 400 patients, baseline characteristics, procedural data such as procedural duration, fluoroscopy time, dose–area product (DAP) as well as the amount of contrast agent used were documented and analyzed. Results: Median fluoroscopy time was not significantly different in patients undergoing radial versus femoral access (12.2 vs. 9.8 min, p = 0.507). Furthermore, median DAP (54.5 vs. 52.0 Gycm2, p = 0.826), procedural duration (46.0 vs. 45.0 min, p = 0.363) and contrast agent use (185.5 vs. 199.5 ml, p = 0.742) were also similar in radial and femoral PCI. Conclusion: There was no difference regarding median fluoroscopy time, procedural duration, radiation dose or contrast agent use between radial versus femoral arterial access in PCI. - Highlights: • Data comparing radiation exposure in radial versus femoral PCI remain controversial. • 400 enrolled in the FERARI study were prospectively evaluated. • There was no difference regarding radiation exposure in radial versus femoral access. • Furthermore, there was no significant difference regarding contrast agent use

  17. Calibration of submerged multi-sluice gates

    Directory of Open Access Journals (Sweden)

    Mohamed F. Sauida

    2014-09-01

    The main objective of this work is to study experimentally and verify empirically the different parameters affecting the discharge through submerged multiple sluice gates (i.e., the expansion ratios, gates operational management, etc.. Using multiple regression analysis of the experimental results, a general equation for discharge coefficient is developed. The results show, that the increase in the expansion ratio and the asymmetric operation of gates, give higher values for the discharge coefficient. The obtained predictions of the discharge coefficient using the developed equations are compared to the experimental data. The present developed equations showed good consistency and high accuracy.

  18. Differences in radial expansion force among inferior vena cava filter models support documented perforation rates.

    Science.gov (United States)

    Robins, J Eli; Ragai, Ihab; Yamaguchi, Dean J

    2018-05-01

    Inferior vena cava (IVC) filters are used in patients at risk for pulmonary embolism who cannot be anticoagulated. Unfortunately, these filters are not without risk, and complications include perforation, migration, and filter fracture. The most prevalent complication is filter perforation of the IVC, with incidence varying among filter models. To our knowledge, the mechanical properties of IVC filters have not been evaluated and are not readily available through the manufacturer. This study sought to determine whether differences in mechanical properties are similar to differences in documented perforation rates. The radial expansion forces of Greenfield (Boston Scientific, Marlborough, Mass), Cook Celect (Cook Medical, Bloomington, Ind), and Cook Platinum filters were analyzed with three replicates per group. The intrinsic force exerted by the filter on the measuring device was collected in real time during controlled expansion. Replicates were averaged and significance was determined by calculating analysis of covariance using SAS software (SAS Institute, Cary, NC). Each filter model generated a significantly different radial expansion force (P filter, followed by the Cook Celect and Greenfield filters. Radial force dispersion during expansion was greatest in the Cook Celect, followed by the Cook Platinum and Greenfield filters. Differences in radial expansion forces among IVC filter models are consistent with documented perforation rates. Cook Celect IVC filters have a higher incidence of perforation compared with Greenfield filters when they are left in place for >90 days. Evaluation of Cook Celect filters yielded a significantly higher radial expansion force at minimum caval diameter, with greater force dispersion during expansion. Copyright © 2018 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  19. 64-slice spiral CT coronary angiography with prospective electrocardiogram-gating: an initial study

    International Nuclear Information System (INIS)

    Yuan Xuchun; Wang Xianzhu; Liao Wenling; Chen Qin; Deng Huiyi

    2008-01-01

    Objective: To evaluate the feasibility of prospective electrocardiogram (ECG)-gating computed tomography coronary angiography (CTCA). Methods: Sixty patients with suspected or known coronary artery disease underwent 64-slice CTCA using prospective ECG-gating. Multi-planar reconstruction ( MPR), curved-planar reconstruction (CPR), maximum intensity projection (MIP) and volume rendering (VR) were used to demonstrate the coronary arteries. The image quality and radiation dose was evaluated. Results: The mean effective radiation dose was (2.7±0.2) mSv. 93.3% (720/772) segments of all coronary arteries were of diagnostic image quality, 44.2% (341/772)was classified as excellent and 49.1% (379/772)was good. Non-diagnostic coronary segments were found in 6.7% (52/772) of all coronary arteries. There were 5(8.3%) cases with severe coronary stenosis(>75%) or occlusion, 17 (28.4%) cases with moderate stenosis (50%-75%), 18 (30.0%) cases with mild stenosis (<50% )or irregular lumen, 20(33.3%) cases with normal coronary, artery. Conclusion: With a low radiation dose, prospective electrocardiogram (ECG)-gated coronary 64-MSCT angiography has a good potential for the detection of coronary stenosis, especially for excluding coronary artery disease. (authors)

  20. A double-gate double-feedback JFET charge-sensitive preamplifier

    International Nuclear Information System (INIS)

    Fazzi, A.

    1996-01-01

    A new charge-sensitive preamplifier (CSP) without a physical resistance in the feedback is presented. The input device has to be a double-gate JFET. In this new preamplifier configuration the feedback capacitor is continuously discharged by means of a second DC current feedback loop closed through the bottom gate of the input JFET. The top gate-channel junction works as usual in reverse bias, the bottom gate-channel is forward biased. A fraction of the current injected by the bottom gate reaches the top gate discharging the feedback capacitor. The n-channel double-gate JFET is considered from the viewpoint of the restoring action as a parasitic p-n-p ''transversal'' bipolar junction transistor. The new preamplifier is also suited for detectors operating at room temperature with leakage current which may vary with time. The DC behaviour and the dynamic behaviour of the circuit is analyzed and new measurements presented. (orig.)

  1. Operating experience feedback report -- Pressure locking and thermal binding of gate valves

    International Nuclear Information System (INIS)

    Hsu, C.

    1993-03-01

    The potential for valve inoperability caused by pressure locking and thermal binding has been known for many years in the nuclear industry. Pressure locking or thermal binding is a common-mode failure mechanism that can prevent a gate valve from opening, and could render redundant trains of safety systems or multiple safety systems inoperable. In spite of numerous generic communications issued in the past by the Nuclear Regulatory Commission (NRC) and industry, pressure locking and thermal binding continues to occur to gate valves installed in safety-related systems of both boding water reactors (BWRs) and pressurized water reactors (PWRs). The generic communications to date have not led to effective industry action to fully identify, evaluate, and correct the problem. This report provides a review of operating events involving these failure mechanisms. As a result of this review this report: (1) identifies conditions when the failure mechanisms have occurred, (2) identifies the spectrum of safety systems that have been subjected to the failure mechanisms, and (3) identifies conditions that may introduce the failure mechanisms under both normal and accident conditions. On the basis of the evaluation of the operating events, the Office for Analysis and Evaluation of Operational Data (AEOD) of the NRC concludes that the binding problems with gate valves are an important safety issue that needs priority NRC and industry attention. This report also provides AEOD's recommendation for actions to effectively prevent the occurrence of valve binding failures

  2. Deep Gate Recurrent Neural Network

    Science.gov (United States)

    2016-11-22

    and Fred Cummins. Learning to forget: Continual prediction with lstm . Neural computation, 12(10):2451–2471, 2000. Alex Graves. Generating sequences...DSGU) and Simple Gated Unit (SGU), which are structures for learning long-term dependencies. Compared to traditional Long Short-Term Memory ( LSTM ) and...Gated Recurrent Unit (GRU), both structures require fewer parameters and less computation time in sequence classification tasks. Unlike GRU and LSTM

  3. Gas flows in radial micro-nozzles with pseudo-shocks

    Science.gov (United States)

    Kiselev, S. P.; Kiselev, V. P.; Zaikovskii, V. N.

    2017-12-01

    In the present paper, results of an experimental and numerical study of supersonic gas flows in radial micro-nozzles are reported. A distinguishing feature of such flows is the fact that two factors, the nozzle divergence and the wall friction force, exert a substantial influence on the flow structure. Under the action of the wall friction force, in the micro-nozzle there forms a pseudo-shock that separates the supersonic from subsonic flow region. The position of the pseudo-shock can be evaluated from the condition of flow blockage in the nozzle exit section. A detailed qualitative and quantitative analysis of gas flows in radial micro-nozzles is given. It is shown that the gas flow in a micro-nozzle is defined by the complicated structure of the boundary layer in the micro-nozzle, this structure being dependent on the width-to-radius ratio of the nozzle and its inlet-to-outlet pressure ratio.

  4. Lamotrigine effects sensorimotor gating in WAG/Rij rats

    Directory of Open Access Journals (Sweden)

    Ipek Komsuoglu Celikyurt

    2012-01-01

    Full Text Available Introduction: Prepulse inhibition (PPI is a measurable form of sensorimotor gating. Disruption of PPI reflects the impairment in the neural filtering process of mental functions that are related to the transformation of an external stimuli to a response. Impairment of PPI is reported in neuropsychiatric illnesses such as schizophrenia, Huntington′s disease, Parkinson′s diseases, Tourette syndrome, obsessive compulsive disorder, and temporal lobe epilepsy with psychosis. Absence epilepsy is the most common type of primary generalized epilepsy. Lamotrigine is an antiepileptic drug that is preferred in absence epilepsy and acts by stabilizing the voltage-gated sodium channels. Aim: In this study, we have compared WAG-Rij rats (genetically absence epileptic rats with Wistar rats, in order to clarify if there is a deficient sensorimotor gating in absence epilepsy, and have examined the effects of lamotrigine (15, 30 mg/kg, i.p. on this phenomenon. Materials and Methods: Depletion in PPI percent value is accepted as a disruption in sensory-motor filtration function. The difference between the Wistar and WAG/Rij rats has been evaluated with the student t test and the effects of lamotrigine on the PPI percent have been evaluated by the analysis of variance (ANOVA post-hoc Dunnett′s test. Results: The PPI percent was low in the WAG/Rij rats compared to the controls (P<0.0001, t:9,612. Although the PPI percent value of the control rats was not influenced by lamotrigine, the PPI percent value of the WAG/Rij rats was raised by lamotrigine treatment (P<0.0001, F:861,24. Conclusions: As a result of our study, PPI was disrupted in the WAG/Rij rats and this disruption could be reversed by an antiepileptic lamotrigine.

  5. [The anesthetic effects of Gow-Gates technique of inferior alveolar nerve block in impacted mandibular third molar extraction].

    Science.gov (United States)

    Yang, Jieping; Liu, Wei; Gao, Qinghong

    2013-08-01

    To evaluate the anesthetic effects and safety of Gow-Gates technique of inferior alveolar nerve block in impacted mandibular third molar extraction. A split-mouth study was designed. The bilateral impacted mandibular third molar of 32 participants were divided into Gow-Gates technique of inferior alveolar nerve block (Gow-Gates group) and conventional technique of inferior alveolar nerve block (conventional group) randomly with third molar extracted. The anesthetic effects and adverse events were recorded. All the participants completed the research. The anesthetic success rate was 96.9% in Gow-Gates group and 90.6% in conventional group with no statistical difference ( P= 0.317); but when comparing the anesthesia grade, Gow-Gates group had a 96.9% of grade A and B, and conventional group had a rate of 78.1% (P = 0.034). And the Gow-Gates group had a much lower withdrawn bleeding than conventional group (P = 0.025). Two groups had no hematoma. Gow-Gates technique had a reliable anesthesia effects and safety in impacted mandibular third molar extraction and could be chosen as a candidate for the conventional inferior alveolar nerve block.

  6. Evaluation of the retrospective ECG-gated helical scan using half-second multi-slice CT. Motion phantom study for volumetry

    International Nuclear Information System (INIS)

    Yamamoto, Shuji; Matsumoto, Takashi; Nakanishi, Shohzoh; Hamada, Seiki; Takahei, Kazunari; Naito, Hiroaki; Ogata, Yuji

    2002-01-01

    ECG synchronized technique on multi-slice CT provide the thinner (less 2 mm slice thickness) and faster (0.5 sec/rotation) scan than that of the single detector CT and can acquire the coverage of the entire heart volume within one breath-hold. However, temporal resolution of multi-slice CT is insufficient on practical range of heart rate. The purpose of this study was to evaluate the accuracy of volumetry on cardiac function measurement in retrospective ECG-gated helical scan. We discussed the influence of the degradation of image quality and limitation of the heart rate in cardiac function measurement (volumetry) using motion phantom. (author)

  7. Radial diffusive sampler for the determination of 8-h ambient ozone concentrations

    International Nuclear Information System (INIS)

    Plaisance, H.; Gerboles, M.; Piechocki, A.; Detimmerman, F.; Saeger, E. de

    2007-01-01

    The 8-h ozone radial diffusive sampler was evaluated according to the CEN protocol for the validation of diffusive samplers. All the parameters regarding the sampler characteristics were found to be consistent with the requirements of this protocol apart from the blank value, which must be evaluated and subtracted at each sampling. The nominal uptake rate was determined in laboratory conditions. However, the uptake rate depends on the mass uptake, temperature, humidity and on the combination of temperature and humidity. Based on laboratory experiments, an empirical model has been established which improved the agreement between the radial sampler and the reference method. This improvement was observed under several different meteorological and emission conditions of sampling. By using the model equation of uptake rate, the data quality objective of 30% for the expanded uncertainty included in the O 3 European Directive, is easily attained. Therefore, the sampler represents an appropriate indicative method. - A passive sampler has been fully validated for monitoring 8-h ozone concentrations in ambient air

  8. Error-Transparent Quantum Gates for Small Logical Qubit Architectures

    Science.gov (United States)

    Kapit, Eliot

    2018-02-01

    One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016), 10.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.

  9. Diminished auditory sensory gating during active auditory verbal hallucinations.

    Science.gov (United States)

    Thoma, Robert J; Meier, Andrew; Houck, Jon; Clark, Vincent P; Lewine, Jeffrey D; Turner, Jessica; Calhoun, Vince; Stephen, Julia

    2017-10-01

    Auditory sensory gating, assessed in a paired-click paradigm, indicates the extent to which incoming stimuli are filtered, or "gated", in auditory cortex. Gating is typically computed as the ratio of the peak amplitude of the event related potential (ERP) to a second click (S2) divided by the peak amplitude of the ERP to a first click (S1). Higher gating ratios are purportedly indicative of incomplete suppression of S2 and considered to represent sensory processing dysfunction. In schizophrenia, hallucination severity is positively correlated with gating ratios, and it was hypothesized that a failure of sensory control processes early in auditory sensation (gating) may represent a larger system failure within the auditory data stream; resulting in auditory verbal hallucinations (AVH). EEG data were collected while patients (N=12) with treatment-resistant AVH pressed a button to indicate the beginning (AVH-on) and end (AVH-off) of each AVH during a paired click protocol. For each participant, separate gating ratios were computed for the P50, N100, and P200 components for each of the AVH-off and AVH-on states. AVH trait severity was assessed using the Psychotic Symptoms Rating Scales AVH Total score (PSYRATS). The results of a mixed model ANOVA revealed an overall effect for AVH state, such that gating ratios were significantly higher during the AVH-on state than during AVH-off for all three components. PSYRATS score was significantly and negatively correlated with N100 gating ratio only in the AVH-off state. These findings link onset of AVH with a failure of an empirically-defined auditory inhibition system, auditory sensory gating, and pave the way for a sensory gating model of AVH. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Respiratory gating in cardiac PET

    DEFF Research Database (Denmark)

    Lassen, Martin Lyngby; Rasmussen, Thomas; Christensen, Thomas E

    2017-01-01

    BACKGROUND: Respiratory motion due to breathing during cardiac positron emission tomography (PET) results in spatial blurring and erroneous tracer quantification. Respiratory gating might represent a solution by dividing the PET coincidence dataset into smaller respiratory phase subsets. The aim...... of our study was to compare the resulting imaging quality by the use of a time-based respiratory gating system in two groups administered either adenosine or dipyridamole as the pharmacological stress agent. METHODS AND RESULTS: Forty-eight patients were randomized to adenosine or dipyridamole cardiac...... stress (82)RB-PET. Respiratory rates and depths were measured by a respiratory gating system in addition to registering actual respiratory rates. Patients undergoing adenosine stress showed a decrease in measured respiratory rate from initial to later scan phase measurements [12.4 (±5.7) vs 5.6 (±4...

  11. Dual material gate doping-less tunnel FET with hetero gate dielectric for enhancement of analog/RF performance

    Science.gov (United States)

    Anand, Sunny; Sarin, R. K.

    2017-02-01

    In this paper, charge-plasma-based tunnel FET is proposed by employing dual material gate with hetero gate dielectric technique and it is named hetero-dielectric dual material gate doping-less TFET (HD_DMG_DLTFET). It is compared with conventional doping-less TFET (DLTFET) and dual material gate doping-less TFET (DMG_DLTFET) on the basis of analog and RF performance. The HD_DMG_DLTFET provides better ON state current ({I}\\text{ON}=94 μ \\text{A}/μ \\text{m}), {I}\\text{ON}/{I}\\text{OFF}(≈ 1.36× {10}13), \\text{point} (≈ 3\\text{mV}/\\text{dec}) and average subthreshold slope (\\text{AV}-\\text{SS}=40.40 \\text{mV}/\\text{dec}). The proposed device offers low total gate capacitance (C gg) along with higher drive current. However, with a better transconductance (g m) and cut-off frequency (f T), the HD_DMG_DLTFET can be a good candidate for RF circuitry. The early voltage (V EA) and output conductance (g d) are also moderate for the proposed device with comparison to other devices and therefore can be a candidate for analog devices. From all these simulation results and their study, it is observed that HD_DMG_DLTFET has improved analog/RF performance compared to DLTFET and DMG_DLTFET.

  12. A simple reactivity feedback model accounting for radial core expansion effects in the liquid metal fast reactor

    International Nuclear Information System (INIS)

    Kwon, Young Min; Lee, Yong Bum; Chang, Won Pyo; Haha, Do Hee

    2002-01-01

    The radial core expansion due to the structure temperature rise is one of major negative reactivity insertion mechanisms in metallic fueled reactor. Thermal expansion is a result of both the laws of nature and the particular core design and it causes negative reactivity feedback by the combination of increased core volume captures and increased core surface leakage. The simple radial core expansion reactivity feedback model developed for the SSC-K code was evaluated by the code-to-code comparison analysis. From the comparison results, it can be stated that the radial core expansion reactivity feedback model employed into the SSC-K code may be reasonably accurate in the UTOP analysis

  13. A simple reactivity feedback model accounting for radial core expansion effects in the liquid metal fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min; Lee, Yong Bum; Chang, Won Pyo; Haha, Do Hee [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    The radial core expansion due to the structure temperature rise is one of major negative reactivity insertion mechanisms in metallic fueled reactor. Thermal expansion is a result of both the laws of nature and the particular core design and it causes negative reactivity feedback by the combination of increased core volume captures and increased core surface leakage. The simple radial core expansion reactivity feedback model developed for the SSC-K code was evaluated by the code-to-code comparison analysis. From the comparison results, it can be stated that the radial core expansion reactivity feedback model employed into the SSC-K code may be reasonably accurate in the UTOP analysis.

  14. The gate oxide integrity of CVD tungsten polycide

    International Nuclear Information System (INIS)

    Wu, N.W.; Su, W.D.; Chang, S.W.; Tseng, M.F.

    1988-01-01

    CVD tungsten polycide has been demonstrated as a good gate material in recent very large scale integration (VLSI) technology. CVD tungsten silicide offers advantages of low resistivity, high temperature stability and good step coverage. On the other hand, the polysilicon underlayer preserves most characteristics of the polysilicon gate and acts as a stress buffer layer to absorb part of the thermal stress origin from the large thermal expansion coefficient of tungsten silicide. Nevertheless, the gate oxide of CVD tungsten polycide is less stable or reliable than that of polysilicon gate. In this paper, the gate oxide integrity of CVD tungsten polycide with various thickness combinations and different thermal processes have been analyzed by several electrical measurements including breakdown yield, breakdown fluence, room temperature TDDB, I-V characteristics, electron traps and interface state density

  15. Hybrid Toffoli gate on photons and quantum spins.

    Science.gov (United States)

    Luo, Ming-Xing; Ma, Song-Ya; Chen, Xiu-Bo; Wang, Xiaojun

    2015-11-16

    Quantum computation offers potential advantages in solving a number of interesting and difficult problems. Several controlled logic gates, the elemental building blocks of quantum computer, have been realized with various physical systems. A general technique was recently proposed that significantly reduces the realization complexity of multiple-control logic gates by harnessing multi-level information carriers. We present implementations of a key quantum circuit: the three-qubit Toffoli gate. By exploring the optical selection rules of one-sided optical microcavities, a Toffoli gate may be realized on all combinations of photon and quantum spins in the QD-cavity. The three general controlled-NOT gates are involved using an auxiliary photon with two degrees of freedom. Our results show that photons and quantum spins may be used alternatively in quantum information processing.

  16. Extending Double Optical Gating to the Midinfrared

    Science.gov (United States)

    Gorman, Timothy; Camper, Antoine; Agostini, Pierre; Dimauro, Louis

    2015-05-01

    In the past decade there has been great interest in creating broadband isolated attosecond pulses (IAPs). Primarily these IAPs have been generated using Ti:Sapphire 800nm short pulses, namely through spatiotemporal gating with the attosecond lighthouse technique, amplitude gating, polarization gating, and double optical gating (DOG). Here we present theoretical calculations and experimental investigations into extending DOG to using a 2 μm driving wavelength, the benefits of which include extended harmonic cutoff and longer input driving pulse durations. It is proposed that broadband IAPs with cutoffs extending up to 250 eV can be generated in Argon by using >30 fs pulses from the passively-CEP stabilized 2 μm idler out of an optical parametric amplifier combined with a collinear DOG experimental setup.

  17. Seven channel gated charge to time converter

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, R J; Waddoup, W D [Durham Univ. (UK)

    1977-11-01

    By using a hybrid integrated circuit seven independent gated charge to time converters have been constructed in a single width NIM module. Gate widths from < approximately 10 ns to approximately 300 ns are possible with a resolution of 0.25 pC, linearity is better than +-1 pC over 2.5 decades of input signal height. Together with a multichannel scaling system described in the following paper one has a very powerful multichannel gated ADC system.

  18. Concepts of radial and angular kinetic energies

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Schleich, W.P.

    2002-01-01

    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...

  19. Comparison of short-circuit characteristics of trench gate and planar gate U-shaped channel SOI-LIGBTs

    Science.gov (United States)

    Zhang, Long; Zhu, Jing; Sun, Weifeng; Zhao, Minna; Huang, Xuequan; Chen, Jiajun; Shi, Longxing; Chen, Jian; Ding, Desheng

    2017-09-01

    Comparison of short-circuit (SC) characteristics of 500 V rated trench gate U-shaped channel (TGU) SOI-LIGBT and planar gate U-shaped channel (PGU) SOI-LIGBT is made for the first time in this paper. The on-state carrier profile of the TGU structure is reshaped by the dual trenches (a gate trench G1 and a hole barrier trench G2), which leads to a different conduction behavior from that of the PGU structure. The TGU structure exhibits a higher latchup immunity but a severer self-heating effect. At current density (JC) 640 A/cm2. Comparison of layouts and fabrication processes are also made between the two types of devices.

  20. Probing Dense Sprays with Gated, Picosecond, Digital Particle Field Holography

    Directory of Open Access Journals (Sweden)

    James Trolinger

    2011-12-01

    Full Text Available This paper describes work that demonstrated the feasibility of producing a gated digital holography system that is capable of producing high-resolution images of three-dimensional particle and structure details deep within dense particle fields of a spray. We developed a gated picosecond digital holocamera, using optical Kerr cell gating, to demonstrate features of gated digital holography that make it an exceptional candidate for this application. The Kerr cell gate shuttered the camera after the initial burst of ballistic and snake photons had been recorded, suppressing longer path, multiple scattered illumination. By starting with a CW laser without gating and then incorporating a picosecond laser and an optical Kerr gate, we were able to assess the imaging quality of the gated holograms, and determine improvement gained by gating. We produced high quality images of 50–200 μm diameter particles, hairs and USAF resolution charts from digital holograms recorded through turbid media where more than 98% of the light was scattered from the field. The system can gate pulses as short as 3 mm in pathlength (10 ps, enabling image-improving features of the system. The experiments lead us to the conclusion that this method has an excellent capability as a diagnostics tool in dense spray combustion research.

  1. Small High Schools at Work: A Case Study of Six Gates-Funded Schools in New York City. A Report to the Bill & Melinda Gates Foundation

    Science.gov (United States)

    Fancsali, Cheri; Jaffe-Walter, Reva; Mitchell-McKnight, Vernay; Nevarez, Nancy; Orellana, Eliana, Williams Rose, Lea

    2010-01-01

    The Academy for Educational Development (AED) conducted a case study of six public high schools in New York City as part of a multifaceted evaluation of a small schools initiative funded by the Bill & Melinda Gates Foundation. Through surveys, interviews, and focus groups, the authors gathered information and opinions from the schools'…

  2. Validation of a standardized mapping system of the hip joint for radial MRA sequencing

    International Nuclear Information System (INIS)

    Klenke, Frank M.; Hoffmann, Daniel B.; Cross, Brian J.; Siebenrock, Klaus A.

    2015-01-01

    Intraarticular gadolinium-enhanced magnetic resonance arthrography (MRA) is commonly applied to characterize morphological disorders of the hip. However, the reproducibility of retrieving anatomic landmarks on MRA scans and their correlation with intraarticular pathologies is unknown. A precise mapping system for the exact localization of hip pathomorphologies with radial MRA sequences is lacking. Therefore, the purpose of the study was the establishment and validation of a reproducible mapping system for radial sequences of hip MRA. Sixty-nine consecutive intraarticular gadolinium-enhanced hip MRAs were evaluated. Radial sequencing consisted of 14 cuts orientated along the axis of the femoral neck. Three orthopedic surgeons read the radial sequences independently. Each MRI was read twice with a minimum interval of 7 days from the first reading. The intra- and inter-observer reliability of the mapping procedure was determined. A clockwise system for hip MRA was established. The teardrop figure served to determine the 6 o'clock position of the acetabulum; the center of the greater trochanter served to determine the 12 o'clock position of the femoral head-neck junction. The intra- and inter-observer ICCs to retrieve the correct 6/12 o'clock positions were 0.906-0.996 and 0.978-0.988, respectively. The established mapping system for radial sequences of hip joint MRA is reproducible and easy to perform. (orig.)

  3. A limited 4 Å radial displacement of the S4-S5 linker is sufficient for internal gate closing in Kv channels.

    Science.gov (United States)

    Faure, Élise; Starek, Greg; McGuire, Hugo; Bernèche, Simon; Blunck, Rikard

    2012-11-16

    Voltage-gated ion channels are responsible for the generation of action potentials in our nervous system. Conformational rearrangements in their voltage sensor domains in response to changes of the membrane potential control pore opening and thus ion conduction. Crystal structures of the open channel in combination with a wealth of biophysical data and molecular dynamics simulations led to a consensus on the voltage sensor movement. However, the coupling between voltage sensor movement and pore opening, the electromechanical coupling, occurs at the cytosolic face of the channel, from where no structural information is available yet. In particular, the question how far the cytosolic pore gate has to close to prevent ion conduction remains controversial. In cells, spectroscopic methods are hindered because labeling of internal sites remains difficult, whereas liposomes or detergent solutions containing purified ion channels lack voltage control. Here, to overcome these problems, we controlled the state of the channel by varying the lipid environment. This way, we directly measured the position of the S4-S5 linker in both the open and the closed state of a prokaryotic Kv channel (KvAP) in a lipid environment using Lanthanide-based resonance energy transfer. We were able to reconstruct the movement of the covalent link between the voltage sensor and the pore domain and used this information as restraints for molecular dynamics simulations of the closed state structure. We found that a small decrease of the pore radius of about 3-4 Å is sufficient to prevent ion permeation through the pore.

  4. Modeling of radial gas fraction profiles for bubble flow in vertical pipes

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, D.; Krepper, E.; Prasser, H.-M. [Forschungszentrum Rossendorf e.V., Institute of Safety Research, Dresden (Germany)

    2001-07-01

    The paper presents a method for the prediction of radial gas fraction profiles from a given bubble size distribution. The method is based on the assumption of the equilibrium of the forces acting on a bubble perpendicularly to the flow direction. Assuming a large number of bubble size classes radial distributions are calculated separately for all bubble classes. The sum of these distributions is the radial profile of the gas fraction. The results of the model are compared with experimental data for a number of gas and liquid volume flow rates. The experiments were performed at a vertical test loop (inner diameter 50 mm) in FZ-Rossendorf using a wire mesh sensor. The sensor enables the determination of void distributions in the cross section of the loop. A special evaluation procedure supplies bubble size distributions as well as local distributions of bubbles within a predefined interval of bubble sizes. There is a good agreement between experimental and calculated data. In particular the change from wall peaking to core peaking is well predicted. (authors)

  5. Modeling of radial gas fraction profiles for bubble flow in vertical pipes

    International Nuclear Information System (INIS)

    Lucas, D.; Krepper, E.; Prasser, H.-M.

    2001-01-01

    The paper presents a method for the prediction of radial gas fraction profiles from a given bubble size distribution. The method is based on the assumption of the equilibrium of the forces acting on a bubble perpendicularly to the flow direction. Assuming a large number of bubble size classes radial distributions are calculated separately for all bubble classes. The sum of these distributions is the radial profile of the gas fraction. The results of the model are compared with experimental data for a number of gas and liquid volume flow rates. The experiments were performed at a vertical test loop (inner diameter 50 mm) in FZ-Rossendorf using a wire mesh sensor. The sensor enables the determination of void distributions in the cross section of the loop. A special evaluation procedure supplies bubble size distributions as well as local distributions of bubbles within a predefined interval of bubble sizes. There is a good agreement between experimental and calculated data. In particular the change from wall peaking to core peaking is well predicted. (authors)

  6. A Study on the Radial Hydride Assisted Delayed Hydride Cracking of Zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin-Ho; Lee, Ji-Min; Kim, Yong-Soo [Hanyang University, Seoul (Korea, Republic of)

    2015-05-15

    Extensive studies have been done on understanding of DHC(Delayed hydride cracking) phenomenon since several zirconium alloy pressure tubes failed in nuclear reactor in the 1970s. Recently, long-term dry storage strategy has been considered seriously in order to manage spent nuclear fuel in Korea and other countries around the world. Consequentially, many researches have been investigated the degradation mechanisms which will threaten the spent fuel integrity during dry storage and showed that hydrogen related phenomenon such as hydride reorientation and DHC are the critical factors. Especially, DHC is the direct cracking mechanism which can cause not only a through-wall defect but also a radiation leak to the environment. In addition, DHC can be enhanced by radial hydride as reported by Kim who demonstrate that radial hydrides clearly act as crack linkage path. This phenomenon is known as the radial hydride assisted DHC (RHA-DHC). Therefore, study on DHC is essential to ensure the safety of spent fuel. Finite element analysis will be carried out for the stress gradient evaluation around notch tip. A variation in thermal cycle which leads to change in hydrogen solid solution trajectory may be required. If the radial hydride precipitates at notch tip, we will investigate what conditions should be met. Ultimately, we will suggest the regulation criteria for long-term dry storage of spent nuclear fuel.

  7. Free energy dissipation of the spontaneous gating of a single voltage-gated potassium channel.

    Science.gov (United States)

    Wang, Jia-Zeng; Wang, Rui-Zhen

    2018-02-01

    Potassium channels mainly contribute to the resting potential and re-polarizations, with the potassium electrochemical gradient being maintained by the pump Na + /K + -ATPase. In this paper, we construct a stochastic model mimicking the kinetics of a potassium channel, which integrates temporal evolving of the membrane voltage and the spontaneous gating of the channel. Its stationary probability density functions (PDFs) are found to be singular at the boundaries, which result from the fact that the evolving rates of voltage are greater than the gating rates of the channel. We apply PDFs to calculate the power dissipations of the potassium current, the leakage, and the gating currents. On a physical perspective, the essential role of the system is the K + -battery charging the leakage (L-)battery. A part of power will inevitably be dissipated among the process. So, the efficiency of energy transference is calculated.

  8. Free energy dissipation of the spontaneous gating of a single voltage-gated potassium channel

    Science.gov (United States)

    Wang, Jia-Zeng; Wang, Rui-Zhen

    2018-02-01

    Potassium channels mainly contribute to the resting potential and re-polarizations, with the potassium electrochemical gradient being maintained by the pump Na+/K+-ATPase. In this paper, we construct a stochastic model mimicking the kinetics of a potassium channel, which integrates temporal evolving of the membrane voltage and the spontaneous gating of the channel. Its stationary probability density functions (PDFs) are found to be singular at the boundaries, which result from the fact that the evolving rates of voltage are greater than the gating rates of the channel. We apply PDFs to calculate the power dissipations of the potassium current, the leakage, and the gating currents. On a physical perspective, the essential role of the system is the K+-battery charging the leakage (L-)battery. A part of power will inevitably be dissipated among the process. So, the efficiency of energy transference is calculated.

  9. A gating grid driver for time projection chambers

    Energy Technology Data Exchange (ETDEWEB)

    Tangwancharoen, S.; Lynch, W.G.; Barney, J.; Estee, J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Shane, R. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Tsang, M.B., E-mail: tsang@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Zhang, Y. [Department of Physics, Tsinghua University, Beijing 100084 (China); Isobe, T.; Kurata-Nishimura, M. [RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Murakami, T. [Department of Physics, Kyoto University, Kita-shirakawa, Kyoto 606–8502 (Japan); Xiao, Z.G. [Department of Physics, Tsinghua University, Beijing 100084 (China); Zhang, Y.F. [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China)

    2017-05-01

    A simple but novel driver system has been developed to operate the wire gating grid of a Time Projection Chamber (TPC). This system connects the wires of the gating grid to its driver via low impedance transmission lines. When the gating grid is open, all wires have the same voltage allowing drift electrons, produced by the ionization of the detector gas molecules, to pass through to the anode wires. When the grid is closed, the wires have alternating higher and lower voltages causing the drift electrons to terminate at the more positive wires. Rapid opening of the gating grid with low pickup noise is achieved by quickly shorting the positive and negative wires to attain the average bias potential with N-type and P-type MOSFET switches. The circuit analysis and simulation software SPICE shows that the driver restores the gating grid voltage to 90% of the opening voltage in less than 0.20 µs, for small values of the termination resistors. When tested in the experimental environment of a time projection chamber larger termination resistors were chosen so that the driver opens the gating grid in 0.35 µs. In each case, opening time is basically characterized by the RC constant given by the resistance of the switches and terminating resistors and the capacitance of the gating grid and its transmission line. By adding a second pair of N-type and P-type MOSFET switches, the gating grid is closed by restoring 99% of the original charges to the wires within 3 µs.

  10. Programming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells.

    Science.gov (United States)

    Hu, Yidan; Yang, Yun; Katz, Evgeny; Song, Hao

    2015-03-11

    An AND logic gate based on a synthetic quorum-sensing (QS) module was constructed in a Shewanella oneidensis MR-1 mtrA knockout mutant. The presence of two input signals activated the expression of a periplasmic decaheme cytochrome MtrA to regenerate the extracellular electron transfer conduit, enabling the construction of AND-gated microbial fuel cells.

  11. Radial gradient and radial deviation radiomic features from pre-surgical CT scans are associated with survival among lung adenocarcinoma patients.

    Science.gov (United States)

    Tunali, Ilke; Stringfield, Olya; Guvenis, Albert; Wang, Hua; Liu, Ying; Balagurunathan, Yoganand; Lambin, Philippe; Gillies, Robert J; Schabath, Matthew B

    2017-11-10

    The goal of this study was to extract features from radial deviation and radial gradient maps which were derived from thoracic CT scans of patients diagnosed with lung adenocarcinoma and assess whether these features are associated with overall survival. We used two independent cohorts from different institutions for training (n= 61) and test (n= 47) and focused our analyses on features that were non-redundant and highly reproducible. To reduce the number of features and covariates into a single parsimonious model, a backward elimination approach was applied. Out of 48 features that were extracted, 31 were eliminated because they were not reproducible or were redundant. We considered 17 features for statistical analysis and identified a final model containing the two most highly informative features that were associated with lung cancer survival. One of the two features, radial deviation outside-border separation standard deviation, was replicated in a test cohort exhibiting a statistically significant association with lung cancer survival (multivariable hazard ratio = 0.40; 95% confidence interval 0.17-0.97). Additionally, we explored the biological underpinnings of these features and found radial gradient and radial deviation image features were significantly associated with semantic radiological features.

  12. Illumination Profile & Dispersion Variation Effects on Radial Velocity Measurements

    Science.gov (United States)

    Grieves, Nolan; Ge, Jian; Thomas, Neil B.; Ma, Bo; Li, Rui; SDSS-III

    2015-01-01

    The Multi-object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS) measures radial velocities using a fiber-fed dispersed fixed-delay interferometer (DFDI) with a moderate dispersion spectrograph. This setup allows a unique insight into the 2D illumination profile from the fiber on to the dispersion grating. Illumination profile investigations show large changes in the profile over time and fiber location. These profile changes are correlated with dispersion changes and long-term radial velocity offsets, a major problem within the MARVELS radial velocity data. Characterizing illumination profiles creates a method to both detect and correct radial velocity offsets, allowing for better planet detection. Here we report our early results from this study including improvement of radial velocity data points from detected giant planet candidates. We also report an illumination profile experiment conducted at the Kitt Peak National Observatory using the EXPERT instrument, which has a DFDI mode similar to MARVELS. Using profile controlling octagonal-shaped fibers, long term offsets over a 3 month time period were reduced from ~50 m/s to within the photon limit of ~4 m/s.

  13. ZnO nanowire-based nano-floating gate memory with Pt nanocrystals embedded in Al2O3 gate oxides

    International Nuclear Information System (INIS)

    Yeom, Donghyuk; Kang, Jeongmin; Lee, Myoungwon; Jang, Jaewon; Yun, Junggwon; Jeong, Dong-Young; Yoon, Changjoon; Koo, Jamin; Kim, Sangsig

    2008-01-01

    The memory characteristics of ZnO nanowire-based nano-floating gate memory (NFGM) with Pt nanocrystals acting as the floating gate nodes were investigated in this work. Pt nanocrystals were embedded between Al 2 O 3 tunneling and control oxide layers deposited on ZnO nanowire channels. For a representative ZnO nanowire-based NFGM with embedded Pt nanocrystals, a threshold voltage shift of 3.8 V was observed in its drain current versus gate voltage (I DS -V GS ) measurements for a double sweep of the gate voltage, revealing that the deep effective potential wells built into the nanocrystals provide our NFGM with a large charge storage capacity. Details of the charge storage effect observed in this memory device are discussed in this paper

  14. Interface engineering and reliability characteristics of hafnium dioxide with poly silicon gate and dual metal (ruthenium-tantalum alloy, ruthenium) gate electrode for beyond 65 nm technology

    Science.gov (United States)

    Kim, Young-Hee

    Chip density and performance improvements have been driven by aggressive scaling of semiconductor devices. In both logic and memory applications, SiO 2 gate dielectrics has reached its physical limit, direct tunneling resulting from scaling down of dielectrics thickness. Therefore high-k dielectrics have attracted a great deal of attention from industries as the replacement of conventional SiO2 gate dielectrics. So far, lots of candidate materials have been evaluated and Hf-based high-k dielectrics were chosen to the promising materials for gate dielectrics. However, lots of issues were identified and more thorough researches were carried out on Hf-based high-k dielectrics. For instances, mobility degradation, charge trapping, crystallization, Fermi level pinning, interface engineering, and reliability studies. In this research, reliability study of HfO2 were explored with poly gate and dual metal (Ru-Ta alloy, Ru) gate electrode as well as interface engineering. Hard breakdown and soft breakdown were compared and Weibull slope of soft breakdown was smaller than that of hard breakdown, which led to a potential high-k scaling issue. Dynamic reliability has been studied and the combination of trapping and detrapping contributed the enhancement of lifetime projection. Polarity dependence was shown that substrate injection might reduce lifetime projection as well as it increased soft breakdown behavior. Interface tunneling mechanism was suggested with dual metal gate technology. Soft breakdown (l st breakdown) was mainly due to one layer breakdown of bi-layer structure. Low weibull slope was in part attributed to low barrier height of HfO 2 compared to interface layer. Interface layer engineering was thoroughly studied in terms of mobility, swing, and short channel effect using deep sub-micron MOSFET devices. In fact, Hf-based high-k dielectrics could be scaled down to below EOT of ˜10A and it successfully achieved the competitive performance goals. However, it is

  15. Radial transfer effects for poloidal rotation

    Science.gov (United States)

    Hallatschek, Klaus

    2010-11-01

    Radial transfer of energy or momentum is the principal agent responsible for radial structures of Geodesic Acoustic Modes (GAMs) or stationary Zonal Flows (ZF) generated by the turbulence. For the GAM, following a physical approach, it is possible to find useful expressions for the individual components of the Poynting flux or radial group velocity allowing predictions where a mathematical full analysis is unfeasible. Striking differences between up-down symmetric flux surfaces and asymmetric ones have been found. For divertor geometries, e.g., the direction of the propagation depends on the sign of the ion grad-B drift with respect to the X-point, reminiscent of a sensitive determinant of the H-mode threshold. In nonlocal turbulence computations it becomes obvious that the linear energy transfer terms can be completely overwhelmed by the action of the turbulence. In contrast, stationary ZFs are governed by the turbulent radial transfer of momentum. For sufficiently large systems, the Reynolds stress becomes a deterministic functional of the flows, which can be empirically determined from the stress response in computational turbulence studies. The functional allows predictions even on flow/turbulence states not readily obtainable from small amplitude noise, such as certain transport bifurcations or meta-stable states.

  16. Effect of gate voltage polarity on the ionic liquid gating behavior of NdNiO3/NdGaO3 heterostructures

    Directory of Open Access Journals (Sweden)

    Yongqi Dong

    2017-05-01

    Full Text Available The effect of gate voltage polarity on the behavior of NdNiO3 epitaxial thin films during ionic liquid gating is studied using in situ synchrotron X-ray techniques. We show that while negative biases have no discernible effect on the structure or composition of the films, large positive gate voltages result in the injection of a large concentration of oxygen vacancies (∼3% and pronounced lattice expansion (0.17% in addition to a 1000-fold increase in sheet resistance at room temperature. Despite the creation of large defect densities, the heterostructures exhibit a largely reversible switching behavior when sufficient time is provided for the vacancies to migrate in and out of the thin film surface. The results confirm that electrostatic gating takes place at negative gate voltages for p-type complex oxides while positive voltages favor the electrochemical reduction of Ni3+. Switching between positive and negative gate voltages therefore involves a combination of electronic and ionic doping processes that may be utilized in future electrochemical transistors.

  17. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling

    DEFF Research Database (Denmark)

    Osorio, Henrry M.; Catarelli, Samantha; Cea, Pilar

    2015-01-01

    Electrochemical gating at the single molecule level of viologen molecular bridges in ionic liquids is examined. Contrary to previous data recorded in aqueous electrolytes, a clear and sharp peak in the single molecule conductance versus electrochemical potential data is obtained in ionic liquids....... These data are rationalized in terms of a two-step electrochemical model for charge transport across the redox bridge. In this model the gate coupling in the ionic liquid is found to be fully effective with a modeled gate coupling parameter, ξ, of unity. This compares to a much lower gate coupling parameter...

  18. Heavy-ion-induced, gate-rupture in power MOSFETs

    International Nuclear Information System (INIS)

    Fischer, T.A.

    1987-01-01

    A new, heavy-ion-induced, burnout mechanism has been experimentally observed in power metal-oxide-semiconductor field-effect transistors (MOSFETs). This mechanism occurs when a heavy, charged particle passes through the gate oxide region of n- or p-channel devices having sufficient gate-to-source or gate-to-drain bias. The gate-rupture leads to significant permanent degradation of the device. A proposed failure mechanism is discussed and experimentally verified. In addition, the absolute immunity of p-channel devices to heavy-ion-induced, semiconductor burnout is demonstrated and discussed along with new, non-destructive, burnout testing methods

  19. Tunnel field-effect transistor with two gated intrinsic regions

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2014-07-01

    Full Text Available In this paper, we propose and validate (using simulations a novel design of silicon tunnel field-effect transistor (TFET, based on a reverse-biased p+-p-n-n+ structure. 2D device simulation results show that our devices have significant improvements of switching performance compared with more conventional devices based on p-i-n structure. With independent gate voltages applied to two gated intrinsic regions, band-to-band tunneling (BTBT could take place at the p-n junction, and no abrupt degenerate doping profile is required. We developed single-side-gate (SSG structure and double-side-gate (DSG structure. SSG devices with HfO2 gate dielectric have a point subthreshold swing of 9.58 mV/decade, while DSG devices with polysilicon gate electrode material and HfO2 gate dielectric have a point subthreshold swing of 16.39 mV/decade. These DSG devices have ON-current of 0.255 μA/μm, while that is lower for SSG devices. Having two nano-scale independent gates will be quite challenging to realize with good uniformity across the wafer and the improved behavior of our TFET makes it a promising steep-slope switch candidate for further investigations.

  20. Creativity and sensory gating indexed by the P50: selective versus leaky sensory gating in divergent thinkers and creative achievers.

    Science.gov (United States)

    Zabelina, Darya L; O'Leary, Daniel; Pornpattananangkul, Narun; Nusslock, Robin; Beeman, Mark

    2015-03-01

    Creativity has previously been linked with atypical attention, but it is not clear what aspects of attention, or what types of creativity are associated. Here we investigated specific neural markers of a very early form of attention, namely sensory gating, indexed by the P50 ERP, and how it relates to two measures of creativity: divergent thinking and real-world creative achievement. Data from 84 participants revealed that divergent thinking (assessed with the Torrance Test of Creative Thinking) was associated with selective sensory gating, whereas real-world creative achievement was associated with "leaky" sensory gating, both in zero-order correlations and when controlling for academic test scores in a regression. Thus both creativity measures related to sensory gating, but in opposite directions. Additionally, divergent thinking and real-world creative achievement did not interact in predicting P50 sensory gating, suggesting that these two creativity measures orthogonally relate to P50 sensory gating. Finally, the ERP effect was specific to the P50 - neither divergent thinking nor creative achievement were related to later components, such as the N100 and P200. Overall results suggest that leaky sensory gating may help people integrate ideas that are outside of focus of attention, leading to creativity in the real world; whereas divergent thinking, measured by divergent thinking tests which emphasize numerous responses within a limited time, may require selective sensory processing more than previously thought. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Double gated-integrator for shaping nuclear radiation detector signals

    International Nuclear Information System (INIS)

    Gal, J.

    2001-01-01

    A new shaper, the double gated-integrator, for shaping nuclear radiation detector signals is investigated both theoretically and experimentally. The double gated-integrator consists of a pre-filter and two cascaded gated integrators. Two kinds of pre-filters were considered: a rectangular one and an exponential one. The results of the theoretical calculation show that the best figure of demerit for the double gated-integrator with exponential pre-filter is 1.016. This means that its noise to signal ratio is only 1.6% worse than that it is for infinite cusp shaping. The practical realization of the exponential pre-filter and that of the double gated integrator, both in analogue and in digital way, is very simple. Therefore, the double gated-integrator with exponential pre-filter could be a promising solution for shaping nuclear radiation detector signals

  2. Anterior transposition of the radial nerve--a cadaveric study.

    Science.gov (United States)

    Yakkanti, Madhusudhan R; Roberts, Craig S; Murphy, Joshua; Acland, Robert D

    2008-01-01

    The radial nerve is at risk during the posterior plating of the humerus. The purpose of this anatomic study was to assess the extent of radial nerve dissection required for anterior transposition through the fracture site (transfracture anterior transposition). A cadaver study was conducted approaching the humerus by a posterior midline incision. The extent of dissection of the nerve necessary for plate fixation of the humerus fracture was measured. An osteotomy was created to model a humeral shaft fracture at the spiral groove (OTA classification 12-A2, 12-A3). The radial nerve was then transposed anterior to the humeral shaft through the fracture site. The additional dissection of the radial nerve and the extent of release of soft tissue from the humerus shaft to achieve the transposition were measured. Plating required a dissection of the radial nerve 1.78 cm proximal and 2.13 cm distal to the spiral groove. Transfracture anterior transposition of the radial nerve required an average dissection of 2.24 cm proximal and 2.68 cm distal to the spiral groove. The lateral intermuscular septum had to be released for 2.21 cm on the distal fragment to maintain laxity of the transposed nerve. Transfracture anterior transposition of the radial nerve before plating is feasible with dissection proximal and distal to the spiral groove and elevation of the lateral intermuscular septum. Potential clinical advantages of this technique include enhanced fracture site visualization, application of broader plates, and protection of the radial nerve during the internal fixation.

  3. ECG-gated multislice spiral CT for diagnosis of acute pulmonary embolism

    International Nuclear Information System (INIS)

    Marten, K.; Engelke, C.; Funke, M.; Obenauer, S.; Baum, F.; Grabbe, E.

    2003-01-01

    AIM: The purpose of this study was to determine the feasibility of echocardiogram (ECG)-gated multi-slice CT angiography (MCTA) in patients with clinical suspicion of acute venous thromboembolism (VTE), to investigate the effect of ECG-gating on cardiac motion artefacts, and to determine the diagnostic reader agreement of ECG-gated MCTA in comparison with conventional MCTA. MATERIALS AND METHODS: Forty-eight consecutive patients were prospectively enrolled and randomly underwent ECG-gated (n=25, group 1) or non-ECG-gated (n=23, group 2) eight-slice pulmonary MCTA. Image data were evaluated by three independent chest radiologists with respect to the presence or absence of emboli at different arterial levels (main, lobar, segmental, and subsegmental arteries), and with regard to cardiac motion artefacts. Statistical tests used to calculate inter-observer agreement were weighted κ statistics, extended κ statistics and confidence indices indicating three-reader agreement accuracy. RESULTS: Twenty-seven patients (56.3%) were diagnosed to have pulmonary embolism (13 from group 1, 14 from group 2). Cardiac motion artefacts were significantly more frequent in group 2 (70% in group 2 versus 13% in group 1, p=0.0001). The overall diagnostic agreement was excellent with both MCTA techniques (three-reader confidence index for all vascular territories: 0.76 and 0.84 for groups 1 and 2, respectively (extended κ=0.69 and 0.78, respectively); three-reader confidence index for diagnosis of VTE: 0.94 and 0.85 for groups 1 and 2, respectively (extended κ=0.91 and 0.73, respectively), weighted κ=0.81-0.83 and 0.92-0.95 for groups 1 and 2, respectively, and did not differ significantly between the two groups. In addition there was no significant difference of inter-observer agreement in either group at any assessed pulmonary arterial level. CONCLUSION: ECG-gated pulmonary MCTA is feasible in patients with clinical suspicion of VTE. However, ECG-gated image acquisition did not

  4. Gate-keeper module for TANSY-KM5

    International Nuclear Information System (INIS)

    Rydz, R.; Norberg, L.; Urholm, L.; Grosshoeg, G.

    1991-01-01

    The purpose of the Gate-keeper is the control of the RDCs, the ADCs, and the constant fraction discriminator. The Gate-keeper synchronizes the units and ensures that the data taking is clean and not intermixed with other events. There are six Gate-Keepers in the system, one for each proton detector. All input circuits are designed to accept TTL as well as negative NIM signals. The output is 50 ohm TTL or negative NIM as defined by internal jumpers

  5. Quality verification for respiratory gated proton therapy

    International Nuclear Information System (INIS)

    Kim, Eun Sook; Jang, Yo Jong; Park, Ji Yeon; Kang, Dong Yun; Yeom, Doo Seok

    2013-01-01

    To verify accuracy of respiratory gated proton therapy by measuring and analyzing proton beam delivered when respiratory gated proton therapy is being performed in our institute. The plan data of 3 patients who took respiratory gated proton therapy were used to deliver proton beam from proton therapy system. The manufactured moving phantom was used to apply respiratory gating system to reproduce proton beam which was partially irradiated. The key characteristics of proton beam, range, spreat-out Bragg peak (SOBP) and output factor were measured 5 times and the same categories were measured in the continuous proton beam which was not performed with respiratory gating system. Multi-layer ionization chamber was used to measure range and SOBP, and Scanditronix Wellhofer and farmer chamber was used to measure output factor. The average ranges of 3 patients (A, B, C), who had taken respiratory gated proton therapy or not, were (A) 7.226, 7.230, (B) 12.216, 12.220 and (C) 19.918, 19.920 g/cm 2 and average SOBP were (A) 4.950, 4.940, (B) 6.496, 6.512 and (C) 8.486, 8.490 g/cm 2 . And average output factor were (A) 0.985, 0.984 (B) 1.026, 1.027 and (C) 1.138, 1.136 cGy/MU. The differences of average range were -0.004, -0.004, -0.002 g/cm 2 , that of SOBP were 0.010, -0.016, -0.004 g/cm 2 and that of output factor were 0.001, -0.001, 0.002 cGy/MU. It is observed that the range, SOBP and output factor of proton beam delivered when respiratory gated proton therapy is being performed have the same beam quality with no significant difference compared to the proton beam which was continuously irradiated. Therefore, this study verified the quality of proton beam delivered when respiratory gated proton therapy and confirmed the accuracy of proton therapy using this

  6. On the calculation of x-ray scattering signals from pairwise radial distribution functions

    DEFF Research Database (Denmark)

    Dohn, Asmus Ougaard; Biasin, Elisa; Haldrup, Kristoffer

    2015-01-01

    We derive a formulation for evaluating (time-resolved) x-ray scattering signals of solvated chemical systems, based on pairwise radial distribution functions, with the aim of this formulation to accompany molecular dynamics simulations. The derivation is described in detail to eliminate any possi...

  7. A New Filtering Algorithm Utilizing Radial Velocity Measurement

    Institute of Scientific and Technical Information of China (English)

    LIU Yan-feng; DU Zi-cheng; PAN Quan

    2005-01-01

    Pulse Doppler radar measurements consist of range, azimuth, elevation and radial velocity. Most of the radar tracking algorithms in engineering only utilize position measurement. The extended Kalman filter with radial velocity measureneut is presented, then a new filtering algorithm utilizing radial velocity measurement is proposed to improve tracking results and the theoretical analysis is also given. Simulation results of the new algorithm, converted measurement Kalman filter, extended Kalman filter are compared. The effectiveness of the new algorithm is verified by simulation results.

  8. Finding the Energy Efficient Curve: Gate Sizing for Minimum Power under Delay Constraints

    Directory of Open Access Journals (Sweden)

    Yoni Aizik

    2011-01-01

    Full Text Available A design scenario examined in this paper assumes that a circuit has been designed initially for high speed, and it is redesigned for low power by downsizing of the gates. In recent years, as power consumption has become a dominant issue, new optimizations of circuits are required for saving energy. This is done by trading off some speed in exchange for reduced power. For each feasible speed, an optimization problem is solved in this paper, finding new sizes for the gates such that the circuit satisfies the speed goal while dissipating minimal power. Energy/delay gain (EDG is defined as a metric to quantify the most efficient tradeoff. The EDG of the circuit is evaluated for a range of reduced circuit speeds, and the power-optimal gate sizes are compared with the initial sizes. Most of the energy savings occur at the final stages of the circuits, while the largest relative downsizing occurs in middle stages. Typical tapering factors for power efficient circuits are larger than those for speed-optimal circuits. Signal activity and signal probability affect the optimal gate sizes in the combined optimization of speed and power.

  9. Functional assessment of the right ventricle with gated myocardial perfusion SPECT

    International Nuclear Information System (INIS)

    Wadhwa, S.S.; Abbati, D.; Carolan, M.

    2002-01-01

    Full text: Evaluation of right ventricular function can provide valuable information in a variety of cardiac and non-cardiac conditions. Functional assessment of the right ventricle is difficult owing to its anatomy and geometry. We describe a method of assessing right ventricular function using gated myocardial perfusion SPECT. In 20 patients right and left ventricular ejection fractions (RVEF, LVEF) were determined using gated blood pool (GBPS) and gated myocardial perfusion SPECT (GSPECT). To avoid contamination with right atrial activity the two frame method was adopted for gated blood pool data when measuring RVEF. In 9 patients with normal right ventricles, an index of wall thickening for the right ventricle was derived from the peak systolic and diastolic counts in the free wall. There was good linear correlation between the two methods adopted for calculation of LVEF and RVEF. Bland - Airman analysis demonstrated good agreement between the two methods with no specific bias. The mean LVEF was 47.9 +/-12% (GBPS) and 47.3 +/- 12.4 (GSPECT). The mean RVEF was 43.2 +/- 9.6% (GBPS) and 44.2 +/- 8.5% (GSPECT). In both cases the values were significantly different. The mean wall motion index was 35%. There was no correlation between the wall thickness index and ejection fraction however the index was greater in patients with normal right ventricle than in those with reduced RVER Gated SPECT offers an alternative to GBPS for the functional assessment of the right ventricle. Utilising GSPECT will allow the simultaneous assessment of both the right and left ventricles. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  10. Diagnostic value of rest and stress gated 82Rb PET myocardial perfusion imaging using quantitative software

    International Nuclear Information System (INIS)

    Shi Hongcheng; Gu Yusen; Liu Wenguan; Zhu Weimin; Halkar, R.K.; Santana, C.A.; Feng Yusheng

    2008-01-01

    Objective: Gated myocardial perfusion imaging (MPI) is regularly performed using SPECT. More recently, gated 82 Rb MPI has been used to assess left ventricular myocardial perfusion and function with new generation PET scanners. The objective of this study was to evaluate the value of rest and stress gated 82 Rb PET myocardial perfusion imaging and to determine whether the quantitative technique in- creased the confidence level of the interpreters. Methods: Thirty-two patients underwent rest and adenosine stress gated 82 Pb PET MPI. Emory Cardiac Toolbox quantitative software was used for processing and inter-predation. Left ventricular ejection fraction (LVEF), end-diastolic, end-systolic and transient ischemia dilation ratio were automatically generated. Three interpreters (nuclear medicine doctors) independently reviewed the studies. Visual scoring (1-5 scales: excellent, good, unsure, poor, uninterpretable) was used to assess the overall quality of the gated images and the added confidence level of interpretation. Visual assessment of the LVEF was compared to the automatically generated LVEF. Comparison between the visual assessment and software generated was graded on a 1- 5 scales (helpful, probably helpful, unsure, probably not helpful, definitely not helpful). The analysed items were divided into two groups (favorable group and negative group). The percentage and 95% confidence intervals of each group were calculated. Results: A total of 192 gated studies were evaluated (64 gated x 3 interpreters ). The overall quality of the gated images was good [excellent 40.1% (77/192), good 43.2% (83/192), unsure 3.1% (6/192), poor 13.6% (26/192), uninterpretable 0]. The 95% confidence intervals of good and excellent quality range from 78.1% to 88.6%. The interpreter's agreed with the automated LVEF on 85.4% of the gated images [agree 76.6% (147/192), probably agree 8.8% (17/192), unsure 3.1% (6/192), probably disagree 8.8% (17/192), disagree 2.6% (5/192)]. And its 95

  11. Active gated imaging in driver assistance system

    Science.gov (United States)

    Grauer, Yoav

    2014-04-01

    In this paper, we shall present the active gated imaging system (AGIS) in relation to the automotive field. AGIS is based on a fast-gated camera and pulsed illuminator, synchronized in the time domain to record images of a certain range of interest. A dedicated gated CMOS imager sensor and near infra-red (NIR) pulsed laser illuminator, is presented in this paper to provide active gated technology. In recent years, we have developed these key components and learned the system parameters, which are most beneficial to nighttime (in all weather conditions) driving in terms of field of view, illumination profile, resolution, and processing power. We shall present our approach of a camera-based advanced driver assistance systems (ADAS) named BrightEye™, which makes use of the AGIS technology in the automotive field.

  12. Comparison of left ventricular ejection fraction by 201Tl gated SPECT and gated blood pool scan

    International Nuclear Information System (INIS)

    Lau, W.F.E.; Kelly, M.J.; O'Donnell, M.; Kalff, V.; Van Every, B.

    2000-01-01

    Full text: The aim of this study was to evaluate left ventricular ejection fraction (LVEF) determination by the Germano 201 Tl gated-SPECT myocardial perfusion (TLGSMP) method using gated blood pool scintigraphy (GBPS) as a reference. 21 patients underwent both TLGSMP and GBPS within eight days of each other from June 1997 to Jan 2000. Acquisition of TLGSMP was performed on a GE Optima NX dual head camera using Tl-201 dose of 1.5MBq/Kg and imaging time of 45 cardiac cycles/step with 16 steps/90 Deg of rotation per detector. All LVEF results were determined using a GE Genie workstation. GBPS results were compared with TLGSMP results for LVEF obtained from the reinjection images using automated Germano processing, and from the stress images using automatic and manual processing. Duplicate automatic analysis by a second observer produced identical mean TLGSMP LVEF results (r = 0.99). Stress TLGSMP LVEF by the automatic and manual processing correlate well (r = 0.99) but the manual LVEF is significantly lower. In conclusion LVEF determination using TLGSMP is highly reproducible and is also accurate when applied to reinjection data. Both manual processing and the use of stress data lead to underestimation of LVEF. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  13. Photoelectric Radial Velocities, Paper XIX Additional Spectroscopic ...

    Indian Academy of Sciences (India)

    ian velocity curve that does justice to the measurements, but it cannot be expected to have much predictive power. Key words. Stars: late-type—stars: radial velocities—spectroscopic binaries—orbits. 0. Preamble. The 'Redman K stars' are a lot of seventh-magnitude K stars whose radial velocities were first observed by ...

  14. The cooperative voltage sensor motion that gates a potassium channel.

    Science.gov (United States)

    Pathak, Medha; Kurtz, Lisa; Tombola, Francesco; Isacoff, Ehud

    2005-01-01

    The four arginine-rich S4 helices of a voltage-gated channel move outward through the membrane in response to depolarization, opening and closing gates to generate a transient ionic current. Coupling of voltage sensing to gating was originally thought to operate with the S4s moving independently from an inward/resting to an outward/activated conformation, so that when all four S4s are activated, the gates are driven to open or closed. However, S4 has also been found to influence the cooperative opening step (Smith-Maxwell et al., 1998a), suggesting a more complex mechanism of coupling. Using fluorescence to monitor structural rearrangements in a Shaker channel mutant, the ILT channel (Ledwell and Aldrich, 1999), that energetically isolates the steps of activation from the cooperative opening step, we find that opening is accompanied by a previously unknown and cooperative movement of S4. This gating motion of S4 appears to be coupled to the internal S6 gate and to two forms of slow inactivation. Our results suggest that S4 plays a direct role in gating. While large transmembrane rearrangements of S4 may be required to unlock the gating machinery, as proposed before, it appears to be the gating motion of S4 that drives the gates to open and close.

  15. Fish and logger summaries - Physical and biological effects of fish-friendly tide gates

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this one-time stand-alone study is to evaluate how effective "fish-friendly" or self-regulating tide gates (SRTs) are at increasing connectivity for...

  16. Linear theory radial and nonradial pulsations of DA dwarf stars

    International Nuclear Information System (INIS)

    Starrfield, S.; Cox, A.N.; Hodson, S.; Pesnell, W.D.

    1982-01-01

    The Los Alamos stellar envelope and radial linear non-adiabatic computer code, along with a new Los Alamos non-radial code are used to investigate the total hydrogen mass necessary to produce the non-radial instability of DA dwarfs

  17. A comparative study on top-gated and bottom-gated multilayer MoS2 transistors with gate stacked dielectric of Al2O3/HfO2.

    Science.gov (United States)

    Zou, Xiao; Xu, Jingping; Huang, Hao; Zhu, Ziqang; Wang, Hongjiu; Li, Borui; Liao, Lei; Fang, Guojia

    2018-06-15

    Top-gated and bottom-gated transistors with multilayer MoS 2 channel fully encapsulated by stacked Al 2 O 3 /HfO 2 (9 nm/6 nm) were fabricated and comparatively studied. Excellent electrical properties are demonstrated for the TG transistors with high on-off current ratio of 10 8 , high field-effect mobility of 10 2 cm 2 V -1 s -1 , and low subthreshold swing of 93 mV dec -1 . Also, enhanced reliability has been achieved for the TG transistors with threshold voltage shift of 10 -3 -10 -2 V MV -1 cm -1 after 6 MV cm -1 gate-biased stressing. All improvement for the TG device can be ascribed to the formed device structure and dielectric environment. Degradation of the performance for the BG transistors should be attributed to reduced gate capacitance density and deteriorated interface properties related to vdW gap with a thickness about 0.4 nm. So, the TG transistor with MoS 2 channel fully encapsulated by stacked Al 2 O 3 /HfO 2 is a promising way to fabricate high-performance ML MoS 2 field-effect transistors for practical electron device applications.

  18. Integration of biomolecular logic gates with field-effect transducers

    Energy Technology Data Exchange (ETDEWEB)

    Poghossian, A., E-mail: a.poghossian@fz-juelich.de [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Institute of Bio- and Nanosystems, Research Centre Juelich GmbH, D-52425 Juelich (Germany); Malzahn, K. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Abouzar, M.H. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Institute of Bio- and Nanosystems, Research Centre Juelich GmbH, D-52425 Juelich (Germany); Mehndiratta, P. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Katz, E. [Department of Chemistry and Biomolecular Science, NanoBio Laboratory (NABLAB), Clarkson University, Potsdam, NY 13699-5810 (United States); Schoening, M.J. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Institute of Bio- and Nanosystems, Research Centre Juelich GmbH, D-52425 Juelich (Germany)

    2011-11-01

    Highlights: > Enzyme-based AND/OR logic gates are integrated with a capacitive field-effect sensor. > The AND/OR logic gates compose of multi-enzyme system immobilised on sensor surface. > Logic gates were activated by different combinations of chemical inputs (analytes). > The logic output (pH change) produced by the enzymes was read out by the sensor. - Abstract: The integration of biomolecular logic gates with field-effect devices - the basic element of conventional electronic logic gates and computing - is one of the most attractive and promising approaches for the transformation of biomolecular logic principles into macroscopically useable electrical output signals. In this work, capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensors based on a p-Si-SiO{sub 2}-Ta{sub 2}O{sub 5} structure modified with a multi-enzyme membrane have been used for electronic transduction of biochemical signals processed by enzyme-based OR and AND logic gates. The realised OR logic gate composes of two enzymes (glucose oxidase and esterase) and was activated by ethyl butyrate or/and glucose. The AND logic gate composes of three enzymes (invertase, mutarotase and glucose oxidase) and was activated by two chemical input signals: sucrose and dissolved oxygen. The developed integrated enzyme logic gates produce local pH changes at the EIS sensor surface as a result of biochemical reactions activated by different combinations of chemical input signals, while the pH value of the bulk solution remains unchanged. The pH-induced charge changes at the gate-insulator (Ta{sub 2}O{sub 5}) surface of the EIS transducer result in an electronic signal corresponding to the logic output produced by the immobilised enzymes. The logic output signals have been read out by means of a constant-capacitance method.

  19. Integration of biomolecular logic gates with field-effect transducers

    International Nuclear Information System (INIS)

    Poghossian, A.; Malzahn, K.; Abouzar, M.H.; Mehndiratta, P.; Katz, E.; Schoening, M.J.

    2011-01-01

    Highlights: → Enzyme-based AND/OR logic gates are integrated with a capacitive field-effect sensor. → The AND/OR logic gates compose of multi-enzyme system immobilised on sensor surface. → Logic gates were activated by different combinations of chemical inputs (analytes). → The logic output (pH change) produced by the enzymes was read out by the sensor. - Abstract: The integration of biomolecular logic gates with field-effect devices - the basic element of conventional electronic logic gates and computing - is one of the most attractive and promising approaches for the transformation of biomolecular logic principles into macroscopically useable electrical output signals. In this work, capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensors based on a p-Si-SiO 2 -Ta 2 O 5 structure modified with a multi-enzyme membrane have been used for electronic transduction of biochemical signals processed by enzyme-based OR and AND logic gates. The realised OR logic gate composes of two enzymes (glucose oxidase and esterase) and was activated by ethyl butyrate or/and glucose. The AND logic gate composes of three enzymes (invertase, mutarotase and glucose oxidase) and was activated by two chemical input signals: sucrose and dissolved oxygen. The developed integrated enzyme logic gates produce local pH changes at the EIS sensor surface as a result of biochemical reactions activated by different combinations of chemical input signals, while the pH value of the bulk solution remains unchanged. The pH-induced charge changes at the gate-insulator (Ta 2 O 5 ) surface of the EIS transducer result in an electronic signal corresponding to the logic output produced by the immobilised enzymes. The logic output signals have been read out by means of a constant-capacitance method.

  20. Gates to the CERN site - Changes and reminder

    CERN Multimedia

    2006-01-01

    I. Gate E New international agreements have been concluded between CERN, Switzerland and France concerning Gate E ('Charles de Gaulle Gate') aimed at reducing congestion at the Prévessin-RN84 and Meyrin Route customs posts, in particular during the work associated with the future Cornavin-Meyrin-CERN tram link. On the basis of these agreements, the Director-General has issued a revised version of the Rules for the use of Gate E (document CERN/DSU-RH/12222/Rev.1 which is available on the Relations with Host States website at: http:/www.cern.ch/relations/), which will enter into force as of 1 December 2006, and includes the following provisions: Gate E is open from Monday to Friday, except on official CERN holidays, from 7.00 a.m. to 9.00 a.m. for access to the site, and from 5.00 p.m. to 7.00 p.m. for departure from the site (instead of 7.30 a.m. to 9.00 a.m. and 5.00 p.m. to 6.30 p.m. respectively). The following persons are authorised to use Gate E: members of the CERN personnel (who may be accompanie...